xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 5832c4a77d6931cebf9ba737129ae8f14b66ee1d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 
149 	/* only set affinity_mask if the CPU is online */
150 	if (cpu_online(v_idx))
151 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152 
153 	/* This will not be called in the driver load path because the netdev
154 	 * will not be created yet. All other cases with register the NAPI
155 	 * handler here (i.e. resume, reset/rebuild, etc.)
156 	 */
157 	if (vsi->netdev)
158 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159 
160 out:
161 	/* tie q_vector and VSI together */
162 	vsi->q_vectors[v_idx] = q_vector;
163 
164 	return 0;
165 
166 err_free_q_vector:
167 	kfree(q_vector);
168 
169 	return err;
170 }
171 
172 /**
173  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174  * @vsi: VSI having the memory freed
175  * @v_idx: index of the vector to be freed
176  */
177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178 {
179 	struct ice_q_vector *q_vector;
180 	struct ice_pf *pf = vsi->back;
181 	struct ice_tx_ring *tx_ring;
182 	struct ice_rx_ring *rx_ring;
183 	struct device *dev;
184 
185 	dev = ice_pf_to_dev(pf);
186 	if (!vsi->q_vectors[v_idx]) {
187 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188 		return;
189 	}
190 	q_vector = vsi->q_vectors[v_idx];
191 
192 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
193 		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
194 				   NULL);
195 		tx_ring->q_vector = NULL;
196 	}
197 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
198 		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
199 				   NULL);
200 		rx_ring->q_vector = NULL;
201 	}
202 
203 	/* only VSI with an associated netdev is set up with NAPI */
204 	if (vsi->netdev)
205 		netif_napi_del(&q_vector->napi);
206 
207 	/* release MSIX interrupt if q_vector had interrupt allocated */
208 	if (q_vector->irq.index < 0)
209 		goto free_q_vector;
210 
211 	/* only free last VF ctrl vsi interrupt */
212 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
213 	    ice_get_vf_ctrl_vsi(pf, vsi))
214 		goto free_q_vector;
215 
216 	ice_free_irq(pf, q_vector->irq);
217 
218 free_q_vector:
219 	kfree(q_vector);
220 	vsi->q_vectors[v_idx] = NULL;
221 }
222 
223 /**
224  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
225  * @hw: board specific structure
226  */
227 static void ice_cfg_itr_gran(struct ice_hw *hw)
228 {
229 	u32 regval = rd32(hw, GLINT_CTL);
230 
231 	/* no need to update global register if ITR gran is already set */
232 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
233 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
234 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
235 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
236 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
237 		return;
238 
239 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
240 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
241 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
242 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
243 	wr32(hw, GLINT_CTL, regval);
244 }
245 
246 /**
247  * ice_calc_txq_handle - calculate the queue handle
248  * @vsi: VSI that ring belongs to
249  * @ring: ring to get the absolute queue index
250  * @tc: traffic class number
251  */
252 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
253 {
254 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
255 
256 	if (ring->ch)
257 		return ring->q_index - ring->ch->base_q;
258 
259 	/* Idea here for calculation is that we subtract the number of queue
260 	 * count from TC that ring belongs to from it's absolute queue index
261 	 * and as a result we get the queue's index within TC.
262 	 */
263 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
264 }
265 
266 /**
267  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
268  * @ring: The Tx ring to configure
269  *
270  * This enables/disables XPS for a given Tx descriptor ring
271  * based on the TCs enabled for the VSI that ring belongs to.
272  */
273 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
274 {
275 	if (!ring->q_vector || !ring->netdev)
276 		return;
277 
278 	/* We only initialize XPS once, so as not to overwrite user settings */
279 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
280 		return;
281 
282 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
283 			    ring->q_index);
284 }
285 
286 /**
287  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
288  * @ring: The Tx ring to configure
289  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
290  * @pf_q: queue index in the PF space
291  *
292  * Configure the Tx descriptor ring in TLAN context.
