xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 9acb51e9617c28a92f9ce2af767db6bd660a6d4f)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2019, Intel Corporation. */
3  
4  #include <net/xdp_sock_drv.h>
5  #include "ice_base.h"
6  #include "ice_lib.h"
7  #include "ice_dcb_lib.h"
8  #include "ice_sriov.h"
9  
10  /**
11   * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12   * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13   *
14   * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15   */
16  static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17  {
18  	unsigned int offset, i;
19  
20  	mutex_lock(qs_cfg->qs_mutex);
21  	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22  					    0, qs_cfg->q_count, 0);
23  	if (offset >= qs_cfg->pf_map_size) {
24  		mutex_unlock(qs_cfg->qs_mutex);
25  		return -ENOMEM;
26  	}
27  
28  	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29  	for (i = 0; i < qs_cfg->q_count; i++)
30  		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31  	mutex_unlock(qs_cfg->qs_mutex);
32  
33  	return 0;
34  }
35  
36  /**
37   * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38   * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39   *
40   * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41   */
42  static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43  {
44  	unsigned int i, index = 0;
45  
46  	mutex_lock(qs_cfg->qs_mutex);
47  	for (i = 0; i < qs_cfg->q_count; i++) {
48  		index = find_next_zero_bit(qs_cfg->pf_map,
49  					   qs_cfg->pf_map_size, index);
50  		if (index >= qs_cfg->pf_map_size)
51  			goto err_scatter;
52  		set_bit(index, qs_cfg->pf_map);
53  		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54  	}
55  	mutex_unlock(qs_cfg->qs_mutex);
56  
57  	return 0;
58  err_scatter:
59  	for (index = 0; index < i; index++) {
60  		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61  		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62  	}
63  	mutex_unlock(qs_cfg->qs_mutex);
64  
65  	return -ENOMEM;
66  }
67  
68  /**
69   * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70   * @pf: the PF being configured
71   * @pf_q: the PF queue
72   * @ena: enable or disable state of the queue
73   *
74   * This routine will wait for the given Rx queue of the PF to reach the
75   * enabled or disabled state.
76   * Returns -ETIMEDOUT in case of failing to reach the requested state after
77   * multiple retries; else will return 0 in case of success.
78   */
79  static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80  {
81  	int i;
82  
83  	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84  		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85  			      QRX_CTRL_QENA_STAT_M))
86  			return 0;
87  
88  		usleep_range(20, 40);
89  	}
90  
91  	return -ETIMEDOUT;
92  }
93  
94  /**
95   * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96   * @vsi: the VSI being configured
97   * @v_idx: index of the vector in the VSI struct
98   *
99   * We allocate one q_vector and set default value for ITR setting associated
100   * with this q_vector. If allocation fails we return -ENOMEM.
101   */
102  static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103  {
104  	struct ice_pf *pf = vsi->back;
105  	struct ice_q_vector *q_vector;
106  	int err;
107  
108  	/* allocate q_vector */
109  	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110  	if (!q_vector)
111  		return -ENOMEM;
112  
113  	q_vector->vsi = vsi;
114  	q_vector->v_idx = v_idx;
115  	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116  	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117  	q_vector->tx.itr_mode = ITR_DYNAMIC;
118  	q_vector->rx.itr_mode = ITR_DYNAMIC;
119  	q_vector->tx.type = ICE_TX_CONTAINER;
120  	q_vector->rx.type = ICE_RX_CONTAINER;
121  	q_vector->irq.index = -ENOENT;
122  
123  	if (vsi->type == ICE_VSI_VF) {
124  		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125  		goto out;
126  	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127  		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128  
129  		if (ctrl_vsi) {
130  			if (unlikely(!ctrl_vsi->q_vectors)) {
131  				err = -ENOENT;
132  				goto err_free_q_vector;
133  			}
134  
135  			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136  			goto skip_alloc;
137  		}
138  	}
139  
140  	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141  	if (q_vector->irq.index < 0) {
142  		err = -ENOMEM;
143  		goto err_free_q_vector;
144  	}
145  
146  skip_alloc:
147  	q_vector->reg_idx = q_vector->irq.index;
148  	q_vector->vf_reg_idx = q_vector->irq.index;
149  
150  	/* only set affinity_mask if the CPU is online */
151  	if (cpu_online(v_idx))
152  		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153  
154  	/* This will not be called in the driver load path because the netdev
155  	 * will not be created yet. All other cases with register the NAPI
156  	 * handler here (i.e. resume, reset/rebuild, etc.)
