xref: /linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c (revision b7d3826c2ed6c3e626e7ae796c5df2c0d2551c6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <net/busy_poll.h>
6 
7 #include "iavf.h"
8 #include "iavf_trace.h"
9 #include "iavf_prototype.h"
10 
11 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
12 				u32 td_tag)
13 {
14 	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
15 			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
16 			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
17 			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
18 			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
19 }
20 
21 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
22 
23 /**
24  * iavf_unmap_and_free_tx_resource - Release a Tx buffer
25  * @ring:      the ring that owns the buffer
26  * @tx_buffer: the buffer to free
27  **/
28 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
29 					    struct iavf_tx_buffer *tx_buffer)
30 {
31 	if (tx_buffer->skb) {
32 		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
33 			kfree(tx_buffer->raw_buf);
34 		else
35 			dev_kfree_skb_any(tx_buffer->skb);
36 		if (dma_unmap_len(tx_buffer, len))
37 			dma_unmap_single(ring->dev,
38 					 dma_unmap_addr(tx_buffer, dma),
39 					 dma_unmap_len(tx_buffer, len),
40 					 DMA_TO_DEVICE);
41 	} else if (dma_unmap_len(tx_buffer, len)) {
42 		dma_unmap_page(ring->dev,
43 			       dma_unmap_addr(tx_buffer, dma),
44 			       dma_unmap_len(tx_buffer, len),
45 			       DMA_TO_DEVICE);
46 	}
47 
48 	tx_buffer->next_to_watch = NULL;
49 	tx_buffer->skb = NULL;
50 	dma_unmap_len_set(tx_buffer, len, 0);
51 	/* tx_buffer must be completely set up in the transmit path */
52 }
53 
54 /**
55  * iavf_clean_tx_ring - Free any empty Tx buffers
56  * @tx_ring: ring to be cleaned
57  **/
58 void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
59 {
60 	unsigned long bi_size;
61 	u16 i;
62 
63 	/* ring already cleared, nothing to do */
64 	if (!tx_ring->tx_bi)
65 		return;
66 
67 	/* Free all the Tx ring sk_buffs */
68 	for (i = 0; i < tx_ring->count; i++)
69 		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
70 
71 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
72 	memset(tx_ring->tx_bi, 0, bi_size);
73 
74 	/* Zero out the descriptor ring */
75 	memset(tx_ring->desc, 0, tx_ring->size);
76 
77 	tx_ring->next_to_use = 0;
78 	tx_ring->next_to_clean = 0;
79 
80 	if (!tx_ring->netdev)
81 		return;
82 
83 	/* cleanup Tx queue statistics */
84 	netdev_tx_reset_queue(txring_txq(tx_ring));
85 }
86 
87 /**
88  * iavf_free_tx_resources - Free Tx resources per queue
89  * @tx_ring: Tx descriptor ring for a specific queue
90  *
91  * Free all transmit software resources
92  **/
93 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
94 {
95 	iavf_clean_tx_ring(tx_ring);
96 	kfree(tx_ring->tx_bi);
97 	tx_ring->tx_bi = NULL;
98 
99 	if (tx_ring->desc) {
100 		dma_free_coherent(tx_ring->dev, tx_ring->size,
101 				  tx_ring->desc, tx_ring->dma);
102 		tx_ring->desc = NULL;
103 	}
104 }
105 
106 /**
107  * iavf_get_tx_pending - how many Tx descriptors not processed
108  * @ring: the ring of descriptors
109  * @in_sw: is tx_pending being checked in SW or HW
110  *
111  * Since there is no access to the ring head register
112  * in XL710, we need to use our local copies
113  **/
114 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
115 {
116 	u32 head, tail;
117 
118 	head = ring->next_to_clean;
119 	tail = readl(ring->tail);
120 
121 	if (head != tail)
122 		return (head < tail) ?
123 			tail - head : (tail + ring->count - head);
124 
125 	return 0;
126 }
127 
128 /**
129  * iavf_detect_recover_hung - Function to detect and recover hung_queues
130  * @vsi:  pointer to vsi struct with tx queues
131  *
132  * VSI has netdev and netdev has TX queues. This function is to check each of
133  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
134  **/
135 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
136 {
137 	struct iavf_ring *tx_ring = NULL;
138 	struct net_device *netdev;
139 	unsigned int i;
140 	int packets;
141 
142 	if (!vsi)
143 		return;
144 
145 	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
146 		return;
147 
148 	netdev = vsi->netdev;
149 	if (!netdev)
150 		return;
151 
152 	if (!netif_carrier_ok(netdev))
153 		return;
154 
155 	for (i = 0; i < vsi->back->num_active_queues; i++) {
156 		tx_ring = &vsi->back->tx_rings[i];
157 		if (tx_ring && tx_ring->desc) {
158 			/* If packet counter has not changed the queue is
159 			 * likely stalled, so force an interrupt for this
160 			 * queue.
161 			 *
162 			 * prev_pkt_ctr would be negative if there was no
163 			 * pending work.
164 			 */
165 			packets = tx_ring->stats.packets & INT_MAX;
166 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
167 				iavf_force_wb(vsi, tx_ring->q_vector);
168 				continue;
169 			}
170 
171 			/* Memory barrier between read of packet count and call
172 			 * to iavf_get_tx_pending()
173 			 */
174 			smp_rmb();
175 			tx_ring->tx_stats.prev_pkt_ctr =
176 			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
177 		}
178 	}
179 }
180 
181 #define WB_STRIDE 4
182 
183 /**
184  * iavf_clean_tx_irq - Reclaim resources after transmit completes
185  * @vsi: the VSI we care about
186  * @tx_ring: Tx ring to clean
187  * @napi_budget: Used to determine if we are in netpoll
188  *
189  * Returns true if there's any budget left (e.g. the clean is finished)
190  **/
191 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
192 			      struct iavf_ring *tx_ring, int napi_budget)
193 {
194 	u16 i = tx_ring->next_to_clean;
195 	struct iavf_tx_buffer *tx_buf;
196 	struct iavf_tx_desc *tx_desc;
197 	unsigned int total_bytes = 0, total_packets = 0;
198 	unsigned int budget = vsi->work_limit;
199 
200 	tx_buf = &tx_ring->tx_bi[i];
201 	tx_desc = IAVF_TX_DESC(tx_ring, i);
202 	i -= tx_ring->count;
203 
204 	do {
205 		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
206 
207 		/* if next_to_watch is not set then there is no work pending */
208 		if (!eop_desc)
209 			break;
210 
211 		/* prevent any other reads prior to eop_desc */
212 		smp_rmb();
213 
214 		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
215 		/* if the descriptor isn't done, no work yet to do */
216 		if (!(eop_desc->cmd_type_offset_bsz &
217 		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
218 			break;
219 
220 		/* clear next_to_watch to prevent false hangs */
221 		tx_buf->next_to_watch = NULL;
222 
223 		/* update the statistics for this packet */
224 		total_bytes += tx_buf->bytecount;
225 		total_packets += tx_buf->gso_segs;
226 
227 		/* free the skb */
228 		napi_consume_skb(tx_buf->skb, napi_budget);
229 
230 		/* unmap skb header data */
231 		dma_unmap_single(tx_ring->dev,
232 				 dma_unmap_addr(tx_buf, dma),
233 				 dma_unmap_len(tx_buf, len),
234 				 DMA_TO_DEVICE);
235 
236 		/* clear tx_buffer data */
237 		tx_buf->skb = NULL;
238 		dma_unmap_len_set(tx_buf, len, 0);
239 
240 		/* unmap remaining buffers */
241 		while (tx_desc != eop_desc) {
242 			iavf_trace(clean_tx_irq_unmap,
243 				   tx_ring, tx_desc, tx_buf);
244 
245 			tx_buf++;
246 			tx_desc++;
247 			i++;
248 			if (unlikely(!i)) {
249 				i -= tx_ring->count;
250 				tx_buf = tx_ring->tx_bi;
251 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
252 			}
253 
254 			/* unmap any remaining paged data */
255 			if (dma_unmap_len(tx_buf, len)) {
256 				dma_unmap_page(tx_ring->dev,
257 					       dma_unmap_addr(tx_buf, dma),
258 					       dma_unmap_len(tx_buf, len),
259 					       DMA_TO_DEVICE);
260 				dma_unmap_len_set(tx_buf, len, 0);
261 			}
262 		}
263 
264 		/* move us one more past the eop_desc for start of next pkt */
265 		tx_buf++;
266 		tx_desc++;
267 		i++;
268 		if (unlikely(!i)) {
269 			i -= tx_ring->count;
270 			tx_buf = tx_ring->tx_bi;
271 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
272 		}
273 
274 		prefetch(tx_desc);
275 
276 		/* update budget accounting */
277 		budget--;
278 	} while (likely(budget));
279 
280 	i += tx_ring->count;
281 	tx_ring->next_to_clean = i;
282 	u64_stats_update_begin(&tx_ring->syncp);
283 	tx_ring->stats.bytes += total_bytes;
284 	tx_ring->stats.packets += total_packets;
285 	u64_stats_update_end(&tx_ring->syncp);
286 	tx_ring->q_vector->tx.total_bytes += total_bytes;
287 	tx_ring->q_vector->tx.total_packets += total_packets;
288 
289 	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
290 		/* check to see if there are < 4 descriptors
291 		 * waiting to be written back, then kick the hardware to force
292 		 * them to be written back in case we stay in NAPI.
293 		 * In this mode on X722 we do not enable Interrupt.
294 		 */
295 		unsigned int j = iavf_get_tx_pending(tx_ring, false);
296 
297 		if (budget &&
298 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
299 		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
300 		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
301 			tx_ring->arm_wb = true;
302 	}
303 
304 	/* notify netdev of completed buffers */
305 	netdev_tx_completed_queue(txring_txq(tx_ring),
306 				  total_packets, total_bytes);
307 
308 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
309 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
310 		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
311 		/* Make sure that anybody stopping the queue after this
312 		 * sees the new next_to_clean.