293  */
294 static void
295 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
296 {
297 	struct ice_vsi *vsi = ring->vsi;
298 	struct ice_hw *hw = &vsi->back->hw;
299 
300 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
301 
302 	tlan_ctx->port_num = vsi->port_info->lport;
303 
304 	/* Transmit Queue Length */
305 	tlan_ctx->qlen = ring->count;
306 
307 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
308 
309 	/* PF number */
310 	tlan_ctx->pf_num = hw->pf_id;
311 
312 	/* queue belongs to a specific VSI type
313 	 * VF / VM index should be programmed per vmvf_type setting:
314 	 * for vmvf_type = VF, it is VF number between 0-256
315 	 * for vmvf_type = VM, it is VM number between 0-767
316 	 * for PF or EMP this field should be set to zero
317 	 */
318 	switch (vsi->type) {
319 	case ICE_VSI_LB:
320 	case ICE_VSI_CTRL:
321 	case ICE_VSI_PF:
322 		if (ring->ch)
323 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
324 		else
325 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
326 		break;
327 	case ICE_VSI_VF:
328 		/* Firmware expects vmvf_num to be absolute VF ID */
329 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
330 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
331 		break;
332 	default:
333 		return;
334 	}
335 
336 	/* make sure the context is associated with the right VSI */
337 	if (ring->ch)
338 		tlan_ctx->src_vsi = ring->ch->vsi_num;
339 	else
340 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
341 
342 	/* Restrict Tx timestamps to the PF VSI */
343 	switch (vsi->type) {
344 	case ICE_VSI_PF:
345 		tlan_ctx->tsyn_ena = 1;
346 		break;
347 	default:
348 		break;
349 	}
350 
351 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
352 	tlan_ctx->tso_qnum = pf_q;
353 
354 	/* Legacy or Advanced Host Interface:
355 	 * 0: Advanced Host Interface
356 	 * 1: Legacy Host Interface
357 	 */
358 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
359 }
360 
361 /**
362  * ice_rx_offset - Return expected offset into page to access data
363  * @rx_ring: Ring we are requesting offset of
364  *
365  * Returns the offset value for ring into the data buffer.
366  */
367 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
368 {
369 	if (ice_ring_uses_build_skb(rx_ring))
370 		return ICE_SKB_PAD;
371 	return 0;
372 }
373 
374 /**
375  * ice_setup_rx_ctx - Configure a receive ring context
376  * @ring: The Rx ring to configure
377  *
378  * Configure the Rx descriptor ring in RLAN context.
379  */
380 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
381 {
382 	struct ice_vsi *vsi = ring->vsi;
383 	u32 rxdid = ICE_RXDID_FLEX_NIC;
384 	struct ice_rlan_ctx rlan_ctx;
385 	struct ice_hw *hw;
386 	u16 pf_q;
387 	int err;
388 
389 	hw = &vsi->back->hw;
390 
391 	/* what is Rx queue number in global space of 2K Rx queues */
392 	pf_q = vsi->rxq_map[ring->q_index];
393 
394 	/* clear the context structure first */
395 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
396 
397 	/* Receive Queue Base Address.
398 	 * Indicates the starting address of the descriptor queue defined in
399 	 * 128 Byte units.
400 	 */
401 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
402 
403 	rlan_ctx.qlen = ring->count;
404 
405 	/* Receive Packet Data Buffer Size.
406 	 * The Packet Data Buffer Size is defined in 128 byte units.
407 	 */
408 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
409 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
410 
411 	/* use 32 byte descriptors */
412 	rlan_ctx.dsize = 1;
413 
414 	/* Strip the Ethernet CRC bytes before the packet is posted to host
415 	 * memory.
416 	 */
417 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
418 
419 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
420 	 * and it needs to remain 1 for non-DVM capable configurations to not
421 	 * break backward compatibility for VF drivers. Setting this field to 0
422 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
423 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
424 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
425 	 * check for the tag
426 	 */
427 	if (ice_is_dvm_ena(hw))
428 		if (vsi->type == ICE_VSI_VF &&
429 		    ice_vf_is_port_vlan_ena(vsi->vf))
430 			rlan_ctx.l2tsel = 1;
431 		else
432 			rlan_ctx.l2tsel = 0;
433 	else
434 		rlan_ctx.l2tsel = 1;
435 
436 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
437 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
438 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
439 
440 	/* This controls whether VLAN is stripped from inner headers
441 	 * The VLAN in the inner L2 header is stripped to the receive
442 	 * descriptor if enabled by this flag.
