1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 9 /** 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 12 * 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 14 */ 15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 16 { 17 unsigned int offset, i; 18 19 mutex_lock(qs_cfg->qs_mutex); 20 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 21 0, qs_cfg->q_count, 0); 22 if (offset >= qs_cfg->pf_map_size) { 23 mutex_unlock(qs_cfg->qs_mutex); 24 return -ENOMEM; 25 } 26 27 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 28 for (i = 0; i < qs_cfg->q_count; i++) 29 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 30 mutex_unlock(qs_cfg->qs_mutex); 31 32 return 0; 33 } 34 35 /** 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 38 * 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 40 */ 41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 42 { 43 unsigned int i, index = 0; 44 45 mutex_lock(qs_cfg->qs_mutex); 46 for (i = 0; i < qs_cfg->q_count; i++) { 47 index = find_next_zero_bit(qs_cfg->pf_map, 48 qs_cfg->pf_map_size, index); 49 if (index >= qs_cfg->pf_map_size) 50 goto err_scatter; 51 set_bit(index, qs_cfg->pf_map); 52 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 53 } 54 mutex_unlock(qs_cfg->qs_mutex); 55 56 return 0; 57 err_scatter: 58 for (index = 0; index < i; index++) { 59 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 60 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 61 } 62 mutex_unlock(qs_cfg->qs_mutex); 63 64 return -ENOMEM; 65 } 66 67 /** 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 69 * @pf: the PF being configured 70 * @pf_q: the PF queue 71 * @ena: enable or disable state of the queue 72 * 73 * This routine will wait for the given Rx queue of the PF to reach the 74 * enabled or disabled state. 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after 76 * multiple retries; else will return 0 in case of success. 77 */ 78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 79 { 80 int i; 81 82 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 83 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 84 QRX_CTRL_QENA_STAT_M)) 85 return 0; 86 87 usleep_range(20, 40); 88 } 89 90 return -ETIMEDOUT; 91 } 92 93 /** 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 95 * @vsi: the VSI being configured 96 * @v_idx: index of the vector in the VSI struct 97 * 98 * We allocate one q_vector and set default value for ITR setting associated 99 * with this q_vector. If allocation fails we return -ENOMEM. 100 */ 101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 102 { 103 struct ice_pf *pf = vsi->back; 104 struct ice_q_vector *q_vector; 105 106 /* allocate q_vector */ 107 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), 108 GFP_KERNEL); 109 if (!q_vector) 110 return -ENOMEM; 111 112 q_vector->vsi = vsi; 113 q_vector->v_idx = v_idx; 114 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 115 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 116 q_vector->tx.itr_mode = ITR_DYNAMIC; 117 q_vector->rx.itr_mode = ITR_DYNAMIC; 118 119 if (vsi->type == ICE_VSI_VF) 120 goto out; 121 /* only set affinity_mask if the CPU is online */ 122 if (cpu_online(v_idx)) 123 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 124 125 /* This will not be called in the driver load path because the netdev 126 * will not be created yet. All other cases with register the NAPI 127 * handler here (i.e. resume, reset/rebuild, etc.) 128 */ 129 if (vsi->netdev) 130 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 131 NAPI_POLL_WEIGHT); 132 133 out: 134 /* tie q_vector and VSI together */ 135 vsi->q_vectors[v_idx] = q_vector; 136 137 return 0; 138 } 139 140 /** 141 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 142 * @vsi: VSI having the memory freed 143 * @v_idx: index of the vector to be freed 144 */ 145 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 146 { 147 struct ice_q_vector *q_vector; 148 struct ice_pf *pf = vsi->back; 149 struct ice_ring *ring; 150 struct device *dev; 151 152 dev = ice_pf_to_dev(pf); 153 if (!vsi->q_vectors[v_idx]) { 154 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 155 return; 156 } 157 q_vector = vsi->q_vectors[v_idx]; 158 159 ice_for_each_ring(ring, q_vector->tx) 160 ring->q_vector = NULL; 161 ice_for_each_ring(ring, q_vector->rx) 162 ring->q_vector = NULL; 163 164 /* only VSI with an associated netdev is set up with NAPI */ 165 if (vsi->netdev) 166 netif_napi_del(&q_vector->napi); 167 168 devm_kfree(dev, q_vector); 169 vsi->q_vectors[v_idx] = NULL; 170 } 171 172 /** 173 