313 		 */
314 		smp_mb();
315 		if (__netif_subqueue_stopped(tx_ring->netdev,
316 					     tx_ring->queue_index) &&
317 		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
318 			netif_wake_subqueue(tx_ring->netdev,
319 					    tx_ring->queue_index);
320 			++tx_ring->tx_stats.restart_queue;
321 		}
322 	}
323 
324 	return !!budget;
325 }
326 
327 /**
328  * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
329  * @vsi: the VSI we care about
330  * @q_vector: the vector on which to enable writeback
331  *
332  **/
333 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
334 				  struct iavf_q_vector *q_vector)
335 {
336 	u16 flags = q_vector->tx.ring[0].flags;
337 	u32 val;
338 
339 	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
340 		return;
341 
342 	if (q_vector->arm_wb_state)
343 		return;
344 
345 	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
346 	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
347 
348 	wr32(&vsi->back->hw,
349 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
350 	q_vector->arm_wb_state = true;
351 }
352 
353 /**
354  * iavf_force_wb - Issue SW Interrupt so HW does a wb
355  * @vsi: the VSI we care about
356  * @q_vector: the vector  on which to force writeback
357  *
358  **/
359 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
360 {
361 	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
362 		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
363 		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
364 		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
365 		  /* allow 00 to be written to the index */;
366 
367 	wr32(&vsi->back->hw,
368 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
369 	     val);
370 }
371 
372 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
373 					struct iavf_ring_container *rc)
374 {
375 	return &q_vector->rx == rc;
376 }
377 
378 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
379 {
380 	unsigned int divisor;
381 
382 	switch (q_vector->adapter->link_speed) {
383 	case I40E_LINK_SPEED_40GB:
384 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
385 		break;
386 	case I40E_LINK_SPEED_25GB:
387 	case I40E_LINK_SPEED_20GB:
388 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
389 		break;
390 	default:
391 	case I40E_LINK_SPEED_10GB:
392 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
393 		break;
394 	case I40E_LINK_SPEED_1GB:
395 	case I40E_LINK_SPEED_100MB:
396 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
397 		break;
398 	}
399 
400 	return divisor;
401 }
402 
403 /**
404  * iavf_update_itr - update the dynamic ITR value based on statistics
405  * @q_vector: structure containing interrupt and ring information
406  * @rc: structure containing ring performance data
407  *
408  * Stores a new ITR value based on packets and byte
409  * counts during the last interrupt.  The advantage of per interrupt
410  * computation is faster updates and more accurate ITR for the current
411  * traffic pattern.  Constants in this function were computed
412  * based on theoretical maximum wire speed and thresholds were set based
413  * on testing data as well as attempting to minimize response time
414  * while increasing bulk throughput.
415  **/
416 static void iavf_update_itr(struct iavf_q_vector *q_vector,
417 			    struct iavf_ring_container *rc)
418 {
419 	unsigned int avg_wire_size, packets, bytes, itr;
420 	unsigned long next_update = jiffies;
421 
422 	/* If we don't have any rings just leave ourselves set for maximum
423 	 * possible latency so we take ourselves out of the equation.
424 	 */
425 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
426 		return;
427 
428 	/* For Rx we want to push the delay up and default to low latency.
429 	 * for Tx we want to pull the delay down and default to high latency.
430 	 */
431 	itr = iavf_container_is_rx(q_vector, rc) ?
432 	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
433 	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
434 
435 	/* If we didn't update within up to 1 - 2 jiffies we can assume
436 	 * that either packets are coming in so slow there hasn't been
437 	 * any work, or that there is so much work that NAPI is dealing
438 	 * with interrupt moderation and we don't need to do anything.
439 	 */
440 	if (time_after(next_update, rc->next_update))
441 		goto clear_counts;
442 
443 	/* If itr_countdown is set it means we programmed an ITR within
444 	 * the last 4 interrupt cycles. This has a side effect of us
445 	 * potentially firing an early interrupt. In order to work around
446 	 * this we need to throw out any data received for a few
447 	 * interrupts following the update.
448 	 */
449 	if (q_vector->itr_countdown) {
450 		itr = rc->target_itr;
451 		goto clear_counts;
452 	}
453 
454 	packets = rc->total_packets;
455 	bytes = rc->total_bytes;
456 
457 	if (iavf_container_is_rx(q_vector, rc)) {
458 		/* If Rx there are 1 to 4 packets and bytes are less than
459 		 * 9000 assume insufficient data to use bulk rate limiting
460 		 * approach unless Tx is already in bulk rate limiting. We
461 		 * are likely latency driven.
462 		 */
463 		if (packets && packets < 4 && bytes < 9000 &&
464 		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
465 			itr = IAVF_ITR_ADAPTIVE_LATENCY;
466 			goto adjust_by_size;
467 		}
468 	} else if (packets < 4) {
469 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
470 		 * bulk mode and we are receiving 4 or fewer packets just
471 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
472 		 * that the Rx can relax.
473 		 */
474 		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
475 		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
476 		     IAVF_ITR_ADAPTIVE_MAX_USECS)
477 			goto clear_counts;
478 	} else if (packets > 32) {
479 		/* If we have processed over 32 packets in a single interrupt
480 		 * for Tx assume we need to switch over to "bulk" mode.
481 		 */
482 		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
483 	}
484 
485 	/* We have no packets to actually measure against. This means
486 	 * either one of the other queues on this vector is active or
487 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
488 	 *
489 	 * Between 4 and 56 we can assume that our current interrupt delay
490 	 * is only slightly too low. As such we should increase it by a small
491 	 * fixed amount.
492 	 */
493 	if (packets < 56) {
494 		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
495 		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
496 			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
497 			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
498 		}
499 		goto clear_counts;
500 	}
501 
502 	if (packets <= 256) {
503 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
504 		itr &= IAVF_ITR_MASK;
505 
506 		/* Between 56 and 112 is our "goldilocks" zone where we are
507 		 * working out "just right". Just report that our current
508 		 * ITR is good for us.
509 		 */
510 		if (packets <= 112)
511 			goto clear_counts;
512 
513 		/* If packet count is 128 or greater we are likely looking
514 		 * at a slight overrun of the delay we want. Try halving
515 		 * our delay to see if that will cut the number of packets
516 		 * in half per interrupt.
517 		 */
518 		itr /= 2;
519 		itr &= IAVF_ITR_MASK;
520 		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
521 			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
522 
523 		goto clear_counts;
524 	}
525 
526 	/* The paths below assume we are dealing with a bulk ITR since
527 	 * number of packets is greater than 256. We are just going to have
528 	 * to compute a value and try to bring the count under control,
529 	 * though for smaller packet sizes there isn't much we can do as
530 	 * NAPI polling will likely be kicking in sooner rather than later.
531 	 */
532 	itr = IAVF_ITR_ADAPTIVE_BULK;
533 
534 adjust_by_size:
535 	/* If packet counts are 256 or greater we can assume we have a gross
536 	 * overestimation of what the rate should be. Instead of trying to fine
537 	 * tune it just use the formula below to try and dial in an exact value
538 	 * give the current packet size of the frame.
539 	 */
540 	avg_wire_size = bytes / packets;
541 
542 	/* The following is a crude approximation of:
543 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
544 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
545 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
546 	 *
547 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
548 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
549 	 * formula down to
550 	 *
551 	 *  (170 * (size + 24)) / (size + 640) = ITR
552 	 *
553 	 * We first do some math on the packet size and then finally bitshift
554 	 * by 8 after rounding up. We also have to account for PCIe link speed
555 	 * difference as ITR scales based on this.
556 	 */
557 	if (avg_wire_size <= 60) {
558 		/* Start at 250k ints/sec */
559 		avg_wire_size = 4096;
560 	} else if (avg_wire_size <= 380) {
561 		/* 250K ints/sec to 60K ints/sec */
562 		avg_wire_size *= 40;
563 		avg_wire_size += 1696;
564 	} else if (avg_wire_size <= 1084) {
565 		/* 60K ints/sec to 36K ints/sec */
566 		avg_wire_size *= 15;
567 		avg_wire_size += 11452;
568 	} else if (avg_wire_size <= 1980) {
569 		/* 36K ints/sec to 30K ints/sec */
570 		avg_wire_size *= 5;
571 		avg_wire_size += 22420;
572 	} else {
573 		/* plateau at a limit of 30K ints/sec */
574 		avg_wire_size = 32256;
575 	}
576 
577 	/* If we are in low latency mode halve our delay which doubles the
578 	 * rate to somewhere between 100K to 16K ints/sec
579 	 */
580 	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
581 		avg_wire_size /= 2;
582 
583 	/* Resultant value is 256 times larger than it needs to be. This
584 	 * gives us room to adjust the value as needed to either increase
585 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
586 	 *
587 	 * Use addition as we have already recorded the new latency flag
588 	 * for the ITR value.