157  	 */
158  	if (vsi->netdev)
159  		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
160  
161  out:
162  	/* tie q_vector and VSI together */
163  	vsi->q_vectors[v_idx] = q_vector;
164  
165  	return 0;
166  
167  err_free_q_vector:
168  	kfree(q_vector);
169  
170  	return err;
171  }
172  
173  /**
174   * ice_free_q_vector - Free memory allocated for a specific interrupt vector
175   * @vsi: VSI having the memory freed
176   * @v_idx: index of the vector to be freed
177   */
178  static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
179  {
180  	struct ice_q_vector *q_vector;
181  	struct ice_pf *pf = vsi->back;
182  	struct ice_tx_ring *tx_ring;
183  	struct ice_rx_ring *rx_ring;
184  	struct device *dev;
185  
186  	dev = ice_pf_to_dev(pf);
187  	if (!vsi->q_vectors[v_idx]) {
188  		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
189  		return;
190  	}
191  	q_vector = vsi->q_vectors[v_idx];
192  
193  	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
194  		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
195  				   NULL);
196  		tx_ring->q_vector = NULL;
197  	}
198  	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
199  		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
200  				   NULL);
201  		rx_ring->q_vector = NULL;
202  	}
203  
204  	/* only VSI with an associated netdev is set up with NAPI */
205  	if (vsi->netdev)
206  		netif_napi_del(&q_vector->napi);
207  
208  	/* release MSIX interrupt if q_vector had interrupt allocated */
209  	if (q_vector->irq.index < 0)
210  		goto free_q_vector;
211  
212  	/* only free last VF ctrl vsi interrupt */
213  	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
214  	    ice_get_vf_ctrl_vsi(pf, vsi))
215  		goto free_q_vector;
216  
217  	ice_free_irq(pf, q_vector->irq);
218  
219  free_q_vector:
220  	kfree(q_vector);
221  	vsi->q_vectors[v_idx] = NULL;
222  }
223  
224  /**
225   * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
226   * @hw: board specific structure
227   */
228  static void ice_cfg_itr_gran(struct ice_hw *hw)
229  {
230  	u32 regval = rd32(hw, GLINT_CTL);
231  
232  	/* no need to update global register if ITR gran is already set */
233  	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
234  	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
235  	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
236  	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
237  	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
238  		return;
239  
240  	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
241  		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
242  		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
243  		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
244  	wr32(hw, GLINT_CTL, regval);
245  }
246  
247  /**
248   * ice_calc_txq_handle - calculate the queue handle
249   * @vsi: VSI that ring belongs to
250   * @ring: ring to get the absolute queue index
251   * @tc: traffic class number
252   */
253  static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
254  {
255  	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
256  
257  	if (ring->ch)
258  		return ring->q_index - ring->ch->base_q;
259  
260  	/* Idea here for calculation is that we subtract the number of queue
261  	 * count from TC that ring belongs to from it's absolute queue index
262  	 * and as a result we get the queue's index within TC.
263  	 */
264  	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
265  }
266  
267  /**
268   * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
269   * @ring: The Tx ring to configure
270   *
271   * This enables/disables XPS for a given Tx descriptor ring
272   * based on the TCs enabled for the VSI that ring belongs to.
273   */
274  static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
275  {
276  	if (!ring->q_vector || !ring->netdev)
277  		return;
278  
279  	/* We only initialize XPS once, so as not to overwrite user settings */
280  	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
281  		return;
282  
283  	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
284  			    ring->q_index);
285  }
286  
287  /**
288   * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
289   * @ring: The Tx ring to configure
290   * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
291   * @pf_q: queue index in the PF space
292   *
293   * Configure the Tx descriptor ring in TLAN context.