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 174 * @hw: board specific structure 175 */ 176 static void ice_cfg_itr_gran(struct ice_hw *hw) 177 { 178 u32 regval = rd32(hw, GLINT_CTL); 179 180 /* no need to update global register if ITR gran is already set */ 181 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 182 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 183 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 184 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 185 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 186 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 187 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 188 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 189 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 190 return; 191 192 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 193 GLINT_CTL_ITR_GRAN_200_M) | 194 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 195 GLINT_CTL_ITR_GRAN_100_M) | 196 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 197 GLINT_CTL_ITR_GRAN_50_M) | 198 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 199 GLINT_CTL_ITR_GRAN_25_M); 200 wr32(hw, GLINT_CTL, regval); 201 } 202 203 /** 204 * ice_calc_q_handle - calculate the queue handle 205 * @vsi: VSI that ring belongs to 206 * @ring: ring to get the absolute queue index 207 * @tc: traffic class number 208 */ 209 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc) 210 { 211 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 212 213 /* Idea here for calculation is that we subtract the number of queue 214 * count from TC that ring belongs to from it's absolute queue index 215 * and as a result we get the queue's index within TC. 216 */ 217 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 218 } 219 220 /** 221 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 222 * @ring: The Tx ring to configure 223 * 224 * This enables/disables XPS for a given Tx descriptor ring 225 * based on the TCs enabled for the VSI that ring belongs to. 226 */ 227 static void ice_cfg_xps_tx_ring(struct ice_ring *ring) 228 { 229 if (!ring->q_vector || !ring->netdev) 230 return; 231 232 /* We only initialize XPS once, so as not to overwrite user settings */ 233 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 234 return; 235 236 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 237 ring->q_index); 238 } 239 240 /** 241 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 242 * @ring: The Tx ring to configure 243 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 244 * @pf_q: queue index in the PF space 245 * 246 * Configure the Tx descriptor ring in TLAN context. 247 */ 248 static void 249 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 250 { 251 struct ice_vsi *vsi = ring->vsi; 252 struct ice_hw *hw = &vsi->back->hw; 253 254 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 255 256 tlan_ctx->port_num = vsi->port_info->lport; 257 258 /* Transmit Queue Length */ 259 tlan_ctx->qlen = ring->count; 260 261 ice_set_cgd_num(tlan_ctx, ring); 262 263 /* PF number */ 264 tlan_ctx->pf_num = hw->pf_id; 265 266 /* queue belongs to a specific VSI type 267 * VF / VM index should be programmed per vmvf_type setting: 268 * for vmvf_type = VF, it is VF number between 0-256 269 * for vmvf_type = VM, it is VM number between 0-767 270 * for PF or EMP this field should be set to zero 271 */ 272 switch (vsi->type) { 273 case ICE_VSI_LB: 274 case ICE_VSI_CTRL: 275 case ICE_VSI_PF: 276 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 277 break; 278 case ICE_VSI_VF: 279 /* Firmware expects vmvf_num to be absolute VF ID */ 280 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 281 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 282 break; 283 default: 284 return; 285 } 286 287 /* make sure the context is associated with the right VSI */ 288 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 289 290 tlan_ctx->tso_ena = ICE_TX_LEGACY; 291 tlan_ctx->tso_qnum = pf_q; 292 293 /* Legacy or Advanced Host Interface: 294 * 0: Advanced Host Interface 295 * 1: Legacy Host Interface 296 */ 297 tlan_ctx->legacy_int = ICE_TX_LEGACY; 298 } 299 300 /** 301 * ice_rx_offset - Return expected offset into page to access data 302 * @rx_ring: Ring we are requesting offset of 303 * 304 * Returns the offset value for ring into the data buffer. 