1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation. */ 3 4 #include <linux/vmalloc.h> 5 6 #include "ice.h" 7 #include "ice_lib.h" 8 #include "devlink.h" 9 #include "ice_eswitch.h" 10 #include "ice_fw_update.h" 11 #include "ice_dcb_lib.h" 12 13 /* context for devlink info version reporting */ 14 struct ice_info_ctx { 15 char buf[128]; 16 struct ice_orom_info pending_orom; 17 struct ice_nvm_info pending_nvm; 18 struct ice_netlist_info pending_netlist; 19 struct ice_hw_dev_caps dev_caps; 20 }; 21 22 /* The following functions are used to format specific strings for various 23 * devlink info versions. The ctx parameter is used to provide the storage 24 * buffer, as well as any ancillary information calculated when the info 25 * request was made. 26 * 27 * If a version does not exist, for example when attempting to get the 28 * inactive version of flash when there is no pending update, the function 29 * should leave the buffer in the ctx structure empty. 30 */ 31 32 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx) 33 { 34 u8 dsn[8]; 35 36 /* Copy the DSN into an array in Big Endian format */ 37 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn); 38 39 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn); 40 } 41 42 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx) 43 { 44 struct ice_hw *hw = &pf->hw; 45 int status; 46 47 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf)); 48 if (status) 49 /* We failed to locate the PBA, so just skip this entry */ 50 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n", 51 status); 52 } 53 54 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx) 55 { 56 struct ice_hw *hw = &pf->hw; 57 58 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 59 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch); 60 } 61 62 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx) 63 { 64 struct ice_hw *hw = &pf->hw; 65 66 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver, 67 hw->api_min_ver, hw->api_patch); 68 } 69 70 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 71 { 72 struct ice_hw *hw = &pf->hw; 73 74 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build); 75 } 76 77 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 78 { 79 struct ice_orom_info *orom = &pf->hw.flash.orom; 80 81 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 82 orom->major, orom->build, orom->patch); 83 } 84 85 static void 86 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf, 87 struct ice_info_ctx *ctx) 88 { 89 struct ice_orom_info *orom = &ctx->pending_orom; 90 91 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) 92 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 93 orom->major, orom->build, orom->patch); 94 } 95 96 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 97 { 98 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 99 100 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor); 101 } 102 103 static void 104 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf, 105 struct ice_info_ctx *ctx) 106 { 107 struct ice_nvm_info *nvm = &ctx->pending_nvm; 108 109 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 110 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", 111 nvm->major, nvm->minor); 112 } 113 114 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 115 { 116 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 117 118 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 119 } 120 121 static void 122 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 123 { 124 struct ice_nvm_info *nvm = &ctx->pending_nvm; 125 126 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 127 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 128 } 129 130 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx) 131 { 132 struct ice_hw *hw = &pf->hw; 133 134 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name); 135 } 136 137 static void 138 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx) 139 { 140 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver; 141 142 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u", 143 pkg->major, pkg->minor, pkg->update, pkg->draft); 144 } 145 146 static void 147 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 148 { 149 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id); 150 } 151 152 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 153 { 154 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 155 156 /* The netlist version fields are BCD formatted */ 157 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 158 netlist->major, netlist->minor, 159 netlist->type >> 16, netlist->type & 0xFFFF, 160 netlist->rev, netlist->cust_ver); 161 } 162 163 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 164 { 165 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 166 167 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 168 } 169 170 static void 171 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf, 172 struct ice_info_ctx *ctx) 173 { 174 struct ice_netlist_info *netlist = &ctx->pending_netlist; 175 176 /* The netlist version fields are BCD formatted */ 177 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 178 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 179 netlist->major, netlist->minor, 180 netlist->type >> 16, netlist->type & 0xFFFF, 181 netlist->rev, netlist->cust_ver); 182 } 183 184 static void 185 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf, 186 struct ice_info_ctx *ctx) 187 { 188 struct ice_netlist_info *netlist = &ctx->pending_netlist; 189 190 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 191 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 192 } 193 194 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 195 { 196 u32 id, cfg_ver, fw_ver; 197 198 if (!ice_is_feature_supported(pf, ICE_F_CGU)) 199 return; 200 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver)) 201 return; 202 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver); 203 } 204 205 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 206 { 207 if (!ice_is_feature_supported(pf, ICE_F_CGU)) 208 return; 209 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number); 210 } 211 212 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL } 213 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL } 214 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback } 215 216 /* The combined() macro inserts both the running entry as well as a stored 217 * entry. The running entry will always report the version from the active 218 * handler. The stored entry will first try the pending handler, and fallback 219 * to the active handler if the pending function does not report a version. 