xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 	q_vector->vf_reg_idx = q_vector->irq.index;
149 
150 	/* only set affinity_mask if the CPU is online */
151 	if (cpu_online(v_idx))
152 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153 
154 	/* This will not be called in the driver load path because the netdev
155 	 * will not be created yet. All other cases with register the NAPI
156 	 * handler here (i.e. resume, reset/rebuild, etc.)
157 	 */
158 	if (vsi->netdev)
159 		netif_napi_add_config(vsi->netdev, &q_vector->napi,
160 				      ice_napi_poll, v_idx);
161 
162 out:
163 	/* tie q_vector and VSI together */
164 	vsi->q_vectors[v_idx] = q_vector;
165 
166 	return 0;
167 
168 err_free_q_vector:
169 	kfree(q_vector);
170 
171 	return err;
172 }
173 
174 /**
175  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
176  * @vsi: VSI having the memory freed
177  * @v_idx: index of the vector to be freed
178  */
179 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
180 {
181 	struct ice_q_vector *q_vector;
182 	struct ice_pf *pf = vsi->back;
183 	struct ice_tx_ring *tx_ring;
184 	struct ice_rx_ring *rx_ring;
185 	struct device *dev;
186 
187 	dev = ice_pf_to_dev(pf);
188 	if (!vsi->q_vectors[v_idx]) {
189 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
190 		return;
191 	}
192 	q_vector = vsi->q_vectors[v_idx];
193 
194 	ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
195 		tx_ring->q_vector = NULL;
196 
197 	ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
198 		rx_ring->q_vector = NULL;
199 
200 	/* only VSI with an associated netdev is set up with NAPI */
201 	if (vsi->netdev)
202 		netif_napi_del(&q_vector->napi);
203 
204 	/* release MSIX interrupt if q_vector had interrupt allocated */
205 	if (q_vector->irq.index < 0)
206 		goto free_q_vector;
207 
208 	/* only free last VF ctrl vsi interrupt */
209 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
210 	    ice_get_vf_ctrl_vsi(pf, vsi))
211 		goto free_q_vector;
212 
213 	ice_free_irq(pf, q_vector->irq);
214 
215 free_q_vector:
216 	kfree(q_vector);
217 	vsi->q_vectors[v_idx] = NULL;
218 }
219 
220 /**
221  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
222  * @hw: board specific structure
223  */
224 static void ice_cfg_itr_gran(struct ice_hw *hw)
225 {
226 	u32 regval = rd32(hw, GLINT_CTL);
227 
228 	/* no need to update global register if ITR gran is already set */
229 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
230 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
231 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
232 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
233 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
234 		return;
235 
236 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
237 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
238 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
239 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
240 	wr32(hw, GLINT_CTL, regval);
241 }
242 
243 /**
244  * ice_calc_txq_handle - calculate the queue handle
245  * @vsi: VSI that ring belongs to
246  * @ring: ring to get the absolute queue index
247  * @tc: traffic class number
248  */
249 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
250 {
251 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
252 
253 	if (ring->ch)
254 		return ring->q_index - ring->ch->base_q;
255 
256 	/* Idea here for calculation is that we subtract the number of queue
257 	 * count from TC that ring belongs to from it's absolute queue index
258 	 * and as a result we get the queue's index within TC.
259 	 */
260 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
261 }
262 
263 /**
264  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
265  * @ring: The Tx ring to configure
266  *
267  * This enables/disables XPS for a given Tx descriptor ring
268  * based on the TCs enabled for the VSI that ring belongs to.
269  */
270 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
271 {
272 	if (!ring->q_vector || !ring->netdev)
273 		return;
274 
275 	/* We only initialize XPS once, so as not to overwrite user settings */
276 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
277 		return;
278 
279 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
280 			    ring->q_index);
281 }
282 
283 /**
284  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
285  * @ring: The Tx ring to configure
286  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
287  * @pf_q: queue index in the PF space
288  *
289  * Configure the Tx descriptor ring in TLAN context.
