1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 q_vector->vf_reg_idx = q_vector->irq.index; 149 150 /* This will not be called in the driver load path because the netdev 151 * will not be created yet. All other cases with register the NAPI 152 * handler here (i.e. resume, reset/rebuild, etc.) 153 */ 154 if (vsi->netdev) 155 netif_napi_add_config(vsi->netdev, &q_vector->napi, 156 ice_napi_poll, v_idx); 157 158 out: 159 /* tie q_vector and VSI together */ 160 vsi->q_vectors[v_idx] = q_vector; 161 162 return 0; 163 164 err_free_q_vector: 165 kfree(q_vector); 166 167 return err; 168 } 169 170 /** 171 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 172 * @vsi: VSI having the memory freed 173 * @v_idx: index of the vector to be freed 174 */ 175 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 176 { 177 struct ice_q_vector *q_vector; 178 struct ice_pf *pf = vsi->back; 179 struct ice_tx_ring *tx_ring; 180 struct ice_rx_ring *rx_ring; 181 struct device *dev; 182 183 dev = ice_pf_to_dev(pf); 184 if (!vsi->q_vectors[v_idx]) { 185 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 186 return; 187 } 188 q_vector = vsi->q_vectors[v_idx]; 189 190 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx) 191 tx_ring->q_vector = NULL; 192 193 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx) 194 rx_ring->q_vector = NULL; 195 196 /* only VSI with an associated netdev is set up with NAPI */ 197 if (vsi->netdev) 198 netif_napi_del(&q_vector->napi); 199 200 /* release MSIX interrupt if q_vector had interrupt allocated */ 201 if (q_vector->irq.index < 0) 202 goto free_q_vector; 203 204 /* only free last VF ctrl vsi interrupt */ 205 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 206 ice_get_vf_ctrl_vsi(pf, vsi)) 207 goto free_q_vector; 208 209 ice_free_irq(pf, q_vector->irq); 210 211 free_q_vector: 212 kfree(q_vector); 213 vsi->q_vectors[v_idx] = NULL; 214 } 215 216 /** 217 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 218 * @hw: board specific structure 219 */ 220 static void ice_cfg_itr_gran(struct ice_hw *hw) 221 { 222 u32 regval = rd32(hw, GLINT_CTL); 223 224 /* no need to update global register if ITR gran is already set */ 225 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 226 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 227 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 228 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 229 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 230 return; 231 232 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 233 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 234 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 235 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 236 wr32(hw, GLINT_CTL, regval); 237 } 238 239 /** 240 * ice_calc_txq_handle - calculate the queue handle 241 * @vsi: VSI that ring belongs to 242 * @ring: ring to get the absolute queue index 243 * @tc: traffic class number 244 */ 245 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 246 { 247 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 248 249 if (ring->ch) 250 return ring->q_index - ring->ch->base_q; 251 252 /* Idea here for calculation is that we subtract the number of queue 253 * count from TC that ring belongs to from it's absolute queue index 254 * and as a result we get the queue's index within TC. 255 */ 256 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 257 } 258 259 /** 260 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 261 * @ring: The Tx ring to configure 262 * 263 * This enables/disables XPS for a given Tx descriptor ring 264 * based on the TCs enabled for the VSI that ring belongs to. 265 */ 266 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 267 { 268 if (!ring->q_vector || !ring->netdev) 269 return; 270 271 /* We only initialize XPS once, so as not to overwrite user settings */ 272 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 273 return; 274 275 netif_set_xps_queue(ring->netdev, 276 &ring->q_vector->napi.config->affinity_mask, 277 ring->q_index); 278 } 279 280 /** 281 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 282 * @ring: The Tx ring to configure 283 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 284 * @pf_q: queue index in the PF space 285 * 286 * Configure the Tx descriptor ring in TLAN context. 