294   */
295  static void
296  ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
297  {
298  	struct ice_vsi *vsi = ring->vsi;
299  	struct ice_hw *hw = &vsi->back->hw;
300  
301  	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
302  
303  	tlan_ctx->port_num = vsi->port_info->lport;
304  
305  	/* Transmit Queue Length */
306  	tlan_ctx->qlen = ring->count;
307  
308  	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
309  
310  	/* PF number */
311  	tlan_ctx->pf_num = hw->pf_id;
312  
313  	/* queue belongs to a specific VSI type
314  	 * VF / VM index should be programmed per vmvf_type setting:
315  	 * for vmvf_type = VF, it is VF number between 0-256
316  	 * for vmvf_type = VM, it is VM number between 0-767
317  	 * for PF or EMP this field should be set to zero
318  	 */
319  	switch (vsi->type) {
320  	case ICE_VSI_LB:
321  	case ICE_VSI_CTRL:
322  	case ICE_VSI_PF:
323  		if (ring->ch)
324  			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
325  		else
326  			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
327  		break;
328  	case ICE_VSI_VF:
329  		/* Firmware expects vmvf_num to be absolute VF ID */
330  		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
331  		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
332  		break;
333  	default:
334  		return;
335  	}
336  
337  	/* make sure the context is associated with the right VSI */
338  	if (ring->ch)
339  		tlan_ctx->src_vsi = ring->ch->vsi_num;
340  	else
341  		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
342  
343  	/* Restrict Tx timestamps to the PF VSI */
344  	switch (vsi->type) {
345  	case ICE_VSI_PF:
346  		tlan_ctx->tsyn_ena = 1;
347  		break;
348  	default:
349  		break;
350  	}
351  
352  	tlan_ctx->tso_ena = ICE_TX_LEGACY;
353  	tlan_ctx->tso_qnum = pf_q;
354  
355  	/* Legacy or Advanced Host Interface:
356  	 * 0: Advanced Host Interface
357  	 * 1: Legacy Host Interface
358  	 */
359  	tlan_ctx->legacy_int = ICE_TX_LEGACY;
360  }
361  
362  /**
363   * ice_rx_offset - Return expected offset into page to access data
364   * @rx_ring: Ring we are requesting offset of
365   *
366   * Returns the offset value for ring into the data buffer.
367   */
368  static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
369  {
370  	if (ice_ring_uses_build_skb(rx_ring))
371  		return ICE_SKB_PAD;
372  	return 0;
373  }
374  
375  /**
376   * ice_setup_rx_ctx - Configure a receive ring context
377   * @ring: The Rx ring to configure
378   *
379   * Configure the Rx descriptor ring in RLAN context.
380   */
381  static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
382  {
383  	struct ice_vsi *vsi = ring->vsi;
384  	u32 rxdid = ICE_RXDID_FLEX_NIC;
385  	struct ice_rlan_ctx rlan_ctx;
386  	struct ice_hw *hw;
387  	u16 pf_q;
388  	int err;
389  
390  	hw = &vsi->back->hw;
391  
392  	/* what is Rx queue number in global space of 2K Rx queues */
393  	pf_q = vsi->rxq_map[ring->q_index];
394  
395  	/* clear the context structure first */
396  	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
397  
398  	/* Receive Queue Base Address.
399  	 * Indicates the starting address of the descriptor queue defined in
400  	 * 128 Byte units.
401  	 */
402  	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
403  
404  	rlan_ctx.qlen = ring->count;
405  
406  	/* Receive Packet Data Buffer Size.
407  	 * The Packet Data Buffer Size is defined in 128 byte units.
408  	 */
409  	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
410  				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
411  
412  	/* use 32 byte descriptors */
413  	rlan_ctx.dsize = 1;
414  
415  	/* Strip the Ethernet CRC bytes before the packet is posted to host
416  	 * memory.
417  	 */
418  	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
419  
420  	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
421  	 * and it needs to remain 1 for non-DVM capable configurations to not
422  	 * break backward compatibility for VF drivers. Setting this field to 0
423  	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
424  	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
425  	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
426  	 * check for the tag
427  	 */
428  	if (ice_is_dvm_ena(hw))
429  		if (vsi->type == ICE_VSI_VF &&
430  		    ice_vf_is_port_vlan_ena(vsi->vf))
431  			rlan_ctx.l2tsel = 1;
432  		else
433  			rlan_ctx.l2tsel = 0;
434  	else
435  		rlan_ctx.l2tsel = 1;
436  
437  	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
438  	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
439  	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
440  
441  	/* This controls whether VLAN is stripped from inner headers
442  	 * The VLAN in the inner L2 header is stripped to the receive
443  	 * descriptor if enabled by this flag.