290  */
291 static void
292 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
293 {
294 	struct ice_vsi *vsi = ring->vsi;
295 	struct ice_hw *hw = &vsi->back->hw;
296 
297 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
298 
299 	tlan_ctx->port_num = vsi->port_info->lport;
300 
301 	/* Transmit Queue Length */
302 	tlan_ctx->qlen = ring->count;
303 
304 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
305 
306 	/* PF number */
307 	tlan_ctx->pf_num = hw->pf_id;
308 
309 	/* queue belongs to a specific VSI type
310 	 * VF / VM index should be programmed per vmvf_type setting:
311 	 * for vmvf_type = VF, it is VF number between 0-256
312 	 * for vmvf_type = VM, it is VM number between 0-767
313 	 * for PF or EMP this field should be set to zero
314 	 */
315 	switch (vsi->type) {
316 	case ICE_VSI_LB:
317 	case ICE_VSI_CTRL:
318 	case ICE_VSI_PF:
319 		if (ring->ch)
320 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
321 		else
322 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
323 		break;
324 	case ICE_VSI_VF:
325 		/* Firmware expects vmvf_num to be absolute VF ID */
326 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
327 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
328 		break;
329 	case ICE_VSI_SF:
330 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
331 		break;
332 	default:
333 		return;
334 	}
335 
336 	/* make sure the context is associated with the right VSI */
337 	if (ring->ch)
338 		tlan_ctx->src_vsi = ring->ch->vsi_num;
339 	else
340 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
341 
342 	/* Restrict Tx timestamps to the PF VSI */
343 	switch (vsi->type) {
344 	case ICE_VSI_PF:
345 		tlan_ctx->tsyn_ena = 1;
346 		break;
347 	default:
348 		break;
349 	}
350 
351 	tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
352 
353 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
354 	tlan_ctx->tso_qnum = pf_q;
355 
356 	/* Legacy or Advanced Host Interface:
357 	 * 0: Advanced Host Interface
358 	 * 1: Legacy Host Interface
359 	 */
360 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
361 }
362 
363 /**
364  * ice_rx_offset - Return expected offset into page to access data
365  * @rx_ring: Ring we are requesting offset of
366  *
367  * Returns the offset value for ring into the data buffer.
368  */
369 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
370 {
371 	if (ice_ring_uses_build_skb(rx_ring))
372 		return ICE_SKB_PAD;
373 	return 0;
374 }
375 
376 /**
377  * ice_setup_rx_ctx - Configure a receive ring context
378  * @ring: The Rx ring to configure
379  *
380  * Configure the Rx descriptor ring in RLAN context.
381  */
382 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
383 {
384 	struct ice_vsi *vsi = ring->vsi;
385 	u32 rxdid = ICE_RXDID_FLEX_NIC;
386 	struct ice_rlan_ctx rlan_ctx;
387 	struct ice_hw *hw;
388 	u16 pf_q;
389 	int err;
390 
391 	hw = &vsi->back->hw;
392 
393 	/* what is Rx queue number in global space of 2K Rx queues */
394 	pf_q = vsi->rxq_map[ring->q_index];
395 
396 	/* clear the context structure first */
397 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
398 
399 	/* Receive Queue Base Address.
400 	 * Indicates the starting address of the descriptor queue defined in
401 	 * 128 Byte units.
402 	 */
403 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
404 
405 	rlan_ctx.qlen = ring->count;
406 
407 	/* Receive Packet Data Buffer Size.
408 	 * The Packet Data Buffer Size is defined in 128 byte units.
409 	 */
410 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
411 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
412 
413 	/* use 32 byte descriptors */
414 	rlan_ctx.dsize = 1;
415 
416 	/* Strip the Ethernet CRC bytes before the packet is posted to host
417 	 * memory.
418 	 */
419 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
420 
421 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
422 	 * and it needs to remain 1 for non-DVM capable configurations to not
423 	 * break backward compatibility for VF drivers. Setting this field to 0
424 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
425 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
426 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
427 	 * check for the tag
428 	 */
429 	if (ice_is_dvm_ena(hw))
430 		if (vsi->type == ICE_VSI_VF &&
431 		    ice_vf_is_port_vlan_ena(vsi->vf))
432 			rlan_ctx.l2tsel = 1;
433 		else
434 			rlan_ctx.l2tsel = 0;
435 	else
436 		rlan_ctx.l2tsel = 1;
437 
438 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
439 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
440 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
441 
442 	/* This controls whether VLAN is stripped from inner headers
443 	 * The VLAN in the inner L2 header is stripped to the receive
444 	 * descriptor if enabled by this flag.
