xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 
149 	/* only set affinity_mask if the CPU is online */
150 	if (cpu_online(v_idx))
151 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152 
153 	/* This will not be called in the driver load path because the netdev
154 	 * will not be created yet. All other cases with register the NAPI
155 	 * handler here (i.e. resume, reset/rebuild, etc.)
156 	 */
157 	if (vsi->netdev)
158 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159 
160 out:
161 	/* tie q_vector and VSI together */
162 	vsi->q_vectors[v_idx] = q_vector;
163 
164 	return 0;
165 
166 err_free_q_vector:
167 	kfree(q_vector);
168 
169 	return err;
170 }
171 
172 /**
173  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174  * @vsi: VSI having the memory freed
175  * @v_idx: index of the vector to be freed
176  */
177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178 {
179 	struct ice_q_vector *q_vector;
180 	struct ice_pf *pf = vsi->back;
181 	struct ice_tx_ring *tx_ring;
182 	struct ice_rx_ring *rx_ring;
183 	struct device *dev;
184 
185 	dev = ice_pf_to_dev(pf);
186 	if (!vsi->q_vectors[v_idx]) {
187 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188 		return;
189 	}
190 	q_vector = vsi->q_vectors[v_idx];
191 
192 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
193 		if (vsi->netdev)
194 			netif_queue_set_napi(vsi->netdev, tx_ring->q_index,
195 					     NETDEV_QUEUE_TYPE_TX, NULL);
196 		tx_ring->q_vector = NULL;
197 	}
198 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
199 		if (vsi->netdev)
200 			netif_queue_set_napi(vsi->netdev, rx_ring->q_index,
201 					     NETDEV_QUEUE_TYPE_RX, NULL);
202 		rx_ring->q_vector = NULL;
203 	}
204 
205 	/* only VSI with an associated netdev is set up with NAPI */
206 	if (vsi->netdev)
207 		netif_napi_del(&q_vector->napi);
208 
209 	/* release MSIX interrupt if q_vector had interrupt allocated */
210 	if (q_vector->irq.index < 0)
211 		goto free_q_vector;
212 
213 	/* only free last VF ctrl vsi interrupt */
214 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
215 	    ice_get_vf_ctrl_vsi(pf, vsi))
216 		goto free_q_vector;
217 
218 	ice_free_irq(pf, q_vector->irq);
219 
220 free_q_vector:
221 	kfree(q_vector);
222 	vsi->q_vectors[v_idx] = NULL;
223 }
224 
225 /**
226  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
227  * @hw: board specific structure
228  */
229 static void ice_cfg_itr_gran(struct ice_hw *hw)
230 {
231 	u32 regval = rd32(hw, GLINT_CTL);
232 
233 	/* no need to update global register if ITR gran is already set */
234 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
235 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
236 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
237 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
238 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
239 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
240 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
241 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
242 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
243 		return;
244 
245 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
246 		  GLINT_CTL_ITR_GRAN_200_M) |
247 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
248 		  GLINT_CTL_ITR_GRAN_100_M) |
249 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
250 		  GLINT_CTL_ITR_GRAN_50_M) |
251 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
252 		  GLINT_CTL_ITR_GRAN_25_M);
253 	wr32(hw, GLINT_CTL, regval);
254 }
255 
256 /**
257  * ice_calc_txq_handle - calculate the queue handle
258  * @vsi: VSI that ring belongs to
259  * @ring: ring to get the absolute queue index
260  * @tc: traffic class number
261  */
262 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
263 {
264 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
265 
266 	if (ring->ch)
267 		return ring->q_index - ring->ch->base_q;
268 
269 	/* Idea here for calculation is that we subtract the number of queue
270 	 * count from TC that ring belongs to from it's absolute queue index
271 	 * and as a result we get the queue's index within TC.
272 	 */
273 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
274 }
275 
276 /**
277  * ice_eswitch_calc_txq_handle
278  * @ring: pointer to ring which unique index is needed
279  *
280  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
281  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
282  * here by finding index in vsi->tx_rings of this ring.
283  *
284  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
285  * because VSI is get from ring->vsi, so it has to be present in this VSI.
