xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 	q_vector->vf_reg_idx = q_vector->irq.index;
149 
150 	/* only set affinity_mask if the CPU is online */
151 	if (cpu_online(v_idx))
152 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153 
154 	/* This will not be called in the driver load path because the netdev
155 	 * will not be created yet. All other cases with register the NAPI
156 	 * handler here (i.e. resume, reset/rebuild, etc.)
157 	 */
158 	if (vsi->netdev)
159 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
160 
161 out:
162 	/* tie q_vector and VSI together */
163 	vsi->q_vectors[v_idx] = q_vector;
164 
165 	return 0;
166 
167 err_free_q_vector:
168 	kfree(q_vector);
169 
170 	return err;
171 }
172 
173 /**
174  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
175  * @vsi: VSI having the memory freed
176  * @v_idx: index of the vector to be freed
177  */
178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
179 {
180 	struct ice_q_vector *q_vector;
181 	struct ice_pf *pf = vsi->back;
182 	struct ice_tx_ring *tx_ring;
183 	struct ice_rx_ring *rx_ring;
184 	struct device *dev;
185 
186 	dev = ice_pf_to_dev(pf);
187 	if (!vsi->q_vectors[v_idx]) {
188 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
189 		return;
190 	}
191 	q_vector = vsi->q_vectors[v_idx];
192 
193 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
194 		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
195 				   NULL);
196 		tx_ring->q_vector = NULL;
197 	}
198 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
199 		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
200 				   NULL);
201 		rx_ring->q_vector = NULL;
202 	}
203 
204 	/* only VSI with an associated netdev is set up with NAPI */
205 	if (vsi->netdev)
206 		netif_napi_del(&q_vector->napi);
207 
208 	/* release MSIX interrupt if q_vector had interrupt allocated */
209 	if (q_vector->irq.index < 0)
210 		goto free_q_vector;
211 
212 	/* only free last VF ctrl vsi interrupt */
213 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
214 	    ice_get_vf_ctrl_vsi(pf, vsi))
215 		goto free_q_vector;
216 
217 	ice_free_irq(pf, q_vector->irq);
218 
219 free_q_vector:
220 	kfree(q_vector);
221 	vsi->q_vectors[v_idx] = NULL;
222 }
223 
224 /**
225  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
226  * @hw: board specific structure
227  */
228 static void ice_cfg_itr_gran(struct ice_hw *hw)
229 {
230 	u32 regval = rd32(hw, GLINT_CTL);
231 
232 	/* no need to update global register if ITR gran is already set */
233 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
234 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
235 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
236 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
237 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
238 		return;
239 
240 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
241 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
242 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
243 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
244 	wr32(hw, GLINT_CTL, regval);
245 }
246 
247 /**
248  * ice_calc_txq_handle - calculate the queue handle
249  * @vsi: VSI that ring belongs to
250  * @ring: ring to get the absolute queue index
251  * @tc: traffic class number
252  */
253 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
254 {
255 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
256 
257 	if (ring->ch)
258 		return ring->q_index - ring->ch->base_q;
259 
260 	/* Idea here for calculation is that we subtract the number of queue
261 	 * count from TC that ring belongs to from it's absolute queue index
262 	 * and as a result we get the queue's index within TC.
263 	 */
264 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
265 }
266 
267 /**
268  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
269  * @ring: The Tx ring to configure
270  *
271  * This enables/disables XPS for a given Tx descriptor ring
272  * based on the TCs enabled for the VSI that ring belongs to.
273  */
274 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
275 {
276 	if (!ring->q_vector || !ring->netdev)
277 		return;
278 
279 	/* We only initialize XPS once, so as not to overwrite user settings */
280 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
281 		return;
282 
283 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
284 			    ring->q_index);
285 }
286 
287 /**
288  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
289  * @ring: The Tx ring to configure
290  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
291  * @pf_q: queue index in the PF space
292  *
293  * Configure the Tx descriptor ring in TLAN context.
