1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <net/busy_poll.h> 6 7 #include "iavf.h" 8 #include "iavf_trace.h" 9 #include "iavf_prototype.h" 10 11 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 12 u32 td_tag) 13 { 14 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 15 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 16 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 17 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 18 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 19 } 20 21 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 22 23 /** 24 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 25 * @ring: the ring that owns the buffer 26 * @tx_buffer: the buffer to free 27 **/ 28 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 29 struct iavf_tx_buffer *tx_buffer) 30 { 31 if (tx_buffer->skb) { 32 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 33 kfree(tx_buffer->raw_buf); 34 else 35 dev_kfree_skb_any(tx_buffer->skb); 36 if (dma_unmap_len(tx_buffer, len)) 37 dma_unmap_single(ring->dev, 38 dma_unmap_addr(tx_buffer, dma), 39 dma_unmap_len(tx_buffer, len), 40 DMA_TO_DEVICE); 41 } else if (dma_unmap_len(tx_buffer, len)) { 42 dma_unmap_page(ring->dev, 43 dma_unmap_addr(tx_buffer, dma), 44 dma_unmap_len(tx_buffer, len), 45 DMA_TO_DEVICE); 46 } 47 48 tx_buffer->next_to_watch = NULL; 49 tx_buffer->skb = NULL; 50 dma_unmap_len_set(tx_buffer, len, 0); 51 /* tx_buffer must be completely set up in the transmit path */ 52 } 53 54 /** 55 * iavf_clean_tx_ring - Free any empty Tx buffers 56 * @tx_ring: ring to be cleaned 57 **/ 58 void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 59 { 60 unsigned long bi_size; 61 u16 i; 62 63 /* ring already cleared, nothing to do */ 64 if (!tx_ring->tx_bi) 65 return; 66 67 /* Free all the Tx ring sk_buffs */ 68 for (i = 0; i < tx_ring->count; i++) 69 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 70 71 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 72 memset(tx_ring->tx_bi, 0, bi_size); 73 74 /* Zero out the descriptor ring */ 75 memset(tx_ring->desc, 0, tx_ring->size); 76 77 tx_ring->next_to_use = 0; 78 tx_ring->next_to_clean = 0; 79 80 if (!tx_ring->netdev) 81 return; 82 83 /* cleanup Tx queue statistics */ 84 netdev_tx_reset_queue(txring_txq(tx_ring)); 85 } 86 87 /** 88 * iavf_free_tx_resources - Free Tx resources per queue 89 * @tx_ring: Tx descriptor ring for a specific queue 90 * 91 * Free all transmit software resources 92 **/ 93 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 94 { 95 iavf_clean_tx_ring(tx_ring); 96 kfree(tx_ring->tx_bi); 97 tx_ring->tx_bi = NULL; 98 99 if (tx_ring->desc) { 100 dma_free_coherent(tx_ring->dev, tx_ring->size, 101 tx_ring->desc, tx_ring->dma); 102 tx_ring->desc = NULL; 103 } 104 } 105 106 /** 107 * iavf_get_tx_pending - how many Tx descriptors not processed 108 * @ring: the ring of descriptors 109 * @in_sw: is tx_pending being checked in SW or HW 110 * 111 * Since there is no access to the ring head register 112 * in XL710, we need to use our local copies 113 **/ 114 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 115 { 116 u32 head, tail; 117 118 head = ring->next_to_clean; 119 tail = readl(ring->tail); 120 121 if (head != tail) 122 return (head < tail) ? 123 tail - head : (tail + ring->count - head); 124 125 return 0; 126 } 127 128 /** 129 * iavf_detect_recover_hung - Function to detect and recover hung_queues 130 * @vsi: pointer to vsi struct with tx queues 131 * 132 * VSI has netdev and netdev has TX queues. This function is to check each of 133 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 134 **/ 135 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 136 { 137 struct iavf_ring *tx_ring = NULL; 138 struct net_device *netdev; 139 unsigned int i; 140 int packets; 141 142 if (!vsi) 143 return; 144 145 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 146 return; 147 148 netdev = vsi->netdev; 149 if (!netdev) 150 return; 151 152 if (!netif_carrier_ok(netdev)) 153 return; 154 155 for (i = 0; i < vsi->back->num_active_queues; i++) { 156 tx_ring = &vsi->back->tx_rings[i]; 157 if (tx_ring && tx_ring->desc) { 158 /* If packet counter has not changed the queue is 159 * likely stalled, so force an interrupt for this 160 * queue. 161 * 162 * prev_pkt_ctr would be negative if there was no 163 * pending work. 164 */ 165 packets = tx_ring->stats.packets & INT_MAX; 166 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 167 iavf_force_wb(vsi, tx_ring->q_vector); 168 continue; 169 } 170 171 /* Memory barrier between read of packet count and call 172 * to iavf_get_tx_pending() 173 */ 174 smp_rmb(); 175 tx_ring->tx_stats.prev_pkt_ctr = 176 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 177 } 178 } 179 } 180 181 #define WB_STRIDE 4 182 183 /** 184 * iavf_clean_tx_irq - Reclaim resources after transmit completes 185 * @vsi: the VSI we care about 186 * @tx_ring: Tx ring to clean 187 * @napi_budget: Used to determine if we are in netpoll 188 * 189 * Returns true if there's any budget left (e.g. the clean is finished) 190 **/ 191 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 192 struct iavf_ring *tx_ring, int napi_budget) 193 { 194 u16 i = tx_ring->next_to_clean; 195 struct iavf_tx_buffer *tx_buf; 196 struct iavf_tx_desc *tx_desc; 197 unsigned int total_bytes = 0, total_packets = 0; 198 unsigned int budget = vsi->work_limit; 199 200 tx_buf = &tx_ring->tx_bi[i]; 201 tx_desc = IAVF_TX_DESC(tx_ring, i); 202 i -= tx_ring->count; 203 204 do { 205 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 206 207 /* if next_to_watch is not set then there is no work pending */ 208 if (!eop_desc) 209 break; 210 211 /* prevent any other reads prior to eop_desc */ 212 smp_rmb(); 213 214 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 215 /* if the descriptor isn't done, no work yet to do */ 216 if (!(eop_desc->cmd_type_offset_bsz & 217 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 218 break; 219 220 /* clear next_to_watch to prevent false hangs */ 221 tx_buf->next_to_watch = NULL; 222 223 /* update the statistics for this packet */ 224 total_bytes += tx_buf->bytecount; 225 total_packets += tx_buf->gso_segs; 226 227 /* free the skb */ 228 napi_consume_skb(tx_buf->skb, napi_budget); 229 230 /* unmap skb header data */ 231 dma_unmap_single(tx_ring->dev, 232 dma_unmap_addr(tx_buf, dma), 233 dma_unmap_len(tx_buf, len), 234 DMA_TO_DEVICE); 235 236 /* clear tx_buffer data */ 237 tx_buf->skb = NULL; 238 dma_unmap_len_set(tx_buf, len, 0); 239 240 /* unmap remaining buffers */ 241 while (tx_desc != eop_desc) { 242 iavf_trace(clean_tx_irq_unmap, 243 tx_ring, tx_desc, tx_buf); 244 245 tx_buf++; 246 tx_desc++; 247 i++; 248 if (unlikely(!i)) { 249 i -= tx_ring->count; 250 tx_buf = tx_ring->tx_bi; 251 tx_desc = IAVF_TX_DESC(tx_ring, 0); 252 } 253 254 /* unmap any remaining paged data */ 255 if (dma_unmap_len(tx_buf, len)) { 256 dma_unmap_page(tx_ring->dev, 257 dma_unmap_addr(tx_buf, dma), 258 dma_unmap_len(tx_buf, len), 259 DMA_TO_DEVICE); 260 dma_unmap_len_set(tx_buf, len, 0); 261 } 262 } 263 264 /* move us one more past the eop_desc for start of next pkt */ 265 tx_buf++; 266 tx_desc++; 267 i++; 268 if (unlikely(!i)) { 269 i -= tx_ring->count; 270 tx_buf = tx_ring->tx_bi; 271 tx_desc = IAVF_TX_DESC(tx_ring, 0); 272 } 273 274 prefetch(tx_desc); 275 276 /* update budget accounting */ 277 budget--; 278 } while (likely(budget)); 279 280 i += tx_ring->count; 281 tx_ring->next_to_clean = i; 282 u64_stats_update_begin(&tx_ring->syncp); 283 tx_ring->stats.bytes += total_bytes; 284 tx_ring->stats.packets += total_packets; 285 u64_stats_update_end(&tx_ring->syncp); 286 tx_ring->q_vector->tx.total_bytes += total_bytes; 287 tx_ring->q_vector->tx.total_packets += total_packets; 288 289 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 290 /* check to see if there are < 4 descriptors 291 * waiting to be written back, then kick the hardware to force 292 * them to be written back in case we stay in NAPI. 293 * In this mode on X722 we do not enable Interrupt. 294 */ 295 unsigned int j = iavf_get_tx_pending(tx_ring, false); 296 297 if (budget && 298 ((j / WB_STRIDE) == 0) && (j > 0) && 299 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 300 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 301 tx_ring->arm_wb = true; 302 } 303 304 /* notify netdev of completed buffers */ 305 netdev_tx_completed_queue(txring_txq(tx_ring), 306 total_packets, total_bytes); 307 308 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 309 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 310 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 311 /* Make sure that anybody stopping the queue after this 312 * sees the new next_to_clean. 