305 */ 306 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 307 { 308 if (ice_ring_uses_build_skb(rx_ring)) 309 return ICE_SKB_PAD; 310 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 311 return XDP_PACKET_HEADROOM; 312 313 return 0; 314 } 315 316 /** 317 * ice_setup_rx_ctx - Configure a receive ring context 318 * @ring: The Rx ring to configure 319 * 320 * Configure the Rx descriptor ring in RLAN context. 321 */ 322 static int ice_setup_rx_ctx(struct ice_ring *ring) 323 { 324 int chain_len = ICE_MAX_CHAINED_RX_BUFS; 325 struct ice_vsi *vsi = ring->vsi; 326 u32 rxdid = ICE_RXDID_FLEX_NIC; 327 struct ice_rlan_ctx rlan_ctx; 328 struct ice_hw *hw; 329 u16 pf_q; 330 int err; 331 332 hw = &vsi->back->hw; 333 334 /* what is Rx queue number in global space of 2K Rx queues */ 335 pf_q = vsi->rxq_map[ring->q_index]; 336 337 /* clear the context structure first */ 338 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 339 340 /* Receive Queue Base Address. 341 * Indicates the starting address of the descriptor queue defined in 342 * 128 Byte units. 343 */ 344 rlan_ctx.base = ring->dma >> 7; 345 346 rlan_ctx.qlen = ring->count; 347 348 /* Receive Packet Data Buffer Size. 349 * The Packet Data Buffer Size is defined in 128 byte units. 350 */ 351 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 352 353 /* use 32 byte descriptors */ 354 rlan_ctx.dsize = 1; 355 356 /* Strip the Ethernet CRC bytes before the packet is posted to host 357 * memory. 358 */ 359 rlan_ctx.crcstrip = 1; 360 361 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 362 rlan_ctx.l2tsel = 1; 363 364 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 365 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 366 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 367 368 /* This controls whether VLAN is stripped from inner headers 369 * The VLAN in the inner L2 header is stripped to the receive 370 * descriptor if enabled by this flag. 371 */ 372 rlan_ctx.showiv = 0; 373 374 /* For AF_XDP ZC, we disallow packets to span on 375 * multiple buffers, thus letting us skip that 376 * handling in the fast-path. 377 */ 378 if (ring->xsk_pool) 379 chain_len = 1; 380 /* Max packet size for this queue - must not be set to a larger value 381 * than 5 x DBUF 382 */ 383 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 384 chain_len * ring->rx_buf_len); 385 386 /* Rx queue threshold in units of 64 */ 387 rlan_ctx.lrxqthresh = 1; 388 389 /* Enable Flexible Descriptors in the queue context which 390 * allows this driver to select a specific receive descriptor format 391 * increasing context priority to pick up profile ID; default is 0x01; 392 * setting to 0x03 to ensure profile is programming if prev context is 393 * of same priority 394 */ 395 if (vsi->type != ICE_VSI_VF) 396 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3); 397 else 398 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3); 399 400 /* Absolute queue number out of 2K needs to be passed */ 401 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 402 if (err) { 403 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 404 pf_q, err); 405 return -EIO; 406 } 407 408 if (vsi->type == ICE_VSI_VF) 409 return 0; 410 411 /* configure Rx buffer alignment */ 412 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 413 ice_clear_ring_build_skb_ena(ring); 414 else 415 ice_set_ring_build_skb_ena(ring); 416 417 ring->rx_offset = ice_rx_offset(ring); 418 419 /* init queue specific tail register */ 420 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 421 writel(0, ring->tail); 422 423 return 0; 424 } 425 426 /** 427 * ice_vsi_cfg_rxq - Configure an Rx queue 428 * @ring: the ring being configured 429 * 430 * Return 0 on success and a negative value on error. 431 */ 432 int ice_vsi_cfg_rxq(struct ice_ring *ring) 433 { 434 struct device *dev = ice_pf_to_dev(ring->vsi->back); 435 u16 num_bufs = ICE_DESC_UNUSED(ring); 436 int err; 437 438 ring->rx_buf_len = ring->vsi->rx_buf_len; 439 440 if (ring->vsi->type == ICE_VSI_PF) { 441 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 442 /* coverity[check_return] */ 443 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 444 ring->q_index, ring->q_vector->napi.napi_id); 445 446 ring->xsk_pool = ice_xsk_pool(ring); 447 if (ring->xsk_pool) { 448 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 449 450 ring->rx_buf_len = 451 xsk_pool_get_rx_frame_size(ring->xsk_pool); 452 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 453 MEM_TYPE_XSK_BUFF_POOL, 454 NULL); 455 if (err) 456 return err; 457 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 458 459 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 460 ring->q_index); 461 } else { 462 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 463 /* coverity[check_return] */ 464 xdp_rxq_info_reg(&ring->xdp_rxq, 465 ring->netdev, 466 ring->q_index, ring->q_vector->napi.napi_id); 467 468 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 469 MEM_TYPE_PAGE_SHARED, 470 NULL); 471 if (err) 472 return err; 473 } 474 } 475 476 err = ice_setup_rx_ctx(ring); 477 if (err) { 478 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 479 ring->q_index, err); 480 return err; 481 } 482 483 if (ring->xsk_pool) { 484 bool ok; 485 486 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 487 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 488 num_bufs, ring->q_index); 489 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 490 491 return 0; 492 } 493 494 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 495 if (!ok) { 496 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 497 498 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 499 ring->q_index, pf_q); 500 } 501 502 return 0; 503 } 504 505 ice_alloc_rx_bufs(ring, num_bufs); 506 507 return 0; 508 } 509 510 /** 511 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 512 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 513 * 514 * This function first tries to find contiguous space. If it is not successful, 515 * it tries with the scatter approach. 516 * 517 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 518 */ 519 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 520 { 521 int ret = 0; 522 523 ret = __ice_vsi_get_qs_contig(qs_cfg); 524 if (ret) { 525 /* contig failed, so try with scatter approach */ 526 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 527 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 528 qs_cfg->scatter_count); 529 ret = __ice_vsi_get_qs_sc(qs_cfg); 530 } 531 return ret; 532 } 533 534 /** 535 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 536 * @vsi: the VSI being configured 537 * @ena: start or stop the Rx ring 538 * @rxq_idx: 0-based Rx queue index for the VSI passed in 539 * @wait: wait or don't wait for configuration to finish in hardware 540 * 541 * Return 0 on success and negative on error. 542 */ 543 int 544 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 545 { 546 int pf_q = vsi->rxq_map[rxq_idx]; 547 struct ice_pf *pf = vsi->back; 548 struct ice_hw *hw = &pf->hw; 549 u32 rx_reg; 550 551 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 552 553 /* Skip if the queue is already in the requested state */ 554 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 555 return 0; 556 557 /* turn on/off the queue */ 558 if (ena) 559 rx_reg |= QRX_CTRL_QENA_REQ_M; 560 else 561 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 562 wr32(hw, QRX_CTRL(pf_q), rx_reg); 563 564 if (!wait) 565 return 0; 566 567 ice_flush(hw); 568 return ice_pf_rxq_wait(pf, pf_q, ena); 569 } 570 571 /** 572 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 573 * @vsi: the VSI being configured 574 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 575 * @rxq_idx: 0-based Rx queue index for the VSI passed in 576 * 577 * This routine will wait for the given Rx queue of the VSI to reach the 578 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 579 * the requested state after multiple retries; else will return 0 in case of 580 * success. 581 */ 582 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 583 { 584 int pf_q = vsi->rxq_map[rxq_idx]; 585 struct ice_pf *pf = vsi->back; 586 587 return ice_pf_rxq_wait(pf, pf_q, ena); 588 } 589 590 /** 591 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 592 * @vsi: the VSI being configured 593 * 594 * We allocate one q_vector per queue interrupt. If allocation fails we 595 * return -ENOMEM. 596 */ 597 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 598 { 599 struct device *dev = ice_pf_to_dev(vsi->back); 600 u16 v_idx; 601 int err; 602 603 if (vsi->q_vectors[0]) { 604 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 605 return -EEXIST; 606 } 607 608 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 609 err = ice_vsi_alloc_q_vector(vsi, v_idx); 610 if (err) 611 goto err_out; 612 } 613 614 return 0; 615 616 err_out: 617 while (v_idx--) 618 ice_free_q_vector(vsi, v_idx); 619 620 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 621 vsi->num_q_vectors, vsi->vsi_num, err); 622 vsi->num_q_vectors = 0; 623 return err; 624 } 625 626 /** 627 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 628 * @vsi: the VSI being configured 629 * 630 * This function maps descriptor rings to the queue-specific vectors allotted 631 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 632 * and Rx rings to the vector as "efficiently" as possible. 