287 */ 288 static void 289 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 290 { 291 struct ice_vsi *vsi = ring->vsi; 292 struct ice_hw *hw = &vsi->back->hw; 293 294 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 295 296 tlan_ctx->port_num = vsi->port_info->lport; 297 298 /* Transmit Queue Length */ 299 tlan_ctx->qlen = ring->count; 300 301 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 302 303 /* PF number */ 304 tlan_ctx->pf_num = hw->pf_id; 305 306 /* queue belongs to a specific VSI type 307 * VF / VM index should be programmed per vmvf_type setting: 308 * for vmvf_type = VF, it is VF number between 0-256 309 * for vmvf_type = VM, it is VM number between 0-767 310 * for PF or EMP this field should be set to zero 311 */ 312 switch (vsi->type) { 313 case ICE_VSI_LB: 314 case ICE_VSI_CTRL: 315 case ICE_VSI_PF: 316 if (ring->ch) 317 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 318 else 319 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 320 break; 321 case ICE_VSI_VF: 322 /* Firmware expects vmvf_num to be absolute VF ID */ 323 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 324 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 325 break; 326 case ICE_VSI_SF: 327 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 328 break; 329 default: 330 return; 331 } 332 333 /* make sure the context is associated with the right VSI */ 334 if (ring->ch) 335 tlan_ctx->src_vsi = ring->ch->vsi_num; 336 else 337 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 338 339 /* Restrict Tx timestamps to the PF VSI */ 340 switch (vsi->type) { 341 case ICE_VSI_PF: 342 tlan_ctx->tsyn_ena = 1; 343 break; 344 default: 345 break; 346 } 347 348 tlan_ctx->quanta_prof_idx = ring->quanta_prof_id; 349 350 tlan_ctx->tso_ena = ICE_TX_LEGACY; 351 tlan_ctx->tso_qnum = pf_q; 352 353 /* Legacy or Advanced Host Interface: 354 * 0: Advanced Host Interface 355 * 1: Legacy Host Interface 356 */ 357 tlan_ctx->legacy_int = ICE_TX_LEGACY; 358 } 359 360 /** 361 * ice_rx_offset - Return expected offset into page to access data 362 * @rx_ring: Ring we are requesting offset of 363 * 364 * Returns the offset value for ring into the data buffer. 365 */ 366 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 367 { 368 if (ice_ring_uses_build_skb(rx_ring)) 369 return ICE_SKB_PAD; 370 return 0; 371 } 372 373 /** 374 * ice_setup_rx_ctx - Configure a receive ring context 375 * @ring: The Rx ring to configure 376 * 377 * Configure the Rx descriptor ring in RLAN context. 378 */ 379 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 380 { 381 struct ice_vsi *vsi = ring->vsi; 382 u32 rxdid = ICE_RXDID_FLEX_NIC; 383 struct ice_rlan_ctx rlan_ctx; 384 struct ice_hw *hw; 385 u16 pf_q; 386 int err; 387 388 hw = &vsi->back->hw; 389 390 /* what is Rx queue number in global space of 2K Rx queues */ 391 pf_q = vsi->rxq_map[ring->q_index]; 392 393 /* clear the context structure first */ 394 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 395 396 /* Receive Queue Base Address. 397 * Indicates the starting address of the descriptor queue defined in 398 * 128 Byte units. 399 */ 400 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 401 402 rlan_ctx.qlen = ring->count; 403 404 /* Receive Packet Data Buffer Size. 405 * The Packet Data Buffer Size is defined in 128 byte units. 406 */ 407 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 408 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 409 410 /* use 32 byte descriptors */ 411 rlan_ctx.dsize = 1; 412 413 /* Strip the Ethernet CRC bytes before the packet is posted to host 414 * memory. 415 */ 416 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 417 418 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 419 * and it needs to remain 1 for non-DVM capable configurations to not 420 * break backward compatibility for VF drivers. Setting this field to 0 421 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 422 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 423 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 424 * check for the tag 425 */ 426 if (ice_is_dvm_ena(hw)) 427 if (vsi->type == ICE_VSI_VF && 428 ice_vf_is_port_vlan_ena(vsi->vf)) 429 rlan_ctx.l2tsel = 1; 430 else 431 rlan_ctx.l2tsel = 0; 432 else 433 rlan_ctx.l2tsel = 1; 434 435 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 436 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 437 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 438 439 /* This controls whether