xref: /linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 
6 #include "iavf.h"
7 #include "iavf_trace.h"
8 #include "iavf_prototype.h"
9 
10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11 				u32 td_tag)
12 {
13 	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14 			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
15 			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16 			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17 			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
18 }
19 
20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21 
22 /**
23  * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24  * @ring:      the ring that owns the buffer
25  * @tx_buffer: the buffer to free
26  **/
27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28 					    struct iavf_tx_buffer *tx_buffer)
29 {
30 	if (tx_buffer->skb) {
31 		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32 			kfree(tx_buffer->raw_buf);
33 		else
34 			dev_kfree_skb_any(tx_buffer->skb);
35 		if (dma_unmap_len(tx_buffer, len))
36 			dma_unmap_single(ring->dev,
37 					 dma_unmap_addr(tx_buffer, dma),
38 					 dma_unmap_len(tx_buffer, len),
39 					 DMA_TO_DEVICE);
40 	} else if (dma_unmap_len(tx_buffer, len)) {
41 		dma_unmap_page(ring->dev,
42 			       dma_unmap_addr(tx_buffer, dma),
43 			       dma_unmap_len(tx_buffer, len),
44 			       DMA_TO_DEVICE);
45 	}
46 
47 	tx_buffer->next_to_watch = NULL;
48 	tx_buffer->skb = NULL;
49 	dma_unmap_len_set(tx_buffer, len, 0);
50 	/* tx_buffer must be completely set up in the transmit path */
51 }
52 
53 /**
54  * iavf_clean_tx_ring - Free any empty Tx buffers
55  * @tx_ring: ring to be cleaned
56  **/
57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58 {
59 	unsigned long bi_size;
60 	u16 i;
61 
62 	/* ring already cleared, nothing to do */
63 	if (!tx_ring->tx_bi)
64 		return;
65 
66 	/* Free all the Tx ring sk_buffs */
67 	for (i = 0; i < tx_ring->count; i++)
68 		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69 
70 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71 	memset(tx_ring->tx_bi, 0, bi_size);
72 
73 	/* Zero out the descriptor ring */
74 	memset(tx_ring->desc, 0, tx_ring->size);
75 
76 	tx_ring->next_to_use = 0;
77 	tx_ring->next_to_clean = 0;
78 
79 	if (!tx_ring->netdev)
80 		return;
81 
82 	/* cleanup Tx queue statistics */
83 	netdev_tx_reset_queue(txring_txq(tx_ring));
84 }
85 
86 /**
87  * iavf_free_tx_resources - Free Tx resources per queue
88  * @tx_ring: Tx descriptor ring for a specific queue
89  *
90  * Free all transmit software resources
91  **/
92 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93 {
94 	iavf_clean_tx_ring(tx_ring);
95 	kfree(tx_ring->tx_bi);
96 	tx_ring->tx_bi = NULL;
97 
98 	if (tx_ring->desc) {
99 		dma_free_coherent(tx_ring->dev, tx_ring->size,
100 				  tx_ring->desc, tx_ring->dma);
101 		tx_ring->desc = NULL;
102 	}
103 }
104 
105 /**
106  * iavf_get_tx_pending - how many Tx descriptors not processed
107  * @ring: the ring of descriptors
108  * @in_sw: is tx_pending being checked in SW or HW
109  *
110  * Since there is no access to the ring head register
111  * in XL710, we need to use our local copies
112  **/
113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114 {
115 	u32 head, tail;
116 
117 	head = ring->next_to_clean;
118 	tail = readl(ring->tail);
119 
120 	if (head != tail)
121 		return (head < tail) ?
122 			tail - head : (tail + ring->count - head);
123 
124 	return 0;
125 }
126 
127 /**
128  * iavf_detect_recover_hung - Function to detect and recover hung_queues
129  * @vsi:  pointer to vsi struct with tx queues
130  *
131  * VSI has netdev and netdev has TX queues. This function is to check each of
132  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
133  **/
134 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
135 {
136 	struct iavf_ring *tx_ring = NULL;
137 	struct net_device *netdev;
138 	unsigned int i;
139 	int packets;
140 
141 	if (!vsi)
142 		return;
143 
144 	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
145 		return;
146 
147 	netdev = vsi->netdev;
148 	if (!netdev)
149 		return;
150 
151 	if (!netif_carrier_ok(netdev))
152 		return;
153 
154 	for (i = 0; i < vsi->back->num_active_queues; i++) {
155 		tx_ring = &vsi->back->tx_rings[i];
156 		if (tx_ring && tx_ring->desc) {
157 			/* If packet counter has not changed the queue is
158 			 * likely stalled, so force an interrupt for this
159 			 * queue.
160 			 *
161 			 * prev_pkt_ctr would be negative if there was no
162 			 * pending work.