294  */
295 static void
296 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
297 {
298 	struct ice_vsi *vsi = ring->vsi;
299 	struct ice_hw *hw = &vsi->back->hw;
300 
301 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
302 
303 	tlan_ctx->port_num = vsi->port_info->lport;
304 
305 	/* Transmit Queue Length */
306 	tlan_ctx->qlen = ring->count;
307 
308 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
309 
310 	/* PF number */
311 	tlan_ctx->pf_num = hw->pf_id;
312 
313 	/* queue belongs to a specific VSI type
314 	 * VF / VM index should be programmed per vmvf_type setting:
315 	 * for vmvf_type = VF, it is VF number between 0-256
316 	 * for vmvf_type = VM, it is VM number between 0-767
317 	 * for PF or EMP this field should be set to zero
318 	 */
319 	switch (vsi->type) {
320 	case ICE_VSI_LB:
321 	case ICE_VSI_CTRL:
322 	case ICE_VSI_PF:
323 		if (ring->ch)
324 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
325 		else
326 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
327 		break;
328 	case ICE_VSI_VF:
329 		/* Firmware expects vmvf_num to be absolute VF ID */
330 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
331 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
332 		break;
333 	default:
334 		return;
335 	}
336 
337 	/* make sure the context is associated with the right VSI */
338 	if (ring->ch)
339 		tlan_ctx->src_vsi = ring->ch->vsi_num;
340 	else
341 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
342 
343 	/* Restrict Tx timestamps to the PF VSI */
344 	switch (vsi->type) {
345 	case ICE_VSI_PF:
346 		tlan_ctx->tsyn_ena = 1;
347 		break;
348 	default:
349 		break;
350 	}
351 
352 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
353 	tlan_ctx->tso_qnum = pf_q;
354 
355 	/* Legacy or Advanced Host Interface:
356 	 * 0: Advanced Host Interface
357 	 * 1: Legacy Host Interface
358 	 */
359 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
360 }
361 
362 /**
363  * ice_rx_offset - Return expected offset into page to access data
364  * @rx_ring: Ring we are requesting offset of
365  *
366  * Returns the offset value for ring into the data buffer.
367  */
368 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
369 {
370 	if (ice_ring_uses_build_skb(rx_ring))
371 		return ICE_SKB_PAD;
372 	return 0;
373 }
374 
375 /**
376  * ice_setup_rx_ctx - Configure a receive ring context
377  * @ring: The Rx ring to configure
378  *
379  * Configure the Rx descriptor ring in RLAN context.
380  */
381 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
382 {
383 	struct ice_vsi *vsi = ring->vsi;
384 	u32 rxdid = ICE_RXDID_FLEX_NIC;
385 	struct ice_rlan_ctx rlan_ctx;
386 	struct ice_hw *hw;
387 	u16 pf_q;
388 	int err;
389 
390 	hw = &vsi->back->hw;
391 
392 	/* what is Rx queue number in global space of 2K Rx queues */
393 	pf_q = vsi->rxq_map[ring->q_index];
394 
395 	/* clear the context structure first */
396 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
397 
398 	/* Receive Queue Base Address.
399 	 * Indicates the starting address of the descriptor queue defined in
400 	 * 128 Byte units.
401 	 */
402 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
403 
404 	rlan_ctx.qlen = ring->count;
405 
406 	/* Receive Packet Data Buffer Size.
407 	 * The Packet Data Buffer Size is defined in 128 byte units.
408 	 */
409 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
410 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
411 
412 	/* use 32 byte descriptors */
413 	rlan_ctx.dsize = 1;
414 
415 	/* Strip the Ethernet CRC bytes before the packet is posted to host
416 	 * memory.
417 	 */
418 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
419 
420 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
421 	 * and it needs to remain 1 for non-DVM capable configurations to not
422 	 * break backward compatibility for VF drivers. Setting this field to 0
423 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
424 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
425 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
426 	 * check for the tag
427 	 */
428 	if (ice_is_dvm_ena(hw))
429 		if (vsi->type == ICE_VSI_VF &&
430 		    ice_vf_is_port_vlan_ena(vsi->vf))
431 			rlan_ctx.l2tsel = 1;
432 		else
433 			rlan_ctx.l2tsel = 0;
434 	else
435 		rlan_ctx.l2tsel = 1;
436 
437 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
438 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
439 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
440 
441 	/* This controls whether VLAN is stripped from inner headers
442 	 * The VLAN in the inner L2 header is stripped to the receive
443 	 * descriptor if enabled by this flag.
