1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 q_vector->vf_reg_idx = q_vector->irq.index; 149 150 /* only set affinity_mask if the CPU is online */ 151 if (cpu_online(v_idx)) 152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 153 154 /* This will not be called in the driver load path because the netdev 155 * will not be created yet. All other cases with register the NAPI 156 * handler here (i.e. resume, reset/rebuild, etc.) 157 */ 158 if (vsi->netdev) 159 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 160 161 out: 162 /* tie q_vector and VSI together */ 163 vsi->q_vectors[v_idx] = q_vector; 164 165 return 0; 166 167 err_free_q_vector: 168 kfree(q_vector); 169 170 return err; 171 } 172 173 /** 174 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 175 * @vsi: VSI having the memory freed 176 * @v_idx: index of the vector to be freed 177 */ 178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 179 { 180 struct ice_q_vector *q_vector; 181 struct ice_pf *pf = vsi->back; 182 struct ice_tx_ring *tx_ring; 183 struct ice_rx_ring *rx_ring; 184 struct device *dev; 185 186 dev = ice_pf_to_dev(pf); 187 if (!vsi->q_vectors[v_idx]) { 188 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 189 return; 190 } 191 q_vector = vsi->q_vectors[v_idx]; 192 193 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 194 ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX, 195 NULL); 196 tx_ring->q_vector = NULL; 197 } 198 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 199 ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX, 200 NULL); 201 rx_ring->q_vector = NULL; 202 } 203 204 /* only VSI with an associated netdev is set up with NAPI */ 205 if (vsi->netdev) 206 netif_napi_del(&q_vector->napi); 207 208 /* release MSIX interrupt if q_vector had interrupt allocated */ 209 if (q_vector->irq.index < 0) 210 goto free_q_vector; 211 212 /* only free last VF ctrl vsi interrupt */ 213 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 214 ice_get_vf_ctrl_vsi(pf, vsi)) 215 goto free_q_vector; 216 217 ice_free_irq(pf, q_vector->irq); 218 219 free_q_vector: 220 kfree(q_vector); 221 vsi->q_vectors[v_idx] = NULL; 222 } 223 224 /** 225 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 226 * @hw: board specific structure 227 */ 228 static void ice_cfg_itr_gran(struct ice_hw *hw) 229 { 230 u32 regval = rd32(hw, GLINT_CTL); 231 232 /* no need to update global register if ITR gran is already set */ 233 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 234 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 235 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 236 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 237 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 238 return; 239 240 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 241 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 242 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 243 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 244 wr32(hw, GLINT_CTL, regval); 245 } 246 247 /** 248 * ice_calc_txq_handle - calculate the queue handle 249 * @vsi: VSI that ring belongs to 250 * @ring: ring to get the absolute queue index 251 * @tc: traffic class number 252 */ 253 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 254 { 255 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 256 257 if (ring->ch) 258 return ring->q_index - ring->ch->base_q; 259 260 /* Idea here for calculation is that we subtract the number of queue 261 * count from TC that ring belongs to from it's absolute queue index 262 * and as a result we get the queue's index within TC. 263 */ 264 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 265 } 266 267 /** 268 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 269 * @ring: The Tx ring to configure 270 * 271 * This enables/disables XPS for a given Tx descriptor ring 272 * based on the TCs enabled for the VSI that ring belongs to. 273 */ 274 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 275 { 276 if (!ring->q_vector || !ring->netdev) 277 return; 278 279 /* We only initialize XPS once, so as not to overwrite user settings */ 280 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 281 return; 282 283 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 284 ring->q_index); 285 } 286 287 /** 288 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 289 * @ring: The Tx ring to configure 290 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 291 * @pf_q: queue index in the PF space 292 * 293 * Configure the Tx descriptor ring in TLAN context. 