1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation. */ 3 4 #include <linux/vmalloc.h> 5 6 #include "ice.h" 7 #include "ice_lib.h" 8 #include "devlink.h" 9 #include "ice_eswitch.h" 10 #include "ice_fw_update.h" 11 #include "ice_dcb_lib.h" 12 13 /* context for devlink info version reporting */ 14 struct ice_info_ctx { 15 char buf[128]; 16 struct ice_orom_info pending_orom; 17 struct ice_nvm_info pending_nvm; 18 struct ice_netlist_info pending_netlist; 19 struct ice_hw_dev_caps dev_caps; 20 }; 21 22 /* The following functions are used to format specific strings for various 23 * devlink info versions. The ctx parameter is used to provide the storage 24 * buffer, as well as any ancillary information calculated when the info 25 * request was made. 26 * 27 * If a version does not exist, for example when attempting to get the 28 * inactive version of flash when there is no pending update, the function 29 * should leave the buffer in the ctx structure empty. 30 */ 31 32 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx) 33 { 34 u8 dsn[8]; 35 36 /* Copy the DSN into an array in Big Endian format */ 37 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn); 38 39 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn); 40 } 41 42 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx) 43 { 44 struct ice_hw *hw = &pf->hw; 45 int status; 46 47 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf)); 48 if (status) 49 /* We failed to locate the PBA, so just skip this entry */ 50 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n", 51 status); 52 } 53 54 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx) 55 { 56 struct ice_hw *hw = &pf->hw; 57 58 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 59 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch); 60 } 61 62 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx) 63 { 64 struct ice_hw *hw = &pf->hw; 65 66 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver, 67 hw->api_min_ver, hw->api_patch); 68 } 69 70 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 71 { 72 struct ice_hw *hw = &pf->hw; 73 74 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build); 75 } 76 77 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 78 { 79 struct ice_orom_info *orom = &pf->hw.flash.orom; 80 81 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 82 orom->major, orom->build, orom->patch); 83 } 84 85 static void 86 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf, 87 struct ice_info_ctx *ctx) 88 { 89 struct ice_orom_info *orom = &ctx->pending_orom; 90 91 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) 92 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 93 orom->major, orom->build, orom->patch); 94 } 95 96 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 97 { 98 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 99 100 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor); 101 } 102 103 static void 104 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf, 105 struct ice_info_ctx *ctx) 106 { 107 struct ice_nvm_info *nvm = &ctx->pending_nvm; 108 109 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 110 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", 111 nvm->major, nvm->minor); 112 } 113 114 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 115 { 116 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 117 118 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 119 } 120 121 static void 122 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 123 { 124 struct ice_nvm_info *nvm = &ctx->pending_nvm; 125 126 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 127 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 128 } 129 130 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx) 131 { 132 struct ice_hw *hw = &pf->hw; 133 134 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name); 135 } 136 137 static void 138 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx) 139 { 140 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver; 141 142 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u", 143 pkg->major, pkg->minor, pkg->update, pkg->draft); 144 } 145 146 static void 147 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 148 { 149 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id); 150 } 151 152 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 153 { 154 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 155 156 /* The netlist version fields are BCD formatted */ 157 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 158 netlist->major, netlist->minor, 159 netlist->type >> 16, netlist->type & 0xFFFF, 160 netlist->rev, netlist->cust_ver); 161 } 162 163 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 164 { 165 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 166 167 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 168 } 169 170 static void 171 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf, 172 struct ice_info_ctx *ctx) 173 { 174 struct ice_netlist_info *netlist = &ctx->pending_netlist; 175 176 /* The netlist version fields are BCD formatted */ 177 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 178 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 179 netlist->major, netlist->minor, 180 netlist->type >> 16, netlist->type & 0xFFFF, 181 netlist->rev, netlist->cust_ver); 182 } 183 184 static void 185 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf, 186 struct ice_info_ctx *ctx) 187 { 188 struct ice_netlist_info *netlist = &ctx->pending_netlist; 189 190 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 191 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 192 } 193 194 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 195 { 196 u32 id, cfg_ver, fw_ver; 197 198 if (!ice_is_feature_supported(pf, ICE_F_CGU)) 199 return; 200 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver)) 201 return; 202 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver); 203 } 204 205 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 206 { 207 if (!ice_is_feature_supported(pf, ICE_F_CGU)) 208 return; 209 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number); 210 } 211 212 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL } 213 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL } 214 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback } 215 216 /* The combined() macro inserts both the running entry as well as a stored 217 * entry. The running entry will always report the version from the active 218 * handler. The stored entry will first try the pending handler, and fallback 219 * to the active handler if the pending function does not report a version. 220 * The pending handler should check the status of a pending update for the 221 * relevant flash component. It should only fill in the buffer in the case 222 * where a valid pending version is available. This ensures that the related 223 * stored and running versions remain in sync, and that stored versions are 224 * correctly reported as expected. 