443 	 */
444 	rlan_ctx.showiv = 0;
445 
446 	/* Max packet size for this queue - must not be set to a larger value
447 	 * than 5 x DBUF
448 	 */
449 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
450 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
451 
452 	/* Rx queue threshold in units of 64 */
453 	rlan_ctx.lrxqthresh = 1;
454 
455 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
456 	 * metadata and flags to allow redirecting to PR netdev
457 	 */
458 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
459 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
460 		rxdid = ICE_RXDID_FLEX_NIC_2;
461 	}
462 
463 	/* Enable Flexible Descriptors in the queue context which
464 	 * allows this driver to select a specific receive descriptor format
465 	 * increasing context priority to pick up profile ID; default is 0x01;
466 	 * setting to 0x03 to ensure profile is programming if prev context is
467 	 * of same priority
468 	 */
469 	if (vsi->type != ICE_VSI_VF)
470 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
471 	else
472 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
473 					false);
474 
475 	/* Absolute queue number out of 2K needs to be passed */
476 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
477 	if (err) {
478 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
479 			pf_q, err);
480 		return -EIO;
481 	}
482 
483 	if (vsi->type == ICE_VSI_VF)
484 		return 0;
485 
486 	/* configure Rx buffer alignment */
487 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
488 		ice_clear_ring_build_skb_ena(ring);
489 	else
490 		ice_set_ring_build_skb_ena(ring);
491 
492 	ring->rx_offset = ice_rx_offset(ring);
493 
494 	/* init queue specific tail register */
495 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
496 	writel(0, ring->tail);
497 
498 	return 0;
499 }
500 
501 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
502 {
503 	void *ctx_ptr = &ring->pkt_ctx;
504 	struct xsk_cb_desc desc = {};
505 
506 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
507 	desc.src = &ctx_ptr;
508 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
509 		   sizeof(struct xdp_buff);
510 	desc.bytes = sizeof(ctx_ptr);
511 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
512 }
513 
514 /**
515  * ice_vsi_cfg_rxq - Configure an Rx queue
516  * @ring: the ring being configured
517  *
518  * Return 0 on success and a negative value on error.
519  */
520 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
521 {
522 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
523 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
524 	int err;
525 
526 	ring->rx_buf_len = ring->vsi->rx_buf_len;
527 
528 	if (ring->vsi->type == ICE_VSI_PF) {
529 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
530 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
531 						 ring->q_index,
532 						 ring->q_vector->napi.napi_id,
533 						 ring->rx_buf_len);
534 			if (err)
535 				return err;
536 		}
537 
538 		ring->xsk_pool = ice_xsk_pool(ring);
539 		if (ring->xsk_pool) {
540 			xdp_rxq_info_unreg(&ring->xdp_rxq);
541 
542 			ring->rx_buf_len =
543 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
544 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
545 						 ring->q_index,
546 						 ring->q_vector->napi.napi_id,
547 						 ring->rx_buf_len);
548 			if (err)
549 				return err;
550 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
551 							 MEM_TYPE_XSK_BUFF_POOL,
552 							 NULL);
553 			if (err)
554 				return err;
555 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
556 			ice_xsk_pool_fill_cb(ring);
557 
558 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
559 				 ring->q_index);
560 		} else {
561 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
562 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
563 							 ring->q_index,
564 							 ring->q_vector->napi.napi_id,
565 							 ring->rx_buf_len);
566 				if (err)
567 					return err;
568 			}
569 
570 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
571 							 MEM_TYPE_PAGE_SHARED,
572 							 NULL);
573 			if (err)
574 				return err;
575 		}
576 	}
577 
578 	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
579 	ring->xdp.data = NULL;
580 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
581 	err = ice_setup_rx_ctx(ring);
582 	if (err) {
583 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
584 			ring->q_index, err);
585 		return err;
586 	}
587 
588 	if (ring->xsk_pool) {
589 		bool ok;
590 
591 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
592 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