444 	 */
445 	rlan_ctx.showiv = 0;
446 
447 	/* Max packet size for this queue - must not be set to a larger value
448 	 * than 5 x DBUF
449 	 */
450 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
451 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
452 
453 	/* Rx queue threshold in units of 64 */
454 	rlan_ctx.lrxqthresh = 1;
455 
456 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
457 	 * metadata and flags to allow redirecting to PR netdev
458 	 */
459 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
460 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
461 		rxdid = ICE_RXDID_FLEX_NIC_2;
462 	}
463 
464 	/* Enable Flexible Descriptors in the queue context which
465 	 * allows this driver to select a specific receive descriptor format
466 	 * increasing context priority to pick up profile ID; default is 0x01;
467 	 * setting to 0x03 to ensure profile is programming if prev context is
468 	 * of same priority
469 	 */
470 	if (vsi->type != ICE_VSI_VF)
471 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
472 	else
473 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
474 					false);
475 
476 	/* Absolute queue number out of 2K needs to be passed */
477 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
478 	if (err) {
479 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
480 			pf_q, err);
481 		return -EIO;
482 	}
483 
484 	if (vsi->type == ICE_VSI_VF)
485 		return 0;
486 
487 	/* configure Rx buffer alignment */
488 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
489 		ice_clear_ring_build_skb_ena(ring);
490 	else
491 		ice_set_ring_build_skb_ena(ring);
492 
493 	ring->rx_offset = ice_rx_offset(ring);
494 
495 	/* init queue specific tail register */
496 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
497 	writel(0, ring->tail);
498 
499 	return 0;
500 }
501 
502 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
503 {
504 	void *ctx_ptr = &ring->pkt_ctx;
505 	struct xsk_cb_desc desc = {};
506 
507 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
508 	desc.src = &ctx_ptr;
509 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
510 		   sizeof(struct xdp_buff);
511 	desc.bytes = sizeof(ctx_ptr);
512 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
513 }
514 
515 /**
516  * ice_vsi_cfg_rxq - Configure an Rx queue
517  * @ring: the ring being configured
518  *
519  * Return 0 on success and a negative value on error.
520  */
521 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
522 {
523 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
524 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
525 	int err;
526 
527 	ring->rx_buf_len = ring->vsi->rx_buf_len;
528 
529 	if (ring->vsi->type == ICE_VSI_PF) {
530 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
531 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
532 						 ring->q_index,
533 						 ring->q_vector->napi.napi_id,
534 						 ring->rx_buf_len);
535 			if (err)
536 				return err;
537 		}
538 
539 		ring->xsk_pool = ice_xsk_pool(ring);
540 		if (ring->xsk_pool) {
541 			xdp_rxq_info_unreg(&ring->xdp_rxq);
542 
543 			ring->rx_buf_len =
544 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
545 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
546 						 ring->q_index,
547 						 ring->q_vector->napi.napi_id,
548 						 ring->rx_buf_len);
549 			if (err)
550 				return err;
551 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
552 							 MEM_TYPE_XSK_BUFF_POOL,
553 							 NULL);
554 			if (err)
555 				return err;
556 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
557 			ice_xsk_pool_fill_cb(ring);
558 
559 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
560 				 ring->q_index);
561 		} else {
562 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
563 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
564 							 ring->q_index,
565 							 ring->q_vector->napi.napi_id,
566 							 ring->rx_buf_len);
567 				if (err)
568 					return err;
569 			}
570 
571 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
572 							 MEM_TYPE_PAGE_SHARED,
573 							 NULL);
574 			if (err)
575 				return err;
576 		}
577 	}
578 
579 	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
580 	ring->xdp.data = NULL;
581 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
582 	err = ice_setup_rx_ctx(ring);
583 	if (err) {
584 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
585 			ring->q_index, err);
586 		return err;
587 	}
588 
589 	if (ring->xsk_pool) {
590 		bool ok;
591 
592 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
593 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
594 				 num_bufs, ring->q_index);
