1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 q_vector->vf_reg_idx = q_vector->irq.index; 149 150 /* only set affinity_mask if the CPU is online */ 151 if (cpu_online(v_idx)) 152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 153 154 /* This will not be called in the driver load path because the netdev 155 * will not be created yet. All other cases with register the NAPI 156 * handler here (i.e. resume, reset/rebuild, etc.) 157 */ 158 if (vsi->netdev) 159 netif_napi_add_config(vsi->netdev, &q_vector->napi, 160 ice_napi_poll, v_idx); 161 162 out: 163 /* tie q_vector and VSI together */ 164 vsi->q_vectors[v_idx] = q_vector; 165 166 return 0; 167 168 err_free_q_vector: 169 kfree(q_vector); 170 171 return err; 172 } 173 174 /** 175 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 176 * @vsi: VSI having the memory freed 177 * @v_idx: index of the vector to be freed 178 */ 179 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 180 { 181 struct ice_q_vector *q_vector; 182 struct ice_pf *pf = vsi->back; 183 struct ice_tx_ring *tx_ring; 184 struct ice_rx_ring *rx_ring; 185 struct device *dev; 186 187 dev = ice_pf_to_dev(pf); 188 if (!vsi->q_vectors[v_idx]) { 189 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 190 return; 191 } 192 q_vector = vsi->q_vectors[v_idx]; 193 194 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx) 195 tx_ring->q_vector = NULL; 196 197 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx) 198 rx_ring->q_vector = NULL; 199 200 /* only VSI with an associated netdev is set up with NAPI */ 201 if (vsi->netdev) 202 netif_napi_del(&q_vector->napi); 203 204 /* release MSIX interrupt if q_vector had interrupt allocated */ 205 if (q_vector->irq.index < 0) 206 goto free_q_vector; 207 208 /* only free last VF ctrl vsi interrupt */ 209 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 210 ice_get_vf_ctrl_vsi(pf, vsi)) 211 goto free_q_vector; 212 213 ice_free_irq(pf, q_vector->irq); 214 215 free_q_vector: 216 kfree(q_vector); 217 vsi->q_vectors[v_idx] = NULL; 218 } 219 220 /** 221 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 222 * @hw: board specific structure 223 */ 224 static void ice_cfg_itr_gran(struct ice_hw *hw) 225 { 226 u32 regval = rd32(hw, GLINT_CTL); 227 228 /* no need to update global register if ITR gran is already set */ 229 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 230 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 231 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 232 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 233 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 234 return; 235 236 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 237 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 238 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 239 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 240 wr32(hw, GLINT_CTL, regval); 241 } 242 243 /** 244 * ice_calc_txq_handle - calculate the queue handle 245 * @vsi: VSI that ring belongs to 246 * @ring: ring to get the absolute queue index 247 * @tc: traffic class number 248 */ 249 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 250 { 251 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 252 253 if (ring->ch) 254 return ring->q_index - ring->ch->base_q; 255 256 /* Idea here for calculation is that we subtract the number of queue 257 * count from TC that ring belongs to from it's absolute queue index 258 * and as a result we get the queue's index within TC. 259 */ 260 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 261 } 262 263 /** 264 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 265 * @ring: The Tx ring to configure 266 * 267 * This enables/disables XPS for a given Tx descriptor ring 268 * based on the TCs enabled for the VSI that ring belongs to. 269 */ 270 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 271 { 272 if (!ring->q_vector || !ring->netdev) 273 return; 274 275 /* We only initialize XPS once, so as not to overwrite user settings */ 276 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 277 return; 278 279 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 280 ring->q_index); 281 } 282 283 /** 284 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 285 * @ring: The Tx ring to configure 286 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 287 * @pf_q: queue index in the PF space 288 * 289 * Configure the Tx descriptor ring in TLAN context. 