444  	 */
445  	rlan_ctx.showiv = 0;
446  
447  	/* Max packet size for this queue - must not be set to a larger value
448  	 * than 5 x DBUF
449  	 */
450  	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
451  			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
452  
453  	/* Rx queue threshold in units of 64 */
454  	rlan_ctx.lrxqthresh = 1;
455  
456  	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
457  	 * metadata and flags to allow redirecting to PR netdev
458  	 */
459  	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
460  		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
461  		rxdid = ICE_RXDID_FLEX_NIC_2;
462  	}
463  
464  	/* Enable Flexible Descriptors in the queue context which
465  	 * allows this driver to select a specific receive descriptor format
466  	 * increasing context priority to pick up profile ID; default is 0x01;
467  	 * setting to 0x03 to ensure profile is programming if prev context is
468  	 * of same priority
469  	 */
470  	if (vsi->type != ICE_VSI_VF)
471  		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
472  	else
473  		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
474  					false);
475  
476  	/* Absolute queue number out of 2K needs to be passed */
477  	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
478  	if (err) {
479  		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
480  			pf_q, err);
481  		return -EIO;
482  	}
483  
484  	if (vsi->type == ICE_VSI_VF)
485  		return 0;
486  
487  	/* configure Rx buffer alignment */
488  	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
489  		ice_clear_ring_build_skb_ena(ring);
490  	else
491  		ice_set_ring_build_skb_ena(ring);
492  
493  	ring->rx_offset = ice_rx_offset(ring);
494  
495  	/* init queue specific tail register */
496  	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
497  	writel(0, ring->tail);
498  
499  	return 0;
500  }
501  
502  static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
503  {
504  	void *ctx_ptr = &ring->pkt_ctx;
505  	struct xsk_cb_desc desc = {};
506  
507  	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
508  	desc.src = &ctx_ptr;
509  	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
510  		   sizeof(struct xdp_buff);
511  	desc.bytes = sizeof(ctx_ptr);
512  	xsk_pool_fill_cb(ring->xsk_pool, &desc);
513  }
514  
515  /**
516   * ice_vsi_cfg_rxq - Configure an Rx queue
517   * @ring: the ring being configured
518   *
519   * Return 0 on success and a negative value on error.
520   */
521  static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
522  {
523  	struct device *dev = ice_pf_to_dev(ring->vsi->back);
524  	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
525  	int err;
526  
527  	ring->rx_buf_len = ring->vsi->rx_buf_len;
528  
529  	if (ring->vsi->type == ICE_VSI_PF) {
530  		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
531  			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
532  						 ring->q_index,
533  						 ring->q_vector->napi.napi_id,
534  						 ring->rx_buf_len);
535  			if (err)
536  				return err;
537  		}
538  
539  		ring->xsk_pool = ice_xsk_pool(ring);
540  		if (ring->xsk_pool) {
541  			xdp_rxq_info_unreg(&ring->xdp_rxq);
542  
543  			ring->rx_buf_len =
544  				xsk_pool_get_rx_frame_size(ring->xsk_pool);
545  			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
546  						 ring->q_index,
547  						 ring->q_vector->napi.napi_id,
548  						 ring->rx_buf_len);
549  			if (err)
550  				return err;
551  			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
552  							 MEM_TYPE_XSK_BUFF_POOL,
553  							 NULL);
554  			if (err)
555  				return err;
556  			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
557  			ice_xsk_pool_fill_cb(ring);
558  
559  			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
560  				 ring->q_index);
561  		} else {
562  			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
563  				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
564  							 ring->q_index,
565  							 ring->q_vector->napi.napi_id,
566  							 ring->rx_buf_len);
567  				if (err)
568  					return err;
569  			}
570  
571  			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
572  							 MEM_TYPE_PAGE_SHARED,
573  							 NULL);
574  			if (err)
575  				return err;
576  		}
577  	}
578  
579  	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
580  	ring->xdp.data = NULL;
581  	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
582  	err = ice_setup_rx_ctx(ring);
583  	if (err) {
584  		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
585  			ring->q_index, err);
586  		return err;
587  	}
588  
589  	if (ring->xsk_pool) {
590  		bool ok;
591  
592  		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
593  			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
594  				 num_bufs, ring->q_index);
595  			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
596  
597  			return 0;
598  		}
599  
600  		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
601  		if (!ok) {
602  			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
603  
604  			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
605  				 ring->q_index, pf_q);
606  		}
607  
608  		return 0;
609  	}
610  
611  	ice_alloc_rx_bufs(ring, num_bufs);
612  
613  	return 0;
614  }
615  
616  int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
617  {
618  	if (q_idx >= vsi->num_rxq)
619  		return -EINVAL;
620  
621  	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
622  }
623  
624  /**
625   * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
626   * @vsi: VSI
627   */
628  static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
629  {
630  	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
631  		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
632  		vsi->rx_buf_len = ICE_RXBUF_1664;
633  #if (PAGE_SIZE < 8192)
634  	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
635  		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
636  		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
637  		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
638  #endif
639  	} else {
640  		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
641  		vsi->rx_buf_len = ICE_RXBUF_3072;
642  	}
643  }
644  
645  /**
646   * ice_vsi_cfg_rxqs - Configure the VSI for Rx
647   * @vsi: the VSI being configured
648   *
649   * Return 0 on success and a negative value on error
650   * Configure the Rx VSI for operation.