589 	 */
590 	itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
591 	       IAVF_ITR_ADAPTIVE_MIN_INC;
592 
593 	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
594 		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
595 		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
596 	}
597 
598 clear_counts:
599 	/* write back value */
600 	rc->target_itr = itr;
601 
602 	/* next update should occur within next jiffy */
603 	rc->next_update = next_update + 1;
604 
605 	rc->total_bytes = 0;
606 	rc->total_packets = 0;
607 }
608 
609 /**
610  * iavf_setup_tx_descriptors - Allocate the Tx descriptors
611  * @tx_ring: the tx ring to set up
612  *
613  * Return 0 on success, negative on error
614  **/
615 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
616 {
617 	struct device *dev = tx_ring->dev;
618 	int bi_size;
619 
620 	if (!dev)
621 		return -ENOMEM;
622 
623 	/* warn if we are about to overwrite the pointer */
624 	WARN_ON(tx_ring->tx_bi);
625 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
626 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
627 	if (!tx_ring->tx_bi)
628 		goto err;
629 
630 	/* round up to nearest 4K */
631 	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
632 	tx_ring->size = ALIGN(tx_ring->size, 4096);
633 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
634 					   &tx_ring->dma, GFP_KERNEL);
635 	if (!tx_ring->desc) {
636 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
637 			 tx_ring->size);
638 		goto err;
639 	}
640 
641 	tx_ring->next_to_use = 0;
642 	tx_ring->next_to_clean = 0;
643 	tx_ring->tx_stats.prev_pkt_ctr = -1;
644 	return 0;
645 
646 err:
647 	kfree(tx_ring->tx_bi);
648 	tx_ring->tx_bi = NULL;
649 	return -ENOMEM;
650 }
651 
652 /**
653  * iavf_clean_rx_ring - Free Rx buffers
654  * @rx_ring: ring to be cleaned
655  **/
656 void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
657 {
658 	unsigned long bi_size;
659 	u16 i;
660 
661 	/* ring already cleared, nothing to do */
662 	if (!rx_ring->rx_bi)
663 		return;
664 
665 	if (rx_ring->skb) {
666 		dev_kfree_skb(rx_ring->skb);
667 		rx_ring->skb = NULL;
668 	}
669 
670 	/* Free all the Rx ring sk_buffs */
671 	for (i = 0; i < rx_ring->count; i++) {
672 		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
673 
674 		if (!rx_bi->page)
675 			continue;
676 
677 		/* Invalidate cache lines that may have been written to by
678 		 * device so that we avoid corrupting memory.
679 		 */
680 		dma_sync_single_range_for_cpu(rx_ring->dev,
681 					      rx_bi->dma,
682 					      rx_bi->page_offset,
683 					      rx_ring->rx_buf_len,
684 					      DMA_FROM_DEVICE);
685 
686 		/* free resources associated with mapping */
687 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
688 				     iavf_rx_pg_size(rx_ring),
689 				     DMA_FROM_DEVICE,
690 				     IAVF_RX_DMA_ATTR);
691 
692 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
693 
694 		rx_bi->page = NULL;
695 		rx_bi->page_offset = 0;
696 	}
697 
698 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
699 	memset(rx_ring->rx_bi, 0, bi_size);
700 
701 	/* Zero out the descriptor ring */
702 	memset(rx_ring->desc, 0, rx_ring->size);
703 
704 	rx_ring->next_to_alloc = 0;
705 	rx_ring->next_to_clean = 0;
706 	rx_ring->next_to_use = 0;
707 }
708 
709 /**
710  * iavf_free_rx_resources - Free Rx resources
711  * @rx_ring: ring to clean the resources from
712  *
713  * Free all receive software resources
714  **/
715 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
716 {
717 	iavf_clean_rx_ring(rx_ring);
718 	kfree(rx_ring->rx_bi);
719 	rx_ring->rx_bi = NULL;
720 
721 	if (rx_ring->desc) {
722 		dma_free_coherent(rx_ring->dev, rx_ring->size,
723 				  rx_ring->desc, rx_ring->dma);
724 		rx_ring->desc = NULL;
725 	}
726 }
727 
728 /**
729  * iavf_setup_rx_descriptors - Allocate Rx descriptors
730  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
731  *
732  * Returns 0 on success, negative on failure
733  **/
734 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
735 {
736 	struct device *dev = rx_ring->dev;
737 	int bi_size;
738 
739 	/* warn if we are about to overwrite the pointer */
740 	WARN_ON(rx_ring->rx_bi);
741 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
742 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
743 	if (!rx_ring->rx_bi)
744 		goto err;
745 
746 	u64_stats_init(&rx_ring->syncp);
747 
748 	/* Round up to nearest 4K */
749 	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
750 	rx_ring->size = ALIGN(rx_ring->size, 4096);
751 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
752 					   &rx_ring->dma, GFP_KERNEL);
753 
754 	if (!rx_ring->desc) {
755 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
756 			 rx_ring->size);
757 		goto err;
758 	}
759 
760 	rx_ring->next_to_alloc = 0;
761 	rx_ring->next_to_clean = 0;
762 	rx_ring->next_to_use = 0;
763 
764 	return 0;
765 err:
766 	kfree(rx_ring->rx_bi);
767 	rx_ring->rx_bi = NULL;
768 	return -ENOMEM;
769 }
770 
771 /**
772  * iavf_release_rx_desc - Store the new tail and head values
773  * @rx_ring: ring to bump
774  * @val: new head index
775  **/
776 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
777 {
778 	rx_ring->next_to_use = val;
779 
780 	/* update next to alloc since we have filled the ring */
781 	rx_ring->next_to_alloc = val;
782 
783 	/* Force memory writes to complete before letting h/w
784 	 * know there are new descriptors to fetch.  (Only
785 	 * applicable for weak-ordered memory model archs,
786 	 * such as IA-64).
787 	 */
788 	wmb();
789 	writel(val, rx_ring->tail);
790 }
791 
792 /**
793  * iavf_rx_offset - Return expected offset into page to access data
794  * @rx_ring: Ring we are requesting offset of
795  *
796  * Returns the offset value for ring into the data buffer.
797  */
798 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
799 {
800 	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
801 }
802 
803 /**
804  * iavf_alloc_mapped_page - recycle or make a new page
805  * @rx_ring: ring to use
806  * @bi: rx_buffer struct to modify
807  *
808  * Returns true if the page was successfully allocated or
809  * reused.
810  **/
811 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
812 				   struct iavf_rx_buffer *bi)
813 {
814 	struct page *page = bi->page;
815 	dma_addr_t dma;
816 
817 	/* since we are recycling buffers we should seldom need to alloc */
818 	if (likely(page)) {
819 		rx_ring->rx_stats.page_reuse_count++;
820 		return true;
821 	}
822 
823 	/* alloc new page for storage */
824 	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
825 	if (unlikely(!page)) {
826 		rx_ring->rx_stats.alloc_page_failed++;
827 		return false;
828 	}
829 
830 	/* map page for use */
831 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
832 				 iavf_rx_pg_size(rx_ring),
833 				 DMA_FROM_DEVICE,
834 				 IAVF_RX_DMA_ATTR);
835 
836 	/* if mapping failed free memory back to system since
837 	 * there isn't much point in holding memory we can't use
838 	 */
839 	if (dma_mapping_error(rx_ring->dev, dma)) {
840 		__free_pages(page, iavf_rx_pg_order(rx_ring));
841 		rx_ring->rx_stats.alloc_page_failed++;
842 		return false;
843 	}
844 
845 	bi->dma = dma;
846 	bi->page = page;
847 	bi->page_offset = iavf_rx_offset(rx_ring);
848 
849 	/* initialize pagecnt_bias to 1 representing we fully own page */
850 	bi->pagecnt_bias = 1;
851 
852 	return true;
853 }
854 
855 /**
856  * iavf_receive_skb - Send a completed packet up the stack
857  * @rx_ring:  rx ring in play
858  * @skb: packet to send up
859  * @vlan_tag: vlan tag for packet
860  **/
861 static void iavf_receive_skb(struct iavf_ring *rx_ring,
862 			     struct sk_buff *skb, u16 vlan_tag)
863 {
864 	struct iavf_q_vector *q_vector = rx_ring->q_vector;
865 
866 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
867 	    (vlan_tag & VLAN_VID_MASK))
868 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
869 
870 	napi_gro_receive(&q_vector->napi, skb);
871 }
872 
873 /**
874  * iavf_alloc_rx_buffers - Replace used receive buffers
875  * @rx_ring: ring to place buffers on
876  * @cleaned_count: number of buffers to replace
877  *
878  * Returns false if all allocations were successful, true if any fail
879  **/
880 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
881 {
882 	u16 ntu = rx_ring->next_to_use;
883 	union iavf_rx_desc *rx_desc;
884 	struct iavf_rx_buffer *bi;
885 
886 	/* do nothing if no valid netdev defined */
887 	if (!rx_ring->netdev || !cleaned_count)
888 		return false;
889 
890 	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
891 	bi = &rx_ring->rx_bi[ntu];
892 
893 	do {
894 		if (!iavf_alloc_mapped_page(rx_ring, bi))
895 			goto no_buffers;
896 
897 		/* sync the buffer for use by the device */
898 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
899 						 bi->page_offset,
900 						 rx_ring->rx_buf_len,
901 						 DMA_FROM_DEVICE);
902 
903 		/* Refresh the desc even if buffer_addrs didn't change
904 		 * because each write-back erases this info.