220 * The pending handler should check the status of a pending update for the 221 * relevant flash component. It should only fill in the buffer in the case 222 * where a valid pending version is available. This ensures that the related 223 * stored and running versions remain in sync, and that stored versions are 224 * correctly reported as expected. 225 */ 226 #define combined(key, active, pending) \ 227 running(key, active), \ 228 stored(key, pending, active) 229 230 enum ice_version_type { 231 ICE_VERSION_FIXED, 232 ICE_VERSION_RUNNING, 233 ICE_VERSION_STORED, 234 }; 235 236 static const struct ice_devlink_version { 237 enum ice_version_type type; 238 const char *key; 239 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx); 240 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx); 241 } ice_devlink_versions[] = { 242 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba), 243 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt), 244 running("fw.mgmt.api", ice_info_fw_api), 245 running("fw.mgmt.build", ice_info_fw_build), 246 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver), 247 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver), 248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack), 249 running("fw.app.name", ice_info_ddp_pkg_name), 250 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version), 251 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id), 252 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver), 253 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build), 254 fixed("cgu.id", ice_info_cgu_id), 255 running("fw.cgu", ice_info_cgu_fw_build), 256 }; 257 258 /** 259 * ice_devlink_info_get - .info_get devlink handler 260 * @devlink: devlink instance structure 261 * @req: the devlink info request 262 * @extack: extended netdev ack structure 263 * 264 * Callback for the devlink .info_get operation. Reports information about the 265 * device. 266 * 267 * Return: zero on success or an error code on failure. 268 */ 269 static int ice_devlink_info_get(struct devlink *devlink, 270 struct devlink_info_req *req, 271 struct netlink_ext_ack *extack) 272 { 273 struct ice_pf *pf = devlink_priv(devlink); 274 struct device *dev = ice_pf_to_dev(pf); 275 struct ice_hw *hw = &pf->hw; 276 struct ice_info_ctx *ctx; 277 size_t i; 278 int err; 279 280 err = ice_wait_for_reset(pf, 10 * HZ); 281 if (err) { 282 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting"); 283 return err; 284 } 285 286 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 287 if (!ctx) 288 return -ENOMEM; 289 290 /* discover capabilities first */ 291 err = ice_discover_dev_caps(hw, &ctx->dev_caps); 292 if (err) { 293 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n", 294 err, ice_aq_str(hw->adminq.sq_last_status)); 295 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities"); 296 goto out_free_ctx; 297 } 298 299 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) { 300 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom); 301 if (err) { 302 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n", 303 err, ice_aq_str(hw->adminq.sq_last_status)); 304 305 /* disable display of pending Option ROM */ 306 ctx->dev_caps.common_cap.nvm_update_pending_orom = false; 307 } 308 } 309 310 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) { 311 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm); 312 if (err) { 313 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n", 314 err, ice_aq_str(hw->adminq.sq_last_status)); 315 316 /* disable display of pending Option ROM */ 317 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false; 318 } 319 } 320 321 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) { 322 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist); 323 if (err) { 324 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n", 325 err, ice_aq_str(hw->adminq.sq_last_status)); 326 327 /* disable display of pending Option ROM */ 328 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false; 329 } 330 } 331 332 ice_info_get_dsn(pf, ctx); 333 334 err = devlink_info_serial_number_put(req, ctx->buf); 335 if (err) { 336 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number"); 337 goto out_free_ctx; 338 } 339 340 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) { 341 enum ice_version_type type = ice_devlink_versions[i].type; 342 const char *key = ice_devlink_versions[i].key; 343 344 memset(ctx->buf, 0, sizeof(ctx->buf)); 345 346 ice_devlink_versions[i].getter(pf, ctx); 347 348 /* If the default getter doesn't report a version, use the 349 * fallback function. This is primarily useful in the case of 350 * "stored" versions that want to report the same value as the 351 * running version in the normal case of no pending update. 