xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 235f0da3274690f540aa53fccf77d433e344e4b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 	q_vector->vf_reg_idx = q_vector->irq.index;
149 
150 	/* only set affinity_mask if the CPU is online */
151 	if (cpu_online(v_idx))
152 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153 
154 	/* This will not be called in the driver load path because the netdev
155 	 * will not be created yet. All other cases with register the NAPI
156 	 * handler here (i.e. resume, reset/rebuild, etc.)
157 	 */
158 	if (vsi->netdev)
159 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
160 
161 out:
162 	/* tie q_vector and VSI together */
163 	vsi->q_vectors[v_idx] = q_vector;
164 
165 	return 0;
166 
167 err_free_q_vector:
168 	kfree(q_vector);
169 
170 	return err;
171 }
172 
173 /**
174  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
175  * @vsi: VSI having the memory freed
176  * @v_idx: index of the vector to be freed
177  */
178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
179 {
180 	struct ice_q_vector *q_vector;
181 	struct ice_pf *pf = vsi->back;
182 	struct ice_tx_ring *tx_ring;
183 	struct ice_rx_ring *rx_ring;
184 	struct device *dev;
185 
186 	dev = ice_pf_to_dev(pf);
187 	if (!vsi->q_vectors[v_idx]) {
188 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
189 		return;
190 	}
191 	q_vector = vsi->q_vectors[v_idx];
192 
193 	ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
194 		tx_ring->q_vector = NULL;
195 
196 	ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
197 		rx_ring->q_vector = NULL;
198 
199 	/* only VSI with an associated netdev is set up with NAPI */
200 	if (vsi->netdev)
201 		netif_napi_del(&q_vector->napi);
202 
203 	/* release MSIX interrupt if q_vector had interrupt allocated */
204 	if (q_vector->irq.index < 0)
205 		goto free_q_vector;
206 
207 	/* only free last VF ctrl vsi interrupt */
208 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
209 	    ice_get_vf_ctrl_vsi(pf, vsi))
210 		goto free_q_vector;
211 
212 	ice_free_irq(pf, q_vector->irq);
213 
214 free_q_vector:
215 	kfree(q_vector);
216 	vsi->q_vectors[v_idx] = NULL;
217 }
218 
219 /**
220  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
221  * @hw: board specific structure
222  */
223 static void ice_cfg_itr_gran(struct ice_hw *hw)
224 {
225 	u32 regval = rd32(hw, GLINT_CTL);
226 
227 	/* no need to update global register if ITR gran is already set */
228 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
229 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
230 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
231 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
232 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
233 		return;
234 
235 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
236 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
237 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
238 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
239 	wr32(hw, GLINT_CTL, regval);
240 }
241 
242 /**
243  * ice_calc_txq_handle - calculate the queue handle
244  * @vsi: VSI that ring belongs to
245  * @ring: ring to get the absolute queue index
246  * @tc: traffic class number
247  */
248 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
249 {
250 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
251 
252 	if (ring->ch)
253 		return ring->q_index - ring->ch->base_q;
254 
255 	/* Idea here for calculation is that we subtract the number of queue
256 	 * count from TC that ring belongs to from it's absolute queue index
257 	 * and as a result we get the queue's index within TC.
258 	 */
259 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
260 }
261 
262 /**
263  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
264  * @ring: The Tx ring to configure
265  *
266  * This enables/disables XPS for a given Tx descriptor ring
267  * based on the TCs enabled for the VSI that ring belongs to.
268  */
269 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
270 {
271 	if (!ring->q_vector || !ring->netdev)
272 		return;
273 
274 	/* We only initialize XPS once, so as not to overwrite user settings */
275 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
276 		return;
277 
278 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
279 			    ring->q_index);
280 }
281 
282 /**
283  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
284  * @ring: The Tx ring to configure
285  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
286  * @pf_q: queue index in the PF space
287  *
288  * Configure the Tx descriptor ring in TLAN context.
