1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 149 /* only set affinity_mask if the CPU is online */ 150 if (cpu_online(v_idx)) 151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 152 153 /* This will not be called in the driver load path because the netdev 154 * will not be created yet. All other cases with register the NAPI 155 * handler here (i.e. resume, reset/rebuild, etc.) 156 */ 157 if (vsi->netdev) 158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 159 160 out: 161 /* tie q_vector and VSI together */ 162 vsi->q_vectors[v_idx] = q_vector; 163 164 return 0; 165 166 err_free_q_vector: 167 kfree(q_vector); 168 169 return err; 170 } 171 172 /** 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 174 * @vsi: VSI having the memory freed 175 * @v_idx: index of the vector to be freed 176 */ 177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 178 { 179 struct ice_q_vector *q_vector; 180 struct ice_pf *pf = vsi->back; 181 struct ice_tx_ring *tx_ring; 182 struct ice_rx_ring *rx_ring; 183 struct device *dev; 184 185 dev = ice_pf_to_dev(pf); 186 if (!vsi->q_vectors[v_idx]) { 187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 188 return; 189 } 190 q_vector = vsi->q_vectors[v_idx]; 191 192 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 193 if (vsi->netdev) 194 netif_queue_set_napi(vsi->netdev, tx_ring->q_index, 195 NETDEV_QUEUE_TYPE_TX, NULL); 196 tx_ring->q_vector = NULL; 197 } 198 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 199 if (vsi->netdev) 200 netif_queue_set_napi(vsi->netdev, rx_ring->q_index, 201 NETDEV_QUEUE_TYPE_RX, NULL); 202 rx_ring->q_vector = NULL; 203 } 204 205 /* only VSI with an associated netdev is set up with NAPI */ 206 if (vsi->netdev) 207 netif_napi_del(&q_vector->napi); 208 209 /* release MSIX interrupt if q_vector had interrupt allocated */ 210 if (q_vector->irq.index < 0) 211 goto free_q_vector; 212 213 /* only free last VF ctrl vsi interrupt */ 214 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 215 ice_get_vf_ctrl_vsi(pf, vsi)) 216 goto free_q_vector; 217 218 ice_free_irq(pf, q_vector->irq); 219 220 free_q_vector: 221 kfree(q_vector); 222 vsi->q_vectors[v_idx] = NULL; 223 } 224 225 /** 226 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 227 * @hw: board specific structure 228 */ 229 static void ice_cfg_itr_gran(struct ice_hw *hw) 230 { 231 u32 regval = rd32(hw, GLINT_CTL); 232 233 /* no need to update global register if ITR gran is already set */ 234 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 235 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 236 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 237 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 238 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 239 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 240 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 241 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 242 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 243 return; 244 245 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 246 GLINT_CTL_ITR_GRAN_200_M) | 247 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 248 GLINT_CTL_ITR_GRAN_100_M) | 249 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 250 GLINT_CTL_ITR_GRAN_50_M) | 251 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 252 GLINT_CTL_ITR_GRAN_25_M); 253 wr32(hw, GLINT_CTL, regval); 254 } 255 256 /** 257 * ice_calc_txq_handle - calculate the queue handle 258 * @vsi: VSI that ring belongs to 259 * @ring: ring to get the absolute queue index 260 * @tc: traffic class number 261 */ 262 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 263 { 264 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 265 266 if (ring->ch) 267 return ring->q_index - ring->ch->base_q; 268 269 /* Idea here for calculation is that we subtract the number of queue 270 * count from TC that ring belongs to from it's absolute queue index 271 * and as a result we get the queue's index within TC. 272 */ 273 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 274 } 275 276 /** 277 * ice_eswitch_calc_txq_handle 278 * @ring: pointer to ring which unique index is needed 279 * 280 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 281 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 282 * here by finding index in vsi->tx_rings of this ring. 283 * 284 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 285 * because VSI is get from ring->vsi, so it has to be present in this VSI. 286 */ 287 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) 