595 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
596 
597 			return 0;
598 		}
599 
600 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
601 		if (!ok) {
602 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
603 
604 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
605 				 ring->q_index, pf_q);
606 		}
607 
608 		return 0;
609 	}
610 
611 	ice_alloc_rx_bufs(ring, num_bufs);
612 
613 	return 0;
614 }
615 
616 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
617 {
618 	if (q_idx >= vsi->num_rxq)
619 		return -EINVAL;
620 
621 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
622 }
623 
624 /**
625  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
626  * @vsi: VSI
627  */
628 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
629 {
630 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
631 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
632 		vsi->rx_buf_len = ICE_RXBUF_1664;
633 #if (PAGE_SIZE < 8192)
634 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
635 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
636 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
637 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
638 #endif
639 	} else {
640 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
641 		vsi->rx_buf_len = ICE_RXBUF_3072;
642 	}
643 }
644 
645 /**
646  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
647  * @vsi: the VSI being configured
648  *
649  * Return 0 on success and a negative value on error
650  * Configure the Rx VSI for operation.
651  */
652 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
653 {
654 	u16 i;
655 
656 	if (vsi->type == ICE_VSI_VF)
657 		goto setup_rings;
658 
659 	ice_vsi_cfg_frame_size(vsi);
660 setup_rings:
661 	/* set up individual rings */
662 	ice_for_each_rxq(vsi, i) {
663 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
664 
665 		if (err)
666 			return err;
667 	}
668 
669 	return 0;
670 }
671 
672 /**
673  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
674  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
675  *
676  * This function first tries to find contiguous space. If it is not successful,
677  * it tries with the scatter approach.
678  *
679  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
680  */
681 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
682 {
683 	int ret = 0;
684 
685 	ret = __ice_vsi_get_qs_contig(qs_cfg);
686 	if (ret) {
687 		/* contig failed, so try with scatter approach */
688 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
689 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
690 					qs_cfg->scatter_count);
691 		ret = __ice_vsi_get_qs_sc(qs_cfg);
692 	}
693 	return ret;
694 }
695 
696 /**
697  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
698  * @vsi: the VSI being configured
699  * @ena: start or stop the Rx ring
700  * @rxq_idx: 0-based Rx queue index for the VSI passed in
701  * @wait: wait or don't wait for configuration to finish in hardware
702  *
703  * Return 0 on success and negative on error.
704  */
705 int
706 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
707 {
708 	int pf_q = vsi->rxq_map[rxq_idx];
709 	struct ice_pf *pf = vsi->back;
710 	struct ice_hw *hw = &pf->hw;
711 	u32 rx_reg;
712 
713 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
714 
715 	/* Skip if the queue is already in the requested state */
716 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
717 		return 0;
718 
719 	/* turn on/off the queue */
720 	if (ena)
721 		rx_reg |= QRX_CTRL_QENA_REQ_M;
722 	else
723 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
724 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
725 
726 	if (!wait)
727 		return 0;
728 
729 	ice_flush(hw);
730 	return ice_pf_rxq_wait(pf, pf_q, ena);
731 }
732 
733 /**
734  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
735  * @vsi: the VSI being configured
736  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
737  * @rxq_idx: 0-based Rx queue index for the VSI passed in
738  *
739  * This routine will wait for the given Rx queue of the VSI to reach the
740  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
741  * the requested state after multiple retries; else will return 0 in case of
742  * success.
743  */
744 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
745 {
746 	int pf_q = vsi->rxq_map[rxq_idx];
747 	struct ice_pf *pf = vsi->back;
748 
749 	return ice_pf_rxq_wait(pf, pf_q, ena);
750 }
751 
752 /**
753  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
754  * @vsi: the VSI being configured
755  *
756  * We allocate one q_vector per queue interrupt. If allocation fails we
757  * return -ENOMEM.
