1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 q_vector->vf_reg_idx = q_vector->irq.index; 149 150 /* only set affinity_mask if the CPU is online */ 151 if (cpu_online(v_idx)) 152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 153 154 /* This will not be called in the driver load path because the netdev 155 * will not be created yet. All other cases with register the NAPI 156 * handler here (i.e. resume, reset/rebuild, etc.) 157 */ 158 if (vsi->netdev) 159 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 160 161 out: 162 /* tie q_vector and VSI together */ 163 vsi->q_vectors[v_idx] = q_vector; 164 165 return 0; 166 167 err_free_q_vector: 168 kfree(q_vector); 169 170 return err; 171 } 172 173 /** 174 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 175 * @vsi: VSI having the memory freed 176 * @v_idx: index of the vector to be freed 177 */ 178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 179 { 180 struct ice_q_vector *q_vector; 181 struct ice_pf *pf = vsi->back; 182 struct ice_tx_ring *tx_ring; 183 struct ice_rx_ring *rx_ring; 184 struct device *dev; 185 186 dev = ice_pf_to_dev(pf); 187 if (!vsi->q_vectors[v_idx]) { 188 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 189 return; 190 } 191 q_vector = vsi->q_vectors[v_idx]; 192 193 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx) 194 tx_ring->q_vector = NULL; 195 196 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx) 197 rx_ring->q_vector = NULL; 198 199 /* only VSI with an associated netdev is set up with NAPI */ 200 if (vsi->netdev) 201 netif_napi_del(&q_vector->napi); 202 203 /* release MSIX interrupt if q_vector had interrupt allocated */ 204 if (q_vector->irq.index < 0) 205 goto free_q_vector; 206 207 /* only free last VF ctrl vsi interrupt */ 208 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 209 ice_get_vf_ctrl_vsi(pf, vsi)) 210 goto free_q_vector; 211 212 ice_free_irq(pf, q_vector->irq); 213 214 free_q_vector: 215 kfree(q_vector); 216 vsi->q_vectors[v_idx] = NULL; 217 } 218 219 /** 220 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 221 * @hw: board specific structure 222 */ 223 static void ice_cfg_itr_gran(struct ice_hw *hw) 224 { 225 u32 regval = rd32(hw, GLINT_CTL); 226 227 /* no need to update global register if ITR gran is already set */ 228 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 229 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 230 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 231 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 232 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 233 return; 234 235 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 236 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 237 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 238 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 239 wr32(hw, GLINT_CTL, regval); 240 } 241 242 /** 243 * ice_calc_txq_handle - calculate the queue handle 244 * @vsi: VSI that ring belongs to 245 * @ring: ring to get the absolute queue index 246 * @tc: traffic class number 247 */ 248 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 249 { 250 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 251 252 if (ring->ch) 253 return ring->q_index - ring->ch->base_q; 254 255 /* Idea here for calculation is that we subtract the number of queue 256 * count from TC that ring belongs to from it's absolute queue index 257 * and as a result we get the queue's index within TC. 258 */ 259 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 260 } 261 262 /** 263 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 264 * @ring: The Tx ring to configure 265 * 266 * This enables/disables XPS for a given Tx descriptor ring 267 * based on the TCs enabled for the VSI that ring belongs to. 268 */ 269 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 270 { 271 if (!ring->q_vector || !ring->netdev) 272 return; 273 274 /* We only initialize XPS once, so as not to overwrite user settings */ 275 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 276 return; 277 278 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 279 ring->q_index); 280 } 281 282 /** 283 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 284 * @ring: The Tx ring to configure 285 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 286 * @pf_q: queue index in the PF space 287 * 288 * Configure the Tx descriptor ring in TLAN context. 