xref: /linux/drivers/net/ethernet/intel/ice/ice_arfs.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2018-2020, Intel Corporation. */
3 
4 #include "ice.h"
5 #include <net/rps.h>
6 
7 /**
8  * ice_is_arfs_active - helper to check is aRFS is active
9  * @vsi: VSI to check
10  */
11 static bool ice_is_arfs_active(struct ice_vsi *vsi)
12 {
13 	return !!vsi->arfs_fltr_list;
14 }
15 
16 /**
17  * ice_is_arfs_using_perfect_flow - check if aRFS has active perfect filters
18  * @hw: pointer to the HW structure
19  * @flow_type: flow type as Flow Director understands it
20  *
21  * Flow Director will query this function to see if aRFS is currently using
22  * the specified flow_type for perfect (4-tuple) filters.
23  */
24 bool
25 ice_is_arfs_using_perfect_flow(struct ice_hw *hw, enum ice_fltr_ptype flow_type)
26 {
27 	struct ice_arfs_active_fltr_cntrs *arfs_fltr_cntrs;
28 	struct ice_pf *pf = hw->back;
29 	struct ice_vsi *vsi;
30 
31 	vsi = ice_get_main_vsi(pf);
32 	if (!vsi)
33 		return false;
34 
35 	arfs_fltr_cntrs = vsi->arfs_fltr_cntrs;
36 
37 	/* active counters can be updated by multiple CPUs */
38 	smp_mb__before_atomic();
39 	switch (flow_type) {
40 	case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
41 		return atomic_read(&arfs_fltr_cntrs->active_udpv4_cnt) > 0;
42 	case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
43 		return atomic_read(&arfs_fltr_cntrs->active_udpv6_cnt) > 0;
44 	case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
45 		return atomic_read(&arfs_fltr_cntrs->active_tcpv4_cnt) > 0;
46 	case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
47 		return atomic_read(&arfs_fltr_cntrs->active_tcpv6_cnt) > 0;
48 	default:
49 		return false;
50 	}
51 }
52 
53 /**
54  * ice_arfs_update_active_fltr_cntrs - update active filter counters for aRFS
55  * @vsi: VSI that aRFS is active on
56  * @entry: aRFS entry used to change counters
57  * @add: true to increment counter, false to decrement
58  */
59 static void
60 ice_arfs_update_active_fltr_cntrs(struct ice_vsi *vsi,
61 				  struct ice_arfs_entry *entry, bool add)
62 {
63 	struct ice_arfs_active_fltr_cntrs *fltr_cntrs = vsi->arfs_fltr_cntrs;
64 
65 	switch (entry->fltr_info.flow_type) {
66 	case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
67 		if (add)
68 			atomic_inc(&fltr_cntrs->active_tcpv4_cnt);
69 		else
70 			atomic_dec(&fltr_cntrs->active_tcpv4_cnt);
71 		break;
72 	case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
73 		if (add)
74 			atomic_inc(&fltr_cntrs->active_tcpv6_cnt);
75 		else
76 			atomic_dec(&fltr_cntrs->active_tcpv6_cnt);
77 		break;
78 	case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
79 		if (add)
80 			atomic_inc(&fltr_cntrs->active_udpv4_cnt);
81 		else
82 			atomic_dec(&fltr_cntrs->active_udpv4_cnt);
83 		break;
84 	case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
85 		if (add)
86 			atomic_inc(&fltr_cntrs->active_udpv6_cnt);
87 		else
88 			atomic_dec(&fltr_cntrs->active_udpv6_cnt);
89 		break;
90 	default:
91 		dev_err(ice_pf_to_dev(vsi->back), "aRFS: Failed to update filter counters, invalid filter type %d\n",
92 			entry->fltr_info.flow_type);
93 	}
94 }
95 
96 /**
97  * ice_arfs_del_flow_rules - delete the rules passed in from HW
98  * @vsi: VSI for the flow rules that need to be deleted
99  * @del_list_head: head of the list of ice_arfs_entry(s) for rule deletion
100  *
101  * Loop through the delete list passed in and remove the rules from HW. After
102  * each rule is deleted, disconnect and free the ice_arfs_entry because it is no
103  * longer being referenced by the aRFS hash table.