288 { 289 struct ice_vsi *vsi = ring->vsi; 290 int i; 291 292 ice_for_each_txq(vsi, i) { 293 if (vsi->tx_rings[i] == ring) 294 return i; 295 } 296 297 return ICE_INVAL_Q_INDEX; 298 } 299 300 /** 301 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 302 * @ring: The Tx ring to configure 303 * 304 * This enables/disables XPS for a given Tx descriptor ring 305 * based on the TCs enabled for the VSI that ring belongs to. 306 */ 307 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 308 { 309 if (!ring->q_vector || !ring->netdev) 310 return; 311 312 /* We only initialize XPS once, so as not to overwrite user settings */ 313 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 314 return; 315 316 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 317 ring->q_index); 318 } 319 320 /** 321 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 322 * @ring: The Tx ring to configure 323 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 324 * @pf_q: queue index in the PF space 325 * 326 * Configure the Tx descriptor ring in TLAN context. 327 */ 328 static void 329 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 330 { 331 struct ice_vsi *vsi = ring->vsi; 332 struct ice_hw *hw = &vsi->back->hw; 333 334 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 335 336 tlan_ctx->port_num = vsi->port_info->lport; 337 338 /* Transmit Queue Length */ 339 tlan_ctx->qlen = ring->count; 340 341 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 342 343 /* PF number */ 344 tlan_ctx->pf_num = hw->pf_id; 345 346 /* queue belongs to a specific VSI type 347 * VF / VM index should be programmed per vmvf_type setting: 348 * for vmvf_type = VF, it is VF number between 0-256 349 * for vmvf_type = VM, it is VM number between 0-767 350 * for PF or EMP this field should be set to zero 351 */ 352 switch (vsi->type) { 353 case ICE_VSI_LB: 354 case ICE_VSI_CTRL: 355 case ICE_VSI_PF: 356 if (ring->ch) 357 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 358 else 359 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 360 break; 361 case ICE_VSI_VF: 362 /* Firmware expects vmvf_num to be absolute VF ID */ 363 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 364 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 365 break; 366 case ICE_VSI_SWITCHDEV_CTRL: 367 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 368 break; 369 default: 370 return; 371 } 372 373 /* make sure the context is associated with the right VSI */ 374 if (ring->ch) 375 tlan_ctx->src_vsi = ring->ch->vsi_num; 376 else 377 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 378 379 /* Restrict Tx timestamps to the PF VSI */ 380 switch (vsi->type) { 381 case ICE_VSI_PF: 382 tlan_ctx->tsyn_ena = 1; 383 break; 384 default: 385 break; 386 } 387 388 tlan_ctx->tso_ena = ICE_TX_LEGACY; 389 tlan_ctx->tso_qnum = pf_q; 390 391 /* Legacy or Advanced Host Interface: 392 * 0: Advanced Host Interface 393 * 1: Legacy Host Interface 394 */ 395 tlan_ctx->legacy_int = ICE_TX_LEGACY; 396 } 397 398 /** 399 * ice_rx_offset - Return expected offset into page to access data 400 * @rx_ring: Ring we are requesting offset of 401 * 402 * Returns the offset value for ring into the data buffer. 403 */ 404 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 405 { 406 if (ice_ring_uses_build_skb(rx_ring)) 407 return ICE_SKB_PAD; 408 return 0; 409 } 410 411 /** 412 * ice_setup_rx_ctx - Configure a receive ring context 413 * @ring: The Rx ring to configure 414 * 415 * Configure the Rx descriptor ring in RLAN context. 416 */ 417 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 418 { 419 struct ice_vsi *vsi = ring->vsi; 420 u32 rxdid = ICE_RXDID_FLEX_NIC; 421 struct ice_rlan_ctx rlan_ctx; 422 struct ice_hw *hw; 423 u16 pf_q; 424 int err; 425 426 hw = &vsi->back->hw; 427 428 /* what is Rx queue number in global space of 2K Rx queues */ 429 pf_q = vsi->rxq_map[ring->q_index]; 430 431 /* clear the context structure first */ 432 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 433 434 /* Receive Queue Base Address. 435 * Indicates the starting address of the descriptor queue defined in 436 * 128 Byte units. 437 */ 438 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 439 440 rlan_ctx.qlen = ring->count; 441 442 /* Receive Packet Data Buffer Size. 443 * The Packet Data Buffer Size is defined in 128 byte units. 444 */ 445 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 446 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 447 448 /* use 32 byte descriptors */ 449 rlan_ctx.dsize = 1; 450 451 /* Strip the Ethernet CRC bytes before the packet is posted to host 452 * memory. 