1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 107 /* allocate q_vector */ 108 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), 109 GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 122 if (vsi->type == ICE_VSI_VF) 123 goto out; 124 /* only set affinity_mask if the CPU is online */ 125 if (cpu_online(v_idx)) 126 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 127 128 /* This will not be called in the driver load path because the netdev 129 * will not be created yet. All other cases with register the NAPI 130 * handler here (i.e. resume, reset/rebuild, etc.) 131 */ 132 if (vsi->netdev) 133 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 134 NAPI_POLL_WEIGHT); 135 136 out: 137 /* tie q_vector and VSI together */ 138 vsi->q_vectors[v_idx] = q_vector; 139 140 return 0; 141 } 142 143 /** 144 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 145 * @vsi: VSI having the memory freed 146 * @v_idx: index of the vector to be freed 147 */ 148 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 149 { 150 struct ice_q_vector *q_vector; 151 struct ice_pf *pf = vsi->back; 152 struct ice_tx_ring *tx_ring; 153 struct ice_rx_ring *rx_ring; 154 struct device *dev; 155 156 dev = ice_pf_to_dev(pf); 157 if (!vsi->q_vectors[v_idx]) { 158 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 159 return; 160 } 161 q_vector = vsi->q_vectors[v_idx]; 162 163 ice_for_each_tx_ring(tx_ring, q_vector->tx) 164 tx_ring->q_vector = NULL; 165 ice_for_each_rx_ring(rx_ring, q_vector->rx) 166 rx_ring->q_vector = NULL; 167 168 /* only VSI with an associated netdev is set up with NAPI */ 169 if (vsi->netdev) 170 netif_napi_del(&q_vector->napi); 171 172 devm_kfree(dev, q_vector); 173 vsi->q_vectors[v_idx] = NULL; 174 } 175 176 /** 177 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 178 * @hw: board specific structure 179 */ 180 static void ice_cfg_itr_gran(struct ice_hw *hw) 181 { 182 u32 regval = rd32(hw, GLINT_CTL); 183 184 /* no need to update global register if ITR gran is already set */ 185 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 186 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 187 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 188 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 189 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 190 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 191 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 192 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 193 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 194 return; 195 196 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 197 GLINT_CTL_ITR_GRAN_200_M) | 198 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 199 GLINT_CTL_ITR_GRAN_100_M) | 200 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 201 GLINT_CTL_ITR_GRAN_50_M) | 202 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 203 GLINT_CTL_ITR_GRAN_25_M); 204 wr32(hw, GLINT_CTL, regval); 205 } 206 207 /** 208 * ice_calc_txq_handle - calculate the queue handle 209 * @vsi: VSI that ring belongs to 210 * @ring: ring to get the absolute queue index 211 * @tc: traffic class number 212 */ 213 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 214 { 215 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 216 217 if (ring->ch) 218 return ring->q_index - ring->ch->base_q; 219 220 /* Idea here for calculation is that we subtract the number of queue 221 * count from TC that ring belongs to from it's absolute queue index 222 * and as a result we get the queue's index within TC. 223 */ 224 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 225 } 226 227 /** 228 * ice_eswitch_calc_txq_handle 229 * @ring: pointer to ring which unique index is needed 230 * 231 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 232 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 233 * here by finding index in vsi->tx_rings of this ring. 234 * 235 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 236 * because VSI is get from ring->vsi, so it has to be present in this VSI. 237 */ 238 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) 239 { 240 struct ice_vsi *vsi = ring->vsi; 241 int i; 242 243 ice_for_each_txq(vsi, i) { 244 if (vsi->tx_rings[i] == ring) 245 return i; 246 } 247 248 return ICE_INVAL_Q_INDEX; 249 } 250 251 /** 252 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 253 * @ring: The Tx ring to configure 254 * 255 * This enables/disables XPS for a given Tx