xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision e28c5efc31397af17bc5a7d55b963f59bcde0166)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 
149 	/* only set affinity_mask if the CPU is online */
150 	if (cpu_online(v_idx))
151 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152 
153 	/* This will not be called in the driver load path because the netdev
154 	 * will not be created yet. All other cases with register the NAPI
155 	 * handler here (i.e. resume, reset/rebuild, etc.)
156 	 */
157 	if (vsi->netdev)
158 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159 
160 out:
161 	/* tie q_vector and VSI together */
162 	vsi->q_vectors[v_idx] = q_vector;
163 
164 	return 0;
165 
166 err_free_q_vector:
167 	kfree(q_vector);
168 
169 	return err;
170 }
171 
172 /**
173  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174  * @vsi: VSI having the memory freed
175  * @v_idx: index of the vector to be freed
176  */
177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178 {
179 	struct ice_q_vector *q_vector;
180 	struct ice_pf *pf = vsi->back;
181 	struct ice_tx_ring *tx_ring;
182 	struct ice_rx_ring *rx_ring;
183 	struct device *dev;
184 
185 	dev = ice_pf_to_dev(pf);
186 	if (!vsi->q_vectors[v_idx]) {
187 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188 		return;
189 	}
190 	q_vector = vsi->q_vectors[v_idx];
191 
192 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
193 		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
194 				   NULL);
195 		tx_ring->q_vector = NULL;
196 	}
197 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
198 		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
199 				   NULL);
200 		rx_ring->q_vector = NULL;
201 	}
202 
203 	/* only VSI with an associated netdev is set up with NAPI */
204 	if (vsi->netdev)
205 		netif_napi_del(&q_vector->napi);
206 
207 	/* release MSIX interrupt if q_vector had interrupt allocated */
208 	if (q_vector->irq.index < 0)
209 		goto free_q_vector;
210 
211 	/* only free last VF ctrl vsi interrupt */
212 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
213 	    ice_get_vf_ctrl_vsi(pf, vsi))
214 		goto free_q_vector;
215 
216 	ice_free_irq(pf, q_vector->irq);
217 
218 free_q_vector:
219 	kfree(q_vector);
220 	vsi->q_vectors[v_idx] = NULL;
221 }
222 
223 /**
224  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
225  * @hw: board specific structure
226  */
227 static void ice_cfg_itr_gran(struct ice_hw *hw)
228 {
229 	u32 regval = rd32(hw, GLINT_CTL);
230 
231 	/* no need to update global register if ITR gran is already set */
232 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
233 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
234 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
235 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
236 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
237 		return;
238 
239 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
240 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
241 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
242 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
243 	wr32(hw, GLINT_CTL, regval);
244 }
245 
246 /**
247  * ice_calc_txq_handle - calculate the queue handle
248  * @vsi: VSI that ring belongs to
249  * @ring: ring to get the absolute queue index
250  * @tc: traffic class number
251  */
252 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
253 {
254 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
255 
256 	if (ring->ch)
257 		return ring->q_index - ring->ch->base_q;
258 
259 	/* Idea here for calculation is that we subtract the number of queue
260 	 * count from TC that ring belongs to from it's absolute queue index
261 	 * and as a result we get the queue's index within TC.
262 	 */
263 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
264 }
265 
266 /**
267  * ice_eswitch_calc_txq_handle
268  * @ring: pointer to ring which unique index is needed
269  *
270  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
271  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
272  * here by finding index in vsi->tx_rings of this ring.
273  *
274  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
275  * because VSI is get from ring->vsi, so it has to be present in this VSI.
276  */
277 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
278 {
279 	const struct ice_vsi *vsi = ring->vsi;
280 	int i;
281 
282 	ice_for_each_txq(vsi, i) {
283 		if (vsi->tx_rings[i] == ring)
284 			return i;
285 	}
286 
287 	return ICE_INVAL_Q_INDEX;
288 }
289 
290 /**
291  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
292  * @ring: The Tx ring to configure
293  *
294  * This enables/disables XPS for a given Tx descriptor ring
295  * based on the TCs enabled for the VSI that ring belongs to.