453 */ 454 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 455 456 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 457 * and it needs to remain 1 for non-DVM capable configurations to not 458 * break backward compatibility for VF drivers. Setting this field to 0 459 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 460 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 461 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 462 * check for the tag 463 */ 464 if (ice_is_dvm_ena(hw)) 465 if (vsi->type == ICE_VSI_VF && 466 ice_vf_is_port_vlan_ena(vsi->vf)) 467 rlan_ctx.l2tsel = 1; 468 else 469 rlan_ctx.l2tsel = 0; 470 else 471 rlan_ctx.l2tsel = 1; 472 473 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 474 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 475 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 476 477 /* This controls whether VLAN is stripped from inner headers 478 * The VLAN in the inner L2 header is stripped to the receive 479 * descriptor if enabled by this flag. 480 */ 481 rlan_ctx.showiv = 0; 482 483 /* Max packet size for this queue - must not be set to a larger value 484 * than 5 x DBUF 485 */ 486 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 487 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 488 489 /* Rx queue threshold in units of 64 */ 490 rlan_ctx.lrxqthresh = 1; 491 492 /* Enable Flexible Descriptors in the queue context which 493 * allows this driver to select a specific receive descriptor format 494 * increasing context priority to pick up profile ID; default is 0x01; 495 * setting to 0x03 to ensure profile is programming if prev context is 496 * of same priority 497 */ 498 if (vsi->type != ICE_VSI_VF) 499 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 500 else 501 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 502 false); 503 504 /* Absolute queue number out of 2K needs to be passed */ 505 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 506 if (err) { 507 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 508 pf_q, err); 509 return -EIO; 510 } 511 512 if (vsi->type == ICE_VSI_VF) 513 return 0; 514 515 /* configure Rx buffer alignment */ 516 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 517 ice_clear_ring_build_skb_ena(ring); 518 else 519 ice_set_ring_build_skb_ena(ring); 520 521 ring->rx_offset = ice_rx_offset(ring); 522 523 /* init queue specific tail register */ 524 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 525 writel(0, ring->tail); 526 527 return 0; 528 } 529 530 /** 531 * ice_vsi_cfg_rxq - Configure an Rx queue 532 * @ring: the ring being configured 533 * 534 * Return 0 on success and a negative value on error. 535 */ 536 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 537 { 538 struct device *dev = ice_pf_to_dev(ring->vsi->back); 539 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 540 int err; 541 542 ring->rx_buf_len = ring->vsi->rx_buf_len; 543 544 if (ring->vsi->type == ICE_VSI_PF) { 545 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 546 /* coverity[check_return] */ 547 __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 548 ring->q_index, 549 ring->q_vector->napi.napi_id, 550 ring->vsi->rx_buf_len); 551 552 ring->xsk_pool = ice_xsk_pool(ring); 553 if (ring->xsk_pool) { 554 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 555 556 ring->rx_buf_len = 557 xsk_pool_get_rx_frame_size(ring->xsk_pool); 558 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 559 MEM_TYPE_XSK_BUFF_POOL, 560 NULL); 561 if (err) 562 return err; 563 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 564 565 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 566 ring->q_index); 567 } else { 568 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 569 /* coverity[check_return] */ 570 __xdp_rxq_info_reg(&ring->xdp_rxq, 571 ring->netdev, 572 ring->q_index, 573 ring->q_vector->napi.napi_id, 574 ring->vsi->rx_buf_len); 575 576 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 577 MEM_TYPE_PAGE_SHARED, 578 NULL); 579 if (err) 580 return err; 581 } 582 } 583 584 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); 585 ring->xdp.data = NULL; 586 err = ice_setup_rx_ctx(ring); 587 if (err) { 588 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 589 ring->q_index, err); 590 return err; 591 } 592 593 if (ring->xsk_pool) { 594 bool ok; 595 596 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 597 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 598 