289 */ 290 static void 291 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 292 { 293 struct ice_vsi *vsi = ring->vsi; 294 struct ice_hw *hw = &vsi->back->hw; 295 296 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 297 298 tlan_ctx->port_num = vsi->port_info->lport; 299 300 /* Transmit Queue Length */ 301 tlan_ctx->qlen = ring->count; 302 303 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 304 305 /* PF number */ 306 tlan_ctx->pf_num = hw->pf_id; 307 308 /* queue belongs to a specific VSI type 309 * VF / VM index should be programmed per vmvf_type setting: 310 * for vmvf_type = VF, it is VF number between 0-256 311 * for vmvf_type = VM, it is VM number between 0-767 312 * for PF or EMP this field should be set to zero 313 */ 314 switch (vsi->type) { 315 case ICE_VSI_LB: 316 case ICE_VSI_CTRL: 317 case ICE_VSI_PF: 318 if (ring->ch) 319 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 320 else 321 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 322 break; 323 case ICE_VSI_VF: 324 /* Firmware expects vmvf_num to be absolute VF ID */ 325 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 326 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 327 break; 328 case ICE_VSI_SF: 329 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 330 break; 331 default: 332 return; 333 } 334 335 /* make sure the context is associated with the right VSI */ 336 if (ring->ch) 337 tlan_ctx->src_vsi = ring->ch->vsi_num; 338 else 339 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 340 341 /* Restrict Tx timestamps to the PF VSI */ 342 switch (vsi->type) { 343 case ICE_VSI_PF: 344 tlan_ctx->tsyn_ena = 1; 345 break; 346 default: 347 break; 348 } 349 350 tlan_ctx->tso_ena = ICE_TX_LEGACY; 351 tlan_ctx->tso_qnum = pf_q; 352 353 /* Legacy or Advanced Host Interface: 354 * 0: Advanced Host Interface 355 * 1: Legacy Host Interface 356 */ 357 tlan_ctx->legacy_int = ICE_TX_LEGACY; 358 } 359 360 /** 361 * ice_rx_offset - Return expected offset into page to access data 362 * @rx_ring: Ring we are requesting offset of 363 * 364 * Returns the offset value for ring into the data buffer. 365 */ 366 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 367 { 368 if (ice_ring_uses_build_skb(rx_ring)) 369 return ICE_SKB_PAD; 370 return 0; 371 } 372 373 /** 374 * ice_setup_rx_ctx - Configure a receive ring context 375 * @ring: The Rx ring to configure 376 * 377 * Configure the Rx descriptor ring in RLAN context. 378 */ 379 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 380 { 381 struct ice_vsi *vsi = ring->vsi; 382 u32 rxdid = ICE_RXDID_FLEX_NIC; 383 struct ice_rlan_ctx rlan_ctx; 384 struct ice_hw *hw; 385 u16 pf_q; 386 int err; 387 388 hw = &vsi->back->hw; 389 390 /* what is Rx queue number in global space of 2K Rx queues */ 391 pf_q = vsi->rxq_map[ring->q_index]; 392 393 /* clear the context structure first */ 394 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 395 396 /* Receive Queue Base Address. 397 * Indicates the starting address of the descriptor queue defined in 398 * 128 Byte units. 399 */ 400 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 401 402 rlan_ctx.qlen = ring->count; 403 404 /* Receive Packet Data Buffer Size. 405 * The Packet Data Buffer Size is defined in 128 byte units. 406 */ 407 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 408 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 409 410 /* use 32 byte descriptors */ 411 rlan_ctx.dsize = 1; 412 413 /* Strip the Ethernet CRC bytes before the packet is posted to host 414 * memory. 415 */ 416 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 417 418 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 419 * and it needs to remain 1 for non-DVM capable configurations to not 420 * break backward compatibility for VF drivers. Setting this field to 0 421 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 422 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 423 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 424 * check for the tag 425 */ 426 if (ice_is_dvm_ena(hw)) 427 if (vsi->type == ICE_VSI_VF && 428 ice_vf_is_port_vlan_ena(vsi->vf)) 429 rlan_ctx.l2tsel = 1; 430 else 431 rlan_ctx.l2tsel = 0; 432 else 433 rlan_ctx.l2tsel = 1; 434 435 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 436 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 437 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 