descriptor ring 256 * based on the TCs enabled for the VSI that ring belongs to. 257 */ 258 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 259 { 260 if (!ring->q_vector || !ring->netdev) 261 return; 262 263 /* We only initialize XPS once, so as not to overwrite user settings */ 264 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 265 return; 266 267 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 268 ring->q_index); 269 } 270 271 /** 272 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 273 * @ring: The Tx ring to configure 274 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 275 * @pf_q: queue index in the PF space 276 * 277 * Configure the Tx descriptor ring in TLAN context. 278 */ 279 static void 280 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 281 { 282 struct ice_vsi *vsi = ring->vsi; 283 struct ice_hw *hw = &vsi->back->hw; 284 285 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 286 287 tlan_ctx->port_num = vsi->port_info->lport; 288 289 /* Transmit Queue Length */ 290 tlan_ctx->qlen = ring->count; 291 292 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 293 294 /* PF number */ 295 tlan_ctx->pf_num = hw->pf_id; 296 297 /* queue belongs to a specific VSI type 298 * VF / VM index should be programmed per vmvf_type setting: 299 * for vmvf_type = VF, it is VF number between 0-256 300 * for vmvf_type = VM, it is VM number between 0-767 301 * for PF or EMP this field should be set to zero 302 */ 303 switch (vsi->type) { 304 case ICE_VSI_LB: 305 case ICE_VSI_CTRL: 306 case ICE_VSI_PF: 307 if (ring->ch) 308 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 309 else 310 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 311 break; 312 case ICE_VSI_VF: 313 /* Firmware expects vmvf_num to be absolute VF ID */ 314 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 315 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 316 break; 317 case ICE_VSI_SWITCHDEV_CTRL: 318 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 319 break; 320 default: 321 return; 322 } 323 324 /* make sure the context is associated with the right VSI */ 325 if (ring->ch) 326 tlan_ctx->src_vsi = ring->ch->vsi_num; 327 else 328 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 329 330 /* Restrict Tx timestamps to the PF VSI */ 331 switch (vsi->type) { 332 case ICE_VSI_PF: 333 tlan_ctx->tsyn_ena = 1; 334 break; 335 default: 336 break; 337 } 338 339 tlan_ctx->tso_ena = ICE_TX_LEGACY; 340 tlan_ctx->tso_qnum = pf_q; 341 342 /* Legacy or Advanced Host Interface: 343 * 0: Advanced Host Interface 344 * 1: Legacy Host Interface 345 */ 346 tlan_ctx->legacy_int = ICE_TX_LEGACY; 347 } 348 349 /** 350 * ice_rx_offset - Return expected offset into page to access data 351 * @rx_ring: Ring we are requesting offset of 352 * 353 * Returns the offset value for ring into the data buffer. 354 */ 355 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 356 { 357 if (ice_ring_uses_build_skb(rx_ring)) 358 return ICE_SKB_PAD; 359 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 360 return XDP_PACKET_HEADROOM; 361 362 return 0; 363 } 364 365 /** 366 * ice_setup_rx_ctx - Configure a receive ring context 367 * @ring: The Rx ring to configure 368 * 369 * Configure the Rx descriptor ring in RLAN context. 370 */ 371 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 372 { 373 int chain_len = ICE_MAX_CHAINED_RX_BUFS; 374 struct ice_vsi *vsi = ring->vsi; 375 u32 rxdid = ICE_RXDID_FLEX_NIC; 376 struct ice_rlan_ctx rlan_ctx; 377 struct ice_hw *hw; 378 u16 pf_q; 379 int err; 380 381 hw = &vsi->back->hw; 382 383 /* what is Rx queue number in global space of 2K Rx queues */ 384 pf_q = vsi->rxq_map[ring->q_index]; 385 386 /* clear the context structure first */ 387 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 388 389 /* Receive Queue Base Address. 390 * Indicates the starting address of the descriptor queue defined in 391 * 128 Byte units. 392 */ 393 rlan_ctx.base = ring->dma >> 7; 394 395 rlan_ctx.qlen = ring->count; 396 397 /* Receive Packet Data Buffer Size. 398 * The Packet Data Buffer Size is defined in 128 byte units. 399 */ 400 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 401 402 /* use 32 byte descriptors */ 403 rlan_ctx.dsize = 1; 404 405 /* Strip the Ethernet CRC bytes before the packet is posted to host 406 * memory. 