286  */
287 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
288 {
289 	struct ice_vsi *vsi = ring->vsi;
290 	int i;
291 
292 	ice_for_each_txq(vsi, i) {
293 		if (vsi->tx_rings[i] == ring)
294 			return i;
295 	}
296 
297 	return ICE_INVAL_Q_INDEX;
298 }
299 
300 /**
301  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
302  * @ring: The Tx ring to configure
303  *
304  * This enables/disables XPS for a given Tx descriptor ring
305  * based on the TCs enabled for the VSI that ring belongs to.
306  */
307 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
308 {
309 	if (!ring->q_vector || !ring->netdev)
310 		return;
311 
312 	/* We only initialize XPS once, so as not to overwrite user settings */
313 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
314 		return;
315 
316 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
317 			    ring->q_index);
318 }
319 
320 /**
321  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
322  * @ring: The Tx ring to configure
323  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
324  * @pf_q: queue index in the PF space
325  *
326  * Configure the Tx descriptor ring in TLAN context.
327  */
328 static void
329 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
330 {
331 	struct ice_vsi *vsi = ring->vsi;
332 	struct ice_hw *hw = &vsi->back->hw;
333 
334 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
335 
336 	tlan_ctx->port_num = vsi->port_info->lport;
337 
338 	/* Transmit Queue Length */
339 	tlan_ctx->qlen = ring->count;
340 
341 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
342 
343 	/* PF number */
344 	tlan_ctx->pf_num = hw->pf_id;
345 
346 	/* queue belongs to a specific VSI type
347 	 * VF / VM index should be programmed per vmvf_type setting:
348 	 * for vmvf_type = VF, it is VF number between 0-256
349 	 * for vmvf_type = VM, it is VM number between 0-767
350 	 * for PF or EMP this field should be set to zero
351 	 */
352 	switch (vsi->type) {
353 	case ICE_VSI_LB:
354 	case ICE_VSI_CTRL:
355 	case ICE_VSI_PF:
356 		if (ring->ch)
357 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
358 		else
359 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
360 		break;
361 	case ICE_VSI_VF:
362 		/* Firmware expects vmvf_num to be absolute VF ID */
363 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
364 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
365 		break;
366 	case ICE_VSI_SWITCHDEV_CTRL:
367 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
368 		break;
369 	default:
370 		return;
371 	}
372 
373 	/* make sure the context is associated with the right VSI */
374 	if (ring->ch)
375 		tlan_ctx->src_vsi = ring->ch->vsi_num;
376 	else
377 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
378 
379 	/* Restrict Tx timestamps to the PF VSI */
380 	switch (vsi->type) {
381 	case ICE_VSI_PF:
382 		tlan_ctx->tsyn_ena = 1;
383 		break;
384 	default:
385 		break;
386 	}
387 
388 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
389 	tlan_ctx->tso_qnum = pf_q;
390 
391 	/* Legacy or Advanced Host Interface:
392 	 * 0: Advanced Host Interface
393 	 * 1: Legacy Host Interface
394 	 */
395 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
396 }
397 
398 /**
399  * ice_rx_offset - Return expected offset into page to access data
400  * @rx_ring: Ring we are requesting offset of
401  *
402  * Returns the offset value for ring into the data buffer.
403  */
404 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
405 {
406 	if (ice_ring_uses_build_skb(rx_ring))
407 		return ICE_SKB_PAD;
408 	return 0;
409 }
410 
411 /**
412  * ice_setup_rx_ctx - Configure a receive ring context
413  * @ring: The Rx ring to configure
414  *
415  * Configure the Rx descriptor ring in RLAN context.
416  */
417 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
418 {
419 	struct ice_vsi *vsi = ring->vsi;
420 	u32 rxdid = ICE_RXDID_FLEX_NIC;
421 	struct ice_rlan_ctx rlan_ctx;
422 	struct ice_hw *hw;
423 	u16 pf_q;
424 	int err;
425 
426 	hw = &vsi->back->hw;
427 
428 	/* what is Rx queue number in global space of 2K Rx queues */
429 	pf_q = vsi->rxq_map[ring->q_index];
430 
431 	/* clear the context structure first */
432 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
433 
434 	/* Receive Queue Base Address.
435 	 * Indicates the starting address of the descriptor queue defined in
436 	 * 128 Byte units.
437 	 */
438 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
439 
440 	rlan_ctx.qlen = ring->count;
441 
442 	/* Receive Packet Data Buffer Size.
443 	 * The Packet Data Buffer Size is defined in 128 byte units.