651   */
652  int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
653  {
654  	u16 i;
655  
656  	if (vsi->type == ICE_VSI_VF)
657  		goto setup_rings;
658  
659  	ice_vsi_cfg_frame_size(vsi);
660  setup_rings:
661  	/* set up individual rings */
662  	ice_for_each_rxq(vsi, i) {
663  		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
664  
665  		if (err)
666  			return err;
667  	}
668  
669  	return 0;
670  }
671  
672  /**
673   * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
674   * @qs_cfg: gathered variables needed for pf->vsi queues assignment
675   *
676   * This function first tries to find contiguous space. If it is not successful,
677   * it tries with the scatter approach.
678   *
679   * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
680   */
681  int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
682  {
683  	int ret = 0;
684  
685  	ret = __ice_vsi_get_qs_contig(qs_cfg);
686  	if (ret) {
687  		/* contig failed, so try with scatter approach */
688  		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
689  		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
690  					qs_cfg->scatter_count);
691  		ret = __ice_vsi_get_qs_sc(qs_cfg);
692  	}
693  	return ret;
694  }
695  
696  /**
697   * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
698   * @vsi: the VSI being configured
699   * @ena: start or stop the Rx ring
700   * @rxq_idx: 0-based Rx queue index for the VSI passed in
701   * @wait: wait or don't wait for configuration to finish in hardware
702   *
703   * Return 0 on success and negative on error.
704   */
705  int
706  ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
707  {
708  	int pf_q = vsi->rxq_map[rxq_idx];
709  	struct ice_pf *pf = vsi->back;
710  	struct ice_hw *hw = &pf->hw;
711  	u32 rx_reg;
712  
713  	rx_reg = rd32(hw, QRX_CTRL(pf_q));
714  
715  	/* Skip if the queue is already in the requested state */
716  	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
717  		return 0;
718  
719  	/* turn on/off the queue */
720  	if (ena)
721  		rx_reg |= QRX_CTRL_QENA_REQ_M;
722  	else
723  		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
724  	wr32(hw, QRX_CTRL(pf_q), rx_reg);
725  
726  	if (!wait)
727  		return 0;
728  
729  	ice_flush(hw);
730  	return ice_pf_rxq_wait(pf, pf_q, ena);
731  }
732  
733  /**
734   * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
735   * @vsi: the VSI being configured
736   * @ena: true/false to verify Rx ring has been enabled/disabled respectively
737   * @rxq_idx: 0-based Rx queue index for the VSI passed in
738   *
739   * This routine will wait for the given Rx queue of the VSI to reach the
740   * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
741   * the requested state after multiple retries; else will return 0 in case of
742   * success.
743   */
744  int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
745  {
746  	int pf_q = vsi->rxq_map[rxq_idx];
747  	struct ice_pf *pf = vsi->back;
748  
749  	return ice_pf_rxq_wait(pf, pf_q, ena);
750  }
751  
752  /**
753   * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
754   * @vsi: the VSI being configured
755   *
756   * We allocate one q_vector per queue interrupt. If allocation fails we
757   * return -ENOMEM.