438 439 /* This controls whether VLAN is stripped from inner headers 440 * The VLAN in the inner L2 header is stripped to the receive 441 * descriptor if enabled by this flag. 442 */ 443 rlan_ctx.showiv = 0; 444 445 /* Max packet size for this queue - must not be set to a larger value 446 * than 5 x DBUF 447 */ 448 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 449 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 450 451 /* Rx queue threshold in units of 64 */ 452 rlan_ctx.lrxqthresh = 1; 453 454 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 455 * metadata and flags to allow redirecting to PR netdev 456 */ 457 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 458 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 459 rxdid = ICE_RXDID_FLEX_NIC_2; 460 } 461 462 /* Enable Flexible Descriptors in the queue context which 463 * allows this driver to select a specific receive descriptor format 464 * increasing context priority to pick up profile ID; default is 0x01; 465 * setting to 0x03 to ensure profile is programming if prev context is 466 * of same priority 467 */ 468 if (vsi->type != ICE_VSI_VF) 469 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 470 else 471 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 472 false); 473 474 /* Absolute queue number out of 2K needs to be passed */ 475 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 476 if (err) { 477 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 478 pf_q, err); 479 return -EIO; 480 } 481 482 if (vsi->type == ICE_VSI_VF) 483 return 0; 484 485 /* configure Rx buffer alignment */ 486 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 487 ice_clear_ring_build_skb_ena(ring); 488 else 489 ice_set_ring_build_skb_ena(ring); 490 491 ring->rx_offset = ice_rx_offset(ring); 492 493 /* init queue specific tail register */ 494 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 495 writel(0, ring->tail); 496 497 return 0; 498 } 499 500 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 501 { 502 void *ctx_ptr = &ring->pkt_ctx; 503 struct xsk_cb_desc desc = {}; 504 505 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 506 desc.src = &ctx_ptr; 507 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 508 sizeof(struct xdp_buff); 509 desc.bytes = sizeof(ctx_ptr); 510 xsk_pool_fill_cb(ring->xsk_pool, &desc); 511 } 512 513 /** 514 * ice_get_frame_sz - calculate xdp_buff::frame_sz 515 * @rx_ring: the ring being configured 516 * 517 * Return frame size based on underlying PAGE_SIZE 518 */ 519 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring) 520 { 521 unsigned int frame_sz; 522 523 #if (PAGE_SIZE >= 8192) 524 frame_sz = rx_ring->rx_buf_len; 525 #else 526 frame_sz = ice_rx_pg_size(rx_ring) / 2; 527 #endif 528 529 return frame_sz; 530 } 531 532 /** 533 * ice_vsi_cfg_rxq - Configure an Rx queue 534 * @ring: the ring being configured 535 * 536 * Return 0 on success and a negative value on error. 537 */ 538 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 539 { 540 struct device *dev = ice_pf_to_dev(ring->vsi->back); 541 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 542 int err; 543 544 ring->rx_buf_len = ring->vsi->rx_buf_len; 545 546 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) { 547 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 548 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 549 ring->q_index, 550 ring->q_vector->napi.napi_id, 551 ring->rx_buf_len); 552 if (err) 553 return err; 554 } 555 556 ice_rx_xsk_pool(ring); 557 if (ring->xsk_pool) { 558 xdp_rxq_info_unreg(&ring->xdp_rxq); 559 560 ring->rx_buf_len = 561 xsk_pool_get_rx_frame_size(ring->xsk_pool); 562 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 563 ring->q_index, 564 ring->q_vector->napi.napi_id, 565 ring->rx_buf_len); 566 if (err) 567 return err; 568 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 569 MEM_TYPE_XSK_BUFF_POOL, 570 NULL); 571 if (err) 572 return err; 573 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 574 ice_xsk_pool_fill_cb(ring); 575 576 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 577 ring->q_index); 578 } else { 579 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 580 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 581 ring->q_index, 582 ring->q_vector->napi.napi_id, 583 ring->rx_buf_len); 584 if (err) 585 return err; 586 } 587 