296  */
297 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
298 {
299 	if (!ring->q_vector || !ring->netdev)
300 		return;
301 
302 	/* We only initialize XPS once, so as not to overwrite user settings */
303 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
304 		return;
305 
306 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
307 			    ring->q_index);
308 }
309 
310 /**
311  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
312  * @ring: The Tx ring to configure
313  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
314  * @pf_q: queue index in the PF space
315  *
316  * Configure the Tx descriptor ring in TLAN context.
317  */
318 static void
319 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
320 {
321 	struct ice_vsi *vsi = ring->vsi;
322 	struct ice_hw *hw = &vsi->back->hw;
323 
324 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
325 
326 	tlan_ctx->port_num = vsi->port_info->lport;
327 
328 	/* Transmit Queue Length */
329 	tlan_ctx->qlen = ring->count;
330 
331 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
332 
333 	/* PF number */
334 	tlan_ctx->pf_num = hw->pf_id;
335 
336 	/* queue belongs to a specific VSI type
337 	 * VF / VM index should be programmed per vmvf_type setting:
338 	 * for vmvf_type = VF, it is VF number between 0-256
339 	 * for vmvf_type = VM, it is VM number between 0-767
340 	 * for PF or EMP this field should be set to zero
341 	 */
342 	switch (vsi->type) {
343 	case ICE_VSI_LB:
344 	case ICE_VSI_CTRL:
345 	case ICE_VSI_PF:
346 		if (ring->ch)
347 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
348 		else
349 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
350 		break;
351 	case ICE_VSI_VF:
352 		/* Firmware expects vmvf_num to be absolute VF ID */
353 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
354 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
355 		break;
356 	case ICE_VSI_SWITCHDEV_CTRL:
357 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
358 		break;
359 	default:
360 		return;
361 	}
362 
363 	/* make sure the context is associated with the right VSI */
364 	if (ring->ch)
365 		tlan_ctx->src_vsi = ring->ch->vsi_num;
366 	else
367 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
368 
369 	/* Restrict Tx timestamps to the PF VSI */
370 	switch (vsi->type) {
371 	case ICE_VSI_PF:
372 		tlan_ctx->tsyn_ena = 1;
373 		break;
374 	default:
375 		break;
376 	}
377 
378 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
379 	tlan_ctx->tso_qnum = pf_q;
380 
381 	/* Legacy or Advanced Host Interface:
382 	 * 0: Advanced Host Interface
383 	 * 1: Legacy Host Interface
384 	 */
385 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
386 }
387 
388 /**
389  * ice_rx_offset - Return expected offset into page to access data
390  * @rx_ring: Ring we are requesting offset of
391  *
392  * Returns the offset value for ring into the data buffer.
393  */
394 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
395 {
396 	if (ice_ring_uses_build_skb(rx_ring))
397 		return ICE_SKB_PAD;
398 	return 0;
399 }
400 
401 /**
402  * ice_setup_rx_ctx - Configure a receive ring context
403  * @ring: The Rx ring to configure
404  *
405  * Configure the Rx descriptor ring in RLAN context.
406  */
407 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
408 {
409 	struct ice_vsi *vsi = ring->vsi;
410 	u32 rxdid = ICE_RXDID_FLEX_NIC;
411 	struct ice_rlan_ctx rlan_ctx;
412 	struct ice_hw *hw;
413 	u16 pf_q;
414 	int err;
415 
416 	hw = &vsi->back->hw;
417 
418 	/* what is Rx queue number in global space of 2K Rx queues */
419 	pf_q = vsi->rxq_map[ring->q_index];
420 
421 	/* clear the context structure first */
422 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
423 
424 	/* Receive Queue Base Address.
425 	 * Indicates the starting address of the descriptor queue defined in
426 	 * 128 Byte units.
427 	 */
428 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
429 
430 	rlan_ctx.qlen = ring->count;
431 
432 	/* Receive Packet Data Buffer Size.
433 	 * The Packet Data Buffer Size is defined in 128 byte units.
434 	 */
435 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
436 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
437 
438 	/* use 32 byte descriptors */
439 	rlan_ctx.dsize = 1;
440 
441 	/* Strip the Ethernet CRC bytes before the packet is posted to host
442 	 * memory.