445 	 */
446 	rlan_ctx.showiv = 0;
447 
448 	/* Max packet size for this queue - must not be set to a larger value
449 	 * than 5 x DBUF
450 	 */
451 	rlan_ctx.rxmax = min_t(u32, ring->max_frame,
452 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
453 
454 	/* Rx queue threshold in units of 64 */
455 	rlan_ctx.lrxqthresh = 1;
456 
457 	/* Enable descriptor prefetch */
458 	rlan_ctx.prefena = 1;
459 
460 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
461 	 * metadata and flags to allow redirecting to PR netdev
462 	 */
463 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
464 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
465 		rxdid = ICE_RXDID_FLEX_NIC_2;
466 	}
467 
468 	/* Enable Flexible Descriptors in the queue context which
469 	 * allows this driver to select a specific receive descriptor format
470 	 * increasing context priority to pick up profile ID; default is 0x01;
471 	 * setting to 0x03 to ensure profile is programming if prev context is
472 	 * of same priority
473 	 */
474 	if (vsi->type != ICE_VSI_VF)
475 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
476 	else
477 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
478 					false);
479 
480 	/* Absolute queue number out of 2K needs to be passed */
481 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
482 	if (err) {
483 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
484 			pf_q, err);
485 		return -EIO;
486 	}
487 
488 	if (vsi->type == ICE_VSI_VF)
489 		return 0;
490 
491 	/* configure Rx buffer alignment */
492 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
493 		ice_clear_ring_build_skb_ena(ring);
494 	else
495 		ice_set_ring_build_skb_ena(ring);
496 
497 	ring->rx_offset = ice_rx_offset(ring);
498 
499 	/* init queue specific tail register */
500 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
501 	writel(0, ring->tail);
502 
503 	return 0;
504 }
505 
506 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
507 {
508 	void *ctx_ptr = &ring->pkt_ctx;
509 	struct xsk_cb_desc desc = {};
510 
511 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
512 	desc.src = &ctx_ptr;
513 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
514 		   sizeof(struct xdp_buff);
515 	desc.bytes = sizeof(ctx_ptr);
516 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
517 }
518 
519 /**
520  * ice_get_frame_sz - calculate xdp_buff::frame_sz
521  * @rx_ring: the ring being configured
522  *
523  * Return frame size based on underlying PAGE_SIZE
524  */
525 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
526 {
527 	unsigned int frame_sz;
528 
529 #if (PAGE_SIZE >= 8192)
530 	frame_sz = rx_ring->rx_buf_len;
531 #else
532 	frame_sz = ice_rx_pg_size(rx_ring) / 2;
533 #endif
534 
535 	return frame_sz;
536 }
537 
538 /**
539  * ice_vsi_cfg_rxq - Configure an Rx queue
540  * @ring: the ring being configured
541  *
542  * Return 0 on success and a negative value on error.
