1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _IAVF_TXRX_H_ 5 #define _IAVF_TXRX_H_ 6 7 /* Interrupt Throttling and Rate Limiting Goodies */ 8 #define IAVF_DEFAULT_IRQ_WORK 256 9 10 /* The datasheet for the X710 and XL710 indicate that the maximum value for 11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 13 * the register value which is divided by 2 lets use the actual values and 14 * avoid an excessive amount of translation. 15 */ 16 #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 17 #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ 18 #define IAVF_MIN_ITR 2 /* reg uses 2 usec resolution */ 19 #define IAVF_ITR_100K 10 /* all values below must be even */ 20 #define IAVF_ITR_50K 20 21 #define IAVF_ITR_20K 50 22 #define IAVF_ITR_18K 60 23 #define IAVF_ITR_8K 122 24 #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ 25 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) 26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) 27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) 28 29 #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) 30 #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) 31 32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 33 * the value of the rate limit is non-zero 34 */ 35 #define INTRL_ENA BIT(6) 36 #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 38 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) 39 #define IAVF_INTRL_8K 125 /* 8000 ints/sec */ 40 #define IAVF_INTRL_62K 16 /* 62500 ints/sec */ 41 #define IAVF_INTRL_83K 12 /* 83333 ints/sec */ 42 43 #define IAVF_QUEUE_END_OF_LIST 0x7FF 44 45 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 46 * registers and QINT registers or more generally anywhere in the manual 47 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 48 * register but instead is a special value meaning "don't update" ITR0/1/2. 49 */ 50 enum iavf_dyn_idx_t { 51 IAVF_IDX_ITR0 = 0, 52 IAVF_IDX_ITR1 = 1, 53 IAVF_IDX_ITR2 = 2, 54 IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 55 }; 56 57 /* these are indexes into ITRN registers */ 58 #define IAVF_RX_ITR IAVF_IDX_ITR0 59 #define IAVF_TX_ITR IAVF_IDX_ITR1 60 #define IAVF_PE_ITR IAVF_IDX_ITR2 61 62 /* Supported RSS offloads */ 63 #define IAVF_DEFAULT_RSS_HENA ( \ 64 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 65 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 66 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 67 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 68 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ 69 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 70 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 71 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 72 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 73 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ 74 BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) 75 76 #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ 77 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 78 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 79 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 80 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 81 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 82 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 83 84 /* Supported Rx Buffer Sizes (a multiple of 128) */ 85 #define IAVF_RXBUFFER_256 256 86 #define IAVF_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 87 #define IAVF_RXBUFFER_2048 2048 88 #define IAVF_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 89 #define IAVF_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 90 91 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 92 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 93 * this adds up to 512 bytes of extra data meaning the smallest allocation 94 * we could have is 1K. 95 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 96 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 97 */ 98 #define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256 99 #define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 100 #define iavf_rx_desc iavf_32byte_rx_desc 101 102 #define IAVF_RX_DMA_ATTR \ 103 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 104 105 /* Attempt to maximize the headroom available for incoming frames. We 106 * use a 2K buffer for receives and need 1536/1534 to store the data for 107 * the frame. This leaves us with 512 bytes of room. From that we need 108 * to deduct the space needed for the shared info and the padding needed 109 * to IP align the frame. 