905 		 */
906 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
907 
908 		rx_desc++;
909 		bi++;
910 		ntu++;
911 		if (unlikely(ntu == rx_ring->count)) {
912 			rx_desc = IAVF_RX_DESC(rx_ring, 0);
913 			bi = rx_ring->rx_bi;
914 			ntu = 0;
915 		}
916 
917 		/* clear the status bits for the next_to_use descriptor */
918 		rx_desc->wb.qword1.status_error_len = 0;
919 
920 		cleaned_count--;
921 	} while (cleaned_count);
922 
923 	if (rx_ring->next_to_use != ntu)
924 		iavf_release_rx_desc(rx_ring, ntu);
925 
926 	return false;
927 
928 no_buffers:
929 	if (rx_ring->next_to_use != ntu)
930 		iavf_release_rx_desc(rx_ring, ntu);
931 
932 	/* make sure to come back via polling to try again after
933 	 * allocation failure
934 	 */
935 	return true;
936 }
937 
938 /**
939  * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
940  * @vsi: the VSI we care about
941  * @skb: skb currently being received and modified
942  * @rx_desc: the receive descriptor
943  **/
944 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
945 				    struct sk_buff *skb,
946 				    union iavf_rx_desc *rx_desc)
947 {
948 	struct iavf_rx_ptype_decoded decoded;
949 	u32 rx_error, rx_status;
950 	bool ipv4, ipv6;
951 	u8 ptype;
952 	u64 qword;
953 
954 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
955 	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
956 	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
957 		   IAVF_RXD_QW1_ERROR_SHIFT;
958 	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
959 		    IAVF_RXD_QW1_STATUS_SHIFT;
960 	decoded = decode_rx_desc_ptype(ptype);
961 
962 	skb->ip_summed = CHECKSUM_NONE;
963 
964 	skb_checksum_none_assert(skb);
965 
966 	/* Rx csum enabled and ip headers found? */
967 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
968 		return;
969 
970 	/* did the hardware decode the packet and checksum? */
971 	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
972 		return;
973 
974 	/* both known and outer_ip must be set for the below code to work */
975 	if (!(decoded.known && decoded.outer_ip))
976 		return;
977 
978 	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
979 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
980 	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
981 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
982 
983 	if (ipv4 &&
984 	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
985 			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
986 		goto checksum_fail;
987 
988 	/* likely incorrect csum if alternate IP extension headers found */
989 	if (ipv6 &&
990 	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
991 		/* don't increment checksum err here, non-fatal err */
992 		return;
993 
994 	/* there was some L4 error, count error and punt packet to the stack */
995 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
996 		goto checksum_fail;
997 
998 	/* handle packets that were not able to be checksummed due
999 	 * to arrival speed, in this case the stack can compute
1000 	 * the csum.
1001 	 */
1002 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1003 		return;
1004 
1005 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1006 	switch (decoded.inner_prot) {
1007 	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1008 	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1009 	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1010 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1011 		/* fall though */
1012 	default:
1013 		break;
1014 	}
1015 
1016 	return;
1017 
1018 checksum_fail:
1019 	vsi->back->hw_csum_rx_error++;
1020 }
1021 
1022 /**
1023  * iavf_ptype_to_htype - get a hash type
1024  * @ptype: the ptype value from the descriptor
1025  *
1026  * Returns a hash type to be used by skb_set_hash
1027  **/
1028 static inline int iavf_ptype_to_htype(u8 ptype)
1029 {
1030 	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1031 
1032 	if (!decoded.known)
1033 		return PKT_HASH_TYPE_NONE;
1034 
1035 	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1036 	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1037 		return PKT_HASH_TYPE_L4;
1038 	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1039 		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1040 		return PKT_HASH_TYPE_L3;
1041 	else
1042 		return PKT_HASH_TYPE_L2;
1043 }
1044 
1045 /**
1046  * iavf_rx_hash - set the hash value in the skb
1047  * @ring: descriptor ring
1048  * @rx_desc: specific descriptor
1049  * @skb: skb currently being received and modified
1050  * @rx_ptype: Rx packet type
1051  **/
1052 static inline void iavf_rx_hash(struct iavf_ring *ring,
1053 				union iavf_rx_desc *rx_desc,
1054 				struct sk_buff *skb,
1055 				u8 rx_ptype)
1056 {
1057 	u32 hash;
1058 	const __le64 rss_mask =
1059 		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1060 			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1061 
1062 	if (ring->netdev->features & NETIF_F_RXHASH)
1063 		return;
1064 
1065 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1066 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1067 		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1068 	}
1069 }
1070 
1071 /**
1072  * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1073  * @rx_ring: rx descriptor ring packet is being transacted on
1074  * @rx_desc: pointer to the EOP Rx descriptor
1075  * @skb: pointer to current skb being populated
1076  * @rx_ptype: the packet type decoded by hardware
1077  *
1078  * This function checks the ring, descriptor, and packet information in
1079  * order to populate the hash, checksum, VLAN, protocol, and
1080  * other fields within the skb.
1081  **/
1082 static inline
1083 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1084 			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1085 			     u8 rx_ptype)
1086 {
1087 	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1088 
1089 	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1090 
1091 	skb_record_rx_queue(skb, rx_ring->queue_index);
1092 
1093 	/* modifies the skb - consumes the enet header */
1094 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1095 }
1096 
1097 /**
1098  * iavf_cleanup_headers - Correct empty headers
1099  * @rx_ring: rx descriptor ring packet is being transacted on
1100  * @skb: pointer to current skb being fixed
1101  *
1102  * Also address the case where we are pulling data in on pages only
1103  * and as such no data is present in the skb header.
1104  *
1105  * In addition if skb is not at least 60 bytes we need to pad it so that
1106  * it is large enough to qualify as a valid Ethernet frame.
1107  *
1108  * Returns true if an error was encountered and skb was freed.
1109  **/
1110 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1111 {
1112 	/* if eth_skb_pad returns an error the skb was freed */
1113 	if (eth_skb_pad(skb))
1114 		return true;
1115 
1116 	return false;
1117 }
1118 
1119 /**
1120  * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1121  * @rx_ring: rx descriptor ring to store buffers on
1122  * @old_buff: donor buffer to have page reused
1123  *
1124  * Synchronizes page for reuse by the adapter
1125  **/
1126 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1127 			       struct iavf_rx_buffer *old_buff)
1128 {
1129 	struct iavf_rx_buffer *new_buff;
1130 	u16 nta = rx_ring->next_to_alloc;
1131 
1132 	new_buff = &rx_ring->rx_bi[nta];
1133 
1134 	/* update, and store next to alloc */
1135 	nta++;
1136 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1137 
1138 	/* transfer page from old buffer to new buffer */
1139 	new_buff->dma		= old_buff->dma;
1140 	new_buff->page		= old_buff->page;
1141 	new_buff->page_offset	= old_buff->page_offset;
1142 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1143 }
1144 
1145 /**
1146  * iavf_page_is_reusable - check if any reuse is possible
1147  * @page: page struct to check
1148  *
1149  * A page is not reusable if it was allocated under low memory
1150  * conditions, or it's not in the same NUMA node as this CPU.
1151  */
1152 static inline bool iavf_page_is_reusable(struct page *page)
1153 {
1154 	return (page_to_nid(page) == numa_mem_id()) &&
1155 		!page_is_pfmemalloc(page);
1156 }
1157 
1158 /**
1159  * iavf_can_reuse_rx_page - Determine if this page can be reused by
1160  * the adapter for another receive
1161  *
1162  * @rx_buffer: buffer containing the page
1163  *
1164  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1165  * an unused region in the page.
1166  *
1167  * For small pages, @truesize will be a constant value, half the size
1168  * of the memory at page.  We'll attempt to alternate between high and
1169  * low halves of the page, with one half ready for use by the hardware
1170  * and the other half being consumed by the stack.  We use the page
1171  * ref count to determine whether the stack has finished consuming the
1172  * portion of this page that was passed up with a previous packet.  If
1173  * the page ref count is >1, we'll assume the "other" half page is
1174  * still busy, and this page cannot be reused.
1175  *
1176  * For larger pages, @truesize will be the actual space used by the
1177  * received packet (adjusted upward to an even multiple of the cache
1178  * line size).  This will advance through the page by the amount
1179  * actually consumed by the received packets while there is still
1180  * space for a buffer.  Each region of larger pages will be used at
1181  * most once, after which the page will not be reused.
1182  *
1183  * In either case, if the page is reusable its refcount is increased.
1184  **/
1185 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1186 {
1187 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1188 	struct page *page = rx_buffer->page;
1189 
1190 	/* Is any reuse possible? */
1191 	if (unlikely(!iavf_page_is_reusable(page)))
1192 		return false;
1193 
1194 #if (PAGE_SIZE < 8192)
1195 	/* if we are only owner of page we can reuse it */
1196 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1197 		return false;
1198 #else
1199 #define IAVF_LAST_OFFSET \
1200 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1201 	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1202 		return false;
1203 #endif
1204 
1205 	/* If we have drained the page fragment pool we need to update
1206 	 * the pagecnt_bias and page count so that we fully restock the
1207 	 * number of references the driver holds.
1208 	 */
1209 	if (unlikely(!pagecnt_bias)) {
1210 		page_ref_add(page, USHRT_MAX);
1211 		rx_buffer->pagecnt_bias = USHRT_MAX;
1212 	}
1213 
1214 	return true;
1215 }
1216 
1217 /**
1218  * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1219  * @rx_ring: rx descriptor ring to transact packets on
1220  * @rx_buffer: buffer containing page to add
1221  * @skb: sk_buff to place the data into
1222  * @size: packet length from rx_desc
1223  *
1224  * This function will add the data contained in rx_buffer->page to the skb.
1225  * It will just attach the page as a frag to the skb.
1226  *
1227  * The function will then update the page offset.
1228  **/
1229 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1230 			     struct iavf_rx_buffer *rx_buffer,
1231 			     struct sk_buff *skb,
1232 			     unsigned int size)
1233 {
1234 #if (PAGE_SIZE < 8192)
1235 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1236 #else
1237 	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1238 #endif
1239 
1240 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1241 			rx_buffer->page_offset, size, truesize);
1242 
1243 	/* page is being used so we must update the page offset */
1244 #if (PAGE_SIZE < 8192)
1245 	rx_buffer->page_offset ^= truesize;
1246 #else
1247 	rx_buffer->page_offset += truesize;
1248 #endif
1249 }
1250 
1251 /**
1252  * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1253  * @rx_ring: rx descriptor ring to transact packets on
1254  * @size: size of buffer to add to skb
1255  *
1256  * This function will pull an Rx buffer from the ring and synchronize it
1257  * for use by the CPU.
