1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _IAVF_TXRX_H_ 5 #define _IAVF_TXRX_H_ 6 7 /* Interrupt Throttling and Rate Limiting Goodies */ 8 #define IAVF_DEFAULT_IRQ_WORK 256 9 10 /* The datasheet for the X710 and XL710 indicate that the maximum value for 11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 13 * the register value which is divided by 2 lets use the actual values and 14 * avoid an excessive amount of translation. 15 */ 16 #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 17 #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ 18 #define IAVF_ITR_100K 10 /* all values below must be even */ 19 #define IAVF_ITR_50K 20 20 #define IAVF_ITR_20K 50 21 #define IAVF_ITR_18K 60 22 #define IAVF_ITR_8K 122 23 #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ 24 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) 25 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) 26 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) 27 28 #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) 29 #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) 30 31 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 32 * the value of the rate limit is non-zero 33 */ 34 #define INTRL_ENA BIT(6) 35 #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 36 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 37 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) 38 #define IAVF_INTRL_8K 125 /* 8000 ints/sec */ 39 #define IAVF_INTRL_62K 16 /* 62500 ints/sec */ 40 #define IAVF_INTRL_83K 12 /* 83333 ints/sec */ 41 42 #define IAVF_QUEUE_END_OF_LIST 0x7FF 43 44 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 45 * registers and QINT registers or more generally anywhere in the manual 46 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 47 * register but instead is a special value meaning "don't update" ITR0/1/2. 48 */ 49 enum iavf_dyn_idx_t { 50 IAVF_IDX_ITR0 = 0, 51 IAVF_IDX_ITR1 = 1, 52 IAVF_IDX_ITR2 = 2, 53 IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 54 }; 55 56 /* these are indexes into ITRN registers */ 57 #define IAVF_RX_ITR IAVF_IDX_ITR0 58 #define IAVF_TX_ITR IAVF_IDX_ITR1 59 #define IAVF_PE_ITR IAVF_IDX_ITR2 60 61 /* Supported RSS offloads */ 62 #define IAVF_DEFAULT_RSS_HENA ( \ 63 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 64 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 65 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 66 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 67 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ 68 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 69 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 70 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 71 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 72 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ 73 BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) 74 75 #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ 76 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 77 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 78 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 79 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 80 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 81 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 82 83 #define iavf_rx_desc iavf_32byte_rx_desc 84 85 /** 86 * iavf_test_staterr - tests bits in Rx descriptor status and error fields 87 * @rx_desc: pointer to receive descriptor (in le64 format) 88 * @stat_err_bits: value to mask 89 * 90 * This function does some fast chicanery in order to return the 91 * value of the mask which is really only used for boolean tests. 92 * The status_error_len doesn't need to be shifted because it begins 93 * at offset zero. 94 */ 95 static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, 96 const u64 stat_err_bits) 97 { 98 return !!(rx_desc->wb.qword1.status_error_len & 99 cpu_to_le64(stat_err_bits)); 100 } 101 102 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 103 #define IAVF_RX_INCREMENT(r, i) \ 104 do { \ 105 (i)++; \ 106 if ((i) == (r)->count) \ 107 i = 0; \ 108 r->next_to_clean = i; \ 109 } while (0) 110 111 #define IAVF_RX_NEXT_DESC(r, i, n) \ 112 do { \ 113 (i)++; \ 114 if ((i) == (r)->count) \ 115 i = 0; \ 116 (n) = IAVF_RX_DESC((r), (i)); \ 117 } while (0) 118 119 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ 120 do { \ 121 IAVF_RX_NEXT_DESC((r), (i), (n)); \ 122 prefetch((n)); \ 123 } while (0) 124 125 #define IAVF_MAX_BUFFER_TXD 8 126 #define IAVF_MIN_TX_LEN 17 127 128 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 129 * In order to align with the read requests we will align the value to 130 * the nearest 4K which represents our maximum read request size. 131 */ 132 #define IAVF_MAX_READ_REQ_SIZE 4096 133 #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) 134 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \ 135 (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) 136 137 /** 138 * iavf_txd_use_count - estimate the number of descriptors needed for Tx 139 * @size: transmit request size in bytes 140 * 141 * Due to hardware alignment restrictions (4K alignment), we need to 142 * assume that we can have no more than 12K of data per descriptor, even 143 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 144 * Thus, we need to divide by 12K. But division is slow! Instead, 145 * we decompose the operation into shifts and one relatively cheap 146 * multiply operation. 147 * 148 * To divide by 12K, we first divide by 4K, then divide by 3: 149 * To divide by 4K, shift right by 12 bits 150 * To divide by 3, multiply by 85, then divide by 256 151 * (Divide by 256 is done by shifting right by 8 bits) 152 * Finally, we add one to round up. Because 256 isn't an exact multiple of 153 * 3, we'll underestimate near each multiple of 12K. This is actually more 154 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 155 * segment. For our purposes this is accurate out to 1M which is orders of 156 * magnitude greater than our largest possible GSO size. 157 * 158 * This would then be implemented as: 159 * return (((size >> 12) * 85) >> 8) + 1; 160 * 161 * Since multiplication and division are commutative, we can reorder 162 * operations into: 163 * return ((size * 85) >> 20) + 1; 164 */ 165 static inline unsigned int iavf_txd_use_count(unsigned int size) 166 { 167 return ((size * 85) >> 20) + 1; 168 } 169 170 /* Tx Descriptors needed, worst case */ 171 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 172 #define IAVF_MIN_DESC_PENDING 4 173 174 #define IAVF_TX_FLAGS_HW_VLAN BIT(1) 175 #define IAVF_TX_FLAGS_SW_VLAN BIT(2) 176 #define IAVF_TX_FLAGS_TSO BIT(3) 177 #define IAVF_TX_FLAGS_IPV4 BIT(4) 178 #define IAVF_TX_FLAGS_IPV6 BIT(5) 179 #define IAVF_TX_FLAGS_FCCRC BIT(6) 180 #define IAVF_TX_FLAGS_FSO BIT(7) 181 #define IAVF_TX_FLAGS_FD_SB BIT(9) 182 #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) 183 #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11) 184 #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 185 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 186 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 187 #define IAVF_TX_FLAGS_VLAN_SHIFT 16 188 189 struct iavf_tx_buffer { 190 struct iavf_tx_desc *next_to_watch; 191 union { 192 struct sk_buff *skb; 193 void *raw_buf; 194 }; 195 unsigned int bytecount; 196 unsigned short gso_segs; 197 198 DEFINE_DMA_UNMAP_ADDR(dma); 199 DEFINE_DMA_UNMAP_LEN(len); 200 u32 tx_flags; 201 }; 202 203 struct iavf_queue_stats { 204 u64 packets; 205 u64 bytes; 206 }; 207 208 struct iavf_tx_queue_stats { 209 u64 restart_queue; 210 u64 tx_busy; 211 u64 tx_done_old; 212 u64 tx_linearize; 213 u64 tx_force_wb; 214 u64 tx_lost_interrupt; 215 }; 216 217 struct iavf_rx_queue_stats { 218 u64 non_eop_descs; 219 u64 alloc_page_failed; 220 u64 alloc_buff_failed; 221 }; 222 223 /* some useful defines for virtchannel interface, which 224 * is the only remaining user of header split 225 */ 226 #define IAVF_RX_DTYPE_NO_SPLIT 0 227 #define IAVF_RX_DTYPE_HEADER_SPLIT 1 228 #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 229 #define IAVF_RX_SPLIT_L2 0x1 230 #define IAVF_RX_SPLIT_IP 0x2 231 #define IAVF_RX_SPLIT_TCP_UDP 0x4 232 #define IAVF_RX_SPLIT_SCTP 0x8 233 234 /* struct that defines a descriptor ring, associated with a VSI */ 235 struct iavf_ring { 236 struct iavf_ring *next; /* pointer to next ring in q_vector */ 237 void *desc; /* Descriptor ring memory */ 238 union { 239 struct page_pool *pp; /* Used on Rx for buffer management */ 240 struct device *dev; /* Used on Tx for DMA mapping */ 241 }; 242 struct net_device *netdev; /* netdev ring maps to */ 243 union { 244 struct libeth_fqe *rx_fqes; 245 struct iavf_tx_buffer *tx_bi; 246 }; 247 u8 __iomem *tail; 248 u32 truesize; 249 250 u16 queue_index; /* Queue number of ring */ 251 252 /* high bit set means dynamic, use accessors routines to read/write. 253 * hardware only supports 2us resolution for the ITR registers. 254 * these values always store the USER setting, and must be converted 255 * before programming to a register. 