588 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 589 MEM_TYPE_PAGE_SHARED, 590 NULL); 591 if (err) 592 return err; 593 } 594 } 595 596 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq); 597 ring->xdp.data = NULL; 598 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 599 err = ice_setup_rx_ctx(ring); 600 if (err) { 601 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 602 ring->q_index, err); 603 return err; 604 } 605 606 if (ring->xsk_pool) { 607 bool ok; 608 609 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 610 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 611 num_bufs, ring->q_index); 612 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 613 614 return 0; 615 } 616 617 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs); 618 if (!ok) { 619 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 620 621 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 622 ring->q_index, pf_q); 623 } 624 625 return 0; 626 } 627 628 ice_alloc_rx_bufs(ring, num_bufs); 629 630 return 0; 631 } 632 633 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 634 { 635 if (q_idx >= vsi->num_rxq) 636 return -EINVAL; 637 638 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 639 } 640 641 /** 642 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 643 * @vsi: VSI 644 */ 645 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 646 { 647 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 648 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 649 vsi->rx_buf_len = ICE_RXBUF_1664; 650 #if (PAGE_SIZE < 8192) 651 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 652 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 653 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 654 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 655 #endif 656 } else { 657 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 658 vsi->rx_buf_len = ICE_RXBUF_3072; 659 } 660 } 661 662 /** 663 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 664 * @vsi: the VSI being configured 665 * 666 * Return 0 on success and a negative value on error 667 * Configure the Rx VSI for operation. 668 */ 669 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 670 { 671 u16 i; 672 673 if (vsi->type == ICE_VSI_VF) 674 goto setup_rings; 675 676 ice_vsi_cfg_frame_size(vsi); 677 setup_rings: 678 /* set up individual rings */ 679 ice_for_each_rxq(vsi, i) { 680 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 681 682 if (err) 683 return err; 684 } 685 686 return 0; 687 } 688 689 /** 690 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 691 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 692 * 693 * This function first tries to find contiguous space. If it is not successful, 694 * it tries with the scatter approach. 695 * 696 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 697 */ 698 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 699 { 700 int ret = 0; 701 702 ret = __ice_vsi_get_qs_contig(qs_cfg); 703 if (ret) { 704 /* contig failed, so try with scatter approach */ 705 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 706 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 707 qs_cfg->scatter_count); 708 ret = __ice_vsi_get_qs_sc(qs_cfg); 709 } 710 return ret; 711 } 712 713 /** 714 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 715 * @vsi: the VSI being configured 716 * @ena: start or stop the Rx ring 717 * @rxq_idx: 0-based Rx queue index for the VSI passed in 718 * @wait: wait or don't wait for configuration to finish in hardware 719 * 720 * Return 0 on success and negative on error. 721 */ 722 int 723 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 724 { 725 int pf_q = vsi->rxq_map[rxq_idx]; 726 struct ice_pf *pf = vsi->back; 727 struct ice_hw *hw = &pf->hw; 728 u32 rx_reg; 729 730 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 731 732 /* Skip if the queue is already in the requested state */ 733 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 734 return 0; 735 736 /* turn on/off the queue */ 737 if (ena) 738 rx_reg |= QRX_CTRL_QENA_REQ_M; 739 else 740 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 741 wr32(hw, QRX_CTRL(pf_q), rx_reg); 742 743 if (!wait) 744 return 0; 745 746 ice_flush(hw); 747 return ice_pf_rxq_wait(pf, pf_q, ena); 748 } 749 750 /** 751 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 752 * @vsi: the VSI being configured 753 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 754 * @rxq_idx: 0-based Rx queue index for the VSI passed in 755 * 756 * This routine will wait for the given Rx queue of the VSI to reach the 757 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 758 * the requested state after multiple retries; else will return 0 in case of 759 * success. 