163 			 */
164 			packets = tx_ring->stats.packets & INT_MAX;
165 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
166 				iavf_force_wb(vsi, tx_ring->q_vector);
167 				continue;
168 			}
169 
170 			/* Memory barrier between read of packet count and call
171 			 * to iavf_get_tx_pending()
172 			 */
173 			smp_rmb();
174 			tx_ring->tx_stats.prev_pkt_ctr =
175 			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
176 		}
177 	}
178 }
179 
180 #define WB_STRIDE 4
181 
182 /**
183  * iavf_clean_tx_irq - Reclaim resources after transmit completes
184  * @vsi: the VSI we care about
185  * @tx_ring: Tx ring to clean
186  * @napi_budget: Used to determine if we are in netpoll
187  *
188  * Returns true if there's any budget left (e.g. the clean is finished)
189  **/
190 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
191 			      struct iavf_ring *tx_ring, int napi_budget)
192 {
193 	int i = tx_ring->next_to_clean;
194 	struct iavf_tx_buffer *tx_buf;
195 	struct iavf_tx_desc *tx_desc;
196 	unsigned int total_bytes = 0, total_packets = 0;
197 	unsigned int budget = vsi->work_limit;
198 
199 	tx_buf = &tx_ring->tx_bi[i];
200 	tx_desc = IAVF_TX_DESC(tx_ring, i);
201 	i -= tx_ring->count;
202 
203 	do {
204 		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
205 
206 		/* if next_to_watch is not set then there is no work pending */
207 		if (!eop_desc)
208 			break;
209 
210 		/* prevent any other reads prior to eop_desc */
211 		smp_rmb();
212 
213 		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
214 		/* if the descriptor isn't done, no work yet to do */
215 		if (!(eop_desc->cmd_type_offset_bsz &
216 		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
217 			break;
218 
219 		/* clear next_to_watch to prevent false hangs */
220 		tx_buf->next_to_watch = NULL;
221 
222 		/* update the statistics for this packet */
223 		total_bytes += tx_buf->bytecount;
224 		total_packets += tx_buf->gso_segs;
225 
226 		/* free the skb */
227 		napi_consume_skb(tx_buf->skb, napi_budget);
228 
229 		/* unmap skb header data */
230 		dma_unmap_single(tx_ring->dev,
231 				 dma_unmap_addr(tx_buf, dma),
232 				 dma_unmap_len(tx_buf, len),
233 				 DMA_TO_DEVICE);
234 
235 		/* clear tx_buffer data */
236 		tx_buf->skb = NULL;
237 		dma_unmap_len_set(tx_buf, len, 0);
238 
239 		/* unmap remaining buffers */
240 		while (tx_desc != eop_desc) {
241 			iavf_trace(clean_tx_irq_unmap,
242 				   tx_ring, tx_desc, tx_buf);
243 
244 			tx_buf++;
245 			tx_desc++;
246 			i++;
247 			if (unlikely(!i)) {
248 				i -= tx_ring->count;
249 				tx_buf = tx_ring->tx_bi;
250 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
251 			}
252 
253 			/* unmap any remaining paged data */
254 			if (dma_unmap_len(tx_buf, len)) {
255 				dma_unmap_page(tx_ring->dev,
256 					       dma_unmap_addr(tx_buf, dma),
257 					       dma_unmap_len(tx_buf, len),
258 					       DMA_TO_DEVICE);
259 				dma_unmap_len_set(tx_buf, len, 0);
260 			}
261 		}
262 
263 		/* move us one more past the eop_desc for start of next pkt */
264 		tx_buf++;
265 		tx_desc++;
266 		i++;
267 		if (unlikely(!i)) {
268 			i -= tx_ring->count;
269 			tx_buf = tx_ring->tx_bi;
270 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
271 		}
272 
273 		prefetch(tx_desc);
274 
275 		/* update budget accounting */
276 		budget--;
277 	} while (likely(budget));
278 
279 	i += tx_ring->count;
280 	tx_ring->next_to_clean = i;
281 	u64_stats_update_begin(&tx_ring->syncp);
282 	tx_ring->stats.bytes += total_bytes;
283 	tx_ring->stats.packets += total_packets;
284 	u64_stats_update_end(&tx_ring->syncp);
285 	tx_ring->q_vector->tx.total_bytes += total_bytes;
286 	tx_ring->q_vector->tx.total_packets += total_packets;
287 
288 	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
289 		/* check to see if there are < 4 descriptors
290 		 * waiting to be written back, then kick the hardware to force
291 		 * them to be written back in case we stay in NAPI.
292 		 * In this mode on X722 we do not enable Interrupt.
293 		 */
294 		unsigned int j = iavf_get_tx_pending(tx_ring, false);
295 
296 		if (budget &&
297 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
298 		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
299 		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
300 			tx_ring->arm_wb = true;
301 	}
302 
303 	/* notify netdev of completed buffers */
304 	netdev_tx_completed_queue(txring_txq(tx_ring),
305 				  total_packets, total_bytes);
306 
307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
308 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
309 		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
310 		/* Make sure that anybody stopping the queue after this
311 		 * sees the new next_to_clean.
312 		 */
313 		smp_mb();
314 		if (__netif_subqueue_stopped(tx_ring->netdev,
315 					     tx_ring->queue_index) &&
316 		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
317 			netif_wake_subqueue(tx_ring->netdev,
318 					    tx_ring->queue_index);
319 			++tx_ring->tx_stats.restart_queue;
320 		}
321 	}
322 
323 	return !!budget;
324 }
325 
326 /**
327  * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
328  * @vsi: the VSI we care about
329  * @q_vector: the vector on which to enable writeback
330  *
331  **/
332 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
333 				  struct iavf_q_vector *q_vector)
334 {
335 	u16 flags = q_vector->tx.ring[0].flags;
336 	u32 val;
337 
338 	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
339 		return;
340 
341 	if (q_vector->arm_wb_state)
342 		return;
343 
344 	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
345 	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
346 
347 	wr32(&vsi->back->hw,
348 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
349 	q_vector->arm_wb_state = true;
350 }
351 
352 /**
353  * iavf_force_wb - Issue SW Interrupt so HW does a wb
354  * @vsi: the VSI we care about
355  * @q_vector: the vector  on which to force writeback
356  *
357  **/
358 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
359 {
360 	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
361 		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
362 		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
363 		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
364 		  /* allow 00 to be written to the index */;
365 
366 	wr32(&vsi->back->hw,
367 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
368 	     val);
369 }
370 
371 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
372 					struct iavf_ring_container *rc)
373 {
374 	return &q_vector->rx == rc;
375 }
376 
377 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
378 {
379 	unsigned int divisor;
380 
381 	switch (q_vector->adapter->link_speed) {
382 	case VIRTCHNL_LINK_SPEED_40GB:
383 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
384 		break;
385 	case VIRTCHNL_LINK_SPEED_25GB:
386 	case VIRTCHNL_LINK_SPEED_20GB:
387 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
388 		break;
389 	default:
390 	case VIRTCHNL_LINK_SPEED_10GB:
391 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
392 		break;
393 	case VIRTCHNL_LINK_SPEED_1GB:
394 	case VIRTCHNL_LINK_SPEED_100MB:
395 		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
396 		break;
397 	}
398 
399 	return divisor;
400 }
401 
402 /**
403  * iavf_update_itr - update the dynamic ITR value based on statistics
404  * @q_vector: structure containing interrupt and ring information
405  * @rc: structure containing ring performance data
406  *
407  * Stores a new ITR value based on packets and byte
408  * counts during the last interrupt.  The advantage of per interrupt
409  * computation is faster updates and more accurate ITR for the current
410  * traffic pattern.  Constants in this function were computed
411  * based on theoretical maximum wire speed and thresholds were set based
412  * on testing data as well as attempting to minimize response time
413  * while increasing bulk throughput.
414  **/
415 static void iavf_update_itr(struct iavf_q_vector *q_vector,
416 			    struct iavf_ring_container *rc)
417 {
418 	unsigned int avg_wire_size, packets, bytes, itr;
419 	unsigned long next_update = jiffies;
420 
421 	/* If we don't have any rings just leave ourselves set for maximum
422 	 * possible latency so we take ourselves out of the equation.
423 	 */
424 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
425 		return;
426 
427 	/* For Rx we want to push the delay up and default to low latency.
428 	 * for Tx we want to pull the delay down and default to high latency.
429 	 */
430 	itr = iavf_container_is_rx(q_vector, rc) ?
431 	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
432 	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
433 
434 	/* If we didn't update within up to 1 - 2 jiffies we can assume
435 	 * that either packets are coming in so slow there hasn't been
436 	 * any work, or that there is so much work that NAPI is dealing
437 	 * with interrupt moderation and we don't need to do anything.