290 */ 291 static void 292 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 293 { 294 struct ice_vsi *vsi = ring->vsi; 295 struct ice_hw *hw = &vsi->back->hw; 296 297 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 298 299 tlan_ctx->port_num = vsi->port_info->lport; 300 301 /* Transmit Queue Length */ 302 tlan_ctx->qlen = ring->count; 303 304 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 305 306 /* PF number */ 307 tlan_ctx->pf_num = hw->pf_id; 308 309 /* queue belongs to a specific VSI type 310 * VF / VM index should be programmed per vmvf_type setting: 311 * for vmvf_type = VF, it is VF number between 0-256 312 * for vmvf_type = VM, it is VM number between 0-767 313 * for PF or EMP this field should be set to zero 314 */ 315 switch (vsi->type) { 316 case ICE_VSI_LB: 317 case ICE_VSI_CTRL: 318 case ICE_VSI_PF: 319 if (ring->ch) 320 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 321 else 322 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 323 break; 324 case ICE_VSI_VF: 325 /* Firmware expects vmvf_num to be absolute VF ID */ 326 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 327 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 328 break; 329 case ICE_VSI_SF: 330 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 331 break; 332 default: 333 return; 334 } 335 336 /* make sure the context is associated with the right VSI */ 337 if (ring->ch) 338 tlan_ctx->src_vsi = ring->ch->vsi_num; 339 else 340 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 341 342 /* Restrict Tx timestamps to the PF VSI */ 343 switch (vsi->type) { 344 case ICE_VSI_PF: 345 tlan_ctx->tsyn_ena = 1; 346 break; 347 default: 348 break; 349 } 350 351 tlan_ctx->quanta_prof_idx = ring->quanta_prof_id; 352 353 tlan_ctx->tso_ena = ICE_TX_LEGACY; 354 tlan_ctx->tso_qnum = pf_q; 355 356 /* Legacy or Advanced Host Interface: 357 * 0: Advanced Host Interface 358 * 1: Legacy Host Interface 359 */ 360 tlan_ctx->legacy_int = ICE_TX_LEGACY; 361 } 362 363 /** 364 * ice_rx_offset - Return expected offset into page to access data 365 * @rx_ring: Ring we are requesting offset of 366 * 367 * Returns the offset value for ring into the data buffer. 368 */ 369 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 370 { 371 if (ice_ring_uses_build_skb(rx_ring)) 372 return ICE_SKB_PAD; 373 return 0; 374 } 375 376 /** 377 * ice_setup_rx_ctx - Configure a receive ring context 378 * @ring: The Rx ring to configure 379 * 380 * Configure the Rx descriptor ring in RLAN context. 381 */ 382 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 383 { 384 struct ice_vsi *vsi = ring->vsi; 385 u32 rxdid = ICE_RXDID_FLEX_NIC; 386 struct ice_rlan_ctx rlan_ctx; 387 struct ice_hw *hw; 388 u16 pf_q; 389 int err; 390 391 hw = &vsi->back->hw; 392 393 /* what is Rx queue number in global space of 2K Rx queues */ 394 pf_q = vsi->rxq_map[ring->q_index]; 395 396 /* clear the context structure first */ 397 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 398 399 /* Receive Queue Base Address. 400 * Indicates the starting address of the descriptor queue defined in 401 * 128 Byte units. 402 */ 403 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 404 405 rlan_ctx.qlen = ring->count; 406 407 /* Receive Packet Data Buffer Size. 408 * The Packet Data Buffer Size is defined in 128 byte units. 409 */ 410 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 411 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 412 413 /* use 32 byte descriptors */ 414 rlan_ctx.dsize = 1; 415 416 /* Strip the Ethernet CRC bytes before the packet is posted to host 417 * memory. 418 */ 419 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 420 421 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 422 * and it needs to remain 1 for non-DVM capable configurations to not 423 * break backward compatibility for VF drivers. Setting this field to 0 424 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 425 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 426 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 427 * check for the tag 428 */ 429 if (ice_is_dvm_ena(hw)) 430 if (vsi->type == ICE_VSI_VF && 431 ice_vf_is_port_vlan_ena(vsi->vf)) 432 rlan_ctx.l2tsel = 1; 433 else 434 rlan_ctx.l2tsel = 0; 435 else 436 rlan_ctx.l2tsel = 1; 437 438 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 439 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 440 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 