444 	 */
445 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
446 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
447 
448 	/* use 32 byte descriptors */
449 	rlan_ctx.dsize = 1;
450 
451 	/* Strip the Ethernet CRC bytes before the packet is posted to host
452 	 * memory.
453 	 */
454 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
455 
456 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
457 	 * and it needs to remain 1 for non-DVM capable configurations to not
458 	 * break backward compatibility for VF drivers. Setting this field to 0
459 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
460 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
461 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
462 	 * check for the tag
463 	 */
464 	if (ice_is_dvm_ena(hw))
465 		if (vsi->type == ICE_VSI_VF &&
466 		    ice_vf_is_port_vlan_ena(vsi->vf))
467 			rlan_ctx.l2tsel = 1;
468 		else
469 			rlan_ctx.l2tsel = 0;
470 	else
471 		rlan_ctx.l2tsel = 1;
472 
473 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
474 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
475 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
476 
477 	/* This controls whether VLAN is stripped from inner headers
478 	 * The VLAN in the inner L2 header is stripped to the receive
479 	 * descriptor if enabled by this flag.
480 	 */
481 	rlan_ctx.showiv = 0;
482 
483 	/* Max packet size for this queue - must not be set to a larger value
484 	 * than 5 x DBUF
485 	 */
486 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
487 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
488 
489 	/* Rx queue threshold in units of 64 */
490 	rlan_ctx.lrxqthresh = 1;
491 
492 	/* Enable Flexible Descriptors in the queue context which
493 	 * allows this driver to select a specific receive descriptor format
494 	 * increasing context priority to pick up profile ID; default is 0x01;
495 	 * setting to 0x03 to ensure profile is programming if prev context is
496 	 * of same priority
497 	 */
498 	if (vsi->type != ICE_VSI_VF)
499 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
500 	else
501 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
502 					false);
503 
504 	/* Absolute queue number out of 2K needs to be passed */
505 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
506 	if (err) {
507 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
508 			pf_q, err);
509 		return -EIO;
510 	}
511 
512 	if (vsi->type == ICE_VSI_VF)
513 		return 0;
514 
515 	/* configure Rx buffer alignment */
516 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
517 		ice_clear_ring_build_skb_ena(ring);
518 	else
519 		ice_set_ring_build_skb_ena(ring);
520 
521 	ring->rx_offset = ice_rx_offset(ring);
522 
523 	/* init queue specific tail register */
524 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
525 	writel(0, ring->tail);
526 
527 	return 0;
528 }
529 
530 /**
531  * ice_vsi_cfg_rxq - Configure an Rx queue
532  * @ring: the ring being configured
533  *
534  * Return 0 on success and a negative value on error.
535  */
536 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
537 {
538 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
539 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
540 	int err;
541 
542 	ring->rx_buf_len = ring->vsi->rx_buf_len;
543 
544 	if (ring->vsi->type == ICE_VSI_PF) {
545 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
546 			/* coverity[check_return] */
547 			__xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
548 					   ring->q_index,
549 					   ring->q_vector->napi.napi_id,
550 					   ring->vsi->rx_buf_len);
551 
552 		ring->xsk_pool = ice_xsk_pool(ring);
553 		if (ring->xsk_pool) {
554 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
555 
556 			ring->rx_buf_len =
557 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
558 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
559 							 MEM_TYPE_XSK_BUFF_POOL,
560 							 NULL);
561 			if (err)
562 				return err;
563 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
564 
565 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
566 				 ring->q_index);
567 		} else {
568 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
569 				/* coverity[check_return] */
570 				__xdp_rxq_info_reg(&ring->xdp_rxq,
571 						   ring->netdev,
572 						   ring->q_index,
573 						   ring->q_vector->napi.napi_id,
574 						   ring->vsi->rx_buf_len);
575 
576 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
577 							 MEM_TYPE_PAGE_SHARED,
578 							 NULL);
579 			if (err)
580 				return err;
581 		}
582 	}
583 
584 	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
585 	ring->xdp.data = NULL;
586 	err = ice_setup_rx_ctx(ring);
587 	if (err) {
588 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
589 			ring->q_index, err);
590 		return err;
591 	}
592 
593 	if (ring->xsk_pool) {
594 		bool ok;
595 
596 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
597 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
598 				 num_bufs, ring->q_index);
599 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
600 
601 			return 0;
602 		}
603 
604 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
605 		if (!ok) {
606 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
607 
608 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
609 				 ring->q_index, pf_q);
610 		}
611 
612 		return 0;
613 	}
614 
615 	ice_alloc_rx_bufs(ring, num_bufs);
616 
617 	return 0;
618 }
619 
620 /**
621  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
622  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
623  *
624  * This function first tries to find contiguous space. If it is not successful,
625  * it tries with the scatter approach.