352 */ 353 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback) 354 ice_devlink_versions[i].fallback(pf, ctx); 355 356 /* Do not report missing versions */ 357 if (ctx->buf[0] == '\0') 358 continue; 359 360 switch (type) { 361 case ICE_VERSION_FIXED: 362 err = devlink_info_version_fixed_put(req, key, ctx->buf); 363 if (err) { 364 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version"); 365 goto out_free_ctx; 366 } 367 break; 368 case ICE_VERSION_RUNNING: 369 err = devlink_info_version_running_put(req, key, ctx->buf); 370 if (err) { 371 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version"); 372 goto out_free_ctx; 373 } 374 break; 375 case ICE_VERSION_STORED: 376 err = devlink_info_version_stored_put(req, key, ctx->buf); 377 if (err) { 378 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version"); 379 goto out_free_ctx; 380 } 381 break; 382 } 383 } 384 385 out_free_ctx: 386 kfree(ctx); 387 return err; 388 } 389 390 /** 391 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware 392 * @pf: pointer to the pf instance 393 * @extack: netlink extended ACK structure 394 * 395 * Allow user to activate new Embedded Management Processor firmware by 396 * issuing device specific EMP reset. Called in response to 397 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE. 398 * 399 * Note that teardown and rebuild of the driver state happens automatically as 400 * part of an interrupt and watchdog task. This is because all physical 401 * functions on the device must be able to reset when an EMP reset occurs from 402 * any source. 403 */ 404 static int 405 ice_devlink_reload_empr_start(struct ice_pf *pf, 406 struct netlink_ext_ack *extack) 407 { 408 struct device *dev = ice_pf_to_dev(pf); 409 struct ice_hw *hw = &pf->hw; 410 u8 pending; 411 int err; 412 413 err = ice_get_pending_updates(pf, &pending, extack); 414 if (err) 415 return err; 416 417 /* pending is a bitmask of which flash banks have a pending update, 418 * including the main NVM bank, the Option ROM bank, and the netlist 419 * bank. If any of these bits are set, then there is a pending update 420 * waiting to be activated. 421 */ 422 if (!pending) { 423 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update"); 424 return -ECANCELED; 425 } 426 427 if (pf->fw_emp_reset_disabled) { 428 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed"); 429 return -ECANCELED; 430 } 431 432 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n"); 433 434 err = ice_aq_nvm_update_empr(hw); 435 if (err) { 436 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n", 437 err, ice_aq_str(hw->adminq.sq_last_status)); 438 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware"); 439 return err; 440 } 441 442 return 0; 443 } 444 445 /** 446 * ice_devlink_reinit_down - unload given PF 447 * @pf: pointer to the PF struct 448 */ 449 static void ice_devlink_reinit_down(struct ice_pf *pf) 450 { 451 /* No need to take devl_lock, it's already taken by devlink API */ 452 ice_unload(pf); 453 rtnl_lock(); 454 ice_vsi_decfg(ice_get_main_vsi(pf)); 455 rtnl_unlock(); 456 ice_deinit_dev(pf); 457 } 458 459 /** 460 * ice_devlink_reload_down - prepare for reload 461 * @devlink: pointer to the devlink instance to reload 462 * @netns_change: if true, the network namespace is changing 463 * @action: the action to perform 464 * @limit: limits on what reload should do, such as not resetting 465 * @extack: netlink extended ACK structure 466 */ 467 static int 468 ice_devlink_reload_down(struct devlink *devlink, bool netns_change, 469 enum devlink_reload_action action, 470 enum devlink_reload_limit limit, 471 struct netlink_ext_ack *extack) 472 { 473 struct ice_pf *pf = devlink_priv(devlink); 474 475 switch (action) { 476 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT: 477 if (ice_is_eswitch_mode_switchdev(pf)) { 478 NL_SET_ERR_MSG_MOD(extack, 479 "Go to legacy mode before doing reinit"); 480 return -EOPNOTSUPP; 481 } 482 if (ice_is_adq_active(pf)) { 483 NL_SET_ERR_MSG_MOD(extack, 484 "Turn off ADQ before doing reinit"); 485 return -EOPNOTSUPP; 486 } 487 if (ice_has_vfs(pf)) { 488 NL_SET_ERR_MSG_MOD(extack, 489 "Remove all VFs before doing reinit"); 490 return -EOPNOTSUPP; 491 } 492 ice_devlink_reinit_down(pf); 493 return 0; 494 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE: 495 return ice_devlink_reload_empr_start(pf, extack); 496 default: 497 WARN_ON(1); 498 return -EOPNOTSUPP; 499 } 500 } 501 502 /** 503 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish 504 * @pf: pointer to the pf instance 505 * @extack: netlink extended ACK structure 506 * 507 * Wait for driver to finish rebuilding after EMP reset is completed. This 508 * includes time to wait for both the actual device reset as well as the time 509 * for the driver's rebuild to complete. 510 */ 511 static int 512 ice_devlink_reload_empr_finish(struct ice_pf *pf, 513 struct netlink_ext_ack *extack) 514 { 515 int err; 516 517 err = ice_wait_for_reset(pf, 60 * HZ); 518 if (err) { 519 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute"); 520 return err; 521 } 522 523 return 0; 524 } 525 526 /** 527 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree 528 * @pf: pf struct 529 * 530 * This function tears down tree exported during VF's creation. 531 */ 532 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf) 533 { 534 struct devlink *devlink; 535 struct ice_vf *vf; 536 unsigned int bkt; 537 538 devlink = priv_to_devlink(pf); 539 540 devl_lock(devlink); 541 mutex_lock(&pf->vfs.table_lock); 542 ice_for_each_vf(pf, bkt, vf) { 543 if (vf->devlink_port.devlink_rate) 544 devl_rate_leaf_destroy(&vf->devlink_port); 545 } 546 mutex_unlock(&pf->vfs.table_lock); 547 548 devl_rate_nodes_destroy(devlink); 549 devl_unlock(devlink); 550 } 551 552 /** 553 * ice_enable_custom_tx - try to enable custom Tx feature 554 * @pf: pf struct 555 * 556 * This function tries to enable custom Tx feature, 557 * it's not possible to enable it, if DCB or ADQ is active. 