256 */ 257 u16 itr_setting; 258 259 u16 count; /* Number of descriptors */ 260 261 /* used in interrupt processing */ 262 u16 next_to_use; 263 u16 next_to_clean; 264 265 u16 flags; 266 #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) 267 #define IAVF_TXR_FLAGS_ARM_WB BIT(1) 268 /* BIT(2) is free */ 269 #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3) 270 #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4) 271 #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5) 272 273 /* stats structs */ 274 struct iavf_queue_stats stats; 275 struct u64_stats_sync syncp; 276 union { 277 struct iavf_tx_queue_stats tx_stats; 278 struct iavf_rx_queue_stats rx_stats; 279 }; 280 281 int prev_pkt_ctr; /* For Tx stall detection */ 282 unsigned int size; /* length of descriptor ring in bytes */ 283 dma_addr_t dma; /* physical address of ring */ 284 285 struct iavf_vsi *vsi; /* Backreference to associated VSI */ 286 struct iavf_q_vector *q_vector; /* Backreference to associated vector */ 287 288 struct rcu_head rcu; /* to avoid race on free */ 289 struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must 290 * return before it sees the EOP for 291 * the current packet, we save that skb 292 * here and resume receiving this 293 * packet the next time 294 * iavf_clean_rx_ring_irq() is called 295 * for this ring. 296 */ 297 298 u32 rx_buf_len; 299 struct net_shaper q_shaper; 300 bool q_shaper_update; 301 } ____cacheline_internodealigned_in_smp; 302 303 #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 304 #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 305 #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e 306 #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 307 #define IAVF_ITR_ADAPTIVE_BULK 0x0000 308 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) 309 310 struct iavf_ring_container { 311 struct iavf_ring *ring; /* pointer to linked list of ring(s) */ 312 unsigned long next_update; /* jiffies value of next update */ 313 unsigned int total_bytes; /* total bytes processed this int */ 314 unsigned int total_packets; /* total packets processed this int */ 315 u16 count; 316 u16 target_itr; /* target ITR setting for ring(s) */ 317 u16 current_itr; /* current ITR setting for ring(s) */ 318 }; 319 320 /* iterator for handling rings in ring container */ 321 #define iavf_for_each_ring(pos, head) \ 322 for (pos = (head).ring; pos != NULL; pos = pos->next) 323 324 bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); 325 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 326 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); 327 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); 328 void iavf_free_tx_resources(struct iavf_ring *tx_ring); 329 void iavf_free_rx_resources(struct iavf_ring *rx_ring); 330 int iavf_napi_poll(struct napi_struct *napi, int budget); 331 void iavf_detect_recover_hung(struct iavf_vsi *vsi); 332 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); 333 bool __iavf_chk_linearize(struct sk_buff *skb); 334 335 /** 336 * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed 337 * @skb: send buffer 338 * 339 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 340 * there is not enough descriptors available in this ring since we need at least 341 * one descriptor. 342 **/ 343 static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) 344 { 345 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 346 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 347 int count = 0, size = skb_headlen(skb); 348 349 for (;;) { 350 count += iavf_txd_use_count(size); 351 352 if (!nr_frags--) 353 break; 354 355 size = skb_frag_size(frag++); 356 } 357 358 return count; 359 } 360 361 /** 362 * iavf_maybe_stop_tx - 1st level check for Tx stop conditions 363 * @tx_ring: the ring to be checked 364 * @size: the size buffer we want to assure is available 365 * 366 * Returns 0 if stop is not needed 367 **/ 368 static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 369 { 370 if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) 371 return 0; 372 return __iavf_maybe_stop_tx(tx_ring, size); 373 } 374 375 /** 376 * iavf_chk_linearize - Check if there are more than 8 fragments per packet 377 * @skb: send buffer 378 * @count: number of buffers used 379 * 380 * Note: Our HW can't scatter-gather more than 8 fragments to build 381 * a packet on the wire and so we need to figure out the cases where we 382 * need to linearize the skb. 383 **/ 384 static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) 385 { 386 /* Both TSO and single send will work if count is less than 8 */ 387 if (likely(count < IAVF_MAX_BUFFER_TXD)) 388 return false; 389 390 if (skb_is_gso(skb)) 391 return __iavf_chk_linearize(skb); 392 393 /* we can support up to 8 data buffers for a single send */ 394 return count != IAVF_MAX_BUFFER_TXD; 395 } 396 /** 397 * txring_txq - helper to convert from a ring to a queue 398 * @ring: Tx ring to find the netdev equivalent of 399 **/ 400 static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) 401 { 402 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 403 } 404 #endif /* _IAVF_TXRX_H_ */ 405