441 442 /* This controls whether VLAN is stripped from inner headers 443 * The VLAN in the inner L2 header is stripped to the receive 444 * descriptor if enabled by this flag. 445 */ 446 rlan_ctx.showiv = 0; 447 448 /* Max packet size for this queue - must not be set to a larger value 449 * than 5 x DBUF 450 */ 451 rlan_ctx.rxmax = min_t(u32, ring->max_frame, 452 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 453 454 /* Rx queue threshold in units of 64 */ 455 rlan_ctx.lrxqthresh = 1; 456 457 /* Enable descriptor prefetch */ 458 rlan_ctx.prefena = 1; 459 460 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 461 * metadata and flags to allow redirecting to PR netdev 462 */ 463 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 464 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 465 rxdid = ICE_RXDID_FLEX_NIC_2; 466 } 467 468 /* Enable Flexible Descriptors in the queue context which 469 * allows this driver to select a specific receive descriptor format 470 * increasing context priority to pick up profile ID; default is 0x01; 471 * setting to 0x03 to ensure profile is programming if prev context is 472 * of same priority 473 */ 474 if (vsi->type != ICE_VSI_VF) 475 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 476 else 477 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 478 false); 479 480 /* Absolute queue number out of 2K needs to be passed */ 481 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 482 if (err) { 483 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 484 pf_q, err); 485 return -EIO; 486 } 487 488 if (vsi->type == ICE_VSI_VF) 489 return 0; 490 491 /* configure Rx buffer alignment */ 492 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 493 ice_clear_ring_build_skb_ena(ring); 494 else 495 ice_set_ring_build_skb_ena(ring); 496 497 ring->rx_offset = ice_rx_offset(ring); 498 499 /* init queue specific tail register */ 500 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 501 writel(0, ring->tail); 502 503 return 0; 504 } 505 506 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 507 { 508 void *ctx_ptr = &ring->pkt_ctx; 509 struct xsk_cb_desc desc = {}; 510 511 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 512 desc.src = &ctx_ptr; 513 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 514 sizeof(struct xdp_buff); 515 desc.bytes = sizeof(ctx_ptr); 516 xsk_pool_fill_cb(ring->xsk_pool, &desc); 517 } 518 519 /** 520 * ice_get_frame_sz - calculate xdp_buff::frame_sz 521 * @rx_ring: the ring being configured 522 * 523 * Return frame size based on underlying PAGE_SIZE 524 */ 525 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring) 526 { 527 unsigned int frame_sz; 528 529 #if (PAGE_SIZE >= 8192) 530 frame_sz = rx_ring->rx_buf_len; 531 #else 532 frame_sz = ice_rx_pg_size(rx_ring) / 2; 533 #endif 534 535 return frame_sz; 536 } 537 538 /** 539 * ice_vsi_cfg_rxq - Configure an Rx queue 540 * @ring: the ring being configured 541 * 542 * Return 0 on success and a negative value on error. 543 */ 544 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 545 { 546 struct device *dev = ice_pf_to_dev(ring->vsi->back); 547 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 548 int err; 549 550 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) { 551 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 552 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 553 ring->q_index, 554 ring->q_vector->napi.napi_id, 555 ring->rx_buf_len); 556 if (err) 557 return err; 558 } 559 560 ice_rx_xsk_pool(ring); 561 if (ring->xsk_pool) { 562 xdp_rxq_info_unreg(&ring->xdp_rxq); 563 564 ring->rx_buf_len = 565 xsk_pool_get_rx_frame_size(ring->xsk_pool); 566 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 567 ring->q_index, 568 ring->q_vector->napi.napi_id, 569 ring->rx_buf_len); 570 if (err) 571 return err; 572 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 573 MEM_TYPE_XSK_BUFF_POOL, 574 NULL); 575 if (err) 576 return err; 577 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 578 ice_xsk_pool_fill_cb(ring); 579 580 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 581 ring->q_index); 582 } else { 583 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 584 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 585 ring->q_index, 586 ring->q_vector->napi.napi_id, 587 ring->rx_buf_len); 588 if (err) 589 return err; 590 } 591 592 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 