633 */ 634 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 635 { 636 int q_vectors = vsi->num_q_vectors; 637 u16 tx_rings_rem, rx_rings_rem; 638 int v_id; 639 640 /* initially assigning remaining rings count to VSIs num queue value */ 641 tx_rings_rem = vsi->num_txq; 642 rx_rings_rem = vsi->num_rxq; 643 644 for (v_id = 0; v_id < q_vectors; v_id++) { 645 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 646 u8 tx_rings_per_v, rx_rings_per_v; 647 u16 q_id, q_base; 648 649 /* Tx rings mapping to vector */ 650 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 651 q_vectors - v_id); 652 q_vector->num_ring_tx = tx_rings_per_v; 653 q_vector->tx.ring = NULL; 654 q_vector->tx.itr_idx = ICE_TX_ITR; 655 q_base = vsi->num_txq - tx_rings_rem; 656 657 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 658 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 659 660 tx_ring->q_vector = q_vector; 661 tx_ring->next = q_vector->tx.ring; 662 q_vector->tx.ring = tx_ring; 663 } 664 tx_rings_rem -= tx_rings_per_v; 665 666 /* Rx rings mapping to vector */ 667 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 668 q_vectors - v_id); 669 q_vector->num_ring_rx = rx_rings_per_v; 670 q_vector->rx.ring = NULL; 671 q_vector->rx.itr_idx = ICE_RX_ITR; 672 q_base = vsi->num_rxq - rx_rings_rem; 673 674 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 675 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 676 677 rx_ring->q_vector = q_vector; 678 rx_ring->next = q_vector->rx.ring; 679 q_vector->rx.ring = rx_ring; 680 } 681 rx_rings_rem -= rx_rings_per_v; 682 } 683 } 684 685 /** 686 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 687 * @vsi: the VSI having memory freed 688 */ 689 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 690 { 691 int v_idx; 692 693 ice_for_each_q_vector(vsi, v_idx) 694 ice_free_q_vector(vsi, v_idx); 695 } 696 697 /** 698 * ice_vsi_cfg_txq - Configure single Tx queue 699 * @vsi: the VSI that queue belongs to 700 * @ring: Tx ring to be configured 701 * @qg_buf: queue group buffer 702 */ 703 int 704 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, 705 struct ice_aqc_add_tx_qgrp *qg_buf) 706 { 707 u8 buf_len = struct_size(qg_buf, txqs, 1); 708 struct ice_tlan_ctx tlan_ctx = { 0 }; 709 struct ice_aqc_add_txqs_perq *txq; 710 struct ice_pf *pf = vsi->back; 711 struct ice_hw *hw = &pf->hw; 712 enum ice_status status; 713 u16 pf_q; 714 u8 tc; 715 716 /* Configure XPS */ 717 ice_cfg_xps_tx_ring(ring); 718 719 pf_q = ring->reg_idx; 720 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 721 /* copy context contents into the qg_buf */ 722 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 723 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 724 ice_tlan_ctx_info); 725 726 /* init queue specific tail reg. It is referred as 727 * transmit comm scheduler queue doorbell. 728 */ 729 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 730 731 if (IS_ENABLED(CONFIG_DCB)) 732 tc = ring->dcb_tc; 733 else 734 tc = 0; 735 736 /* Add unique software queue handle of the Tx queue per 737 * TC into the VSI Tx ring 738 */ 739 ring->q_handle = ice_calc_q_handle(vsi, ring, tc); 740 741 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 742 1, qg_buf, buf_len, NULL); 743 if (status) { 744 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n", 745 ice_stat_str(status)); 746 return -ENODEV; 747 } 748 749 /* Add Tx Queue TEID into the VSI Tx ring from the 750 * response. This will complete configuring and 751 * enabling the queue. 752 */ 753 txq = &qg_buf->txqs[0]; 754 if (pf_q == le16_to_cpu(txq->txq_id)) 755 ring->txq_teid = le32_to_cpu(txq->q_teid); 756 757 return 0; 758 } 759 760 /** 761 * ice_cfg_itr - configure the initial interrupt throttle values 762 * @hw: pointer to the HW structure 763 * @q_vector: interrupt vector that's being configured 764 * 765 * Configure interrupt throttling values for the ring containers that are 766 * associated with the interrupt vector passed in. 767 */ 768 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 769 { 770 ice_cfg_itr_gran(hw); 771 772 if (q_vector->num_ring_rx) 773 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 774 775 if (q_vector->num_ring_tx) 776 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 777 778 ice_write_intrl(q_vector, q_vector->intrl); 779 } 780 781 /** 782 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 783 * @vsi: the VSI being configured 784 * @txq: Tx queue being mapped to MSI-X vector 785 * @msix_idx: MSI-X vector index within the function 786 * @itr_idx: ITR index of the interrupt cause 787 * 788 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 789 * within the function space. 