438 	 */
439 	if (time_after(next_update, rc->next_update))
440 		goto clear_counts;
441 
442 	/* If itr_countdown is set it means we programmed an ITR within
443 	 * the last 4 interrupt cycles. This has a side effect of us
444 	 * potentially firing an early interrupt. In order to work around
445 	 * this we need to throw out any data received for a few
446 	 * interrupts following the update.
447 	 */
448 	if (q_vector->itr_countdown) {
449 		itr = rc->target_itr;
450 		goto clear_counts;
451 	}
452 
453 	packets = rc->total_packets;
454 	bytes = rc->total_bytes;
455 
456 	if (iavf_container_is_rx(q_vector, rc)) {
457 		/* If Rx there are 1 to 4 packets and bytes are less than
458 		 * 9000 assume insufficient data to use bulk rate limiting
459 		 * approach unless Tx is already in bulk rate limiting. We
460 		 * are likely latency driven.
461 		 */
462 		if (packets && packets < 4 && bytes < 9000 &&
463 		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
464 			itr = IAVF_ITR_ADAPTIVE_LATENCY;
465 			goto adjust_by_size;
466 		}
467 	} else if (packets < 4) {
468 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
469 		 * bulk mode and we are receiving 4 or fewer packets just
470 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
471 		 * that the Rx can relax.
472 		 */
473 		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
474 		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
475 		     IAVF_ITR_ADAPTIVE_MAX_USECS)
476 			goto clear_counts;
477 	} else if (packets > 32) {
478 		/* If we have processed over 32 packets in a single interrupt
479 		 * for Tx assume we need to switch over to "bulk" mode.
480 		 */
481 		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
482 	}
483 
484 	/* We have no packets to actually measure against. This means
485 	 * either one of the other queues on this vector is active or
486 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
487 	 *
488 	 * Between 4 and 56 we can assume that our current interrupt delay
489 	 * is only slightly too low. As such we should increase it by a small
490 	 * fixed amount.
491 	 */
492 	if (packets < 56) {
493 		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
494 		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
495 			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
496 			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
497 		}
498 		goto clear_counts;
499 	}
500 
501 	if (packets <= 256) {
502 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
503 		itr &= IAVF_ITR_MASK;
504 
505 		/* Between 56 and 112 is our "goldilocks" zone where we are
506 		 * working out "just right". Just report that our current
507 		 * ITR is good for us.
508 		 */
509 		if (packets <= 112)
510 			goto clear_counts;
511 
512 		/* If packet count is 128 or greater we are likely looking
513 		 * at a slight overrun of the delay we want. Try halving
514 		 * our delay to see if that will cut the number of packets
515 		 * in half per interrupt.
516 		 */
517 		itr /= 2;
518 		itr &= IAVF_ITR_MASK;
519 		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
520 			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
521 
522 		goto clear_counts;
523 	}
524 
525 	/* The paths below assume we are dealing with a bulk ITR since
526 	 * number of packets is greater than 256. We are just going to have
527 	 * to compute a value and try to bring the count under control,
528 	 * though for smaller packet sizes there isn't much we can do as
529 	 * NAPI polling will likely be kicking in sooner rather than later.
530 	 */
531 	itr = IAVF_ITR_ADAPTIVE_BULK;
532 
533 adjust_by_size:
534 	/* If packet counts are 256 or greater we can assume we have a gross
535 	 * overestimation of what the rate should be. Instead of trying to fine
536 	 * tune it just use the formula below to try and dial in an exact value
537 	 * give the current packet size of the frame.
538 	 */
539 	avg_wire_size = bytes / packets;
540 
541 	/* The following is a crude approximation of:
542 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
543 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
544 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
545 	 *
546 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
547 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
548 	 * formula down to
549 	 *
550 	 *  (170 * (size + 24)) / (size + 640) = ITR
551 	 *
552 	 * We first do some math on the packet size and then finally bitshift
553 	 * by 8 after rounding up. We also have to account for PCIe link speed
554 	 * difference as ITR scales based on this.
555 	 */
556 	if (avg_wire_size <= 60) {
557 		/* Start at 250k ints/sec */
558 		avg_wire_size = 4096;
559 	} else if (avg_wire_size <= 380) {
560 		/* 250K ints/sec to 60K ints/sec */
561 		avg_wire_size *= 40;
562 		avg_wire_size += 1696;
563 	} else if (avg_wire_size <= 1084) {
564 		/* 60K ints/sec to 36K ints/sec */
565 		avg_wire_size *= 15;
566 		avg_wire_size += 11452;
567 	} else if (avg_wire_size <= 1980) {
568 		/* 36K ints/sec to 30K ints/sec */
569 		avg_wire_size *= 5;
570 		avg_wire_size += 22420;
571 	} else {
572 		/* plateau at a limit of 30K ints/sec */
573 		avg_wire_size = 32256;
574 	}
575 
576 	/* If we are in low latency mode halve our delay which doubles the
577 	 * rate to somewhere between 100K to 16K ints/sec
578 	 */
579 	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
580 		avg_wire_size /= 2;
581 
582 	/* Resultant value is 256 times larger than it needs to be. This
583 	 * gives us room to adjust the value as needed to either increase
584 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
585 	 *
586 	 * Use addition as we have already recorded the new latency flag
587 	 * for the ITR value.
588 	 */
589 	itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
590 	       IAVF_ITR_ADAPTIVE_MIN_INC;
591 
592 	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
593 		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
594 		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
595 	}
596 
597 clear_counts:
598 	/* write back value */
599 	rc->target_itr = itr;
600 
601 	/* next update should occur within next jiffy */
602 	rc->next_update = next_update + 1;
603 
604 	rc->total_bytes = 0;
605 	rc->total_packets = 0;
606 }
607 
608 /**
609  * iavf_setup_tx_descriptors - Allocate the Tx descriptors
610  * @tx_ring: the tx ring to set up
611  *
612  * Return 0 on success, negative on error
613  **/
614 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
615 {
616 	struct device *dev = tx_ring->dev;
617 	int bi_size;
618 
619 	if (!dev)
620 		return -ENOMEM;
621 
622 	/* warn if we are about to overwrite the pointer */
623 	WARN_ON(tx_ring->tx_bi);
624 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
625 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
626 	if (!tx_ring->tx_bi)
627 		goto err;
628 
629 	/* round up to nearest 4K */
630 	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
631 	tx_ring->size = ALIGN(tx_ring->size, 4096);
632 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
633 					   &tx_ring->dma, GFP_KERNEL);
634 	if (!tx_ring->desc) {
635 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
636 			 tx_ring->size);
637 		goto err;
638 	}
639 
640 	tx_ring->next_to_use = 0;
641 	tx_ring->next_to_clean = 0;
642 	tx_ring->tx_stats.prev_pkt_ctr = -1;
643 	return 0;
644 
645 err:
646 	kfree(tx_ring->tx_bi);
647 	tx_ring->tx_bi = NULL;
648 	return -ENOMEM;
649 }
650 
651 /**
652  * iavf_clean_rx_ring - Free Rx buffers
653  * @rx_ring: ring to be cleaned
654  **/
655 void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
656 {
657 	unsigned long bi_size;
658 	u16 i;
659 
660 	/* ring already cleared, nothing to do */
661 	if (!rx_ring->rx_bi)
662 		return;
663 
664 	if (rx_ring->skb) {
665 		dev_kfree_skb(rx_ring->skb);
666 		rx_ring->skb = NULL;
667 	}
668 
669 	/* Free all the Rx ring sk_buffs */
670 	for (i = 0; i < rx_ring->count; i++) {
671 		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
672 
673 		if (!rx_bi->page)
674 			continue;
675 
676 		/* Invalidate cache lines that may have been written to by
677 		 * device so that we avoid corrupting memory.