593 MEM_TYPE_PAGE_SHARED, 594 NULL); 595 if (err) 596 return err; 597 } 598 } 599 600 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq); 601 ring->xdp.data = NULL; 602 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 603 err = ice_setup_rx_ctx(ring); 604 if (err) { 605 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 606 ring->q_index, err); 607 return err; 608 } 609 610 if (ring->xsk_pool) { 611 bool ok; 612 613 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 614 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 615 num_bufs, ring->q_index); 616 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 617 618 return 0; 619 } 620 621 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs); 622 if (!ok) { 623 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 624 625 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 626 ring->q_index, pf_q); 627 } 628 629 return 0; 630 } 631 632 ice_alloc_rx_bufs(ring, num_bufs); 633 634 return 0; 635 } 636 637 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 638 { 639 if (q_idx >= vsi->num_rxq) 640 return -EINVAL; 641 642 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 643 } 644 645 /** 646 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 647 * @vsi: VSI 648 * @ring: Rx ring to configure 649 * 650 * Determine the maximum frame size and Rx buffer length to use for a PF VSI. 651 * Set these in the associated Rx ring structure. 652 */ 653 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring) 654 { 655 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 656 ring->max_frame = ICE_MAX_FRAME_LEGACY_RX; 657 ring->rx_buf_len = ICE_RXBUF_1664; 658 #if (PAGE_SIZE < 8192) 659 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 660 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 661 ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 662 ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 663 #endif 664 } else { 665 ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 666 ring->rx_buf_len = ICE_RXBUF_3072; 667 } 668 } 669 670 /** 671 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 672 * @vsi: the VSI being configured 673 * 674 * Return 0 on success and a negative value on error 675 * Configure the Rx VSI for operation. 676 */ 677 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 678 { 679 u16 i; 680 681 /* set up individual rings */ 682 ice_for_each_rxq(vsi, i) { 683 struct ice_rx_ring *ring = vsi->rx_rings[i]; 684 int err; 685 686 if (vsi->type != ICE_VSI_VF) 687 ice_vsi_cfg_frame_size(vsi, ring); 688 689 err = ice_vsi_cfg_rxq(ring); 690 if (err) 691 return err; 692 } 693 694 return 0; 695 } 696 697 /** 698 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 699 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 700 * 701 * This function first tries to find contiguous space. If it is not successful, 702 * it tries with the scatter approach. 703 * 704 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 705 */ 706 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 707 { 708 int ret = 0; 709 710 ret = __ice_vsi_get_qs_contig(qs_cfg); 711 if (ret) { 712 /* contig failed, so try with scatter approach */ 713 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 714 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 715 qs_cfg->scatter_count); 716 ret = __ice_vsi_get_qs_sc(qs_cfg); 717 } 718 return ret; 719 } 720 721 /** 722 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 723 * @vsi: the VSI being configured 724 * @ena: start or stop the Rx ring 725 * @rxq_idx: 0-based Rx queue index for the VSI passed in 726 * @wait: wait or don't wait for configuration to finish in hardware 727 * 728 * Return 0 on success and negative on error. 729 */ 730 int 731 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 732 { 733 int pf_q = vsi->rxq_map[rxq_idx]; 734 struct ice_pf *pf = vsi->back; 735 struct ice_hw *hw = &pf->hw; 736 u32 rx_reg; 737 738 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 739 740 /* Skip if the queue is already in the requested state */ 741 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 742 return 0; 743 744 /* turn on/off the queue */ 745 if (ena) 746 rx_reg |= QRX_CTRL_QENA_REQ_M; 747 else 748 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 749 wr32(hw, QRX_CTRL(pf_q), rx_reg); 750 751 if (!wait) 752 return 0; 753 754 ice_flush(hw); 755 return ice_pf_rxq_wait(pf, pf_q, ena); 756 } 757 758 /** 759 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 760 * @vsi: the VSI being configured 761 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 762 * @rxq_idx: 0-based Rx queue index for the VSI passed in 763 * 764 * This routine will wait for the given Rx queue of the VSI to reach the 765 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 766 * the requested state after multiple retries; else will return 0 in case of 767 * success. 