760 */ 761 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 762 { 763 int pf_q = vsi->rxq_map[rxq_idx]; 764 struct ice_pf *pf = vsi->back; 765 766 return ice_pf_rxq_wait(pf, pf_q, ena); 767 } 768 769 /** 770 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 771 * @vsi: the VSI being configured 772 * 773 * We allocate one q_vector per queue interrupt. If allocation fails we 774 * return -ENOMEM. 775 */ 776 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 777 { 778 struct device *dev = ice_pf_to_dev(vsi->back); 779 u16 v_idx; 780 int err; 781 782 if (vsi->q_vectors[0]) { 783 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 784 return -EEXIST; 785 } 786 787 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 788 err = ice_vsi_alloc_q_vector(vsi, v_idx); 789 if (err) 790 goto err_out; 791 } 792 793 return 0; 794 795 err_out: 796 while (v_idx--) 797 ice_free_q_vector(vsi, v_idx); 798 799 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 800 vsi->num_q_vectors, vsi->vsi_num, err); 801 vsi->num_q_vectors = 0; 802 return err; 803 } 804 805 /** 806 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 807 * @vsi: the VSI being configured 808 * 809 * This function maps descriptor rings to the queue-specific vectors allotted 810 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 811 * and Rx rings to the vector as "efficiently" as possible. 812 */ 813 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 814 { 815 int q_vectors = vsi->num_q_vectors; 816 u16 tx_rings_rem, rx_rings_rem; 817 int v_id; 818 819 /* initially assigning remaining rings count to VSIs num queue value */ 820 tx_rings_rem = vsi->num_txq; 821 rx_rings_rem = vsi->num_rxq; 822 823 for (v_id = 0; v_id < q_vectors; v_id++) { 824 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 825 u8 tx_rings_per_v, rx_rings_per_v; 826 u16 q_id, q_base; 827 828 /* Tx rings mapping to vector */ 829 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 830 q_vectors - v_id); 831 q_vector->num_ring_tx = tx_rings_per_v; 832 q_vector->tx.tx_ring = NULL; 833 q_vector->tx.itr_idx = ICE_TX_ITR; 834 q_base = vsi->num_txq - tx_rings_rem; 835 836 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 837 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 838 839 tx_ring->q_vector = q_vector; 840 tx_ring->next = q_vector->tx.tx_ring; 841 q_vector->tx.tx_ring = tx_ring; 842 } 843 tx_rings_rem -= tx_rings_per_v; 844 845 /* Rx rings mapping to vector */ 846 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 847 q_vectors - v_id); 848 q_vector->num_ring_rx = rx_rings_per_v; 849 q_vector->rx.rx_ring = NULL; 850 q_vector->rx.itr_idx = ICE_RX_ITR; 851 q_base = vsi->num_rxq - rx_rings_rem; 852 853 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 854 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 855 856 rx_ring->q_vector = q_vector; 857 rx_ring->next = q_vector->rx.rx_ring; 858 q_vector->rx.rx_ring = rx_ring; 859 } 860 rx_rings_rem -= rx_rings_per_v; 861 } 862 863 if (ice_is_xdp_ena_vsi(vsi)) 864 ice_map_xdp_rings(vsi); 865 } 866 867 /** 868 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 869 * @vsi: the VSI having memory freed 870 */ 871 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 872 { 873 int v_idx; 874 875 ice_for_each_q_vector(vsi, v_idx) 876 ice_free_q_vector(vsi, v_idx); 877 878 vsi->num_q_vectors = 0; 879 } 880 881 /** 882 * ice_vsi_cfg_txq - Configure single Tx queue 883 * @vsi: the VSI that queue belongs to 884 * @ring: Tx ring to be configured 885 * @qg_buf: queue group buffer 886 */ 887 static int 888 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 889 struct ice_aqc_add_tx_qgrp *qg_buf) 890 { 891 u8 buf_len = struct_size(qg_buf, txqs, 1); 892 struct ice_tlan_ctx tlan_ctx = { 0 }; 893 struct ice_aqc_add_txqs_perq *txq; 894 struct ice_channel *ch = ring->ch; 895 struct ice_pf *pf = vsi->back; 896 struct ice_hw *hw = &pf->hw; 897 int status; 898 u16 pf_q; 899 u8 tc; 900 901 /* Configure XPS */ 902 ice_cfg_xps_tx_ring(ring); 903 904 pf_q = ring->reg_idx; 905 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 906 /* copy context contents into the qg_buf */ 907 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 908 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 909 ice_tlan_ctx_info); 910 911 /* init queue specific tail reg. It is referred as 912 * transmit comm scheduler queue doorbell. 