543  */
544 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
545 {
546 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
547 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
548 	int err;
549 
550 	if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
551 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
552 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
553 						 ring->q_index,
554 						 ring->q_vector->napi.napi_id,
555 						 ring->rx_buf_len);
556 			if (err)
557 				return err;
558 		}
559 
560 		ice_rx_xsk_pool(ring);
561 		if (ring->xsk_pool) {
562 			xdp_rxq_info_unreg(&ring->xdp_rxq);
563 
564 			ring->rx_buf_len =
565 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
566 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
567 						 ring->q_index,
568 						 ring->q_vector->napi.napi_id,
569 						 ring->rx_buf_len);
570 			if (err)
571 				return err;
572 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
573 							 MEM_TYPE_XSK_BUFF_POOL,
574 							 NULL);
575 			if (err)
576 				return err;
577 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
578 			ice_xsk_pool_fill_cb(ring);
579 
580 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
581 				 ring->q_index);
582 		} else {
583 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
584 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
585 							 ring->q_index,
586 							 ring->q_vector->napi.napi_id,
587 							 ring->rx_buf_len);
588 				if (err)
589 					return err;
590 			}
591 
592 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
593 							 MEM_TYPE_PAGE_SHARED,
594 							 NULL);
595 			if (err)
596 				return err;
597 		}
598 	}
599 
600 	xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
601 	ring->xdp.data = NULL;
602 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
603 	err = ice_setup_rx_ctx(ring);
604 	if (err) {
605 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
606 			ring->q_index, err);
607 		return err;
608 	}
609 
610 	if (ring->xsk_pool) {
611 		bool ok;
612 
613 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
614 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
615 				 num_bufs, ring->q_index);
616 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
617 
618 			return 0;
619 		}
620 
621 		ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
622 		if (!ok) {
623 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
624 
625 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
626 				 ring->q_index, pf_q);
627 		}
628 
629 		return 0;
630 	}
631 
632 	ice_alloc_rx_bufs(ring, num_bufs);
633 
634 	return 0;
635 }
636 
637 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
638 {
639 	if (q_idx >= vsi->num_rxq)
640 		return -EINVAL;
641 
642 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
643 }
644 
645 /**
646  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
647  * @vsi: VSI
648  * @ring: Rx ring to configure
649  *
650  * Determine the maximum frame size and Rx buffer length to use for a PF VSI.
651  * Set these in the associated Rx ring structure.
652  */
653 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
654 {
655 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
656 		ring->max_frame = ICE_MAX_FRAME_LEGACY_RX;
657 		ring->rx_buf_len = ICE_RXBUF_1664;
658 #if (PAGE_SIZE < 8192)
659 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
660 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
661 		ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
662 		ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
663 #endif
664 	} else {
665 		ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
666 		ring->rx_buf_len = ICE_RXBUF_3072;
667 	}
668 }
669 
670 /**
671  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
672  * @vsi: the VSI being configured
673  *
674  * Return 0 on success and a negative value on error
675  * Configure the Rx VSI for operation.
676  */
677 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
678 {
679 	u16 i;
680 
681 	/* set up individual rings */
682 	ice_for_each_rxq(vsi, i) {
683 		struct ice_rx_ring *ring = vsi->rx_rings[i];
684 		int err;
685 
686 		if (vsi->type != ICE_VSI_VF)
687 			ice_vsi_cfg_frame_size(vsi, ring);
688 
689 		err = ice_vsi_cfg_rxq(ring);
690 		if (err)
691 			return err;
692 	}
693 
694 	return 0;
695 }
696 
697 /**
698  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
699  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
700  *
701  * This function first tries to find contiguous space. If it is not successful,
702  * it tries with the scatter approach.
703  *
704  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
705  */
706 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
707 {
708 	int ret = 0;
709 
710 	ret = __ice_vsi_get_qs_contig(qs_cfg);
711 	if (ret) {
712 		/* contig failed, so try with scatter approach */
713 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
714 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
715 					qs_cfg->scatter_count);
716 		ret = __ice_vsi_get_qs_sc(qs_cfg);
717 	}
718 	return ret;
719 }
720 
721 /**
722  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
723  * @vsi: the VSI being configured
724  * @ena: start or stop the Rx ring
725  * @rxq_idx: 0-based Rx queue index for the VSI passed in
726  * @wait: wait or don't wait for configuration to finish in hardware
727  *
728  * Return 0 on success and negative on error.
729  */
730 int
731 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
732 {
733 	int pf_q = vsi->rxq_map[rxq_idx];
734 	struct ice_pf *pf = vsi->back;
735 	struct ice_hw *hw = &pf->hw;
736 	u32 rx_reg;
737 
738 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
739 
740 	/* Skip if the queue is already in the requested state */
741 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
742 		return 0;
743 
744 	/* turn on/off the queue */
745 	if (ena)
746 		rx_reg |= QRX_CTRL_QENA_REQ_M;
747 	else
748 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
749 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
750 
751 	if (!wait)
752 		return 0;
753 
754 	ice_flush(hw);
755 	return ice_pf_rxq_wait(pf, pf_q, ena);
756 }
757 
758 /**
759  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
760  * @vsi: the VSI being configured
761  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
762  * @rxq_idx: 0-based Rx queue index for the VSI passed in
763  *
764  * This routine will wait for the given Rx queue of the VSI to reach the
765  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
766  * the requested state after multiple retries; else will return 0 in case of
767  * success.