558 */ 559 static bool ice_enable_custom_tx(struct ice_pf *pf) 560 { 561 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info; 562 struct device *dev = ice_pf_to_dev(pf); 563 564 if (pi->is_custom_tx_enabled) 565 /* already enabled, return true */ 566 return true; 567 568 if (ice_is_adq_active(pf)) { 569 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n"); 570 return false; 571 } 572 573 if (ice_is_dcb_active(pf)) { 574 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n"); 575 return false; 576 } 577 578 pi->is_custom_tx_enabled = true; 579 580 return true; 581 } 582 583 /** 584 * ice_traverse_tx_tree - traverse Tx scheduler tree 585 * @devlink: devlink struct 586 * @node: current node, used for recursion 587 * @tc_node: tc_node struct, that is treated as a root 588 * @pf: pf struct 589 * 590 * This function traverses Tx scheduler tree and exports 591 * entire structure to the devlink-rate. 592 */ 593 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node, 594 struct ice_sched_node *tc_node, struct ice_pf *pf) 595 { 596 struct devlink_rate *rate_node = NULL; 597 struct ice_vf *vf; 598 int i; 599 600 if (node->rate_node) 601 /* already added, skip to the next */ 602 goto traverse_children; 603 604 if (node->parent == tc_node) { 605 /* create root node */ 606 rate_node = devl_rate_node_create(devlink, node, node->name, NULL); 607 } else if (node->vsi_handle && 608 pf->vsi[node->vsi_handle]->vf) { 609 vf = pf->vsi[node->vsi_handle]->vf; 610 if (!vf->devlink_port.devlink_rate) 611 /* leaf nodes doesn't have children 612 * so we don't set rate_node 613 */ 614 devl_rate_leaf_create(&vf->devlink_port, node, 615 node->parent->rate_node); 616 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF && 617 node->parent->rate_node) { 618 rate_node = devl_rate_node_create(devlink, node, node->name, 619 node->parent->rate_node); 620 } 621 622 if (rate_node && !IS_ERR(rate_node)) 623 node->rate_node = rate_node; 624 625 traverse_children: 626 for (i = 0; i < node->num_children; i++) 627 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf); 628 } 629 630 /** 631 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate 632 * @devlink: devlink struct 633 * @vsi: main vsi struct 634 * 635 * This function finds a root node, then calls ice_traverse_tx tree, which 636 * traverses the tree and exports it's contents to devlink rate. 637 */ 638 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi) 639 { 640 struct ice_port_info *pi = vsi->port_info; 641 struct ice_sched_node *tc_node; 642 struct ice_pf *pf = vsi->back; 643 int i; 644 645 tc_node = pi->root->children[0]; 646 mutex_lock(&pi->sched_lock); 647 devl_lock(devlink); 648 for (i = 0; i < tc_node->num_children; i++) 649 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf); 650 devl_unlock(devlink); 651 mutex_unlock(&pi->sched_lock); 652 653 return 0; 654 } 655 656 static void ice_clear_rate_nodes(struct ice_sched_node *node) 657 { 658 node->rate_node = NULL; 659 660 for (int i = 0; i < node->num_children; i++) 661 ice_clear_rate_nodes(node->children[i]); 662 } 663 664 /** 665 * ice_devlink_rate_clear_tx_topology - clear node->rate_node 666 * @vsi: main vsi struct 667 * 668 * Clear rate_node to cleanup creation of Tx topology. 669 * 670 */ 671 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi) 672 { 673 struct ice_port_info *pi = vsi->port_info; 674 675 mutex_lock(&pi->sched_lock); 676 ice_clear_rate_nodes(pi->root->children[0]); 677 mutex_unlock(&pi->sched_lock); 678 } 679 680 /** 681 * ice_set_object_tx_share - sets node scheduling parameter 682 * @pi: devlink struct instance 683 * @node: node struct instance 684 * @bw: bandwidth in bytes per second 685 * @extack: extended netdev ack structure 686 * 687 * This function sets ICE_MIN_BW scheduling BW limit. 688 */ 689 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node, 690 u64 bw, struct netlink_ext_ack *extack) 691 { 692 int status; 693 694 mutex_lock(&pi->sched_lock); 695 /* converts bytes per second to kilo bits per second */ 696 node->tx_share = div_u64(bw, 125); 697 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share); 698 mutex_unlock(&pi->sched_lock); 699 700 if (status) 701 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share"); 702 703 return status; 704 } 705 706 /** 707 * ice_set_object_tx_max - sets node scheduling parameter 708 * @pi: devlink struct instance 709 * @node: node struct instance 710 * @bw: bandwidth in bytes per second 711 * @extack: extended netdev ack structure 712 * 713 * This function sets ICE_MAX_BW scheduling BW limit. 714 */ 715 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node, 716 u64 bw, struct netlink_ext_ack *extack) 717 { 718 int status; 719 720 mutex_lock(&pi->sched_lock); 721 /* converts bytes per second value to kilo bits per second */ 722 node->tx_max = div_u64(bw, 125); 723 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max); 724 mutex_unlock(&pi->sched_lock); 725 726 if (status) 727 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max"); 728 729 return status; 730 } 731 732 /** 733 * ice_set_object_tx_priority - sets node scheduling parameter 734 * @pi: devlink struct instance 735 * @node: node struct instance 736 * @priority: value representing priority for strict priority arbitration 737 * @extack: extended netdev ack structure 738 * 739 * This function sets priority of node among siblings. 740 */ 741 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node, 742 u32 priority, struct netlink_ext_ack *extack) 743 { 744 int status; 745 746 if (priority >= 8) { 747 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8"); 748 return -EINVAL; 749 } 750 751 mutex_lock(&pi->sched_lock); 752 node->tx_priority = priority; 753 status = ice_sched_set_node_priority(pi, node, node->tx_priority); 754 mutex_unlock(&pi->sched_lock); 755 756 if (status) 757 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority"); 758 759 return status; 760 } 761 762 /** 763 * ice_set_object_tx_weight - sets node scheduling parameter 764 * @pi: devlink struct instance 765 * @node: node struct instance 766 * @weight: value represeting relative weight for WFQ arbitration 767 * @extack: extended netdev ack structure 768 * 769 * This function sets node weight for WFQ algorithm. 