289  */
290 static void
291 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
292 {
293 	struct ice_vsi *vsi = ring->vsi;
294 	struct ice_hw *hw = &vsi->back->hw;
295 
296 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
297 
298 	tlan_ctx->port_num = vsi->port_info->lport;
299 
300 	/* Transmit Queue Length */
301 	tlan_ctx->qlen = ring->count;
302 
303 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
304 
305 	/* PF number */
306 	tlan_ctx->pf_num = hw->pf_id;
307 
308 	/* queue belongs to a specific VSI type
309 	 * VF / VM index should be programmed per vmvf_type setting:
310 	 * for vmvf_type = VF, it is VF number between 0-256
311 	 * for vmvf_type = VM, it is VM number between 0-767
312 	 * for PF or EMP this field should be set to zero
313 	 */
314 	switch (vsi->type) {
315 	case ICE_VSI_LB:
316 	case ICE_VSI_CTRL:
317 	case ICE_VSI_PF:
318 		if (ring->ch)
319 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
320 		else
321 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
322 		break;
323 	case ICE_VSI_VF:
324 		/* Firmware expects vmvf_num to be absolute VF ID */
325 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
326 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
327 		break;
328 	default:
329 		return;
330 	}
331 
332 	/* make sure the context is associated with the right VSI */
333 	if (ring->ch)
334 		tlan_ctx->src_vsi = ring->ch->vsi_num;
335 	else
336 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
337 
338 	/* Restrict Tx timestamps to the PF VSI */
339 	switch (vsi->type) {
340 	case ICE_VSI_PF:
341 		tlan_ctx->tsyn_ena = 1;
342 		break;
343 	default:
344 		break;
345 	}
346 
347 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
348 	tlan_ctx->tso_qnum = pf_q;
349 
350 	/* Legacy or Advanced Host Interface:
351 	 * 0: Advanced Host Interface
352 	 * 1: Legacy Host Interface
353 	 */
354 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
355 }
356 
357 /**
358  * ice_rx_offset - Return expected offset into page to access data
359  * @rx_ring: Ring we are requesting offset of
360  *
361  * Returns the offset value for ring into the data buffer.
362  */
363 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
364 {
365 	if (ice_ring_uses_build_skb(rx_ring))
366 		return ICE_SKB_PAD;
367 	return 0;
368 }
369 
370 /**
371  * ice_setup_rx_ctx - Configure a receive ring context
372  * @ring: The Rx ring to configure
373  *
374  * Configure the Rx descriptor ring in RLAN context.
375  */
376 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
377 {
378 	struct ice_vsi *vsi = ring->vsi;
379 	u32 rxdid = ICE_RXDID_FLEX_NIC;
380 	struct ice_rlan_ctx rlan_ctx;
381 	struct ice_hw *hw;
382 	u16 pf_q;
383 	int err;
384 
385 	hw = &vsi->back->hw;
386 
387 	/* what is Rx queue number in global space of 2K Rx queues */
388 	pf_q = vsi->rxq_map[ring->q_index];
389 
390 	/* clear the context structure first */
391 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
392 
393 	/* Receive Queue Base Address.
394 	 * Indicates the starting address of the descriptor queue defined in
395 	 * 128 Byte units.
396 	 */
397 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
398 
399 	rlan_ctx.qlen = ring->count;
400 
401 	/* Receive Packet Data Buffer Size.
402 	 * The Packet Data Buffer Size is defined in 128 byte units.
403 	 */
404 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
405 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
406 
407 	/* use 32 byte descriptors */
408 	rlan_ctx.dsize = 1;
409 
410 	/* Strip the Ethernet CRC bytes before the packet is posted to host
411 	 * memory.
412 	 */
413 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
414 
415 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
416 	 * and it needs to remain 1 for non-DVM capable configurations to not
417 	 * break backward compatibility for VF drivers. Setting this field to 0
418 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
419 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
420 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
421 	 * check for the tag
422 	 */
423 	if (ice_is_dvm_ena(hw))
424 		if (vsi->type == ICE_VSI_VF &&
425 		    ice_vf_is_port_vlan_ena(vsi->vf))
426 			rlan_ctx.l2tsel = 1;
427 		else
428 			rlan_ctx.l2tsel = 0;
429 	else
430 		rlan_ctx.l2tsel = 1;
431 
432 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
433 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
434 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
435 
436 	/* This controls whether VLAN is stripped from inner headers
437 	 * The VLAN in the inner L2 header is stripped to the receive
438 	 * descriptor if enabled by this flag.