294 */ 295 static void 296 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 297 { 298 struct ice_vsi *vsi = ring->vsi; 299 struct ice_hw *hw = &vsi->back->hw; 300 301 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 302 303 tlan_ctx->port_num = vsi->port_info->lport; 304 305 /* Transmit Queue Length */ 306 tlan_ctx->qlen = ring->count; 307 308 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 309 310 /* PF number */ 311 tlan_ctx->pf_num = hw->pf_id; 312 313 /* queue belongs to a specific VSI type 314 * VF / VM index should be programmed per vmvf_type setting: 315 * for vmvf_type = VF, it is VF number between 0-256 316 * for vmvf_type = VM, it is VM number between 0-767 317 * for PF or EMP this field should be set to zero 318 */ 319 switch (vsi->type) { 320 case ICE_VSI_LB: 321 case ICE_VSI_CTRL: 322 case ICE_VSI_PF: 323 if (ring->ch) 324 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 325 else 326 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 327 break; 328 case ICE_VSI_VF: 329 /* Firmware expects vmvf_num to be absolute VF ID */ 330 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 331 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 332 break; 333 default: 334 return; 335 } 336 337 /* make sure the context is associated with the right VSI */ 338 if (ring->ch) 339 tlan_ctx->src_vsi = ring->ch->vsi_num; 340 else 341 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 342 343 /* Restrict Tx timestamps to the PF VSI */ 344 switch (vsi->type) { 345 case ICE_VSI_PF: 346 tlan_ctx->tsyn_ena = 1; 347 break; 348 default: 349 break; 350 } 351 352 tlan_ctx->tso_ena = ICE_TX_LEGACY; 353 tlan_ctx->tso_qnum = pf_q; 354 355 /* Legacy or Advanced Host Interface: 356 * 0: Advanced Host Interface 357 * 1: Legacy Host Interface 358 */ 359 tlan_ctx->legacy_int = ICE_TX_LEGACY; 360 } 361 362 /** 363 * ice_rx_offset - Return expected offset into page to access data 364 * @rx_ring: Ring we are requesting offset of 365 * 366 * Returns the offset value for ring into the data buffer. 367 */ 368 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 369 { 370 if (ice_ring_uses_build_skb(rx_ring)) 371 return ICE_SKB_PAD; 372 return 0; 373 } 374 375 /** 376 * ice_setup_rx_ctx - Configure a receive ring context 377 * @ring: The Rx ring to configure 378 * 379 * Configure the Rx descriptor ring in RLAN context. 380 */ 381 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 382 { 383 struct ice_vsi *vsi = ring->vsi; 384 u32 rxdid = ICE_RXDID_FLEX_NIC; 385 struct ice_rlan_ctx rlan_ctx; 386 struct ice_hw *hw; 387 u16 pf_q; 388 int err; 389 390 hw = &vsi->back->hw; 391 392 /* what is Rx queue number in global space of 2K Rx queues */ 393 pf_q = vsi->rxq_map[ring->q_index]; 394 395 /* clear the context structure first */ 396 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 397 398 /* Receive Queue Base Address. 399 * Indicates the starting address of the descriptor queue defined in 400 * 128 Byte units. 401 */ 402 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 403 404 rlan_ctx.qlen = ring->count; 405 406 /* Receive Packet Data Buffer Size. 407 * The Packet Data Buffer Size is defined in 128 byte units. 408 */ 409 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 410 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 411 412 /* use 32 byte descriptors */ 413 rlan_ctx.dsize = 1; 414 415 /* Strip the Ethernet CRC bytes before the packet is posted to host 416 * memory. 417 */ 418 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 419 420 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 421 * and it needs to remain 1 for non-DVM capable configurations to not 422 * break backward compatibility for VF drivers. Setting this field to 0 423 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 424 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 425 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 426 * check for the tag 427 */ 428 if (ice_is_dvm_ena(hw)) 429 if (vsi->type == ICE_VSI_VF && 430 ice_vf_is_port_vlan_ena(vsi->vf)) 431 rlan_ctx.l2tsel = 1; 432 else 433 rlan_ctx.l2tsel = 0; 434 else 435 