593 				 num_bufs, ring->q_index);
594 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
595 
596 			return 0;
597 		}
598 
599 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
600 		if (!ok) {
601 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
602 
603 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
604 				 ring->q_index, pf_q);
605 		}
606 
607 		return 0;
608 	}
609 
610 	ice_alloc_rx_bufs(ring, num_bufs);
611 
612 	return 0;
613 }
614 
615 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
616 {
617 	if (q_idx >= vsi->num_rxq)
618 		return -EINVAL;
619 
620 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
621 }
622 
623 /**
624  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
625  * @vsi: VSI
626  */
627 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
628 {
629 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
630 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
631 		vsi->rx_buf_len = ICE_RXBUF_1664;
632 #if (PAGE_SIZE < 8192)
633 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
634 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
635 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
636 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
637 #endif
638 	} else {
639 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
640 		vsi->rx_buf_len = ICE_RXBUF_3072;
641 	}
642 }
643 
644 /**
645  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
646  * @vsi: the VSI being configured
647  *
648  * Return 0 on success and a negative value on error
649  * Configure the Rx VSI for operation.
650  */
651 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
652 {
653 	u16 i;
654 
655 	if (vsi->type == ICE_VSI_VF)
656 		goto setup_rings;
657 
658 	ice_vsi_cfg_frame_size(vsi);
659 setup_rings:
660 	/* set up individual rings */
661 	ice_for_each_rxq(vsi, i) {
662 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
663 
664 		if (err)
665 			return err;
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
673  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
674  *
675  * This function first tries to find contiguous space. If it is not successful,
676  * it tries with the scatter approach.
677  *
678  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
679  */
680 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
681 {
682 	int ret = 0;
683 
684 	ret = __ice_vsi_get_qs_contig(qs_cfg);
685 	if (ret) {
686 		/* contig failed, so try with scatter approach */
687 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
688 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
689 					qs_cfg->scatter_count);
690 		ret = __ice_vsi_get_qs_sc(qs_cfg);
691 	}
692 	return ret;
693 }
694 
695 /**
696  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
697  * @vsi: the VSI being configured
698  * @ena: start or stop the Rx ring
699  * @rxq_idx: 0-based Rx queue index for the VSI passed in
700  * @wait: wait or don't wait for configuration to finish in hardware
701  *
702  * Return 0 on success and negative on error.
703  */
704 int
705 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
706 {
707 	int pf_q = vsi->rxq_map[rxq_idx];
708 	struct ice_pf *pf = vsi->back;
709 	struct ice_hw *hw = &pf->hw;
710 	u32 rx_reg;
711 
712 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
713 
714 	/* Skip if the queue is already in the requested state */
715 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
716 		return 0;
717 
718 	/* turn on/off the queue */
719 	if (ena)
720 		rx_reg |= QRX_CTRL_QENA_REQ_M;
721 	else
722 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
723 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
724 
725 	if (!wait)
726 		return 0;
727 
728 	ice_flush(hw);
729 	return ice_pf_rxq_wait(pf, pf_q, ena);
730 }
731 
732 /**
733  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
734  * @vsi: the VSI being configured
735  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
736  * @rxq_idx: 0-based Rx queue index for the VSI passed in
737  *
738  * This routine will wait for the given Rx queue of the VSI to reach the
739  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
740  * the requested state after multiple retries; else will return 0 in case of
741  * success.
742  */
743 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
744 {
745 	int pf_q = vsi->rxq_map[rxq_idx];
746 	struct ice_pf *pf = vsi->back;
747 
748 	return ice_pf_rxq_wait(pf, pf_q, ena);
749 }
750 
751 /**
752  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
753  * @vsi: the VSI being configured
754  *
755  * We allocate one q_vector per queue interrupt. If allocation fails we
756  * return -ENOMEM.