407 */ 408 rlan_ctx.crcstrip = 1; 409 410 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 411 * and it needs to remain 1 for non-DVM capable configurations to not 412 * break backward compatibility for VF drivers. Setting this field to 0 413 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 414 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 415 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 416 * check for the tag 417 */ 418 if (ice_is_dvm_ena(hw)) 419 if (vsi->type == ICE_VSI_VF && 420 ice_vf_is_port_vlan_ena(vsi->vf)) 421 rlan_ctx.l2tsel = 1; 422 else 423 rlan_ctx.l2tsel = 0; 424 else 425 rlan_ctx.l2tsel = 1; 426 427 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 428 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 429 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 430 431 /* This controls whether VLAN is stripped from inner headers 432 * The VLAN in the inner L2 header is stripped to the receive 433 * descriptor if enabled by this flag. 434 */ 435 rlan_ctx.showiv = 0; 436 437 /* For AF_XDP ZC, we disallow packets to span on 438 * multiple buffers, thus letting us skip that 439 * handling in the fast-path. 440 */ 441 if (ring->xsk_pool) 442 chain_len = 1; 443 /* Max packet size for this queue - must not be set to a larger value 444 * than 5 x DBUF 445 */ 446 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 447 chain_len * ring->rx_buf_len); 448 449 /* Rx queue threshold in units of 64 */ 450 rlan_ctx.lrxqthresh = 1; 451 452 /* Enable Flexible Descriptors in the queue context which 453 * allows this driver to select a specific receive descriptor format 454 * increasing context priority to pick up profile ID; default is 0x01; 455 * setting to 0x03 to ensure profile is programming if prev context is 456 * of same priority 457 */ 458 if (vsi->type != ICE_VSI_VF) 459 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 460 else 461 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 462 false); 463 464 /* Absolute queue number out of 2K needs to be passed */ 465 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 466 if (err) { 467 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 468 pf_q, err); 469 return -EIO; 470 } 471 472 if (vsi->type == ICE_VSI_VF) 473 return 0; 474 475 /* configure Rx buffer alignment */ 476 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 477 ice_clear_ring_build_skb_ena(ring); 478 else 479 ice_set_ring_build_skb_ena(ring); 480 481 ring->rx_offset = ice_rx_offset(ring); 482 483 /* init queue specific tail register */ 484 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 485 writel(0, ring->tail); 486 487 return 0; 488 } 489 490 /** 491 * ice_vsi_cfg_rxq - Configure an Rx queue 492 * @ring: the ring being configured 493 * 494 * Return 0 on success and a negative value on error. 495 */ 496 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 497 { 498 struct device *dev = ice_pf_to_dev(ring->vsi->back); 499 u16 num_bufs = ICE_DESC_UNUSED(ring); 500 int err; 501 502 ring->rx_buf_len = ring->vsi->rx_buf_len; 503 504 if (ring->vsi->type == ICE_VSI_PF) { 505 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 506 /* coverity[check_return] */ 507 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 508 ring->q_index, ring->q_vector->napi.napi_id); 509 510 ring->xsk_pool = ice_xsk_pool(ring); 511 if (ring->xsk_pool) { 512 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 513 514 ring->rx_buf_len = 515 xsk_pool_get_rx_frame_size(ring->xsk_pool); 516 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 517 MEM_TYPE_XSK_BUFF_POOL, 518 NULL); 519 if (err) 520 return err; 521 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 522 523 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 524 ring->q_index); 525 } else { 526 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 527 /* coverity[check_return] */ 528 xdp_rxq_info_reg(&ring->xdp_rxq, 529 ring->netdev, 530 ring->q_index, ring->q_vector->napi.napi_id); 531 532 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 533 MEM_TYPE_PAGE_SHARED, 534 NULL); 535 if (err) 536 return err; 537 } 538 } 539 540 err = ice_setup_rx_ctx(ring); 541 if (err) { 542 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 543 ring->q_index, err); 544 return err; 545 } 546 547 if (ring->xsk_pool) { 548 bool ok; 549 550 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 551 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 552 num_bufs, ring->q_index); 553 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 554 555 return 0; 556 } 557 558 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 559 if (!ok) { 560 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 561 562 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 563 ring->q_index, pf_q); 564 } 565 566 return 0; 567 } 568 569 ice_alloc_rx_bufs(ring, num_bufs); 570 571 return 0; 572 } 573 574 /** 575 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 576 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 577 * 578 * This function first tries to find contiguous space. If it is not successful, 579 * it tries with the scatter approach. 