rlan_ctx.l2tsel = 1; 436 437 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 438 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 439 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 440 441 /* This controls whether VLAN is stripped from inner headers 442 * The VLAN in the inner L2 header is stripped to the receive 443 * descriptor if enabled by this flag. 444 */ 445 rlan_ctx.showiv = 0; 446 447 /* Max packet size for this queue - must not be set to a larger value 448 * than 5 x DBUF 449 */ 450 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 451 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 452 453 /* Rx queue threshold in units of 64 */ 454 rlan_ctx.lrxqthresh = 1; 455 456 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 457 * metadata and flags to allow redirecting to PR netdev 458 */ 459 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 460 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 461 rxdid = ICE_RXDID_FLEX_NIC_2; 462 } 463 464 /* Enable Flexible Descriptors in the queue context which 465 * allows this driver to select a specific receive descriptor format 466 * increasing context priority to pick up profile ID; default is 0x01; 467 * setting to 0x03 to ensure profile is programming if prev context is 468 * of same priority 469 */ 470 if (vsi->type != ICE_VSI_VF) 471 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 472 else 473 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 474 false); 475 476 /* Absolute queue number out of 2K needs to be passed */ 477 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 478 if (err) { 479 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 480 pf_q, err); 481 return -EIO; 482 } 483 484 if (vsi->type == ICE_VSI_VF) 485 return 0; 486 487 /* configure Rx buffer alignment */ 488 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 489 ice_clear_ring_build_skb_ena(ring); 490 else 491 ice_set_ring_build_skb_ena(ring); 492 493 ring->rx_offset = ice_rx_offset(ring); 494 495 /* init queue specific tail register */ 496 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 497 writel(0, ring->tail); 498 499 return 0; 500 } 501 502 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 503 { 504 void *ctx_ptr = &ring->pkt_ctx; 505 struct xsk_cb_desc desc = {}; 506 507 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 508 desc.src = &ctx_ptr; 509 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 510 sizeof(struct xdp_buff); 511 desc.bytes = sizeof(ctx_ptr); 512 xsk_pool_fill_cb(ring->xsk_pool, &desc); 513 } 514 515 /** 516 * ice_vsi_cfg_rxq - Configure an Rx queue 517 * @ring: the ring being configured 518 * 519 * Return 0 on success and a negative value on error. 520 */ 521 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 522 { 523 struct device *dev = ice_pf_to_dev(ring->vsi->back); 524 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 525 int err; 526 527 ring->rx_buf_len = ring->vsi->rx_buf_len; 528 529 if (ring->vsi->type == ICE_VSI_PF) { 530 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 531 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 532 ring->q_index, 533 ring->q_vector->napi.napi_id, 534 ring->rx_buf_len); 535 if (err) 536 return err; 537 } 538 539 ring->xsk_pool = ice_xsk_pool(ring); 540 if (ring->xsk_pool) { 541 xdp_rxq_info_unreg(&ring->xdp_rxq); 542 543 ring->rx_buf_len = 544 xsk_pool_get_rx_frame_size(ring->xsk_pool); 545 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 546 ring->q_index, 547 ring->q_vector->napi.napi_id, 548 ring->rx_buf_len); 549 if (err) 550 return err; 551 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 552 MEM_TYPE_XSK_BUFF_POOL, 553 NULL); 554 if (err) 555 return err; 556 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 557 ice_xsk_pool_fill_cb(ring); 558 559 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 560 ring->q_index); 561 } else { 562 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 563 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 564 ring->q_index, 565 ring->q_vector->napi.napi_id, 566 ring->rx_buf_len); 567 if (err) 568 return err; 569 } 570 571 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 572 MEM_TYPE_PAGE_SHARED, 573 NULL); 574 if (err) 575 return err; 576 } 577 } 578 579 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); 580 ring->xdp.data = NULL; 581 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 582 err = ice_setup_rx_ctx(ring); 583 if (err) { 584 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 585 ring->q_index, err); 586 return err; 587 } 588 589 if (ring->xsk_pool) { 590 bool ok; 591 592 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 593 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 594 num_bufs, ring->q_index); 595 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 596 597 return 0; 598 } 599 600 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 601 if (!ok) { 602 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 603 604 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 605 ring->q_index, pf_q); 606 } 607 608 return 0; 609 } 610 611 ice_alloc_rx_bufs(ring, num_bufs); 612 613 return 0; 614 } 615 616 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 617 { 618 if (q_idx >= vsi->num_rxq) 619 return -EINVAL; 620 621 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 622 } 623 624 /** 625 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 626 * @vsi: VSI 627 */ 628 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 629 { 630 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 631 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 632 vsi->rx_buf_len = ICE_RXBUF_1664; 633 #if (PAGE_SIZE < 8192) 634 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 635 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 636 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 637 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 638 #endif 639 } else { 640 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 641 vsi->rx_buf_len = ICE_RXBUF_3072; 642 } 643 } 644 645 /** 646 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 647 * @vsi: the VSI being configured 648 * 649 * Return 0 on success and a negative value on error 650 * Configure the Rx VSI for operation. 651 */ 652 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 653 { 654 u16 i; 655 656 if (vsi->type == ICE_VSI_VF) 657 goto setup_rings; 658 659 ice_vsi_cfg_frame_size(vsi); 660 setup_rings: 661 /* set up individual rings */ 662 ice_for_each_rxq(vsi, i) { 663 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 664 665 if (err) 666 return err; 667 } 668 669 return 0; 670 } 671 672 /** 673 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 674 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 675 * 676 * This function first tries to find contiguous space. If it is not successful, 677 * it tries with the scatter approach. 678 * 679 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 680 */ 681 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 682 { 683 int ret = 0; 684 685 ret = __ice_vsi_get_qs_contig(qs_cfg); 686 if (ret) { 687 /* contig failed, so try with scatter approach */ 688 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 689 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 690 qs_cfg->scatter_count); 691 ret = __ice_vsi_get_qs_sc(qs_cfg); 692 } 693 return ret; 694 } 695 696 /** 697 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 698 * @vsi: the VSI being configured 699 * @ena: start or stop the Rx ring 700 * @rxq_idx: 0-based Rx queue index for the VSI passed in 701 * @wait: wait or don't wait for configuration to finish in hardware 702 * 703 * Return 0 on success and negative on error. 704 */ 705 int 706 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 707 { 708 int pf_q = vsi->rxq_map[rxq_idx]; 709 struct ice_pf *pf = vsi->back; 710 struct ice_hw *hw = &pf->hw; 711 u32 rx_reg; 712 713 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 714 715 /* Skip if the queue is already in the requested state */ 716 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 717 return 0; 718 719 /* turn on/off the queue */ 720 if (ena) 721 rx_reg |= QRX_CTRL_QENA_REQ_M; 722 else 723 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 724 wr32(hw, QRX_CTRL(pf_q), rx_reg); 725 726 if (!wait) 727 return 0; 728 729 ice_flush(hw); 730 return ice_pf_rxq_wait(pf, pf_q, ena); 731 } 732 733 /** 734 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 735 * @vsi: the VSI being configured 736 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 737 * @rxq_idx: 0-based Rx queue index for the VSI passed in 738 * 739 * This routine will wait for the given Rx queue of the VSI to reach the 740 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 741 * the requested state after multiple retries; else will return 0 in case of 742 * success. 