757  */
758 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
759 {
760 	struct device *dev = ice_pf_to_dev(vsi->back);
761 	u16 v_idx;
762 	int err;
763 
764 	if (vsi->q_vectors[0]) {
765 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
766 		return -EEXIST;
767 	}
768 
769 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
770 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
771 		if (err)
772 			goto err_out;
773 	}
774 
775 	return 0;
776 
777 err_out:
778 	while (v_idx--)
779 		ice_free_q_vector(vsi, v_idx);
780 
781 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
782 		vsi->num_q_vectors, vsi->vsi_num, err);
783 	vsi->num_q_vectors = 0;
784 	return err;
785 }
786 
787 /**
788  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
789  * @vsi: the VSI being configured
790  *
791  * This function maps descriptor rings to the queue-specific vectors allotted
792  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
793  * and Rx rings to the vector as "efficiently" as possible.
794  */
795 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
796 {
797 	int q_vectors = vsi->num_q_vectors;
798 	u16 tx_rings_rem, rx_rings_rem;
799 	int v_id;
800 
801 	/* initially assigning remaining rings count to VSIs num queue value */
802 	tx_rings_rem = vsi->num_txq;
803 	rx_rings_rem = vsi->num_rxq;
804 
805 	for (v_id = 0; v_id < q_vectors; v_id++) {
806 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
807 		u8 tx_rings_per_v, rx_rings_per_v;
808 		u16 q_id, q_base;
809 
810 		/* Tx rings mapping to vector */
811 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
812 						  q_vectors - v_id);
813 		q_vector->num_ring_tx = tx_rings_per_v;
814 		q_vector->tx.tx_ring = NULL;
815 		q_vector->tx.itr_idx = ICE_TX_ITR;
816 		q_base = vsi->num_txq - tx_rings_rem;
817 
818 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
819 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
820 
821 			tx_ring->q_vector = q_vector;
822 			tx_ring->next = q_vector->tx.tx_ring;
823 			q_vector->tx.tx_ring = tx_ring;
824 		}
825 		tx_rings_rem -= tx_rings_per_v;
826 
827 		/* Rx rings mapping to vector */
828 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
829 						  q_vectors - v_id);
830 		q_vector->num_ring_rx = rx_rings_per_v;
831 		q_vector->rx.rx_ring = NULL;
832 		q_vector->rx.itr_idx = ICE_RX_ITR;
833 		q_base = vsi->num_rxq - rx_rings_rem;
834 
835 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
836 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
837 
838 			rx_ring->q_vector = q_vector;
839 			rx_ring->next = q_vector->rx.rx_ring;
840 			q_vector->rx.rx_ring = rx_ring;
841 		}
842 		rx_rings_rem -= rx_rings_per_v;
843 	}
844 }
845 
846 /**
847  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
848  * @vsi: the VSI having memory freed
849  */
850 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
851 {
852 	int v_idx;
853 
854 	ice_for_each_q_vector(vsi, v_idx)
855 		ice_free_q_vector(vsi, v_idx);
856 
857 	vsi->num_q_vectors = 0;
858 }
859 
860 /**
861  * ice_vsi_cfg_txq - Configure single Tx queue
862  * @vsi: the VSI that queue belongs to
863  * @ring: Tx ring to be configured
864  * @qg_buf: queue group buffer
865  */
866 static int
867 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
868 		struct ice_aqc_add_tx_qgrp *qg_buf)
869 {
870 	u8 buf_len = struct_size(qg_buf, txqs, 1);
871 	struct ice_tlan_ctx tlan_ctx = { 0 };
872 	struct ice_aqc_add_txqs_perq *txq;
873 	struct ice_channel *ch = ring->ch;
874 	struct ice_pf *pf = vsi->back;
875 	struct ice_hw *hw = &pf->hw;
876 	int status;
877 	u16 pf_q;
878 	u8 tc;
879 
880 	/* Configure XPS */
881 	ice_cfg_xps_tx_ring(ring);
882 
883 	pf_q = ring->reg_idx;
884 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
885 	/* copy context contents into the qg_buf */
886 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
887 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
888 		    ice_tlan_ctx_info);
889 
890 	/* init queue specific tail reg. It is referred as
891 	 * transmit comm scheduler queue doorbell.