678 		 */
679 		dma_sync_single_range_for_cpu(rx_ring->dev,
680 					      rx_bi->dma,
681 					      rx_bi->page_offset,
682 					      rx_ring->rx_buf_len,
683 					      DMA_FROM_DEVICE);
684 
685 		/* free resources associated with mapping */
686 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
687 				     iavf_rx_pg_size(rx_ring),
688 				     DMA_FROM_DEVICE,
689 				     IAVF_RX_DMA_ATTR);
690 
691 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
692 
693 		rx_bi->page = NULL;
694 		rx_bi->page_offset = 0;
695 	}
696 
697 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
698 	memset(rx_ring->rx_bi, 0, bi_size);
699 
700 	/* Zero out the descriptor ring */
701 	memset(rx_ring->desc, 0, rx_ring->size);
702 
703 	rx_ring->next_to_alloc = 0;
704 	rx_ring->next_to_clean = 0;
705 	rx_ring->next_to_use = 0;
706 }
707 
708 /**
709  * iavf_free_rx_resources - Free Rx resources
710  * @rx_ring: ring to clean the resources from
711  *
712  * Free all receive software resources
713  **/
714 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
715 {
716 	iavf_clean_rx_ring(rx_ring);
717 	kfree(rx_ring->rx_bi);
718 	rx_ring->rx_bi = NULL;
719 
720 	if (rx_ring->desc) {
721 		dma_free_coherent(rx_ring->dev, rx_ring->size,
722 				  rx_ring->desc, rx_ring->dma);
723 		rx_ring->desc = NULL;
724 	}
725 }
726 
727 /**
728  * iavf_setup_rx_descriptors - Allocate Rx descriptors
729  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
730  *
731  * Returns 0 on success, negative on failure
732  **/
733 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
734 {
735 	struct device *dev = rx_ring->dev;
736 	int bi_size;
737 
738 	/* warn if we are about to overwrite the pointer */
739 	WARN_ON(rx_ring->rx_bi);
740 	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
741 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
742 	if (!rx_ring->rx_bi)
743 		goto err;
744 
745 	u64_stats_init(&rx_ring->syncp);
746 
747 	/* Round up to nearest 4K */
748 	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
749 	rx_ring->size = ALIGN(rx_ring->size, 4096);
750 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
751 					   &rx_ring->dma, GFP_KERNEL);
752 
753 	if (!rx_ring->desc) {
754 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
755 			 rx_ring->size);
756 		goto err;
757 	}
758 
759 	rx_ring->next_to_alloc = 0;
760 	rx_ring->next_to_clean = 0;
761 	rx_ring->next_to_use = 0;
762 
763 	return 0;
764 err:
765 	kfree(rx_ring->rx_bi);
766 	rx_ring->rx_bi = NULL;
767 	return -ENOMEM;
768 }
769 
770 /**
771  * iavf_release_rx_desc - Store the new tail and head values
772  * @rx_ring: ring to bump
773  * @val: new head index
774  **/
775 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
776 {
777 	rx_ring->next_to_use = val;
778 
779 	/* update next to alloc since we have filled the ring */
780 	rx_ring->next_to_alloc = val;
781 
782 	/* Force memory writes to complete before letting h/w
783 	 * know there are new descriptors to fetch.  (Only
784 	 * applicable for weak-ordered memory model archs,
785 	 * such as IA-64).
786 	 */
787 	wmb();
788 	writel(val, rx_ring->tail);
789 }
790 
791 /**
792  * iavf_rx_offset - Return expected offset into page to access data
793  * @rx_ring: Ring we are requesting offset of
794  *
795  * Returns the offset value for ring into the data buffer.
796  */
797 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
798 {
799 	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
800 }
801 
802 /**
803  * iavf_alloc_mapped_page - recycle or make a new page
804  * @rx_ring: ring to use
805  * @bi: rx_buffer struct to modify
806  *
807  * Returns true if the page was successfully allocated or
808  * reused.
809  **/
810 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
811 				   struct iavf_rx_buffer *bi)
812 {
813 	struct page *page = bi->page;
814 	dma_addr_t dma;
815 
816 	/* since we are recycling buffers we should seldom need to alloc */
817 	if (likely(page)) {
818 		rx_ring->rx_stats.page_reuse_count++;
819 		return true;
820 	}
821 
822 	/* alloc new page for storage */
823 	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
824 	if (unlikely(!page)) {
825 		rx_ring->rx_stats.alloc_page_failed++;
826 		return false;
827 	}
828 
829 	/* map page for use */
830 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
831 				 iavf_rx_pg_size(rx_ring),
832 				 DMA_FROM_DEVICE,
833 				 IAVF_RX_DMA_ATTR);
834 
835 	/* if mapping failed free memory back to system since
836 	 * there isn't much point in holding memory we can't use
837 	 */
838 	if (dma_mapping_error(rx_ring->dev, dma)) {
839 		__free_pages(page, iavf_rx_pg_order(rx_ring));
840 		rx_ring->rx_stats.alloc_page_failed++;
841 		return false;
842 	}
843 
844 	bi->dma = dma;
845 	bi->page = page;
846 	bi->page_offset = iavf_rx_offset(rx_ring);
847 
848 	/* initialize pagecnt_bias to 1 representing we fully own page */
849 	bi->pagecnt_bias = 1;
850 
851 	return true;
852 }
853 
854 /**
855  * iavf_receive_skb - Send a completed packet up the stack
856  * @rx_ring:  rx ring in play
857  * @skb: packet to send up
858  * @vlan_tag: vlan tag for packet
859  **/
860 static void iavf_receive_skb(struct iavf_ring *rx_ring,
861 			     struct sk_buff *skb, u16 vlan_tag)
862 {
863 	struct iavf_q_vector *q_vector = rx_ring->q_vector;
864 
865 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
866 	    (vlan_tag & VLAN_VID_MASK))
867 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
868 	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
869 		 vlan_tag & VLAN_VID_MASK)
870 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
871 
872 	napi_gro_receive(&q_vector->napi, skb);
873 }
874 
875 /**
876  * iavf_alloc_rx_buffers - Replace used receive buffers
877  * @rx_ring: ring to place buffers on
878  * @cleaned_count: number of buffers to replace
879  *
880  * Returns false if all allocations were successful, true if any fail
881  **/
882 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
883 {
884 	u16 ntu = rx_ring->next_to_use;
885 	union iavf_rx_desc *rx_desc;
886 	struct iavf_rx_buffer *bi;
887 
888 	/* do nothing if no valid netdev defined */
889 	if (!rx_ring->netdev || !cleaned_count)
890 		return false;
891 
892 	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
893 	bi = &rx_ring->rx_bi[ntu];
894 
895 	do {
896 		if (!iavf_alloc_mapped_page(rx_ring, bi))
897 			goto no_buffers;
898 
899 		/* sync the buffer for use by the device */
900 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
901 						 bi->page_offset,
902 						 rx_ring->rx_buf_len,
903 						 DMA_FROM_DEVICE);
904 
905 		/* Refresh the desc even if buffer_addrs didn't change
906 		 * because each write-back erases this info.
