1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 149 /* only set affinity_mask if the CPU is online */ 150 if (cpu_online(v_idx)) 151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 152 153 /* This will not be called in the driver load path because the netdev 154 * will not be created yet. All other cases with register the NAPI 155 * handler here (i.e. resume, reset/rebuild, etc.) 156 */ 157 if (vsi->netdev) 158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 159 160 out: 161 /* tie q_vector and VSI together */ 162 vsi->q_vectors[v_idx] = q_vector; 163 164 return 0; 165 166 err_free_q_vector: 167 kfree(q_vector); 168 169 return err; 170 } 171 172 /** 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 174 * @vsi: VSI having the memory freed 175 * @v_idx: index of the vector to be freed 176 */ 177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 178 { 179 struct ice_q_vector *q_vector; 180 struct ice_pf *pf = vsi->back; 181 struct ice_tx_ring *tx_ring; 182 struct ice_rx_ring *rx_ring; 183 struct device *dev; 184 185 dev = ice_pf_to_dev(pf); 186 if (!vsi->q_vectors[v_idx]) { 187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 188 return; 189 } 190 q_vector = vsi->q_vectors[v_idx]; 191 192 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 193 ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX, 194 NULL); 195 tx_ring->q_vector = NULL; 196 } 197 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 198 ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX, 199 NULL); 200 rx_ring->q_vector = NULL; 201 } 202 203 /* only VSI with an associated netdev is set up with NAPI */ 204 if (vsi->netdev) 205 netif_napi_del(&q_vector->napi); 206 207 /* release MSIX interrupt if q_vector had interrupt allocated */ 208 if (q_vector->irq.index < 0) 209 goto free_q_vector; 210 211 /* only free last VF ctrl vsi interrupt */ 212 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 213 ice_get_vf_ctrl_vsi(pf, vsi)) 214 goto free_q_vector; 215 216 ice_free_irq(pf, q_vector->irq); 217 218 free_q_vector: 219 kfree(q_vector); 220 vsi->q_vectors[v_idx] = NULL; 221 } 222 223 /** 224 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 225 * @hw: board specific structure 226 */ 227 static void ice_cfg_itr_gran(struct ice_hw *hw) 228 { 229 u32 regval = rd32(hw, GLINT_CTL); 230 231 /* no need to update global register if ITR gran is already set */ 232 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 233 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 234 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 235 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 236 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 237 return; 238 239 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 240 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 241 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 242 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 243 wr32(hw, GLINT_CTL, regval); 244 } 245 246 /** 247 * ice_calc_txq_handle - calculate the queue handle 248 * @vsi: VSI that ring belongs to 249 * @ring: ring to get the absolute queue index 250 * @tc: traffic class number 251 */ 252 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 253 { 254 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 255 256 if (ring->ch) 257 return ring->q_index - ring->ch->base_q; 258 259 /* Idea here for calculation is that we subtract the number of queue 260 * count from TC that ring belongs to from it's absolute queue index 261 * and as a result we get the queue's index within TC. 262 */ 263 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 264 } 265 266 /** 267 * ice_eswitch_calc_txq_handle 268 * @ring: pointer to ring which unique index is needed 269 * 270 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 271 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 272 * here by finding index in vsi->tx_rings of this ring. 273 * 274 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 275 * because VSI is get from ring->vsi, so it has to be present in this VSI. 276 */ 277 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) 278 { 279 const struct ice_vsi *vsi = ring->vsi; 280 int i; 281 282 ice_for_each_txq(vsi, i) { 283 if (vsi->tx_rings[i] == ring) 284 return i; 285 } 286 287 return ICE_INVAL_Q_INDEX; 288 } 289 290 /** 291 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 292 * @ring: The Tx ring to configure 293 * 294 * This enables/disables XPS for a given Tx descriptor ring 295 * based on the TCs enabled for the VSI that ring belongs to. 296 */ 297 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 298 { 299 if (!ring->q_vector || !ring->netdev) 300 return; 301 302 /* We only initialize XPS once, so as not to overwrite user settings */ 303 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 304 return; 305 306 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 307 ring->q_index); 308 } 309 310 /** 311 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 312 * @ring: The Tx ring to configure 313 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 314 * @pf_q: queue index in the PF space 315 * 316 * Configure the Tx descriptor ring in TLAN context. 