892 	 */
893 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
894 
895 	if (IS_ENABLED(CONFIG_DCB))
896 		tc = ring->dcb_tc;
897 	else
898 		tc = 0;
899 
900 	/* Add unique software queue handle of the Tx queue per
901 	 * TC into the VSI Tx ring
902 	 */
903 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
904 
905 	if (ch)
906 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
907 					 ring->q_handle, 1, qg_buf, buf_len,
908 					 NULL);
909 	else
910 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
911 					 ring->q_handle, 1, qg_buf, buf_len,
912 					 NULL);
913 	if (status) {
914 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
915 			status);
916 		return status;
917 	}
918 
919 	/* Add Tx Queue TEID into the VSI Tx ring from the
920 	 * response. This will complete configuring and
921 	 * enabling the queue.
922 	 */
923 	txq = &qg_buf->txqs[0];
924 	if (pf_q == le16_to_cpu(txq->txq_id))
925 		ring->txq_teid = le32_to_cpu(txq->q_teid);
926 
927 	return 0;
928 }
929 
930 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
931 			   u16 q_idx)
932 {
933 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
934 
935 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
936 		return -EINVAL;
937 
938 	qg_buf->num_txqs = 1;
939 
940 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
941 }
942 
943 /**
944  * ice_vsi_cfg_txqs - Configure the VSI for Tx
945  * @vsi: the VSI being configured
946  * @rings: Tx ring array to be configured
947  * @count: number of Tx ring array elements
948  *
949  * Return 0 on success and a negative value on error
950  * Configure the Tx VSI for operation.
951  */
952 static int
953 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
954 {
955 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
956 	int err = 0;
957 	u16 q_idx;
958 
959 	qg_buf->num_txqs = 1;
960 
961 	for (q_idx = 0; q_idx < count; q_idx++) {
962 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
963 		if (err)
964 			break;
965 	}
966 
967 	return err;
968 }
969 
970 /**
971  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
972  * @vsi: the VSI being configured
973  *
974  * Return 0 on success and a negative value on error
975  * Configure the Tx VSI for operation.
976  */
977 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
978 {
979 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
980 }
981 
982 /**
983  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
984  * @vsi: the VSI being configured
985  *
986  * Return 0 on success and a negative value on error
987  * Configure the Tx queues dedicated for XDP in given VSI for operation.
988  */
989 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
990 {
991 	int ret;
992 	int i;
993 
994 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
995 	if (ret)
996 		return ret;
997 
998 	ice_for_each_rxq(vsi, i)
999 		ice_tx_xsk_pool(vsi, i);
1000 
1001 	return 0;
1002 }
1003 
1004 /**
1005  * ice_cfg_itr - configure the initial interrupt throttle values
1006  * @hw: pointer to the HW structure
1007  * @q_vector: interrupt vector that's being configured
1008  *
1009  * Configure interrupt throttling values for the ring containers that are
1010  * associated with the interrupt vector passed in.
1011  */
1012 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1013 {
1014 	ice_cfg_itr_gran(hw);
1015 
1016 	if (q_vector->num_ring_rx)
1017 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1018 
1019 	if (q_vector->num_ring_tx)
1020 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1021 
1022 	ice_write_intrl(q_vector, q_vector->intrl);
1023 }
1024 
1025 /**
1026  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1027  * @vsi: the VSI being configured
1028  * @txq: Tx queue being mapped to MSI-X vector
1029  * @msix_idx: MSI-X vector index within the function
1030  * @itr_idx: ITR index of the interrupt cause
1031  *
1032  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1033  * within the function space.