439 	 */
440 	rlan_ctx.showiv = 0;
441 
442 	/* Max packet size for this queue - must not be set to a larger value
443 	 * than 5 x DBUF
444 	 */
445 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
446 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
447 
448 	/* Rx queue threshold in units of 64 */
449 	rlan_ctx.lrxqthresh = 1;
450 
451 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
452 	 * metadata and flags to allow redirecting to PR netdev
453 	 */
454 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
455 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
456 		rxdid = ICE_RXDID_FLEX_NIC_2;
457 	}
458 
459 	/* Enable Flexible Descriptors in the queue context which
460 	 * allows this driver to select a specific receive descriptor format
461 	 * increasing context priority to pick up profile ID; default is 0x01;
462 	 * setting to 0x03 to ensure profile is programming if prev context is
463 	 * of same priority
464 	 */
465 	if (vsi->type != ICE_VSI_VF)
466 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
467 	else
468 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
469 					false);
470 
471 	/* Absolute queue number out of 2K needs to be passed */
472 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
473 	if (err) {
474 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
475 			pf_q, err);
476 		return -EIO;
477 	}
478 
479 	if (vsi->type == ICE_VSI_VF)
480 		return 0;
481 
482 	/* configure Rx buffer alignment */
483 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
484 		ice_clear_ring_build_skb_ena(ring);
485 	else
486 		ice_set_ring_build_skb_ena(ring);
487 
488 	ring->rx_offset = ice_rx_offset(ring);
489 
490 	/* init queue specific tail register */
491 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
492 	writel(0, ring->tail);
493 
494 	return 0;
495 }
496 
497 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
498 {
499 	void *ctx_ptr = &ring->pkt_ctx;
500 	struct xsk_cb_desc desc = {};
501 
502 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
503 	desc.src = &ctx_ptr;
504 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
505 		   sizeof(struct xdp_buff);
506 	desc.bytes = sizeof(ctx_ptr);
507 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
508 }
509 
510 /**
511  * ice_get_frame_sz - calculate xdp_buff::frame_sz
512  * @rx_ring: the ring being configured
513  *
514  * Return frame size based on underlying PAGE_SIZE
515  */
516 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
517 {
518 	unsigned int frame_sz;
519 
520 #if (PAGE_SIZE >= 8192)
521 	frame_sz = rx_ring->rx_buf_len;
522 #else
523 	frame_sz = ice_rx_pg_size(rx_ring) / 2;
524 #endif
525 
526 	return frame_sz;
527 }
528 
529 /**
530  * ice_vsi_cfg_rxq - Configure an Rx queue
531  * @ring: the ring being configured
532  *
533  * Return 0 on success and a negative value on error.