913 */ 914 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 915 916 if (IS_ENABLED(CONFIG_DCB)) 917 tc = ring->dcb_tc; 918 else 919 tc = 0; 920 921 /* Add unique software queue handle of the Tx queue per 922 * TC into the VSI Tx ring 923 */ 924 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 925 926 if (ch) 927 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 928 ring->q_handle, 1, qg_buf, buf_len, 929 NULL); 930 else 931 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 932 ring->q_handle, 1, qg_buf, buf_len, 933 NULL); 934 if (status) { 935 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 936 status); 937 return status; 938 } 939 940 /* Add Tx Queue TEID into the VSI Tx ring from the 941 * response. This will complete configuring and 942 * enabling the queue. 943 */ 944 txq = &qg_buf->txqs[0]; 945 if (pf_q == le16_to_cpu(txq->txq_id)) 946 ring->txq_teid = le32_to_cpu(txq->q_teid); 947 948 return 0; 949 } 950 951 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 952 u16 q_idx) 953 { 954 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 955 956 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 957 return -EINVAL; 958 959 qg_buf->num_txqs = 1; 960 961 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 962 } 963 964 /** 965 * ice_vsi_cfg_txqs - Configure the VSI for Tx 966 * @vsi: the VSI being configured 967 * @rings: Tx ring array to be configured 968 * @count: number of Tx ring array elements 969 * 970 * Return 0 on success and a negative value on error 971 * Configure the Tx VSI for operation. 972 */ 973 static int 974 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 975 { 976 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 977 int err = 0; 978 u16 q_idx; 979 980 qg_buf->num_txqs = 1; 981 982 for (q_idx = 0; q_idx < count; q_idx++) { 983 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 984 if (err) 985 break; 986 } 987 988 return err; 989 } 990 991 /** 992 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 993 * @vsi: the VSI being configured 994 * 995 * Return 0 on success and a negative value on error 996 * Configure the Tx VSI for operation. 997 */ 998 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 999 { 1000 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1001 } 1002 1003 /** 1004 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1005 * @vsi: the VSI being configured 1006 * 1007 * Return 0 on success and a negative value on error 1008 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1009 */ 1010 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1011 { 1012 int ret; 1013 int i; 1014 1015 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1016 if (ret) 1017 return ret; 1018 1019 ice_for_each_rxq(vsi, i) 1020 ice_tx_xsk_pool(vsi, i); 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * ice_cfg_itr - configure the initial interrupt throttle values 1027 * @hw: pointer to the HW structure 1028 * @q_vector: interrupt vector that's being configured 1029 * 1030 * Configure interrupt throttling values for the ring containers that are 1031 * associated with the interrupt vector passed in. 1032 */ 1033 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1034 { 1035 ice_cfg_itr_gran(hw); 1036 1037 if (q_vector->num_ring_rx) 1038 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1039 1040 if (q_vector->num_ring_tx) 1041 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1042 1043 ice_write_intrl(q_vector, q_vector->intrl); 1044 } 1045 1046 /** 1047 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1048 * @vsi: the VSI being configured 1049 * @txq: Tx queue being mapped to MSI-X vector 1050 * @msix_idx: MSI-X vector index within the function 1051 * @itr_idx: ITR index of the interrupt cause 1052 * 1053 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1054 * within the function space. 