626  *
627  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
628  */
629 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
630 {
631 	int ret = 0;
632 
633 	ret = __ice_vsi_get_qs_contig(qs_cfg);
634 	if (ret) {
635 		/* contig failed, so try with scatter approach */
636 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
637 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
638 					qs_cfg->scatter_count);
639 		ret = __ice_vsi_get_qs_sc(qs_cfg);
640 	}
641 	return ret;
642 }
643 
644 /**
645  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
646  * @vsi: the VSI being configured
647  * @ena: start or stop the Rx ring
648  * @rxq_idx: 0-based Rx queue index for the VSI passed in
649  * @wait: wait or don't wait for configuration to finish in hardware
650  *
651  * Return 0 on success and negative on error.
652  */
653 int
654 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
655 {
656 	int pf_q = vsi->rxq_map[rxq_idx];
657 	struct ice_pf *pf = vsi->back;
658 	struct ice_hw *hw = &pf->hw;
659 	u32 rx_reg;
660 
661 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
662 
663 	/* Skip if the queue is already in the requested state */
664 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
665 		return 0;
666 
667 	/* turn on/off the queue */
668 	if (ena)
669 		rx_reg |= QRX_CTRL_QENA_REQ_M;
670 	else
671 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
672 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
673 
674 	if (!wait)
675 		return 0;
676 
677 	ice_flush(hw);
678 	return ice_pf_rxq_wait(pf, pf_q, ena);
679 }
680 
681 /**
682  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
683  * @vsi: the VSI being configured
684  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
685  * @rxq_idx: 0-based Rx queue index for the VSI passed in
686  *
687  * This routine will wait for the given Rx queue of the VSI to reach the
688  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
689  * the requested state after multiple retries; else will return 0 in case of
690  * success.
691  */
692 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
693 {
694 	int pf_q = vsi->rxq_map[rxq_idx];
695 	struct ice_pf *pf = vsi->back;
696 
697 	return ice_pf_rxq_wait(pf, pf_q, ena);
698 }
699 
700 /**
701  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
702  * @vsi: the VSI being configured
703  *
704  * We allocate one q_vector per queue interrupt. If allocation fails we
705  * return -ENOMEM.
706  */
707 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
708 {
709 	struct device *dev = ice_pf_to_dev(vsi->back);
710 	u16 v_idx;
711 	int err;
712 
713 	if (vsi->q_vectors[0]) {
714 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
715 		return -EEXIST;
716 	}
717 
718 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
719 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
720 		if (err)
721 			goto err_out;
722 	}
723 
724 	return 0;
725 
726 err_out:
727 	while (v_idx--)
728 		ice_free_q_vector(vsi, v_idx);
729 
730 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
731 		vsi->num_q_vectors, vsi->vsi_num, err);
732 	vsi->num_q_vectors = 0;
733 	return err;
734 }
735 
736 /**
737  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
738  * @vsi: the VSI being configured
739  *
740  * This function maps descriptor rings to the queue-specific vectors allotted
741  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
742  * and Rx rings to the vector as "efficiently" as possible.