768  */
769 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
770 {
771 	int pf_q = vsi->rxq_map[rxq_idx];
772 	struct ice_pf *pf = vsi->back;
773 
774 	return ice_pf_rxq_wait(pf, pf_q, ena);
775 }
776 
777 /**
778  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
779  * @vsi: the VSI being configured
780  *
781  * We allocate one q_vector per queue interrupt. If allocation fails we
782  * return -ENOMEM.
783  */
784 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
785 {
786 	struct device *dev = ice_pf_to_dev(vsi->back);
787 	u16 v_idx;
788 	int err;
789 
790 	if (vsi->q_vectors[0]) {
791 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
792 		return -EEXIST;
793 	}
794 
795 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
796 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
797 		if (err)
798 			goto err_out;
799 	}
800 
801 	return 0;
802 
803 err_out:
804 	while (v_idx--)
805 		ice_free_q_vector(vsi, v_idx);
806 
807 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
808 		vsi->num_q_vectors, vsi->vsi_num, err);
809 	vsi->num_q_vectors = 0;
810 	return err;
811 }
812 
813 /**
814  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
815  * @vsi: the VSI being configured
816  *
817  * This function maps descriptor rings to the queue-specific vectors allotted
818  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
819  * and Rx rings to the vector as "efficiently" as possible.
820  */
821 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
822 {
823 	int q_vectors = vsi->num_q_vectors;
824 	u16 tx_rings_rem, rx_rings_rem;
825 	int v_id;
826 
827 	/* initially assigning remaining rings count to VSIs num queue value */
828 	tx_rings_rem = vsi->num_txq;
829 	rx_rings_rem = vsi->num_rxq;
830 
831 	for (v_id = 0; v_id < q_vectors; v_id++) {
832 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
833 		u8 tx_rings_per_v, rx_rings_per_v;
834 		u16 q_id, q_base;
835 
836 		/* Tx rings mapping to vector */
837 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
838 						  q_vectors - v_id);
839 		q_vector->num_ring_tx = tx_rings_per_v;
840 		q_vector->tx.tx_ring = NULL;
841 		q_vector->tx.itr_idx = ICE_TX_ITR;
842 		q_base = vsi->num_txq - tx_rings_rem;
843 
844 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
845 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
846 
847 			tx_ring->q_vector = q_vector;
848 			tx_ring->next = q_vector->tx.tx_ring;
849 			q_vector->tx.tx_ring = tx_ring;
850 		}
851 		tx_rings_rem -= tx_rings_per_v;
852 
853 		/* Rx rings mapping to vector */
854 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
855 						  q_vectors - v_id);
856 		q_vector->num_ring_rx = rx_rings_per_v;
857 		q_vector->rx.rx_ring = NULL;
858 		q_vector->rx.itr_idx = ICE_RX_ITR;
859 		q_base = vsi->num_rxq - rx_rings_rem;
860 
861 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
862 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
863 
864 			rx_ring->q_vector = q_vector;
865 			rx_ring->next = q_vector->rx.rx_ring;
866 			q_vector->rx.rx_ring = rx_ring;
867 		}
868 		rx_rings_rem -= rx_rings_per_v;
869 	}
870 
871 	if (ice_is_xdp_ena_vsi(vsi))
872 		ice_map_xdp_rings(vsi);
873 }
874 
875 /**
876  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
877  * @vsi: the VSI having memory freed
878  */
879 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
880 {
881 	int v_idx;
882 
883 	ice_for_each_q_vector(vsi, v_idx)
884 		ice_free_q_vector(vsi, v_idx);
885 
886 	vsi->num_q_vectors = 0;
887 }
888 
889 /**
890  * ice_vsi_cfg_txq - Configure single Tx queue
891  * @vsi: the VSI that queue belongs to
892  * @ring: Tx ring to be configured
893  * @qg_buf: queue group buffer
894  */
895 static int
896 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
897 		struct ice_aqc_add_tx_qgrp *qg_buf)
898 {
899 	u8 buf_len = struct_size(qg_buf, txqs, 1);
900 	struct ice_tlan_ctx tlan_ctx = { 0 };
901 	struct ice_aqc_add_txqs_perq *txq;
902 	struct ice_channel *ch = ring->ch;
903 	struct ice_pf *pf = vsi->back;
904 	struct ice_hw *hw = &pf->hw;
905 	int status;
906 	u16 pf_q;
907 	u8 tc;
908 
909 	/* Configure XPS */
910 	ice_cfg_xps_tx_ring(ring);
911 
912 	pf_q = ring->reg_idx;
913 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
914 	/* copy context contents into the qg_buf */
915 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
916 	ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx);
917 
918 	/* init queue specific tail reg. It is referred as
919 	 * transmit comm scheduler queue doorbell.