770 */ 771 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node, 772 u32 weight, struct netlink_ext_ack *extack) 773 { 774 int status; 775 776 if (weight > 200 || weight < 1) { 777 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200"); 778 return -EINVAL; 779 } 780 781 mutex_lock(&pi->sched_lock); 782 node->tx_weight = weight; 783 status = ice_sched_set_node_weight(pi, node, node->tx_weight); 784 mutex_unlock(&pi->sched_lock); 785 786 if (status) 787 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight"); 788 789 return status; 790 } 791 792 /** 793 * ice_get_pi_from_dev_rate - get port info from devlink_rate 794 * @rate_node: devlink struct instance 795 * 796 * This function returns corresponding port_info struct of devlink_rate 797 */ 798 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node) 799 { 800 struct ice_pf *pf = devlink_priv(rate_node->devlink); 801 802 return ice_get_main_vsi(pf)->port_info; 803 } 804 805 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv, 806 struct netlink_ext_ack *extack) 807 { 808 struct ice_sched_node *node; 809 struct ice_port_info *pi; 810 811 pi = ice_get_pi_from_dev_rate(rate_node); 812 813 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 814 return -EBUSY; 815 816 /* preallocate memory for ice_sched_node */ 817 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL); 818 *priv = node; 819 820 return 0; 821 } 822 823 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv, 824 struct netlink_ext_ack *extack) 825 { 826 struct ice_sched_node *node, *tc_node; 827 struct ice_port_info *pi; 828 829 pi = ice_get_pi_from_dev_rate(rate_node); 830 tc_node = pi->root->children[0]; 831 node = priv; 832 833 if (!rate_node->parent || !node || tc_node == node || !extack) 834 return 0; 835 836 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 837 return -EBUSY; 838 839 /* can't allow to delete a node with children */ 840 if (node->num_children) 841 return -EINVAL; 842 843 mutex_lock(&pi->sched_lock); 844 ice_free_sched_node(pi, node); 845 mutex_unlock(&pi->sched_lock); 846 847 return 0; 848 } 849 850 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv, 851 u64 tx_max, struct netlink_ext_ack *extack) 852 { 853 struct ice_sched_node *node = priv; 854 855 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 856 return -EBUSY; 857 858 if (!node) 859 return 0; 860 861 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf), 862 node, tx_max, extack); 863 } 864 865 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv, 866 u64 tx_share, struct netlink_ext_ack *extack) 867 { 868 struct ice_sched_node *node = priv; 869 870 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 871 return -EBUSY; 872 873 if (!node) 874 return 0; 875 876 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node, 877 tx_share, extack); 878 } 879 880 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv, 881 u32 tx_priority, struct netlink_ext_ack *extack) 882 { 883 struct ice_sched_node *node = priv; 884 885 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 886 return -EBUSY; 887 888 if (!node) 889 return 0; 890 891 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node, 892 tx_priority, extack); 893 } 894 895 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv, 896 u32 tx_weight, struct netlink_ext_ack *extack) 897 { 898 struct ice_sched_node *node = priv; 899 900 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 901 return -EBUSY; 902 903 if (!node) 904 return 0; 905 906 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node, 907 tx_weight, extack); 908 } 909 910 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv, 911 u64 tx_max, struct netlink_ext_ack *extack) 912 { 913 struct ice_sched_node *node = priv; 914 915 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 916 return -EBUSY; 917 918 if (!node) 919 return 0; 920 921 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node), 922 node, tx_max, extack); 923 } 924 925 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv, 926 u64 tx_share, struct netlink_ext_ack *extack) 927 { 928 struct ice_sched_node *node = priv; 929 930 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 931 return -EBUSY; 932 933 if (!node) 934 return 0; 935 936 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node), 937 node, tx_share, extack); 938 } 939 940 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv, 941 u32 tx_priority, struct netlink_ext_ack *extack) 942 { 943 struct ice_sched_node *node = priv; 944 945 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 946 return -EBUSY; 947 948 if (!node) 949 return 0; 950 951 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node), 952 node, tx_priority, extack); 953 } 954 955 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv, 956 u32 tx_weight, struct netlink_ext_ack *extack) 957 { 958 struct ice_sched_node *node = priv; 959 960 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 961 return -EBUSY; 962 963 if (!node) 964 return 0; 965 966 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node), 967 node, tx_weight, extack); 968 } 969 970 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate, 971 struct devlink_rate *parent, 972 void *priv, void *parent_priv, 973 struct netlink_ext_ack *extack) 974 { 975 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate); 976 struct ice_sched_node *tc_node, *node, *parent_node; 977 u16 num_nodes_added; 978 u32 first_node_teid; 979 u32 node_teid; 980 int status; 981 982 tc_node = pi->root->children[0]; 983 node = priv; 984 985 if (!extack) 986 return 0; 987 988 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink))) 989 return -EBUSY; 990 991 if (!parent) { 992 if (!node || tc_node == node || node->num_children) 993 return -EINVAL; 994 995 mutex_lock(&pi->sched_lock); 996 ice_free_sched_node(pi, node); 997 mutex_unlock(&pi->sched_lock); 998 999 return 0; 1000 } 1001 1002 parent_node = parent_priv; 1003 1004 /* if the node doesn't exist, create it */ 1005 if (!node->parent) { 1006 mutex_lock(&pi->sched_lock); 1007 status = ice_sched_add_elems(pi, tc_node, parent_node, 1008 parent_node->tx_sched_layer + 1, 1009 1, &num_nodes_added, &first_node_teid, 1010 &node); 1011 mutex_unlock(&pi->sched_lock); 1012 1013 if (status) { 1014 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node"); 1015 return status; 1016 } 