534  */
535 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
536 {
537 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
538 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
539 	int err;
540 
541 	ring->rx_buf_len = ring->vsi->rx_buf_len;
542 
543 	if (ring->vsi->type == ICE_VSI_PF) {
544 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
545 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
546 						 ring->q_index,
547 						 ring->q_vector->napi.napi_id,
548 						 ring->rx_buf_len);
549 			if (err)
550 				return err;
551 		}
552 
553 		ice_rx_xsk_pool(ring);
554 		if (ring->xsk_pool) {
555 			xdp_rxq_info_unreg(&ring->xdp_rxq);
556 
557 			ring->rx_buf_len =
558 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
559 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
560 						 ring->q_index,
561 						 ring->q_vector->napi.napi_id,
562 						 ring->rx_buf_len);
563 			if (err)
564 				return err;
565 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
566 							 MEM_TYPE_XSK_BUFF_POOL,
567 							 NULL);
568 			if (err)
569 				return err;
570 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
571 			ice_xsk_pool_fill_cb(ring);
572 
573 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
574 				 ring->q_index);
575 		} else {
576 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
577 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
578 							 ring->q_index,
579 							 ring->q_vector->napi.napi_id,
580 							 ring->rx_buf_len);
581 				if (err)
582 					return err;
583 			}
584 
585 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
586 							 MEM_TYPE_PAGE_SHARED,
587 							 NULL);
588 			if (err)
589 				return err;
590 		}
591 	}
592 
593 	xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
594 	ring->xdp.data = NULL;
595 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
596 	err = ice_setup_rx_ctx(ring);
597 	if (err) {
598 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
599 			ring->q_index, err);
600 		return err;
601 	}
602 
603 	if (ring->xsk_pool) {
604 		bool ok;
605 
606 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
607 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
608 				 num_bufs, ring->q_index);
609 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
610 
611 			return 0;
612 		}
613 
614 		ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
615 		if (!ok) {
616 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
617 
618 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
619 				 ring->q_index, pf_q);
620 		}
621 
622 		return 0;
623 	}
624 
625 	ice_alloc_rx_bufs(ring, num_bufs);
626 
627 	return 0;
628 }
629 
630 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
631 {
632 	if (q_idx >= vsi->num_rxq)
633 		return -EINVAL;
634 
635 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
636 }
637 
638 /**
639  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
640  * @vsi: VSI
641  */
642 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
643 {
644 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
645 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
646 		vsi->rx_buf_len = ICE_RXBUF_1664;
647 #if (PAGE_SIZE < 8192)
648 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
649 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
650 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
651 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
652 #endif
653 	} else {
654 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
655 		vsi->rx_buf_len = ICE_RXBUF_3072;
656 	}
657 }
658 
659 /**
660  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
661  * @vsi: the VSI being configured
662  *
663  * Return 0 on success and a negative value on error
664  * Configure the Rx VSI for operation.
665  */
666 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
667 {
668 	u16 i;
669 
670 	if (vsi->type == ICE_VSI_VF)
671 		goto setup_rings;
672 
673 	ice_vsi_cfg_frame_size(vsi);
674 setup_rings:
675 	/* set up individual rings */
676 	ice_for_each_rxq(vsi, i) {
677 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
678 
679 		if (err)
680 			return err;
681 	}
682 
683 	return 0;
684 }
685 
686 /**
687  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
688  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
689  *
690  * This function first tries to find contiguous space. If it is not successful,
691  * it tries with the scatter approach.
692  *
693  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
694  */
695 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
696 {
697 	int ret = 0;
698 
699 	ret = __ice_vsi_get_qs_contig(qs_cfg);
700 	if (ret) {
701 		/* contig failed, so try with scatter approach */
702 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
703 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
704 					qs_cfg->scatter_count);
705 		ret = __ice_vsi_get_qs_sc(qs_cfg);
706 	}
707 	return ret;
708 }
709 
710 /**
711  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
712  * @vsi: the VSI being configured
713  * @ena: start or stop the Rx ring
714  * @rxq_idx: 0-based Rx queue index for the VSI passed in
715  * @wait: wait or don't wait for configuration to finish in hardware
716  *
717  * Return 0 on success and negative on error.
718  */
719 int
720 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
721 {
722 	int pf_q = vsi->rxq_map[rxq_idx];
723 	struct ice_pf *pf = vsi->back;
724 	struct ice_hw *hw = &pf->hw;
725 	u32 rx_reg;
726 
727 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
728 
729 	/* Skip if the queue is already in the requested state */
730 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
731 		return 0;
732 
733 	/* turn on/off the queue */
734 	if (ena)
735 		rx_reg |= QRX_CTRL_QENA_REQ_M;
736 	else
737 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
738 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
739 
740 	if (!wait)
741 		return 0;
742 
743 	ice_flush(hw);
744 	return ice_pf_rxq_wait(pf, pf_q, ena);
745 }
746 
747 /**
748  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
749  * @vsi: the VSI being configured
750  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
751  * @rxq_idx: 0-based Rx queue index for the VSI passed in
752  *
753  * This routine will wait for the given Rx queue of the VSI to reach the
754  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
755  * the requested state after multiple retries; else will return 0 in case of
756  * success.