num_bufs, ring->q_index); 599 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 600 601 return 0; 602 } 603 604 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 605 if (!ok) { 606 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 607 608 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 609 ring->q_index, pf_q); 610 } 611 612 return 0; 613 } 614 615 ice_alloc_rx_bufs(ring, num_bufs); 616 617 return 0; 618 } 619 620 /** 621 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 622 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 623 * 624 * This function first tries to find contiguous space. If it is not successful, 625 * it tries with the scatter approach. 626 * 627 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 628 */ 629 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 630 { 631 int ret = 0; 632 633 ret = __ice_vsi_get_qs_contig(qs_cfg); 634 if (ret) { 635 /* contig failed, so try with scatter approach */ 636 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 637 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 638 qs_cfg->scatter_count); 639 ret = __ice_vsi_get_qs_sc(qs_cfg); 640 } 641 return ret; 642 } 643 644 /** 645 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 646 * @vsi: the VSI being configured 647 * @ena: start or stop the Rx ring 648 * @rxq_idx: 0-based Rx queue index for the VSI passed in 649 * @wait: wait or don't wait for configuration to finish in hardware 650 * 651 * Return 0 on success and negative on error. 652 */ 653 int 654 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 655 { 656 int pf_q = vsi->rxq_map[rxq_idx]; 657 struct ice_pf *pf = vsi->back; 658 struct ice_hw *hw = &pf->hw; 659 u32 rx_reg; 660 661 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 662 663 /* Skip if the queue is already in the requested state */ 664 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 665 return 0; 666 667 /* turn on/off the queue */ 668 if (ena) 669 rx_reg |= QRX_CTRL_QENA_REQ_M; 670 else 671 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 672 wr32(hw, QRX_CTRL(pf_q), rx_reg); 673 674 if (!wait) 675 return 0; 676 677 ice_flush(hw); 678 return ice_pf_rxq_wait(pf, pf_q, ena); 679 } 680 681 /** 682 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 683 * @vsi: the VSI being configured 684 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 685 * @rxq_idx: 0-based Rx queue index for the VSI passed in 686 * 687 * This routine will wait for the given Rx queue of the VSI to reach the 688 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 689 * the requested state after multiple retries; else will return 0 in case of 690 * success. 691 */ 692 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 693 { 694 int pf_q = vsi->rxq_map[rxq_idx]; 695 struct ice_pf *pf = vsi->back; 696 697 return ice_pf_rxq_wait(pf, pf_q, ena); 698 } 699 700 /** 701 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 702 * @vsi: the VSI being configured 703 * 704 * We allocate one q_vector per queue interrupt. If allocation fails we 705 * return -ENOMEM. 706 */ 707 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 708 { 709 struct device *dev = ice_pf_to_dev(vsi->back); 710 u16 v_idx; 711 int err; 712 713 if (vsi->q_vectors[0]) { 714 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 715 return -EEXIST; 716 } 717 718 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 719 err = ice_vsi_alloc_q_vector(vsi, v_idx); 720 if (err) 721 goto err_out; 722 } 723 724 return 0; 725 726 err_out: 727 while (v_idx--) 728 ice_free_q_vector(vsi, v_idx); 729 730 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 731 vsi->num_q_vectors, vsi->vsi_num, err); 732 vsi->num_q_vectors = 0; 733 return err; 734 } 735 736 /** 737 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 738 * @vsi: the VSI being configured 739 * 740 * This function maps descriptor rings to the queue-specific vectors allotted 741 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 742 * and Rx rings to the vector as "efficiently" as possible. 