225 */ 226 #define combined(key, active, pending) \ 227 running(key, active), \ 228 stored(key, pending, active) 229 230 enum ice_version_type { 231 ICE_VERSION_FIXED, 232 ICE_VERSION_RUNNING, 233 ICE_VERSION_STORED, 234 }; 235 236 static const struct ice_devlink_version { 237 enum ice_version_type type; 238 const char *key; 239 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx); 240 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx); 241 } ice_devlink_versions[] = { 242 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba), 243 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt), 244 running("fw.mgmt.api", ice_info_fw_api), 245 running("fw.mgmt.build", ice_info_fw_build), 246 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver), 247 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver), 248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack), 249 running("fw.app.name", ice_info_ddp_pkg_name), 250 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version), 251 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id), 252 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver), 253 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build), 254 fixed("cgu.id", ice_info_cgu_id), 255 running("fw.cgu", ice_info_cgu_fw_build), 256 }; 257 258 /** 259 * ice_devlink_info_get - .info_get devlink handler 260 * @devlink: devlink instance structure 261 * @req: the devlink info request 262 * @extack: extended netdev ack structure 263 * 264 * Callback for the devlink .info_get operation. Reports information about the 265 * device. 266 * 267 * Return: zero on success or an error code on failure. 268 */ 269 static int ice_devlink_info_get(struct devlink *devlink, 270 struct devlink_info_req *req, 271 struct netlink_ext_ack *extack) 272 { 273 struct ice_pf *pf = devlink_priv(devlink); 274 struct device *dev = ice_pf_to_dev(pf); 275 struct ice_hw *hw = &pf->hw; 276 struct ice_info_ctx *ctx; 277 size_t i; 278 int err; 279 280 err = ice_wait_for_reset(pf, 10 * HZ); 281 if (err) { 282 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting"); 283 return err; 284 } 285 286 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 287 if (!ctx) 288 return -ENOMEM; 289 290 /* discover capabilities first */ 291 err = ice_discover_dev_caps(hw, &ctx->dev_caps); 292 if (err) { 293 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n", 294 err, ice_aq_str(hw->adminq.sq_last_status)); 295 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities"); 296 goto out_free_ctx; 297 } 298 299 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) { 300 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom); 301 if (err) { 302 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n", 303 err, ice_aq_str(hw->adminq.sq_last_status)); 304 305 /* disable display of pending Option ROM */ 306 ctx->dev_caps.common_cap.nvm_update_pending_orom = false; 307 } 308 } 309 310 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) { 311 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm); 312 if (err) { 313 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n", 314 err, ice_aq_str(hw->adminq.sq_last_status)); 315 316 /* disable display of pending Option ROM */ 317 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false; 318 } 319 } 320 321 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) { 322 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist); 323 if (err) { 324 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n", 325 err, ice_aq_str(hw->adminq.sq_last_status)); 326 327 /* disable display of pending Option ROM */ 328 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false; 329 } 330 } 331 332 ice_info_get_dsn(pf, ctx); 333 334 err = devlink_info_serial_number_put(req, ctx->buf); 335 if (err) { 336 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number"); 337 goto out_free_ctx; 338 } 339 340 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) { 341 enum ice_version_type type = ice_devlink_versions[i].type; 342 const char *key = ice_devlink_versions[i].key; 343 344 memset(ctx->buf, 0, sizeof(ctx->buf)); 345 346 ice_devlink_versions[i].getter(pf, ctx); 347 348 /* If the default getter doesn't report a version, use the 349 * fallback function. This is primarily useful in the case of 350 * "stored" versions that want to report the same value as the 351 * running version in the normal case of no pending update. 352 */ 353 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback) 354 ice_devlink_versions[i].fallback(pf, ctx); 355 356 /* Do not report missing versions */ 357 if (ctx->buf[0] == '\0') 358 continue; 359 360 switch (type) { 361 case ICE_VERSION_FIXED: 362 err = devlink_info_version_fixed_put(req, key, ctx->buf); 363 if (err) { 364 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version"); 365 goto out_free_ctx; 366 } 367 break; 368 case ICE_VERSION_RUNNING: 369 err = devlink_info_version_running_put(req, key, ctx->buf); 370 if (err) { 371 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version"); 372 goto out_free_ctx; 373 } 374 break; 375 case ICE_VERSION_STORED: 376 err = devlink_info_version_stored_put(req, key, ctx->buf); 377 if (err) { 378 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version"); 379 goto out_free_ctx; 380 } 381 break; 382 } 383 } 384 385 out_free_ctx: 386 kfree(ctx); 387 return err; 388 } 389 390 /** 391 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware 392 * @pf: pointer to the pf instance 393 * @extack: netlink extended ACK structure 394 * 395 * Allow user to activate new Embedded Management Processor firmware by 396 * issuing device specific EMP reset. Called in response to 397 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE. 398 * 399 * Note that teardown and rebuild of the driver state happens automatically as 400 * part of an interrupt and watchdog task. This is because all physical 401 * functions on the device must be able to reset when an EMP reset occurs from 402 * any source. 403 */ 404 static int 405 ice_devlink_reload_empr_start(struct ice_pf *pf, 406 struct netlink_ext_ack *extack) 407 { 408 struct device *dev = ice_pf_to_dev(pf); 409 struct ice_hw *hw = &pf->hw; 410 u8 pending; 411 int err; 412 413 err = ice_get_pending_updates(pf, &pending, extack); 414 if (err) 415 return err; 416 417 /* pending is a bitmask of which flash banks have a pending update, 418 * including the main NVM bank, the Option ROM bank, and the netlist 419 * bank. If any of these bits are set, then there is a pending update 420 * waiting to be activated. 