1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 149 /* only set affinity_mask if the CPU is online */ 150 if (cpu_online(v_idx)) 151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 152 153 /* This will not be called in the driver load path because the netdev 154 * will not be created yet. All other cases with register the NAPI 155 * handler here (i.e. resume, reset/rebuild, etc.) 156 */ 157 if (vsi->netdev) 158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 159 160 out: 161 /* tie q_vector and VSI together */ 162 vsi->q_vectors[v_idx] = q_vector; 163 164 return 0; 165 166 err_free_q_vector: 167 kfree(q_vector); 168 169 return err; 170 } 171 172 /** 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 174 * @vsi: VSI having the memory freed 175 * @v_idx: index of the vector to be freed 176 */ 177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 178 { 179 struct ice_q_vector *q_vector; 180 struct ice_pf *pf = vsi->back; 181 struct ice_tx_ring *tx_ring; 182 struct ice_rx_ring *rx_ring; 183 struct device *dev; 184 185 dev = ice_pf_to_dev(pf); 186 if (!vsi->q_vectors[v_idx]) { 187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 188 return; 189 } 190 q_vector = vsi->q_vectors[v_idx]; 191 192 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 193 ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX, 194 NULL); 195 tx_ring->q_vector = NULL; 196 } 197 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 198 ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX, 199 NULL); 200 rx_ring->q_vector = NULL; 201 } 202 203 /* only VSI with an associated netdev is set up with NAPI */ 204 if (vsi->netdev) 205 netif_napi_del(&q_vector->napi); 206 207 /* release MSIX interrupt if q_vector had interrupt allocated */ 208 if (q_vector->irq.index < 0) 209 goto free_q_vector; 210 211 /* only free last VF ctrl vsi interrupt */ 212 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 213 ice_get_vf_ctrl_vsi(pf, vsi)) 214 goto free_q_vector; 215 216 ice_free_irq(pf, q_vector->irq); 217 218 free_q_vector: 219 kfree(q_vector); 220 vsi->q_vectors[v_idx] = NULL; 221 } 222 223 /** 224 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 225 * @hw: board specific structure 226 */ 227 static void ice_cfg_itr_gran(struct ice_hw *hw) 228 { 229 u32 regval = rd32(hw, GLINT_CTL); 230 231 /* no need to update global register if ITR gran is already set */ 232 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 233 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 234 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 235 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 236 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 237 return; 238 239 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 240 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 241 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 242 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 243 wr32(hw, GLINT_CTL, regval); 244 } 245 246 /** 247 * ice_calc_txq_handle - calculate the queue handle 248 * @vsi: VSI that ring belongs to 249 * @ring: ring to get the absolute queue index 250 * @tc: traffic class number 251 */ 252 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 253 { 254 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 255 256 if (ring->ch) 257 return ring->q_index - ring->ch->base_q; 258 259 /* Idea here for calculation is that we subtract the number of queue 260 * count from TC that ring belongs to from it's absolute queue index 261 * and as a result we get the queue's index within TC. 262 */ 263 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 264 } 265 266 /** 267 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 268 * @ring: The Tx ring to configure 269 * 270 * This enables/disables XPS for a given Tx descriptor ring 271 * based on the TCs enabled for the VSI that ring belongs to. 272 */ 273 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 274 { 275 if (!ring->q_vector || !ring->netdev) 276 return; 277 278 /* We only initialize XPS once, so as not to overwrite user settings */ 279 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 280 return; 281 282 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 283 ring->q_index); 284 } 285 286 /** 287 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 288 * @ring: The Tx ring to configure 289 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 290 * @pf_q: queue index in the PF space 291 * 292 * Configure the Tx descriptor ring in TLAN context. 