743  */
744 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
745 {
746 	int q_vectors = vsi->num_q_vectors;
747 	u16 tx_rings_rem, rx_rings_rem;
748 	int v_id;
749 
750 	/* initially assigning remaining rings count to VSIs num queue value */
751 	tx_rings_rem = vsi->num_txq;
752 	rx_rings_rem = vsi->num_rxq;
753 
754 	for (v_id = 0; v_id < q_vectors; v_id++) {
755 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
756 		u8 tx_rings_per_v, rx_rings_per_v;
757 		u16 q_id, q_base;
758 
759 		/* Tx rings mapping to vector */
760 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
761 						  q_vectors - v_id);
762 		q_vector->num_ring_tx = tx_rings_per_v;
763 		q_vector->tx.tx_ring = NULL;
764 		q_vector->tx.itr_idx = ICE_TX_ITR;
765 		q_base = vsi->num_txq - tx_rings_rem;
766 
767 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
768 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
769 
770 			tx_ring->q_vector = q_vector;
771 			tx_ring->next = q_vector->tx.tx_ring;
772 			q_vector->tx.tx_ring = tx_ring;
773 		}
774 		tx_rings_rem -= tx_rings_per_v;
775 
776 		/* Rx rings mapping to vector */
777 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
778 						  q_vectors - v_id);
779 		q_vector->num_ring_rx = rx_rings_per_v;
780 		q_vector->rx.rx_ring = NULL;
781 		q_vector->rx.itr_idx = ICE_RX_ITR;
782 		q_base = vsi->num_rxq - rx_rings_rem;
783 
784 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
785 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
786 
787 			rx_ring->q_vector = q_vector;
788 			rx_ring->next = q_vector->rx.rx_ring;
789 			q_vector->rx.rx_ring = rx_ring;
790 		}
791 		rx_rings_rem -= rx_rings_per_v;
792 	}
793 }
794 
795 /**
796  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
797  * @vsi: the VSI having memory freed
798  */
799 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
800 {
801 	int v_idx;
802 
803 	ice_for_each_q_vector(vsi, v_idx)
804 		ice_free_q_vector(vsi, v_idx);
805 
806 	vsi->num_q_vectors = 0;
807 }
808 
809 /**
810  * ice_vsi_cfg_txq - Configure single Tx queue
811  * @vsi: the VSI that queue belongs to
812  * @ring: Tx ring to be configured
813  * @qg_buf: queue group buffer
814  */
815 int
816 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
817 		struct ice_aqc_add_tx_qgrp *qg_buf)
818 {
819 	u8 buf_len = struct_size(qg_buf, txqs, 1);
820 	struct ice_tlan_ctx tlan_ctx = { 0 };
821 	struct ice_aqc_add_txqs_perq *txq;
822 	struct ice_channel *ch = ring->ch;
823 	struct ice_pf *pf = vsi->back;
824 	struct ice_hw *hw = &pf->hw;
825 	int status;
826 	u16 pf_q;
827 	u8 tc;
828 
829 	/* Configure XPS */
830 	ice_cfg_xps_tx_ring(ring);
831 
832 	pf_q = ring->reg_idx;
833 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
834 	/* copy context contents into the qg_buf */
835 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
836 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
837 		    ice_tlan_ctx_info);
838 
839 	/* init queue specific tail reg. It is referred as
840 	 * transmit comm scheduler queue doorbell.
841 	 */
842 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
843 
844 	if (IS_ENABLED(CONFIG_DCB))
845 		tc = ring->dcb_tc;
846 	else
847 		tc = 0;
848 
849 	/* Add unique software queue handle of the Tx queue per
850 	 * TC into the VSI Tx ring
851 	 */
852 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
853 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
854 
855 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
856 			return -ENODEV;
857 	} else {
858 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
859 	}
860 
861 	if (ch)
862 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
863 					 ring->q_handle, 1, qg_buf, buf_len,
864 					 NULL);
865 	else
866 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
867 					 ring->q_handle, 1, qg_buf, buf_len,
868 					 NULL);
869 	if (status) {
870 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
871 			status);
872 		return status;
873 	}
874 
875 	/* Add Tx Queue TEID into the VSI Tx ring from the
876 	 * response. This will complete configuring and
877 	 * enabling the queue.
878 	 */
879 	txq = &qg_buf->txqs[0];
880 	if (pf_q == le16_to_cpu(txq->txq_id))
881 		ring->txq_teid = le32_to_cpu(txq->q_teid);
882 
883 	return 0;
884 }
885 
886 /**
887  * ice_cfg_itr - configure the initial interrupt throttle values
888  * @hw: pointer to the HW structure
889  * @q_vector: interrupt vector that's being configured
890  *
891  * Configure interrupt throttling values for the ring containers that are
892  * associated with the interrupt vector passed in.
893  */
894 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
895 {
896 	ice_cfg_itr_gran(hw);
897 
898 	if (q_vector->num_ring_rx)
899 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
900 
901 	if (q_vector->num_ring_tx)
902 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
903 
904 	ice_write_intrl(q_vector, q_vector->intrl);
905 }
906 
907 /**
908  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
909  * @vsi: the VSI being configured
910  * @txq: Tx queue being mapped to MSI-X vector
911  * @msix_idx: MSI-X vector index within the function
912  * @itr_idx: ITR index of the interrupt cause
913  *
914  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
915  * within the function space.