421 */ 422 if (!pending) { 423 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update"); 424 return -ECANCELED; 425 } 426 427 if (pf->fw_emp_reset_disabled) { 428 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed"); 429 return -ECANCELED; 430 } 431 432 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n"); 433 434 err = ice_aq_nvm_update_empr(hw); 435 if (err) { 436 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n", 437 err, ice_aq_str(hw->adminq.sq_last_status)); 438 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware"); 439 return err; 440 } 441 442 return 0; 443 } 444 445 /** 446 * ice_devlink_reinit_down - unload given PF 447 * @pf: pointer to the PF struct 448 */ 449 static void ice_devlink_reinit_down(struct ice_pf *pf) 450 { 451 /* No need to take devl_lock, it's already taken by devlink API */ 452 ice_unload(pf); 453 rtnl_lock(); 454 ice_vsi_decfg(ice_get_main_vsi(pf)); 455 rtnl_unlock(); 456 ice_deinit_dev(pf); 457 } 458 459 /** 460 * ice_devlink_reload_down - prepare for reload 461 * @devlink: pointer to the devlink instance to reload 462 * @netns_change: if true, the network namespace is changing 463 * @action: the action to perform 464 * @limit: limits on what reload should do, such as not resetting 465 * @extack: netlink extended ACK structure 466 */ 467 static int 468 ice_devlink_reload_down(struct devlink *devlink, bool netns_change, 469 enum devlink_reload_action action, 470 enum devlink_reload_limit limit, 471 struct netlink_ext_ack *extack) 472 { 473 struct ice_pf *pf = devlink_priv(devlink); 474 475 switch (action) { 476 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT: 477 if (ice_is_eswitch_mode_switchdev(pf)) { 478 NL_SET_ERR_MSG_MOD(extack, 479 "Go to legacy mode before doing reinit"); 480 return -EOPNOTSUPP; 481 } 482 if (ice_is_adq_active(pf)) { 483 NL_SET_ERR_MSG_MOD(extack, 484 "Turn off ADQ before doing reinit"); 485 return -EOPNOTSUPP; 486 } 487 if (ice_has_vfs(pf)) { 488 NL_SET_ERR_MSG_MOD(extack, 489 "Remove all VFs before doing reinit"); 490 return -EOPNOTSUPP; 491 } 492 ice_devlink_reinit_down(pf); 493 return 0; 494 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE: 495 return ice_devlink_reload_empr_start(pf, extack); 496 default: 497 WARN_ON(1); 498 return -EOPNOTSUPP; 499 } 500 } 501 502 /** 503 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish 504 * @pf: pointer to the pf instance 505 * @extack: netlink extended ACK structure 506 * 507 * Wait for driver to finish rebuilding after EMP reset is completed. This 508 * includes time to wait for both the actual device reset as well as the time 509 * for the driver's rebuild to complete. 510 */ 511 static int 512 ice_devlink_reload_empr_finish(struct ice_pf *pf, 513 struct netlink_ext_ack *extack) 514 { 515 int err; 516 517 err = ice_wait_for_reset(pf, 60 * HZ); 518 if (err) { 519 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute"); 520 return err; 521 } 522 523 return 0; 524 } 525 526 /** 527 * ice_get_tx_topo_user_sel - Read user's choice from flash 528 * @pf: pointer to pf structure 529 * @layers: value read from flash will be saved here 530 * 531 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV. 532 * 533 * Return: zero when read was successful, negative values otherwise. 534 */ 535 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers) 536 { 537 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {}; 538 struct ice_hw *hw = &pf->hw; 539 int err; 540 541 err = ice_acquire_nvm(hw, ICE_RES_READ); 542 if (err) 543 return err; 544 545 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0, 546 sizeof(usr_sel), &usr_sel, true, true, NULL); 547 if (err) 548 goto exit_release_res; 549 550 if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL) 551 *layers = ICE_SCHED_5_LAYERS; 552 else 553 *layers = ICE_SCHED_9_LAYERS; 554 555 exit_release_res: 556 ice_release_nvm(hw); 557 558 return err; 559 } 560 561 /** 562 * ice_update_tx_topo_user_sel - Save user's preference in flash 563 * @pf: pointer to pf structure 564 * @layers: value to be saved in flash 565 * 566 * Variable "layers" defines user's preference about number of layers in Tx 567 * Scheduler Topology Tree. This choice should be stored in PFA TLV field 568 * and be picked up by driver, next time during init. 569 * 570 * Return: zero when save was successful, negative values otherwise. 571 */ 572 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers) 573 { 574 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {}; 575 struct ice_hw *hw = &pf->hw; 576 int err; 577 578 err = ice_acquire_nvm(hw, ICE_RES_WRITE); 579 if (err) 580 return err; 581 582 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0, 583 sizeof(usr_sel), &usr_sel, true, true, NULL); 584 if (err) 585 goto exit_release_res; 586 587 if (layers == ICE_SCHED_5_LAYERS) 588 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL; 589 else 590 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL; 591 592 err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2, 593 sizeof(usr_sel.data), &usr_sel.data, 594 true, NULL, NULL); 595 exit_release_res: 596 ice_release_nvm(hw); 597 598 return err; 599 } 600 601 /** 602 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter 603 * @devlink: pointer to the devlink instance 604 * @id: the parameter ID to set 605 * @ctx: context to store the parameter value 606 * 607 * Return: zero on success and negative value on failure. 608 */ 609 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id, 610 struct devlink_param_gset_ctx *ctx) 611 { 612 struct ice_pf *pf = devlink_priv(devlink); 613 int err; 614 615 err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8); 616 if (err) 617 return err; 618 619 return 0; 620 } 621 622 /** 623 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter 624 * @devlink: pointer to the devlink instance 625 * @id: the parameter ID to set 626 * @ctx: context to get the parameter value 627 * @extack: netlink extended ACK structure 628 * 629 * Return: zero on success and negative value on failure. 630 */ 631 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id, 632 struct devlink_param_gset_ctx *ctx, 633 struct netlink_ext_ack *extack) 634 { 635 struct ice_pf *pf = devlink_priv(devlink); 636 int err; 637 638 err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8); 639 if (err) 640 return err; 641 642 NL_SET_ERR_MSG_MOD(extack, 643 "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect."); 644 645 return 0; 646 } 647 648 /** 649 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers 650 * parameter value 651 * @devlink: unused pointer to devlink instance 652 * @id: the parameter ID to validate 653 * @val: value to validate 654 * @extack: netlink extended ACK structure 655 * 656 * Supported values are: 657 * - 5 - five layers Tx Scheduler Topology Tree 658 * - 9 - nine layers Tx Scheduler Topology Tree 659 * 660 * Return: zero when passed parameter value is supported. Negative value on 661 * error. 662 */ 663 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id, 664 union devlink_param_value val, 665 struct netlink_ext_ack *extack) 666 { 667 if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) { 668 NL_SET_ERR_MSG_MOD(extack, 669 "Wrong number of tx scheduler layers provided."); 670 return -EINVAL; 671 } 672 673 return 0; 674 } 675 676 /** 677 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree 678 * @pf: pf struct 679 * 680 * This function tears down tree exported during VF's creation. 681 */ 682 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf) 683 { 684 struct devlink *devlink; 685 struct ice_vf *vf; 686 unsigned int bkt; 687 688 devlink = priv_to_devlink(pf); 689 690 devl_lock(devlink); 691 mutex_lock(&pf->vfs.table_lock); 692 ice_for_each_vf(pf, bkt, vf) { 693 if (vf->devlink_port.devlink_rate) 694 devl_rate_leaf_destroy(&vf->devlink_port); 695 } 696 mutex_unlock(&pf->vfs.table_lock); 697 698 devl_rate_nodes_destroy(devlink); 699 devl_unlock(devlink); 700 } 701 702 /** 703 * ice_enable_custom_tx - try to enable custom Tx feature 704 * @pf: pf struct 705 * 706 * This function tries to enable custom Tx feature, 707 * it's not possible to enable it, if DCB or ADQ is active. 