758   */
759  int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
760  {
761  	struct device *dev = ice_pf_to_dev(vsi->back);
762  	u16 v_idx;
763  	int err;
764  
765  	if (vsi->q_vectors[0]) {
766  		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
767  		return -EEXIST;
768  	}
769  
770  	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
771  		err = ice_vsi_alloc_q_vector(vsi, v_idx);
772  		if (err)
773  			goto err_out;
774  	}
775  
776  	return 0;
777  
778  err_out:
779  	while (v_idx--)
780  		ice_free_q_vector(vsi, v_idx);
781  
782  	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
783  		vsi->num_q_vectors, vsi->vsi_num, err);
784  	vsi->num_q_vectors = 0;
785  	return err;
786  }
787  
788  /**
789   * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
790   * @vsi: the VSI being configured
791   *
792   * This function maps descriptor rings to the queue-specific vectors allotted
793   * through the MSI-X enabling code. On a constrained vector budget, we map Tx
794   * and Rx rings to the vector as "efficiently" as possible.
795   */
796  void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
797  {
798  	int q_vectors = vsi->num_q_vectors;
799  	u16 tx_rings_rem, rx_rings_rem;
800  	int v_id;
801  
802  	/* initially assigning remaining rings count to VSIs num queue value */
803  	tx_rings_rem = vsi->num_txq;
804  	rx_rings_rem = vsi->num_rxq;
805  
806  	for (v_id = 0; v_id < q_vectors; v_id++) {
807  		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
808  		u8 tx_rings_per_v, rx_rings_per_v;
809  		u16 q_id, q_base;
810  
811  		/* Tx rings mapping to vector */
812  		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
813  						  q_vectors - v_id);
814  		q_vector->num_ring_tx = tx_rings_per_v;
815  		q_vector->tx.tx_ring = NULL;
816  		q_vector->tx.itr_idx = ICE_TX_ITR;
817  		q_base = vsi->num_txq - tx_rings_rem;
818  
819  		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
820  			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
821  
822  			tx_ring->q_vector = q_vector;
823  			tx_ring->next = q_vector->tx.tx_ring;
824  			q_vector->tx.tx_ring = tx_ring;
825  		}
826  		tx_rings_rem -= tx_rings_per_v;
827  
828  		/* Rx rings mapping to vector */
829  		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
830  						  q_vectors - v_id);
831  		q_vector->num_ring_rx = rx_rings_per_v;
832  		q_vector->rx.rx_ring = NULL;
833  		q_vector->rx.itr_idx = ICE_RX_ITR;
834  		q_base = vsi->num_rxq - rx_rings_rem;
835  
836  		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
837  			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
838  
839  			rx_ring->q_vector = q_vector;
840  			rx_ring->next = q_vector->rx.rx_ring;
841  			q_vector->rx.rx_ring = rx_ring;
842  		}
843  		rx_rings_rem -= rx_rings_per_v;
844  	}
845  
846  	if (ice_is_xdp_ena_vsi(vsi))
847  		ice_map_xdp_rings(vsi);
848  }
849  
850  /**
851   * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
852   * @vsi: the VSI having memory freed
853   */
854  void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
855  {
856  	int v_idx;
857  
858  	ice_for_each_q_vector(vsi, v_idx)
859  		ice_free_q_vector(vsi, v_idx);
860  
861  	vsi->num_q_vectors = 0;
862  }
863  
864  /**
865   * ice_vsi_cfg_txq - Configure single Tx queue
866   * @vsi: the VSI that queue belongs to
867   * @ring: Tx ring to be configured
868   * @qg_buf: queue group buffer
869   */
870  static int
871  ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
872  		struct ice_aqc_add_tx_qgrp *qg_buf)
873  {
874  	u8 buf_len = struct_size(qg_buf, txqs, 1);
875  	struct ice_tlan_ctx tlan_ctx = { 0 };
876  	struct ice_aqc_add_txqs_perq *txq;
877  	struct ice_channel *ch = ring->ch;
878  	struct ice_pf *pf = vsi->back;
879  	struct ice_hw *hw = &pf->hw;
880  	int status;
881  	u16 pf_q;
882  	u8 tc;
883  
884  	/* Configure XPS */
885  	ice_cfg_xps_tx_ring(ring);
886  
887  	pf_q = ring->reg_idx;
888  	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
889  	/* copy context contents into the qg_buf */
890  	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
891  	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
892  		    ice_tlan_ctx_info);
893  
894  	/* init queue specific tail reg. It is referred as
895  	 * transmit comm scheduler queue doorbell.