1055 */ 1056 void 1057 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1058 { 1059 struct ice_pf *pf = vsi->back; 1060 struct ice_hw *hw = &pf->hw; 1061 u32 val; 1062 1063 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1064 1065 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1066 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1067 1068 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1069 if (ice_is_xdp_ena_vsi(vsi)) { 1070 u32 xdp_txq = txq + vsi->num_xdp_txq; 1071 1072 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1073 val); 1074 } 1075 ice_flush(hw); 1076 } 1077 1078 /** 1079 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1080 * @vsi: the VSI being configured 1081 * @rxq: Rx queue being mapped to MSI-X vector 1082 * @msix_idx: MSI-X vector index within the function 1083 * @itr_idx: ITR index of the interrupt cause 1084 * 1085 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1086 * within the function space. 1087 */ 1088 void 1089 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1090 { 1091 struct ice_pf *pf = vsi->back; 1092 struct ice_hw *hw = &pf->hw; 1093 u32 val; 1094 1095 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1096 1097 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1098 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1099 1100 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1101 1102 ice_flush(hw); 1103 } 1104 1105 /** 1106 * ice_trigger_sw_intr - trigger a software interrupt 1107 * @hw: pointer to the HW structure 1108 * @q_vector: interrupt vector to trigger the software interrupt for 1109 */ 1110 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1111 { 1112 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1113 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1114 GLINT_DYN_CTL_SWINT_TRIG_M | 1115 GLINT_DYN_CTL_INTENA_M); 1116 } 1117 1118 /** 1119 * ice_vsi_stop_tx_ring - Disable single Tx ring 1120 * @vsi: the VSI being configured 1121 * @rst_src: reset source 1122 * @rel_vmvf_num: Relative ID of VF/VM 1123 * @ring: Tx ring to be stopped 1124 * @txq_meta: Meta data of Tx ring to be stopped 1125 */ 1126 int 1127 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1128 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1129 struct ice_txq_meta *txq_meta) 1130 { 1131 struct ice_pf *pf = vsi->back; 1132 struct ice_q_vector *q_vector; 1133 struct ice_hw *hw = &pf->hw; 1134 int status; 1135 u32 val; 1136 1137 /* clear cause_ena bit for disabled queues */ 1138 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1139 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1140 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1141 1142 /* software is expected to wait for 100 ns */ 1143 ndelay(100); 1144 1145 /* trigger a software interrupt for the vector 1146 * associated to the queue to schedule NAPI handler 1147 */ 1148 q_vector = ring->q_vector; 1149 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1150 ice_trigger_sw_intr(hw, q_vector); 1151 1152 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1153 txq_meta->tc, 1, &txq_meta->q_handle, 1154 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1155 rel_vmvf_num, NULL); 1156 1157 /* if the disable queue command was exercised during an 1158 * active reset flow, -EBUSY is returned. 1159 * This is not an error as the reset operation disables 1160 * queues at the hardware level anyway. 1161 */ 1162 if (status == -EBUSY) { 1163 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1164 } else if (status == -ENOENT) { 1165 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1166 } else if (status) { 1167 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1168 status); 1169 return status; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1177 * @vsi: VSI that ring belongs to 1178 * @ring: ring that txq_meta will be based on 1179 * @txq_meta: a helper struct that wraps Tx queue's information 1180 * 1181 * Set up a helper struct that will contain all the necessary fields that 1182 * are needed for stopping Tx queue 1183 */ 1184 void 1185 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1186 struct ice_txq_meta *txq_meta) 1187 { 1188 struct ice_channel *ch = ring->ch; 1189 u8 tc; 1190 1191 if (IS_ENABLED(CONFIG_DCB)) 1192 tc = ring->dcb_tc; 1193 else 1194 tc = 0; 1195 1196 txq_meta->q_id = ring->reg_idx; 1197 txq_meta->q_teid = ring->txq_teid; 1198 txq_meta->q_handle = ring->q_handle; 1199 if (ch) { 1200 txq_meta->vsi_idx = ch->ch_vsi->idx; 1201 txq_meta->tc = 0; 1202 } else { 1203 txq_meta->vsi_idx = vsi->idx; 1204 txq_meta->tc = tc; 1205 } 1206 } 1207