1258  */
1259 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1260 						 const unsigned int size)
1261 {
1262 	struct iavf_rx_buffer *rx_buffer;
1263 
1264 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1265 	prefetchw(rx_buffer->page);
1266 
1267 	/* we are reusing so sync this buffer for CPU use */
1268 	dma_sync_single_range_for_cpu(rx_ring->dev,
1269 				      rx_buffer->dma,
1270 				      rx_buffer->page_offset,
1271 				      size,
1272 				      DMA_FROM_DEVICE);
1273 
1274 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1275 	rx_buffer->pagecnt_bias--;
1276 
1277 	return rx_buffer;
1278 }
1279 
1280 /**
1281  * iavf_construct_skb - Allocate skb and populate it
1282  * @rx_ring: rx descriptor ring to transact packets on
1283  * @rx_buffer: rx buffer to pull data from
1284  * @size: size of buffer to add to skb
1285  *
1286  * This function allocates an skb.  It then populates it with the page
1287  * data from the current receive descriptor, taking care to set up the
1288  * skb correctly.
1289  */
1290 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1291 					  struct iavf_rx_buffer *rx_buffer,
1292 					  unsigned int size)
1293 {
1294 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1295 #if (PAGE_SIZE < 8192)
1296 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1297 #else
1298 	unsigned int truesize = SKB_DATA_ALIGN(size);
1299 #endif
1300 	unsigned int headlen;
1301 	struct sk_buff *skb;
1302 
1303 	/* prefetch first cache line of first page */
1304 	prefetch(va);
1305 #if L1_CACHE_BYTES < 128
1306 	prefetch(va + L1_CACHE_BYTES);
1307 #endif
1308 
1309 	/* allocate a skb to store the frags */
1310 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1311 			       IAVF_RX_HDR_SIZE,
1312 			       GFP_ATOMIC | __GFP_NOWARN);
1313 	if (unlikely(!skb))
1314 		return NULL;
1315 
1316 	/* Determine available headroom for copy */
1317 	headlen = size;
1318 	if (headlen > IAVF_RX_HDR_SIZE)
1319 		headlen = eth_get_headlen(va, IAVF_RX_HDR_SIZE);
1320 
1321 	/* align pull length to size of long to optimize memcpy performance */
1322 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1323 
1324 	/* update all of the pointers */
1325 	size -= headlen;
1326 	if (size) {
1327 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1328 				rx_buffer->page_offset + headlen,
1329 				size, truesize);
1330 
1331 		/* buffer is used by skb, update page_offset */
1332 #if (PAGE_SIZE < 8192)
1333 		rx_buffer->page_offset ^= truesize;
1334 #else
1335 		rx_buffer->page_offset += truesize;
1336 #endif
1337 	} else {
1338 		/* buffer is unused, reset bias back to rx_buffer */
1339 		rx_buffer->pagecnt_bias++;
1340 	}
1341 
1342 	return skb;
1343 }
1344 
1345 /**
1346  * iavf_build_skb - Build skb around an existing buffer
1347  * @rx_ring: Rx descriptor ring to transact packets on
1348  * @rx_buffer: Rx buffer to pull data from
1349  * @size: size of buffer to add to skb
1350  *
1351  * This function builds an skb around an existing Rx buffer, taking care
1352  * to set up the skb correctly and avoid any memcpy overhead.
1353  */
1354 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1355 				      struct iavf_rx_buffer *rx_buffer,
1356 				      unsigned int size)
1357 {
1358 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1359 #if (PAGE_SIZE < 8192)
1360 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1361 #else
1362 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1363 				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1364 #endif
1365 	struct sk_buff *skb;
1366 
1367 	/* prefetch first cache line of first page */
1368 	prefetch(va);
1369 #if L1_CACHE_BYTES < 128
1370 	prefetch(va + L1_CACHE_BYTES);
1371 #endif
1372 	/* build an skb around the page buffer */
1373 	skb = build_skb(va - IAVF_SKB_PAD, truesize);
1374 	if (unlikely(!skb))
1375 		return NULL;
1376 
1377 	/* update pointers within the skb to store the data */
1378 	skb_reserve(skb, IAVF_SKB_PAD);
1379 	__skb_put(skb, size);
1380 
1381 	/* buffer is used by skb, update page_offset */
1382 #if (PAGE_SIZE < 8192)
1383 	rx_buffer->page_offset ^= truesize;
1384 #else
1385 	rx_buffer->page_offset += truesize;
1386 #endif
1387 
1388 	return skb;
1389 }
1390 
1391 /**
1392  * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1393  * @rx_ring: rx descriptor ring to transact packets on
1394  * @rx_buffer: rx buffer to pull data from
1395  *
1396  * This function will clean up the contents of the rx_buffer.  It will
1397  * either recycle the buffer or unmap it and free the associated resources.
1398  */
1399 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1400 			       struct iavf_rx_buffer *rx_buffer)
1401 {
1402 	if (iavf_can_reuse_rx_page(rx_buffer)) {
1403 		/* hand second half of page back to the ring */
1404 		iavf_reuse_rx_page(rx_ring, rx_buffer);
1405 		rx_ring->rx_stats.page_reuse_count++;
1406 	} else {
1407 		/* we are not reusing the buffer so unmap it */
1408 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1409 				     iavf_rx_pg_size(rx_ring),
1410 				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1411 		__page_frag_cache_drain(rx_buffer->page,
1412 					rx_buffer->pagecnt_bias);
1413 	}
1414 
1415 	/* clear contents of buffer_info */
1416 	rx_buffer->page = NULL;
1417 }
1418 
1419 /**
1420  * iavf_is_non_eop - process handling of non-EOP buffers
1421  * @rx_ring: Rx ring being processed
1422  * @rx_desc: Rx descriptor for current buffer
1423  * @skb: Current socket buffer containing buffer in progress
1424  *
1425  * This function updates next to clean.  If the buffer is an EOP buffer
1426  * this function exits returning false, otherwise it will place the
1427  * sk_buff in the next buffer to be chained and return true indicating
1428  * that this is in fact a non-EOP buffer.
1429  **/
1430 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1431 			    union iavf_rx_desc *rx_desc,
1432 			    struct sk_buff *skb)
1433 {
1434 	u32 ntc = rx_ring->next_to_clean + 1;
1435 
1436 	/* fetch, update, and store next to clean */
1437 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1438 	rx_ring->next_to_clean = ntc;
1439 
1440 	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1441 
1442 	/* if we are the last buffer then there is nothing else to do */
1443 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1444 	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1445 		return false;
1446 
1447 	rx_ring->rx_stats.non_eop_descs++;
1448 
1449 	return true;
1450 }
1451 
1452 /**
1453  * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1454  * @rx_ring: rx descriptor ring to transact packets on
1455  * @budget: Total limit on number of packets to process
1456  *
1457  * This function provides a "bounce buffer" approach to Rx interrupt
1458  * processing.  The advantage to this is that on systems that have
1459  * expensive overhead for IOMMU access this provides a means of avoiding
1460  * it by maintaining the mapping of the page to the system.
1461  *
1462  * Returns amount of work completed
1463  **/
1464 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1465 {
1466 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1467 	struct sk_buff *skb = rx_ring->skb;
1468 	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1469 	bool failure = false;
1470 
1471 	while (likely(total_rx_packets < (unsigned int)budget)) {
1472 		struct iavf_rx_buffer *rx_buffer;
1473 		union iavf_rx_desc *rx_desc;
1474 		unsigned int size;
1475 		u16 vlan_tag;
1476 		u8 rx_ptype;
1477 		u64 qword;
1478 
1479 		/* return some buffers to hardware, one at a time is too slow */
1480 		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1481 			failure = failure ||
1482 				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1483 			cleaned_count = 0;
1484 		}
1485 
1486 		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1487 
1488 		/* status_error_len will always be zero for unused descriptors
1489 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1490 		 * which is always zero because packet split isn't used, if the
1491 		 * hardware wrote DD then the length will be non-zero
1492 		 */
1493 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1494 
1495 		/* This memory barrier is needed to keep us from reading
1496 		 * any other fields out of the rx_desc until we have
1497 		 * verified the descriptor has been written back.
1498 		 */
1499 		dma_rmb();
1500 
1501 		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1502 		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1503 		if (!size)
1504 			break;
1505 
1506 		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1507 		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1508 
1509 		/* retrieve a buffer from the ring */
1510 		if (skb)
1511 			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1512 		else if (ring_uses_build_skb(rx_ring))
1513 			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1514 		else
1515 			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1516 
1517 		/* exit if we failed to retrieve a buffer */
1518 		if (!skb) {
1519 			rx_ring->rx_stats.alloc_buff_failed++;
1520 			rx_buffer->pagecnt_bias++;
1521 			break;
1522 		}
1523 
1524 		iavf_put_rx_buffer(rx_ring, rx_buffer);
1525 		cleaned_count++;
1526 
1527 		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1528 			continue;
1529 
1530 		/* ERR_MASK will only have valid bits if EOP set, and
1531 		 * what we are doing here is actually checking
1532 		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1533 		 * the error field
1534 		 */
1535 		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1536 			dev_kfree_skb_any(skb);
1537 			skb = NULL;
1538 			continue;
1539 		}
1540 
1541 		if (iavf_cleanup_headers(rx_ring, skb)) {
1542 			skb = NULL;
1543 			continue;
1544 		}
1545 
1546 		/* probably a little skewed due to removing CRC */
1547 		total_rx_bytes += skb->len;
1548 
1549 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1550 		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1551 			   IAVF_RXD_QW1_PTYPE_SHIFT;
1552 
1553 		/* populate checksum, VLAN, and protocol */
1554 		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1555 
1556 
1557 		vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1558 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1559 
1560 		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1561 		iavf_receive_skb(rx_ring, skb, vlan_tag);
1562 		skb = NULL;
1563 
1564 		/* update budget accounting */
1565 		total_rx_packets++;
1566 	}
1567 
1568 	rx_ring->skb = skb;
1569 
1570 	u64_stats_update_begin(&rx_ring->syncp);
1571 	rx_ring->stats.packets += total_rx_packets;
1572 	rx_ring->stats.bytes += total_rx_bytes;
1573 	u64_stats_update_end(&rx_ring->syncp);
1574 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1575 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1576 
1577 	/* guarantee a trip back through this routine if there was a failure */
1578 	return failure ? budget : (int)total_rx_packets;
1579 }
1580 
1581 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1582 {
1583 	u32 val;
1584 
1585 	/* We don't bother with setting the CLEARPBA bit as the data sheet
1586 	 * points out doing so is "meaningless since it was already
1587 	 * auto-cleared". The auto-clearing happens when the interrupt is
1588 	 * asserted.