1017 1018 if (devlink_rate->tx_share) 1019 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack); 1020 if (devlink_rate->tx_max) 1021 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack); 1022 if (devlink_rate->tx_priority) 1023 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack); 1024 if (devlink_rate->tx_weight) 1025 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack); 1026 } else { 1027 node_teid = le32_to_cpu(node->info.node_teid); 1028 mutex_lock(&pi->sched_lock); 1029 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid); 1030 mutex_unlock(&pi->sched_lock); 1031 1032 if (status) 1033 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent"); 1034 } 1035 1036 return status; 1037 } 1038 1039 /** 1040 * ice_devlink_reinit_up - do reinit of the given PF 1041 * @pf: pointer to the PF struct 1042 */ 1043 static int ice_devlink_reinit_up(struct ice_pf *pf) 1044 { 1045 struct ice_vsi *vsi = ice_get_main_vsi(pf); 1046 struct ice_vsi_cfg_params params; 1047 int err; 1048 1049 err = ice_init_dev(pf); 1050 if (err) 1051 return err; 1052 1053 params = ice_vsi_to_params(vsi); 1054 params.flags = ICE_VSI_FLAG_INIT; 1055 1056 rtnl_lock(); 1057 err = ice_vsi_cfg(vsi, ¶ms); 1058 rtnl_unlock(); 1059 if (err) 1060 goto err_vsi_cfg; 1061 1062 /* No need to take devl_lock, it's already taken by devlink API */ 1063 err = ice_load(pf); 1064 if (err) 1065 goto err_load; 1066 1067 return 0; 1068 1069 err_load: 1070 rtnl_lock(); 1071 ice_vsi_decfg(vsi); 1072 rtnl_unlock(); 1073 err_vsi_cfg: 1074 ice_deinit_dev(pf); 1075 return err; 1076 } 1077 1078 /** 1079 * ice_devlink_reload_up - do reload up after reinit 1080 * @devlink: pointer to the devlink instance reloading 1081 * @action: the action requested 1082 * @limit: limits imposed by userspace, such as not resetting 1083 * @actions_performed: on return, indicate what actions actually performed 1084 * @extack: netlink extended ACK structure 1085 */ 1086 static int 1087 ice_devlink_reload_up(struct devlink *devlink, 1088 enum devlink_reload_action action, 1089 enum devlink_reload_limit limit, 1090 u32 *actions_performed, 1091 struct netlink_ext_ack *extack) 1092 { 1093 struct ice_pf *pf = devlink_priv(devlink); 1094 1095 switch (action) { 1096 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT: 1097 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT); 1098 return ice_devlink_reinit_up(pf); 1099 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE: 1100 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE); 1101 return ice_devlink_reload_empr_finish(pf, extack); 1102 default: 1103 WARN_ON(1); 1104 return -EOPNOTSUPP; 1105 } 1106 } 1107 1108 static const struct devlink_ops ice_devlink_ops = { 1109 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK, 1110 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) | 1111 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE), 1112 .reload_down = ice_devlink_reload_down, 1113 .reload_up = ice_devlink_reload_up, 1114 .eswitch_mode_get = ice_eswitch_mode_get, 1115 .eswitch_mode_set = ice_eswitch_mode_set, 1116 .info_get = ice_devlink_info_get, 1117 .flash_update = ice_devlink_flash_update, 1118 1119 .rate_node_new = ice_devlink_rate_node_new, 1120 .rate_node_del = ice_devlink_rate_node_del, 1121 1122 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set, 1123 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set, 1124 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set, 1125 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set, 1126 1127 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set, 1128 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set, 1129 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set, 1130 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set, 1131 1132 .rate_leaf_parent_set = ice_devlink_set_parent, 1133 .rate_node_parent_set = ice_devlink_set_parent, 1134 }; 1135 1136 static int 1137 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id, 1138 struct devlink_param_gset_ctx *ctx) 1139 { 1140 struct ice_pf *pf = devlink_priv(devlink); 1141 1142 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false; 1143 1144 return 0; 1145 } 1146 1147 static int 1148 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id, 1149 struct devlink_param_gset_ctx *ctx) 1150 { 1151 struct ice_pf *pf = devlink_priv(devlink); 1152 bool roce_ena = ctx->val.vbool; 1153 int ret; 1154 1155 if (!roce_ena) { 1156 ice_unplug_aux_dev(pf); 1157 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1158 return 0; 1159 } 1160 1161 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2; 1162 ret = ice_plug_aux_dev(pf); 1163 if (ret) 1164 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1165 1166 return ret; 1167 } 1168 1169 static int 1170 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id, 1171 union devlink_param_value val, 1172 struct netlink_ext_ack *extack) 1173 { 1174 struct ice_pf *pf = devlink_priv(devlink); 1175 1176 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1177 return -EOPNOTSUPP; 1178 1179 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) { 1180 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1181 return -EOPNOTSUPP; 1182 } 1183 1184 return 0; 1185 } 1186 1187 static int 1188 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id, 1189 struct devlink_param_gset_ctx *ctx) 1190 { 1191 struct ice_pf *pf = devlink_priv(devlink); 1192 1193 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP; 1194 1195 return 0; 1196 } 1197 1198 static int 1199 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id, 1200 struct devlink_param_gset_ctx *ctx) 1201 { 1202 struct ice_pf *pf = devlink_priv(devlink); 1203 bool iw_ena = ctx->val.vbool; 1204 int ret; 1205 1206 if (!iw_ena) { 1207 ice_unplug_aux_dev(pf); 1208 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1209 return 0; 1210 } 1211 1212 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP; 1213 ret = ice_plug_aux_dev(pf); 1214 if (ret) 1215 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1216 