1034  */
1035 void
1036 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1037 {
1038 	struct ice_pf *pf = vsi->back;
1039 	struct ice_hw *hw = &pf->hw;
1040 	u32 val;
1041 
1042 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1043 
1044 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1045 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1046 
1047 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1048 	if (ice_is_xdp_ena_vsi(vsi)) {
1049 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1050 
1051 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1052 		     val);
1053 	}
1054 	ice_flush(hw);
1055 }
1056 
1057 /**
1058  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1059  * @vsi: the VSI being configured
1060  * @rxq: Rx queue being mapped to MSI-X vector
1061  * @msix_idx: MSI-X vector index within the function
1062  * @itr_idx: ITR index of the interrupt cause
1063  *
1064  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1065  * within the function space.
1066  */
1067 void
1068 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1069 {
1070 	struct ice_pf *pf = vsi->back;
1071 	struct ice_hw *hw = &pf->hw;
1072 	u32 val;
1073 
1074 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1075 
1076 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1077 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1078 
1079 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1080 
1081 	ice_flush(hw);
1082 }
1083 
1084 /**
1085  * ice_trigger_sw_intr - trigger a software interrupt
1086  * @hw: pointer to the HW structure
1087  * @q_vector: interrupt vector to trigger the software interrupt for
1088  */
1089 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1090 {
1091 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1092 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1093 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1094 	     GLINT_DYN_CTL_INTENA_M);
1095 }
1096 
1097 /**
1098  * ice_vsi_stop_tx_ring - Disable single Tx ring
1099  * @vsi: the VSI being configured
1100  * @rst_src: reset source
1101  * @rel_vmvf_num: Relative ID of VF/VM
1102  * @ring: Tx ring to be stopped
1103  * @txq_meta: Meta data of Tx ring to be stopped
1104  */
1105 int
1106 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1107 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1108 		     struct ice_txq_meta *txq_meta)
1109 {
1110 	struct ice_pf *pf = vsi->back;
1111 	struct ice_q_vector *q_vector;
1112 	struct ice_hw *hw = &pf->hw;
1113 	int status;
1114 	u32 val;
1115 
1116 	/* clear cause_ena bit for disabled queues */
1117 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1118 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1119 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1120 
1121 	/* software is expected to wait for 100 ns */
1122 	ndelay(100);
1123 
1124 	/* trigger a software interrupt for the vector
1125 	 * associated to the queue to schedule NAPI handler
1126 	 */
1127 	q_vector = ring->q_vector;
1128 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1129 		ice_trigger_sw_intr(hw, q_vector);
1130 
1131 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1132 				 txq_meta->tc, 1, &txq_meta->q_handle,
1133 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1134 				 rel_vmvf_num, NULL);
1135 
1136 	/* if the disable queue command was exercised during an
1137 	 * active reset flow, -EBUSY is returned.
1138 	 * This is not an error as the reset operation disables
1139 	 * queues at the hardware level anyway.
1140 	 */
1141 	if (status == -EBUSY) {
1142 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1143 	} else if (status == -ENOENT) {
1144 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1145 	} else if (status) {
1146 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1147 			status);
1148 		return status;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /**
1155  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1156  * @vsi: VSI that ring belongs to
1157  * @ring: ring that txq_meta will be based on
1158  * @txq_meta: a helper struct that wraps Tx queue's information
1159  *
1160  * Set up a helper struct that will contain all the necessary fields that
1161  * are needed for stopping Tx queue
1162  */
1163 void
1164 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1165 		  struct ice_txq_meta *txq_meta)
1166 {
1167 	struct ice_channel *ch = ring->ch;
1168 	u8 tc;
1169 
1170 	if (IS_ENABLED(CONFIG_DCB))
1171 		tc = ring->dcb_tc;
1172 	else
1173 		tc = 0;
1174 
1175 	txq_meta->q_id = ring->reg_idx;
1176 	txq_meta->q_teid = ring->txq_teid;
1177 	txq_meta->q_handle = ring->q_handle;
1178 	if (ch) {
1179 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1180 		txq_meta->tc = 0;
1181 	} else {
1182 		txq_meta->vsi_idx = vsi->idx;
1183 		txq_meta->tc = tc;
1184 	}
1185 }
1186