293 */ 294 static void 295 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 296 { 297 struct ice_vsi *vsi = ring->vsi; 298 struct ice_hw *hw = &vsi->back->hw; 299 300 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 301 302 tlan_ctx->port_num = vsi->port_info->lport; 303 304 /* Transmit Queue Length */ 305 tlan_ctx->qlen = ring->count; 306 307 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 308 309 /* PF number */ 310 tlan_ctx->pf_num = hw->pf_id; 311 312 /* queue belongs to a specific VSI type 313 * VF / VM index should be programmed per vmvf_type setting: 314 * for vmvf_type = VF, it is VF number between 0-256 315 * for vmvf_type = VM, it is VM number between 0-767 316 * for PF or EMP this field should be set to zero 317 */ 318 switch (vsi->type) { 319 case ICE_VSI_LB: 320 case ICE_VSI_CTRL: 321 case ICE_VSI_PF: 322 if (ring->ch) 323 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 324 else 325 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 326 break; 327 case ICE_VSI_VF: 328 /* Firmware expects vmvf_num to be absolute VF ID */ 329 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 330 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 331 break; 332 default: 333 return; 334 } 335 336 /* make sure the context is associated with the right VSI */ 337 if (ring->ch) 338 tlan_ctx->src_vsi = ring->ch->vsi_num; 339 else 340 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 341 342 /* Restrict Tx timestamps to the PF VSI */ 343 switch (vsi->type) { 344 case ICE_VSI_PF: 345 tlan_ctx->tsyn_ena = 1; 346 break; 347 default: 348 break; 349 } 350 351 tlan_ctx->tso_ena = ICE_TX_LEGACY; 352 tlan_ctx->tso_qnum = pf_q; 353 354 /* Legacy or Advanced Host Interface: 355 * 0: Advanced Host Interface 356 * 1: Legacy Host Interface 357 */ 358 tlan_ctx->legacy_int = ICE_TX_LEGACY; 359 } 360 361 /** 362 * ice_rx_offset - Return expected offset into page to access data 363 * @rx_ring: Ring we are requesting offset of 364 * 365 * Returns the offset value for ring into the data buffer. 366 */ 367 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 368 { 369 if (ice_ring_uses_build_skb(rx_ring)) 370 return ICE_SKB_PAD; 371 return 0; 372 } 373 374 /** 375 * ice_setup_rx_ctx - Configure a receive ring context 376 * @ring: The Rx ring to configure 377 * 378 * Configure the Rx descriptor ring in RLAN context. 379 */ 380 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 381 { 382 struct ice_vsi *vsi = ring->vsi; 383 u32 rxdid = ICE_RXDID_FLEX_NIC; 384 struct ice_rlan_ctx rlan_ctx; 385 struct ice_hw *hw; 386 u16 pf_q; 387 int err; 388 389 hw = &vsi->back->hw; 390 391 /* what is Rx queue number in global space of 2K Rx queues */ 392 pf_q = vsi->rxq_map[ring->q_index]; 393 394 /* clear the context structure first */ 395 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 396 397 /* Receive Queue Base Address. 398 * Indicates the starting address of the descriptor queue defined in 399 * 128 Byte units. 400 */ 401 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 402 403 rlan_ctx.qlen = ring->count; 404 405 /* Receive Packet Data Buffer Size. 406 * The Packet Data Buffer Size is defined in 128 byte units. 407 */ 408 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 409 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 410 411 /* use 32 byte descriptors */ 412 rlan_ctx.dsize = 1; 413 414 /* Strip the Ethernet CRC bytes before the packet is posted to host 415 * memory. 416 */ 417 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 418 419 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 420 * and it needs to remain 1 for non-DVM capable configurations to not 421 * break backward compatibility for VF drivers. Setting this field to 0 422 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 423 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 424 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 425 * check for the tag 426 */ 427 if (ice_is_dvm_ena(hw)) 428 if (vsi->type == ICE_VSI_VF && 429 ice_vf_is_port_vlan_ena(vsi->vf)) 430 rlan_ctx.l2tsel = 1; 431 else 432 rlan_ctx.l2tsel = 0; 433 else 434 rlan_ctx.l2tsel = 1; 435 436 