1217 return ret; 1218 } 1219 1220 static int 1221 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id, 1222 union devlink_param_value val, 1223 struct netlink_ext_ack *extack) 1224 { 1225 struct ice_pf *pf = devlink_priv(devlink); 1226 1227 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1228 return -EOPNOTSUPP; 1229 1230 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) { 1231 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1232 return -EOPNOTSUPP; 1233 } 1234 1235 return 0; 1236 } 1237 1238 static const struct devlink_param ice_devlink_params[] = { 1239 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1240 ice_devlink_enable_roce_get, 1241 ice_devlink_enable_roce_set, 1242 ice_devlink_enable_roce_validate), 1243 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1244 ice_devlink_enable_iw_get, 1245 ice_devlink_enable_iw_set, 1246 ice_devlink_enable_iw_validate), 1247 1248 }; 1249 1250 static void ice_devlink_free(void *devlink_ptr) 1251 { 1252 devlink_free((struct devlink *)devlink_ptr); 1253 } 1254 1255 /** 1256 * ice_allocate_pf - Allocate devlink and return PF structure pointer 1257 * @dev: the device to allocate for 1258 * 1259 * Allocate a devlink instance for this device and return the private area as 1260 * the PF structure. The devlink memory is kept track of through devres by 1261 * adding an action to remove it when unwinding. 1262 */ 1263 struct ice_pf *ice_allocate_pf(struct device *dev) 1264 { 1265 struct devlink *devlink; 1266 1267 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev); 1268 if (!devlink) 1269 return NULL; 1270 1271 /* Add an action to teardown the devlink when unwinding the driver */ 1272 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink)) 1273 return NULL; 1274 1275 return devlink_priv(devlink); 1276 } 1277 1278 /** 1279 * ice_devlink_register - Register devlink interface for this PF 1280 * @pf: the PF to register the devlink for. 1281 * 1282 * Register the devlink instance associated with this physical function. 1283 * 1284 * Return: zero on success or an error code on failure. 1285 */ 1286 void ice_devlink_register(struct ice_pf *pf) 1287 { 1288 struct devlink *devlink = priv_to_devlink(pf); 1289 1290 devl_register(devlink); 1291 } 1292 1293 /** 1294 * ice_devlink_unregister - Unregister devlink resources for this PF. 1295 * @pf: the PF structure to cleanup 1296 * 1297 * Releases resources used by devlink and cleans up associated memory. 1298 */ 1299 void ice_devlink_unregister(struct ice_pf *pf) 1300 { 1301 devl_unregister(priv_to_devlink(pf)); 1302 } 1303 1304 int ice_devlink_register_params(struct ice_pf *pf) 1305 { 1306 struct devlink *devlink = priv_to_devlink(pf); 1307 1308 return devl_params_register(devlink, ice_devlink_params, 1309 ARRAY_SIZE(ice_devlink_params)); 1310 } 1311 1312 void ice_devlink_unregister_params(struct ice_pf *pf) 1313 { 1314 devl_params_unregister(priv_to_devlink(pf), ice_devlink_params, 1315 ARRAY_SIZE(ice_devlink_params)); 1316 } 1317 1318 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024) 1319 1320 static const struct devlink_region_ops ice_nvm_region_ops; 1321 static const struct devlink_region_ops ice_sram_region_ops; 1322 1323 /** 1324 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents 1325 * @devlink: the devlink instance 1326 * @ops: the devlink region to snapshot 1327 * @extack: extended ACK response structure 1328 * @data: on exit points to snapshot data buffer 1329 * 1330 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either 1331 * the nvm-flash or shadow-ram region. 1332 * 1333 * It captures a snapshot of the NVM or Shadow RAM flash contents. This 1334 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink 1335 * interface. 1336 * 1337 * @returns zero on success, and updates the data pointer. Returns a non-zero 1338 * error code on failure. 1339 */ 1340 static int ice_devlink_nvm_snapshot(struct devlink *devlink, 1341 const struct devlink_region_ops *ops, 1342 struct netlink_ext_ack *extack, u8 **data) 1343 { 1344 struct ice_pf *pf = devlink_priv(devlink); 1345 struct device *dev = ice_pf_to_dev(pf); 1346 struct ice_hw *hw = &pf->hw; 1347 bool read_shadow_ram; 1348 u8 *nvm_data, *tmp, i; 1349 u32 nvm_size, left; 1350 s8 num_blks; 1351 int status; 1352 1353 if (ops == &ice_nvm_region_ops) { 1354 read_shadow_ram = false; 1355 nvm_size = hw->flash.flash_size; 1356 } else if (ops == &ice_sram_region_ops) { 1357 read_shadow_ram = true; 1358 nvm_size = hw->flash.sr_words * 2u; 1359 } else { 1360 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1361 return -EOPNOTSUPP; 1362 } 1363 1364 nvm_data = vzalloc(nvm_size); 1365 if (!nvm_data) 1366 return -ENOMEM; 1367 1368 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE); 1369 tmp = nvm_data; 1370 left = nvm_size; 1371 1372 /* Some systems take longer to read the NVM than others which causes the 1373 * FW to reclaim the NVM lock before the entire NVM has been read. Fix 1374 * this by breaking the reads of the NVM into smaller chunks that will 1375 * probably not take as long. This has some overhead since we are 1376 * increasing the number of AQ commands, but it should always work 1377 */ 1378 for (i = 0; i < num_blks; i++) { 1379 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left); 1380 1381 status = ice_acquire_nvm(hw, ICE_RES_READ); 1382 if (status) { 1383 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1384 status, hw->adminq.sq_last_status); 1385 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1386 vfree(nvm_data); 1387 return -EIO; 1388 } 1389 1390 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE, 1391 &read_sz, tmp, read_shadow_ram); 1392 if (status) { 1393 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1394 read_sz, status, hw->adminq.sq_last_status); 1395 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1396 ice_release_nvm(hw); 1397 vfree(nvm_data); 1398 return -EIO; 1399 } 1400 ice_release_nvm(hw); 1401 1402 tmp += read_sz; 1403 left -= read_sz; 1404 } 1405 1406 *data = nvm_data; 1407 1408 return 0; 1409 } 1410 1411 /** 1412 * ice_devlink_nvm_read - Read a portion of NVM flash contents 1413 * @devlink: the devlink instance 1414 * @ops: the devlink region to snapshot 1415 * @extack: extended ACK response structure 1416 * @offset: the offset to start at 1417 * @size: the amount to read 1418 * @data: the data buffer to read into 1419 * 1420 * This function is called in response to DEVLINK_CMD_REGION_READ to directly 1421 * read a section of the NVM contents. 