313 */ 314 smp_mb(); 315 if (__netif_subqueue_stopped(tx_ring->netdev, 316 tx_ring->queue_index) && 317 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 318 netif_wake_subqueue(tx_ring->netdev, 319 tx_ring->queue_index); 320 ++tx_ring->tx_stats.restart_queue; 321 } 322 } 323 324 return !!budget; 325 } 326 327 /** 328 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 329 * @vsi: the VSI we care about 330 * @q_vector: the vector on which to enable writeback 331 * 332 **/ 333 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 334 struct iavf_q_vector *q_vector) 335 { 336 u16 flags = q_vector->tx.ring[0].flags; 337 u32 val; 338 339 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 340 return; 341 342 if (q_vector->arm_wb_state) 343 return; 344 345 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 346 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 347 348 wr32(&vsi->back->hw, 349 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 350 q_vector->arm_wb_state = true; 351 } 352 353 /** 354 * iavf_force_wb - Issue SW Interrupt so HW does a wb 355 * @vsi: the VSI we care about 356 * @q_vector: the vector on which to force writeback 357 * 358 **/ 359 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 360 { 361 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 362 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 363 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 364 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 365 /* allow 00 to be written to the index */; 366 367 wr32(&vsi->back->hw, 368 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 369 val); 370 } 371 372 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 373 struct iavf_ring_container *rc) 374 { 375 return &q_vector->rx == rc; 376 } 377 378 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector) 379 { 380 unsigned int divisor; 381 382 switch (q_vector->adapter->link_speed) { 383 case I40E_LINK_SPEED_40GB: 384 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024; 385 break; 386 case I40E_LINK_SPEED_25GB: 387 case I40E_LINK_SPEED_20GB: 388 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512; 389 break; 390 default: 391 case I40E_LINK_SPEED_10GB: 392 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256; 393 break; 394 case I40E_LINK_SPEED_1GB: 395 case I40E_LINK_SPEED_100MB: 396 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32; 397 break; 398 } 399 400 return divisor; 401 } 402 403 /** 404 * iavf_update_itr - update the dynamic ITR value based on statistics 405 * @q_vector: structure containing interrupt and ring information 406 * @rc: structure containing ring performance data 407 * 408 * Stores a new ITR value based on packets and byte 409 * counts during the last interrupt. The advantage of per interrupt 410 * computation is faster updates and more accurate ITR for the current 411 * traffic pattern. Constants in this function were computed 412 * based on theoretical maximum wire speed and thresholds were set based 413 * on testing data as well as attempting to minimize response time 414 * while increasing bulk throughput. 415 **/ 416 static void iavf_update_itr(struct iavf_q_vector *q_vector, 417 struct iavf_ring_container *rc) 418 { 419 unsigned int avg_wire_size, packets, bytes, itr; 420 unsigned long next_update = jiffies; 421 422 /* If we don't have any rings just leave ourselves set for maximum 423 * possible latency so we take ourselves out of the equation. 424 */ 425 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 426 return; 427 428 /* For Rx we want to push the delay up and default to low latency. 429 * for Tx we want to pull the delay down and default to high latency. 430 */ 431 itr = iavf_container_is_rx(q_vector, rc) ? 432 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 433 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 434 435 /* If we didn't update within up to 1 - 2 jiffies we can assume 436 * that either packets are coming in so slow there hasn't been 437 * any work, or that there is so much work that NAPI is dealing 438 * with interrupt moderation and we don't need to do anything. 439 */ 440 if (time_after(next_update, rc->next_update)) 441 goto clear_counts; 442 443 /* If itr_countdown is set it means we programmed an ITR within 444 * the last 4 interrupt cycles. This has a side effect of us 445 * potentially firing an early interrupt. In order to work around 446 * this we need to throw out any data received for a few 447 * interrupts following the update. 448 */ 449 if (q_vector->itr_countdown) { 450 itr = rc->target_itr; 451 goto clear_counts; 452 } 453 454 packets = rc->total_packets; 455 bytes = rc->total_bytes; 456 457 if (iavf_container_is_rx(q_vector, rc)) { 458 /* If Rx there are 1 to 4 packets and bytes are less than 459 * 9000 assume insufficient data to use bulk rate limiting 460 * approach unless Tx is already in bulk rate limiting. We 461 * are likely latency driven. 462 */ 463 if (packets && packets < 4 && bytes < 9000 && 464 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 465 itr = IAVF_ITR_ADAPTIVE_LATENCY; 466 goto adjust_by_size; 467 } 468 } else if (packets < 4) { 469 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 470 * bulk mode and we are receiving 4 or fewer packets just 471 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 472 * that the Rx can relax. 473 */ 474 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 475 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 476 IAVF_ITR_ADAPTIVE_MAX_USECS) 477 goto clear_counts; 478 } else if (packets > 32) { 479 /* If we have processed over 32 packets in a single interrupt 480 * for Tx assume we need to switch over to "bulk" mode. 481 */ 482 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 483 } 484 485 /* We have no packets to actually measure against. This means 486 * either one of the other queues on this vector is active or 487 * we are a Tx queue doing TSO with too high of an interrupt rate. 488 * 489 * Between 4 and 56 we can assume that our current interrupt delay 490 * is only slightly too low. As such we should increase it by a small 491 * fixed amount. 492 */ 493 if (packets < 56) { 494 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 495 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 496 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 497 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 498 } 499 goto clear_counts; 500 } 501 502 if (packets <= 256) { 503 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 504 itr &= IAVF_ITR_MASK; 505 506 /* Between 56 and 112 is our "goldilocks" zone where we are 507 * working out "just right". Just report that our current 508 * ITR is good for us. 509 */ 510 if (packets <= 112) 511 goto clear_counts; 512 513 /* If packet count is 128 or greater we are likely looking 514 * at a slight overrun of the delay we want. Try halving 515 * our delay to see if that will cut the number of packets 516 * in half per interrupt. 517 */ 518 itr /= 2; 519 itr &= IAVF_ITR_MASK; 520 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 521 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 522 523 goto clear_counts; 524 } 525 526 /* The paths below assume we are dealing with a bulk ITR since 527 * number of packets is greater than 256. We are just going to have 528 * to compute a value and try to bring the count under control, 529 * though for smaller packet sizes there isn't much we can do as 530 * NAPI polling will likely be kicking in sooner rather than later. 531 */ 532 itr = IAVF_ITR_ADAPTIVE_BULK; 533 534 adjust_by_size: 535 /* If packet counts are 256 or greater we can assume we have a gross 536 * overestimation of what the rate should be. Instead of trying to fine 537 * tune it just use the formula below to try and dial in an exact value 538 * give the current packet size of the frame. 539 */ 540 avg_wire_size = bytes / packets; 541 542 /* The following is a crude approximation of: 543 * wmem_default / (size + overhead) = desired_pkts_per_int 544 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 545 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 546 * 547 * Assuming wmem_default is 212992 and overhead is 640 bytes per 548 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 549 * formula down to 550 * 551 * (170 * (size + 24)) / (size + 640) = ITR 552 * 553 * We first do some math on the packet size and then finally bitshift 554 * by 8 after rounding up. We also have to account for PCIe link speed 555 * difference as ITR scales based on this. 556 */ 557 if (avg_wire_size <= 60) { 558 /* Start at 250k ints/sec */ 559 avg_wire_size = 4096; 560 } else if (avg_wire_size <= 380) { 561 /* 250K ints/sec to 60K ints/sec */ 562 avg_wire_size *= 40; 563 avg_wire_size += 1696; 564 } else if (avg_wire_size <= 1084) { 565 /* 60K ints/sec to 36K ints/sec */ 566 avg_wire_size *= 15; 567 avg_wire_size += 11452; 568 } else if (avg_wire_size <= 1980) { 569 /* 36K ints/sec to 30K ints/sec */ 570 avg_wire_size *= 5; 571 avg_wire_size += 22420; 572 } else { 573 /* plateau at a limit of 30K ints/sec */ 574 avg_wire_size = 32256; 575 } 576 577 /* If we are in low latency mode halve our delay which doubles the 578 * rate to somewhere between 100K to 16K ints/sec 579 */ 580 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 581 avg_wire_size /= 2; 582 583 /* Resultant value is 256 times larger than it needs to be. This 584 * gives us room to adjust the value as needed to either increase 585 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 586 * 587 * Use addition as we have already recorded the new latency flag 588 * for the ITR value. 589 */ 590 itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) * 591 IAVF_ITR_ADAPTIVE_MIN_INC; 592 593 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 594 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 595 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 596 } 597 598 clear_counts: 599 /* write back value */ 600 rc->target_itr = itr; 601 602 /* next update should occur within next jiffy */ 603 rc->next_update = next_update + 1; 604 605 rc->total_bytes = 0; 606 rc->total_packets = 0; 607 } 608 609 /** 610 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 611 * @tx_ring: the tx ring to set up 612 * 613 * Return 0 on success, negative on error 614 **/ 615 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 616 { 617 struct device *dev = tx_ring->dev; 618 int bi_size; 619 620 if (!dev) 621 return -ENOMEM; 622 623 /* warn if we are about to overwrite the pointer */ 624 WARN_ON(tx_ring->tx_bi); 625 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 626 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 627 if (!tx_ring->tx_bi) 628 goto err; 629 630 /* round up to nearest 4K */ 631 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 632 tx_ring->size = ALIGN(tx_ring->size, 4096); 633 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 634 &tx_ring->dma, GFP_KERNEL); 635 if (!tx_ring->desc) { 636 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 637 tx_ring->size); 638 goto err; 639 } 640 641 tx_ring->next_to_use = 0; 642 tx_ring->next_to_clean = 0; 643 tx_ring->tx_stats.prev_pkt_ctr = -1; 644 return 0; 645 646 err: 647 kfree(tx_ring->tx_bi); 648 tx_ring->tx_bi = NULL; 649 return -ENOMEM; 650 } 651 652 /** 653 * iavf_clean_rx_ring - Free Rx buffers 654 * @rx_ring: ring to be cleaned 655 **/ 656 void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 657 { 658 unsigned long bi_size; 659 u16 i; 660 661 /* ring already cleared, nothing to do */ 662 if (!rx_ring->rx_bi) 663 return; 664 665 if (rx_ring->skb) { 666 dev_kfree_skb(rx_ring->skb); 667 rx_ring->skb = NULL; 668 } 669 670 /* Free all the Rx ring sk_buffs */ 671 for (i = 0; i < rx_ring->count; i++) { 672 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 673 674 if (!rx_bi->page) 675 continue; 676 677 /* Invalidate cache lines that may have been written to by 678 * device so that we avoid corrupting memory. 