758  */
759 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
760 {
761 	struct device *dev = ice_pf_to_dev(vsi->back);
762 	u16 v_idx;
763 	int err;
764 
765 	if (vsi->q_vectors[0]) {
766 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
767 		return -EEXIST;
768 	}
769 
770 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
771 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
772 		if (err)
773 			goto err_out;
774 	}
775 
776 	return 0;
777 
778 err_out:
779 	while (v_idx--)
780 		ice_free_q_vector(vsi, v_idx);
781 
782 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
783 		vsi->num_q_vectors, vsi->vsi_num, err);
784 	vsi->num_q_vectors = 0;
785 	return err;
786 }
787 
788 /**
789  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
790  * @vsi: the VSI being configured
791  *
792  * This function maps descriptor rings to the queue-specific vectors allotted
793  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
794  * and Rx rings to the vector as "efficiently" as possible.
795  */
796 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
797 {
798 	int q_vectors = vsi->num_q_vectors;
799 	u16 tx_rings_rem, rx_rings_rem;
800 	int v_id;
801 
802 	/* initially assigning remaining rings count to VSIs num queue value */
803 	tx_rings_rem = vsi->num_txq;
804 	rx_rings_rem = vsi->num_rxq;
805 
806 	for (v_id = 0; v_id < q_vectors; v_id++) {
807 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
808 		u8 tx_rings_per_v, rx_rings_per_v;
809 		u16 q_id, q_base;
810 
811 		/* Tx rings mapping to vector */
812 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
813 						  q_vectors - v_id);
814 		q_vector->num_ring_tx = tx_rings_per_v;
815 		q_vector->tx.tx_ring = NULL;
816 		q_vector->tx.itr_idx = ICE_TX_ITR;
817 		q_base = vsi->num_txq - tx_rings_rem;
818 
819 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
820 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
821 
822 			tx_ring->q_vector = q_vector;
823 			tx_ring->next = q_vector->tx.tx_ring;
824 			q_vector->tx.tx_ring = tx_ring;
825 		}
826 		tx_rings_rem -= tx_rings_per_v;
827 
828 		/* Rx rings mapping to vector */
829 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
830 						  q_vectors - v_id);
831 		q_vector->num_ring_rx = rx_rings_per_v;
832 		q_vector->rx.rx_ring = NULL;
833 		q_vector->rx.itr_idx = ICE_RX_ITR;
834 		q_base = vsi->num_rxq - rx_rings_rem;
835 
836 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
837 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
838 
839 			rx_ring->q_vector = q_vector;
840 			rx_ring->next = q_vector->rx.rx_ring;
841 			q_vector->rx.rx_ring = rx_ring;
842 		}
843 		rx_rings_rem -= rx_rings_per_v;
844 	}
845 }
846 
847 /**
848  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
849  * @vsi: the VSI having memory freed
850  */
851 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
852 {
853 	int v_idx;
854 
855 	ice_for_each_q_vector(vsi, v_idx)
856 		ice_free_q_vector(vsi, v_idx);
857 
858 	vsi->num_q_vectors = 0;
859 }
860 
861 /**
862  * ice_vsi_cfg_txq - Configure single Tx queue
863  * @vsi: the VSI that queue belongs to
864  * @ring: Tx ring to be configured
865  * @qg_buf: queue group buffer
866  */
867 static int
868 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
869 		struct ice_aqc_add_tx_qgrp *qg_buf)
870 {
871 	u8 buf_len = struct_size(qg_buf, txqs, 1);
872 	struct ice_tlan_ctx tlan_ctx = { 0 };
873 	struct ice_aqc_add_txqs_perq *txq;
874 	struct ice_channel *ch = ring->ch;
875 	struct ice_pf *pf = vsi->back;
876 	struct ice_hw *hw = &pf->hw;
877 	int status;
878 	u16 pf_q;
879 	u8 tc;
880 
881 	/* Configure XPS */
882 	ice_cfg_xps_tx_ring(ring);
883 
884 	pf_q = ring->reg_idx;
885 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
886 	/* copy context contents into the qg_buf */
887 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
888 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
889 		    ice_tlan_ctx_info);
890 
891 	/* init queue specific tail reg. It is referred as
892 	 * transmit comm scheduler queue doorbell.