743 */ 744 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 745 { 746 int pf_q = vsi->rxq_map[rxq_idx]; 747 struct ice_pf *pf = vsi->back; 748 749 return ice_pf_rxq_wait(pf, pf_q, ena); 750 } 751 752 /** 753 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 754 * @vsi: the VSI being configured 755 * 756 * We allocate one q_vector per queue interrupt. If allocation fails we 757 * return -ENOMEM. 758 */ 759 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 760 { 761 struct device *dev = ice_pf_to_dev(vsi->back); 762 u16 v_idx; 763 int err; 764 765 if (vsi->q_vectors[0]) { 766 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 767 return -EEXIST; 768 } 769 770 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 771 err = ice_vsi_alloc_q_vector(vsi, v_idx); 772 if (err) 773 goto err_out; 774 } 775 776 return 0; 777 778 err_out: 779 while (v_idx--) 780 ice_free_q_vector(vsi, v_idx); 781 782 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 783 vsi->num_q_vectors, vsi->vsi_num, err); 784 vsi->num_q_vectors = 0; 785 return err; 786 } 787 788 /** 789 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 790 * @vsi: the VSI being configured 791 * 792 * This function maps descriptor rings to the queue-specific vectors allotted 793 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 794 * and Rx rings to the vector as "efficiently" as possible. 795 */ 796 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 797 { 798 int q_vectors = vsi->num_q_vectors; 799 u16 tx_rings_rem, rx_rings_rem; 800 int v_id; 801 802 /* initially assigning remaining rings count to VSIs num queue value */ 803 tx_rings_rem = vsi->num_txq; 804 rx_rings_rem = vsi->num_rxq; 805 806 for (v_id = 0; v_id < q_vectors; v_id++) { 807 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 808 u8 tx_rings_per_v, rx_rings_per_v; 809 u16 q_id, q_base; 810 811 /* Tx rings mapping to vector */ 812 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 813 q_vectors - v_id); 814 q_vector->num_ring_tx = tx_rings_per_v; 815 q_vector->tx.tx_ring = NULL; 816 q_vector->tx.itr_idx = ICE_TX_ITR; 817 q_base = vsi->num_txq - tx_rings_rem; 818 819 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 820 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 821 822 tx_ring->q_vector = q_vector; 823 tx_ring->next = q_vector->tx.tx_ring; 824 q_vector->tx.tx_ring = tx_ring; 825 } 826 tx_rings_rem -= tx_rings_per_v; 827 828 /* Rx rings mapping to vector */ 829 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 830 q_vectors - v_id); 831 q_vector->num_ring_rx = rx_rings_per_v; 832 q_vector->rx.rx_ring = NULL; 833 q_vector->rx.itr_idx = ICE_RX_ITR; 834 q_base = vsi->num_rxq - rx_rings_rem; 835 836 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 837 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 838 839 rx_ring->q_vector = q_vector; 840 rx_ring->next = q_vector->rx.rx_ring; 841 q_vector->rx.rx_ring = rx_ring; 842 } 843 rx_rings_rem -= rx_rings_per_v; 844 } 845 } 846 847 /** 848 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 849 * @vsi: the VSI having memory freed 850 */ 851 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 852 { 853 int v_idx; 854 855 ice_for_each_q_vector(vsi, v_idx) 856 ice_free_q_vector(vsi, v_idx); 857 858 vsi->num_q_vectors = 0; 859 } 860 861 /** 862 * ice_vsi_cfg_txq - Configure single Tx queue 863 * @vsi: the VSI that queue belongs to 864 * @ring: Tx ring to be configured 865 * @qg_buf: queue group buffer 866 */ 867 static int 868 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 869 struct ice_aqc_add_tx_qgrp *qg_buf) 870 { 871 u8 buf_len = struct_size(qg_buf, txqs, 1); 872 struct ice_tlan_ctx tlan_ctx = { 0 }; 873 struct ice_aqc_add_txqs_perq *txq; 874 struct ice_channel *ch = ring->ch; 875 struct ice_pf *pf = vsi->back; 876 struct ice_hw *hw = &pf->hw; 877 int status; 878 u16 pf_q; 879 u8 tc; 880 881 /* Configure XPS */ 882 ice_cfg_xps_tx_ring(ring); 883 884 pf_q = ring->reg_idx; 885 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 886 /* copy context contents into the qg_buf */ 887 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 888 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 889 ice_tlan_ctx_info); 890 891 /* init queue specific tail reg. It is referred as 892 * transmit comm scheduler queue doorbell. 