896  	 */
897  	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
898  
899  	if (IS_ENABLED(CONFIG_DCB))
900  		tc = ring->dcb_tc;
901  	else
902  		tc = 0;
903  
904  	/* Add unique software queue handle of the Tx queue per
905  	 * TC into the VSI Tx ring
906  	 */
907  	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
908  
909  	if (ch)
910  		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
911  					 ring->q_handle, 1, qg_buf, buf_len,
912  					 NULL);
913  	else
914  		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
915  					 ring->q_handle, 1, qg_buf, buf_len,
916  					 NULL);
917  	if (status) {
918  		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
919  			status);
920  		return status;
921  	}
922  
923  	/* Add Tx Queue TEID into the VSI Tx ring from the
924  	 * response. This will complete configuring and
925  	 * enabling the queue.
926  	 */
927  	txq = &qg_buf->txqs[0];
928  	if (pf_q == le16_to_cpu(txq->txq_id))
929  		ring->txq_teid = le32_to_cpu(txq->q_teid);
930  
931  	return 0;
932  }
933  
934  int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
935  			   u16 q_idx)
936  {
937  	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
938  
939  	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
940  		return -EINVAL;
941  
942  	qg_buf->num_txqs = 1;
943  
944  	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
945  }
946  
947  /**
948   * ice_vsi_cfg_txqs - Configure the VSI for Tx
949   * @vsi: the VSI being configured
950   * @rings: Tx ring array to be configured
951   * @count: number of Tx ring array elements
952   *
953   * Return 0 on success and a negative value on error
954   * Configure the Tx VSI for operation.
955   */
956  static int
957  ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
958  {
959  	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
960  	int err = 0;
961  	u16 q_idx;
962  
963  	qg_buf->num_txqs = 1;
964  
965  	for (q_idx = 0; q_idx < count; q_idx++) {
966  		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
967  		if (err)
968  			break;
969  	}
970  
971  	return err;
972  }
973  
974  /**
975   * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
976   * @vsi: the VSI being configured
977   *
978   * Return 0 on success and a negative value on error
979   * Configure the Tx VSI for operation.
980   */
981  int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
982  {
983  	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
984  }
985  
986  /**
987   * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
988   * @vsi: the VSI being configured
989   *
990   * Return 0 on success and a negative value on error
991   * Configure the Tx queues dedicated for XDP in given VSI for operation.
992   */
993  int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
994  {
995  	int ret;
996  	int i;
997  
998  	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
999  	if (ret)
1000  		return ret;
1001  
1002  	ice_for_each_rxq(vsi, i)
1003  		ice_tx_xsk_pool(vsi, i);
1004  
1005  	return 0;
1006  }
1007  
1008  /**
1009   * ice_cfg_itr - configure the initial interrupt throttle values
1010   * @hw: pointer to the HW structure
1011   * @q_vector: interrupt vector that's being configured
1012   *
1013   * Configure interrupt throttling values for the ring containers that are
1014   * associated with the interrupt vector passed in.
1015   */
1016  void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1017  {
1018  	ice_cfg_itr_gran(hw);
1019  
1020  	if (q_vector->num_ring_rx)
1021  		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1022  
1023  	if (q_vector->num_ring_tx)
1024  		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1025  
1026  	ice_write_intrl(q_vector, q_vector->intrl);
1027  }
1028  
1029  /**
1030   * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1031   * @vsi: the VSI being configured
1032   * @txq: Tx queue being mapped to MSI-X vector
1033   * @msix_idx: MSI-X vector index within the function
1034   * @itr_idx: ITR index of the interrupt cause
1035   *
1036   * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1037   * within the function space.