708 */ 709 static bool ice_enable_custom_tx(struct ice_pf *pf) 710 { 711 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info; 712 struct device *dev = ice_pf_to_dev(pf); 713 714 if (pi->is_custom_tx_enabled) 715 /* already enabled, return true */ 716 return true; 717 718 if (ice_is_adq_active(pf)) { 719 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n"); 720 return false; 721 } 722 723 if (ice_is_dcb_active(pf)) { 724 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n"); 725 return false; 726 } 727 728 pi->is_custom_tx_enabled = true; 729 730 return true; 731 } 732 733 /** 734 * ice_traverse_tx_tree - traverse Tx scheduler tree 735 * @devlink: devlink struct 736 * @node: current node, used for recursion 737 * @tc_node: tc_node struct, that is treated as a root 738 * @pf: pf struct 739 * 740 * This function traverses Tx scheduler tree and exports 741 * entire structure to the devlink-rate. 742 */ 743 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node, 744 struct ice_sched_node *tc_node, struct ice_pf *pf) 745 { 746 struct devlink_rate *rate_node = NULL; 747 struct ice_vf *vf; 748 int i; 749 750 if (node->rate_node) 751 /* already added, skip to the next */ 752 goto traverse_children; 753 754 if (node->parent == tc_node) { 755 /* create root node */ 756 rate_node = devl_rate_node_create(devlink, node, node->name, NULL); 757 } else if (node->vsi_handle && 758 pf->vsi[node->vsi_handle]->vf) { 759 vf = pf->vsi[node->vsi_handle]->vf; 760 if (!vf->devlink_port.devlink_rate) 761 /* leaf nodes doesn't have children 762 * so we don't set rate_node 763 */ 764 devl_rate_leaf_create(&vf->devlink_port, node, 765 node->parent->rate_node); 766 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF && 767 node->parent->rate_node) { 768 rate_node = devl_rate_node_create(devlink, node, node->name, 769 node->parent->rate_node); 770 } 771 772 if (rate_node && !IS_ERR(rate_node)) 773 node->rate_node = rate_node; 774 775 traverse_children: 776 for (i = 0; i < node->num_children; i++) 777 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf); 778 } 779 780 /** 781 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate 782 * @devlink: devlink struct 783 * @vsi: main vsi struct 784 * 785 * This function finds a root node, then calls ice_traverse_tx tree, which 786 * traverses the tree and exports it's contents to devlink rate. 787 */ 788 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi) 789 { 790 struct ice_port_info *pi = vsi->port_info; 791 struct ice_sched_node *tc_node; 792 struct ice_pf *pf = vsi->back; 793 int i; 794 795 tc_node = pi->root->children[0]; 796 mutex_lock(&pi->sched_lock); 797 for (i = 0; i < tc_node->num_children; i++) 798 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf); 799 mutex_unlock(&pi->sched_lock); 800 801 return 0; 802 } 803 804 static void ice_clear_rate_nodes(struct ice_sched_node *node) 805 { 806 node->rate_node = NULL; 807 808 for (int i = 0; i < node->num_children; i++) 809 ice_clear_rate_nodes(node->children[i]); 810 } 811 812 /** 813 * ice_devlink_rate_clear_tx_topology - clear node->rate_node 814 * @vsi: main vsi struct 815 * 816 * Clear rate_node to cleanup creation of Tx topology. 817 * 818 */ 819 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi) 820 { 821 struct ice_port_info *pi = vsi->port_info; 822 823 mutex_lock(&pi->sched_lock); 824 ice_clear_rate_nodes(pi->root->children[0]); 825 mutex_unlock(&pi->sched_lock); 826 } 827 828 /** 829 * ice_set_object_tx_share - sets node scheduling parameter 830 * @pi: devlink struct instance 831 * @node: node struct instance 832 * @bw: bandwidth in bytes per second 833 * @extack: extended netdev ack structure 834 * 835 * This function sets ICE_MIN_BW scheduling BW limit. 836 */ 837 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node, 838 u64 bw, struct netlink_ext_ack *extack) 839 { 840 int status; 841 842 mutex_lock(&pi->sched_lock); 843 /* converts bytes per second to kilo bits per second */ 844 node->tx_share = div_u64(bw, 125); 845 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share); 846 mutex_unlock(&pi->sched_lock); 847 848 if (status) 849 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share"); 850 851 return status; 852 } 853 854 /** 855 * ice_set_object_tx_max - sets node scheduling parameter 856 * @pi: devlink struct instance 857 * @node: node struct instance 858 * @bw: bandwidth in bytes per second 859 * @extack: extended netdev ack structure 860 * 861 * This function sets ICE_MAX_BW scheduling BW limit. 862 */ 863 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node, 864 u64 bw, struct netlink_ext_ack *extack) 865 { 866 int status; 867 868 mutex_lock(&pi->sched_lock); 869 /* converts bytes per second value to kilo bits per second */ 870 node->tx_max = div_u64(bw, 125); 871 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max); 872 mutex_unlock(&pi->sched_lock); 873 874 if (status) 875 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max"); 876 877 return status; 878 } 879 880 /** 881 * ice_set_object_tx_priority - sets node scheduling parameter 882 * @pi: devlink struct instance 883 * @node: node struct instance 884 * @priority: value representing priority for strict priority arbitration 885 * @extack: extended netdev ack structure 886 * 887 * This function sets priority of node among siblings. 888 */ 889 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node, 890 u32 priority, struct netlink_ext_ack *extack) 891 { 892 int status; 893 894 if (priority >= 8) { 895 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8"); 896 return -EINVAL; 897 } 898 899 mutex_lock(&pi->sched_lock); 900 node->tx_priority = priority; 901 status = ice_sched_set_node_priority(pi, node, node->tx_priority); 902 mutex_unlock(&pi->sched_lock); 903 904 if (status) 905 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority"); 906 907 return status; 908 } 909 910 /** 911 * ice_set_object_tx_weight - sets node scheduling parameter 912 * @pi: devlink struct instance 913 * @node: node struct instance 914 * @weight: value represeting relative weight for WFQ arbitration 915 * @extack: extended netdev ack structure 916 * 917 * This function sets node weight for WFQ algorithm. 