893 */ 894 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 895 896 if (IS_ENABLED(CONFIG_DCB)) 897 tc = ring->dcb_tc; 898 else 899 tc = 0; 900 901 /* Add unique software queue handle of the Tx queue per 902 * TC into the VSI Tx ring 903 */ 904 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 905 906 if (ch) 907 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 908 ring->q_handle, 1, qg_buf, buf_len, 909 NULL); 910 else 911 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 912 ring->q_handle, 1, qg_buf, buf_len, 913 NULL); 914 if (status) { 915 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 916 status); 917 return status; 918 } 919 920 /* Add Tx Queue TEID into the VSI Tx ring from the 921 * response. This will complete configuring and 922 * enabling the queue. 923 */ 924 txq = &qg_buf->txqs[0]; 925 if (pf_q == le16_to_cpu(txq->txq_id)) 926 ring->txq_teid = le32_to_cpu(txq->q_teid); 927 928 return 0; 929 } 930 931 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 932 u16 q_idx) 933 { 934 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 935 936 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 937 return -EINVAL; 938 939 qg_buf->num_txqs = 1; 940 941 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 942 } 943 944 /** 945 * ice_vsi_cfg_txqs - Configure the VSI for Tx 946 * @vsi: the VSI being configured 947 * @rings: Tx ring array to be configured 948 * @count: number of Tx ring array elements 949 * 950 * Return 0 on success and a negative value on error 951 * Configure the Tx VSI for operation. 952 */ 953 static int 954 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 955 { 956 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 957 int err = 0; 958 u16 q_idx; 959 960 qg_buf->num_txqs = 1; 961 962 for (q_idx = 0; q_idx < count; q_idx++) { 963 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 964 if (err) 965 break; 966 } 967 968 return err; 969 } 970 971 /** 972 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 973 * @vsi: the VSI being configured 974 * 975 * Return 0 on success and a negative value on error 976 * Configure the Tx VSI for operation. 977 */ 978 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 979 { 980 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 981 } 982 983 /** 984 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 985 * @vsi: the VSI being configured 986 * 987 * Return 0 on success and a negative value on error 988 * Configure the Tx queues dedicated for XDP in given VSI for operation. 989 */ 990 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 991 { 992 int ret; 993 int i; 994 995 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 996 if (ret) 997 return ret; 998 999 ice_for_each_rxq(vsi, i) 1000 ice_tx_xsk_pool(vsi, i); 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * ice_cfg_itr - configure the initial interrupt throttle values 1007 * @hw: pointer to the HW structure 1008 * @q_vector: interrupt vector that's being configured 1009 * 1010 * Configure interrupt throttling values for the ring containers that are 1011 * associated with the interrupt vector passed in. 1012 */ 1013 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1014 { 1015 ice_cfg_itr_gran(hw); 1016 1017 if (q_vector->num_ring_rx) 1018 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1019 1020 if (q_vector->num_ring_tx) 1021 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1022 1023 ice_write_intrl(q_vector, q_vector->intrl); 1024 } 1025 1026 /** 1027 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1028 * @vsi: the VSI being configured 1029 * @txq: Tx queue being mapped to MSI-X vector 1030 * @msix_idx: MSI-X vector index within the function 1031 * @itr_idx: ITR index of the interrupt cause 1032 * 1033 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1034 * within the function space. 