790 */ 791 void 792 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 793 { 794 struct ice_pf *pf = vsi->back; 795 struct ice_hw *hw = &pf->hw; 796 u32 val; 797 798 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 799 800 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 801 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 802 803 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 804 if (ice_is_xdp_ena_vsi(vsi)) { 805 u32 xdp_txq = txq + vsi->num_xdp_txq; 806 807 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 808 val); 809 } 810 ice_flush(hw); 811 } 812 813 /** 814 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 815 * @vsi: the VSI being configured 816 * @rxq: Rx queue being mapped to MSI-X vector 817 * @msix_idx: MSI-X vector index within the function 818 * @itr_idx: ITR index of the interrupt cause 819 * 820 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 821 * within the function space. 822 */ 823 void 824 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 825 { 826 struct ice_pf *pf = vsi->back; 827 struct ice_hw *hw = &pf->hw; 828 u32 val; 829 830 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 831 832 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 833 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 834 835 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 836 837 ice_flush(hw); 838 } 839 840 /** 841 * ice_trigger_sw_intr - trigger a software interrupt 842 * @hw: pointer to the HW structure 843 * @q_vector: interrupt vector to trigger the software interrupt for 844 */ 845 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 846 { 847 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 848 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 849 GLINT_DYN_CTL_SWINT_TRIG_M | 850 GLINT_DYN_CTL_INTENA_M); 851 } 852 853 /** 854 * ice_vsi_stop_tx_ring - Disable single Tx ring 855 * @vsi: the VSI being configured 856 * @rst_src: reset source 857 * @rel_vmvf_num: Relative ID of VF/VM 858 * @ring: Tx ring to be stopped 859 * @txq_meta: Meta data of Tx ring to be stopped 860 */ 861 int 862 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 863 u16 rel_vmvf_num, struct ice_ring *ring, 864 struct ice_txq_meta *txq_meta) 865 { 866 struct ice_pf *pf = vsi->back; 867 struct ice_q_vector *q_vector; 868 struct ice_hw *hw = &pf->hw; 869 enum ice_status status; 870 u32 val; 871 872 /* clear cause_ena bit for disabled queues */ 873 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 874 val &= ~QINT_TQCTL_CAUSE_ENA_M; 875 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 876 877 /* software is expected to wait for 100 ns */ 878 ndelay(100); 879 880 /* trigger a software interrupt for the vector 881 * associated to the queue to schedule NAPI handler 882 */ 883 q_vector = ring->q_vector; 884 if (q_vector) 885 ice_trigger_sw_intr(hw, q_vector); 886 887 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 888 txq_meta->tc, 1, &txq_meta->q_handle, 889 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 890 rel_vmvf_num, NULL); 891 892 /* if the disable queue command was exercised during an 893 * active reset flow, ICE_ERR_RESET_ONGOING is returned. 894 * This is not an error as the reset operation disables 895 * queues at the hardware level anyway. 896 */ 897 if (status == ICE_ERR_RESET_ONGOING) { 898 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 899 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 900 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 901 } else if (status) { 902 dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n", 903 ice_stat_str(status)); 904 return -ENODEV; 905 } 906 907 return 0; 908 } 909 910 /** 911 * ice_fill_txq_meta - Prepare the Tx queue's meta data 912 * @vsi: VSI that ring belongs to 913 * @ring: ring that txq_meta will be based on 914 * @txq_meta: a helper struct that wraps Tx queue's information 915 * 916 * Set up a helper struct that will contain all the necessary fields that 917 * are needed for stopping Tx queue 918 */ 919 void 920 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring, 921 struct ice_txq_meta *txq_meta) 922 { 923 u8 tc; 924 925 if (IS_ENABLED(CONFIG_DCB)) 926 tc = ring->dcb_tc; 927 else 928 tc = 0; 929 930 txq_meta->q_id = ring->reg_idx; 931 txq_meta->q_teid = ring->txq_teid; 932 txq_meta->q_handle = ring->q_handle; 933 txq_meta->vsi_idx = vsi->idx; 934 txq_meta->tc = tc; 935 } 936