443 	 */
444 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
445 
446 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
447 	 * and it needs to remain 1 for non-DVM capable configurations to not
448 	 * break backward compatibility for VF drivers. Setting this field to 0
449 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
450 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
451 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
452 	 * check for the tag
453 	 */
454 	if (ice_is_dvm_ena(hw))
455 		if (vsi->type == ICE_VSI_VF &&
456 		    ice_vf_is_port_vlan_ena(vsi->vf))
457 			rlan_ctx.l2tsel = 1;
458 		else
459 			rlan_ctx.l2tsel = 0;
460 	else
461 		rlan_ctx.l2tsel = 1;
462 
463 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
464 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
465 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
466 
467 	/* This controls whether VLAN is stripped from inner headers
468 	 * The VLAN in the inner L2 header is stripped to the receive
469 	 * descriptor if enabled by this flag.
470 	 */
471 	rlan_ctx.showiv = 0;
472 
473 	/* Max packet size for this queue - must not be set to a larger value
474 	 * than 5 x DBUF
475 	 */
476 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
477 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
478 
479 	/* Rx queue threshold in units of 64 */
480 	rlan_ctx.lrxqthresh = 1;
481 
482 	/* Enable Flexible Descriptors in the queue context which
483 	 * allows this driver to select a specific receive descriptor format
484 	 * increasing context priority to pick up profile ID; default is 0x01;
485 	 * setting to 0x03 to ensure profile is programming if prev context is
486 	 * of same priority
487 	 */
488 	if (vsi->type != ICE_VSI_VF)
489 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
490 	else
491 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
492 					false);
493 
494 	/* Absolute queue number out of 2K needs to be passed */
495 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
496 	if (err) {
497 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
498 			pf_q, err);
499 		return -EIO;
500 	}
501 
502 	if (vsi->type == ICE_VSI_VF)
503 		return 0;
504 
505 	/* configure Rx buffer alignment */
506 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
507 		ice_clear_ring_build_skb_ena(ring);
508 	else
509 		ice_set_ring_build_skb_ena(ring);
510 
511 	ring->rx_offset = ice_rx_offset(ring);
512 
513 	/* init queue specific tail register */
514 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
515 	writel(0, ring->tail);
516 
517 	return 0;
518 }
519 
520 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
521 {
522 	void *ctx_ptr = &ring->pkt_ctx;
523 	struct xsk_cb_desc desc = {};
524 
525 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
526 	desc.src = &ctx_ptr;
527 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
528 		   sizeof(struct xdp_buff);
529 	desc.bytes = sizeof(ctx_ptr);
530 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
531 }
532 
533 /**
534  * ice_vsi_cfg_rxq - Configure an Rx queue
535  * @ring: the ring being configured
536  *
537  * Return 0 on success and a negative value on error.