918 */ 919 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node, 920 u32 weight, struct netlink_ext_ack *extack) 921 { 922 int status; 923 924 if (weight > 200 || weight < 1) { 925 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200"); 926 return -EINVAL; 927 } 928 929 mutex_lock(&pi->sched_lock); 930 node->tx_weight = weight; 931 status = ice_sched_set_node_weight(pi, node, node->tx_weight); 932 mutex_unlock(&pi->sched_lock); 933 934 if (status) 935 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight"); 936 937 return status; 938 } 939 940 /** 941 * ice_get_pi_from_dev_rate - get port info from devlink_rate 942 * @rate_node: devlink struct instance 943 * 944 * This function returns corresponding port_info struct of devlink_rate 945 */ 946 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node) 947 { 948 struct ice_pf *pf = devlink_priv(rate_node->devlink); 949 950 return ice_get_main_vsi(pf)->port_info; 951 } 952 953 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv, 954 struct netlink_ext_ack *extack) 955 { 956 struct ice_sched_node *node; 957 struct ice_port_info *pi; 958 959 pi = ice_get_pi_from_dev_rate(rate_node); 960 961 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 962 return -EBUSY; 963 964 /* preallocate memory for ice_sched_node */ 965 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL); 966 *priv = node; 967 968 return 0; 969 } 970 971 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv, 972 struct netlink_ext_ack *extack) 973 { 974 struct ice_sched_node *node, *tc_node; 975 struct ice_port_info *pi; 976 977 pi = ice_get_pi_from_dev_rate(rate_node); 978 tc_node = pi->root->children[0]; 979 node = priv; 980 981 if (!rate_node->parent || !node || tc_node == node || !extack) 982 return 0; 983 984 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 985 return -EBUSY; 986 987 /* can't allow to delete a node with children */ 988 if (node->num_children) 989 return -EINVAL; 990 991 mutex_lock(&pi->sched_lock); 992 ice_free_sched_node(pi, node); 993 mutex_unlock(&pi->sched_lock); 994 995 return 0; 996 } 997 998 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv, 999 u64 tx_max, struct netlink_ext_ack *extack) 1000 { 1001 struct ice_sched_node *node = priv; 1002 1003 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1004 return -EBUSY; 1005 1006 if (!node) 1007 return 0; 1008 1009 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf), 1010 node, tx_max, extack); 1011 } 1012 1013 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv, 1014 u64 tx_share, struct netlink_ext_ack *extack) 1015 { 1016 struct ice_sched_node *node = priv; 1017 1018 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1019 return -EBUSY; 1020 1021 if (!node) 1022 return 0; 1023 1024 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node, 1025 tx_share, extack); 1026 } 1027 1028 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv, 1029 u32 tx_priority, struct netlink_ext_ack *extack) 1030 { 1031 struct ice_sched_node *node = priv; 1032 1033 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1034 return -EBUSY; 1035 1036 if (!node) 1037 return 0; 1038 1039 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node, 1040 tx_priority, extack); 1041 } 1042 1043 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv, 1044 u32 tx_weight, struct netlink_ext_ack *extack) 1045 { 1046 struct ice_sched_node *node = priv; 1047 1048 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1049 return -EBUSY; 1050 1051 if (!node) 1052 return 0; 1053 1054 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node, 1055 tx_weight, extack); 1056 } 1057 1058 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv, 1059 u64 tx_max, struct netlink_ext_ack *extack) 1060 { 1061 struct ice_sched_node *node = priv; 1062 1063 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1064 return -EBUSY; 1065 1066 if (!node) 1067 return 0; 1068 1069 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node), 1070 node, tx_max, extack); 1071 } 1072 1073 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv, 1074 u64 tx_share, struct netlink_ext_ack *extack) 1075 { 1076 struct ice_sched_node *node = priv; 1077 1078 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1079 return -EBUSY; 1080 1081 if (!node) 1082 return 0; 1083 1084 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node), 1085 node, tx_share, extack); 1086 } 1087 1088 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv, 1089 u32 tx_priority, struct netlink_ext_ack *extack) 1090 { 1091 struct ice_sched_node *node = priv; 1092 1093 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1094 return -EBUSY; 1095 1096 if (!node) 1097 return 0; 1098 1099 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node), 1100 node, tx_priority, extack); 1101 } 1102 1103 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv, 1104 u32 tx_weight, struct netlink_ext_ack *extack) 1105 { 1106 struct ice_sched_node *node = priv; 1107 1108 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1109 return -EBUSY; 1110 1111 if (!node) 1112 return 0; 1113 1114 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node), 1115 node, tx_weight, extack); 1116 } 1117 1118 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate, 1119 struct devlink_rate *parent, 1120 void *priv, void *parent_priv, 1121 struct netlink_ext_ack *extack) 1122 { 1123 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate); 1124 struct ice_sched_node *tc_node, *node, *parent_node; 1125 u16 num_nodes_added; 1126 u32 first_node_teid; 1127 u32 node_teid; 1128 int status; 1129 1130 tc_node = pi->root->children[0]; 1131 node = priv; 1132 1133 if (!extack) 1134 return 0; 1135 1136 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink))) 1137 return -EBUSY; 1138 1139 if (!parent) { 1140 if (!node || tc_node == node || node->num_children) 1141 return -EINVAL; 1142 1143 mutex_lock(&pi->sched_lock); 1144 ice_free_sched_node(pi, node); 1145 mutex_unlock(&pi->sched_lock); 1146 1147 return 0; 1148 } 1149 1150 parent_node = parent_priv; 1151 1152 /* if the node doesn't exist, create it */ 1153 if (!node->parent) { 1154 mutex_lock(&pi->sched_lock); 1155 status = ice_sched_add_elems(pi, tc_node, parent_node, 1156 parent_node->tx_sched_layer + 1, 1157 1, &num_nodes_added, &first_node_teid, 1158 &node); 1159 mutex_unlock(&pi->sched_lock); 1160 1161 if (status) { 1162 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node"); 1163 return status; 1164 } 1165 1166 if (devlink_rate->tx_share) 1167 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack); 1168 if (devlink_rate->tx_max) 1169 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack); 1170 if (devlink_rate->tx_priority) 1171 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack); 1172 if (devlink_rate->tx_weight) 1173 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack); 1174 } else { 1175 node_teid = le32_to_cpu(node->info.node_teid); 1176 mutex_lock(&pi->sched_lock); 1177 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid); 1178 mutex_unlock(&pi->sched_lock); 1179 1180 if (status) 1181 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent"); 1182 } 1183 1184 return status; 1185 } 1186 1187 /** 1188 * ice_devlink_reinit_up - do reinit of the given PF 1189 * @pf: pointer to the PF struct 1190 */ 1191 static int ice_devlink_reinit_up(struct ice_pf *pf) 1192 { 1193 struct ice_vsi *vsi = ice_get_main_vsi(pf); 1194 int err; 1195 1196 err = ice_init_dev(pf); 1197 if (err) 1198 return err; 1199 1200 vsi->flags = ICE_VSI_FLAG_INIT; 1201 1202 rtnl_lock(); 1203 err = ice_vsi_cfg(vsi); 1204 rtnl_unlock(); 1205 if (err) 1206 goto err_vsi_cfg; 1207 1208 /* No need to take devl_lock, it's already taken by devlink API */ 1209 err = ice_load(pf); 1210 if (err) 1211 goto err_load; 1212 1213 return 0; 1214 1215 err_load: 1216 rtnl_lock(); 1217 ice_vsi_decfg(vsi); 1218 rtnl_unlock(); 1219 err_vsi_cfg: 1220 ice_deinit_dev(pf); 1221 return err; 1222 } 1223 1224 /** 1225 * ice_devlink_reload_up - do reload up after reinit 1226 * @devlink: pointer