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 437 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 438 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 439 440 /* This controls whether VLAN is stripped from inner headers 441 * The VLAN in the inner L2 header is stripped to the receive 442 * descriptor if enabled by this flag. 443 */ 444 rlan_ctx.showiv = 0; 445 446 /* Max packet size for this queue - must not be set to a larger value 447 * than 5 x DBUF 448 */ 449 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 450 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 451 452 /* Rx queue threshold in units of 64 */ 453 rlan_ctx.lrxqthresh = 1; 454 455 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 456 * metadata and flags to allow redirecting to PR netdev 457 */ 458 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 459 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 460 rxdid = ICE_RXDID_FLEX_NIC_2; 461 } 462 463 /* Enable Flexible Descriptors in the queue context which 464 * allows this driver to select a specific receive descriptor format 465 * increasing context priority to pick up profile ID; default is 0x01; 466 * setting to 0x03 to ensure profile is programming if prev context is 467 * of same priority 468 */ 469 if (vsi->type != ICE_VSI_VF) 470 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 471 else 472 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 473 false); 474 475 /* Absolute queue number out of 2K needs to be passed */ 476 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 477 if (err) { 478 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 479 pf_q, err); 480 return -EIO; 481 } 482 483 if (vsi->type == ICE_VSI_VF) 484 return 0; 485 486 /* configure Rx buffer alignment */ 487 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 488 ice_clear_ring_build_skb_ena(ring); 489 else 490 ice_set_ring_build_skb_ena(ring); 491 492 ring->rx_offset = ice_rx_offset(ring); 493 494 /* init queue specific tail register */ 495 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 496 writel(0, ring->tail); 497 498 return 0; 499 } 500 501 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 502 { 503 void *ctx_ptr = &ring->pkt_ctx; 504 struct xsk_cb_desc desc = {}; 505 506 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 507 desc.src = &ctx_ptr; 508 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 509 sizeof(struct xdp_buff); 510 desc.bytes = sizeof(ctx_ptr); 511 xsk_pool_fill_cb(ring->xsk_pool, &desc); 512 } 513 514 /** 515 * ice_vsi_cfg_rxq - Configure an Rx queue 516 * @ring: the ring being configured 517 * 518 * Return 0 on success and a negative value on error. 519 */ 520 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 521 { 522 struct device *dev = ice_pf_to_dev(ring->vsi->back); 523 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 524 int err; 525 526 ring->rx_buf_len = ring->vsi->rx_buf_len; 527 528 if (ring->vsi->type == ICE_VSI_PF) { 529 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 530 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 531 ring->q_index, 532 ring->q_vector->napi.napi_id, 533 ring->rx_buf_len); 534 if (err) 535 return err; 536 } 537 538 ring->xsk_pool = ice_xsk_pool(ring); 539 if (ring->xsk_pool) { 540 xdp_rxq_info_unreg(&ring->xdp_rxq); 541 542 ring->rx_buf_len = 543 xsk_pool_get_rx_frame_size(ring->xsk_pool); 544 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 545 ring->q_index, 546 ring->q_vector->napi.napi_id, 547 ring->rx_buf_len); 548 if (err) 549 return err; 550 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 551 MEM_TYPE_XSK_BUFF_POOL, 552 NULL); 553 if (err) 554 return err; 555 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 556 ice_xsk_pool_fill_cb(ring); 557 558 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 559 ring->q_index); 560 } else { 561 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 562 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 563 ring->q_index, 564 ring->q_vector->napi.napi_id, 565 ring->rx_buf_len); 566 if (err) 567 return err; 568 } 569 570 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 571 MEM_TYPE_PAGE_SHARED, 572 NULL); 573 if (err) 574 return err; 575 } 576 } 577 578 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); 579 ring->xdp.data = NULL; 580 