538  */
539 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
540 {
541 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
542 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
543 	int err;
544 
545 	ring->rx_buf_len = ring->vsi->rx_buf_len;
546 
547 	if (ring->vsi->type == ICE_VSI_PF) {
548 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
549 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
550 						 ring->q_index,
551 						 ring->q_vector->napi.napi_id,
552 						 ring->rx_buf_len);
553 			if (err)
554 				return err;
555 		}
556 
557 		ring->xsk_pool = ice_xsk_pool(ring);
558 		if (ring->xsk_pool) {
559 			xdp_rxq_info_unreg(&ring->xdp_rxq);
560 
561 			ring->rx_buf_len =
562 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
563 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
564 						 ring->q_index,
565 						 ring->q_vector->napi.napi_id,
566 						 ring->rx_buf_len);
567 			if (err)
568 				return err;
569 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
570 							 MEM_TYPE_XSK_BUFF_POOL,
571 							 NULL);
572 			if (err)
573 				return err;
574 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
575 			ice_xsk_pool_fill_cb(ring);
576 
577 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
578 				 ring->q_index);
579 		} else {
580 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
581 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
582 							 ring->q_index,
583 							 ring->q_vector->napi.napi_id,
584 							 ring->rx_buf_len);
585 				if (err)
586 					return err;
587 			}
588 
589 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
590 							 MEM_TYPE_PAGE_SHARED,
591 							 NULL);
592 			if (err)
593 				return err;
594 		}
595 	}
596 
597 	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
598 	ring->xdp.data = NULL;
599 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
600 	err = ice_setup_rx_ctx(ring);
601 	if (err) {
602 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
603 			ring->q_index, err);
604 		return err;
605 	}
606 
607 	if (ring->xsk_pool) {
608 		bool ok;
609 
610 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
611 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
612 				 num_bufs, ring->q_index);
613 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
614 
615 			return 0;
616 		}
617 
618 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
619 		if (!ok) {
620 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
621 
622 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
623 				 ring->q_index, pf_q);
624 		}
625 
626 		return 0;
627 	}
628 
629 	ice_alloc_rx_bufs(ring, num_bufs);
630 
631 	return 0;
632 }
633 
634 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
635 {
636 	if (q_idx >= vsi->num_rxq)
637 		return -EINVAL;
638 
639 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
640 }
641 
642 /**
643  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
644  * @vsi: VSI
645  */
646 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
647 {
648 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
649 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
650 		vsi->rx_buf_len = ICE_RXBUF_1664;
651 #if (PAGE_SIZE < 8192)
652 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
653 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
654 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
655 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
656 #endif
657 	} else {
658 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
659 		vsi->rx_buf_len = ICE_RXBUF_3072;
660 	}
661 }
662 
663 /**
664  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
665  * @vsi: the VSI being configured
666  *
667  * Return 0 on success and a negative value on error
668  * Configure the Rx VSI for operation.
669  */
670 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
671 {
672 	u16 i;
673 
674 	if (vsi->type == ICE_VSI_VF)
675 		goto setup_rings;
676 
677 	ice_vsi_cfg_frame_size(vsi);
678 setup_rings:
679 	/* set up individual rings */
680 	ice_for_each_rxq(vsi, i) {
681 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
682 
683 		if (err)
684 			return err;
685 	}
686 
687 	return 0;
688 }
689 
690 /**
691  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
692  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
693  *
694  * This function first tries to find contiguous space. If it is not successful,
695  * it tries with the scatter approach.
696  *
697  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
698  */
699 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
700 {
701 	int ret = 0;
702 
703 	ret = __ice_vsi_get_qs_contig(qs_cfg);
704 	if (ret) {
705 		/* contig failed, so try with scatter approach */
706 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
707 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
708 					qs_cfg->scatter_count);
709 		ret = __ice_vsi_get_qs_sc(qs_cfg);
710 	}
711 	return ret;
712 }
713 
714 /**
715  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
716  * @vsi: the VSI being configured
717  * @ena: start or stop the Rx ring
718  * @rxq_idx: 0-based Rx queue index for the VSI passed in
719  * @wait: wait or don't wait for configuration to finish in hardware
720  *
721  * Return 0 on success and negative on error.
722  */
723 int
724 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
725 {
726 	int pf_q = vsi->rxq_map[rxq_idx];
727 	struct ice_pf *pf = vsi->back;
728 	struct ice_hw *hw = &pf->hw;
729 	u32 rx_reg;
730 
731 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
732 
733 	/* Skip if the queue is already in the requested state */
734 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
735 		return 0;
736 
737 	/* turn on/off the queue */
738 	if (ena)
739 		rx_reg |= QRX_CTRL_QENA_REQ_M;
740 	else
741 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
742 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
743 
744 	if (!wait)
745 		return 0;
746 
747 	ice_flush(hw);
748 	return ice_pf_rxq_wait(pf, pf_q, ena);
749 }
750 
751 /**
752  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
753  * @vsi: the VSI being configured
754  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
755  * @rxq_idx: 0-based Rx queue index for the VSI passed in
756  *
757  * This routine will wait for the given Rx queue of the VSI to reach the
758  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
759  * the requested state after multiple retries; else will return 0 in case of
760  * success.