110 * 111 * Note: For cache line sizes 256 or larger this value is going to end 112 * up negative. In these cases we should fall back to the legacy 113 * receive path. 114 */ 115 #if (PAGE_SIZE < 8192) 116 #define IAVF_2K_TOO_SMALL_WITH_PADDING \ 117 ((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048)) 118 119 static inline int iavf_compute_pad(int rx_buf_len) 120 { 121 int page_size, pad_size; 122 123 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 124 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 125 126 return pad_size; 127 } 128 129 static inline int iavf_skb_pad(void) 130 { 131 int rx_buf_len; 132 133 /* If a 2K buffer cannot handle a standard Ethernet frame then 134 * optimize padding for a 3K buffer instead of a 1.5K buffer. 135 * 136 * For a 3K buffer we need to add enough padding to allow for 137 * tailroom due to NET_IP_ALIGN possibly shifting us out of 138 * cache-line alignment. 139 */ 140 if (IAVF_2K_TOO_SMALL_WITH_PADDING) 141 rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 142 else 143 rx_buf_len = IAVF_RXBUFFER_1536; 144 145 /* if needed make room for NET_IP_ALIGN */ 146 rx_buf_len -= NET_IP_ALIGN; 147 148 return iavf_compute_pad(rx_buf_len); 149 } 150 151 #define IAVF_SKB_PAD iavf_skb_pad() 152 #else 153 #define IAVF_2K_TOO_SMALL_WITH_PADDING false 154 #define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 155 #endif 156 157 /** 158 * iavf_test_staterr - tests bits in Rx descriptor status and error fields 159 * @rx_desc: pointer to receive descriptor (in le64 format) 160 * @stat_err_bits: value to mask 161 * 162 * This function does some fast chicanery in order to return the 163 * value of the mask which is really only used for boolean tests. 164 * The status_error_len doesn't need to be shifted because it begins 165 * at offset zero. 166 */ 167 static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, 168 const u64 stat_err_bits) 169 { 170 return !!(rx_desc->wb.qword1.status_error_len & 171 cpu_to_le64(stat_err_bits)); 172 } 173 174 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 175 #define IAVF_RX_INCREMENT(r, i) \ 176 do { \ 177 (i)++; \ 178 if ((i) == (r)->count) \ 179 i = 0; \ 180 r->next_to_clean = i; \ 181 } while (0) 182 183 #define IAVF_RX_NEXT_DESC(r, i, n) \ 184 do { \ 185 (i)++; \ 186 if ((i) == (r)->count) \ 187 i = 0; \ 188 (n) = IAVF_RX_DESC((r), (i)); \ 189 } while (0) 190 191 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ 192 do { \ 193 IAVF_RX_NEXT_DESC((r), (i), (n)); \ 194 prefetch((n)); \ 195 } while (0) 196 197 #define IAVF_MAX_BUFFER_TXD 8 198 #define IAVF_MIN_TX_LEN 17 199 200 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 201 * In order to align with the read requests we will align the value to 202 * the nearest 4K which represents our maximum read request size. 203 */ 204 #define IAVF_MAX_READ_REQ_SIZE 4096 205 #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) 206 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \ 207 (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) 208 209 /** 210 * iavf_txd_use_count - estimate the number of descriptors needed for Tx 211 * @size: transmit request size in bytes 212 * 213 * Due to hardware alignment restrictions (4K alignment), we need to 214 * assume that we can have no more than 12K of data per descriptor, even 215 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 216 * Thus, we need to divide by 12K. But division is slow! Instead, 217 * we decompose the operation into shifts and one relatively cheap 218 * multiply operation. 219 * 220 * To divide by 12K, we first divide by 4K, then divide by 3: 221 * To divide by 4K, shift right by 12 bits 222 * To divide by 3, multiply by 85, then divide by 256 223 * (Divide by 256 is done by shifting right by 8 bits) 224 * Finally, we add one to round up. Because 256 isn't an exact multiple of 225 * 3, we'll underestimate near each multiple of 12K. This is actually more 226 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 227 * segment. For our purposes this is accurate out to 1M which is orders of 228 * magnitude greater than our largest possible GSO size. 229 * 230 * This would then be implemented as: 231 * return (((size >> 12) * 85) >> 8) + 1; 232 * 233 * Since multiplication and division are commutative, we can reorder 234 * operations into: 235 * return ((size * 85) >> 20) + 1; 236 */ 237 static inline unsigned int iavf_txd_use_count(unsigned int size) 238 { 239 return ((size * 85) >> 20) + 1; 240 } 241 242 /* Tx Descriptors needed, worst case */ 243 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 244 #define IAVF_MIN_DESC_PENDING 4 245 246 #define