893 	 */
894 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
895 
896 	if (IS_ENABLED(CONFIG_DCB))
897 		tc = ring->dcb_tc;
898 	else
899 		tc = 0;
900 
901 	/* Add unique software queue handle of the Tx queue per
902 	 * TC into the VSI Tx ring
903 	 */
904 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
905 
906 	if (ch)
907 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
908 					 ring->q_handle, 1, qg_buf, buf_len,
909 					 NULL);
910 	else
911 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
912 					 ring->q_handle, 1, qg_buf, buf_len,
913 					 NULL);
914 	if (status) {
915 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
916 			status);
917 		return status;
918 	}
919 
920 	/* Add Tx Queue TEID into the VSI Tx ring from the
921 	 * response. This will complete configuring and
922 	 * enabling the queue.
923 	 */
924 	txq = &qg_buf->txqs[0];
925 	if (pf_q == le16_to_cpu(txq->txq_id))
926 		ring->txq_teid = le32_to_cpu(txq->q_teid);
927 
928 	return 0;
929 }
930 
931 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
932 			   u16 q_idx)
933 {
934 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
935 
936 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
937 		return -EINVAL;
938 
939 	qg_buf->num_txqs = 1;
940 
941 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
942 }
943 
944 /**
945  * ice_vsi_cfg_txqs - Configure the VSI for Tx
946  * @vsi: the VSI being configured
947  * @rings: Tx ring array to be configured
948  * @count: number of Tx ring array elements
949  *
950  * Return 0 on success and a negative value on error
951  * Configure the Tx VSI for operation.
952  */
953 static int
954 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
955 {
956 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
957 	int err = 0;
958 	u16 q_idx;
959 
960 	qg_buf->num_txqs = 1;
961 
962 	for (q_idx = 0; q_idx < count; q_idx++) {
963 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
964 		if (err)
965 			break;
966 	}
967 
968 	return err;
969 }
970 
971 /**
972  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
973  * @vsi: the VSI being configured
974  *
975  * Return 0 on success and a negative value on error
976  * Configure the Tx VSI for operation.
977  */
978 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
979 {
980 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
981 }
982 
983 /**
984  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
985  * @vsi: the VSI being configured
986  *
987  * Return 0 on success and a negative value on error
988  * Configure the Tx queues dedicated for XDP in given VSI for operation.
989  */
990 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
991 {
992 	int ret;
993 	int i;
994 
995 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
996 	if (ret)
997 		return ret;
998 
999 	ice_for_each_rxq(vsi, i)
1000 		ice_tx_xsk_pool(vsi, i);
1001 
1002 	return 0;
1003 }
1004 
1005 /**
1006  * ice_cfg_itr - configure the initial interrupt throttle values
1007  * @hw: pointer to the HW structure
1008  * @q_vector: interrupt vector that's being configured
1009  *
1010  * Configure interrupt throttling values for the ring containers that are
1011  * associated with the interrupt vector passed in.
1012  */
1013 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1014 {
1015 	ice_cfg_itr_gran(hw);
1016 
1017 	if (q_vector->num_ring_rx)
1018 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1019 
1020 	if (q_vector->num_ring_tx)
1021 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1022 
1023 	ice_write_intrl(q_vector, q_vector->intrl);
1024 }
1025 
1026 /**
1027  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1028  * @vsi: the VSI being configured
1029  * @txq: Tx queue being mapped to MSI-X vector
1030  * @msix_idx: MSI-X vector index within the function
1031  * @itr_idx: ITR index of the interrupt cause
1032  *
1033  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1034  * within the function space.