761  */
762 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
763 {
764 	int pf_q = vsi->rxq_map[rxq_idx];
765 	struct ice_pf *pf = vsi->back;
766 
767 	return ice_pf_rxq_wait(pf, pf_q, ena);
768 }
769 
770 /**
771  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
772  * @vsi: the VSI being configured
773  *
774  * We allocate one q_vector per queue interrupt. If allocation fails we
775  * return -ENOMEM.
776  */
777 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
778 {
779 	struct device *dev = ice_pf_to_dev(vsi->back);
780 	u16 v_idx;
781 	int err;
782 
783 	if (vsi->q_vectors[0]) {
784 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
785 		return -EEXIST;
786 	}
787 
788 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
789 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
790 		if (err)
791 			goto err_out;
792 	}
793 
794 	return 0;
795 
796 err_out:
797 	while (v_idx--)
798 		ice_free_q_vector(vsi, v_idx);
799 
800 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
801 		vsi->num_q_vectors, vsi->vsi_num, err);
802 	vsi->num_q_vectors = 0;
803 	return err;
804 }
805 
806 /**
807  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
808  * @vsi: the VSI being configured
809  *
810  * This function maps descriptor rings to the queue-specific vectors allotted
811  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
812  * and Rx rings to the vector as "efficiently" as possible.
813  */
814 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
815 {
816 	int q_vectors = vsi->num_q_vectors;
817 	u16 tx_rings_rem, rx_rings_rem;
818 	int v_id;
819 
820 	/* initially assigning remaining rings count to VSIs num queue value */
821 	tx_rings_rem = vsi->num_txq;
822 	rx_rings_rem = vsi->num_rxq;
823 
824 	for (v_id = 0; v_id < q_vectors; v_id++) {
825 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
826 		u8 tx_rings_per_v, rx_rings_per_v;
827 		u16 q_id, q_base;
828 
829 		/* Tx rings mapping to vector */
830 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
831 						  q_vectors - v_id);
832 		q_vector->num_ring_tx = tx_rings_per_v;
833 		q_vector->tx.tx_ring = NULL;
834 		q_vector->tx.itr_idx = ICE_TX_ITR;
835 		q_base = vsi->num_txq - tx_rings_rem;
836 
837 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
838 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
839 
840 			tx_ring->q_vector = q_vector;
841 			tx_ring->next = q_vector->tx.tx_ring;
842 			q_vector->tx.tx_ring = tx_ring;
843 		}
844 		tx_rings_rem -= tx_rings_per_v;
845 
846 		/* Rx rings mapping to vector */
847 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
848 						  q_vectors - v_id);
849 		q_vector->num_ring_rx = rx_rings_per_v;
850 		q_vector->rx.rx_ring = NULL;
851 		q_vector->rx.itr_idx = ICE_RX_ITR;
852 		q_base = vsi->num_rxq - rx_rings_rem;
853 
854 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
855 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
856 
857 			rx_ring->q_vector = q_vector;
858 			rx_ring->next = q_vector->rx.rx_ring;
859 			q_vector->rx.rx_ring = rx_ring;
860 		}
861 		rx_rings_rem -= rx_rings_per_v;
862 	}
863 }
864 
865 /**
866  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
867  * @vsi: the VSI having memory freed
868  */
869 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
870 {
871 	int v_idx;
872 
873 	ice_for_each_q_vector(vsi, v_idx)
874 		ice_free_q_vector(vsi, v_idx);
875 
876 	vsi->num_q_vectors = 0;
877 }
878 
879 /**
880  * ice_vsi_cfg_txq - Configure single Tx queue
881  * @vsi: the VSI that queue belongs to
882  * @ring: Tx ring to be configured
883  * @qg_buf: queue group buffer
884  */
885 static int
886 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
887 		struct ice_aqc_add_tx_qgrp *qg_buf)
888 {
889 	u8 buf_len = struct_size(qg_buf, txqs, 1);
890 	struct ice_tlan_ctx tlan_ctx = { 0 };
891 	struct ice_aqc_add_txqs_perq *txq;
892 	struct ice_channel *ch = ring->ch;
893 	struct ice_pf *pf = vsi->back;
894 	struct ice_hw *hw = &pf->hw;
895 	int status;
896 	u16 pf_q;
897 	u8 tc;
898 
899 	/* Configure XPS */
900 	ice_cfg_xps_tx_ring(ring);
901 
902 	pf_q = ring->reg_idx;
903 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
904 	/* copy context contents into the qg_buf */
905 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
906 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
907 		    ice_tlan_ctx_info);
908 
909 	/* init queue specific tail reg. It is referred as
910 	 * transmit comm scheduler queue doorbell.