317 */ 318 static void 319 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 320 { 321 struct ice_vsi *vsi = ring->vsi; 322 struct ice_hw *hw = &vsi->back->hw; 323 324 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 325 326 tlan_ctx->port_num = vsi->port_info->lport; 327 328 /* Transmit Queue Length */ 329 tlan_ctx->qlen = ring->count; 330 331 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 332 333 /* PF number */ 334 tlan_ctx->pf_num = hw->pf_id; 335 336 /* queue belongs to a specific VSI type 337 * VF / VM index should be programmed per vmvf_type setting: 338 * for vmvf_type = VF, it is VF number between 0-256 339 * for vmvf_type = VM, it is VM number between 0-767 340 * for PF or EMP this field should be set to zero 341 */ 342 switch (vsi->type) { 343 case ICE_VSI_LB: 344 case ICE_VSI_CTRL: 345 case ICE_VSI_PF: 346 if (ring->ch) 347 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 348 else 349 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 350 break; 351 case ICE_VSI_VF: 352 /* Firmware expects vmvf_num to be absolute VF ID */ 353 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 354 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 355 break; 356 case ICE_VSI_SWITCHDEV_CTRL: 357 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 358 break; 359 default: 360 return; 361 } 362 363 /* make sure the context is associated with the right VSI */ 364 if (ring->ch) 365 tlan_ctx->src_vsi = ring->ch->vsi_num; 366 else 367 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 368 369 /* Restrict Tx timestamps to the PF VSI */ 370 switch (vsi->type) { 371 case ICE_VSI_PF: 372 tlan_ctx->tsyn_ena = 1; 373 break; 374 default: 375 break; 376 } 377 378 tlan_ctx->tso_ena = ICE_TX_LEGACY; 379 tlan_ctx->tso_qnum = pf_q; 380 381 /* Legacy or Advanced Host Interface: 382 * 0: Advanced Host Interface 383 * 1: Legacy Host Interface 384 */ 385 tlan_ctx->legacy_int = ICE_TX_LEGACY; 386 } 387 388 /** 389 * ice_rx_offset - Return expected offset into page to access data 390 * @rx_ring: Ring we are requesting offset of 391 * 392 * Returns the offset value for ring into the data buffer. 393 */ 394 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 395 { 396 if (ice_ring_uses_build_skb(rx_ring)) 397 return ICE_SKB_PAD; 398 return 0; 399 } 400 401 /** 402 * ice_setup_rx_ctx - Configure a receive ring context 403 * @ring: The Rx ring to configure 404 * 405 * Configure the Rx descriptor ring in RLAN context. 406 */ 407 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 408 { 409 struct ice_vsi *vsi = ring->vsi; 410 u32 rxdid = ICE_RXDID_FLEX_NIC; 411 struct ice_rlan_ctx rlan_ctx; 412 struct ice_hw *hw; 413 u16 pf_q; 414 int err; 415 416 hw = &vsi->back->hw; 417 418 /* what is Rx queue number in global space of 2K Rx queues */ 419 pf_q = vsi->rxq_map[ring->q_index]; 420 421 /* clear the context structure first */ 422 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 423 424 /* Receive Queue Base Address. 425 * Indicates the starting address of the descriptor queue defined in 426 * 128 Byte units. 427 */ 428 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 429 430 rlan_ctx.qlen = ring->count; 431 432 /* Receive Packet Data Buffer Size. 433 * The Packet Data Buffer Size is defined in 128 byte units. 434 */ 435 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 436 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 437 438 /* use 32 byte descriptors */ 439 rlan_ctx.dsize = 1; 440 441 /* Strip the Ethernet CRC bytes before the packet is posted to host 442 * memory. 