580 * 581 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 582 */ 583 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 584 { 585 int ret = 0; 586 587 ret = __ice_vsi_get_qs_contig(qs_cfg); 588 if (ret) { 589 /* contig failed, so try with scatter approach */ 590 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 591 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 592 qs_cfg->scatter_count); 593 ret = __ice_vsi_get_qs_sc(qs_cfg); 594 } 595 return ret; 596 } 597 598 /** 599 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 600 * @vsi: the VSI being configured 601 * @ena: start or stop the Rx ring 602 * @rxq_idx: 0-based Rx queue index for the VSI passed in 603 * @wait: wait or don't wait for configuration to finish in hardware 604 * 605 * Return 0 on success and negative on error. 606 */ 607 int 608 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 609 { 610 int pf_q = vsi->rxq_map[rxq_idx]; 611 struct ice_pf *pf = vsi->back; 612 struct ice_hw *hw = &pf->hw; 613 u32 rx_reg; 614 615 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 616 617 /* Skip if the queue is already in the requested state */ 618 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 619 return 0; 620 621 /* turn on/off the queue */ 622 if (ena) 623 rx_reg |= QRX_CTRL_QENA_REQ_M; 624 else 625 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 626 wr32(hw, QRX_CTRL(pf_q), rx_reg); 627 628 if (!wait) 629 return 0; 630 631 ice_flush(hw); 632 return ice_pf_rxq_wait(pf, pf_q, ena); 633 } 634 635 /** 636 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 637 * @vsi: the VSI being configured 638 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 639 * @rxq_idx: 0-based Rx queue index for the VSI passed in 640 * 641 * This routine will wait for the given Rx queue of the VSI to reach the 642 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 643 * the requested state after multiple retries; else will return 0 in case of 644 * success. 645 */ 646 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 647 { 648 int pf_q = vsi->rxq_map[rxq_idx]; 649 struct ice_pf *pf = vsi->back; 650 651 return ice_pf_rxq_wait(pf, pf_q, ena); 652 } 653 654 /** 655 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 656 * @vsi: the VSI being configured 657 * 658 * We allocate one q_vector per queue interrupt. If allocation fails we 659 * return -ENOMEM. 660 */ 661 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 662 { 663 struct device *dev = ice_pf_to_dev(vsi->back); 664 u16 v_idx; 665 int err; 666 667 if (vsi->q_vectors[0]) { 668 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 669 return -EEXIST; 670 } 671 672 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 673 err = ice_vsi_alloc_q_vector(vsi, v_idx); 674 if (err) 675 goto err_out; 676 } 677 678 return 0; 679 680 err_out: 681 while (v_idx--) 682 ice_free_q_vector(vsi, v_idx); 683 684 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 685 vsi->num_q_vectors, vsi->vsi_num, err); 686 vsi->num_q_vectors = 0; 687 return err; 688 } 689 690 /** 691 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 692 * @vsi: the VSI being configured 693 * 694 * This function maps descriptor rings to the queue-specific vectors allotted 695 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 696 * and Rx rings to the vector as "efficiently" as possible. 