768 */ 769 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 770 { 771 int pf_q = vsi->rxq_map[rxq_idx]; 772 struct ice_pf *pf = vsi->back; 773 774 return ice_pf_rxq_wait(pf, pf_q, ena); 775 } 776 777 /** 778 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 779 * @vsi: the VSI being configured 780 * 781 * We allocate one q_vector per queue interrupt. If allocation fails we 782 * return -ENOMEM. 783 */ 784 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 785 { 786 struct device *dev = ice_pf_to_dev(vsi->back); 787 u16 v_idx; 788 int err; 789 790 if (vsi->q_vectors[0]) { 791 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 792 return -EEXIST; 793 } 794 795 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 796 err = ice_vsi_alloc_q_vector(vsi, v_idx); 797 if (err) 798 goto err_out; 799 } 800 801 return 0; 802 803 err_out: 804 while (v_idx--) 805 ice_free_q_vector(vsi, v_idx); 806 807 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 808 vsi->num_q_vectors, vsi->vsi_num, err); 809 vsi->num_q_vectors = 0; 810 return err; 811 } 812 813 /** 814 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 815 * @vsi: the VSI being configured 816 * 817 * This function maps descriptor rings to the queue-specific vectors allotted 818 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 819 * and Rx rings to the vector as "efficiently" as possible. 820 */ 821 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 822 { 823 int q_vectors = vsi->num_q_vectors; 824 u16 tx_rings_rem, rx_rings_rem; 825 int v_id; 826 827 /* initially assigning remaining rings count to VSIs num queue value */ 828 tx_rings_rem = vsi->num_txq; 829 rx_rings_rem = vsi->num_rxq; 830 831 for (v_id = 0; v_id < q_vectors; v_id++) { 832 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 833 u8 tx_rings_per_v, rx_rings_per_v; 834 u16 q_id, q_base; 835 836 /* Tx rings mapping to vector */ 837 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 838 q_vectors - v_id); 839 q_vector->num_ring_tx = tx_rings_per_v; 840 q_vector->tx.tx_ring = NULL; 841 q_vector->tx.itr_idx = ICE_TX_ITR; 842 q_base = vsi->num_txq - tx_rings_rem; 843 844 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 845 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 846 847 tx_ring->q_vector = q_vector; 848 tx_ring->next = q_vector->tx.tx_ring; 849 q_vector->tx.tx_ring = tx_ring; 850 } 851 tx_rings_rem -= tx_rings_per_v; 852 853 /* Rx rings mapping to vector */ 854 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 855 q_vectors - v_id); 856 q_vector->num_ring_rx = rx_rings_per_v; 857 q_vector->rx.rx_ring = NULL; 858 q_vector->rx.itr_idx = ICE_RX_ITR; 859 q_base = vsi->num_rxq - rx_rings_rem; 860 861 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 862 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 863 864 rx_ring->q_vector = q_vector; 865 rx_ring->next = q_vector->rx.rx_ring; 866 q_vector->rx.rx_ring = rx_ring; 867 } 868 rx_rings_rem -= rx_rings_per_v; 869 } 870 871 if (ice_is_xdp_ena_vsi(vsi)) 872 ice_map_xdp_rings(vsi); 873 } 874 875 /** 876 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 877 * @vsi: the VSI having memory freed 878 */ 879 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 880 { 881 int v_idx; 882 883 ice_for_each_q_vector(vsi, v_idx) 884 ice_free_q_vector(vsi, v_idx); 885 886 vsi->num_q_vectors = 0; 887 } 888 889 /** 890 * ice_vsi_cfg_txq - Configure single Tx queue 891 * @vsi: the VSI that queue belongs to 892 * @ring: Tx ring to be configured 893 * @qg_buf: queue group buffer 894 */ 895 static int 896 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 897 struct ice_aqc_add_tx_qgrp *qg_buf) 898 { 899 u8 buf_len = struct_size(qg_buf, txqs, 1); 900 struct ice_tlan_ctx tlan_ctx = { 0 }; 901 struct ice_aqc_add_txqs_perq *txq; 902 struct ice_channel *ch = ring->ch; 903 struct ice_pf *pf = vsi->back; 904 struct ice_hw *hw = &pf->hw; 905 int status; 906 u16 pf_q; 907 u8 tc; 908 909 /* Configure XPS */ 910 ice_cfg_xps_tx_ring(ring); 911 912 pf_q = ring->reg_idx; 913 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 914 /* copy context contents into the qg_buf */ 915 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 916 ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx); 917 918 /* init queue specific tail reg. It is referred as 919 * transmit comm scheduler queue doorbell. 