443 */ 444 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 445 446 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 447 * and it needs to remain 1 for non-DVM capable configurations to not 448 * break backward compatibility for VF drivers. Setting this field to 0 449 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 450 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 451 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 452 * check for the tag 453 */ 454 if (ice_is_dvm_ena(hw)) 455 if (vsi->type == ICE_VSI_VF && 456 ice_vf_is_port_vlan_ena(vsi->vf)) 457 rlan_ctx.l2tsel = 1; 458 else 459 rlan_ctx.l2tsel = 0; 460 else 461 rlan_ctx.l2tsel = 1; 462 463 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 464 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 465 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 466 467 /* This controls whether VLAN is stripped from inner headers 468 * The VLAN in the inner L2 header is stripped to the receive 469 * descriptor if enabled by this flag. 470 */ 471 rlan_ctx.showiv = 0; 472 473 /* Max packet size for this queue - must not be set to a larger value 474 * than 5 x DBUF 475 */ 476 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 477 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 478 479 /* Rx queue threshold in units of 64 */ 480 rlan_ctx.lrxqthresh = 1; 481 482 /* Enable Flexible Descriptors in the queue context which 483 * allows this driver to select a specific receive descriptor format 484 * increasing context priority to pick up profile ID; default is 0x01; 485 * setting to 0x03 to ensure profile is programming if prev context is 486 * of same priority 487 */ 488 if (vsi->type != ICE_VSI_VF) 489 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 490 else 491 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 492 false); 493 494 /* Absolute queue number out of 2K needs to be passed */ 495 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 496 if (err) { 497 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 498 pf_q, err); 499 return -EIO; 500 } 501 502 if (vsi->type == ICE_VSI_VF) 503 return 0; 504 505 /* configure Rx buffer alignment */ 506 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 507 ice_clear_ring_build_skb_ena(ring); 508 else 509 ice_set_ring_build_skb_ena(ring); 510 511 ring->rx_offset = ice_rx_offset(ring); 512 513 /* init queue specific tail register */ 514 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 515 writel(0, ring->tail); 516 517 return 0; 518 } 519 520 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 521 { 522 void *ctx_ptr = &ring->pkt_ctx; 523 struct xsk_cb_desc desc = {}; 524 525 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 526 desc.src = &ctx_ptr; 527 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 528 sizeof(struct xdp_buff); 529 desc.bytes = sizeof(ctx_ptr); 530 xsk_pool_fill_cb(ring->xsk_pool, &desc); 531 } 532 533 /** 534 * ice_vsi_cfg_rxq - Configure an Rx queue 535 * @ring: the ring being configured 536 * 537 * Return 0 on success and a negative value on error. 538 */ 539 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 540 { 541 struct device *dev = ice_pf_to_dev(ring->vsi->back); 542 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 543 int err; 544 545 ring->rx_buf_len = ring->vsi->rx_buf_len; 546 547 if (ring->vsi->type == ICE_VSI_PF) { 548 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 549 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 550 ring->q_index, 551 ring->q_vector->napi.napi_id, 552 ring->rx_buf_len); 553 if (err) 554 return err; 555 } 556 557 ring->xsk_pool = ice_xsk_pool(ring); 558 if (ring->xsk_pool) { 559 xdp_rxq_info_unreg(&ring->xdp_rxq); 560 561 ring->rx_buf_len = 562 xsk_pool_get_rx_frame_size(ring->xsk_pool); 563 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 564 ring->q_index, 565 ring->q_vector->napi.napi_id, 566 ring->rx_buf_len); 567 if (err) 568 return err; 569 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 570 MEM_TYPE_XSK_BUFF_POOL, 571 NULL); 572 if (err) 573 return err; 574 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 575 ice_xsk_pool_fill_cb(ring); 576 577 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 578 ring->q_index); 579 } else { 580 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 581 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 582 ring->q_index, 583 ring->q_vector->napi.napi_id, 584 ring->rx_buf_len); 585 if (err) 586 return err; 587 } 588 589 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 590 MEM_TYPE_PAGE_SHARED, 591 NULL); 592 if (err) 593 return err; 594 } 595 } 596 597 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); 598 ring->xdp.data = NULL; 599 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 600 err = ice_setup_rx_ctx(ring); 601 if (err) { 602 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 603 ring->q_index, err); 604 return err; 605 } 606 607 if (ring->xsk_pool) { 608 bool ok; 609 610 