911 	 */
912 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
913 
914 	if (IS_ENABLED(CONFIG_DCB))
915 		tc = ring->dcb_tc;
916 	else
917 		tc = 0;
918 
919 	/* Add unique software queue handle of the Tx queue per
920 	 * TC into the VSI Tx ring
921 	 */
922 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
923 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
924 
925 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
926 			return -ENODEV;
927 	} else {
928 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
929 	}
930 
931 	if (ch)
932 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
933 					 ring->q_handle, 1, qg_buf, buf_len,
934 					 NULL);
935 	else
936 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
937 					 ring->q_handle, 1, qg_buf, buf_len,
938 					 NULL);
939 	if (status) {
940 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
941 			status);
942 		return status;
943 	}
944 
945 	/* Add Tx Queue TEID into the VSI Tx ring from the
946 	 * response. This will complete configuring and
947 	 * enabling the queue.
948 	 */
949 	txq = &qg_buf->txqs[0];
950 	if (pf_q == le16_to_cpu(txq->txq_id))
951 		ring->txq_teid = le32_to_cpu(txq->q_teid);
952 
953 	return 0;
954 }
955 
956 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
957 			   u16 q_idx)
958 {
959 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
960 
961 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
962 		return -EINVAL;
963 
964 	qg_buf->num_txqs = 1;
965 
966 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
967 }
968 
969 /**
970  * ice_vsi_cfg_txqs - Configure the VSI for Tx
971  * @vsi: the VSI being configured
972  * @rings: Tx ring array to be configured
973  * @count: number of Tx ring array elements
974  *
975  * Return 0 on success and a negative value on error
976  * Configure the Tx VSI for operation.
977  */
978 static int
979 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
980 {
981 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
982 	int err = 0;
983 	u16 q_idx;
984 
985 	qg_buf->num_txqs = 1;
986 
987 	for (q_idx = 0; q_idx < count; q_idx++) {
988 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
989 		if (err)
990 			break;
991 	}
992 
993 	return err;
994 }
995 
996 /**
997  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
998  * @vsi: the VSI being configured
999  *
1000  * Return 0 on success and a negative value on error
1001  * Configure the Tx VSI for operation.
1002  */
1003 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1004 {
1005 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1006 }
1007 
1008 /**
1009  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1010  * @vsi: the VSI being configured
1011  *
1012  * Return 0 on success and a negative value on error
1013  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1014  */
1015 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1016 {
1017 	int ret;
1018 	int i;
1019 
1020 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1021 	if (ret)
1022 		return ret;
1023 
1024 	ice_for_each_rxq(vsi, i)
1025 		ice_tx_xsk_pool(vsi, i);
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * ice_cfg_itr - configure the initial interrupt throttle values
1032  * @hw: pointer to the HW structure
1033  * @q_vector: interrupt vector that's being configured
1034  *
1035  * Configure interrupt throttling values for the ring containers that are
1036  * associated with the interrupt vector passed in.
1037  */
1038 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1039 {
1040 	ice_cfg_itr_gran(hw);
1041 
1042 	if (q_vector->num_ring_rx)
1043 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1044 
1045 	if (q_vector->num_ring_tx)
1046 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1047 
1048 	ice_write_intrl(q_vector, q_vector->intrl);
1049 }
1050 
1051 /**
1052  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1053  * @vsi: the VSI being configured
1054  * @txq: Tx queue being mapped to MSI-X vector
1055  * @msix_idx: MSI-X vector index within the function
1056  * @itr_idx: ITR index of the interrupt cause
1057  *
1058  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1059  * within the function space.