907 		 */
908 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
909 
910 		rx_desc++;
911 		bi++;
912 		ntu++;
913 		if (unlikely(ntu == rx_ring->count)) {
914 			rx_desc = IAVF_RX_DESC(rx_ring, 0);
915 			bi = rx_ring->rx_bi;
916 			ntu = 0;
917 		}
918 
919 		/* clear the status bits for the next_to_use descriptor */
920 		rx_desc->wb.qword1.status_error_len = 0;
921 
922 		cleaned_count--;
923 	} while (cleaned_count);
924 
925 	if (rx_ring->next_to_use != ntu)
926 		iavf_release_rx_desc(rx_ring, ntu);
927 
928 	return false;
929 
930 no_buffers:
931 	if (rx_ring->next_to_use != ntu)
932 		iavf_release_rx_desc(rx_ring, ntu);
933 
934 	/* make sure to come back via polling to try again after
935 	 * allocation failure
936 	 */
937 	return true;
938 }
939 
940 /**
941  * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
942  * @vsi: the VSI we care about
943  * @skb: skb currently being received and modified
944  * @rx_desc: the receive descriptor
945  **/
946 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
947 				    struct sk_buff *skb,
948 				    union iavf_rx_desc *rx_desc)
949 {
950 	struct iavf_rx_ptype_decoded decoded;
951 	u32 rx_error, rx_status;
952 	bool ipv4, ipv6;
953 	u8 ptype;
954 	u64 qword;
955 
956 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
957 	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
958 	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
959 		   IAVF_RXD_QW1_ERROR_SHIFT;
960 	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
961 		    IAVF_RXD_QW1_STATUS_SHIFT;
962 	decoded = decode_rx_desc_ptype(ptype);
963 
964 	skb->ip_summed = CHECKSUM_NONE;
965 
966 	skb_checksum_none_assert(skb);
967 
968 	/* Rx csum enabled and ip headers found? */
969 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
970 		return;
971 
972 	/* did the hardware decode the packet and checksum? */
973 	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
974 		return;
975 
976 	/* both known and outer_ip must be set for the below code to work */
977 	if (!(decoded.known && decoded.outer_ip))
978 		return;
979 
980 	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
981 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
982 	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
983 	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
984 
985 	if (ipv4 &&
986 	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
987 			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
988 		goto checksum_fail;
989 
990 	/* likely incorrect csum if alternate IP extension headers found */
991 	if (ipv6 &&
992 	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
993 		/* don't increment checksum err here, non-fatal err */
994 		return;
995 
996 	/* there was some L4 error, count error and punt packet to the stack */
997 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
998 		goto checksum_fail;
999 
1000 	/* handle packets that were not able to be checksummed due
1001 	 * to arrival speed, in this case the stack can compute
1002 	 * the csum.
1003 	 */
1004 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1005 		return;
1006 
1007 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1008 	switch (decoded.inner_prot) {
1009 	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1010 	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1011 	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1012 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1013 		fallthrough;
1014 	default:
1015 		break;
1016 	}
1017 
1018 	return;
1019 
1020 checksum_fail:
1021 	vsi->back->hw_csum_rx_error++;
1022 }
1023 
1024 /**
1025  * iavf_ptype_to_htype - get a hash type
1026  * @ptype: the ptype value from the descriptor
1027  *
1028  * Returns a hash type to be used by skb_set_hash
1029  **/
1030 static inline int iavf_ptype_to_htype(u8 ptype)
1031 {
1032 	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1033 
1034 	if (!decoded.known)
1035 		return PKT_HASH_TYPE_NONE;
1036 
1037 	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038 	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1039 		return PKT_HASH_TYPE_L4;
1040 	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1041 		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1042 		return PKT_HASH_TYPE_L3;
1043 	else
1044 		return PKT_HASH_TYPE_L2;
1045 }
1046 
1047 /**
1048  * iavf_rx_hash - set the hash value in the skb
1049  * @ring: descriptor ring
1050  * @rx_desc: specific descriptor
1051  * @skb: skb currently being received and modified
1052  * @rx_ptype: Rx packet type
1053  **/
1054 static inline void iavf_rx_hash(struct iavf_ring *ring,
1055 				union iavf_rx_desc *rx_desc,
1056 				struct sk_buff *skb,
1057 				u8 rx_ptype)
1058 {
1059 	u32 hash;
1060 	const __le64 rss_mask =
1061 		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1062 			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1063 
1064 	if (ring->netdev->features & NETIF_F_RXHASH)
1065 		return;
1066 
1067 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1068 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1069 		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1070 	}
1071 }
1072 
1073 /**
1074  * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1075  * @rx_ring: rx descriptor ring packet is being transacted on
1076  * @rx_desc: pointer to the EOP Rx descriptor
1077  * @skb: pointer to current skb being populated
1078  * @rx_ptype: the packet type decoded by hardware
1079  *
1080  * This function checks the ring, descriptor, and packet information in
1081  * order to populate the hash, checksum, VLAN, protocol, and
1082  * other fields within the skb.
1083  **/
1084 static inline
1085 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1086 			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1087 			     u8 rx_ptype)
1088 {
1089 	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1090 
1091 	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1092 
1093 	skb_record_rx_queue(skb, rx_ring->queue_index);
1094 
1095 	/* modifies the skb - consumes the enet header */
1096 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1097 }
1098 
1099 /**
1100  * iavf_cleanup_headers - Correct empty headers
1101  * @rx_ring: rx descriptor ring packet is being transacted on
1102  * @skb: pointer to current skb being fixed
1103  *
1104  * Also address the case where we are pulling data in on pages only
1105  * and as such no data is present in the skb header.