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 611 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 612 num_bufs, ring->q_index); 613 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 614 615 return 0; 616 } 617 618 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 619 if (!ok) { 620 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 621 622 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 623 ring->q_index, pf_q); 624 } 625 626 return 0; 627 } 628 629 ice_alloc_rx_bufs(ring, num_bufs); 630 631 return 0; 632 } 633 634 /** 635 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 637 * 638 * This function first tries to find contiguous space. If it is not successful, 639 * it tries with the scatter approach. 640 * 641 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 642 */ 643 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 644 { 645 int ret = 0; 646 647 ret = __ice_vsi_get_qs_contig(qs_cfg); 648 if (ret) { 649 /* contig failed, so try with scatter approach */ 650 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 651 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 652 qs_cfg->scatter_count); 653 ret = __ice_vsi_get_qs_sc(qs_cfg); 654 } 655 return ret; 656 } 657 658 /** 659 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 660 * @vsi: the VSI being configured 661 * @ena: start or stop the Rx ring 662 * @rxq_idx: 0-based Rx queue index for the VSI passed in 663 * @wait: wait or don't wait for configuration to finish in hardware 664 * 665 * Return 0 on success and negative on error. 666 */ 667 int 668 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 669 { 670 int pf_q = vsi->rxq_map[rxq_idx]; 671 struct ice_pf *pf = vsi->back; 672 struct ice_hw *hw = &pf->hw; 673 u32 rx_reg; 674 675 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 676 677 /* Skip if the queue is already in the requested state */ 678 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 679 return 0; 680 681 /* turn on/off the queue */ 682 if (ena) 683 rx_reg |= QRX_CTRL_QENA_REQ_M; 684 else 685 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 686 wr32(hw, QRX_CTRL(pf_q), rx_reg); 687 688 if (!wait) 689 return 0; 690 691 ice_flush(hw); 692 return ice_pf_rxq_wait(pf, pf_q, ena); 693 } 694 695 /** 696 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 697 * @vsi: the VSI being configured 698 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 699 * @rxq_idx: 0-based Rx queue index for the VSI passed in 700 * 701 * This routine will wait for the given Rx queue of the VSI to reach the 702 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 703 * the requested state after multiple retries; else will return 0 in case of 704 * success. 705 */ 706 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 707 { 708 int pf_q = vsi->rxq_map[rxq_idx]; 709 struct ice_pf *pf = vsi->back; 710 711 return ice_pf_rxq_wait(pf, pf_q, ena); 712 } 713 714 /** 715 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 716 * @vsi: the VSI being configured 717 * 718 * We allocate one q_vector per queue interrupt. If allocation fails we 719 * return -ENOMEM. 720 */ 721 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 722 { 723 struct device *dev = ice_pf_to_dev(vsi->back); 724 u16 v_idx; 725 int err; 726 727 if (vsi->q_vectors[0]) { 728 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 729 return -EEXIST; 730 } 731 732 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 733 err = ice_vsi_alloc_q_vector(vsi, v_idx); 734 if (err) 735 goto err_out; 736 } 737 738 return 0; 739 740 err_out: 741 while (v_idx--) 742 ice_free_q_vector(vsi, v_idx); 743 744 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 745 vsi->num_q_vectors, vsi->vsi_num, err); 746 vsi->num_q_vectors = 0; 747 return err; 748 } 749 750 /** 751 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 752 * @vsi: the VSI being configured 753 * 754 * This function maps descriptor rings to the queue-specific vectors allotted 755 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 756 * and Rx rings to the vector as "efficiently" as possible. 