VLAN is stripped from inner headers 440 * The VLAN in the inner L2 header is stripped to the receive 441 * descriptor if enabled by this flag. 442 */ 443 rlan_ctx.showiv = 0; 444 445 /* Max packet size for this queue - must not be set to a larger value 446 * than 5 x DBUF 447 */ 448 rlan_ctx.rxmax = min_t(u32, ring->max_frame, 449 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 450 451 /* Rx queue threshold in units of 64 */ 452 rlan_ctx.lrxqthresh = 1; 453 454 /* Enable descriptor prefetch */ 455 rlan_ctx.prefena = 1; 456 457 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 458 * metadata and flags to allow redirecting to PR netdev 459 */ 460 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 461 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 462 rxdid = ICE_RXDID_FLEX_NIC_2; 463 } 464 465 /* Enable Flexible Descriptors in the queue context which 466 * allows this driver to select a specific receive descriptor format 467 * increasing context priority to pick up profile ID; default is 0x01; 468 * setting to 0x03 to ensure profile is programming if prev context is 469 * of same priority 470 */ 471 if (vsi->type != ICE_VSI_VF) 472 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 473 474 /* Absolute queue number out of 2K needs to be passed */ 475 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 476 if (err) { 477 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 478 pf_q, err); 479 return -EIO; 480 } 481 482 if (vsi->type == ICE_VSI_VF) 483 return 0; 484 485 /* configure Rx buffer alignment */ 486 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 487 ice_clear_ring_build_skb_ena(ring); 488 else 489 ice_set_ring_build_skb_ena(ring); 490 491 ring->rx_offset = ice_rx_offset(ring); 492 493 /* init queue specific tail register */ 494 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 495 writel(0, ring->tail); 496 497 return 0; 498 } 499 500 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 501 { 502 void *ctx_ptr = &ring->pkt_ctx; 503 struct xsk_cb_desc desc = {}; 504 505 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 506 desc.src = &ctx_ptr; 507 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 508 sizeof(struct xdp_buff); 509 desc.bytes = sizeof(ctx_ptr); 510 xsk_pool_fill_cb(ring->xsk_pool, &desc); 511 } 512 513 /** 514 * ice_get_frame_sz - calculate xdp_buff::frame_sz 515 * @rx_ring: the ring being configured 516 * 517 * Return frame size based on underlying PAGE_SIZE 518 */ 519 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring) 520 { 521 unsigned int frame_sz; 522 523 #if (PAGE_SIZE >= 8192) 524 frame_sz = rx_ring->rx_buf_len; 525 #else 526 frame_sz = ice_rx_pg_size(rx_ring) / 2; 527 #endif 528 529 return frame_sz; 530 } 531 532 /** 533 * ice_vsi_cfg_rxq - Configure an Rx queue 534 * @ring: the ring being configured 535 * 536 * Return 0 on success and a negative value on error. 537 */ 538 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 539 { 540 struct device *dev = ice_pf_to_dev(ring->vsi->back); 541 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 542 int err; 543 544 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) { 545 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 546 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 547 ring->q_index, 548 ring->q_vector->napi.napi_id, 549 ring->rx_buf_len); 550 if (err) 551 return err; 552 } 553 554 ice_rx_xsk_pool(ring); 555 if (ring->xsk_pool) { 556 xdp_rxq_info_unreg(&ring->xdp_rxq); 557 558 ring->rx_buf_len = 559 xsk_pool_get_rx_frame_size(ring->xsk_pool); 560 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 561 ring->q_index, 562 ring->q_vector->napi.napi_id, 563 ring->rx_buf_len); 564 if (err) 565 return err; 566 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 567 MEM_TYPE_XSK_BUFF_POOL, 568 NULL); 569 if (err) 570 return err; 571 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 572 ice_xsk_pool_fill_cb(ring); 573 574 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 575 ring->q_index); 576 } else { 577 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 578 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 579 ring->q_index, 580 ring->q_vector->napi.napi_id, 581 ring->rx_buf_len); 582 if (err) 583 return err; 584 } 585 586 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 587 MEM_TYPE_PAGE_SHARED, 588 NULL); 589 if (err) 590 return err; 591 } 592 } 