1106  *
1107  * In addition if skb is not at least 60 bytes we need to pad it so that
1108  * it is large enough to qualify as a valid Ethernet frame.
1109  *
1110  * Returns true if an error was encountered and skb was freed.
1111  **/
1112 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1113 {
1114 	/* if eth_skb_pad returns an error the skb was freed */
1115 	if (eth_skb_pad(skb))
1116 		return true;
1117 
1118 	return false;
1119 }
1120 
1121 /**
1122  * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1123  * @rx_ring: rx descriptor ring to store buffers on
1124  * @old_buff: donor buffer to have page reused
1125  *
1126  * Synchronizes page for reuse by the adapter
1127  **/
1128 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1129 			       struct iavf_rx_buffer *old_buff)
1130 {
1131 	struct iavf_rx_buffer *new_buff;
1132 	u16 nta = rx_ring->next_to_alloc;
1133 
1134 	new_buff = &rx_ring->rx_bi[nta];
1135 
1136 	/* update, and store next to alloc */
1137 	nta++;
1138 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1139 
1140 	/* transfer page from old buffer to new buffer */
1141 	new_buff->dma		= old_buff->dma;
1142 	new_buff->page		= old_buff->page;
1143 	new_buff->page_offset	= old_buff->page_offset;
1144 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1145 }
1146 
1147 /**
1148  * iavf_can_reuse_rx_page - Determine if this page can be reused by
1149  * the adapter for another receive
1150  *
1151  * @rx_buffer: buffer containing the page
1152  *
1153  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1154  * an unused region in the page.
1155  *
1156  * For small pages, @truesize will be a constant value, half the size
1157  * of the memory at page.  We'll attempt to alternate between high and
1158  * low halves of the page, with one half ready for use by the hardware
1159  * and the other half being consumed by the stack.  We use the page
1160  * ref count to determine whether the stack has finished consuming the
1161  * portion of this page that was passed up with a previous packet.  If
1162  * the page ref count is >1, we'll assume the "other" half page is
1163  * still busy, and this page cannot be reused.
1164  *
1165  * For larger pages, @truesize will be the actual space used by the
1166  * received packet (adjusted upward to an even multiple of the cache
1167  * line size).  This will advance through the page by the amount
1168  * actually consumed by the received packets while there is still
1169  * space for a buffer.  Each region of larger pages will be used at
1170  * most once, after which the page will not be reused.
1171  *
1172  * In either case, if the page is reusable its refcount is increased.
1173  **/
1174 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1175 {
1176 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1177 	struct page *page = rx_buffer->page;
1178 
1179 	/* Is any reuse possible? */
1180 	if (!dev_page_is_reusable(page))
1181 		return false;
1182 
1183 #if (PAGE_SIZE < 8192)
1184 	/* if we are only owner of page we can reuse it */
1185 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1186 		return false;
1187 #else
1188 #define IAVF_LAST_OFFSET \
1189 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1190 	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1191 		return false;
1192 #endif
1193 
1194 	/* If we have drained the page fragment pool we need to update
1195 	 * the pagecnt_bias and page count so that we fully restock the
1196 	 * number of references the driver holds.
1197 	 */
1198 	if (unlikely(!pagecnt_bias)) {
1199 		page_ref_add(page, USHRT_MAX);
1200 		rx_buffer->pagecnt_bias = USHRT_MAX;
1201 	}
1202 
1203 	return true;
1204 }
1205 
1206 /**
1207  * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1208  * @rx_ring: rx descriptor ring to transact packets on
1209  * @rx_buffer: buffer containing page to add
1210  * @skb: sk_buff to place the data into
1211  * @size: packet length from rx_desc
1212  *
1213  * This function will add the data contained in rx_buffer->page to the skb.
1214  * It will just attach the page as a frag to the skb.
1215  *
1216  * The function will then update the page offset.
1217  **/
1218 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1219 			     struct iavf_rx_buffer *rx_buffer,
1220 			     struct sk_buff *skb,
1221 			     unsigned int size)
1222 {
1223 #if (PAGE_SIZE < 8192)
1224 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1225 #else
1226 	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1227 #endif
1228 
1229 	if (!size)
1230 		return;
1231 
1232 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1233 			rx_buffer->page_offset, size, truesize);
1234 
1235 	/* page is being used so we must update the page offset */
1236 #if (PAGE_SIZE < 8192)
1237 	rx_buffer->page_offset ^= truesize;
1238 #else
1239 	rx_buffer->page_offset += truesize;
1240 #endif
1241 }
1242 
1243 /**
1244  * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1245  * @rx_ring: rx descriptor ring to transact packets on
1246  * @size: size of buffer to add to skb
1247  *
1248  * This function will pull an Rx buffer from the ring and synchronize it
1249  * for use by the CPU.
1250  */
1251 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1252 						 const unsigned int size)
1253 {
1254 	struct iavf_rx_buffer *rx_buffer;
1255 
1256 	if (!size)
1257 		return NULL;
1258 
1259 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1260 	prefetchw(rx_buffer->page);
1261 
1262 	/* we are reusing so sync this buffer for CPU use */
1263 	dma_sync_single_range_for_cpu(rx_ring->dev,
1264 				      rx_buffer->dma,
1265 				      rx_buffer->page_offset,
1266 				      size,
1267 				      DMA_FROM_DEVICE);
1268 
1269 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1270 	rx_buffer->pagecnt_bias--;
1271 
1272 	return rx_buffer;
1273 }
1274 
1275 /**
1276  * iavf_construct_skb - Allocate skb and populate it
1277  * @rx_ring: rx descriptor ring to transact packets on
1278  * @rx_buffer: rx buffer to pull data from
1279  * @size: size of buffer to add to skb
1280  *
1281  * This function allocates an skb.  It then populates it with the page
1282  * data from the current receive descriptor, taking care to set up the
1283  * skb correctly.