697 */ 698 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 699 { 700 int q_vectors = vsi->num_q_vectors; 701 u16 tx_rings_rem, rx_rings_rem; 702 int v_id; 703 704 /* initially assigning remaining rings count to VSIs num queue value */ 705 tx_rings_rem = vsi->num_txq; 706 rx_rings_rem = vsi->num_rxq; 707 708 for (v_id = 0; v_id < q_vectors; v_id++) { 709 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 710 u8 tx_rings_per_v, rx_rings_per_v; 711 u16 q_id, q_base; 712 713 /* Tx rings mapping to vector */ 714 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 715 q_vectors - v_id); 716 q_vector->num_ring_tx = tx_rings_per_v; 717 q_vector->tx.tx_ring = NULL; 718 q_vector->tx.itr_idx = ICE_TX_ITR; 719 q_base = vsi->num_txq - tx_rings_rem; 720 721 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 722 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 723 724 tx_ring->q_vector = q_vector; 725 tx_ring->next = q_vector->tx.tx_ring; 726 q_vector->tx.tx_ring = tx_ring; 727 } 728 tx_rings_rem -= tx_rings_per_v; 729 730 /* Rx rings mapping to vector */ 731 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 732 q_vectors - v_id); 733 q_vector->num_ring_rx = rx_rings_per_v; 734 q_vector->rx.rx_ring = NULL; 735 q_vector->rx.itr_idx = ICE_RX_ITR; 736 q_base = vsi->num_rxq - rx_rings_rem; 737 738 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 739 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 740 741 rx_ring->q_vector = q_vector; 742 rx_ring->next = q_vector->rx.rx_ring; 743 q_vector->rx.rx_ring = rx_ring; 744 } 745 rx_rings_rem -= rx_rings_per_v; 746 } 747 } 748 749 /** 750 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 751 * @vsi: the VSI having memory freed 752 */ 753 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 754 { 755 int v_idx; 756 757 ice_for_each_q_vector(vsi, v_idx) 758 ice_free_q_vector(vsi, v_idx); 759 } 760 761 /** 762 * ice_vsi_cfg_txq - Configure single Tx queue 763 * @vsi: the VSI that queue belongs to 764 * @ring: Tx ring to be configured 765 * @qg_buf: queue group buffer 766 */ 767 int 768 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 769 struct ice_aqc_add_tx_qgrp *qg_buf) 770 { 771 u8 buf_len = struct_size(qg_buf, txqs, 1); 772 struct ice_tlan_ctx tlan_ctx = { 0 }; 773 struct ice_aqc_add_txqs_perq *txq; 774 struct ice_channel *ch = ring->ch; 775 struct ice_pf *pf = vsi->back; 776 struct ice_hw *hw = &pf->hw; 777 int status; 778 u16 pf_q; 779 u8 tc; 780 781 /* Configure XPS */ 782 ice_cfg_xps_tx_ring(ring); 783 784 pf_q = ring->reg_idx; 785 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 786 /* copy context contents into the qg_buf */ 787 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 788 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 789 ice_tlan_ctx_info); 790 791 /* init queue specific tail reg. It is referred as 792 * transmit comm scheduler queue doorbell. 793 */ 794 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 795 796 if (IS_ENABLED(CONFIG_DCB)) 797 tc = ring->dcb_tc; 798 else 799 tc = 0; 800 801 /* Add unique software queue handle of the Tx queue per 802 * TC into the VSI Tx ring 803 */ 804 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 805 ring->q_handle = ice_eswitch_calc_txq_handle(ring); 806 807 if (ring->q_handle == ICE_INVAL_Q_INDEX) 808 return -ENODEV; 809 } else { 810 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 811 } 812 813 if (ch) 814 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 815 ring->q_handle, 1, qg_buf, buf_len, 816 NULL); 817 else 818 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 819 ring->q_handle, 1, qg_buf, buf_len, 820 NULL); 821 if (status) { 822 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 823 status); 824 return status; 825 } 826 827 /* Add Tx Queue TEID into the VSI Tx ring from the 828 * response. This will complete configuring and 829 * enabling the queue. 830 */ 831 txq = &qg_buf->txqs[0]; 832 if (pf_q == le16_to_cpu(txq->txq_id)) 833 ring->txq_teid = le32_to_cpu(txq->q_teid); 834 835 return 0; 836 } 837 838 /** 839 * ice_cfg_itr - configure the initial interrupt throttle values 840 * @hw: pointer to the HW structure 841 * @q_vector: interrupt vector that's being configured 842 * 843 * Configure interrupt throttling values for the ring containers that are 844 * associated with the interrupt vector passed in. 845 */ 846 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 847 { 848 ice_cfg_itr_gran(hw); 849 850 if (q_vector->num_ring_rx) 851 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 852 853 if (q_vector->num_ring_tx) 854 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 855 856 ice_write_intrl(q_vector, q_vector->intrl); 857 } 858 859 /** 860 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 861 * @vsi: the VSI being configured 862 * @txq: Tx queue being mapped to MSI-X vector 863 * @msix_idx: MSI-X vector index within the function 864 * @itr_idx: ITR index of the interrupt cause 865 * 866 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 867 * within the function space. 