743 */ 744 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 745 { 746 int q_vectors = vsi->num_q_vectors; 747 u16 tx_rings_rem, rx_rings_rem; 748 int v_id; 749 750 /* initially assigning remaining rings count to VSIs num queue value */ 751 tx_rings_rem = vsi->num_txq; 752 rx_rings_rem = vsi->num_rxq; 753 754 for (v_id = 0; v_id < q_vectors; v_id++) { 755 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 756 u8 tx_rings_per_v, rx_rings_per_v; 757 u16 q_id, q_base; 758 759 /* Tx rings mapping to vector */ 760 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 761 q_vectors - v_id); 762 q_vector->num_ring_tx = tx_rings_per_v; 763 q_vector->tx.tx_ring = NULL; 764 q_vector->tx.itr_idx = ICE_TX_ITR; 765 q_base = vsi->num_txq - tx_rings_rem; 766 767 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 768 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 769 770 tx_ring->q_vector = q_vector; 771 tx_ring->next = q_vector->tx.tx_ring; 772 q_vector->tx.tx_ring = tx_ring; 773 } 774 tx_rings_rem -= tx_rings_per_v; 775 776 /* Rx rings mapping to vector */ 777 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 778 q_vectors - v_id); 779 q_vector->num_ring_rx = rx_rings_per_v; 780 q_vector->rx.rx_ring = NULL; 781 q_vector->rx.itr_idx = ICE_RX_ITR; 782 q_base = vsi->num_rxq - rx_rings_rem; 783 784 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 785 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 786 787 rx_ring->q_vector = q_vector; 788 rx_ring->next = q_vector->rx.rx_ring; 789 q_vector->rx.rx_ring = rx_ring; 790 } 791 rx_rings_rem -= rx_rings_per_v; 792 } 793 } 794 795 /** 796 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 797 * @vsi: the VSI having memory freed 798 */ 799 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 800 { 801 int v_idx; 802 803 ice_for_each_q_vector(vsi, v_idx) 804 ice_free_q_vector(vsi, v_idx); 805 806 vsi->num_q_vectors = 0; 807 } 808 809 /** 810 * ice_vsi_cfg_txq - Configure single Tx queue 811 * @vsi: the VSI that queue belongs to 812 * @ring: Tx ring to be configured 813 * @qg_buf: queue group buffer 814 */ 815 int 816 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 817 struct ice_aqc_add_tx_qgrp *qg_buf) 818 { 819 u8 buf_len = struct_size(qg_buf, txqs, 1); 820 struct ice_tlan_ctx tlan_ctx = { 0 }; 821 struct ice_aqc_add_txqs_perq *txq; 822 struct ice_channel *ch = ring->ch; 823 struct ice_pf *pf = vsi->back; 824 struct ice_hw *hw = &pf->hw; 825 int status; 826 u16 pf_q; 827 u8 tc; 828 829 /* Configure XPS */ 830 ice_cfg_xps_tx_ring(ring); 831 832 pf_q = ring->reg_idx; 833 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 834 /* copy context contents into the qg_buf */ 835 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 836 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 837 ice_tlan_ctx_info); 838 839 /* init queue specific tail reg. It is referred as 840 * transmit comm scheduler queue doorbell. 841 */ 842 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 843 844 if (IS_ENABLED(CONFIG_DCB)) 845 tc = ring->dcb_tc; 846 else 847 tc = 0; 848 849 /* Add unique software queue handle of the Tx queue per 850 * TC into the VSI Tx ring 851 */ 852 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 853 ring->q_handle = ice_eswitch_calc_txq_handle(ring); 854 855 if (ring->q_handle == ICE_INVAL_Q_INDEX) 856 return -ENODEV; 857 } else { 858 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 859 } 860 861 if (ch) 862 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 863 ring->q_handle, 1, qg_buf, buf_len, 864 NULL); 865 else 866 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 867 ring->q_handle, 1, qg_buf, buf_len, 868 NULL); 869 if (status) { 870 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 871 status); 872 return status; 873 } 874 875 /* Add Tx Queue TEID into the VSI Tx ring from the 876 * response. This will complete configuring and 877 * enabling the queue. 878 */ 879 txq = &qg_buf->txqs[0]; 880 if (pf_q == le16_to_cpu(txq->txq_id)) 881 ring->txq_teid = le32_to_cpu(txq->q_teid); 882 883 return 0; 884 } 885 886 /** 887 * ice_cfg_itr - configure the initial interrupt throttle values 888 * @hw: pointer to the HW structure 889 * @q_vector: interrupt vector that's being configured 890 * 891 * Configure interrupt throttling values for the ring containers that are 892 * associated with the interrupt vector passed in. 893 */ 894 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 895 { 896 ice_cfg_itr_gran(hw); 897 898 if (q_vector->num_ring_rx) 899 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 900 901 if (q_vector->num_ring_tx) 902 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 903 904 ice_write_intrl(q_vector, q_vector->intrl); 905 } 906 907 /** 908 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 909 * @vsi: the VSI being configured 910 * @txq: Tx queue being mapped to MSI-X vector 911 * @msix_idx: MSI-X vector index within the function 912 * @itr_idx: ITR index of the interrupt cause 913 * 914 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 915 * within the function space. 