1284  */
1285 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1286 					  struct iavf_rx_buffer *rx_buffer,
1287 					  unsigned int size)
1288 {
1289 	void *va;
1290 #if (PAGE_SIZE < 8192)
1291 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1292 #else
1293 	unsigned int truesize = SKB_DATA_ALIGN(size);
1294 #endif
1295 	unsigned int headlen;
1296 	struct sk_buff *skb;
1297 
1298 	if (!rx_buffer)
1299 		return NULL;
1300 	/* prefetch first cache line of first page */
1301 	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1302 	net_prefetch(va);
1303 
1304 	/* allocate a skb to store the frags */
1305 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1306 			       IAVF_RX_HDR_SIZE,
1307 			       GFP_ATOMIC | __GFP_NOWARN);
1308 	if (unlikely(!skb))
1309 		return NULL;
1310 
1311 	/* Determine available headroom for copy */
1312 	headlen = size;
1313 	if (headlen > IAVF_RX_HDR_SIZE)
1314 		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1315 
1316 	/* align pull length to size of long to optimize memcpy performance */
1317 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318 
1319 	/* update all of the pointers */
1320 	size -= headlen;
1321 	if (size) {
1322 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1323 				rx_buffer->page_offset + headlen,
1324 				size, truesize);
1325 
1326 		/* buffer is used by skb, update page_offset */
1327 #if (PAGE_SIZE < 8192)
1328 		rx_buffer->page_offset ^= truesize;
1329 #else
1330 		rx_buffer->page_offset += truesize;
1331 #endif
1332 	} else {
1333 		/* buffer is unused, reset bias back to rx_buffer */
1334 		rx_buffer->pagecnt_bias++;
1335 	}
1336 
1337 	return skb;
1338 }
1339 
1340 /**
1341  * iavf_build_skb - Build skb around an existing buffer
1342  * @rx_ring: Rx descriptor ring to transact packets on
1343  * @rx_buffer: Rx buffer to pull data from
1344  * @size: size of buffer to add to skb
1345  *
1346  * This function builds an skb around an existing Rx buffer, taking care
1347  * to set up the skb correctly and avoid any memcpy overhead.
1348  */
1349 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1350 				      struct iavf_rx_buffer *rx_buffer,
1351 				      unsigned int size)
1352 {
1353 	void *va;
1354 #if (PAGE_SIZE < 8192)
1355 	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1356 #else
1357 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1358 				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1359 #endif
1360 	struct sk_buff *skb;
1361 
1362 	if (!rx_buffer)
1363 		return NULL;
1364 	/* prefetch first cache line of first page */
1365 	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1366 	net_prefetch(va);
1367 
1368 	/* build an skb around the page buffer */
1369 	skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1370 	if (unlikely(!skb))
1371 		return NULL;
1372 
1373 	/* update pointers within the skb to store the data */
1374 	skb_reserve(skb, IAVF_SKB_PAD);
1375 	__skb_put(skb, size);
1376 
1377 	/* buffer is used by skb, update page_offset */
1378 #if (PAGE_SIZE < 8192)
1379 	rx_buffer->page_offset ^= truesize;
1380 #else
1381 	rx_buffer->page_offset += truesize;
1382 #endif
1383 
1384 	return skb;
1385 }
1386 
1387 /**
1388  * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1389  * @rx_ring: rx descriptor ring to transact packets on
1390  * @rx_buffer: rx buffer to pull data from
1391  *
1392  * This function will clean up the contents of the rx_buffer.  It will
1393  * either recycle the buffer or unmap it and free the associated resources.
1394  */
1395 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1396 			       struct iavf_rx_buffer *rx_buffer)
1397 {
1398 	if (!rx_buffer)
1399 		return;
1400 
1401 	if (iavf_can_reuse_rx_page(rx_buffer)) {
1402 		/* hand second half of page back to the ring */
1403 		iavf_reuse_rx_page(rx_ring, rx_buffer);
1404 		rx_ring->rx_stats.page_reuse_count++;
1405 	} else {
1406 		/* we are not reusing the buffer so unmap it */
1407 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1408 				     iavf_rx_pg_size(rx_ring),
1409 				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1410 		__page_frag_cache_drain(rx_buffer->page,
1411 					rx_buffer->pagecnt_bias);
1412 	}
1413 
1414 	/* clear contents of buffer_info */
1415 	rx_buffer->page = NULL;
1416 }
1417 
1418 /**
1419  * iavf_is_non_eop - process handling of non-EOP buffers
1420  * @rx_ring: Rx ring being processed
1421  * @rx_desc: Rx descriptor for current buffer
1422  * @skb: Current socket buffer containing buffer in progress
1423  *
1424  * This function updates next to clean.  If the buffer is an EOP buffer
1425  * this function exits returning false, otherwise it will place the
1426  * sk_buff in the next buffer to be chained and return true indicating
1427  * that this is in fact a non-EOP buffer.
1428  **/
1429 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1430 			    union iavf_rx_desc *rx_desc,
1431 			    struct sk_buff *skb)
1432 {
1433 	u32 ntc = rx_ring->next_to_clean + 1;
1434 
1435 	/* fetch, update, and store next to clean */
1436 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1437 	rx_ring->next_to_clean = ntc;
1438 
1439 	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1440 
1441 	/* if we are the last buffer then there is nothing else to do */
1442 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1443 	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1444 		return false;
1445 
1446 	rx_ring->rx_stats.non_eop_descs++;
1447 
1448 	return true;
1449 }
1450 
1451 /**
1452  * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1453  * @rx_ring: rx descriptor ring to transact packets on
1454  * @budget: Total limit on number of packets to process
1455  *
1456  * This function provides a "bounce buffer" approach to Rx interrupt
1457  * processing.  The advantage to this is that on systems that have
1458  * expensive overhead for IOMMU access this provides a means of avoiding
1459  * it by maintaining the mapping of the page to the system.
1460  *
1461  * Returns amount of work completed
1462  **/
1463 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1464 {
1465 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1466 	struct sk_buff *skb = rx_ring->skb;
1467 	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1468 	bool failure = false;
1469 
1470 	while (likely(total_rx_packets < (unsigned int)budget)) {
1471 		struct iavf_rx_buffer *rx_buffer;
1472 		union iavf_rx_desc *rx_desc;
1473 		unsigned int size;
1474 		u16 vlan_tag = 0;
1475 		u8 rx_ptype;
1476 		u64 qword;
1477 
1478 		/* return some buffers to hardware, one at a time is too slow */
1479 		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1480 			failure = failure ||
1481 				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1482 			cleaned_count = 0;
1483 		}
1484 
1485 		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1486 
1487 		/* status_error_len will always be zero for unused descriptors
1488 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1489 		 * which is always zero because packet split isn't used, if the
1490 		 * hardware wrote DD then the length will be non-zero
1491 		 */
1492 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1493 
1494 		/* This memory barrier is needed to keep us from reading
1495 		 * any other fields out of the rx_desc until we have
1496 		 * verified the descriptor has been written back.