1589 	 *
1590 	 * Hardware errata 28 for also indicates that writing to a
1591 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1592 	 * an event in the PBA anyway so we need to rely on the automask
1593 	 * to hold pending events for us until the interrupt is re-enabled
1594 	 *
1595 	 * The itr value is reported in microseconds, and the register
1596 	 * value is recorded in 2 microsecond units. For this reason we
1597 	 * only need to shift by the interval shift - 1 instead of the
1598 	 * full value.
1599 	 */
1600 	itr &= IAVF_ITR_MASK;
1601 
1602 	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1603 	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1604 	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1605 
1606 	return val;
1607 }
1608 
1609 /* a small macro to shorten up some long lines */
1610 #define INTREG IAVF_VFINT_DYN_CTLN1
1611 
1612 /* The act of updating the ITR will cause it to immediately trigger. In order
1613  * to prevent this from throwing off adaptive update statistics we defer the
1614  * update so that it can only happen so often. So after either Tx or Rx are
1615  * updated we make the adaptive scheme wait until either the ITR completely
1616  * expires via the next_update expiration or we have been through at least
1617  * 3 interrupts.
1618  */
1619 #define ITR_COUNTDOWN_START 3
1620 
1621 /**
1622  * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1623  * @vsi: the VSI we care about
1624  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1625  *
1626  **/
1627 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1628 					  struct iavf_q_vector *q_vector)
1629 {
1630 	struct iavf_hw *hw = &vsi->back->hw;
1631 	u32 intval;
1632 
1633 	/* These will do nothing if dynamic updates are not enabled */
1634 	iavf_update_itr(q_vector, &q_vector->tx);
1635 	iavf_update_itr(q_vector, &q_vector->rx);
1636 
1637 	/* This block of logic allows us to get away with only updating
1638 	 * one ITR value with each interrupt. The idea is to perform a
1639 	 * pseudo-lazy update with the following criteria.
1640 	 *
1641 	 * 1. Rx is given higher priority than Tx if both are in same state
1642 	 * 2. If we must reduce an ITR that is given highest priority.
1643 	 * 3. We then give priority to increasing ITR based on amount.
1644 	 */
1645 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1646 		/* Rx ITR needs to be reduced, this is highest priority */
1647 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1648 					   q_vector->rx.target_itr);
1649 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1650 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1651 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1652 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1653 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1654 		/* Tx ITR needs to be reduced, this is second priority
1655 		 * Tx ITR needs to be increased more than Rx, fourth priority
1656 		 */
1657 		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1658 					   q_vector->tx.target_itr);
1659 		q_vector->tx.current_itr = q_vector->tx.target_itr;
1660 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1661 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1662 		/* Rx ITR needs to be increased, third priority */
1663 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1664 					   q_vector->rx.target_itr);
1665 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1666 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1667 	} else {
1668 		/* No ITR update, lowest priority */
1669 		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1670 		if (q_vector->itr_countdown)
1671 			q_vector->itr_countdown--;
1672 	}
1673 
1674 	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1675 		wr32(hw, INTREG(q_vector->reg_idx), intval);
1676 }
1677 
1678 /**
1679  * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1680  * @napi: napi struct with our devices info in it
1681  * @budget: amount of work driver is allowed to do this pass, in packets
1682  *
1683  * This function will clean all queues associated with a q_vector.
1684  *
1685  * Returns the amount of work done
1686  **/
1687 int iavf_napi_poll(struct napi_struct *napi, int budget)
1688 {
1689 	struct iavf_q_vector *q_vector =
1690 			       container_of(napi, struct iavf_q_vector, napi);
1691 	struct iavf_vsi *vsi = q_vector->vsi;
1692 	struct iavf_ring *ring;
1693 	bool clean_complete = true;
1694 	bool arm_wb = false;
1695 	int budget_per_ring;
1696 	int work_done = 0;
1697 
1698 	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1699 		napi_complete(napi);
1700 		return 0;
1701 	}
1702 
1703 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1704 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1705 	 */
1706 	iavf_for_each_ring(ring, q_vector->tx) {
1707 		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1708 			clean_complete = false;
1709 			continue;
1710 		}
1711 		arm_wb |= ring->arm_wb;
1712 		ring->arm_wb = false;
1713 	}
1714 
1715 	/* Handle case where we are called by netpoll with a budget of 0 */
1716 	if (budget <= 0)
1717 		goto tx_only;
1718 
1719 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1720 	 * allow the budget to go below 1 because that would exit polling early.
1721 	 */
1722 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1723 
1724 	iavf_for_each_ring(ring, q_vector->rx) {
1725 		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1726 
1727 		work_done += cleaned;
1728 		/* if we clean as many as budgeted, we must not be done */
1729 		if (cleaned >= budget_per_ring)
1730 			clean_complete = false;
1731 	}
1732 
1733 	/* If work not completed, return budget and polling will return */
1734 	if (!clean_complete) {
1735 		int cpu_id = smp_processor_id();
1736 
1737 		/* It is possible that the interrupt affinity has changed but,
1738 		 * if the cpu is pegged at 100%, polling will never exit while
1739 		 * traffic continues and the interrupt will be stuck on this
1740 		 * cpu.  We check to make sure affinity is correct before we
1741 		 * continue to poll, otherwise we must stop polling so the
1742 		 * interrupt can move to the correct cpu.
1743 		 */
1744 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1745 			/* Tell napi that we are done polling */
1746 			napi_complete_done(napi, work_done);
1747 
1748 			/* Force an interrupt */
1749 			iavf_force_wb(vsi, q_vector);
1750 
1751 			/* Return budget-1 so that polling stops */
1752 			return budget - 1;
1753 		}
1754 tx_only:
1755 		if (arm_wb) {
1756 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1757 			iavf_enable_wb_on_itr(vsi, q_vector);
1758 		}
1759 		return budget;
1760 	}
1761 
1762 	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1763 		q_vector->arm_wb_state = false;
1764 
1765 	/* Work is done so exit the polling mode and re-enable the interrupt */
1766 	napi_complete_done(napi, work_done);
1767 
1768 	iavf_update_enable_itr(vsi, q_vector);
1769 
1770 	return min(work_done, budget - 1);
1771 }
1772 
1773 /**
1774  * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1775  * @skb:     send buffer
1776  * @tx_ring: ring to send buffer on
1777  * @flags:   the tx flags to be set
1778  *
1779  * Checks the skb and set up correspondingly several generic transmit flags
1780  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1781  *
1782  * Returns error code indicate the frame should be dropped upon error and the
1783  * otherwise  returns 0 to indicate the flags has been set properly.
1784  **/
1785 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1786 					     struct iavf_ring *tx_ring,
1787 					     u32 *flags)
1788 {
1789 	__be16 protocol = skb->protocol;
1790 	u32  tx_flags = 0;
1791 
1792 	if (protocol == htons(ETH_P_8021Q) &&
1793 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1794 		/* When HW VLAN acceleration is turned off by the user the
1795 		 * stack sets the protocol to 8021q so that the driver
1796 		 * can take any steps required to support the SW only
1797 		 * VLAN handling.  In our case the driver doesn't need
1798 		 * to take any further steps so just set the protocol
1799 		 * to the encapsulated ethertype.