679 */ 680 dma_sync_single_range_for_cpu(rx_ring->dev, 681 rx_bi->dma, 682 rx_bi->page_offset, 683 rx_ring->rx_buf_len, 684 DMA_FROM_DEVICE); 685 686 /* free resources associated with mapping */ 687 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 688 iavf_rx_pg_size(rx_ring), 689 DMA_FROM_DEVICE, 690 IAVF_RX_DMA_ATTR); 691 692 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 693 694 rx_bi->page = NULL; 695 rx_bi->page_offset = 0; 696 } 697 698 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 699 memset(rx_ring->rx_bi, 0, bi_size); 700 701 /* Zero out the descriptor ring */ 702 memset(rx_ring->desc, 0, rx_ring->size); 703 704 rx_ring->next_to_alloc = 0; 705 rx_ring->next_to_clean = 0; 706 rx_ring->next_to_use = 0; 707 } 708 709 /** 710 * iavf_free_rx_resources - Free Rx resources 711 * @rx_ring: ring to clean the resources from 712 * 713 * Free all receive software resources 714 **/ 715 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 716 { 717 iavf_clean_rx_ring(rx_ring); 718 kfree(rx_ring->rx_bi); 719 rx_ring->rx_bi = NULL; 720 721 if (rx_ring->desc) { 722 dma_free_coherent(rx_ring->dev, rx_ring->size, 723 rx_ring->desc, rx_ring->dma); 724 rx_ring->desc = NULL; 725 } 726 } 727 728 /** 729 * iavf_setup_rx_descriptors - Allocate Rx descriptors 730 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 731 * 732 * Returns 0 on success, negative on failure 733 **/ 734 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 735 { 736 struct device *dev = rx_ring->dev; 737 int bi_size; 738 739 /* warn if we are about to overwrite the pointer */ 740 WARN_ON(rx_ring->rx_bi); 741 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 742 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 743 if (!rx_ring->rx_bi) 744 goto err; 745 746 u64_stats_init(&rx_ring->syncp); 747 748 /* Round up to nearest 4K */ 749 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 750 rx_ring->size = ALIGN(rx_ring->size, 4096); 751 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 752 &rx_ring->dma, GFP_KERNEL); 753 754 if (!rx_ring->desc) { 755 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 756 rx_ring->size); 757 goto err; 758 } 759 760 rx_ring->next_to_alloc = 0; 761 rx_ring->next_to_clean = 0; 762 rx_ring->next_to_use = 0; 763 764 return 0; 765 err: 766 kfree(rx_ring->rx_bi); 767 rx_ring->rx_bi = NULL; 768 return -ENOMEM; 769 } 770 771 /** 772 * iavf_release_rx_desc - Store the new tail and head values 773 * @rx_ring: ring to bump 774 * @val: new head index 775 **/ 776 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 777 { 778 rx_ring->next_to_use = val; 779 780 /* update next to alloc since we have filled the ring */ 781 rx_ring->next_to_alloc = val; 782 783 /* Force memory writes to complete before letting h/w 784 * know there are new descriptors to fetch. (Only 785 * applicable for weak-ordered memory model archs, 786 * such as IA-64). 787 */ 788 wmb(); 789 writel(val, rx_ring->tail); 790 } 791 792 /** 793 * iavf_rx_offset - Return expected offset into page to access data 794 * @rx_ring: Ring we are requesting offset of 795 * 796 * Returns the offset value for ring into the data buffer. 797 */ 798 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) 799 { 800 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; 801 } 802 803 /** 804 * iavf_alloc_mapped_page - recycle or make a new page 805 * @rx_ring: ring to use 806 * @bi: rx_buffer struct to modify 807 * 808 * Returns true if the page was successfully allocated or 809 * reused. 810 **/ 811 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, 812 struct iavf_rx_buffer *bi) 813 { 814 struct page *page = bi->page; 815 dma_addr_t dma; 816 817 /* since we are recycling buffers we should seldom need to alloc */ 818 if (likely(page)) { 819 rx_ring->rx_stats.page_reuse_count++; 820 return true; 821 } 822 823 /* alloc new page for storage */ 824 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); 825 if (unlikely(!page)) { 826 rx_ring->rx_stats.alloc_page_failed++; 827 return false; 828 } 829 830 /* map page for use */ 831 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 832 iavf_rx_pg_size(rx_ring), 833 DMA_FROM_DEVICE, 834 IAVF_RX_DMA_ATTR); 835 836 /* if mapping failed free memory back to system since 837 * there isn't much point in holding memory we can't use 838 */ 839 if (dma_mapping_error(rx_ring->dev, dma)) { 840 __free_pages(page, iavf_rx_pg_order(rx_ring)); 841 rx_ring->rx_stats.alloc_page_failed++; 842 return false; 843 } 844 845 bi->dma = dma; 846 bi->page = page; 847 bi->page_offset = iavf_rx_offset(rx_ring); 848 849 /* initialize pagecnt_bias to 1 representing we fully own page */ 850 bi->pagecnt_bias = 1; 851 852 return true; 853 } 854 855 /** 856 * iavf_receive_skb - Send a completed packet up the stack 857 * @rx_ring: rx ring in play 858 * @skb: packet to send up 859 * @vlan_tag: vlan tag for packet 860 **/ 861 static void iavf_receive_skb(struct iavf_ring *rx_ring, 862 struct sk_buff *skb, u16 vlan_tag) 863 { 864 struct iavf_q_vector *q_vector = rx_ring->q_vector; 865 866 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 867 (vlan_tag & VLAN_VID_MASK)) 868 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 869 870 napi_gro_receive(&q_vector->napi, skb); 871 } 872 873 /** 874 * iavf_alloc_rx_buffers - Replace used receive buffers 875 * @rx_ring: ring to place buffers on 876 * @cleaned_count: number of buffers to replace 877 * 878 * Returns false if all allocations were successful, true if any fail 879 **/ 880 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 881 { 882 u16 ntu = rx_ring->next_to_use; 883 union iavf_rx_desc *rx_desc; 884 struct iavf_rx_buffer *bi; 885 886 /* do nothing if no valid netdev defined */ 887 if (!rx_ring->netdev || !cleaned_count) 888 return false; 889 890 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 891 bi = &rx_ring->rx_bi[ntu]; 892 893 do { 894 if (!iavf_alloc_mapped_page(rx_ring, bi)) 895 goto no_buffers; 896 897 /* sync the buffer for use by the device */ 898 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 899 bi->page_offset, 900 rx_ring->rx_buf_len, 901 DMA_FROM_DEVICE); 902 903 /* Refresh the desc even if buffer_addrs didn't change 904 * because each write-back erases this info. 905 */ 906 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 907 908 rx_desc++; 909 bi++; 910 ntu++; 911 if (unlikely(ntu == rx_ring->count)) { 912 rx_desc = IAVF_RX_DESC(rx_ring, 0); 913 bi = rx_ring->rx_bi; 914 ntu = 0; 915 } 916 917 /* clear the status bits for the next_to_use descriptor */ 918 rx_desc->wb.qword1.status_error_len = 0; 919 920 cleaned_count--; 921 } while (cleaned_count); 922 923 if (rx_ring->next_to_use != ntu) 924 iavf_release_rx_desc(rx_ring, ntu); 925 926 return false; 927 928 no_buffers: 929 if (rx_ring->next_to_use != ntu) 930 iavf_release_rx_desc(rx_ring, ntu); 931 932 /* make sure to come back via polling to try again after 933 * allocation failure 934 */ 935 return true; 936 } 937 938 /** 939 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 940 * @vsi: the VSI we care about 941 * @skb: skb currently being received and modified 942 * @rx_desc: the receive descriptor 943 **/ 944 static inline void iavf_rx_checksum(struct iavf_vsi *vsi, 945 struct sk_buff *skb, 946 union iavf_rx_desc *rx_desc) 947 { 948 struct iavf_rx_ptype_decoded decoded; 949 u32 rx_error, rx_status; 950 bool ipv4, ipv6; 951 u8 ptype; 952 u64 qword; 953 954 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 955 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; 956 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> 957 IAVF_RXD_QW1_ERROR_SHIFT; 958 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> 959 IAVF_RXD_QW1_STATUS_SHIFT; 960 decoded = decode_rx_desc_ptype(ptype); 961 962 skb->ip_summed = CHECKSUM_NONE; 963 964 skb_checksum_none_assert(skb); 965 966 /* Rx csum enabled and ip headers found? */ 967 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 968 return; 969 970 /* did the hardware decode the packet and checksum? */ 971 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 972 return; 973 974 /* both known and outer_ip must be set for the below code to work */ 975 if (!