104  */
105 static void
106 ice_arfs_del_flow_rules(struct ice_vsi *vsi, struct hlist_head *del_list_head)
107 {
108 	struct ice_arfs_entry *e;
109 	struct hlist_node *n;
110 	struct device *dev;
111 
112 	dev = ice_pf_to_dev(vsi->back);
113 
114 	hlist_for_each_entry_safe(e, n, del_list_head, list_entry) {
115 		int result;
116 
117 		result = ice_fdir_write_fltr(vsi->back, &e->fltr_info, false,
118 					     false);
119 		if (!result)
120 			ice_arfs_update_active_fltr_cntrs(vsi, e, false);
121 		else
122 			dev_dbg(dev, "Unable to delete aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
123 				result, e->fltr_state, e->fltr_info.fltr_id,
124 				e->flow_id, e->fltr_info.q_index);
125 
126 		/* The aRFS hash table is no longer referencing this entry */
127 		hlist_del(&e->list_entry);
128 		devm_kfree(dev, e);
129 	}
130 }
131 
132 /**
133  * ice_arfs_add_flow_rules - add the rules passed in from HW
134  * @vsi: VSI for the flow rules that need to be added
135  * @add_list_head: head of the list of ice_arfs_entry_ptr(s) for rule addition
136  *
137  * Loop through the add list passed in and remove the rules from HW. After each
138  * rule is added, disconnect and free the ice_arfs_entry_ptr node. Don't free
139  * the ice_arfs_entry(s) because they are still being referenced in the aRFS
140  * hash table.
141  */
142 static void
143 ice_arfs_add_flow_rules(struct ice_vsi *vsi, struct hlist_head *add_list_head)
144 {
145 	struct ice_arfs_entry_ptr *ep;
146 	struct hlist_node *n;
147 	struct device *dev;
148 
149 	dev = ice_pf_to_dev(vsi->back);
150 
151 	hlist_for_each_entry_safe(ep, n, add_list_head, list_entry) {
152 		int result;
153 
154 		result = ice_fdir_write_fltr(vsi->back,
155 					     &ep->arfs_entry->fltr_info, true,
156 					     false);
157 		if (!result)
158 			ice_arfs_update_active_fltr_cntrs(vsi, ep->arfs_entry,
159 							  true);
160 		else
161 			dev_dbg(dev, "Unable to add aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
162 				result, ep->arfs_entry->fltr_state,
163 				ep->arfs_entry->fltr_info.fltr_id,
164 				ep->arfs_entry->flow_id,
165 				ep->arfs_entry->fltr_info.q_index);
166 
167 		hlist_del(&ep->list_entry);
168 		devm_kfree(dev, ep);
169 	}
170 }
171 
172 /**
173  * ice_arfs_is_flow_expired - check if the aRFS entry has expired
174  * @vsi: VSI containing the aRFS entry
175  * @arfs_entry: aRFS entry that's being checked for expiration
176  *
177  * Return true if the flow has expired, else false. This function should be used
178  * to determine whether or not an aRFS entry should be removed from the hardware
179  * and software structures.