1800 		 */
1801 		skb->protocol = vlan_get_protocol(skb);
1802 		goto out;
1803 	}
1804 
1805 	/* if we have a HW VLAN tag being added, default to the HW one */
1806 	if (skb_vlan_tag_present(skb)) {
1807 		tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1808 		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1809 	/* else if it is a SW VLAN, check the next protocol and store the tag */
1810 	} else if (protocol == htons(ETH_P_8021Q)) {
1811 		struct vlan_hdr *vhdr, _vhdr;
1812 
1813 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1814 		if (!vhdr)
1815 			return -EINVAL;
1816 
1817 		protocol = vhdr->h_vlan_encapsulated_proto;
1818 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1819 		tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1820 	}
1821 
1822 out:
1823 	*flags = tx_flags;
1824 	return 0;
1825 }
1826 
1827 /**
1828  * iavf_tso - set up the tso context descriptor
1829  * @first:    pointer to first Tx buffer for xmit
1830  * @hdr_len:  ptr to the size of the packet header
1831  * @cd_type_cmd_tso_mss: Quad Word 1
1832  *
1833  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1834  **/
1835 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1836 		    u64 *cd_type_cmd_tso_mss)
1837 {
1838 	struct sk_buff *skb = first->skb;
1839 	u64 cd_cmd, cd_tso_len, cd_mss;
1840 	union {
1841 		struct iphdr *v4;
1842 		struct ipv6hdr *v6;
1843 		unsigned char *hdr;
1844 	} ip;
1845 	union {
1846 		struct tcphdr *tcp;
1847 		struct udphdr *udp;
1848 		unsigned char *hdr;
1849 	} l4;
1850 	u32 paylen, l4_offset;
1851 	u16 gso_segs, gso_size;
1852 	int err;
1853 
1854 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1855 		return 0;
1856 
1857 	if (!skb_is_gso(skb))
1858 		return 0;
1859 
1860 	err = skb_cow_head(skb, 0);
1861 	if (err < 0)
1862 		return err;
1863 
1864 	ip.hdr = skb_network_header(skb);
1865 	l4.hdr = skb_transport_header(skb);
1866 
1867 	/* initialize outer IP header fields */
1868 	if (ip.v4->version == 4) {
1869 		ip.v4->tot_len = 0;
1870 		ip.v4->check = 0;
1871 	} else {
1872 		ip.v6->payload_len = 0;
1873 	}
1874 
1875 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1876 					 SKB_GSO_GRE_CSUM |
1877 					 SKB_GSO_IPXIP4 |
1878 					 SKB_GSO_IPXIP6 |
1879 					 SKB_GSO_UDP_TUNNEL |
1880 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1881 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1882 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1883 			l4.udp->len = 0;
1884 
1885 			/* determine offset of outer transport header */
1886 			l4_offset = l4.hdr - skb->data;
1887 
1888 			/* remove payload length from outer checksum */
1889 			paylen = skb->len - l4_offset;
1890 			csum_replace_by_diff(&l4.udp->check,
1891 					     (__force __wsum)htonl(paylen));
1892 		}
1893 
1894 		/* reset pointers to inner headers */
1895 		ip.hdr = skb_inner_network_header(skb);
1896 		l4.hdr = skb_inner_transport_header(skb);
1897 
1898 		/* initialize inner IP header fields */
1899 		if (ip.v4->version == 4) {
1900 			ip.v4->tot_len = 0;
1901 			ip.v4->check = 0;
1902 		} else {
1903 			ip.v6->payload_len = 0;
1904 		}
1905 	}
1906 
1907 	/* determine offset of inner transport header */
1908 	l4_offset = l4.hdr - skb->data;
1909 
1910 	/* remove payload length from inner checksum */
1911 	paylen = skb->len - l4_offset;
1912 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1913 
1914 	/* compute length of segmentation header */
1915 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1916 
1917 	/* pull values out of skb_shinfo */
1918 	gso_size = skb_shinfo(skb)->gso_size;
1919 	gso_segs = skb_shinfo(skb)->gso_segs;
1920 
1921 	/* update GSO size and bytecount with header size */
1922 	first->gso_segs = gso_segs;
1923 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1924 
1925 	/* find the field values */
1926 	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1927 	cd_tso_len = skb->len - *hdr_len;
1928 	cd_mss = gso_size;
1929 	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1930 				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1931 				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1932 	return 1;
1933 }
1934 
1935 /**
1936  * iavf_tx_enable_csum - Enable Tx checksum offloads
1937  * @skb: send buffer
1938  * @tx_flags: pointer to Tx flags currently set
1939  * @td_cmd: Tx descriptor command bits to set
1940  * @td_offset: Tx descriptor header offsets to set
1941  * @tx_ring: Tx descriptor ring
1942  * @cd_tunneling: ptr to context desc bits
1943  **/
1944 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1945 			       u32 *td_cmd, u32 *td_offset,
1946 			       struct iavf_ring *tx_ring,
1947 			       u32 *cd_tunneling)
1948 {
1949 	union {
1950 		struct iphdr *v4;
1951 		struct ipv6hdr *v6;
1952 		unsigned char *hdr;
1953 	} ip;
1954 	union {
1955 		struct tcphdr *tcp;
1956 		struct udphdr *udp;
1957 		unsigned char *hdr;
1958 	} l4;
1959 	unsigned char *exthdr;
1960 	u32 offset, cmd = 0;
1961 	__be16 frag_off;
1962 	u8 l4_proto = 0;
1963 
1964 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1965 		return 0;
1966 
1967 	ip.hdr = skb_network_header(skb);
1968 	l4.hdr = skb_transport_header(skb);
1969 
1970 	/* compute outer L2 header size */
1971 	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1972 
1973 	if (skb->encapsulation) {
1974 		u32 tunnel = 0;
1975 		/* define outer network header type */
1976 		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1977 			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1978 				  IAVF_TX_CTX_EXT_IP_IPV4 :
1979 				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1980 
1981 			l4_proto = ip.v4->protocol;
1982 		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1983 			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1984 
1985 			exthdr = ip.hdr + sizeof(*ip.v6);
1986 			l4_proto = ip.v6->nexthdr;
1987 			if (l4.hdr != exthdr)
1988 				ipv6_skip_exthdr(skb, exthdr - skb->data,
1989 						 &l4_proto, &frag_off);
1990 		}
1991 
1992 		/* define outer transport */
1993 		switch (l4_proto) {
1994 		case IPPROTO_UDP:
1995 			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
1996 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1997 			break;
1998 		case IPPROTO_GRE:
1999 			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2000 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2001 			break;
2002 		case IPPROTO_IPIP:
2003 		case IPPROTO_IPV6:
2004 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2005 			l4.hdr = skb_inner_network_header(skb);
2006 			break;
2007 		default:
2008 			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2009 				return -1;
2010 
2011 			skb_checksum_help(skb);
2012 			return 0;
2013 		}
2014 
2015 		/* compute outer L3 header size */
2016 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2017 			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2018 
2019 		/* switch IP header pointer from outer to inner header */
2020 		ip.hdr = skb_inner_network_header(skb);
2021 
2022 		/* compute tunnel header size */
2023 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2024 			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2025 
2026 		/* indicate if we need to offload outer UDP header */
2027 		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2028 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2029 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2030 			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2031 
2032 		/* record tunnel offload values */
2033 		*cd_tunneling |= tunnel;
2034 
2035 		/* switch L4 header pointer from outer to inner */
2036 		l4.hdr = skb_inner_transport_header(skb);
2037 		l4_proto = 0;
2038 
2039 		/* reset type as we transition from outer to inner headers */
2040 		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2041 		if (ip.v4->version == 4)
2042 			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2043 		if (ip.v6->version == 6)
2044 			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2045 	}
2046 
2047 	/* Enable IP checksum offloads */
2048 	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2049 		l4_proto = ip.v4->protocol;
2050 		/* the stack computes the IP header already, the only time we
2051 		 * need the hardware to recompute it is in the case of TSO.
2052 		 */
2053 		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2054 		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2055 		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2056 	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2057 		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2058 
2059 		exthdr = ip.hdr + sizeof(*ip.v6);
2060 		l4_proto = ip.v6->nexthdr;
2061 		if (l4.hdr != exthdr)
2062 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2063 					 &l4_proto, &frag_off);
2064 	}
2065 
2066 	/* compute inner L3 header size */
2067 	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2068 
2069 	/* Enable L4 checksum offloads */
2070 	switch (l4_proto) {
2071 	case IPPROTO_TCP:
2072 		/* enable checksum offloads */
2073 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2074 		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2075 		break;
2076 	case IPPROTO_SCTP:
2077 		/* enable SCTP checksum offload */
2078 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2079 		offset |= (sizeof(struct sctphdr) >> 2) <<
2080 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2081 		break;
2082 	case IPPROTO_UDP:
2083 		/* enable UDP checksum offload */
2084 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2085 		offset |= (sizeof(struct udphdr) >> 2) <<
2086 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2087 		break;
2088 	default:
2089 		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2090 			return -1;
2091 		skb_checksum_help(skb);
2092 		return 0;
2093 	}
2094 
2095 	*td_cmd |= cmd;
2096 	*td_offset |= offset;
2097 
2098 	return 1;
2099 }
2100 
2101 /**
2102  * iavf_create_tx_ctx Build the Tx context descriptor
2103  * @tx_ring:  ring to create the descriptor on
2104  * @cd_type_cmd_tso_mss: Quad Word 1
2105  * @cd_tunneling: Quad Word 0 - bits 0-31
2106  * @cd_l2tag2: Quad Word 0 - bits 32-63
2107  **/
2108 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2109 			       const u64 cd_type_cmd_tso_mss,
2110 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2111 {
2112 	struct iavf_tx_context_desc *context_desc;
2113 	int i = tx_ring->next_to_use;
2114 
2115 	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2116 	    !cd_tunneling && !cd_l2tag2)
2117 		return;
2118 
2119 	/* grab the next descriptor */
2120 	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2121 
2122 	i++;
2123 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2124 
2125 	/* cpu_to_le32 and assign to struct fields */
2126 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2127 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2128 	context_desc->rsvd = cpu_to_le16(0);
2129 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2130 }
2131 
2132 /**
2133  * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2134  * @skb:      send buffer
2135  *
2136  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2137  * and so we need to figure out the cases where we need to linearize the skb.
2138  *
2139  * For TSO we need to count the TSO header and segment payload separately.
2140  * As such we need to check cases where we have 7 fragments or more as we
2141  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2142  * the segment payload in the first descriptor, and another 7 for the
2143  * fragments.
2144  **/
2145 bool __iavf_chk_linearize(struct sk_buff *skb)
2146 {
2147 	const struct skb_frag_struct *frag, *stale;
2148 	int nr_frags, sum;
2149 
2150 	/* no need to check if number of frags is less than 7 */
2151 	nr_frags = skb_shinfo(skb)->nr_frags;
2152 	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2153 		return false;
2154 
2155 	/* We need to walk through the list and validate that each group
2156 	 * of 6 fragments totals at least gso_size.
2157 	 */
2158 	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2159 	frag = &skb_shinfo(skb)->frags[0];
2160 
2161 	/* Initialize size to the negative value of gso_size minus 1.  We
2162 	 * use this as the worst case scenerio in which the frag ahead
2163 	 * of us only provides one byte which is why we are limited to 6
2164 	 * descriptors for a single transmit as the header and previous
2165 	 * fragment are already consuming 2 descriptors.
2166 	 */
2167 	sum = 1 - skb_shinfo(skb)->gso_size;
2168 
2169 	/* Add size of frags 0 through 4 to create our initial sum */
2170 	sum += skb_frag_size(frag++);
2171 	sum += skb_frag_size(frag++);
2172 	sum += skb_frag_size(frag++);
2173 	sum += skb_frag_size(frag++);
2174 	sum += skb_frag_size(frag++);
2175 
2176 	/* Walk through fragments adding latest fragment, testing it, and
2177 	 * then removing stale fragments from the sum.