920 	 */
921 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
922 
923 	if (IS_ENABLED(CONFIG_DCB))
924 		tc = ring->dcb_tc;
925 	else
926 		tc = 0;
927 
928 	/* Add unique software queue handle of the Tx queue per
929 	 * TC into the VSI Tx ring
930 	 */
931 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
932 
933 	if (ch)
934 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
935 					 ring->q_handle, 1, qg_buf, buf_len,
936 					 NULL);
937 	else
938 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
939 					 ring->q_handle, 1, qg_buf, buf_len,
940 					 NULL);
941 	if (status) {
942 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
943 			status);
944 		return status;
945 	}
946 
947 	/* Add Tx Queue TEID into the VSI Tx ring from the
948 	 * response. This will complete configuring and
949 	 * enabling the queue.
950 	 */
951 	txq = &qg_buf->txqs[0];
952 	if (pf_q == le16_to_cpu(txq->txq_id))
953 		ring->txq_teid = le32_to_cpu(txq->q_teid);
954 
955 	return 0;
956 }
957 
958 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
959 			   u16 q_idx)
960 {
961 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
962 
963 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
964 		return -EINVAL;
965 
966 	qg_buf->num_txqs = 1;
967 
968 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
969 }
970 
971 /**
972  * ice_vsi_cfg_txqs - Configure the VSI for Tx
973  * @vsi: the VSI being configured
974  * @rings: Tx ring array to be configured
975  * @count: number of Tx ring array elements
976  *
977  * Return 0 on success and a negative value on error
978  * Configure the Tx VSI for operation.
979  */
980 static int
981 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
982 {
983 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
984 	int err = 0;
985 	u16 q_idx;
986 
987 	qg_buf->num_txqs = 1;
988 
989 	for (q_idx = 0; q_idx < count; q_idx++) {
990 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
991 		if (err)
992 			break;
993 	}
994 
995 	return err;
996 }
997 
998 /**
999  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1000  * @vsi: the VSI being configured
1001  *
1002  * Return 0 on success and a negative value on error
1003  * Configure the Tx VSI for operation.
1004  */
1005 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1006 {
1007 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1008 }
1009 
1010 /**
1011  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1012  * @vsi: the VSI being configured
1013  *
1014  * Return 0 on success and a negative value on error
1015  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1016  */
1017 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1018 {
1019 	int ret;
1020 	int i;
1021 
1022 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1023 	if (ret)
1024 		return ret;
1025 
1026 	ice_for_each_rxq(vsi, i)
1027 		ice_tx_xsk_pool(vsi, i);
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * ice_cfg_itr - configure the initial interrupt throttle values
1034  * @hw: pointer to the HW structure
1035  * @q_vector: interrupt vector that's being configured
1036  *
1037  * Configure interrupt throttling values for the ring containers that are
1038  * associated with the interrupt vector passed in.
1039  */
1040 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1041 {
1042 	ice_cfg_itr_gran(hw);
1043 
1044 	if (q_vector->num_ring_rx)
1045 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1046 
1047 	if (q_vector->num_ring_tx)
1048 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1049 
1050 	ice_write_intrl(q_vector, q_vector->intrl);
1051 }
1052 
1053 /**
1054  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1055  * @vsi: the VSI being configured
1056  * @txq: Tx queue being mapped to MSI-X vector
1057  * @msix_idx: MSI-X vector index within the function
1058  * @itr_idx: ITR index of the interrupt cause
1059  *
1060  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1061  * within the function space.