593 594 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq); 595 ring->xdp.data = NULL; 596 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 597 err = ice_setup_rx_ctx(ring); 598 if (err) { 599 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 600 ring->q_index, err); 601 return err; 602 } 603 604 if (ring->xsk_pool) { 605 bool ok; 606 607 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 608 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 609 num_bufs, ring->q_index); 610 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 611 612 return 0; 613 } 614 615 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs); 616 if (!ok) { 617 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 618 619 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 620 ring->q_index, pf_q); 621 } 622 623 return 0; 624 } 625 626 ice_alloc_rx_bufs(ring, num_bufs); 627 628 return 0; 629 } 630 631 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 632 { 633 if (q_idx >= vsi->num_rxq) 634 return -EINVAL; 635 636 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 637 } 638 639 /** 640 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 641 * @vsi: VSI 642 * @ring: Rx ring to configure 643 * 644 * Determine the maximum frame size and Rx buffer length to use for a PF VSI. 645 * Set these in the associated Rx ring structure. 646 */ 647 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring) 648 { 649 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 650 ring->max_frame = ICE_MAX_FRAME_LEGACY_RX; 651 ring->rx_buf_len = ICE_RXBUF_1664; 652 #if (PAGE_SIZE < 8192) 653 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 654 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 655 ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 656 ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 657 #endif 658 } else { 659 ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 660 ring->rx_buf_len = ICE_RXBUF_3072; 661 } 662 } 663 664 /** 665 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 666 * @vsi: the VSI being configured 667 * 668 * Return 0 on success and a negative value on error 669 * Configure the Rx VSI for operation. 670 */ 671 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 672 { 673 u16 i; 674 675 /* set up individual rings */ 676 ice_for_each_rxq(vsi, i) { 677 struct ice_rx_ring *ring = vsi->rx_rings[i]; 678 int err; 679 680 if (vsi->type != ICE_VSI_VF) 681 ice_vsi_cfg_frame_size(vsi, ring); 682 683 err = ice_vsi_cfg_rxq(ring); 684 if (err) 685 return err; 686 } 687 688 return 0; 689 } 690 691 /** 692 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 693 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 694 * 695 * This function first tries to find contiguous space. If it is not successful, 696 * it tries with the scatter approach. 697 * 698 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 699 */ 700 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 701 { 702 int ret = 0; 703 704 ret = __ice_vsi_get_qs_contig(qs_cfg); 705 if (ret) { 706 /* contig failed, so try with scatter approach */ 707 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 708 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 709 qs_cfg->scatter_count); 710 ret = __ice_vsi_get_qs_sc(qs_cfg); 711 } 712 return ret; 713 } 714 715 /** 716 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 717 * @vsi: the VSI being configured 718 * @ena: start or stop the Rx ring 719 * @rxq_idx: 0-based Rx queue index for the VSI passed in 720 * @wait: wait or don't wait for configuration to finish in hardware 721 * 722 * Return 0 on success and negative on error. 723 */ 724 int 725 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 726 { 727 int pf_q = vsi->rxq_map[rxq_idx]; 728 struct ice_pf *pf = vsi->back; 729 struct ice_hw *hw = &pf->hw; 730 u32 rx_reg; 731 732 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 733 734 /* Skip if the queue is already in the requested state */ 735 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 736 return 0; 737 738 /* turn on/off the queue */ 739 if (ena) 740 rx_reg |= QRX_CTRL_QENA_REQ_M; 741 else 742 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 743 wr32(hw, QRX_CTRL(pf_q), rx_reg); 744 745 if (!wait) 746 return 0; 747 748 ice_flush(hw); 749 return ice_pf_rxq_wait(pf, pf_q, ena); 750 } 751 752 /** 753 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 754 * @vsi: the VSI being configured 755 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 756 * @rxq_idx: 0-based Rx queue index for the VSI passed in 757 * 758 * This routine will wait for the given Rx queue of the VSI to reach the 759 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 760 * the requested state after multiple retries; else will return 0 in case of 761 * success. 