IAVF_TX_FLAGS_HW_VLAN BIT(1) 247 #define IAVF_TX_FLAGS_SW_VLAN BIT(2) 248 #define IAVF_TX_FLAGS_TSO BIT(3) 249 #define IAVF_TX_FLAGS_IPV4 BIT(4) 250 #define IAVF_TX_FLAGS_IPV6 BIT(5) 251 #define IAVF_TX_FLAGS_FCCRC BIT(6) 252 #define IAVF_TX_FLAGS_FSO BIT(7) 253 #define IAVF_TX_FLAGS_FD_SB BIT(9) 254 #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) 255 #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11) 256 #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 257 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 258 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 259 #define IAVF_TX_FLAGS_VLAN_SHIFT 16 260 261 struct iavf_tx_buffer { 262 struct iavf_tx_desc *next_to_watch; 263 union { 264 struct sk_buff *skb; 265 void *raw_buf; 266 }; 267 unsigned int bytecount; 268 unsigned short gso_segs; 269 270 DEFINE_DMA_UNMAP_ADDR(dma); 271 DEFINE_DMA_UNMAP_LEN(len); 272 u32 tx_flags; 273 }; 274 275 struct iavf_rx_buffer { 276 dma_addr_t dma; 277 struct page *page; 278 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 279 __u32 page_offset; 280 #else 281 __u16 page_offset; 282 #endif 283 __u16 pagecnt_bias; 284 }; 285 286 struct iavf_queue_stats { 287 u64 packets; 288 u64 bytes; 289 }; 290 291 struct iavf_tx_queue_stats { 292 u64 restart_queue; 293 u64 tx_busy; 294 u64 tx_done_old; 295 u64 tx_linearize; 296 u64 tx_force_wb; 297 int prev_pkt_ctr; 298 u64 tx_lost_interrupt; 299 }; 300 301 struct iavf_rx_queue_stats { 302 u64 non_eop_descs; 303 u64 alloc_page_failed; 304 u64 alloc_buff_failed; 305 u64 page_reuse_count; 306 u64 realloc_count; 307 }; 308 309 enum iavf_ring_state_t { 310 __IAVF_TX_FDIR_INIT_DONE, 311 __IAVF_TX_XPS_INIT_DONE, 312 __IAVF_RING_STATE_NBITS /* must be last */ 313 }; 314 315 /* some useful defines for virtchannel interface, which 316 * is the only remaining user of header split 317 */ 318 #define IAVF_RX_DTYPE_NO_SPLIT 0 319 #define IAVF_RX_DTYPE_HEADER_SPLIT 1 320 #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 321 #define IAVF_RX_SPLIT_L2 0x1 322 #define IAVF_RX_SPLIT_IP 0x2 323 #define IAVF_RX_SPLIT_TCP_UDP 0x4 324 #define IAVF_RX_SPLIT_SCTP 0x8 325 326 /* struct that defines a descriptor ring, associated with a VSI */ 327 struct iavf_ring { 328 struct iavf_ring *next; /* pointer to next ring in q_vector */ 329 void *desc; /* Descriptor ring memory */ 330 struct device *dev; /* Used for DMA mapping */ 331 struct net_device *netdev; /* netdev ring maps to */ 332 union { 333 struct iavf_tx_buffer *tx_bi; 334 struct iavf_rx_buffer *rx_bi; 335 }; 336 DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS); 337 u16 queue_index; /* Queue number of ring */ 338 u8 dcb_tc; /* Traffic class of ring */ 339 u8 __iomem *tail; 340 341 /* high bit set means dynamic, use accessors routines to read/write. 342 * hardware only supports 2us resolution for the ITR registers. 343 * these values always store the USER setting, and must be converted 344 * before programming to a register. 345 */ 346 u16 itr_setting; 347 348 u16 count; /* Number of descriptors */ 349 u16 reg_idx; /* HW register index of the ring */ 350 u16 rx_buf_len; 351 352 /* used in interrupt processing */ 353 u16 next_to_use; 354 u16 next_to_clean; 355 356 u8 atr_sample_rate; 357 u8 atr_count; 358 359 bool ring_active; /* is ring online or not */ 360 bool arm_wb; /* do something to arm write back */ 361 u8 packet_stride; 362 363 u16 flags; 364 #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) 365 #define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 366 #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3) 367 #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4) 368 #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5) 369 370 /* stats structs */ 371 struct iavf_queue_stats stats; 372 struct u64_stats_sync syncp; 373 union { 374 struct iavf_tx_queue_stats tx_stats; 375 struct iavf_rx_queue_stats rx_stats; 376 }; 377 378 unsigned int size; /* length of descriptor ring in bytes */ 379 dma_addr_t dma; /* physical address of ring */ 380 381 struct iavf_vsi *vsi; /* Backreference to associated VSI */ 382 struct iavf_q_vector *q_vector; /* Backreference to associated vector */ 383 384 struct rcu_head rcu; /* to avoid race on free */ 385 u16 next_to_alloc; 386 struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must 387 * return before it sees the EOP for 388 * the current packet, we save that skb 389 * here and resume receiving this 390 * packet the next time 391 * iavf_clean_rx_ring_irq() is called 392 * for this ring. 393 */ 394 } ____cacheline_internodealigned_in_smp; 395 396 static inline bool