180  */
181 static bool
182 ice_arfs_is_flow_expired(struct ice_vsi *vsi, struct ice_arfs_entry *arfs_entry)
183 {
184 #define ICE_ARFS_TIME_DELTA_EXPIRATION	msecs_to_jiffies(5000)
185 	if (rps_may_expire_flow(vsi->netdev, arfs_entry->fltr_info.q_index,
186 				arfs_entry->flow_id,
187 				arfs_entry->fltr_info.fltr_id))
188 		return true;
189 
190 	/* expiration timer only used for UDP filters */
191 	if (arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV4_UDP &&
192 	    arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV6_UDP)
193 		return false;
194 
195 	return time_in_range64(arfs_entry->time_activated +
196 			       ICE_ARFS_TIME_DELTA_EXPIRATION,
197 			       arfs_entry->time_activated, get_jiffies_64());
198 }
199 
200 /**
201  * ice_arfs_update_flow_rules - add/delete aRFS rules in HW
202  * @vsi: the VSI to be forwarded to
203  * @idx: index into the table of aRFS filter lists. Obtained from skb->hash
204  * @add_list: list to populate with filters to be added to Flow Director
205  * @del_list: list to populate with filters to be deleted from Flow Director
206  *
207  * Iterate over the hlist at the index given in the aRFS hash table and
208  * determine if there are any aRFS entries that need to be either added or
209  * deleted in the HW. If the aRFS entry is marked as ICE_ARFS_INACTIVE the
210  * filter needs to be added to HW, else if it's marked as ICE_ARFS_ACTIVE and
211  * the flow has expired delete the filter from HW. The caller of this function
212  * is expected to add/delete rules on the add_list/del_list respectively.
213  */
214 static void
215 ice_arfs_update_flow_rules(struct ice_vsi *vsi, u16 idx,
216 			   struct hlist_head *add_list,
217 			   struct hlist_head *del_list)
218 {
219 	struct ice_arfs_entry *e;
220 	struct hlist_node *n;
221 	struct device *dev;
222 
223 	dev = ice_pf_to_dev(vsi->back);
224 
225 	/* go through the aRFS hlist at this idx and check for needed updates */
226 	hlist_for_each_entry_safe(e, n, &vsi->arfs_fltr_list[idx], list_entry)
227 		/* check if filter needs to be added to HW */
228 		if (e->fltr_state == ICE_ARFS_INACTIVE) {
229 			enum ice_fltr_ptype flow_type = e->fltr_info.flow_type;
230 			struct ice_arfs_entry_ptr *ep =
231 				devm_kzalloc(dev, sizeof(*ep), GFP_ATOMIC);
232 
233 			if (!ep)
234 				continue;
235 			INIT_HLIST_NODE(&ep->list_entry);
236 			/* reference aRFS entry to add HW filter */
237 			ep->arfs_entry = e;
238 			hlist_add_head(&ep->list_entry, add_list);
239 			e->fltr_state = ICE_ARFS_ACTIVE;
240 			/* expiration timer only used for UDP flows */
241 			if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP ||
242 			    flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
243 				e->time_activated = get_jiffies_64();
244 		} else if (e->fltr_state == ICE_ARFS_ACTIVE) {
245 			/* check if filter needs to be removed from HW */
246 			if (ice_arfs_is_flow_expired(vsi, e)) {
247 				/* remove aRFS entry from hash table for delete
248 				 * and to prevent referencing it the next time
249 				 * through this hlist index
250 				 */
251 				hlist_del(&e->list_entry);
252 				e->fltr_state = ICE_ARFS_TODEL;
253 				/* save reference to aRFS entry for delete */
254 				hlist_add_head(&e->list_entry, del_list);
255 			}
256 		}
257 }
258 
259 /**
260  * ice_sync_arfs_fltrs - update all aRFS filters
261  * @pf: board private structure