916  */
917 void
918 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
919 {
920 	struct ice_pf *pf = vsi->back;
921 	struct ice_hw *hw = &pf->hw;
922 	u32 val;
923 
924 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
925 
926 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
927 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
928 
929 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
930 	if (ice_is_xdp_ena_vsi(vsi)) {
931 		u32 xdp_txq = txq + vsi->num_xdp_txq;
932 
933 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
934 		     val);
935 	}
936 	ice_flush(hw);
937 }
938 
939 /**
940  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
941  * @vsi: the VSI being configured
942  * @rxq: Rx queue being mapped to MSI-X vector
943  * @msix_idx: MSI-X vector index within the function
944  * @itr_idx: ITR index of the interrupt cause
945  *
946  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
947  * within the function space.
948  */
949 void
950 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
951 {
952 	struct ice_pf *pf = vsi->back;
953 	struct ice_hw *hw = &pf->hw;
954 	u32 val;
955 
956 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
957 
958 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
959 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
960 
961 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
962 
963 	ice_flush(hw);
964 }
965 
966 /**
967  * ice_trigger_sw_intr - trigger a software interrupt
968  * @hw: pointer to the HW structure
969  * @q_vector: interrupt vector to trigger the software interrupt for
970  */
971 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
972 {
973 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
974 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
975 	     GLINT_DYN_CTL_SWINT_TRIG_M |
976 	     GLINT_DYN_CTL_INTENA_M);
977 }
978 
979 /**
980  * ice_vsi_stop_tx_ring - Disable single Tx ring
981  * @vsi: the VSI being configured
982  * @rst_src: reset source
983  * @rel_vmvf_num: Relative ID of VF/VM
984  * @ring: Tx ring to be stopped
985  * @txq_meta: Meta data of Tx ring to be stopped
986  */
987 int
988 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
989 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
990 		     struct ice_txq_meta *txq_meta)
991 {
992 	struct ice_pf *pf = vsi->back;
993 	struct ice_q_vector *q_vector;
994 	struct ice_hw *hw = &pf->hw;
995 	int status;
996 	u32 val;
997 
998 	/* clear cause_ena bit for disabled queues */
999 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1000 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1001 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1002 
1003 	/* software is expected to wait for 100 ns */
1004 	ndelay(100);
1005 
1006 	/* trigger a software interrupt for the vector
1007 	 * associated to the queue to schedule NAPI handler
1008 	 */
1009 	q_vector = ring->q_vector;
1010 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1011 		ice_trigger_sw_intr(hw, q_vector);
1012 
1013 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1014 				 txq_meta->tc, 1, &txq_meta->q_handle,
1015 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1016 				 rel_vmvf_num, NULL);
1017 
1018 	/* if the disable queue command was exercised during an
1019 	 * active reset flow, -EBUSY is returned.
1020 	 * This is not an error as the reset operation disables
1021 	 * queues at the hardware level anyway.
1022 	 */
1023 	if (status == -EBUSY) {
1024 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1025 	} else if (status == -ENOENT) {
1026 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1027 	} else if (status) {
1028 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1029 			status);
1030 		return status;
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1038  * @vsi: VSI that ring belongs to
1039  * @ring: ring that txq_meta will be based on
1040  * @txq_meta: a helper struct that wraps Tx queue's information
1041  *
1042  * Set up a helper struct that will contain all the necessary fields that
1043  * are needed for stopping Tx queue
1044  */
1045 void
1046 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
1047 		  struct ice_txq_meta *txq_meta)
1048 {
1049 	struct ice_channel *ch = ring->ch;
1050 	u8 tc;
1051 
1052 	if (IS_ENABLED(CONFIG_DCB))
1053 		tc = ring->dcb_tc;
1054 	else
1055 		tc = 0;
1056 
1057 	txq_meta->q_id = ring->reg_idx;
1058 	txq_meta->q_teid = ring->txq_teid;
1059 	txq_meta->q_handle = ring->q_handle;
1060 	if (ch) {
1061 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1062 		txq_meta->tc = 0;
1063 	} else {
1064 		txq_meta->vsi_idx = vsi->idx;
1065 		txq_meta->tc = tc;
1066 	}
1067 }
1068