1062  */
1063 void
1064 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1065 {
1066 	struct ice_pf *pf = vsi->back;
1067 	struct ice_hw *hw = &pf->hw;
1068 	u32 val;
1069 
1070 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1071 
1072 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1073 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1074 
1075 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1076 	if (ice_is_xdp_ena_vsi(vsi)) {
1077 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1078 
1079 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1080 		     val);
1081 	}
1082 	ice_flush(hw);
1083 }
1084 
1085 /**
1086  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1087  * @vsi: the VSI being configured
1088  * @rxq: Rx queue being mapped to MSI-X vector
1089  * @msix_idx: MSI-X vector index within the function
1090  * @itr_idx: ITR index of the interrupt cause
1091  *
1092  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1093  * within the function space.
1094  */
1095 void
1096 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1097 {
1098 	struct ice_pf *pf = vsi->back;
1099 	struct ice_hw *hw = &pf->hw;
1100 	u32 val;
1101 
1102 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1103 
1104 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1105 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1106 
1107 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1108 
1109 	ice_flush(hw);
1110 }
1111 
1112 /**
1113  * ice_trigger_sw_intr - trigger a software interrupt
1114  * @hw: pointer to the HW structure
1115  * @q_vector: interrupt vector to trigger the software interrupt for
1116  */
1117 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1118 {
1119 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1120 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1121 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1122 	     GLINT_DYN_CTL_INTENA_M);
1123 }
1124 
1125 /**
1126  * ice_vsi_stop_tx_ring - Disable single Tx ring
1127  * @vsi: the VSI being configured
1128  * @rst_src: reset source
1129  * @rel_vmvf_num: Relative ID of VF/VM
1130  * @ring: Tx ring to be stopped
1131  * @txq_meta: Meta data of Tx ring to be stopped
1132  */
1133 int
1134 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1135 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1136 		     struct ice_txq_meta *txq_meta)
1137 {
1138 	struct ice_pf *pf = vsi->back;
1139 	struct ice_q_vector *q_vector;
1140 	struct ice_hw *hw = &pf->hw;
1141 	int status;
1142 	u32 val;
1143 
1144 	/* clear cause_ena bit for disabled queues */
1145 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1146 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1147 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1148 
1149 	/* software is expected to wait for 100 ns */
1150 	ndelay(100);
1151 
1152 	/* trigger a software interrupt for the vector
1153 	 * associated to the queue to schedule NAPI handler
1154 	 */
1155 	q_vector = ring->q_vector;
1156 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1157 		ice_trigger_sw_intr(hw, q_vector);
1158 
1159 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1160 				 txq_meta->tc, 1, &txq_meta->q_handle,
1161 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1162 				 rel_vmvf_num, NULL);
1163 
1164 	/* if the disable queue command was exercised during an
1165 	 * active reset flow, -EBUSY is returned.
1166 	 * This is not an error as the reset operation disables
1167 	 * queues at the hardware level anyway.
1168 	 */
1169 	if (status == -EBUSY) {
1170 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1171 	} else if (status == -ENOENT) {
1172 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1173 	} else if (status) {
1174 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1175 			status);
1176 		return status;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 /**
1183  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1184  * @vsi: VSI that ring belongs to
1185  * @ring: ring that txq_meta will be based on
1186  * @txq_meta: a helper struct that wraps Tx queue's information
1187  *
1188  * Set up a helper struct that will contain all the necessary fields that
1189  * are needed for stopping Tx queue
1190  */
1191 void
1192 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1193 		  struct ice_txq_meta *txq_meta)
1194 {
1195 	struct ice_channel *ch = ring->ch;
1196 	u8 tc;
1197 
1198 	if (IS_ENABLED(CONFIG_DCB))
1199 		tc = ring->dcb_tc;
1200 	else
1201 		tc = 0;
1202 
1203 	txq_meta->q_id = ring->reg_idx;
1204 	txq_meta->q_teid = ring->txq_teid;
1205 	txq_meta->q_handle = ring->q_handle;
1206 	if (ch) {
1207 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1208 		txq_meta->tc = 0;
1209 	} else {
1210 		txq_meta->vsi_idx = vsi->idx;
1211 		txq_meta->tc = tc;
1212 	}
1213 }
1214