757  */
758 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
759 {
760 	int pf_q = vsi->rxq_map[rxq_idx];
761 	struct ice_pf *pf = vsi->back;
762 
763 	return ice_pf_rxq_wait(pf, pf_q, ena);
764 }
765 
766 /**
767  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
768  * @vsi: the VSI being configured
769  *
770  * We allocate one q_vector per queue interrupt. If allocation fails we
771  * return -ENOMEM.
772  */
773 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
774 {
775 	struct device *dev = ice_pf_to_dev(vsi->back);
776 	u16 v_idx;
777 	int err;
778 
779 	if (vsi->q_vectors[0]) {
780 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
781 		return -EEXIST;
782 	}
783 
784 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
785 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
786 		if (err)
787 			goto err_out;
788 	}
789 
790 	return 0;
791 
792 err_out:
793 	while (v_idx--)
794 		ice_free_q_vector(vsi, v_idx);
795 
796 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
797 		vsi->num_q_vectors, vsi->vsi_num, err);
798 	vsi->num_q_vectors = 0;
799 	return err;
800 }
801 
802 /**
803  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
804  * @vsi: the VSI being configured
805  *
806  * This function maps descriptor rings to the queue-specific vectors allotted
807  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
808  * and Rx rings to the vector as "efficiently" as possible.
809  */
810 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
811 {
812 	int q_vectors = vsi->num_q_vectors;
813 	u16 tx_rings_rem, rx_rings_rem;
814 	int v_id;
815 
816 	/* initially assigning remaining rings count to VSIs num queue value */
817 	tx_rings_rem = vsi->num_txq;
818 	rx_rings_rem = vsi->num_rxq;
819 
820 	for (v_id = 0; v_id < q_vectors; v_id++) {
821 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
822 		u8 tx_rings_per_v, rx_rings_per_v;
823 		u16 q_id, q_base;
824 
825 		/* Tx rings mapping to vector */
826 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
827 						  q_vectors - v_id);
828 		q_vector->num_ring_tx = tx_rings_per_v;
829 		q_vector->tx.tx_ring = NULL;
830 		q_vector->tx.itr_idx = ICE_TX_ITR;
831 		q_base = vsi->num_txq - tx_rings_rem;
832 
833 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
834 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
835 
836 			tx_ring->q_vector = q_vector;
837 			tx_ring->next = q_vector->tx.tx_ring;
838 			q_vector->tx.tx_ring = tx_ring;
839 		}
840 		tx_rings_rem -= tx_rings_per_v;
841 
842 		/* Rx rings mapping to vector */
843 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
844 						  q_vectors - v_id);
845 		q_vector->num_ring_rx = rx_rings_per_v;
846 		q_vector->rx.rx_ring = NULL;
847 		q_vector->rx.itr_idx = ICE_RX_ITR;
848 		q_base = vsi->num_rxq - rx_rings_rem;
849 
850 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
851 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
852 
853 			rx_ring->q_vector = q_vector;
854 			rx_ring->next = q_vector->rx.rx_ring;
855 			q_vector->rx.rx_ring = rx_ring;
856 		}
857 		rx_rings_rem -= rx_rings_per_v;
858 	}
859 
860 	if (ice_is_xdp_ena_vsi(vsi))
861 		ice_map_xdp_rings(vsi);
862 }
863 
864 /**
865  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
866  * @vsi: the VSI having memory freed
867  */
868 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
869 {
870 	int v_idx;
871 
872 	ice_for_each_q_vector(vsi, v_idx)
873 		ice_free_q_vector(vsi, v_idx);
874 
875 	vsi->num_q_vectors = 0;
876 }
877 
878 /**
879  * ice_vsi_cfg_txq - Configure single Tx queue
880  * @vsi: the VSI that queue belongs to
881  * @ring: Tx ring to be configured
882  * @qg_buf: queue group buffer
883  */
884 static int
885 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
886 		struct ice_aqc_add_tx_qgrp *qg_buf)
887 {
888 	u8 buf_len = struct_size(qg_buf, txqs, 1);
889 	struct ice_tlan_ctx tlan_ctx = { 0 };
890 	struct ice_aqc_add_txqs_perq *txq;
891 	struct ice_channel *ch = ring->ch;
892 	struct ice_pf *pf = vsi->back;
893 	struct ice_hw *hw = &pf->hw;
894 	int status;
895 	u16 pf_q;
896 	u8 tc;
897 
898 	/* Configure XPS */
899 	ice_cfg_xps_tx_ring(ring);
900 
901 	pf_q = ring->reg_idx;
902 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
903 	/* copy context contents into the qg_buf */
904 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
905 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
906 		    ice_tlan_ctx_info);
907 
908 	/* init queue specific tail reg. It is referred as
909 	 * transmit comm scheduler queue doorbell.