(decoded.known && decoded.outer_ip)) 976 return; 977 978 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 979 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); 980 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 981 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); 982 983 if (ipv4 && 984 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 985 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 986 goto checksum_fail; 987 988 /* likely incorrect csum if alternate IP extension headers found */ 989 if (ipv6 && 990 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 991 /* don't increment checksum err here, non-fatal err */ 992 return; 993 994 /* there was some L4 error, count error and punt packet to the stack */ 995 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 996 goto checksum_fail; 997 998 /* handle packets that were not able to be checksummed due 999 * to arrival speed, in this case the stack can compute 1000 * the csum. 1001 */ 1002 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 1003 return; 1004 1005 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1006 switch (decoded.inner_prot) { 1007 case IAVF_RX_PTYPE_INNER_PROT_TCP: 1008 case IAVF_RX_PTYPE_INNER_PROT_UDP: 1009 case IAVF_RX_PTYPE_INNER_PROT_SCTP: 1010 skb->ip_summed = CHECKSUM_UNNECESSARY; 1011 /* fall though */ 1012 default: 1013 break; 1014 } 1015 1016 return; 1017 1018 checksum_fail: 1019 vsi->back->hw_csum_rx_error++; 1020 } 1021 1022 /** 1023 * iavf_ptype_to_htype - get a hash type 1024 * @ptype: the ptype value from the descriptor 1025 * 1026 * Returns a hash type to be used by skb_set_hash 1027 **/ 1028 static inline int iavf_ptype_to_htype(u8 ptype) 1029 { 1030 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1031 1032 if (!decoded.known) 1033 return PKT_HASH_TYPE_NONE; 1034 1035 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1036 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1037 return PKT_HASH_TYPE_L4; 1038 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1039 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1040 return PKT_HASH_TYPE_L3; 1041 else 1042 return PKT_HASH_TYPE_L2; 1043 } 1044 1045 /** 1046 * iavf_rx_hash - set the hash value in the skb 1047 * @ring: descriptor ring 1048 * @rx_desc: specific descriptor 1049 * @skb: skb currently being received and modified 1050 * @rx_ptype: Rx packet type 1051 **/ 1052 static inline void iavf_rx_hash(struct iavf_ring *ring, 1053 union iavf_rx_desc *rx_desc, 1054 struct sk_buff *skb, 1055 u8 rx_ptype) 1056 { 1057 u32 hash; 1058 const __le64 rss_mask = 1059 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 1060 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 1061 1062 if (ring->netdev->features & NETIF_F_RXHASH) 1063 return; 1064 1065 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1066 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1067 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); 1068 } 1069 } 1070 1071 /** 1072 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 1073 * @rx_ring: rx descriptor ring packet is being transacted on 1074 * @rx_desc: pointer to the EOP Rx descriptor 1075 * @skb: pointer to current skb being populated 1076 * @rx_ptype: the packet type decoded by hardware 1077 * 1078 * This function checks the ring, descriptor, and packet information in 1079 * order to populate the hash, checksum, VLAN, protocol, and 1080 * other fields within the skb. 1081 **/ 1082 static inline 1083 void iavf_process_skb_fields(struct iavf_ring *rx_ring, 1084 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1085 u8 rx_ptype) 1086 { 1087 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1088 1089 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1090 1091 skb_record_rx_queue(skb, rx_ring->queue_index); 1092 1093 /* modifies the skb - consumes the enet header */ 1094 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1095 } 1096 1097 /** 1098 * iavf_cleanup_headers - Correct empty headers 1099 * @rx_ring: rx descriptor ring packet is being transacted on 1100 * @skb: pointer to current skb being fixed 1101 * 1102 * Also address the case where we are pulling data in on pages only 1103 * and as such no data is present in the skb header. 1104 * 1105 * In addition if skb is not at least 60 bytes we need to pad it so that 1106 * it is large enough to qualify as a valid Ethernet frame. 1107 * 1108 * Returns true if an error was encountered and skb was freed. 1109 **/ 1110 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1111 { 1112 /* if eth_skb_pad returns an error the skb was freed */ 1113 if (eth_skb_pad(skb)) 1114 return true; 1115 1116 return false; 1117 } 1118 1119 /** 1120 * iavf_reuse_rx_page - page flip buffer and store it back on the ring 1121 * @rx_ring: rx descriptor ring to store buffers on 1122 * @old_buff: donor buffer to have page reused 1123 * 1124 * Synchronizes page for reuse by the adapter 1125 **/ 1126 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, 1127 struct iavf_rx_buffer *old_buff) 1128 { 1129 struct iavf_rx_buffer *new_buff; 1130 u16 nta = rx_ring->next_to_alloc; 1131 1132 new_buff = &rx_ring->rx_bi[nta]; 1133 1134 /* update, and store next to alloc */ 1135 nta++; 1136 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1137 1138 /* transfer page from old buffer to new buffer */ 1139 new_buff->dma = old_buff->dma; 1140 new_buff->page = old_buff->page; 1141 new_buff->page_offset = old_buff->page_offset; 1142 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1143 } 1144 1145 /** 1146 * iavf_page_is_reusable - check if any reuse is possible 1147 * @page: page struct to check 1148 * 1149 * A page is not reusable if it was allocated under low memory 1150 * conditions, or it's not in the same NUMA node as this CPU. 1151 */ 1152 static inline bool iavf_page_is_reusable(struct page *page) 1153 { 1154 return (page_to_nid(page) == numa_mem_id()) && 1155 !page_is_pfmemalloc(page); 1156 } 1157 1158 /** 1159 * iavf_can_reuse_rx_page - Determine if this page can be reused by 1160 * the adapter for another receive 1161 * 1162 * @rx_buffer: buffer containing the page 1163 * 1164 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1165 * an unused region in the page. 1166 * 1167 * For small pages, @truesize will be a constant value, half the size 1168 * of the memory at page. We'll attempt to alternate between high and 1169 * low halves of the page, with one half ready for use by the hardware 1170 * and the other half being consumed by the stack. We use the page 1171 * ref count to determine whether the stack has finished consuming the 1172 * portion of this page that was passed up with a previous packet. If 1173 * the page ref count is >1, we'll assume the "other" half page is 1174 * still busy, and this page cannot be reused. 1175 * 1176 * For larger pages, @truesize will be the actual space used by the 1177 * received packet (adjusted upward to an even multiple of the cache 1178 * line size). This will advance through the page by the amount 1179 * actually consumed by the received packets while there is still 1180 * space for a buffer. Each region of larger pages will be used at 1181 * most once, after which the page will not be reused. 1182 * 1183 * In either case, if the page is reusable its refcount is increased. 1184 **/ 1185 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) 1186 { 1187 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1188 struct page *page = rx_buffer->page; 1189 1190 /* Is any reuse possible? */ 1191 if (unlikely(!iavf_page_is_reusable(page))) 1192 return false; 1193 1194 #if (PAGE_SIZE < 8192) 1195 /* if we are only owner of page we can reuse it */ 1196 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1197 return false; 1198 #else 1199 #define IAVF_LAST_OFFSET \ 1200 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) 1201 if (rx_buffer->page_offset > IAVF_LAST_OFFSET) 1202 return false; 1203 #endif 1204 1205 /* If we have drained the page fragment pool we need to update 1206 * the pagecnt_bias and page count so that we fully restock the 1207 * number of references the driver holds. 1208 */ 1209 if (unlikely(!pagecnt_bias)) { 1210 page_ref_add(page, USHRT_MAX); 1211 rx_buffer->pagecnt_bias = USHRT_MAX; 1212 } 1213 1214 return true; 1215 } 1216 1217 /** 1218 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1219 * @rx_ring: rx descriptor ring to transact packets on 1220 * @rx_buffer: buffer containing page to add 1221 * @skb: sk_buff to place the data into 1222 * @size: packet length from rx_desc 1223 * 1224 * This function will add the data contained in rx_buffer->page to the skb. 1225 * It will just attach the page as a frag to the skb. 1226 * 1227 * The function will then update the page offset. 1228 **/ 1229 static void iavf_add_rx_frag(struct iavf_ring *rx_ring, 1230 struct iavf_rx_buffer *rx_buffer, 1231 struct sk_buff *skb, 1232 unsigned int size) 1233 { 1234 #if (PAGE_SIZE < 8192) 1235 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1236 #else 1237 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); 1238 #endif 1239 1240 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1241 rx_buffer->page_offset, size, truesize); 1242 1243 /* page is being used so we must update the page offset */ 1244 #if (PAGE_SIZE < 8192) 1245 rx_buffer->page_offset ^= truesize; 1246 #else 1247 rx_buffer->page_offset += truesize; 1248 #endif 1249 } 1250 1251 /** 1252 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1253 * @rx_ring: rx descriptor ring to transact packets on 1254 * @size: size of buffer to add to skb 1255 * 1256 * This function will pull an Rx buffer from the ring and synchronize it 1257 * for use by the CPU. 1258 */ 1259 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, 1260 const unsigned int size) 1261 { 1262 struct iavf_rx_buffer *rx_buffer; 1263 1264 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1265 prefetchw(rx_buffer->page); 1266 1267 /* we are reusing so sync this buffer for CPU use */ 1268 dma_sync_single_range_for_cpu(rx_ring->dev, 1269 rx_buffer->dma, 1270 rx_buffer->page_offset, 1271 size, 1272 DMA_FROM_DEVICE); 1273 1274 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1275 rx_buffer->pagecnt_bias--; 1276 1277 return rx_buffer; 1278 } 1279 1280 /** 1281 * iavf_construct_skb - Allocate skb and populate it 1282 * @rx_ring: rx descriptor ring to transact packets on 1283 * @rx_buffer: rx buffer to pull data from 1284 * @size: size of buffer to add to skb 1285 * 1286 * This function allocates an skb. It then populates it with the page 1287 * data from the current receive descriptor, taking care to set up the 1288 * skb correctly. 