to the devlink instance reloading 1227 * @action: the action requested 1228 * @limit: limits imposed by userspace, such as not resetting 1229 * @actions_performed: on return, indicate what actions actually performed 1230 * @extack: netlink extended ACK structure 1231 */ 1232 static int 1233 ice_devlink_reload_up(struct devlink *devlink, 1234 enum devlink_reload_action action, 1235 enum devlink_reload_limit limit, 1236 u32 *actions_performed, 1237 struct netlink_ext_ack *extack) 1238 { 1239 struct ice_pf *pf = devlink_priv(devlink); 1240 1241 switch (action) { 1242 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT: 1243 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT); 1244 return ice_devlink_reinit_up(pf); 1245 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE: 1246 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE); 1247 return ice_devlink_reload_empr_finish(pf, extack); 1248 default: 1249 WARN_ON(1); 1250 return -EOPNOTSUPP; 1251 } 1252 } 1253 1254 static const struct devlink_ops ice_devlink_ops = { 1255 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK, 1256 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) | 1257 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE), 1258 .reload_down = ice_devlink_reload_down, 1259 .reload_up = ice_devlink_reload_up, 1260 .eswitch_mode_get = ice_eswitch_mode_get, 1261 .eswitch_mode_set = ice_eswitch_mode_set, 1262 .info_get = ice_devlink_info_get, 1263 .flash_update = ice_devlink_flash_update, 1264 1265 .rate_node_new = ice_devlink_rate_node_new, 1266 .rate_node_del = ice_devlink_rate_node_del, 1267 1268 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set, 1269 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set, 1270 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set, 1271 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set, 1272 1273 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set, 1274 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set, 1275 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set, 1276 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set, 1277 1278 .rate_leaf_parent_set = ice_devlink_set_parent, 1279 .rate_node_parent_set = ice_devlink_set_parent, 1280 }; 1281 1282 static int 1283 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id, 1284 struct devlink_param_gset_ctx *ctx) 1285 { 1286 struct ice_pf *pf = devlink_priv(devlink); 1287 1288 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false; 1289 1290 return 0; 1291 } 1292 1293 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id, 1294 struct devlink_param_gset_ctx *ctx, 1295 struct netlink_ext_ack *extack) 1296 { 1297 struct ice_pf *pf = devlink_priv(devlink); 1298 bool roce_ena = ctx->val.vbool; 1299 int ret; 1300 1301 if (!roce_ena) { 1302 ice_unplug_aux_dev(pf); 1303 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1304 return 0; 1305 } 1306 1307 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2; 1308 ret = ice_plug_aux_dev(pf); 1309 if (ret) 1310 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1311 1312 return ret; 1313 } 1314 1315 static int 1316 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id, 1317 union devlink_param_value val, 1318 struct netlink_ext_ack *extack) 1319 { 1320 struct ice_pf *pf = devlink_priv(devlink); 1321 1322 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1323 return -EOPNOTSUPP; 1324 1325 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) { 1326 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1327 return -EOPNOTSUPP; 1328 } 1329 1330 return 0; 1331 } 1332 1333 static int 1334 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id, 1335 struct devlink_param_gset_ctx *ctx) 1336 { 1337 struct ice_pf *pf = devlink_priv(devlink); 1338 1339 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP; 1340 1341 return 0; 1342 } 1343 1344 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id, 1345 struct devlink_param_gset_ctx *ctx, 1346 struct netlink_ext_ack *extack) 1347 { 1348 struct ice_pf *pf = devlink_priv(devlink); 1349 bool iw_ena = ctx->val.vbool; 1350 int ret; 1351 1352 if (!iw_ena) { 1353 ice_unplug_aux_dev(pf); 1354 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1355 return 0; 1356 } 1357 1358 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP; 1359 ret = ice_plug_aux_dev(pf); 1360 if (ret) 1361 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1362 1363 return ret; 1364 } 1365 1366 static int 1367 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id, 1368 union devlink_param_value val, 1369 struct netlink_ext_ack *extack) 1370 { 1371 struct ice_pf *pf = devlink_priv(devlink); 1372 1373 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1374 return -EOPNOTSUPP; 1375 1376 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) { 1377 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1378 return -EOPNOTSUPP; 1379 } 1380 1381 return 0; 1382 } 1383 1384 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled" 1385 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled" 1386 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized" 1387 1388 /** 1389 * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode. 1390 * @mode: local forwarding for mode used in port_info struct. 1391 * 1392 * Return: Mode respective string or "Invalid". 1393 */ 1394 static const char * 1395 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode) 1396 { 1397 switch (mode) { 1398 case ICE_LOCAL_FWD_MODE_ENABLED: 1399 return DEVLINK_LOCAL_FWD_ENABLED_STR; 1400 case ICE_LOCAL_FWD_MODE_PRIORITIZED: 1401 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR; 1402 case ICE_LOCAL_FWD_MODE_DISABLED: 1403 return DEVLINK_LOCAL_FWD_DISABLED_STR; 1404 } 1405 1406 return "Invalid"; 1407 } 1408 1409 /** 1410 * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name. 1411 * @mode_str: local forwarding mode string. 1412 * 1413 * Return: Mode value or negative number if invalid. 1414 */ 1415 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str) 1416 { 1417 if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR)) 1418 return ICE_LOCAL_FWD_MODE_ENABLED; 1419 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR)) 1420 return ICE_LOCAL_FWD_MODE_PRIORITIZED; 1421 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR)) 1422 return ICE_LOCAL_FWD_MODE_DISABLED; 1423 1424 return -EINVAL; 1425 } 1426 1427 /** 1428 * ice_devlink_local_fwd_get - Get local_fwd parameter. 1429 * @devlink: Pointer to the devlink instance. 1430 * @id: The parameter ID to set. 1431 * @ctx: Context to store the parameter value. 1432 * 1433 * Return: Zero. 1434 */ 1435 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id, 1436 struct devlink_param_gset_ctx *ctx) 1437 { 1438 struct ice_pf *pf = devlink_priv(devlink); 1439 struct ice_port_info *pi; 1440 const char *mode_str; 1441 1442 pi = pf->hw.port_info; 1443 mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode); 1444 snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str); 1445 1446 return 0; 1447 } 1448 1449 /** 1450 * ice_devlink_local_fwd_set - Set local_fwd parameter. 1451 * @devlink: Pointer to the devlink instance. 1452 * @id: The parameter ID to set. 1453 * @ctx: Context to get the parameter value. 