262  */
263 void ice_sync_arfs_fltrs(struct ice_pf *pf)
264 {
265 	HLIST_HEAD(tmp_del_list);
266 	HLIST_HEAD(tmp_add_list);
267 	struct ice_vsi *pf_vsi;
268 	unsigned int i;
269 
270 	pf_vsi = ice_get_main_vsi(pf);
271 	if (!pf_vsi)
272 		return;
273 
274 	if (!ice_is_arfs_active(pf_vsi))
275 		return;
276 
277 	spin_lock_bh(&pf_vsi->arfs_lock);
278 	/* Once we process aRFS for the PF VSI get out */
279 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
280 		ice_arfs_update_flow_rules(pf_vsi, i, &tmp_add_list,
281 					   &tmp_del_list);
282 	spin_unlock_bh(&pf_vsi->arfs_lock);
283 
284 	/* use list of ice_arfs_entry(s) for delete */
285 	ice_arfs_del_flow_rules(pf_vsi, &tmp_del_list);
286 
287 	/* use list of ice_arfs_entry_ptr(s) for add */
288 	ice_arfs_add_flow_rules(pf_vsi, &tmp_add_list);
289 }
290 
291 /**
292  * ice_arfs_build_entry - builds an aRFS entry based on input
293  * @vsi: destination VSI for this flow
294  * @fk: flow dissector keys for creating the tuple
295  * @rxq_idx: Rx queue to steer this flow to
296  * @flow_id: passed down from the stack and saved for flow expiration
297  *
298  * returns an aRFS entry on success and NULL on failure
299  */
300 static struct ice_arfs_entry *
301 ice_arfs_build_entry(struct ice_vsi *vsi, const struct flow_keys *fk,
302 		     u16 rxq_idx, u32 flow_id)
303 {
304 	struct ice_arfs_entry *arfs_entry;
305 	struct ice_fdir_fltr *fltr_info;
306 	u8 ip_proto;
307 
308 	arfs_entry = devm_kzalloc(ice_pf_to_dev(vsi->back),
309 				  sizeof(*arfs_entry),
310 				  GFP_ATOMIC | __GFP_NOWARN);
311 	if (!arfs_entry)
312 		return NULL;
313 
314 	fltr_info = &arfs_entry->fltr_info;
315 	fltr_info->q_index = rxq_idx;
316 	fltr_info->dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX;
317 	fltr_info->dest_vsi = vsi->idx;
318 	ip_proto = fk->basic.ip_proto;
319 
320 	if (fk->basic.n_proto == htons(ETH_P_IP)) {
321 		fltr_info->ip.v4.proto = ip_proto;
322 		fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
323 			ICE_FLTR_PTYPE_NONF_IPV4_TCP :
324 			ICE_FLTR_PTYPE_NONF_IPV4_UDP;
325 		fltr_info->ip.v4.src_ip = fk->addrs.v4addrs.src;
326 		fltr_info->ip.v4.dst_ip = fk->addrs.v4addrs.dst;
327 		fltr_info->ip.v4.src_port = fk->ports.src;
328 		fltr_info->ip.v4.dst_port = fk->ports.dst;
329 	} else { /* ETH_P_IPV6 */
330 		fltr_info->ip.v6.proto = ip_proto;
331 		fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
332 			ICE_FLTR_PTYPE_NONF_IPV6_TCP :
333 			ICE_FLTR_PTYPE_NONF_IPV6_UDP;
334 		memcpy(&fltr_info->ip.v6.src_ip, &fk->addrs.v6addrs.src,
335 		       sizeof(struct in6_addr));
336 		memcpy(&fltr_info->ip.v6.dst_ip, &fk->addrs.v6addrs.dst,
337 		       sizeof(struct in6_addr));
338 		fltr_info->ip.v6.src_port = fk->ports.src;
339 		fltr_info->ip.v6.dst_port = fk->ports.dst;
340 	}
341 
342 	arfs_entry->flow_id = flow_id;
343 	fltr_info->fltr_id =
344 		atomic_inc_return(vsi->arfs_last_fltr_id) % RPS_NO_FILTER;
345 
346 	return arfs_entry;
347 }
348 
349 /**
350  * ice_arfs_is_perfect_flow_set - Check to see if perfect flow is set
351  * @hw: pointer to HW structure
352  * @l3_proto: ETH_P_IP or ETH_P_IPV6 in network order
353  * @l4_proto: IPPROTO_UDP or IPPROTO_TCP
354  *
355  * We only support perfect (4-tuple) filters for aRFS. This function allows aRFS
356  * to check if perfect (4-tuple) flow rules are currently in place by Flow
357  * Director.