1289 */ 1290 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, 1291 struct iavf_rx_buffer *rx_buffer, 1292 unsigned int size) 1293 { 1294 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1295 #if (PAGE_SIZE < 8192) 1296 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1297 #else 1298 unsigned int truesize = SKB_DATA_ALIGN(size); 1299 #endif 1300 unsigned int headlen; 1301 struct sk_buff *skb; 1302 1303 /* prefetch first cache line of first page */ 1304 prefetch(va); 1305 #if L1_CACHE_BYTES < 128 1306 prefetch(va + L1_CACHE_BYTES); 1307 #endif 1308 1309 /* allocate a skb to store the frags */ 1310 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1311 IAVF_RX_HDR_SIZE, 1312 GFP_ATOMIC | __GFP_NOWARN); 1313 if (unlikely(!skb)) 1314 return NULL; 1315 1316 /* Determine available headroom for copy */ 1317 headlen = size; 1318 if (headlen > IAVF_RX_HDR_SIZE) 1319 headlen = eth_get_headlen(va, IAVF_RX_HDR_SIZE); 1320 1321 /* align pull length to size of long to optimize memcpy performance */ 1322 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1323 1324 /* update all of the pointers */ 1325 size -= headlen; 1326 if (size) { 1327 skb_add_rx_frag(skb, 0, rx_buffer->page, 1328 rx_buffer->page_offset + headlen, 1329 size, truesize); 1330 1331 /* buffer is used by skb, update page_offset */ 1332 #if (PAGE_SIZE < 8192) 1333 rx_buffer->page_offset ^= truesize; 1334 #else 1335 rx_buffer->page_offset += truesize; 1336 #endif 1337 } else { 1338 /* buffer is unused, reset bias back to rx_buffer */ 1339 rx_buffer->pagecnt_bias++; 1340 } 1341 1342 return skb; 1343 } 1344 1345 /** 1346 * iavf_build_skb - Build skb around an existing buffer 1347 * @rx_ring: Rx descriptor ring to transact packets on 1348 * @rx_buffer: Rx buffer to pull data from 1349 * @size: size of buffer to add to skb 1350 * 1351 * This function builds an skb around an existing Rx buffer, taking care 1352 * to set up the skb correctly and avoid any memcpy overhead. 1353 */ 1354 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, 1355 struct iavf_rx_buffer *rx_buffer, 1356 unsigned int size) 1357 { 1358 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1359 #if (PAGE_SIZE < 8192) 1360 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1361 #else 1362 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1363 SKB_DATA_ALIGN(IAVF_SKB_PAD + size); 1364 #endif 1365 struct sk_buff *skb; 1366 1367 /* prefetch first cache line of first page */ 1368 prefetch(va); 1369 #if L1_CACHE_BYTES < 128 1370 prefetch(va + L1_CACHE_BYTES); 1371 #endif 1372 /* build an skb around the page buffer */ 1373 skb = build_skb(va - IAVF_SKB_PAD, truesize); 1374 if (unlikely(!skb)) 1375 return NULL; 1376 1377 /* update pointers within the skb to store the data */ 1378 skb_reserve(skb, IAVF_SKB_PAD); 1379 __skb_put(skb, size); 1380 1381 /* buffer is used by skb, update page_offset */ 1382 #if (PAGE_SIZE < 8192) 1383 rx_buffer->page_offset ^= truesize; 1384 #else 1385 rx_buffer->page_offset += truesize; 1386 #endif 1387 1388 return skb; 1389 } 1390 1391 /** 1392 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free 1393 * @rx_ring: rx descriptor ring to transact packets on 1394 * @rx_buffer: rx buffer to pull data from 1395 * 1396 * This function will clean up the contents of the rx_buffer. It will 1397 * either recycle the buffer or unmap it and free the associated resources. 1398 */ 1399 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, 1400 struct iavf_rx_buffer *rx_buffer) 1401 { 1402 if (iavf_can_reuse_rx_page(rx_buffer)) { 1403 /* hand second half of page back to the ring */ 1404 iavf_reuse_rx_page(rx_ring, rx_buffer); 1405 rx_ring->rx_stats.page_reuse_count++; 1406 } else { 1407 /* we are not reusing the buffer so unmap it */ 1408 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1409 iavf_rx_pg_size(rx_ring), 1410 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); 1411 __page_frag_cache_drain(rx_buffer->page, 1412 rx_buffer->pagecnt_bias); 1413 } 1414 1415 /* clear contents of buffer_info */ 1416 rx_buffer->page = NULL; 1417 } 1418 1419 /** 1420 * iavf_is_non_eop - process handling of non-EOP buffers 1421 * @rx_ring: Rx ring being processed 1422 * @rx_desc: Rx descriptor for current buffer 1423 * @skb: Current socket buffer containing buffer in progress 1424 * 1425 * This function updates next to clean. If the buffer is an EOP buffer 1426 * this function exits returning false, otherwise it will place the 1427 * sk_buff in the next buffer to be chained and return true indicating 1428 * that this is in fact a non-EOP buffer. 1429 **/ 1430 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1431 union iavf_rx_desc *rx_desc, 1432 struct sk_buff *skb) 1433 { 1434 u32 ntc = rx_ring->next_to_clean + 1; 1435 1436 /* fetch, update, and store next to clean */ 1437 ntc = (ntc < rx_ring->count) ? ntc : 0; 1438 rx_ring->next_to_clean = ntc; 1439 1440 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1441 1442 /* if we are the last buffer then there is nothing else to do */ 1443 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1444 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1445 return false; 1446 1447 rx_ring->rx_stats.non_eop_descs++; 1448 1449 return true; 1450 } 1451 1452 /** 1453 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1454 * @rx_ring: rx descriptor ring to transact packets on 1455 * @budget: Total limit on number of packets to process 1456 * 1457 * This function provides a "bounce buffer" approach to Rx interrupt 1458 * processing. The advantage to this is that on systems that have 1459 * expensive overhead for IOMMU access this provides a means of avoiding 1460 * it by maintaining the mapping of the page to the system. 1461 * 1462 * Returns amount of work completed 1463 **/ 1464 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1465 { 1466 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1467 struct sk_buff *skb = rx_ring->skb; 1468 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1469 bool failure = false; 1470 1471 while (likely(total_rx_packets < (unsigned int)budget)) { 1472 struct iavf_rx_buffer *rx_buffer; 1473 union iavf_rx_desc *rx_desc; 1474 unsigned int size; 1475 u16 vlan_tag; 1476 u8 rx_ptype; 1477 u64 qword; 1478 1479 /* return some buffers to hardware, one at a time is too slow */ 1480 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1481 failure = failure || 1482 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1483 cleaned_count = 0; 1484 } 1485 1486 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1487 1488 /* status_error_len will always be zero for unused descriptors 1489 * because it's cleared in cleanup, and overlaps with hdr_addr 1490 * which is always zero because packet split isn't used, if the 1491 * hardware wrote DD then the length will be non-zero 1492 */ 1493 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1494 1495 /* This memory barrier is needed to keep us from reading 1496 * any other fields out of the rx_desc until we have 1497 * verified the descriptor has been written back. 1498 */ 1499 dma_rmb(); 1500 1501 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> 1502 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; 1503 if (!size) 1504 break; 1505 1506 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1507 rx_buffer = iavf_get_rx_buffer(rx_ring, size); 1508 1509 /* retrieve a buffer from the ring */ 1510 if (skb) 1511 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1512 else if (ring_uses_build_skb(rx_ring)) 1513 skb = iavf_build_skb(rx_ring, rx_buffer, size); 1514 else 1515 skb = iavf_construct_skb(rx_ring, rx_buffer, size); 1516 1517 /* exit if we failed to retrieve a buffer */ 1518 if (!skb) { 1519 rx_ring->rx_stats.alloc_buff_failed++; 1520 rx_buffer->pagecnt_bias++; 1521 break; 1522 } 1523 1524 iavf_put_rx_buffer(rx_ring, rx_buffer); 1525 cleaned_count++; 1526 1527 if (iavf_is_non_eop(rx_ring, rx_desc, skb)) 1528 continue; 1529 1530 /* ERR_MASK will only have valid bits if EOP set, and 1531 * what we are doing here is actually checking 1532 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1533 * the error field 1534 */ 1535 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1536 dev_kfree_skb_any(skb); 1537 skb = NULL; 1538 continue; 1539 } 1540 1541 if (iavf_cleanup_headers(rx_ring, skb)) { 1542 skb = NULL; 1543 continue; 1544 } 1545 1546 /* probably a little skewed due to removing CRC */ 1547 total_rx_bytes += skb->len; 1548 1549 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1550 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> 1551 IAVF_RXD_QW1_PTYPE_SHIFT; 1552 1553 /* populate checksum, VLAN, and protocol */ 1554 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1555 1556 1557 vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 1558 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 1559 1560 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1561 iavf_receive_skb(rx_ring, skb, vlan_tag); 1562 skb = NULL; 1563 1564 /* update budget accounting */ 1565 total_rx_packets++; 1566 } 1567 1568 rx_ring->skb = skb; 1569 1570 u64_stats_update_begin(&rx_ring->syncp); 1571 rx_ring->stats.packets += total_rx_packets; 1572 rx_ring->stats.bytes += total_rx_bytes; 1573 u64_stats_update_end(&rx_ring->syncp); 1574 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1575 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1576 1577 /* guarantee a trip back through this routine if there was a failure */ 1578 return failure ? budget : (int)total_rx_packets; 1579 } 1580 1581 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1582 { 1583 u32 val; 1584 1585 /* We don't bother with setting the CLEARPBA bit as the data sheet 1586 * points out doing so is "meaningless since it was already 1587 * auto-cleared". The auto-clearing happens when the interrupt is 1588 * asserted. 