910 	 */
911 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
912 
913 	if (IS_ENABLED(CONFIG_DCB))
914 		tc = ring->dcb_tc;
915 	else
916 		tc = 0;
917 
918 	/* Add unique software queue handle of the Tx queue per
919 	 * TC into the VSI Tx ring
920 	 */
921 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
922 
923 	if (ch)
924 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
925 					 ring->q_handle, 1, qg_buf, buf_len,
926 					 NULL);
927 	else
928 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
929 					 ring->q_handle, 1, qg_buf, buf_len,
930 					 NULL);
931 	if (status) {
932 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
933 			status);
934 		return status;
935 	}
936 
937 	/* Add Tx Queue TEID into the VSI Tx ring from the
938 	 * response. This will complete configuring and
939 	 * enabling the queue.
940 	 */
941 	txq = &qg_buf->txqs[0];
942 	if (pf_q == le16_to_cpu(txq->txq_id))
943 		ring->txq_teid = le32_to_cpu(txq->q_teid);
944 
945 	return 0;
946 }
947 
948 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
949 			   u16 q_idx)
950 {
951 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
952 
953 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
954 		return -EINVAL;
955 
956 	qg_buf->num_txqs = 1;
957 
958 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
959 }
960 
961 /**
962  * ice_vsi_cfg_txqs - Configure the VSI for Tx
963  * @vsi: the VSI being configured
964  * @rings: Tx ring array to be configured
965  * @count: number of Tx ring array elements
966  *
967  * Return 0 on success and a negative value on error
968  * Configure the Tx VSI for operation.
969  */
970 static int
971 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
972 {
973 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
974 	int err = 0;
975 	u16 q_idx;
976 
977 	qg_buf->num_txqs = 1;
978 
979 	for (q_idx = 0; q_idx < count; q_idx++) {
980 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
981 		if (err)
982 			break;
983 	}
984 
985 	return err;
986 }
987 
988 /**
989  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
990  * @vsi: the VSI being configured
991  *
992  * Return 0 on success and a negative value on error
993  * Configure the Tx VSI for operation.
994  */
995 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
996 {
997 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
998 }
999 
1000 /**
1001  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1002  * @vsi: the VSI being configured
1003  *
1004  * Return 0 on success and a negative value on error
1005  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1006  */
1007 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1008 {
1009 	int ret;
1010 	int i;
1011 
1012 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1013 	if (ret)
1014 		return ret;
1015 
1016 	ice_for_each_rxq(vsi, i)
1017 		ice_tx_xsk_pool(vsi, i);
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * ice_cfg_itr - configure the initial interrupt throttle values
1024  * @hw: pointer to the HW structure
1025  * @q_vector: interrupt vector that's being configured
1026  *
1027  * Configure interrupt throttling values for the ring containers that are
1028  * associated with the interrupt vector passed in.
1029  */
1030 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1031 {
1032 	ice_cfg_itr_gran(hw);
1033 
1034 	if (q_vector->num_ring_rx)
1035 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1036 
1037 	if (q_vector->num_ring_tx)
1038 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1039 
1040 	ice_write_intrl(q_vector, q_vector->intrl);
1041 }
1042 
1043 /**
1044  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1045  * @vsi: the VSI being configured
1046  * @txq: Tx queue being mapped to MSI-X vector
1047  * @msix_idx: MSI-X vector index within the function
1048  * @itr_idx: ITR index of the interrupt cause
1049  *
1050  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1051  * within the function space.