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 581 err = ice_setup_rx_ctx(ring); 582 if (err) { 583 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 584 ring->q_index, err); 585 return err; 586 } 587 588 if (ring->xsk_pool) { 589 bool ok; 590 591 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 592 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 593 num_bufs, ring->q_index); 594 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 595 596 return 0; 597 } 598 599 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 600 if (!ok) { 601 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 602 603 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 604 ring->q_index, pf_q); 605 } 606 607 return 0; 608 } 609 610 ice_alloc_rx_bufs(ring, num_bufs); 611 612 return 0; 613 } 614 615 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 616 { 617 if (q_idx >= vsi->num_rxq) 618 return -EINVAL; 619 620 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 621 } 622 623 /** 624 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 625 * @vsi: VSI 626 */ 627 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 628 { 629 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 630 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 631 vsi->rx_buf_len = ICE_RXBUF_1664; 632 #if (PAGE_SIZE < 8192) 633 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 634 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 635 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 636 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 637 #endif 638 } else { 639 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 640 vsi->rx_buf_len = ICE_RXBUF_3072; 641 } 642 } 643 644 /** 645 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 646 * @vsi: the VSI being configured 647 * 648 * Return 0 on success and a negative value on error 649 * Configure the Rx VSI for operation. 650 */ 651 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 652 { 653 u16 i; 654 655 if (vsi->type == ICE_VSI_VF) 656 goto setup_rings; 657 658 ice_vsi_cfg_frame_size(vsi); 659 setup_rings: 660 /* set up individual rings */ 661 ice_for_each_rxq(vsi, i) { 662 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 663 664 if (err) 665 return err; 666 } 667 668 return 0; 669 } 670 671 /** 672 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 673 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 674 * 675 * This function first tries to find contiguous space. If it is not successful, 676 * it tries with the scatter approach. 677 * 678 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 679 */ 680 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 681 { 682 int ret = 0; 683 684 ret = __ice_vsi_get_qs_contig(qs_cfg); 685 if (ret) { 686 /* contig failed, so try with scatter approach */ 687 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 688 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 689 qs_cfg->scatter_count); 690 ret = __ice_vsi_get_qs_sc(qs_cfg); 691 } 692 return ret; 693 } 694 695 /** 696 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 697 * @vsi: the VSI being configured 698 * @ena: start or stop the Rx ring 699 * @rxq_idx: 0-based Rx queue index for the VSI passed in 700 * @wait: wait or don't wait for configuration to finish in hardware 701 * 702 * Return 0 on success and negative on error. 703 */ 704 int 705 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 706 { 707 int pf_q = vsi->rxq_map[rxq_idx]; 708 struct ice_pf *pf = vsi->back; 709 struct ice_hw *hw = &pf->hw; 710 u32 rx_reg; 711 712 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 713 714 /* Skip if the queue is already in the requested state */ 715 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 716 return 0; 717 718 /* turn on/off the queue */ 719 if (ena) 720 rx_reg |= QRX_CTRL_QENA_REQ_M; 721 else 722 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 723 wr32(hw, QRX_CTRL(pf_q), rx_reg); 724 725 if (!wait) 726 return 0; 727 728 ice_flush(hw); 729 return ice_pf_rxq_wait(pf, pf_q, ena); 730 } 731 732 /** 733 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 734 * @vsi: the VSI being configured 735 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 736 * @rxq_idx: 0-based Rx queue index for the VSI passed in 737 * 738 * This routine will wait for the given Rx queue of the VSI to reach the 739 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 740 * the requested state after multiple retries; else will return 0 in case of 741 * success. 