2178 	 */
2179 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2180 		int stale_size = skb_frag_size(stale);
2181 
2182 		sum += skb_frag_size(frag++);
2183 
2184 		/* The stale fragment may present us with a smaller
2185 		 * descriptor than the actual fragment size. To account
2186 		 * for that we need to remove all the data on the front and
2187 		 * figure out what the remainder would be in the last
2188 		 * descriptor associated with the fragment.
2189 		 */
2190 		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2191 			int align_pad = -(stale->page_offset) &
2192 					(IAVF_MAX_READ_REQ_SIZE - 1);
2193 
2194 			sum -= align_pad;
2195 			stale_size -= align_pad;
2196 
2197 			do {
2198 				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2199 				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2200 			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2201 		}
2202 
2203 		/* if sum is negative we failed to make sufficient progress */
2204 		if (sum < 0)
2205 			return true;
2206 
2207 		if (!nr_frags--)
2208 			break;
2209 
2210 		sum -= stale_size;
2211 	}
2212 
2213 	return false;
2214 }
2215 
2216 /**
2217  * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2218  * @tx_ring: the ring to be checked
2219  * @size:    the size buffer we want to assure is available
2220  *
2221  * Returns -EBUSY if a stop is needed, else 0
2222  **/
2223 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2224 {
2225 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2226 	/* Memory barrier before checking head and tail */
2227 	smp_mb();
2228 
2229 	/* Check again in a case another CPU has just made room available. */
2230 	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2231 		return -EBUSY;
2232 
2233 	/* A reprieve! - use start_queue because it doesn't call schedule */
2234 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2235 	++tx_ring->tx_stats.restart_queue;
2236 	return 0;
2237 }
2238 
2239 /**
2240  * iavf_tx_map - Build the Tx descriptor
2241  * @tx_ring:  ring to send buffer on
2242  * @skb:      send buffer
2243  * @first:    first buffer info buffer to use
2244  * @tx_flags: collected send information
2245  * @hdr_len:  size of the packet header
2246  * @td_cmd:   the command field in the descriptor
2247  * @td_offset: offset for checksum or crc
2248  **/
2249 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2250 			       struct iavf_tx_buffer *first, u32 tx_flags,
2251 			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2252 {
2253 	unsigned int data_len = skb->data_len;
2254 	unsigned int size = skb_headlen(skb);
2255 	struct skb_frag_struct *frag;
2256 	struct iavf_tx_buffer *tx_bi;
2257 	struct iavf_tx_desc *tx_desc;
2258 	u16 i = tx_ring->next_to_use;
2259 	u32 td_tag = 0;
2260 	dma_addr_t dma;
2261 
2262 	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2263 		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2264 		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2265 			 IAVF_TX_FLAGS_VLAN_SHIFT;
2266 	}
2267 
2268 	first->tx_flags = tx_flags;
2269 
2270 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2271 
2272 	tx_desc = IAVF_TX_DESC(tx_ring, i);
2273 	tx_bi = first;
2274 
2275 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2276 		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2277 
2278 		if (dma_mapping_error(tx_ring->dev, dma))
2279 			goto dma_error;
2280 
2281 		/* record length, and DMA address */
2282 		dma_unmap_len_set(tx_bi, len, size);
2283 		dma_unmap_addr_set(tx_bi, dma, dma);
2284 
2285 		/* align size to end of page */
2286 		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2287 		tx_desc->buffer_addr = cpu_to_le64(dma);
2288 
2289 		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2290 			tx_desc->cmd_type_offset_bsz =
2291 				build_ctob(td_cmd, td_offset,
2292 					   max_data, td_tag);
2293 
2294 			tx_desc++;
2295 			i++;
2296 
2297 			if (i == tx_ring->count) {
2298 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2299 				i = 0;
2300 			}
2301 
2302 			dma += max_data;
2303 			size -= max_data;
2304 
2305 			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2306 			tx_desc->buffer_addr = cpu_to_le64(dma);
2307 		}
2308 
2309 		if (likely(!data_len))
2310 			break;
2311 
2312 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2313 							  size, td_tag);
2314 
2315 		tx_desc++;
2316 		i++;
2317 
2318 		if (i == tx_ring->count) {
2319 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2320 			i = 0;
2321 		}
2322 
2323 		size = skb_frag_size(frag);
2324 		data_len -= size;
2325 
2326 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2327 				       DMA_TO_DEVICE);
2328 
2329 		tx_bi = &tx_ring->tx_bi[i];
2330 	}
2331 
2332 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2333 
2334 	i++;
2335 	if (i == tx_ring->count)
2336 		i = 0;
2337 
2338 	tx_ring->next_to_use = i;
2339 
2340 	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2341 
2342 	/* write last descriptor with RS and EOP bits */
2343 	td_cmd |= IAVF_TXD_CMD;
2344 	tx_desc->cmd_type_offset_bsz =
2345 			build_ctob(td_cmd, td_offset, size, td_tag);
2346 
2347 	/* Force memory writes to complete before letting h/w know there
2348 	 * are new descriptors to fetch.
2349 	 *
2350 	 * We also use this memory barrier to make certain all of the
2351 	 * status bits have been updated before next_to_watch is written.
2352 	 */
2353 	wmb();
2354 
2355 	/* set next_to_watch value indicating a packet is present */
2356 	first->next_to_watch = tx_desc;
2357 
2358 	/* notify HW of packet */
2359 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2360 		writel(i, tx_ring->tail);
2361 
2362 		/* we need this if more than one processor can write to our tail
2363 		 * at a time, it synchronizes IO on IA64/Altix systems
2364 		 */
2365 		mmiowb();
2366 	}
2367 
2368 	return;
2369 
2370 dma_error:
2371 	dev_info(tx_ring->dev, "TX DMA map failed\n");
2372 
2373 	/* clear dma mappings for failed tx_bi map */
2374 	for (;;) {
2375 		tx_bi = &tx_ring->tx_bi[i];
2376 		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2377 		if (tx_bi == first)
2378 			break;
2379 		if (i == 0)
2380 			i = tx_ring->count;
2381 		i--;
2382 	}
2383 
2384 	tx_ring->next_to_use = i;
2385 }
2386 
2387 /**
2388  * iavf_xmit_frame_ring - Sends buffer on Tx ring
2389  * @skb:     send buffer
2390  * @tx_ring: ring to send buffer on
2391  *
2392  * Returns NETDEV_TX_OK if sent, else an error code
2393  **/
2394 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2395 					struct iavf_ring *tx_ring)
2396 {
2397 	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2398 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2399 	struct iavf_tx_buffer *first;
2400 	u32 td_offset = 0;
2401 	u32 tx_flags = 0;
2402 	__be16 protocol;
2403 	u32 td_cmd = 0;
2404 	u8 hdr_len = 0;
2405 	int tso, count;
2406 
2407 	/* prefetch the data, we'll need it later */
2408 	prefetch(skb->data);
2409 
2410 	iavf_trace(xmit_frame_ring, skb, tx_ring);
2411 
2412 	count = iavf_xmit_descriptor_count(skb);
2413 	if (iavf_chk_linearize(skb, count)) {
2414 		if (__skb_linearize(skb)) {
2415 			dev_kfree_skb_any(skb);
2416 			return NETDEV_TX_OK;
2417 		}
2418 		count = iavf_txd_use_count(skb->len);
2419 		tx_ring->tx_stats.tx_linearize++;
2420 	}
2421 
2422 	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2423 	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2424 	 *       + 4 desc gap to avoid the cache line where head is,
2425 	 *       + 1 desc for context descriptor,
2426 	 * otherwise try next time
2427 	 */
2428 	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2429 		tx_ring->tx_stats.tx_busy++;
2430 		return NETDEV_TX_BUSY;
2431 	}
2432 
2433 	/* record the location of the first descriptor for this packet */
2434 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2435 	first->skb = skb;
2436 	first->bytecount = skb->len;
2437 	first->gso_segs = 1;
2438 
2439 	/* prepare the xmit flags */
2440 	if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2441 		goto out_drop;
2442 
2443 	/* obtain protocol of skb */
2444 	protocol = vlan_get_protocol(skb);
2445 
2446 	/* setup IPv4/IPv6 offloads */
2447 	if (protocol == htons(ETH_P_IP))
2448 		tx_flags |= IAVF_TX_FLAGS_IPV4;
2449 	else if (protocol == htons(ETH_P_IPV6))
2450 		tx_flags |= IAVF_TX_FLAGS_IPV6;
2451 
2452 	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2453 
2454 	if (tso < 0)
2455 		goto out_drop;
2456 	else if (tso)
2457 		tx_flags |= IAVF_TX_FLAGS_TSO;
2458 
2459 	/* Always offload the checksum, since it's in the data descriptor */
2460 	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2461 				  tx_ring, &cd_tunneling);
2462 	if (tso < 0)
2463 		goto out_drop;
2464 
2465 	skb_tx_timestamp(skb);
2466 
2467 	/* always enable CRC insertion offload */
2468 	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2469 
2470 	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2471 			   cd_tunneling, cd_l2tag2);
2472 
2473 	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2474 		    td_cmd, td_offset);
2475 
2476 	return NETDEV_TX_OK;
2477 
2478 out_drop:
2479 	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2480 	dev_kfree_skb_any(first->skb);
2481 	first->skb = NULL;
2482 	return NETDEV_TX_OK;
2483 }
2484 
2485 /**
2486  * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2487  * @skb:    send buffer
2488  * @netdev: network interface device structure
2489  *
2490  * Returns NETDEV_TX_OK if sent, else an error code
2491  **/
2492 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2493 {
2494 	struct iavf_adapter *adapter = netdev_priv(netdev);
2495 	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2496 
2497 	/* hardware can't handle really short frames, hardware padding works
2498 	 * beyond this point
2499 	 */
2500 	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2501 		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2502 			return NETDEV_TX_OK;
2503 		skb->len = IAVF_MIN_TX_LEN;
2504 		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2505 	}
2506 
2507 	return iavf_xmit_frame_ring(skb, tx_ring);
2508 }
2509