1454 * @extack: Netlink extended ACK structure. 1455 * 1456 * Return: Zero. 1457 */ 1458 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id, 1459 struct devlink_param_gset_ctx *ctx, 1460 struct netlink_ext_ack *extack) 1461 { 1462 int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr); 1463 struct ice_pf *pf = devlink_priv(devlink); 1464 struct device *dev = ice_pf_to_dev(pf); 1465 struct ice_port_info *pi; 1466 1467 pi = pf->hw.port_info; 1468 if (pi->local_fwd_mode != new_local_fwd_mode) { 1469 pi->local_fwd_mode = new_local_fwd_mode; 1470 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr); 1471 ice_schedule_reset(pf, ICE_RESET_CORER); 1472 } 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value. 1479 * @devlink: Unused pointer to devlink instance. 1480 * @id: The parameter ID to validate. 1481 * @val: Value to validate. 1482 * @extack: Netlink extended ACK structure. 1483 * 1484 * Supported values are: 1485 * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled 1486 * "prioritized" - local_fwd traffic is prioritized in scheduling. 1487 * 1488 * Return: Zero when passed parameter value is supported. Negative value on 1489 * error. 1490 */ 1491 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id, 1492 union devlink_param_value val, 1493 struct netlink_ext_ack *extack) 1494 { 1495 if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) { 1496 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported."); 1497 return -EINVAL; 1498 } 1499 1500 return 0; 1501 } 1502 1503 enum ice_param_id { 1504 ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, 1505 ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS, 1506 ICE_DEVLINK_PARAM_ID_LOCAL_FWD, 1507 }; 1508 1509 static const struct devlink_param ice_dvl_rdma_params[] = { 1510 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1511 ice_devlink_enable_roce_get, 1512 ice_devlink_enable_roce_set, 1513 ice_devlink_enable_roce_validate), 1514 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1515 ice_devlink_enable_iw_get, 1516 ice_devlink_enable_iw_set, 1517 ice_devlink_enable_iw_validate), 1518 }; 1519 1520 static const struct devlink_param ice_dvl_sched_params[] = { 1521 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS, 1522 "tx_scheduling_layers", 1523 DEVLINK_PARAM_TYPE_U8, 1524 BIT(DEVLINK_PARAM_CMODE_PERMANENT), 1525 ice_devlink_tx_sched_layers_get, 1526 ice_devlink_tx_sched_layers_set, 1527 ice_devlink_tx_sched_layers_validate), 1528 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD, 1529 "local_forwarding", DEVLINK_PARAM_TYPE_STRING, 1530 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1531 ice_devlink_local_fwd_get, 1532 ice_devlink_local_fwd_set, 1533 ice_devlink_local_fwd_validate), 1534 }; 1535 1536 static void ice_devlink_free(void *devlink_ptr) 1537 { 1538 devlink_free((struct devlink *)devlink_ptr); 1539 } 1540 1541 /** 1542 * ice_allocate_pf - Allocate devlink and return PF structure pointer 1543 * @dev: the device to allocate for 1544 * 1545 * Allocate a devlink instance for this device and return the private area as 1546 * the PF structure. The devlink memory is kept track of through devres by 1547 * adding an action to remove it when unwinding. 1548 */ 1549 struct ice_pf *ice_allocate_pf(struct device *dev) 1550 { 1551 struct devlink *devlink; 1552 1553 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev); 1554 if (!devlink) 1555 return NULL; 1556 1557 /* Add an action to teardown the devlink when unwinding the driver */ 1558 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink)) 1559 return NULL; 1560 1561 return devlink_priv(devlink); 1562 } 1563 1564 /** 1565 * ice_devlink_register - Register devlink interface for this PF 1566 * @pf: the PF to register the devlink for. 1567 * 1568 * Register the devlink instance associated with this physical function. 1569 * 1570 * Return: zero on success or an error code on failure. 1571 */ 1572 void ice_devlink_register(struct ice_pf *pf) 1573 { 1574 struct devlink *devlink = priv_to_devlink(pf); 1575 1576 devl_register(devlink); 1577 } 1578 1579 /** 1580 * ice_devlink_unregister - Unregister devlink resources for this PF. 1581 * @pf: the PF structure to cleanup 1582 * 1583 * Releases resources used by devlink and cleans up associated memory. 1584 */ 1585 void ice_devlink_unregister(struct ice_pf *pf) 1586 { 1587 devl_unregister(priv_to_devlink(pf)); 1588 } 1589 1590 int ice_devlink_register_params(struct ice_pf *pf) 1591 { 1592 struct devlink *devlink = priv_to_devlink(pf); 1593 struct ice_hw *hw = &pf->hw; 1594 int status; 1595 1596 status = devl_params_register(devlink, ice_dvl_rdma_params, 1597 ARRAY_SIZE(ice_dvl_rdma_params)); 1598 if (status) 1599 return status; 1600 1601 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) 1602 status = devl_params_register(devlink, ice_dvl_sched_params, 1603 ARRAY_SIZE(ice_dvl_sched_params)); 1604 1605 return status; 1606 } 1607 1608 void ice_devlink_unregister_params(struct ice_pf *pf) 1609 { 1610 struct devlink *devlink = priv_to_devlink(pf); 1611 struct ice_hw *hw = &pf->hw; 1612 1613 devl_params_unregister(devlink, ice_dvl_rdma_params, 1614 ARRAY_SIZE(ice_dvl_rdma_params)); 1615 1616 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) 1617 devl_params_unregister(devlink, ice_dvl_sched_params, 1618 ARRAY_SIZE(ice_dvl_sched_params)); 1619 } 1620 1621 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024) 1622 1623 static const struct devlink_region_ops ice_nvm_region_ops; 1624 static const struct devlink_region_ops ice_sram_region_ops; 1625 1626 /** 1627 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents 1628 * @devlink: the devlink instance 1629 * @ops: the devlink region to snapshot 1630 * @extack: extended ACK response structure 1631 * @data: on exit points to snapshot data buffer 1632 * 1633 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either 1634 * the nvm-flash or shadow-ram region. 1635 * 1636 * It captures a snapshot of the NVM or Shadow RAM flash contents. This 1637 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink 1638 * interface. 1639 * 1640 * @returns zero on success, and updates the data pointer. Returns a non-zero 1641 * error code on failure. 