1589 * 1590 * Hardware errata 28 for also indicates that writing to a 1591 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1592 * an event in the PBA anyway so we need to rely on the automask 1593 * to hold pending events for us until the interrupt is re-enabled 1594 * 1595 * The itr value is reported in microseconds, and the register 1596 * value is recorded in 2 microsecond units. For this reason we 1597 * only need to shift by the interval shift - 1 instead of the 1598 * full value. 1599 */ 1600 itr &= IAVF_ITR_MASK; 1601 1602 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1603 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1604 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1605 1606 return val; 1607 } 1608 1609 /* a small macro to shorten up some long lines */ 1610 #define INTREG IAVF_VFINT_DYN_CTLN1 1611 1612 /* The act of updating the ITR will cause it to immediately trigger. In order 1613 * to prevent this from throwing off adaptive update statistics we defer the 1614 * update so that it can only happen so often. So after either Tx or Rx are 1615 * updated we make the adaptive scheme wait until either the ITR completely 1616 * expires via the next_update expiration or we have been through at least 1617 * 3 interrupts. 1618 */ 1619 #define ITR_COUNTDOWN_START 3 1620 1621 /** 1622 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1623 * @vsi: the VSI we care about 1624 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1625 * 1626 **/ 1627 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, 1628 struct iavf_q_vector *q_vector) 1629 { 1630 struct iavf_hw *hw = &vsi->back->hw; 1631 u32 intval; 1632 1633 /* These will do nothing if dynamic updates are not enabled */ 1634 iavf_update_itr(q_vector, &q_vector->tx); 1635 iavf_update_itr(q_vector, &q_vector->rx); 1636 1637 /* This block of logic allows us to get away with only updating 1638 * one ITR value with each interrupt. The idea is to perform a 1639 * pseudo-lazy update with the following criteria. 1640 * 1641 * 1. Rx is given higher priority than Tx if both are in same state 1642 * 2. If we must reduce an ITR that is given highest priority. 1643 * 3. We then give priority to increasing ITR based on amount. 1644 */ 1645 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1646 /* Rx ITR needs to be reduced, this is highest priority */ 1647 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1648 q_vector->rx.target_itr); 1649 q_vector->rx.current_itr = q_vector->rx.target_itr; 1650 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1651 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1652 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1653 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1654 /* Tx ITR needs to be reduced, this is second priority 1655 * Tx ITR needs to be increased more than Rx, fourth priority 1656 */ 1657 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1658 q_vector->tx.target_itr); 1659 q_vector->tx.current_itr = q_vector->tx.target_itr; 1660 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1661 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1662 /* Rx ITR needs to be increased, third priority */ 1663 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1664 q_vector->rx.target_itr); 1665 q_vector->rx.current_itr = q_vector->rx.target_itr; 1666 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1667 } else { 1668 /* No ITR update, lowest priority */ 1669 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1670 if (q_vector->itr_countdown) 1671 q_vector->itr_countdown--; 1672 } 1673 1674 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1675 wr32(hw, INTREG(q_vector->reg_idx), intval); 1676 } 1677 1678 /** 1679 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1680 * @napi: napi struct with our devices info in it 1681 * @budget: amount of work driver is allowed to do this pass, in packets 1682 * 1683 * This function will clean all queues associated with a q_vector. 1684 * 1685 * Returns the amount of work done 1686 **/ 1687 int iavf_napi_poll(struct napi_struct *napi, int budget) 1688 { 1689 struct iavf_q_vector *q_vector = 1690 container_of(napi, struct iavf_q_vector, napi); 1691 struct iavf_vsi *vsi = q_vector->vsi; 1692 struct iavf_ring *ring; 1693 bool clean_complete = true; 1694 bool arm_wb = false; 1695 int budget_per_ring; 1696 int work_done = 0; 1697 1698 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1699 napi_complete(napi); 1700 return 0; 1701 } 1702 1703 /* Since the actual Tx work is minimal, we can give the Tx a larger 1704 * budget and be more aggressive about cleaning up the Tx descriptors. 1705 */ 1706 iavf_for_each_ring(ring, q_vector->tx) { 1707 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1708 clean_complete = false; 1709 continue; 1710 } 1711 arm_wb |= ring->arm_wb; 1712 ring->arm_wb = false; 1713 } 1714 1715 /* Handle case where we are called by netpoll with a budget of 0 */ 1716 if (budget <= 0) 1717 goto tx_only; 1718 1719 /* We attempt to distribute budget to each Rx queue fairly, but don't 1720 * allow the budget to go below 1 because that would exit polling early. 1721 */ 1722 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1723 1724 iavf_for_each_ring(ring, q_vector->rx) { 1725 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1726 1727 work_done += cleaned; 1728 /* if we clean as many as budgeted, we must not be done */ 1729 if (cleaned >= budget_per_ring) 1730 clean_complete = false; 1731 } 1732 1733 /* If work not completed, return budget and polling will return */ 1734 if (!clean_complete) { 1735 int cpu_id = smp_processor_id(); 1736 1737 /* It is possible that the interrupt affinity has changed but, 1738 * if the cpu is pegged at 100%, polling will never exit while 1739 * traffic continues and the interrupt will be stuck on this 1740 * cpu. We check to make sure affinity is correct before we 1741 * continue to poll, otherwise we must stop polling so the 1742 * interrupt can move to the correct cpu. 1743 */ 1744 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1745 /* Tell napi that we are done polling */ 1746 napi_complete_done(napi, work_done); 1747 1748 /* Force an interrupt */ 1749 iavf_force_wb(vsi, q_vector); 1750 1751 /* Return budget-1 so that polling stops */ 1752 return budget - 1; 1753 } 1754 tx_only: 1755 if (arm_wb) { 1756 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1757 iavf_enable_wb_on_itr(vsi, q_vector); 1758 } 1759 return budget; 1760 } 1761 1762 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1763 q_vector->arm_wb_state = false; 1764 1765 /* Work is done so exit the polling mode and re-enable the interrupt */ 1766 napi_complete_done(napi, work_done); 1767 1768 iavf_update_enable_itr(vsi, q_vector); 1769 1770 return min(work_done, budget - 1); 1771 } 1772 1773 /** 1774 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1775 * @skb: send buffer 1776 * @tx_ring: ring to send buffer on 1777 * @flags: the tx flags to be set 1778 * 1779 * Checks the skb and set up correspondingly several generic transmit flags 1780 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1781 * 1782 * Returns error code indicate the frame should be dropped upon error and the 1783 * otherwise returns 0 to indicate the flags has been set properly. 1784 **/ 1785 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1786 struct iavf_ring *tx_ring, 1787 u32 *flags) 1788 { 1789 __be16 protocol = skb->protocol; 1790 u32 tx_flags = 0; 1791 1792 if (protocol == htons(ETH_P_8021Q) && 1793 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1794 /* When HW VLAN acceleration is turned off by the user the 1795 * stack sets the protocol to 8021q so that the driver 1796 * can take any steps required to support the SW only 1797 * VLAN handling. In our case the driver doesn't need 1798 * to take any further steps so just set the protocol 1799 * to the encapsulated ethertype. 1800 */ 1801 skb->protocol = vlan_get_protocol(skb); 1802 goto out; 1803 } 1804 1805 /* if we have a HW VLAN tag being added, default to the HW one */ 1806 if (skb_vlan_tag_present(skb)) { 1807 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1808 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1809 /* else if it is a SW VLAN, check the next protocol and store the tag */ 1810 } else if (protocol == htons(ETH_P_8021Q)) { 1811 struct vlan_hdr *vhdr, _vhdr; 1812 1813 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 1814 if (!vhdr) 1815 return -EINVAL; 1816 1817 protocol = vhdr->h_vlan_encapsulated_proto; 1818 tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT; 1819 tx_flags |= IAVF_TX_FLAGS_SW_VLAN; 1820 } 1821 1822 out: 1823 *flags = tx_flags; 1824 return 0; 1825 } 1826 1827 /** 1828 * iavf_tso - set up the tso context descriptor 1829 * @first: pointer to first Tx buffer for xmit 1830 * @hdr_len: ptr to the size of the packet header 1831 * @cd_type_cmd_tso_mss: Quad Word 1 1832 * 1833 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1834 **/ 1835 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1836 u64 *cd_type_cmd_tso_mss) 1837 { 1838 struct sk_buff *skb = first->skb; 1839 u64 cd_cmd, cd_tso_len, cd_mss; 1840 union { 1841 struct iphdr *v4; 1842 struct ipv6hdr *v6; 1843 unsigned char *hdr; 1844 } ip; 1845 union { 1846 struct tcphdr *tcp; 1847 struct udphdr *udp; 1848 unsigned char *hdr; 1849 } l4; 1850 u32 paylen, l4_offset; 1851 u16 gso_segs, gso_size; 1852 int err; 1853 1854 if (skb->ip_summed != CHECKSUM_PARTIAL) 1855 return 0; 1856 1857 if (!skb_is_gso(skb)) 1858 return 0; 1859 1860 err = skb_cow_head(skb, 0); 1861 if (err < 0) 1862 return err; 1863 1864 ip.hdr = skb_network_header(skb); 1865 l4.hdr = skb_transport_header(skb); 1866 1867 /* initialize outer IP header fields */ 1868 if (ip.v4->version == 4) { 1869 ip.v4->tot_len = 0; 1870 ip.v4->check = 0; 1871 } else { 1872 ip.v6->payload_len = 0; 1873 } 1874 1875 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1876 SKB_GSO_GRE_CSUM | 1877 SKB_GSO_IPXIP4 | 1878 SKB_GSO_IPXIP6 | 1879 SKB_GSO_UDP_TUNNEL | 1880 SKB_GSO_UDP_TUNNEL_CSUM)) { 1881 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1882 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1883 l4.udp->len = 0; 1884 1885 /* determine offset of outer transport header */ 1886 l4_offset = l4.hdr - skb->data; 1887 1888 /* remove payload length from outer checksum */ 1889 paylen = skb->len - l4_offset; 1890 csum_replace_by_diff(&l4.udp->check, 1891 (__force __wsum)htonl(paylen)); 1892 } 1893 1894 /* reset pointers to inner headers */ 1895 ip.hdr = skb_inner_network_header(skb); 1896 l4.hdr = skb_inner_transport_header(skb); 1897 1898 /* initialize inner IP header fields */ 1899 if (ip.v4->version == 4) { 1900 ip.v4->tot_len = 0; 1901 ip.v4->check = 0; 1902 } else { 1903 ip.v6->payload_len = 0; 1904 } 1905 } 1906 1907 /* determine offset of inner transport header */ 1908 l4_offset = l4.hdr - skb->data; 1909 1910 /* remove payload length from inner checksum */ 1911 paylen = skb->len - l4_offset; 1912 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 1913 1914 /* compute length of segmentation header */ 1915 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1916 1917 /* pull values out of skb_shinfo */ 1918 gso_size = skb_shinfo(skb)->gso_size; 1919 gso_segs = skb_shinfo(skb)->gso_segs; 1920 1921 /* update GSO size and bytecount with header size */ 1922 first->gso_segs = gso_segs; 1923 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1924 1925 /* find the field values */ 1926 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1927 cd_tso_len = skb->len - *hdr_len; 1928 cd_mss = gso_size; 1929 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1930 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1931 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1932 return 1; 1933 } 1934 1935 /** 1936 * iavf_tx_enable_csum - Enable Tx checksum offloads 1937 * @skb: send buffer 1938 * @tx_flags: pointer to Tx flags currently set 1939 * @td_cmd: Tx descriptor command bits to set 1940 * @td_offset: Tx descriptor header offsets to set 1941 * @tx_ring: Tx descriptor ring 1942 * @cd_tunneling: ptr to context desc bits 1943 **/ 1944 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1945 u32 *td_cmd, u32 *td_offset, 1946 struct iavf_ring *tx_ring, 1947 u32 *cd_tunneling) 1948 { 1949 union { 1950 struct iphdr *v4; 1951 struct ipv6hdr *v6; 1952 unsigned char *hdr; 1953 } ip; 1954 union { 1955 struct tcphdr *tcp; 1956 struct udphdr *udp; 1957 unsigned char *hdr; 1958 } l4; 1959 unsigned char *exthdr; 1960 u32 offset, cmd = 0; 1961 __be16 frag_off; 1962 u8 l4_proto = 0; 1963 1964 if (skb->ip_summed != CHECKSUM_PARTIAL) 1965 return 0; 1966 1967 ip.hdr = skb_network_header(skb); 1968 l4.hdr = skb_transport_header(skb); 1969 1970 /* compute outer L2 header size */ 1971 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 1972 1973 if (skb->encapsulation) { 1974 u32 tunnel = 0; 1975 /* define outer network header type */ 1976 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 1977 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 1978 IAVF_TX_CTX_EXT_IP_IPV4 : 1979 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 1980 1981 l4_proto = ip.v4->protocol; 1982 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 1983 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 1984 1985 exthdr = ip.hdr + sizeof(*ip.v6); 1986 l4_proto = ip.v6->nexthdr; 1987 if (l4.hdr != exthdr) 1988 ipv6_skip_exthdr(skb, exthdr - skb->data, 1989 &l4_proto, &frag_off); 1990 } 1991 1992 /* define outer transport */ 1993 switch (l4_proto) { 1994 case IPPROTO_UDP: 1995 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 1996 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 1997 break; 1998 case IPPROTO_GRE: 1999 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 2000 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2001 break; 2002 case IPPROTO_IPIP: 2003 case IPPROTO_IPV6: 2004 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2005 l4.hdr = skb_inner_network_header(skb); 2006 break; 2007 default: 2008 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2009 return -1; 2010 2011 skb_checksum_help(skb); 2012 return 0; 2013 } 2014 2015 /* compute outer L3 header size */ 2016 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2017 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2018 2019 /* switch IP header pointer from outer to inner header */ 2020 ip.hdr = skb_inner_network_header(skb); 2021 2022 /* compute tunnel header size */ 2023 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2024 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 2025 2026 /* indicate if we need to offload outer UDP header */ 2027 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 2028 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2029 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2030 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 2031 2032 /* record tunnel offload values */ 2033 *cd_tunneling |= tunnel; 2034 2035 /* switch L4 header pointer from outer to inner */ 2036 l4.hdr = skb_inner_transport_header(skb); 2037 l4_proto = 0; 2038 2039 /* reset type as we transition from outer to inner headers */ 2040 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 2041 if (ip.v4->version == 4) 2042 *tx_flags |= IAVF_TX_FLAGS_IPV4; 2043 if (ip.v6->version == 6) 2044 *tx_flags |= IAVF_TX_FLAGS_IPV6; 2045 } 2046 2047 /* Enable IP checksum offloads */ 2048 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2049 l4_proto = ip.v4->protocol; 2050 /* the stack computes the IP header already, the only time we 2051 * need the hardware to recompute it is in the case of TSO. 2052 */ 2053 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2054 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 2055 IAVF_TX_DESC_CMD_IIPT_IPV4; 2056 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2057 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 2058 2059 exthdr = ip.hdr + sizeof(*ip.v6); 2060 l4_proto = ip.v6->nexthdr; 2061 if (l4.hdr != exthdr) 2062 ipv6_skip_exthdr(skb, exthdr - skb->data, 2063 &l4_proto, &frag_off); 2064 } 2065 2066 /* compute inner L3 header size */ 2067 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 2068 2069 /* Enable L4 checksum offloads */ 2070 switch (l4_proto) { 2071 case IPPROTO_TCP: 2072 /* enable checksum offloads */ 2073 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 2074 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2075 break; 2076 case IPPROTO_SCTP: 2077 /* enable SCTP checksum offload */ 2078 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 2079 offset |= (sizeof(struct sctphdr) >> 2) << 2080 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2081 break; 2082 case IPPROTO_UDP: 2083 /* enable UDP checksum offload */ 2084 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 2085 offset |= (sizeof(struct udphdr) >> 2) << 2086 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2087 break; 2088 default: 2089 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2090 return -1; 2091 skb_checksum_help(skb); 2092 return 0; 2093 } 2094 2095 *td_cmd |= cmd; 2096 *td_offset |= offset; 2097 2098 return 1; 2099 } 2100 2101 /** 2102 * iavf_create_tx_ctx Build the Tx context descriptor 2103 * @tx_ring: ring to create the descriptor on 2104 * @cd_type_cmd_tso_mss: Quad Word 1 2105 * @cd_tunneling: Quad Word 0 - bits 0-31 2106 * @cd_l2tag2: Quad Word 0 - bits 32-63 2107 **/ 2108 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 2109 const u64 cd_type_cmd_tso_mss, 2110 const u32 cd_tunneling, const u32 cd_l2tag2) 2111 { 2112 struct iavf_tx_context_desc *context_desc; 2113 int i = tx_ring->next_to_use; 2114 2115 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 2116 !cd_tunneling && !cd_l2tag2) 2117 return; 2118 2119 /* grab the next descriptor */ 2120 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 2121 2122 i++; 2123 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2124 2125 /* cpu_to_le32 and assign to struct fields */ 2126 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2127 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2128 context_desc->rsvd = cpu_to_le16(0); 2129 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2130 } 2131 2132 /** 2133 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 2134 * @skb: send buffer 2135 * 2136 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 2137 * and so we need to figure out the cases where we need to linearize the skb. 2138 * 2139 * For TSO we need to count the TSO header and segment payload separately. 2140 * As such we need to check cases where we have 7 fragments or more as we 2141 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2142 * the segment payload in the first descriptor, and another 7 for the 2143 * fragments. 2144 **/ 2145 bool __iavf_chk_linearize(struct sk_buff *skb) 2146 { 2147 const struct skb_frag_struct *frag, *stale; 2148 int nr_frags, sum; 2149 2150 /* no need to check if number of frags is less than 7 */ 2151 nr_frags = skb_shinfo(skb)->nr_frags; 2152 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 2153 return false; 2154 2155 /* We need to walk through the list and validate that each group 2156 * of 6 fragments totals at least gso_size. 2157 */ 2158 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 2159 frag = &skb_shinfo(skb)->frags[0]; 2160 2161 /* Initialize size to the negative value of gso_size minus 1. We 2162 * use this as the worst case scenerio in which the frag ahead 2163 * of us only provides one byte which is why we are limited to 6 2164 * descriptors for a single transmit as the header and previous 2165 * fragment are already consuming 2 descriptors. 