1422 * 1423 * It reads from either the nvm-flash or shadow-ram region contents. 1424 * 1425 * @returns zero on success, and updates the data pointer. Returns a non-zero 1426 * error code on failure. 1427 */ 1428 static int ice_devlink_nvm_read(struct devlink *devlink, 1429 const struct devlink_region_ops *ops, 1430 struct netlink_ext_ack *extack, 1431 u64 offset, u32 size, u8 *data) 1432 { 1433 struct ice_pf *pf = devlink_priv(devlink); 1434 struct device *dev = ice_pf_to_dev(pf); 1435 struct ice_hw *hw = &pf->hw; 1436 bool read_shadow_ram; 1437 u64 nvm_size; 1438 int status; 1439 1440 if (ops == &ice_nvm_region_ops) { 1441 read_shadow_ram = false; 1442 nvm_size = hw->flash.flash_size; 1443 } else if (ops == &ice_sram_region_ops) { 1444 read_shadow_ram = true; 1445 nvm_size = hw->flash.sr_words * 2u; 1446 } else { 1447 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1448 return -EOPNOTSUPP; 1449 } 1450 1451 if (offset + size >= nvm_size) { 1452 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size"); 1453 return -ERANGE; 1454 } 1455 1456 status = ice_acquire_nvm(hw, ICE_RES_READ); 1457 if (status) { 1458 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1459 status, hw->adminq.sq_last_status); 1460 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1461 return -EIO; 1462 } 1463 1464 status = ice_read_flat_nvm(hw, (u32)offset, &size, data, 1465 read_shadow_ram); 1466 if (status) { 1467 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1468 size, status, hw->adminq.sq_last_status); 1469 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1470 ice_release_nvm(hw); 1471 return -EIO; 1472 } 1473 ice_release_nvm(hw); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities 1480 * @devlink: the devlink instance 1481 * @ops: the devlink region being snapshotted 1482 * @extack: extended ACK response structure 1483 * @data: on exit points to snapshot data buffer 1484 * 1485 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1486 * the device-caps devlink region. It captures a snapshot of the device 1487 * capabilities reported by firmware. 1488 * 1489 * @returns zero on success, and updates the data pointer. Returns a non-zero 1490 * error code on failure. 1491 */ 1492 static int 1493 ice_devlink_devcaps_snapshot(struct devlink *devlink, 1494 const struct devlink_region_ops *ops, 1495 struct netlink_ext_ack *extack, u8 **data) 1496 { 1497 struct ice_pf *pf = devlink_priv(devlink); 1498 struct device *dev = ice_pf_to_dev(pf); 1499 struct ice_hw *hw = &pf->hw; 1500 void *devcaps; 1501 int status; 1502 1503 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN); 1504 if (!devcaps) 1505 return -ENOMEM; 1506 1507 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL, 1508 ice_aqc_opc_list_dev_caps, NULL); 1509 if (status) { 1510 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n", 1511 status, hw->adminq.sq_last_status); 1512 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities"); 1513 vfree(devcaps); 1514 return status; 1515 } 1516 1517 *data = (u8 *)devcaps; 1518 1519 return 0; 1520 } 1521 1522 static const struct devlink_region_ops ice_nvm_region_ops = { 1523 .name = "nvm-flash", 1524 .destructor = vfree, 1525 .snapshot = ice_devlink_nvm_snapshot, 1526 .read = ice_devlink_nvm_read, 1527 }; 1528 1529 static const struct devlink_region_ops ice_sram_region_ops = { 1530 .name = "shadow-ram", 1531 .destructor = vfree, 1532 .snapshot = ice_devlink_nvm_snapshot, 1533 .read = ice_devlink_nvm_read, 1534 }; 1535 1536 static const struct devlink_region_ops ice_devcaps_region_ops = { 1537 .name = "device-caps", 1538 .destructor = vfree, 1539 .snapshot = ice_devlink_devcaps_snapshot, 1540 }; 1541 1542 /** 1543 * ice_devlink_init_regions - Initialize devlink regions 1544 * @pf: the PF device structure 1545 * 1546 * Create devlink regions used to enable access to dump the contents of the 1547 * flash memory on the device. 1548 */ 1549 void ice_devlink_init_regions(struct ice_pf *pf) 1550 { 1551 struct devlink *devlink = priv_to_devlink(pf); 1552 struct device *dev = ice_pf_to_dev(pf); 1553 u64 nvm_size, sram_size; 1554 1555 nvm_size = pf->hw.flash.flash_size; 1556 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1, 1557 nvm_size); 1558 if (IS_ERR(pf->nvm_region)) { 1559 dev_err(dev, "failed to create NVM devlink region, err %ld\n", 1560 PTR_ERR(pf->nvm_region)); 1561 pf->nvm_region = NULL; 1562 } 1563 1564 sram_size = pf->hw.flash.sr_words * 2u; 1565 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops, 1566 1, sram_size); 1567 if (IS_ERR(pf->sram_region)) { 1568 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n", 1569 PTR_ERR(pf->sram_region)); 1570 pf->sram_region = NULL; 1571 } 1572 1573 pf->devcaps_region = devl_region_create(devlink, 1574 &ice_devcaps_region_ops, 10, 1575 ICE_AQ_MAX_BUF_LEN); 1576 if (IS_ERR(pf->devcaps_region)) { 1577 dev_err(dev, "failed to create device-caps devlink region, err %ld\n", 1578 PTR_ERR(pf->devcaps_region)); 1579 pf->devcaps_region = NULL; 1580 } 1581 } 1582 1583 /** 1584 * ice_devlink_destroy_regions - Destroy devlink regions 1585 * @pf: the PF device structure 1586 * 1587 * Remove previously created regions for this PF. 1588 */ 1589 void ice_devlink_destroy_regions(struct ice_pf *pf) 1590 { 1591 if (pf->nvm_region) 1592 devl_region_destroy(pf->nvm_region); 1593 1594 if (pf->sram_region) 1595 devl_region_destroy(pf->sram_region); 1596 1597 if (pf->devcaps_region) 1598 devl_region_destroy(pf->devcaps_region); 1599 } 1600