1038   */
1039  void
1040  ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1041  {
1042  	struct ice_pf *pf = vsi->back;
1043  	struct ice_hw *hw = &pf->hw;
1044  	u32 val;
1045  
1046  	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1047  
1048  	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1049  	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1050  
1051  	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1052  	if (ice_is_xdp_ena_vsi(vsi)) {
1053  		u32 xdp_txq = txq + vsi->num_xdp_txq;
1054  
1055  		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1056  		     val);
1057  	}
1058  	ice_flush(hw);
1059  }
1060  
1061  /**
1062   * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1063   * @vsi: the VSI being configured
1064   * @rxq: Rx queue being mapped to MSI-X vector
1065   * @msix_idx: MSI-X vector index within the function
1066   * @itr_idx: ITR index of the interrupt cause
1067   *
1068   * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1069   * within the function space.
1070   */
1071  void
1072  ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1073  {
1074  	struct ice_pf *pf = vsi->back;
1075  	struct ice_hw *hw = &pf->hw;
1076  	u32 val;
1077  
1078  	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1079  
1080  	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1081  	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1082  
1083  	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1084  
1085  	ice_flush(hw);
1086  }
1087  
1088  /**
1089   * ice_trigger_sw_intr - trigger a software interrupt
1090   * @hw: pointer to the HW structure
1091   * @q_vector: interrupt vector to trigger the software interrupt for
1092   */
1093  void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1094  {
1095  	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1096  	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1097  	     GLINT_DYN_CTL_SWINT_TRIG_M |
1098  	     GLINT_DYN_CTL_INTENA_M);
1099  }
1100  
1101  /**
1102   * ice_vsi_stop_tx_ring - Disable single Tx ring
1103   * @vsi: the VSI being configured
1104   * @rst_src: reset source
1105   * @rel_vmvf_num: Relative ID of VF/VM
1106   * @ring: Tx ring to be stopped
1107   * @txq_meta: Meta data of Tx ring to be stopped
1108   */
1109  int
1110  ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1111  		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1112  		     struct ice_txq_meta *txq_meta)
1113  {
1114  	struct ice_pf *pf = vsi->back;
1115  	struct ice_q_vector *q_vector;
1116  	struct ice_hw *hw = &pf->hw;
1117  	int status;
1118  	u32 val;
1119  
1120  	/* clear cause_ena bit for disabled queues */
1121  	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1122  	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1123  	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1124  
1125  	/* software is expected to wait for 100 ns */
1126  	ndelay(100);
1127  
1128  	/* trigger a software interrupt for the vector
1129  	 * associated to the queue to schedule NAPI handler
1130  	 */
1131  	q_vector = ring->q_vector;
1132  	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1133  		ice_trigger_sw_intr(hw, q_vector);
1134  
1135  	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1136  				 txq_meta->tc, 1, &txq_meta->q_handle,
1137  				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1138  				 rel_vmvf_num, NULL);
1139  
1140  	/* if the disable queue command was exercised during an
1141  	 * active reset flow, -EBUSY is returned.
1142  	 * This is not an error as the reset operation disables
1143  	 * queues at the hardware level anyway.
1144  	 */
1145  	if (status == -EBUSY) {
1146  		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1147  	} else if (status == -ENOENT) {
1148  		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1149  	} else if (status) {
1150  		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1151  			status);
1152  		return status;
1153  	}
1154  
1155  	return 0;
1156  }
1157  
1158  /**
1159   * ice_fill_txq_meta - Prepare the Tx queue's meta data
1160   * @vsi: VSI that ring belongs to
1161   * @ring: ring that txq_meta will be based on
1162   * @txq_meta: a helper struct that wraps Tx queue's information
1163   *
1164   * Set up a helper struct that will contain all the necessary fields that
1165   * are needed for stopping Tx queue
1166   */
1167  void
1168  ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1169  		  struct ice_txq_meta *txq_meta)
1170  {
1171  	struct ice_channel *ch = ring->ch;
1172  	u8 tc;
1173  
1174  	if (IS_ENABLED(CONFIG_DCB))
1175  		tc = ring->dcb_tc;
1176  	else
1177  		tc = 0;
1178  
1179  	txq_meta->q_id = ring->reg_idx;
1180  	txq_meta->q_teid = ring->txq_teid;
1181  	txq_meta->q_handle = ring->q_handle;
1182  	if (ch) {
1183  		txq_meta->vsi_idx = ch->ch_vsi->idx;
1184  		txq_meta->tc = 0;
1185  	} else {
1186  		txq_meta->vsi_idx = vsi->idx;
1187  		txq_meta->tc = tc;
1188  	}
1189  }
1190