762 */ 763 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 764 { 765 int pf_q = vsi->rxq_map[rxq_idx]; 766 struct ice_pf *pf = vsi->back; 767 768 return ice_pf_rxq_wait(pf, pf_q, ena); 769 } 770 771 /** 772 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 773 * @vsi: the VSI being configured 774 * 775 * We allocate one q_vector per queue interrupt. If allocation fails we 776 * return -ENOMEM. 777 */ 778 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 779 { 780 struct device *dev = ice_pf_to_dev(vsi->back); 781 u16 v_idx; 782 int err; 783 784 if (vsi->q_vectors[0]) { 785 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 786 return -EEXIST; 787 } 788 789 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 790 err = ice_vsi_alloc_q_vector(vsi, v_idx); 791 if (err) 792 goto err_out; 793 } 794 795 return 0; 796 797 err_out: 798 799 dev_info(dev, "Failed to allocate %d q_vectors for VSI %d, new value %d", 800 vsi->num_q_vectors, vsi->vsi_num, v_idx); 801 vsi->num_q_vectors = v_idx; 802 return v_idx ? 0 : err; 803 } 804 805 /** 806 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 807 * @vsi: the VSI being configured 808 * 809 * This function maps descriptor rings to the queue-specific vectors allotted 810 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 811 * and Rx rings to the vector as "efficiently" as possible. 812 */ 813 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 814 { 815 int q_vectors = vsi->num_q_vectors; 816 u16 tx_rings_rem, rx_rings_rem; 817 int v_id; 818 819 /* initially assigning remaining rings count to VSIs num queue value */ 820 tx_rings_rem = vsi->num_txq; 821 rx_rings_rem = vsi->num_rxq; 822 823 for (v_id = 0; v_id < q_vectors; v_id++) { 824 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 825 u8 tx_rings_per_v, rx_rings_per_v; 826 u16 q_id, q_base; 827 828 /* Tx rings mapping to vector */ 829 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 830 q_vectors - v_id); 831 q_vector->num_ring_tx = tx_rings_per_v; 832 q_vector->tx.tx_ring = NULL; 833 q_vector->tx.itr_idx = ICE_TX_ITR; 834 q_base = vsi->num_txq - tx_rings_rem; 835 836 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 837 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 838 839 tx_ring->q_vector = q_vector; 840 tx_ring->next = q_vector->tx.tx_ring; 841 q_vector->tx.tx_ring = tx_ring; 842 } 843 tx_rings_rem -= tx_rings_per_v; 844 845 /* Rx rings mapping to vector */ 846 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 847 q_vectors - v_id); 848 q_vector->num_ring_rx = rx_rings_per_v; 849 q_vector->rx.rx_ring = NULL; 850 q_vector->rx.itr_idx = ICE_RX_ITR; 851 q_base = vsi->num_rxq - rx_rings_rem; 852 853 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 854 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 855 856 rx_ring->q_vector = q_vector; 857 rx_ring->next = q_vector->rx.rx_ring; 858 q_vector->rx.rx_ring = rx_ring; 859 } 860 rx_rings_rem -= rx_rings_per_v; 861 } 862 863 if (ice_is_xdp_ena_vsi(vsi)) 864 ice_map_xdp_rings(vsi); 865 } 866 867 /** 868 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 869 * @vsi: the VSI having memory freed 870 */ 871 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 872 { 873 int v_idx; 874 875 ice_for_each_q_vector(vsi, v_idx) 876 ice_free_q_vector(vsi, v_idx); 877 878 vsi->num_q_vectors = 0; 879 } 880 881 /** 882 * ice_vsi_cfg_txq - Configure single Tx queue 883 * @vsi: the VSI that queue belongs to 884 * @ring: Tx ring to be configured 885 * @qg_buf: queue group buffer 886 */ 887 static int 888 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 889 struct ice_aqc_add_tx_qgrp *qg_buf) 890 { 891 u8 buf_len = struct_size(qg_buf, txqs, 1); 892 struct ice_tlan_ctx tlan_ctx = { 0 }; 893 struct ice_aqc_add_txqs_perq *txq; 894 struct ice_channel *ch = ring->ch; 895 struct ice_pf *pf = vsi->back; 896 struct ice_hw *hw = &pf->hw; 897 int status; 898 u16 pf_q; 899 u8 tc; 900 901 /* Configure XPS */ 902 ice_cfg_xps_tx_ring(ring); 903 904 pf_q = ring->reg_idx; 905 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 906 /* copy context contents into the qg_buf */ 907 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 908 ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx); 909 910 /* init queue specific tail reg. It is referred as 911 * transmit comm scheduler queue doorbell. 