920 */ 921 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 922 923 if (IS_ENABLED(CONFIG_DCB)) 924 tc = ring->dcb_tc; 925 else 926 tc = 0; 927 928 /* Add unique software queue handle of the Tx queue per 929 * TC into the VSI Tx ring 930 */ 931 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 932 933 if (ch) 934 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 935 ring->q_handle, 1, qg_buf, buf_len, 936 NULL); 937 else 938 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 939 ring->q_handle, 1, qg_buf, buf_len, 940 NULL); 941 if (status) { 942 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 943 status); 944 return status; 945 } 946 947 /* Add Tx Queue TEID into the VSI Tx ring from the 948 * response. This will complete configuring and 949 * enabling the queue. 950 */ 951 txq = &qg_buf->txqs[0]; 952 if (pf_q == le16_to_cpu(txq->txq_id)) 953 ring->txq_teid = le32_to_cpu(txq->q_teid); 954 955 return 0; 956 } 957 958 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 959 u16 q_idx) 960 { 961 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 962 963 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 964 return -EINVAL; 965 966 qg_buf->num_txqs = 1; 967 968 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 969 } 970 971 /** 972 * ice_vsi_cfg_txqs - Configure the VSI for Tx 973 * @vsi: the VSI being configured 974 * @rings: Tx ring array to be configured 975 * @count: number of Tx ring array elements 976 * 977 * Return 0 on success and a negative value on error 978 * Configure the Tx VSI for operation. 979 */ 980 static int 981 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 982 { 983 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 984 int err = 0; 985 u16 q_idx; 986 987 qg_buf->num_txqs = 1; 988 989 for (q_idx = 0; q_idx < count; q_idx++) { 990 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 991 if (err) 992 break; 993 } 994 995 return err; 996 } 997 998 /** 999 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1000 * @vsi: the VSI being configured 1001 * 1002 * Return 0 on success and a negative value on error 1003 * Configure the Tx VSI for operation. 1004 */ 1005 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1006 { 1007 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1008 } 1009 1010 /** 1011 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1012 * @vsi: the VSI being configured 1013 * 1014 * Return 0 on success and a negative value on error 1015 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1016 */ 1017 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1018 { 1019 int ret; 1020 int i; 1021 1022 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1023 if (ret) 1024 return ret; 1025 1026 ice_for_each_rxq(vsi, i) 1027 ice_tx_xsk_pool(vsi, i); 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * ice_cfg_itr - configure the initial interrupt throttle values 1034 * @hw: pointer to the HW structure 1035 * @q_vector: interrupt vector that's being configured 1036 * 1037 * Configure interrupt throttling values for the ring containers that are 1038 * associated with the interrupt vector passed in. 1039 */ 1040 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1041 { 1042 ice_cfg_itr_gran(hw); 1043 1044 if (q_vector->num_ring_rx) 1045 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1046 1047 if (q_vector->num_ring_tx) 1048 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1049 1050 ice_write_intrl(q_vector, q_vector->intrl); 1051 } 1052 1053 /** 1054 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1055 * @vsi: the VSI being configured 1056 * @txq: Tx queue being mapped to MSI-X vector 1057 * @msix_idx: MSI-X vector index within the function 1058 * @itr_idx: ITR index of the interrupt cause 1059 * 1060 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1061 * within the function space. 