757 */ 758 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 759 { 760 int q_vectors = vsi->num_q_vectors; 761 u16 tx_rings_rem, rx_rings_rem; 762 int v_id; 763 764 /* initially assigning remaining rings count to VSIs num queue value */ 765 tx_rings_rem = vsi->num_txq; 766 rx_rings_rem = vsi->num_rxq; 767 768 for (v_id = 0; v_id < q_vectors; v_id++) { 769 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 770 u8 tx_rings_per_v, rx_rings_per_v; 771 u16 q_id, q_base; 772 773 /* Tx rings mapping to vector */ 774 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 775 q_vectors - v_id); 776 q_vector->num_ring_tx = tx_rings_per_v; 777 q_vector->tx.tx_ring = NULL; 778 q_vector->tx.itr_idx = ICE_TX_ITR; 779 q_base = vsi->num_txq - tx_rings_rem; 780 781 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 782 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 783 784 tx_ring->q_vector = q_vector; 785 tx_ring->next = q_vector->tx.tx_ring; 786 q_vector->tx.tx_ring = tx_ring; 787 } 788 tx_rings_rem -= tx_rings_per_v; 789 790 /* Rx rings mapping to vector */ 791 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 792 q_vectors - v_id); 793 q_vector->num_ring_rx = rx_rings_per_v; 794 q_vector->rx.rx_ring = NULL; 795 q_vector->rx.itr_idx = ICE_RX_ITR; 796 q_base = vsi->num_rxq - rx_rings_rem; 797 798 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 799 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 800 801 rx_ring->q_vector = q_vector; 802 rx_ring->next = q_vector->rx.rx_ring; 803 q_vector->rx.rx_ring = rx_ring; 804 } 805 rx_rings_rem -= rx_rings_per_v; 806 } 807 } 808 809 /** 810 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 811 * @vsi: the VSI having memory freed 812 */ 813 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 814 { 815 int v_idx; 816 817 ice_for_each_q_vector(vsi, v_idx) 818 ice_free_q_vector(vsi, v_idx); 819 820 vsi->num_q_vectors = 0; 821 } 822 823 /** 824 * ice_vsi_cfg_txq - Configure single Tx queue 825 * @vsi: the VSI that queue belongs to 826 * @ring: Tx ring to be configured 827 * @qg_buf: queue group buffer 828 */ 829 int 830 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 831 struct ice_aqc_add_tx_qgrp *qg_buf) 832 { 833 u8 buf_len = struct_size(qg_buf, txqs, 1); 834 struct ice_tlan_ctx tlan_ctx = { 0 }; 835 struct ice_aqc_add_txqs_perq *txq; 836 struct ice_channel *ch = ring->ch; 837 struct ice_pf *pf = vsi->back; 838 struct ice_hw *hw = &pf->hw; 839 int status; 840 u16 pf_q; 841 u8 tc; 842 843 /* Configure XPS */ 844 ice_cfg_xps_tx_ring(ring); 845 846 pf_q = ring->reg_idx; 847 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 848 /* copy context contents into the qg_buf */ 849 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 850 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 851 ice_tlan_ctx_info); 852 853 /* init queue specific tail reg. It is referred as 854 * transmit comm scheduler queue doorbell. 855 */ 856 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 857 858 if (IS_ENABLED(CONFIG_DCB)) 859 tc = ring->dcb_tc; 860 else 861 tc = 0; 862 863 /* Add unique software queue handle of the Tx queue per 864 * TC into the VSI Tx ring 865 */ 866 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 867 ring->q_handle = ice_eswitch_calc_txq_handle(ring); 868 869 if (ring->q_handle == ICE_INVAL_Q_INDEX) 870 return -ENODEV; 871 } else { 872 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 873 } 874 875 if (ch) 876 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 877 ring->q_handle, 1, qg_buf, buf_len, 878 NULL); 879 else 880 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 881 ring->q_handle, 1, qg_buf, buf_len, 882 NULL); 883 if (status) { 884 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 885 status); 886 return status; 887 } 888 889 /* Add Tx Queue TEID into the VSI Tx ring from the 890 * response. This will complete configuring and 891 * enabling the queue. 892 */ 893 txq = &qg_buf->txqs[0]; 894 if (pf_q == le16_to_cpu(txq->txq_id)) 895 ring->txq_teid = le32_to_cpu(txq->q_teid); 896 897 return 0; 898 } 899 900 /** 901 * ice_cfg_itr - configure the initial interrupt throttle values 902 * @hw: pointer to the HW structure 903 * @q_vector: interrupt vector that's being configured 904 * 905 * Configure interrupt throttling values for the ring containers that are 906 * associated with the interrupt vector passed in. 907 */ 908 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 909 { 910 ice_cfg_itr_gran(hw); 911 912 if (q_vector->num_ring_rx) 913 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 914 915 if (q_vector->num_ring_tx) 916 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 917 918 ice_write_intrl(q_vector, q_vector->intrl); 919 } 920 921 /** 922 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 923 * @vsi: the VSI being configured 924 * @txq: Tx queue being mapped to MSI-X vector 925 * @msix_idx: MSI-X vector index within the function 926 * @itr_idx: ITR index of the interrupt cause 927 * 928 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 929 * within the function space. 