2166 */ 2167 sum = 1 - skb_shinfo(skb)->gso_size; 2168 2169 /* Add size of frags 0 through 4 to create our initial sum */ 2170 sum += skb_frag_size(frag++); 2171 sum += skb_frag_size(frag++); 2172 sum += skb_frag_size(frag++); 2173 sum += skb_frag_size(frag++); 2174 sum += skb_frag_size(frag++); 2175 2176 /* Walk through fragments adding latest fragment, testing it, and 2177 * then removing stale fragments from the sum. 2178 */ 2179 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2180 int stale_size = skb_frag_size(stale); 2181 2182 sum += skb_frag_size(frag++); 2183 2184 /* The stale fragment may present us with a smaller 2185 * descriptor than the actual fragment size. To account 2186 * for that we need to remove all the data on the front and 2187 * figure out what the remainder would be in the last 2188 * descriptor associated with the fragment. 2189 */ 2190 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 2191 int align_pad = -(stale->page_offset) & 2192 (IAVF_MAX_READ_REQ_SIZE - 1); 2193 2194 sum -= align_pad; 2195 stale_size -= align_pad; 2196 2197 do { 2198 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2199 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2200 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 2201 } 2202 2203 /* if sum is negative we failed to make sufficient progress */ 2204 if (sum < 0) 2205 return true; 2206 2207 if (!nr_frags--) 2208 break; 2209 2210 sum -= stale_size; 2211 } 2212 2213 return false; 2214 } 2215 2216 /** 2217 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 2218 * @tx_ring: the ring to be checked 2219 * @size: the size buffer we want to assure is available 2220 * 2221 * Returns -EBUSY if a stop is needed, else 0 2222 **/ 2223 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 2224 { 2225 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2226 /* Memory barrier before checking head and tail */ 2227 smp_mb(); 2228 2229 /* Check again in a case another CPU has just made room available. */ 2230 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 2231 return -EBUSY; 2232 2233 /* A reprieve! - use start_queue because it doesn't call schedule */ 2234 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2235 ++tx_ring->tx_stats.restart_queue; 2236 return 0; 2237 } 2238 2239 /** 2240 * iavf_tx_map - Build the Tx descriptor 2241 * @tx_ring: ring to send buffer on 2242 * @skb: send buffer 2243 * @first: first buffer info buffer to use 2244 * @tx_flags: collected send information 2245 * @hdr_len: size of the packet header 2246 * @td_cmd: the command field in the descriptor 2247 * @td_offset: offset for checksum or crc 2248 **/ 2249 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 2250 struct iavf_tx_buffer *first, u32 tx_flags, 2251 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2252 { 2253 unsigned int data_len = skb->data_len; 2254 unsigned int size = skb_headlen(skb); 2255 struct skb_frag_struct *frag; 2256 struct iavf_tx_buffer *tx_bi; 2257 struct iavf_tx_desc *tx_desc; 2258 u16 i = tx_ring->next_to_use; 2259 u32 td_tag = 0; 2260 dma_addr_t dma; 2261 2262 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 2263 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 2264 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2265 IAVF_TX_FLAGS_VLAN_SHIFT; 2266 } 2267 2268 first->tx_flags = tx_flags; 2269 2270 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2271 2272 tx_desc = IAVF_TX_DESC(tx_ring, i); 2273 tx_bi = first; 2274 2275 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2276 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2277 2278 if (dma_mapping_error(tx_ring->dev, dma)) 2279 goto dma_error; 2280 2281 /* record length, and DMA address */ 2282 dma_unmap_len_set(tx_bi, len, size); 2283 dma_unmap_addr_set(tx_bi, dma, dma); 2284 2285 /* align size to end of page */ 2286 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 2287 tx_desc->buffer_addr = cpu_to_le64(dma); 2288 2289 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 2290 tx_desc->cmd_type_offset_bsz = 2291 build_ctob(td_cmd, td_offset, 2292 max_data, td_tag); 2293 2294 tx_desc++; 2295 i++; 2296 2297 if (i == tx_ring->count) { 2298 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2299 i = 0; 2300 } 2301 2302 dma += max_data; 2303 size -= max_data; 2304 2305 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2306 tx_desc->buffer_addr = cpu_to_le64(dma); 2307 } 2308 2309 if (likely(!data_len)) 2310 break; 2311 2312 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2313 size, td_tag); 2314 2315 tx_desc++; 2316 i++; 2317 2318 if (i == tx_ring->count) { 2319 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2320 i = 0; 2321 } 2322 2323 size = skb_frag_size(frag); 2324 data_len -= size; 2325 2326 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2327 DMA_TO_DEVICE); 2328 2329 tx_bi = &tx_ring->tx_bi[i]; 2330 } 2331 2332 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 2333 2334 i++; 2335 if (i == tx_ring->count) 2336 i = 0; 2337 2338 tx_ring->next_to_use = i; 2339 2340 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2341 2342 /* write last descriptor with RS and EOP bits */ 2343 td_cmd |= IAVF_TXD_CMD; 2344 tx_desc->cmd_type_offset_bsz = 2345 build_ctob(td_cmd, td_offset, size, td_tag); 2346 2347 /* Force memory writes to complete before letting h/w know there 2348 * are new descriptors to fetch. 2349 * 2350 * We also use this memory barrier to make certain all of the 2351 * status bits have been updated before next_to_watch is written. 2352 */ 2353 wmb(); 2354 2355 /* set next_to_watch value indicating a packet is present */ 2356 first->next_to_watch = tx_desc; 2357 2358 /* notify HW of packet */ 2359 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 2360 writel(i, tx_ring->tail); 2361 2362 /* we need this if more than one processor can write to our tail 2363 * at a time, it synchronizes IO on IA64/Altix systems 2364 */ 2365 mmiowb(); 2366 } 2367 2368 return; 2369 2370 dma_error: 2371 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2372 2373 /* clear dma mappings for failed tx_bi map */ 2374 for (;;) { 2375 tx_bi = &tx_ring->tx_bi[i]; 2376 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2377 if (tx_bi == first) 2378 break; 2379 if (i == 0) 2380 i = tx_ring->count; 2381 i--; 2382 } 2383 2384 tx_ring->next_to_use = i; 2385 } 2386 2387 /** 2388 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2389 * @skb: send buffer 2390 * @tx_ring: ring to send buffer on 2391 * 2392 * Returns NETDEV_TX_OK if sent, else an error code 2393 **/ 2394 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2395 struct iavf_ring *tx_ring) 2396 { 2397 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2398 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2399 struct iavf_tx_buffer *first; 2400 u32 td_offset = 0; 2401 u32 tx_flags = 0; 2402 __be16 protocol; 2403 u32 td_cmd = 0; 2404 u8 hdr_len = 0; 2405 int tso, count; 2406 2407 /* prefetch the data, we'll need it later */ 2408 prefetch(skb->data); 2409 2410 iavf_trace(xmit_frame_ring, skb, tx_ring); 2411 2412 count = iavf_xmit_descriptor_count(skb); 2413 if (iavf_chk_linearize(skb, count)) { 2414 if (__skb_linearize(skb)) { 2415 dev_kfree_skb_any(skb); 2416 return NETDEV_TX_OK; 2417 } 2418 count = iavf_txd_use_count(skb->len); 2419 tx_ring->tx_stats.tx_linearize++; 2420 } 2421 2422 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2423 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2424 * + 4 desc gap to avoid the cache line where head is, 2425 * + 1 desc for context descriptor, 2426 * otherwise try next time 2427 */ 2428 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2429 tx_ring->tx_stats.tx_busy++; 2430 return NETDEV_TX_BUSY; 2431 } 2432 2433 /* record the location of the first descriptor for this packet */ 2434 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2435 first->skb = skb; 2436 first->bytecount = skb->len; 2437 first->gso_segs = 1; 2438 2439 /* prepare the xmit flags */ 2440 if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 2441 goto out_drop; 2442 2443 /* obtain protocol of skb */ 2444 protocol = vlan_get_protocol(skb); 2445 2446 /* setup IPv4/IPv6 offloads */ 2447 if (protocol == htons(ETH_P_IP)) 2448 tx_flags |= IAVF_TX_FLAGS_IPV4; 2449 else if (protocol == htons(ETH_P_IPV6)) 2450 tx_flags |= IAVF_TX_FLAGS_IPV6; 2451 2452 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2453 2454 if (tso < 0) 2455 goto out_drop; 2456 else if (tso) 2457 tx_flags |= IAVF_TX_FLAGS_TSO; 2458 2459 /* Always offload the checksum, since it's in the data descriptor */ 2460 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2461 tx_ring, &cd_tunneling); 2462 if (tso < 0) 2463 goto out_drop; 2464 2465 skb_tx_timestamp(skb); 2466 2467 /* always enable CRC insertion offload */ 2468 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2469 2470 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2471 cd_tunneling, cd_l2tag2); 2472 2473 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2474 td_cmd, td_offset); 2475 2476 return NETDEV_TX_OK; 2477 2478 out_drop: 2479 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2480 dev_kfree_skb_any(first->skb); 2481 first->skb = NULL; 2482 return NETDEV_TX_OK; 2483 } 2484 2485 /** 2486 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2487 * @skb: send buffer 2488 * @netdev: network interface device structure 2489 * 2490 * Returns NETDEV_TX_OK if sent, else an error code 2491 **/ 2492 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2493 { 2494 struct iavf_adapter *adapter = netdev_priv(netdev); 2495 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2496 2497 /* hardware can't handle really short frames, hardware padding works 2498 * beyond this point 2499 */ 2500 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2501 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2502 return NETDEV_TX_OK; 2503 skb->len = IAVF_MIN_TX_LEN; 2504 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2505 } 2506 2507 return iavf_xmit_frame_ring(skb, tx_ring); 2508 } 2509