1062 */ 1063 void 1064 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1065 { 1066 struct ice_pf *pf = vsi->back; 1067 struct ice_hw *hw = &pf->hw; 1068 u32 val; 1069 1070 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1071 1072 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1073 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1074 1075 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1076 if (ice_is_xdp_ena_vsi(vsi)) { 1077 u32 xdp_txq = txq + vsi->num_xdp_txq; 1078 1079 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1080 val); 1081 } 1082 ice_flush(hw); 1083 } 1084 1085 /** 1086 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1087 * @vsi: the VSI being configured 1088 * @rxq: Rx queue being mapped to MSI-X vector 1089 * @msix_idx: MSI-X vector index within the function 1090 * @itr_idx: ITR index of the interrupt cause 1091 * 1092 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1093 * within the function space. 1094 */ 1095 void 1096 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1097 { 1098 struct ice_pf *pf = vsi->back; 1099 struct ice_hw *hw = &pf->hw; 1100 u32 val; 1101 1102 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1103 1104 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1105 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1106 1107 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1108 1109 ice_flush(hw); 1110 } 1111 1112 /** 1113 * ice_trigger_sw_intr - trigger a software interrupt 1114 * @hw: pointer to the HW structure 1115 * @q_vector: interrupt vector to trigger the software interrupt for 1116 */ 1117 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1118 { 1119 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1120 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1121 GLINT_DYN_CTL_SWINT_TRIG_M | 1122 GLINT_DYN_CTL_INTENA_M); 1123 } 1124 1125 /** 1126 * ice_vsi_stop_tx_ring - Disable single Tx ring 1127 * @vsi: the VSI being configured 1128 * @rst_src: reset source 1129 * @rel_vmvf_num: Relative ID of VF/VM 1130 * @ring: Tx ring to be stopped 1131 * @txq_meta: Meta data of Tx ring to be stopped 1132 */ 1133 int 1134 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1135 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1136 struct ice_txq_meta *txq_meta) 1137 { 1138 struct ice_pf *pf = vsi->back; 1139 struct ice_q_vector *q_vector; 1140 struct ice_hw *hw = &pf->hw; 1141 int status; 1142 u32 val; 1143 1144 /* clear cause_ena bit for disabled queues */ 1145 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1146 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1147 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1148 1149 /* software is expected to wait for 100 ns */ 1150 ndelay(100); 1151 1152 /* trigger a software interrupt for the vector 1153 * associated to the queue to schedule NAPI handler 1154 */ 1155 q_vector = ring->q_vector; 1156 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1157 ice_trigger_sw_intr(hw, q_vector); 1158 1159 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1160 txq_meta->tc, 1, &txq_meta->q_handle, 1161 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1162 rel_vmvf_num, NULL); 1163 1164 /* if the disable queue command was exercised during an 1165 * active reset flow, -EBUSY is returned. 1166 * This is not an error as the reset operation disables 1167 * queues at the hardware level anyway. 1168 */ 1169 if (status == -EBUSY) { 1170 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1171 } else if (status == -ENOENT) { 1172 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1173 } else if (status) { 1174 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1175 status); 1176 return status; 1177 } 1178 1179 return 0; 1180 } 1181 1182 /** 1183 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1184 * @vsi: VSI that ring belongs to 1185 * @ring: ring that txq_meta will be based on 1186 * @txq_meta: a helper struct that wraps Tx queue's information 1187 * 1188 * Set up a helper struct that will contain all the necessary fields that 1189 * are needed for stopping Tx queue 1190 */ 1191 void 1192 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1193 struct ice_txq_meta *txq_meta) 1194 { 1195 struct ice_channel *ch = ring->ch; 1196 u8 tc; 1197 1198 if (IS_ENABLED(CONFIG_DCB)) 1199 tc = ring->dcb_tc; 1200 else 1201 tc = 0; 1202 1203 txq_meta->q_id = ring->reg_idx; 1204 txq_meta->q_teid = ring->txq_teid; 1205 txq_meta->q_handle = ring->q_handle; 1206 if (ch) { 1207 txq_meta->vsi_idx = ch->ch_vsi->idx; 1208 txq_meta->tc = 0; 1209 } else { 1210 txq_meta->vsi_idx = vsi->idx; 1211 txq_meta->tc = tc; 1212 } 1213 } 1214