1060  */
1061 void
1062 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1063 {
1064 	struct ice_pf *pf = vsi->back;
1065 	struct ice_hw *hw = &pf->hw;
1066 	u32 val;
1067 
1068 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1069 
1070 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1071 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1072 
1073 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1074 	if (ice_is_xdp_ena_vsi(vsi)) {
1075 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1076 
1077 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1078 		     val);
1079 	}
1080 	ice_flush(hw);
1081 }
1082 
1083 /**
1084  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1085  * @vsi: the VSI being configured
1086  * @rxq: Rx queue being mapped to MSI-X vector
1087  * @msix_idx: MSI-X vector index within the function
1088  * @itr_idx: ITR index of the interrupt cause
1089  *
1090  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1091  * within the function space.
1092  */
1093 void
1094 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1095 {
1096 	struct ice_pf *pf = vsi->back;
1097 	struct ice_hw *hw = &pf->hw;
1098 	u32 val;
1099 
1100 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1101 
1102 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1103 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1104 
1105 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1106 
1107 	ice_flush(hw);
1108 }
1109 
1110 /**
1111  * ice_trigger_sw_intr - trigger a software interrupt
1112  * @hw: pointer to the HW structure
1113  * @q_vector: interrupt vector to trigger the software interrupt for
1114  */
1115 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1116 {
1117 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1118 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1119 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1120 	     GLINT_DYN_CTL_INTENA_M);
1121 }
1122 
1123 /**
1124  * ice_vsi_stop_tx_ring - Disable single Tx ring
1125  * @vsi: the VSI being configured
1126  * @rst_src: reset source
1127  * @rel_vmvf_num: Relative ID of VF/VM
1128  * @ring: Tx ring to be stopped
1129  * @txq_meta: Meta data of Tx ring to be stopped
1130  */
1131 int
1132 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1133 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1134 		     struct ice_txq_meta *txq_meta)
1135 {
1136 	struct ice_pf *pf = vsi->back;
1137 	struct ice_q_vector *q_vector;
1138 	struct ice_hw *hw = &pf->hw;
1139 	int status;
1140 	u32 val;
1141 
1142 	/* clear cause_ena bit for disabled queues */
1143 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1144 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1145 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1146 
1147 	/* software is expected to wait for 100 ns */
1148 	ndelay(100);
1149 
1150 	/* trigger a software interrupt for the vector
1151 	 * associated to the queue to schedule NAPI handler
1152 	 */
1153 	q_vector = ring->q_vector;
1154 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1155 		ice_trigger_sw_intr(hw, q_vector);
1156 
1157 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1158 				 txq_meta->tc, 1, &txq_meta->q_handle,
1159 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1160 				 rel_vmvf_num, NULL);
1161 
1162 	/* if the disable queue command was exercised during an
1163 	 * active reset flow, -EBUSY is returned.
1164 	 * This is not an error as the reset operation disables
1165 	 * queues at the hardware level anyway.
1166 	 */
1167 	if (status == -EBUSY) {
1168 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1169 	} else if (status == -ENOENT) {
1170 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1171 	} else if (status) {
1172 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1173 			status);
1174 		return status;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1182  * @vsi: VSI that ring belongs to
1183  * @ring: ring that txq_meta will be based on
1184  * @txq_meta: a helper struct that wraps Tx queue's information
1185  *
1186  * Set up a helper struct that will contain all the necessary fields that
1187  * are needed for stopping Tx queue
1188  */
1189 void
1190 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1191 		  struct ice_txq_meta *txq_meta)
1192 {
1193 	struct ice_channel *ch = ring->ch;
1194 	u8 tc;
1195 
1196 	if (IS_ENABLED(CONFIG_DCB))
1197 		tc = ring->dcb_tc;
1198 	else
1199 		tc = 0;
1200 
1201 	txq_meta->q_id = ring->reg_idx;
1202 	txq_meta->q_teid = ring->txq_teid;
1203 	txq_meta->q_handle = ring->q_handle;
1204 	if (ch) {
1205 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1206 		txq_meta->tc = 0;
1207 	} else {
1208 		txq_meta->vsi_idx = vsi->idx;
1209 		txq_meta->tc = tc;
1210 	}
1211 }
1212