ring_uses_build_skb(struct iavf_ring *ring) 397 { 398 return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED); 399 } 400 401 static inline void set_ring_build_skb_enabled(struct iavf_ring *ring) 402 { 403 ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; 404 } 405 406 static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring) 407 { 408 ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; 409 } 410 411 #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 412 #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 413 #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e 414 #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 415 #define IAVF_ITR_ADAPTIVE_BULK 0x0000 416 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) 417 418 struct iavf_ring_container { 419 struct iavf_ring *ring; /* pointer to linked list of ring(s) */ 420 unsigned long next_update; /* jiffies value of next update */ 421 unsigned int total_bytes; /* total bytes processed this int */ 422 unsigned int total_packets; /* total packets processed this int */ 423 u16 count; 424 u16 target_itr; /* target ITR setting for ring(s) */ 425 u16 current_itr; /* current ITR setting for ring(s) */ 426 }; 427 428 /* iterator for handling rings in ring container */ 429 #define iavf_for_each_ring(pos, head) \ 430 for (pos = (head).ring; pos != NULL; pos = pos->next) 431 432 static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring) 433 { 434 #if (PAGE_SIZE < 8192) 435 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 436 return 1; 437 #endif 438 return 0; 439 } 440 441 #define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring)) 442 443 bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); 444 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 445 void iavf_clean_tx_ring(struct iavf_ring *tx_ring); 446 void iavf_clean_rx_ring(struct iavf_ring *rx_ring); 447 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); 448 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); 449 void iavf_free_tx_resources(struct iavf_ring *tx_ring); 450 void iavf_free_rx_resources(struct iavf_ring *rx_ring); 451 int iavf_napi_poll(struct napi_struct *napi, int budget); 452 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector); 453 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw); 454 void iavf_detect_recover_hung(struct iavf_vsi *vsi); 455 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); 456 bool __iavf_chk_linearize(struct sk_buff *skb); 457 458 /** 459 * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed 460 * @skb: send buffer 461 * 462 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 463 * there is not enough descriptors available in this ring since we need at least 464 * one descriptor. 465 **/ 466 static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) 467 { 468 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 469 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 470 int count = 0, size = skb_headlen(skb); 471 472 for (;;) { 473 count += iavf_txd_use_count(size); 474 475 if (!nr_frags--) 476 break; 477 478 size = skb_frag_size(frag++); 479 } 480 481 return count; 482 } 483 484 /** 485 * iavf_maybe_stop_tx - 1st level check for Tx stop conditions 486 * @tx_ring: the ring to be checked 487 * @size: the size buffer we want to assure is available 488 * 489 * Returns 0 if stop is not needed 490 **/ 491 static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 492 { 493 if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) 494 return 0; 495 return __iavf_maybe_stop_tx(tx_ring, size); 496 } 497 498 /** 499 * iavf_chk_linearize - Check if there are more than 8 fragments per packet 500 * @skb: send buffer 501 * @count: number of buffers used 502 * 503 * Note: Our HW can't scatter-gather more than 8 fragments to build 504 * a packet on the wire and so we need to figure out the cases where we 505 * need to linearize the skb. 506 **/ 507 static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) 508 { 509 /* Both TSO and single send will work if count is less than 8 */ 510 if (likely(count < IAVF_MAX_BUFFER_TXD)) 511 return false; 512 513 if (skb_is_gso(skb)) 514 return __iavf_chk_linearize(skb); 515 516 /* we can support up to 8 data buffers for a single send */ 517 return count != IAVF_MAX_BUFFER_TXD; 518 } 519 /** 520 * txring_txq - helper to convert from a ring to a queue 521 * @ring: Tx ring to find the netdev equivalent of 522 **/ 523 static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) 524 { 525 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 526 } 527 #endif /* _IAVF_TXRX_H_ */ 528