930 */ 931 void 932 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 933 { 934 struct ice_pf *pf = vsi->back; 935 struct ice_hw *hw = &pf->hw; 936 u32 val; 937 938 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 939 940 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 941 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 942 943 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 944 if (ice_is_xdp_ena_vsi(vsi)) { 945 u32 xdp_txq = txq + vsi->num_xdp_txq; 946 947 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 948 val); 949 } 950 ice_flush(hw); 951 } 952 953 /** 954 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 955 * @vsi: the VSI being configured 956 * @rxq: Rx queue being mapped to MSI-X vector 957 * @msix_idx: MSI-X vector index within the function 958 * @itr_idx: ITR index of the interrupt cause 959 * 960 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 961 * within the function space. 962 */ 963 void 964 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 965 { 966 struct ice_pf *pf = vsi->back; 967 struct ice_hw *hw = &pf->hw; 968 u32 val; 969 970 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 971 972 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 973 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 974 975 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 976 977 ice_flush(hw); 978 } 979 980 /** 981 * ice_trigger_sw_intr - trigger a software interrupt 982 * @hw: pointer to the HW structure 983 * @q_vector: interrupt vector to trigger the software interrupt for 984 */ 985 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 986 { 987 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 988 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 989 GLINT_DYN_CTL_SWINT_TRIG_M | 990 GLINT_DYN_CTL_INTENA_M); 991 } 992 993 /** 994 * ice_vsi_stop_tx_ring - Disable single Tx ring 995 * @vsi: the VSI being configured 996 * @rst_src: reset source 997 * @rel_vmvf_num: Relative ID of VF/VM 998 * @ring: Tx ring to be stopped 999 * @txq_meta: Meta data of Tx ring to be stopped 1000 */ 1001 int 1002 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1003 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1004 struct ice_txq_meta *txq_meta) 1005 { 1006 struct ice_pf *pf = vsi->back; 1007 struct ice_q_vector *q_vector; 1008 struct ice_hw *hw = &pf->hw; 1009 int status; 1010 u32 val; 1011 1012 /* clear cause_ena bit for disabled queues */ 1013 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1014 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1015 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1016 1017 /* software is expected to wait for 100 ns */ 1018 ndelay(100); 1019 1020 /* trigger a software interrupt for the vector 1021 * associated to the queue to schedule NAPI handler 1022 */ 1023 q_vector = ring->q_vector; 1024 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1025 ice_trigger_sw_intr(hw, q_vector); 1026 1027 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1028 txq_meta->tc, 1, &txq_meta->q_handle, 1029 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1030 rel_vmvf_num, NULL); 1031 1032 /* if the disable queue command was exercised during an 1033 * active reset flow, -EBUSY is returned. 1034 * This is not an error as the reset operation disables 1035 * queues at the hardware level anyway. 1036 */ 1037 if (status == -EBUSY) { 1038 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1039 } else if (status == -ENOENT) { 1040 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1041 } else if (status) { 1042 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1043 status); 1044 return status; 1045 } 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1052 * @vsi: VSI that ring belongs to 1053 * @ring: ring that txq_meta will be based on 1054 * @txq_meta: a helper struct that wraps Tx queue's information 1055 * 1056 * Set up a helper struct that will contain all the necessary fields that 1057 * are needed for stopping Tx queue 1058 */ 1059 void 1060 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1061 struct ice_txq_meta *txq_meta) 1062 { 1063 struct ice_channel *ch = ring->ch; 1064 u8 tc; 1065 1066 if (IS_ENABLED(CONFIG_DCB)) 1067 tc = ring->dcb_tc; 1068 else 1069 tc = 0; 1070 1071 txq_meta->q_id = ring->reg_idx; 1072 txq_meta->q_teid = ring->txq_teid; 1073 txq_meta->q_handle = ring->q_handle; 1074 if (ch) { 1075 txq_meta->vsi_idx = ch->ch_vsi->idx; 1076 txq_meta->tc = 0; 1077 } else { 1078 txq_meta->vsi_idx = vsi->idx; 1079 txq_meta->tc = tc; 1080 } 1081 } 1082