358  */
359 static bool
360 ice_arfs_is_perfect_flow_set(struct ice_hw *hw, __be16 l3_proto, u8 l4_proto)
361 {
362 	unsigned long *perfect_fltr = hw->fdir_perfect_fltr;
363 
364 	/* advanced Flow Director disabled, perfect filters always supported */
365 	if (!perfect_fltr)
366 		return true;
367 
368 	if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_UDP)
369 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_UDP, perfect_fltr);
370 	else if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_TCP)
371 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_TCP, perfect_fltr);
372 	else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_UDP)
373 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_UDP, perfect_fltr);
374 	else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_TCP)
375 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_TCP, perfect_fltr);
376 
377 	return false;
378 }
379 
380 /**
381  * ice_rx_flow_steer - steer the Rx flow to where application is being run
382  * @netdev: ptr to the netdev being adjusted
383  * @skb: buffer with required header information
384  * @rxq_idx: queue to which the flow needs to move
385  * @flow_id: flow identifier provided by the netdev
386  *
387  * Based on the skb, rxq_idx, and flow_id passed in add/update an entry in the
388  * aRFS hash table. Iterate over one of the hlists in the aRFS hash table and
389  * if the flow_id already exists in the hash table but the rxq_idx has changed
390  * mark the entry as ICE_ARFS_INACTIVE so it can get updated in HW, else
391  * if the entry is marked as ICE_ARFS_TODEL delete it from the aRFS hash table.
392  * If neither of the previous conditions are true then add a new entry in the
393  * aRFS hash table, which gets set to ICE_ARFS_INACTIVE by default so it can be
394  * added to HW.
395  */
396 int
397 ice_rx_flow_steer(struct net_device *netdev, const struct sk_buff *skb,
398 		  u16 rxq_idx, u32 flow_id)
399 {
400 	struct ice_netdev_priv *np = netdev_priv(netdev);
401 	struct ice_arfs_entry *arfs_entry;
402 	struct ice_vsi *vsi = np->vsi;
403 	struct flow_keys fk;
404 	struct ice_pf *pf;
405 	__be16 n_proto;
406 	u8 ip_proto;
407 	u16 idx;
408 	int ret;
409 
410 	/* failed to allocate memory for aRFS so don't crash */
411 	if (unlikely(!vsi->arfs_fltr_list))
412 		return -ENODEV;
413 
414 	pf = vsi->back;
415 
416 	if (skb->encapsulation)
417 		return -EPROTONOSUPPORT;
418 
419 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
420 		return -EPROTONOSUPPORT;
421 
422 	n_proto = fk.basic.n_proto;
423 	/* Support only IPV4 and IPV6 */
424 	if ((n_proto == htons(ETH_P_IP) && !ip_is_fragment(ip_hdr(skb))) ||
425 	    n_proto == htons(ETH_P_IPV6))
426 		ip_proto = fk.basic.ip_proto;
427 	else
428 		return -EPROTONOSUPPORT;
429 
430 	/* Support only TCP and UDP */
431 	if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
432 		return -EPROTONOSUPPORT;
433 
434 	/* only support 4-tuple filters for aRFS */