742 */ 743 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 744 { 745 int pf_q = vsi->rxq_map[rxq_idx]; 746 struct ice_pf *pf = vsi->back; 747 748 return ice_pf_rxq_wait(pf, pf_q, ena); 749 } 750 751 /** 752 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 753 * @vsi: the VSI being configured 754 * 755 * We allocate one q_vector per queue interrupt. If allocation fails we 756 * return -ENOMEM. 757 */ 758 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 759 { 760 struct device *dev = ice_pf_to_dev(vsi->back); 761 u16 v_idx; 762 int err; 763 764 if (vsi->q_vectors[0]) { 765 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 766 return -EEXIST; 767 } 768 769 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 770 err = ice_vsi_alloc_q_vector(vsi, v_idx); 771 if (err) 772 goto err_out; 773 } 774 775 return 0; 776 777 err_out: 778 while (v_idx--) 779 ice_free_q_vector(vsi, v_idx); 780 781 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 782 vsi->num_q_vectors, vsi->vsi_num, err); 783 vsi->num_q_vectors = 0; 784 return err; 785 } 786 787 /** 788 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 789 * @vsi: the VSI being configured 790 * 791 * This function maps descriptor rings to the queue-specific vectors allotted 792 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 793 * and Rx rings to the vector as "efficiently" as possible. 794 */ 795 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 796 { 797 int q_vectors = vsi->num_q_vectors; 798 u16 tx_rings_rem, rx_rings_rem; 799 int v_id; 800 801 /* initially assigning remaining rings count to VSIs num queue value */ 802 tx_rings_rem = vsi->num_txq; 803 rx_rings_rem = vsi->num_rxq; 804 805 for (v_id = 0; v_id < q_vectors; v_id++) { 806 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 807 u8 tx_rings_per_v, rx_rings_per_v; 808 u16 q_id, q_base; 809 810 /* Tx rings mapping to vector */ 811 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 812 q_vectors - v_id); 813 q_vector->num_ring_tx = tx_rings_per_v; 814 q_vector->tx.tx_ring = NULL; 815 q_vector->tx.itr_idx = ICE_TX_ITR; 816 q_base = vsi->num_txq - tx_rings_rem; 817 818 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 819 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 820 821 tx_ring->q_vector = q_vector; 822 tx_ring->next = q_vector->tx.tx_ring; 823 q_vector->tx.tx_ring = tx_ring; 824 } 825 tx_rings_rem -= tx_rings_per_v; 826 827 /* Rx rings mapping to vector */ 828 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 829 q_vectors - v_id); 830 q_vector->num_ring_rx = rx_rings_per_v; 831 q_vector->rx.rx_ring = NULL; 832 q_vector->rx.itr_idx = ICE_RX_ITR; 833 q_base = vsi->num_rxq - rx_rings_rem; 834 835 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 836 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 837 838 rx_ring->q_vector = q_vector; 839 rx_ring->next = q_vector->rx.rx_ring; 840 q_vector->rx.rx_ring = rx_ring; 841 } 842 rx_rings_rem -= rx_rings_per_v; 843 } 844 } 845 846 /** 847 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 848 * @vsi: the VSI having memory freed 849 */ 850 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 851 { 852 int v_idx; 853 854 ice_for_each_q_vector(vsi, v_idx) 855 ice_free_q_vector(vsi, v_idx); 856 857 vsi->num_q_vectors = 0; 858 } 859 860 /** 861 * ice_vsi_cfg_txq - Configure single Tx queue 862 * @vsi: the VSI that queue belongs to 863 * @ring: Tx ring to be configured 864 * @qg_buf: queue group buffer 865 */ 866 static int 867 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 868 struct ice_aqc_add_tx_qgrp *qg_buf) 869 { 870 u8 buf_len = struct_size(qg_buf, txqs, 1); 871 struct ice_tlan_ctx tlan_ctx = { 0 }; 872 struct ice_aqc_add_txqs_perq *txq; 873 struct ice_channel *ch = ring->ch; 874 struct ice_pf *pf = vsi->back; 875 struct ice_hw *hw = &pf->hw; 876 int status; 877 u16 pf_q; 878 u8 tc; 879 880 /* Configure XPS */ 881 ice_cfg_xps_tx_ring(ring); 882 883 pf_q = ring->reg_idx; 884 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 885 /* copy context contents into the qg_buf */ 886 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 887 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 888 ice_tlan_ctx_info); 889 890 /* init queue specific tail reg. It is referred as 891 * transmit comm scheduler queue doorbell. 