1642 */ 1643 static int ice_devlink_nvm_snapshot(struct devlink *devlink, 1644 const struct devlink_region_ops *ops, 1645 struct netlink_ext_ack *extack, u8 **data) 1646 { 1647 struct ice_pf *pf = devlink_priv(devlink); 1648 struct device *dev = ice_pf_to_dev(pf); 1649 struct ice_hw *hw = &pf->hw; 1650 bool read_shadow_ram; 1651 u8 *nvm_data, *tmp, i; 1652 u32 nvm_size, left; 1653 s8 num_blks; 1654 int status; 1655 1656 if (ops == &ice_nvm_region_ops) { 1657 read_shadow_ram = false; 1658 nvm_size = hw->flash.flash_size; 1659 } else if (ops == &ice_sram_region_ops) { 1660 read_shadow_ram = true; 1661 nvm_size = hw->flash.sr_words * 2u; 1662 } else { 1663 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1664 return -EOPNOTSUPP; 1665 } 1666 1667 nvm_data = vzalloc(nvm_size); 1668 if (!nvm_data) 1669 return -ENOMEM; 1670 1671 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE); 1672 tmp = nvm_data; 1673 left = nvm_size; 1674 1675 /* Some systems take longer to read the NVM than others which causes the 1676 * FW to reclaim the NVM lock before the entire NVM has been read. Fix 1677 * this by breaking the reads of the NVM into smaller chunks that will 1678 * probably not take as long. This has some overhead since we are 1679 * increasing the number of AQ commands, but it should always work 1680 */ 1681 for (i = 0; i < num_blks; i++) { 1682 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left); 1683 1684 status = ice_acquire_nvm(hw, ICE_RES_READ); 1685 if (status) { 1686 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1687 status, hw->adminq.sq_last_status); 1688 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1689 vfree(nvm_data); 1690 return -EIO; 1691 } 1692 1693 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE, 1694 &read_sz, tmp, read_shadow_ram); 1695 if (status) { 1696 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1697 read_sz, status, hw->adminq.sq_last_status); 1698 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1699 ice_release_nvm(hw); 1700 vfree(nvm_data); 1701 return -EIO; 1702 } 1703 ice_release_nvm(hw); 1704 1705 tmp += read_sz; 1706 left -= read_sz; 1707 } 1708 1709 *data = nvm_data; 1710 1711 return 0; 1712 } 1713 1714 /** 1715 * ice_devlink_nvm_read - Read a portion of NVM flash contents 1716 * @devlink: the devlink instance 1717 * @ops: the devlink region to snapshot 1718 * @extack: extended ACK response structure 1719 * @offset: the offset to start at 1720 * @size: the amount to read 1721 * @data: the data buffer to read into 1722 * 1723 * This function is called in response to DEVLINK_CMD_REGION_READ to directly 1724 * read a section of the NVM contents. 1725 * 1726 * It reads from either the nvm-flash or shadow-ram region contents. 1727 * 1728 * @returns zero on success, and updates the data pointer. Returns a non-zero 1729 * error code on failure. 1730 */ 1731 static int ice_devlink_nvm_read(struct devlink *devlink, 1732 const struct devlink_region_ops *ops, 1733 struct netlink_ext_ack *extack, 1734 u64 offset, u32 size, u8 *data) 1735 { 1736 struct ice_pf *pf = devlink_priv(devlink); 1737 struct device *dev = ice_pf_to_dev(pf); 1738 struct ice_hw *hw = &pf->hw; 1739 bool read_shadow_ram; 1740 u64 nvm_size; 1741 int status; 1742 1743 if (ops == &ice_nvm_region_ops) { 1744 read_shadow_ram = false; 1745 nvm_size = hw->flash.flash_size; 1746 } else if (ops == &ice_sram_region_ops) { 1747 read_shadow_ram = true; 1748 nvm_size = hw->flash.sr_words * 2u; 1749 } else { 1750 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1751 return -EOPNOTSUPP; 1752 } 1753 1754 if (offset + size >= nvm_size) { 1755 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size"); 1756 return -ERANGE; 1757 } 1758 1759 status = ice_acquire_nvm(hw, ICE_RES_READ); 1760 if (status) { 1761 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1762 status, hw->adminq.sq_last_status); 1763 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1764 return -EIO; 1765 } 1766 1767 status = ice_read_flat_nvm(hw, (u32)offset, &size, data, 1768 read_shadow_ram); 1769 if (status) { 1770 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1771 size, status, hw->adminq.sq_last_status); 1772 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1773 ice_release_nvm(hw); 1774 return -EIO; 1775 } 1776 ice_release_nvm(hw); 1777 1778 return 0; 1779 } 1780 1781 /** 1782 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities 1783 * @devlink: the devlink instance 1784 * @ops: the devlink region being snapshotted 1785 * @extack: extended ACK response structure 1786 * @data: on exit points to snapshot data buffer 1787 * 1788 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1789 * the device-caps devlink region. It captures a snapshot of the device 1790 * capabilities reported by firmware. 1791 * 1792 * @returns zero on success, and updates the data pointer. Returns a non-zero 1793 * error code on failure. 1794 */ 1795 static int 1796 ice_devlink_devcaps_snapshot(struct devlink *devlink, 1797 const struct devlink_region_ops *ops, 1798 struct netlink_ext_ack *extack, u8 **data) 1799 { 1800 struct ice_pf *pf = devlink_priv(devlink); 1801 struct device *dev = ice_pf_to_dev(pf); 1802 struct ice_hw *hw = &pf->hw; 1803 void *devcaps; 1804 int status; 1805 1806 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN); 1807 if (!devcaps) 1808 return -ENOMEM; 1809 1810 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL, 1811 ice_aqc_opc_list_dev_caps, NULL); 1812 if (status) { 1813 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n", 1814 status, hw->adminq.sq_last_status); 1815 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities"); 1816 vfree(devcaps); 1817 return status; 1818 } 1819 1820 *data = (u8 *)devcaps; 1821 1822 return 0; 1823 } 1824 1825 static const struct devlink_region_ops ice_nvm_region_ops = { 1826 .name = "nvm-flash", 1827 .destructor = vfree, 1828 .snapshot = ice_devlink_nvm_snapshot, 1829 .read = ice_devlink_nvm_read, 1830 }; 1831 1832 static const struct devlink_region_ops ice_sram_region_ops = { 1833 .name = "shadow-ram", 1834 .destructor = vfree, 1835 .snapshot = ice_devlink_nvm_snapshot, 1836 .read = ice_devlink_nvm_read, 1837 }; 1838 1839 static const struct devlink_region_ops ice_devcaps_region_ops = { 1840 .name = "device-caps", 1841 .destructor = vfree, 1842 .snapshot = ice_devlink_devcaps_snapshot, 1843 }; 1844 1845 /** 1846 * ice_devlink_init_regions - Initialize devlink regions 1847 * @pf: the PF device structure 1848 * 1849 * Create devlink regions used to enable access to dump the contents of the 1850 * flash memory on the device. 1851 */ 1852 void ice_devlink_init_regions(struct ice_pf *pf) 1853 { 1854 struct devlink *devlink = priv_to_devlink(pf); 1855 struct device *dev = ice_pf_to_dev(pf); 1856 u64 nvm_size, sram_size; 1857 1858 nvm_size = pf->hw.flash.flash_size; 1859 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1, 1860 nvm_size); 1861 if (IS_ERR(pf->nvm_region)) { 1862 dev_err(dev, "failed to create NVM devlink region, err %ld\n", 1863 PTR_ERR(pf->nvm_region)); 1864 pf->nvm_region = NULL; 1865 } 1866 1867 sram_size = pf->hw.flash.sr_words * 2u; 1868 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops, 1869 1, sram_size); 1870 if (IS_ERR(pf->sram_region)) { 1871 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n", 1872 PTR_ERR(pf->sram_region)); 1873 pf->sram_region = NULL; 1874 } 1875 1876 pf->devcaps_region = devl_region_create(devlink, 1877 &ice_devcaps_region_ops, 10, 1878 ICE_AQ_MAX_BUF_LEN); 1879 if (IS_ERR(pf->devcaps_region)) { 1880 dev_err(dev, "failed to create device-caps devlink region, err %ld\n", 1881 PTR_ERR(pf->devcaps_region)); 1882 pf->devcaps_region = NULL; 1883 } 1884 } 1885 1886 /** 1887 * ice_devlink_destroy_regions - Destroy devlink regions 1888 * @pf: the PF device structure 1889 * 1890 * Remove previously created regions for this PF. 1891 */ 1892 void ice_devlink_destroy_regions(struct ice_pf *pf) 1893 { 1894 if (pf->nvm_region) 1895 devl_region_destroy(pf->nvm_region); 1896 1897 if (pf->sram_region) 1898 devl_region_destroy(pf->sram_region); 1899 1900 if (pf->devcaps_region) 1901 devl_region_destroy(pf->devcaps_region); 1902 } 1903