1035  */
1036 void
1037 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1038 {
1039 	struct ice_pf *pf = vsi->back;
1040 	struct ice_hw *hw = &pf->hw;
1041 	u32 val;
1042 
1043 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1044 
1045 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1046 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1047 
1048 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1049 	if (ice_is_xdp_ena_vsi(vsi)) {
1050 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1051 
1052 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1053 		     val);
1054 	}
1055 	ice_flush(hw);
1056 }
1057 
1058 /**
1059  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1060  * @vsi: the VSI being configured
1061  * @rxq: Rx queue being mapped to MSI-X vector
1062  * @msix_idx: MSI-X vector index within the function
1063  * @itr_idx: ITR index of the interrupt cause
1064  *
1065  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1066  * within the function space.
1067  */
1068 void
1069 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1070 {
1071 	struct ice_pf *pf = vsi->back;
1072 	struct ice_hw *hw = &pf->hw;
1073 	u32 val;
1074 
1075 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1076 
1077 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1078 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1079 
1080 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1081 
1082 	ice_flush(hw);
1083 }
1084 
1085 /**
1086  * ice_trigger_sw_intr - trigger a software interrupt
1087  * @hw: pointer to the HW structure
1088  * @q_vector: interrupt vector to trigger the software interrupt for
1089  */
1090 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1091 {
1092 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1093 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1094 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1095 	     GLINT_DYN_CTL_INTENA_M);
1096 }
1097 
1098 /**
1099  * ice_vsi_stop_tx_ring - Disable single Tx ring
1100  * @vsi: the VSI being configured
1101  * @rst_src: reset source
1102  * @rel_vmvf_num: Relative ID of VF/VM
1103  * @ring: Tx ring to be stopped
1104  * @txq_meta: Meta data of Tx ring to be stopped
1105  */
1106 int
1107 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1108 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1109 		     struct ice_txq_meta *txq_meta)
1110 {
1111 	struct ice_pf *pf = vsi->back;
1112 	struct ice_q_vector *q_vector;
1113 	struct ice_hw *hw = &pf->hw;
1114 	int status;
1115 	u32 val;
1116 
1117 	/* clear cause_ena bit for disabled queues */
1118 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1119 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1120 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1121 
1122 	/* software is expected to wait for 100 ns */
1123 	ndelay(100);
1124 
1125 	/* trigger a software interrupt for the vector
1126 	 * associated to the queue to schedule NAPI handler
1127 	 */
1128 	q_vector = ring->q_vector;
1129 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1130 		ice_trigger_sw_intr(hw, q_vector);
1131 
1132 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1133 				 txq_meta->tc, 1, &txq_meta->q_handle,
1134 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1135 				 rel_vmvf_num, NULL);
1136 
1137 	/* if the disable queue command was exercised during an
1138 	 * active reset flow, -EBUSY is returned.
1139 	 * This is not an error as the reset operation disables
1140 	 * queues at the hardware level anyway.
1141 	 */
1142 	if (status == -EBUSY) {
1143 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1144 	} else if (status == -ENOENT) {
1145 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1146 	} else if (status) {
1147 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1148 			status);
1149 		return status;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 /**
1156  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1157  * @vsi: VSI that ring belongs to
1158  * @ring: ring that txq_meta will be based on
1159  * @txq_meta: a helper struct that wraps Tx queue's information
1160  *
1161  * Set up a helper struct that will contain all the necessary fields that
1162  * are needed for stopping Tx queue
1163  */
1164 void
1165 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1166 		  struct ice_txq_meta *txq_meta)
1167 {
1168 	struct ice_channel *ch = ring->ch;
1169 	u8 tc;
1170 
1171 	if (IS_ENABLED(CONFIG_DCB))
1172 		tc = ring->dcb_tc;
1173 	else
1174 		tc = 0;
1175 
1176 	txq_meta->q_id = ring->reg_idx;
1177 	txq_meta->q_teid = ring->txq_teid;
1178 	txq_meta->q_handle = ring->q_handle;
1179 	if (ch) {
1180 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1181 		txq_meta->tc = 0;
1182 	} else {
1183 		txq_meta->vsi_idx = vsi->idx;
1184 		txq_meta->tc = tc;
1185 	}
1186 }
1187