916 */ 917 void 918 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 919 { 920 struct ice_pf *pf = vsi->back; 921 struct ice_hw *hw = &pf->hw; 922 u32 val; 923 924 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 925 926 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 927 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 928 929 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 930 if (ice_is_xdp_ena_vsi(vsi)) { 931 u32 xdp_txq = txq + vsi->num_xdp_txq; 932 933 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 934 val); 935 } 936 ice_flush(hw); 937 } 938 939 /** 940 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 941 * @vsi: the VSI being configured 942 * @rxq: Rx queue being mapped to MSI-X vector 943 * @msix_idx: MSI-X vector index within the function 944 * @itr_idx: ITR index of the interrupt cause 945 * 946 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 947 * within the function space. 948 */ 949 void 950 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 951 { 952 struct ice_pf *pf = vsi->back; 953 struct ice_hw *hw = &pf->hw; 954 u32 val; 955 956 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 957 958 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 959 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 960 961 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 962 963 ice_flush(hw); 964 } 965 966 /** 967 * ice_trigger_sw_intr - trigger a software interrupt 968 * @hw: pointer to the HW structure 969 * @q_vector: interrupt vector to trigger the software interrupt for 970 */ 971 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 972 { 973 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 974 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 975 GLINT_DYN_CTL_SWINT_TRIG_M | 976 GLINT_DYN_CTL_INTENA_M); 977 } 978 979 /** 980 * ice_vsi_stop_tx_ring - Disable single Tx ring 981 * @vsi: the VSI being configured 982 * @rst_src: reset source 983 * @rel_vmvf_num: Relative ID of VF/VM 984 * @ring: Tx ring to be stopped 985 * @txq_meta: Meta data of Tx ring to be stopped 986 */ 987 int 988 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 989 u16 rel_vmvf_num, struct ice_tx_ring *ring, 990 struct ice_txq_meta *txq_meta) 991 { 992 struct ice_pf *pf = vsi->back; 993 struct ice_q_vector *q_vector; 994 struct ice_hw *hw = &pf->hw; 995 int status; 996 u32 val; 997 998 /* clear cause_ena bit for disabled queues */ 999 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1000 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1001 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1002 1003 /* software is expected to wait for 100 ns */ 1004 ndelay(100); 1005 1006 /* trigger a software interrupt for the vector 1007 * associated to the queue to schedule NAPI handler 1008 */ 1009 q_vector = ring->q_vector; 1010 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1011 ice_trigger_sw_intr(hw, q_vector); 1012 1013 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1014 txq_meta->tc, 1, &txq_meta->q_handle, 1015 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1016 rel_vmvf_num, NULL); 1017 1018 /* if the disable queue command was exercised during an 1019 * active reset flow, -EBUSY is returned. 1020 * This is not an error as the reset operation disables 1021 * queues at the hardware level anyway. 1022 */ 1023 if (status == -EBUSY) { 1024 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1025 } else if (status == -ENOENT) { 1026 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1027 } else if (status) { 1028 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1029 status); 1030 return status; 1031 } 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1038 * @vsi: VSI that ring belongs to 1039 * @ring: ring that txq_meta will be based on 1040 * @txq_meta: a helper struct that wraps Tx queue's information 1041 * 1042 * Set up a helper struct that will contain all the necessary fields that 1043 * are needed for stopping Tx queue 1044 */ 1045 void 1046 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, 1047 struct ice_txq_meta *txq_meta) 1048 { 1049 struct ice_channel *ch = ring->ch; 1050 u8 tc; 1051 1052 if (IS_ENABLED(CONFIG_DCB)) 1053 tc = ring->dcb_tc; 1054 else 1055 tc = 0; 1056 1057 txq_meta->q_id = ring->reg_idx; 1058 txq_meta->q_teid = ring->txq_teid; 1059 txq_meta->q_handle = ring->q_handle; 1060 if (ch) { 1061 txq_meta->vsi_idx = ch->ch_vsi->idx; 1062 txq_meta->tc = 0; 1063 } else { 1064 txq_meta->vsi_idx = vsi->idx; 1065 txq_meta->tc = tc; 1066 } 1067 } 1068