435 	if (!ice_arfs_is_perfect_flow_set(&pf->hw, n_proto, ip_proto))
436 		return -EOPNOTSUPP;
437 
438 	/* choose the aRFS list bucket based on skb hash */
439 	idx = skb_get_hash_raw(skb) & ICE_ARFS_LST_MASK;
440 	/* search for entry in the bucket */
441 	spin_lock_bh(&vsi->arfs_lock);
442 	hlist_for_each_entry(arfs_entry, &vsi->arfs_fltr_list[idx],
443 			     list_entry) {
444 		struct ice_fdir_fltr *fltr_info;
445 
446 		/* keep searching for the already existing arfs_entry flow */
447 		if (arfs_entry->flow_id != flow_id)
448 			continue;
449 
450 		fltr_info = &arfs_entry->fltr_info;
451 		ret = fltr_info->fltr_id;
452 
453 		if (fltr_info->q_index == rxq_idx ||
454 		    arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
455 			goto out;
456 
457 		/* update the queue to forward to on an already existing flow */
458 		fltr_info->q_index = rxq_idx;
459 		arfs_entry->fltr_state = ICE_ARFS_INACTIVE;
460 		ice_arfs_update_active_fltr_cntrs(vsi, arfs_entry, false);
461 		goto out_schedule_service_task;
462 	}
463 
464 	arfs_entry = ice_arfs_build_entry(vsi, &fk, rxq_idx, flow_id);
465 	if (!arfs_entry) {
466 		ret = -ENOMEM;
467 		goto out;
468 	}
469 
470 	ret = arfs_entry->fltr_info.fltr_id;
471 	INIT_HLIST_NODE(&arfs_entry->list_entry);
472 	hlist_add_head(&arfs_entry->list_entry, &vsi->arfs_fltr_list[idx]);
473 out_schedule_service_task:
474 	ice_service_task_schedule(pf);
475 out:
476 	spin_unlock_bh(&vsi->arfs_lock);
477 	return ret;
478 }
479 
480 /**
481  * ice_init_arfs_cntrs - initialize aRFS counter values
482  * @vsi: VSI that aRFS counters need to be initialized on
483  */
484 static int ice_init_arfs_cntrs(struct ice_vsi *vsi)
485 {
486 	if (!vsi || vsi->type != ICE_VSI_PF)
487 		return -EINVAL;
488 
489 	vsi->arfs_fltr_cntrs = kzalloc(sizeof(*vsi->arfs_fltr_cntrs),
490 				       GFP_KERNEL);
491 	if (!vsi->arfs_fltr_cntrs)
492 		return -ENOMEM;
493 
494 	vsi->arfs_last_fltr_id = kzalloc(sizeof(*vsi->arfs_last_fltr_id),
495 					 GFP_KERNEL);
496 	if (!vsi->arfs_last_fltr_id) {
497 		kfree(vsi->arfs_fltr_cntrs);
498 		vsi->arfs_fltr_cntrs = NULL;
499 		return -ENOMEM;
500 	}
501 
502 	return 0;
503 }
504 
505 /**
506  * ice_init_arfs - initialize aRFS resources
507  * @vsi: the VSI to be forwarded to
508  */
509 void ice_init_arfs(struct ice_vsi *vsi)
510 {
511 	struct hlist_head *arfs_fltr_list;
512 	unsigned int i;
513 
514 	if (!vsi || vsi->type != ICE_VSI_PF)
515 		return;
516 
517 	arfs_fltr_list = kcalloc(ICE_MAX_ARFS_LIST, sizeof(*arfs_fltr_list),
518 				 GFP_KERNEL);
519 	if (!arfs_fltr_list)
520 		return;
521 
522 	if (ice_init_arfs_cntrs(vsi))
523 		goto free_arfs_fltr_list;
524 
525 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
526 		INIT_HLIST_HEAD(&arfs_fltr_list[i]);
527 
528 	spin_lock_init(&vsi->arfs_lock);
529 
530 	vsi->arfs_fltr_list = arfs_fltr_list;
531 
532 	return;
533 
534 free_arfs_fltr_list:
535 	kfree(arfs_fltr_list);
536 }
537 
538 /**
539  * ice_clear_arfs - clear the aRFS hash table and any memory used for aRFS