1052  */
1053 void
1054 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1055 {
1056 	struct ice_pf *pf = vsi->back;
1057 	struct ice_hw *hw = &pf->hw;
1058 	u32 val;
1059 
1060 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1061 
1062 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1063 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1064 
1065 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1066 	if (ice_is_xdp_ena_vsi(vsi)) {
1067 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1068 
1069 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1070 		     val);
1071 	}
1072 	ice_flush(hw);
1073 }
1074 
1075 /**
1076  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1077  * @vsi: the VSI being configured
1078  * @rxq: Rx queue being mapped to MSI-X vector
1079  * @msix_idx: MSI-X vector index within the function
1080  * @itr_idx: ITR index of the interrupt cause
1081  *
1082  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1083  * within the function space.
1084  */
1085 void
1086 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1087 {
1088 	struct ice_pf *pf = vsi->back;
1089 	struct ice_hw *hw = &pf->hw;
1090 	u32 val;
1091 
1092 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1093 
1094 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1095 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1096 
1097 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1098 
1099 	ice_flush(hw);
1100 }
1101 
1102 /**
1103  * ice_trigger_sw_intr - trigger a software interrupt
1104  * @hw: pointer to the HW structure
1105  * @q_vector: interrupt vector to trigger the software interrupt for
1106  */
1107 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1108 {
1109 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1110 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1111 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1112 	     GLINT_DYN_CTL_INTENA_M);
1113 }
1114 
1115 /**
1116  * ice_vsi_stop_tx_ring - Disable single Tx ring
1117  * @vsi: the VSI being configured
1118  * @rst_src: reset source
1119  * @rel_vmvf_num: Relative ID of VF/VM
1120  * @ring: Tx ring to be stopped
1121  * @txq_meta: Meta data of Tx ring to be stopped
1122  */
1123 int
1124 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1125 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1126 		     struct ice_txq_meta *txq_meta)
1127 {
1128 	struct ice_pf *pf = vsi->back;
1129 	struct ice_q_vector *q_vector;
1130 	struct ice_hw *hw = &pf->hw;
1131 	int status;
1132 	u32 val;
1133 
1134 	/* clear cause_ena bit for disabled queues */
1135 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1136 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1137 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1138 
1139 	/* software is expected to wait for 100 ns */
1140 	ndelay(100);
1141 
1142 	/* trigger a software interrupt for the vector
1143 	 * associated to the queue to schedule NAPI handler
1144 	 */
1145 	q_vector = ring->q_vector;
1146 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1147 		ice_trigger_sw_intr(hw, q_vector);
1148 
1149 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1150 				 txq_meta->tc, 1, &txq_meta->q_handle,
1151 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1152 				 rel_vmvf_num, NULL);
1153 
1154 	/* if the disable queue command was exercised during an
1155 	 * active reset flow, -EBUSY is returned.
1156 	 * This is not an error as the reset operation disables
1157 	 * queues at the hardware level anyway.
1158 	 */
1159 	if (status == -EBUSY) {
1160 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1161 	} else if (status == -ENOENT) {
1162 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1163 	} else if (status) {
1164 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1165 			status);
1166 		return status;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1174  * @vsi: VSI that ring belongs to
1175  * @ring: ring that txq_meta will be based on
1176  * @txq_meta: a helper struct that wraps Tx queue's information
1177  *
1178  * Set up a helper struct that will contain all the necessary fields that
1179  * are needed for stopping Tx queue
1180  */
1181 void
1182 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1183 		  struct ice_txq_meta *txq_meta)
1184 {
1185 	struct ice_channel *ch = ring->ch;
1186 	u8 tc;
1187 
1188 	if (IS_ENABLED(CONFIG_DCB))
1189 		tc = ring->dcb_tc;
1190 	else
1191 		tc = 0;
1192 
1193 	txq_meta->q_id = ring->reg_idx;
1194 	txq_meta->q_teid = ring->txq_teid;
1195 	txq_meta->q_handle = ring->q_handle;
1196 	if (ch) {
1197 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1198 		txq_meta->tc = 0;
1199 	} else {
1200 		txq_meta->vsi_idx = vsi->idx;
1201 		txq_meta->tc = tc;
1202 	}
1203 }
1204