1035 */ 1036 void 1037 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1038 { 1039 struct ice_pf *pf = vsi->back; 1040 struct ice_hw *hw = &pf->hw; 1041 u32 val; 1042 1043 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1044 1045 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1046 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1047 1048 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1049 if (ice_is_xdp_ena_vsi(vsi)) { 1050 u32 xdp_txq = txq + vsi->num_xdp_txq; 1051 1052 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1053 val); 1054 } 1055 ice_flush(hw); 1056 } 1057 1058 /** 1059 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1060 * @vsi: the VSI being configured 1061 * @rxq: Rx queue being mapped to MSI-X vector 1062 * @msix_idx: MSI-X vector index within the function 1063 * @itr_idx: ITR index of the interrupt cause 1064 * 1065 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1066 * within the function space. 1067 */ 1068 void 1069 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1070 { 1071 struct ice_pf *pf = vsi->back; 1072 struct ice_hw *hw = &pf->hw; 1073 u32 val; 1074 1075 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1076 1077 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1078 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1079 1080 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1081 1082 ice_flush(hw); 1083 } 1084 1085 /** 1086 * ice_trigger_sw_intr - trigger a software interrupt 1087 * @hw: pointer to the HW structure 1088 * @q_vector: interrupt vector to trigger the software interrupt for 1089 */ 1090 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1091 { 1092 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1093 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1094 GLINT_DYN_CTL_SWINT_TRIG_M | 1095 GLINT_DYN_CTL_INTENA_M); 1096 } 1097 1098 /** 1099 * ice_vsi_stop_tx_ring - Disable single Tx ring 1100 * @vsi: the VSI being configured 1101 * @rst_src: reset source 1102 * @rel_vmvf_num: Relative ID of VF/VM 1103 * @ring: Tx ring to be stopped 1104 * @txq_meta: Meta data of Tx ring to be stopped 1105 */ 1106 int 1107 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1108 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1109 struct ice_txq_meta *txq_meta) 1110 { 1111 struct ice_pf *pf = vsi->back; 1112 struct ice_q_vector *q_vector; 1113 struct ice_hw *hw = &pf->hw; 1114 int status; 1115 u32 val; 1116 1117 /* clear cause_ena bit for disabled queues */ 1118 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1119 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1120 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1121 1122 /* software is expected to wait for 100 ns */ 1123 ndelay(100); 1124 1125 /* trigger a software interrupt for the vector 1126 * associated to the queue to schedule NAPI handler 1127 */ 1128 q_vector = ring->q_vector; 1129 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1130 ice_trigger_sw_intr(hw, q_vector); 1131 1132 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1133 txq_meta->tc, 1, &txq_meta->q_handle, 1134 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1135 rel_vmvf_num, NULL); 1136 1137 /* if the disable queue command was exercised during an 1138 * active reset flow, -EBUSY is returned. 1139 * This is not an error as the reset operation disables 1140 * queues at the hardware level anyway. 1141 */ 1142 if (status == -EBUSY) { 1143 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1144 } else if (status == -ENOENT) { 1145 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1146 } else if (status) { 1147 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1148 status); 1149 return status; 1150 } 1151 1152 return 0; 1153 } 1154 1155 /** 1156 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1157 * @vsi: VSI that ring belongs to 1158 * @ring: ring that txq_meta will be based on 1159 * @txq_meta: a helper struct that wraps Tx queue's information 1160 * 1161 * Set up a helper struct that will contain all the necessary fields that 1162 * are needed for stopping Tx queue 1163 */ 1164 void 1165 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1166 struct ice_txq_meta *txq_meta) 1167 { 1168 struct ice_channel *ch = ring->ch; 1169 u8 tc; 1170 1171 if (IS_ENABLED(CONFIG_DCB)) 1172 tc = ring->dcb_tc; 1173 else 1174 tc = 0; 1175 1176 txq_meta->q_id = ring->reg_idx; 1177 txq_meta->q_teid = ring->txq_teid; 1178 txq_meta->q_handle = ring->q_handle; 1179 if (ch) { 1180 txq_meta->vsi_idx = ch->ch_vsi->idx; 1181 txq_meta->tc = 0; 1182 } else { 1183 txq_meta->vsi_idx = vsi->idx; 1184 txq_meta->tc = tc; 1185 } 1186 } 1187