892 */ 893 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 894 895 if (IS_ENABLED(CONFIG_DCB)) 896 tc = ring->dcb_tc; 897 else 898 tc = 0; 899 900 /* Add unique software queue handle of the Tx queue per 901 * TC into the VSI Tx ring 902 */ 903 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 904 905 if (ch) 906 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 907 ring->q_handle, 1, qg_buf, buf_len, 908 NULL); 909 else 910 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 911 ring->q_handle, 1, qg_buf, buf_len, 912 NULL); 913 if (status) { 914 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 915 status); 916 return status; 917 } 918 919 /* Add Tx Queue TEID into the VSI Tx ring from the 920 * response. This will complete configuring and 921 * enabling the queue. 922 */ 923 txq = &qg_buf->txqs[0]; 924 if (pf_q == le16_to_cpu(txq->txq_id)) 925 ring->txq_teid = le32_to_cpu(txq->q_teid); 926 927 return 0; 928 } 929 930 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 931 u16 q_idx) 932 { 933 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 934 935 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 936 return -EINVAL; 937 938 qg_buf->num_txqs = 1; 939 940 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 941 } 942 943 /** 944 * ice_vsi_cfg_txqs - Configure the VSI for Tx 945 * @vsi: the VSI being configured 946 * @rings: Tx ring array to be configured 947 * @count: number of Tx ring array elements 948 * 949 * Return 0 on success and a negative value on error 950 * Configure the Tx VSI for operation. 951 */ 952 static int 953 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 954 { 955 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 956 int err = 0; 957 u16 q_idx; 958 959 qg_buf->num_txqs = 1; 960 961 for (q_idx = 0; q_idx < count; q_idx++) { 962 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 963 if (err) 964 break; 965 } 966 967 return err; 968 } 969 970 /** 971 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 972 * @vsi: the VSI being configured 973 * 974 * Return 0 on success and a negative value on error 975 * Configure the Tx VSI for operation. 976 */ 977 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 978 { 979 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 980 } 981 982 /** 983 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 984 * @vsi: the VSI being configured 985 * 986 * Return 0 on success and a negative value on error 987 * Configure the Tx queues dedicated for XDP in given VSI for operation. 988 */ 989 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 990 { 991 int ret; 992 int i; 993 994 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 995 if (ret) 996 return ret; 997 998 ice_for_each_rxq(vsi, i) 999 ice_tx_xsk_pool(vsi, i); 1000 1001 return 0; 1002 } 1003 1004 /** 1005 * ice_cfg_itr - configure the initial interrupt throttle values 1006 * @hw: pointer to the HW structure 1007 * @q_vector: interrupt vector that's being configured 1008 * 1009 * Configure interrupt throttling values for the ring containers that are 1010 * associated with the interrupt vector passed in. 1011 */ 1012 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1013 { 1014 ice_cfg_itr_gran(hw); 1015 1016 if (q_vector->num_ring_rx) 1017 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1018 1019 if (q_vector->num_ring_tx) 1020 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1021 1022 ice_write_intrl(q_vector, q_vector->intrl); 1023 } 1024 1025 /** 1026 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1027 * @vsi: the VSI being configured 1028 * @txq: Tx queue being mapped to MSI-X vector 1029 * @msix_idx: MSI-X vector index within the function 1030 * @itr_idx: ITR index of the interrupt cause 1031 * 1032 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1033 * within the function space. 