912 */ 913 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 914 915 if (IS_ENABLED(CONFIG_DCB)) 916 tc = ring->dcb_tc; 917 else 918 tc = 0; 919 920 /* Add unique software queue handle of the Tx queue per 921 * TC into the VSI Tx ring 922 */ 923 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 924 925 if (ch) 926 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 927 ring->q_handle, 1, qg_buf, buf_len, 928 NULL); 929 else 930 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 931 ring->q_handle, 1, qg_buf, buf_len, 932 NULL); 933 if (status) { 934 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 935 status); 936 return status; 937 } 938 939 /* Add Tx Queue TEID into the VSI Tx ring from the 940 * response. This will complete configuring and 941 * enabling the queue. 942 */ 943 txq = &qg_buf->txqs[0]; 944 if (pf_q == le16_to_cpu(txq->txq_id)) 945 ring->txq_teid = le32_to_cpu(txq->q_teid); 946 947 return 0; 948 } 949 950 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 951 u16 q_idx) 952 { 953 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 954 955 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 956 return -EINVAL; 957 958 qg_buf->num_txqs = 1; 959 960 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 961 } 962 963 /** 964 * ice_vsi_cfg_txqs - Configure the VSI for Tx 965 * @vsi: the VSI being configured 966 * @rings: Tx ring array to be configured 967 * @count: number of Tx ring array elements 968 * 969 * Return 0 on success and a negative value on error 970 * Configure the Tx VSI for operation. 971 */ 972 static int 973 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 974 { 975 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 976 int err = 0; 977 u16 q_idx; 978 979 qg_buf->num_txqs = 1; 980 981 for (q_idx = 0; q_idx < count; q_idx++) { 982 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 983 if (err) 984 break; 985 } 986 987 return err; 988 } 989 990 /** 991 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 992 * @vsi: the VSI being configured 993 * 994 * Return 0 on success and a negative value on error 995 * Configure the Tx VSI for operation. 996 */ 997 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 998 { 999 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1000 } 1001 1002 /** 1003 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1004 * @vsi: the VSI being configured 1005 * 1006 * Return 0 on success and a negative value on error 1007 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1008 */ 1009 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1010 { 1011 int ret; 1012 int i; 1013 1014 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1015 if (ret) 1016 return ret; 1017 1018 ice_for_each_rxq(vsi, i) 1019 ice_tx_xsk_pool(vsi, i); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * ice_cfg_itr - configure the initial interrupt throttle values 1026 * @hw: pointer to the HW structure 1027 * @q_vector: interrupt vector that's being configured 1028 * 1029 * Configure interrupt throttling values for the ring containers that are 1030 * associated with the interrupt vector passed in. 1031 */ 1032 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1033 { 1034 ice_cfg_itr_gran(hw); 1035 1036 if (q_vector->num_ring_rx) 1037 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1038 1039 if (q_vector->num_ring_tx) 1040 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1041 1042 ice_write_intrl(q_vector, q_vector->intrl); 1043 } 1044 1045 /** 1046 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1047 * @vsi: the VSI being configured 1048 * @txq: Tx queue being mapped to MSI-X vector 1049 * @msix_idx: MSI-X vector index within the function 1050 * @itr_idx: ITR index of the interrupt cause 1051 * 1052 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1053 * within the function space. 