540  * @vsi: the VSI to be forwarded to
541  */
542 void ice_clear_arfs(struct ice_vsi *vsi)
543 {
544 	struct device *dev;
545 	unsigned int i;
546 
547 	if (!vsi || vsi->type != ICE_VSI_PF || !vsi->back ||
548 	    !vsi->arfs_fltr_list)
549 		return;
550 
551 	dev = ice_pf_to_dev(vsi->back);
552 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++) {
553 		struct ice_arfs_entry *r;
554 		struct hlist_node *n;
555 
556 		spin_lock_bh(&vsi->arfs_lock);
557 		hlist_for_each_entry_safe(r, n, &vsi->arfs_fltr_list[i],
558 					  list_entry) {
559 			hlist_del(&r->list_entry);
560 			devm_kfree(dev, r);
561 		}
562 		spin_unlock_bh(&vsi->arfs_lock);
563 	}
564 
565 	kfree(vsi->arfs_fltr_list);
566 	vsi->arfs_fltr_list = NULL;
567 	kfree(vsi->arfs_last_fltr_id);
568 	vsi->arfs_last_fltr_id = NULL;
569 	kfree(vsi->arfs_fltr_cntrs);
570 	vsi->arfs_fltr_cntrs = NULL;
571 }
572 
573 /**
574  * ice_free_cpu_rx_rmap - free setup CPU reverse map
575  * @vsi: the VSI to be forwarded to
576  */
577 void ice_free_cpu_rx_rmap(struct ice_vsi *vsi)
578 {
579 	struct net_device *netdev;
580 
581 	if (!vsi || vsi->type != ICE_VSI_PF)
582 		return;
583 
584 	netdev = vsi->netdev;
585 	if (!netdev || !netdev->rx_cpu_rmap)
586 		return;
587 
588 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
589 	netdev->rx_cpu_rmap = NULL;
590 }
591 
592 /**
593  * ice_set_cpu_rx_rmap - setup CPU reverse map for each queue
594  * @vsi: the VSI to be forwarded to
595  */
596 int ice_set_cpu_rx_rmap(struct ice_vsi *vsi)
597 {
598 	struct net_device *netdev;
599 	struct ice_pf *pf;
600 	int i;
601 
602 	if (!vsi || vsi->type != ICE_VSI_PF)
603 		return 0;
604 
605 	pf = vsi->back;
606 	netdev = vsi->netdev;
607 	if (!pf || !netdev || !vsi->num_q_vectors)
608 		return -EINVAL;
609 
610 	netdev_dbg(netdev, "Setup CPU RMAP: vsi type 0x%x, ifname %s, q_vectors %d\n",
611 		   vsi->type, netdev->name, vsi->num_q_vectors);
612 
613 	netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(vsi->num_q_vectors);
614 	if (unlikely(!netdev->rx_cpu_rmap))
615 		return -EINVAL;
616 
617 	ice_for_each_q_vector(vsi, i)
618 		if (irq_cpu_rmap_add(netdev->rx_cpu_rmap,
619 				     vsi->q_vectors[i]->irq.virq)) {
620 			ice_free_cpu_rx_rmap(vsi);
621 			return -EINVAL;
622 		}
623 
624 	return 0;
625 }
626 
627 /**
628  * ice_remove_arfs - remove/clear all aRFS resources
629  * @pf: device private structure
630  */
631 void ice_remove_arfs(struct ice_pf *pf)
632 {
633 	struct ice_vsi *pf_vsi;
634 
635 	pf_vsi = ice_get_main_vsi(pf);
636 	if (!pf_vsi)
637 		return;
638 
639 	ice_clear_arfs(pf_vsi);
640 }
641 
642 /**
643  * ice_rebuild_arfs - remove/clear all aRFS resources and rebuild after reset
644  * @pf: device private structure
645  */
646 void ice_rebuild_arfs(struct ice_pf *pf)
647 {
648 	struct ice_vsi *pf_vsi;
649 
650 	pf_vsi = ice_get_main_vsi(pf);
651 	if (!pf_vsi)
652 		return;
653 
654 	ice_remove_arfs(pf);
655 	ice_init_arfs(pf_vsi);
656 }
657