1034 */ 1035 void 1036 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1037 { 1038 struct ice_pf *pf = vsi->back; 1039 struct ice_hw *hw = &pf->hw; 1040 u32 val; 1041 1042 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1043 1044 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1045 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1046 1047 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1048 if (ice_is_xdp_ena_vsi(vsi)) { 1049 u32 xdp_txq = txq + vsi->num_xdp_txq; 1050 1051 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1052 val); 1053 } 1054 ice_flush(hw); 1055 } 1056 1057 /** 1058 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1059 * @vsi: the VSI being configured 1060 * @rxq: Rx queue being mapped to MSI-X vector 1061 * @msix_idx: MSI-X vector index within the function 1062 * @itr_idx: ITR index of the interrupt cause 1063 * 1064 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1065 * within the function space. 1066 */ 1067 void 1068 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1069 { 1070 struct ice_pf *pf = vsi->back; 1071 struct ice_hw *hw = &pf->hw; 1072 u32 val; 1073 1074 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1075 1076 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1077 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1078 1079 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1080 1081 ice_flush(hw); 1082 } 1083 1084 /** 1085 * ice_trigger_sw_intr - trigger a software interrupt 1086 * @hw: pointer to the HW structure 1087 * @q_vector: interrupt vector to trigger the software interrupt for 1088 */ 1089 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1090 { 1091 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1092 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1093 GLINT_DYN_CTL_SWINT_TRIG_M | 1094 GLINT_DYN_CTL_INTENA_M); 1095 } 1096 1097 /** 1098 * ice_vsi_stop_tx_ring - Disable single Tx ring 1099 * @vsi: the VSI being configured 1100 * @rst_src: reset source 1101 * @rel_vmvf_num: Relative ID of VF/VM 1102 * @ring: Tx ring to be stopped 1103 * @txq_meta: Meta data of Tx ring to be stopped 1104 */ 1105 int 1106 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1107 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1108 struct ice_txq_meta *txq_meta) 1109 { 1110 struct ice_pf *pf = vsi->back; 1111 struct ice_q_vector *q_vector; 1112 struct ice_hw *hw = &pf->hw; 1113 int status; 1114 u32 val; 1115 1116 /* clear cause_ena bit for disabled queues */ 1117 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1118 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1119 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1120 1121 /* software is expected to wait for 100 ns */ 1122 ndelay(100); 1123 1124 /* trigger a software interrupt for the vector 1125 * associated to the queue to schedule NAPI handler 1126 */ 1127 q_vector = ring->q_vector; 1128 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1129 ice_trigger_sw_intr(hw, q_vector); 1130 1131 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1132 txq_meta->tc, 1, &txq_meta->q_handle, 1133 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1134 rel_vmvf_num, NULL); 1135 1136 /* if the disable queue command was exercised during an 1137 * active reset flow, -EBUSY is returned. 1138 * This is not an error as the reset operation disables 1139 * queues at the hardware level anyway. 1140 */ 1141 if (status == -EBUSY) { 1142 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1143 } else if (status == -ENOENT) { 1144 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1145 } else if (status) { 1146 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1147 status); 1148 return status; 1149 } 1150 1151 return 0; 1152 } 1153 1154 /** 1155 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1156 * @vsi: VSI that ring belongs to 1157 * @ring: ring that txq_meta will be based on 1158 * @txq_meta: a helper struct that wraps Tx queue's information 1159 * 1160 * Set up a helper struct that will contain all the necessary fields that 1161 * are needed for stopping Tx queue 1162 */ 1163 void 1164 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1165 struct ice_txq_meta *txq_meta) 1166 { 1167 struct ice_channel *ch = ring->ch; 1168 u8 tc; 1169 1170 if (IS_ENABLED(CONFIG_DCB)) 1171 tc = ring->dcb_tc; 1172 else 1173 tc = 0; 1174 1175 txq_meta->q_id = ring->reg_idx; 1176 txq_meta->q_teid = ring->txq_teid; 1177 txq_meta->q_handle = ring->q_handle; 1178 if (ch) { 1179 txq_meta->vsi_idx = ch->ch_vsi->idx; 1180 txq_meta->tc = 0; 1181 } else { 1182 txq_meta->vsi_idx = vsi->idx; 1183 txq_meta->tc = tc; 1184 } 1185 } 1186