1054 */ 1055 void 1056 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1057 { 1058 struct ice_pf *pf = vsi->back; 1059 struct ice_hw *hw = &pf->hw; 1060 u32 val; 1061 1062 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1063 1064 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1065 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1066 1067 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1068 if (ice_is_xdp_ena_vsi(vsi)) { 1069 u32 xdp_txq = txq + vsi->num_xdp_txq; 1070 1071 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1072 val); 1073 } 1074 ice_flush(hw); 1075 } 1076 1077 /** 1078 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1079 * @vsi: the VSI being configured 1080 * @rxq: Rx queue being mapped to MSI-X vector 1081 * @msix_idx: MSI-X vector index within the function 1082 * @itr_idx: ITR index of the interrupt cause 1083 * 1084 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1085 * within the function space. 1086 */ 1087 void 1088 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1089 { 1090 struct ice_pf *pf = vsi->back; 1091 struct ice_hw *hw = &pf->hw; 1092 u32 val; 1093 1094 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1095 1096 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1097 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1098 1099 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1100 1101 ice_flush(hw); 1102 } 1103 1104 /** 1105 * ice_trigger_sw_intr - trigger a software interrupt 1106 * @hw: pointer to the HW structure 1107 * @q_vector: interrupt vector to trigger the software interrupt for 1108 */ 1109 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1110 { 1111 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1112 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1113 GLINT_DYN_CTL_SWINT_TRIG_M | 1114 GLINT_DYN_CTL_INTENA_M); 1115 } 1116 1117 /** 1118 * ice_vsi_stop_tx_ring - Disable single Tx ring 1119 * @vsi: the VSI being configured 1120 * @rst_src: reset source 1121 * @rel_vmvf_num: Relative ID of VF/VM 1122 * @ring: Tx ring to be stopped 1123 * @txq_meta: Meta data of Tx ring to be stopped 1124 */ 1125 int 1126 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1127 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1128 struct ice_txq_meta *txq_meta) 1129 { 1130 struct ice_pf *pf = vsi->back; 1131 struct ice_q_vector *q_vector; 1132 struct ice_hw *hw = &pf->hw; 1133 int status; 1134 u32 val; 1135 1136 /* clear cause_ena bit for disabled queues */ 1137 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1138 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1139 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1140 1141 /* software is expected to wait for 100 ns */ 1142 ndelay(100); 1143 1144 /* trigger a software interrupt for the vector 1145 * associated to the queue to schedule NAPI handler 1146 */ 1147 q_vector = ring->q_vector; 1148 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1149 ice_trigger_sw_intr(hw, q_vector); 1150 1151 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1152 txq_meta->tc, 1, &txq_meta->q_handle, 1153 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1154 rel_vmvf_num, NULL); 1155 1156 /* if the disable queue command was exercised during an 1157 * active reset flow, -EBUSY is returned. 1158 * This is not an error as the reset operation disables 1159 * queues at the hardware level anyway. 1160 */ 1161 if (status == -EBUSY) { 1162 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1163 } else if (status == -ENOENT) { 1164 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1165 } else if (status) { 1166 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1167 status); 1168 return status; 1169 } 1170 1171 return 0; 1172 } 1173 1174 /** 1175 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1176 * @vsi: VSI that ring belongs to 1177 * @ring: ring that txq_meta will be based on 1178 * @txq_meta: a helper struct that wraps Tx queue's information 1179 * 1180 * Set up a helper struct that will contain all the necessary fields that 1181 * are needed for stopping Tx queue 1182 */ 1183 void 1184 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1185 struct ice_txq_meta *txq_meta) 1186 { 1187 struct ice_channel *ch = ring->ch; 1188 u8 tc; 1189 1190 if (IS_ENABLED(CONFIG_DCB)) 1191 tc = ring->dcb_tc; 1192 else 1193 tc = 0; 1194 1195 txq_meta->q_id = ring->reg_idx; 1196 txq_meta->q_teid = ring->txq_teid; 1197 txq_meta->q_handle = ring->q_handle; 1198 if (ch) { 1199 txq_meta->vsi_idx = ch->ch_vsi->idx; 1200 txq_meta->tc = 0; 1201 } else { 1202 txq_meta->vsi_idx = vsi->idx; 1203 txq_meta->tc = tc; 1204 } 1205 } 1206