868 */ 869 void 870 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 871 { 872 struct ice_pf *pf = vsi->back; 873 struct ice_hw *hw = &pf->hw; 874 u32 val; 875 876 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 877 878 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 879 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 880 881 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 882 if (ice_is_xdp_ena_vsi(vsi)) { 883 u32 xdp_txq = txq + vsi->num_xdp_txq; 884 885 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 886 val); 887 } 888 ice_flush(hw); 889 } 890 891 /** 892 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 893 * @vsi: the VSI being configured 894 * @rxq: Rx queue being mapped to MSI-X vector 895 * @msix_idx: MSI-X vector index within the function 896 * @itr_idx: ITR index of the interrupt cause 897 * 898 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 899 * within the function space. 900 */ 901 void 902 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 903 { 904 struct ice_pf *pf = vsi->back; 905 struct ice_hw *hw = &pf->hw; 906 u32 val; 907 908 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 909 910 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 911 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 912 913 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 914 915 ice_flush(hw); 916 } 917 918 /** 919 * ice_trigger_sw_intr - trigger a software interrupt 920 * @hw: pointer to the HW structure 921 * @q_vector: interrupt vector to trigger the software interrupt for 922 */ 923 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 924 { 925 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 926 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 927 GLINT_DYN_CTL_SWINT_TRIG_M | 928 GLINT_DYN_CTL_INTENA_M); 929 } 930 931 /** 932 * ice_vsi_stop_tx_ring - Disable single Tx ring 933 * @vsi: the VSI being configured 934 * @rst_src: reset source 935 * @rel_vmvf_num: Relative ID of VF/VM 936 * @ring: Tx ring to be stopped 937 * @txq_meta: Meta data of Tx ring to be stopped 938 */ 939 int 940 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 941 u16 rel_vmvf_num, struct ice_tx_ring *ring, 942 struct ice_txq_meta *txq_meta) 943 { 944 struct ice_pf *pf = vsi->back; 945 struct ice_q_vector *q_vector; 946 struct ice_hw *hw = &pf->hw; 947 int status; 948 u32 val; 949 950 /* clear cause_ena bit for disabled queues */ 951 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 952 val &= ~QINT_TQCTL_CAUSE_ENA_M; 953 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 954 955 /* software is expected to wait for 100 ns */ 956 ndelay(100); 957 958 /* trigger a software interrupt for the vector 959 * associated to the queue to schedule NAPI handler 960 */ 961 q_vector = ring->q_vector; 962 if (q_vector) 963 ice_trigger_sw_intr(hw, q_vector); 964 965 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 966 txq_meta->tc, 1, &txq_meta->q_handle, 967 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 968 rel_vmvf_num, NULL); 969 970 /* if the disable queue command was exercised during an 971 * active reset flow, -EBUSY is returned. 972 * This is not an error as the reset operation disables 973 * queues at the hardware level anyway. 974 */ 975 if (status == -EBUSY) { 976 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 977 } else if (status == -ENOENT) { 978 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 979 } else if (status) { 980 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 981 status); 982 return status; 983 } 984 985 return 0; 986 } 987 988 /** 989 * ice_fill_txq_meta - Prepare the Tx queue's meta data 990 * @vsi: VSI that ring belongs to 991 * @ring: ring that txq_meta will be based on 992 * @txq_meta: a helper struct that wraps Tx queue's information 993 * 994 * Set up a helper struct that will contain all the necessary fields that 995 * are needed for stopping Tx queue 996 */ 997 void 998 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, 999 struct ice_txq_meta *txq_meta) 1000 { 1001 struct ice_channel *ch = ring->ch; 1002 u8 tc; 1003 1004 if (IS_ENABLED(CONFIG_DCB)) 1005 tc = ring->dcb_tc; 1006 else 1007 tc = 0; 1008 1009 txq_meta->q_id = ring->reg_idx; 1010 txq_meta->q_teid = ring->txq_teid; 1011 txq_meta->q_handle = ring->q_handle; 1012 if (ch) { 1013 txq_meta->vsi_idx = ch->ch_vsi->idx; 1014 txq_meta->tc = 0; 1015 } else { 1016 txq_meta->vsi_idx = vsi->idx; 1017 txq_meta->tc = tc; 1018 } 1019 } 1020