1497 		 */
1498 		dma_rmb();
1499 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1500 		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1501 			break;
1502 
1503 		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1504 		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1505 
1506 		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1507 		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1508 
1509 		/* retrieve a buffer from the ring */
1510 		if (skb)
1511 			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1512 		else if (ring_uses_build_skb(rx_ring))
1513 			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1514 		else
1515 			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1516 
1517 		/* exit if we failed to retrieve a buffer */
1518 		if (!skb) {
1519 			rx_ring->rx_stats.alloc_buff_failed++;
1520 			if (rx_buffer)
1521 				rx_buffer->pagecnt_bias++;
1522 			break;
1523 		}
1524 
1525 		iavf_put_rx_buffer(rx_ring, rx_buffer);
1526 		cleaned_count++;
1527 
1528 		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1529 			continue;
1530 
1531 		/* ERR_MASK will only have valid bits if EOP set, and
1532 		 * what we are doing here is actually checking
1533 		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1534 		 * the error field
1535 		 */
1536 		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1537 			dev_kfree_skb_any(skb);
1538 			skb = NULL;
1539 			continue;
1540 		}
1541 
1542 		if (iavf_cleanup_headers(rx_ring, skb)) {
1543 			skb = NULL;
1544 			continue;
1545 		}
1546 
1547 		/* probably a little skewed due to removing CRC */
1548 		total_rx_bytes += skb->len;
1549 
1550 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1551 		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1552 			   IAVF_RXD_QW1_PTYPE_SHIFT;
1553 
1554 		/* populate checksum, VLAN, and protocol */
1555 		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1556 
1557 		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1558 		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1559 			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1560 		if (rx_desc->wb.qword2.ext_status &
1561 		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1562 		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1563 			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1564 
1565 		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1566 		iavf_receive_skb(rx_ring, skb, vlan_tag);
1567 		skb = NULL;
1568 
1569 		/* update budget accounting */
1570 		total_rx_packets++;
1571 	}
1572 
1573 	rx_ring->skb = skb;
1574 
1575 	u64_stats_update_begin(&rx_ring->syncp);
1576 	rx_ring->stats.packets += total_rx_packets;
1577 	rx_ring->stats.bytes += total_rx_bytes;
1578 	u64_stats_update_end(&rx_ring->syncp);
1579 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1580 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1581 
1582 	/* guarantee a trip back through this routine if there was a failure */
1583 	return failure ? budget : (int)total_rx_packets;
1584 }
1585 
1586 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1587 {
1588 	u32 val;
1589 
1590 	/* We don't bother with setting the CLEARPBA bit as the data sheet
1591 	 * points out doing so is "meaningless since it was already
1592 	 * auto-cleared". The auto-clearing happens when the interrupt is
1593 	 * asserted.
1594 	 *
1595 	 * Hardware errata 28 for also indicates that writing to a
1596 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1597 	 * an event in the PBA anyway so we need to rely on the automask
1598 	 * to hold pending events for us until the interrupt is re-enabled
1599 	 *
1600 	 * The itr value is reported in microseconds, and the register
1601 	 * value is recorded in 2 microsecond units. For this reason we
1602 	 * only need to shift by the interval shift - 1 instead of the
1603 	 * full value.
1604 	 */
1605 	itr &= IAVF_ITR_MASK;
1606 
1607 	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1608 	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1609 	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1610 
1611 	return val;
1612 }
1613 
1614 /* a small macro to shorten up some long lines */
1615 #define INTREG IAVF_VFINT_DYN_CTLN1
1616 
1617 /* The act of updating the ITR will cause it to immediately trigger. In order
1618  * to prevent this from throwing off adaptive update statistics we defer the
1619  * update so that it can only happen so often. So after either Tx or Rx are
1620  * updated we make the adaptive scheme wait until either the ITR completely
1621  * expires via the next_update expiration or we have been through at least
1622  * 3 interrupts.
1623  */
1624 #define ITR_COUNTDOWN_START 3
1625 
1626 /**
1627  * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1628  * @vsi: the VSI we care about
1629  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1630  *
1631  **/
1632 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1633 					  struct iavf_q_vector *q_vector)
1634 {
1635 	struct iavf_hw *hw = &vsi->back->hw;
1636 	u32 intval;
1637 
1638 	/* These will do nothing if dynamic updates are not enabled */
1639 	iavf_update_itr(q_vector, &q_vector->tx);
1640 	iavf_update_itr(q_vector, &q_vector->rx);
1641 
1642 	/* This block of logic allows us to get away with only updating
1643 	 * one ITR value with each interrupt. The idea is to perform a
1644 	 * pseudo-lazy update with the following criteria.
1645 	 *
1646 	 * 1. Rx is given higher priority than Tx if both are in same state
1647 	 * 2. If we must reduce an ITR that is given highest priority.
1648 	 * 3. We then give priority to increasing ITR based on amount.
1649 	 */
1650 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1651 		/* Rx ITR needs to be reduced, this is highest priority */
1652 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1653 					   q_vector->rx.target_itr);
1654 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1655 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1656 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1657 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1658 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1659 		/* Tx ITR needs to be reduced, this is second priority
1660 		 * Tx ITR needs to be increased more than Rx, fourth priority
1661 		 */
1662 		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1663 					   q_vector->tx.target_itr);
1664 		q_vector->tx.current_itr = q_vector->tx.target_itr;
1665 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1666 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1667 		/* Rx ITR needs to be increased, third priority */
1668 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1669 					   q_vector->rx.target_itr);
1670 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1671 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1672 	} else {
1673 		/* No ITR update, lowest priority */
1674 		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1675 		if (q_vector->itr_countdown)
1676 			q_vector->itr_countdown--;
1677 	}
1678 
1679 	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1680 		wr32(hw, INTREG(q_vector->reg_idx), intval);
1681 }
1682 
1683 /**
1684  * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1685  * @napi: napi struct with our devices info in it
1686  * @budget: amount of work driver is allowed to do this pass, in packets
1687  *
1688  * This function will clean all queues associated with a q_vector.
1689  *
1690  * Returns the amount of work done
1691  **/
1692 int iavf_napi_poll(struct napi_struct *napi, int budget)
1693 {
1694 	struct iavf_q_vector *q_vector =
1695 			       container_of(napi, struct iavf_q_vector, napi);
1696 	struct iavf_vsi *vsi = q_vector->vsi;
1697 	struct iavf_ring *ring;
1698 	bool clean_complete = true;
1699 	bool arm_wb = false;
1700 	int budget_per_ring;
1701 	int work_done = 0;
1702 
1703 	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1704 		napi_complete(napi);
1705 		return 0;
1706 	}
1707 
1708 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1709 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1710 	 */
1711 	iavf_for_each_ring(ring, q_vector->tx) {
1712 		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1713 			clean_complete = false;
1714 			continue;
1715 		}
1716 		arm_wb |= ring->arm_wb;
1717 		ring->arm_wb = false;
1718 	}
1719 
1720 	/* Handle case where we are called by netpoll with a budget of 0 */
1721 	if (budget <= 0)
1722 		goto tx_only;
1723 
1724 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1725 	 * allow the budget to go below 1 because that would exit polling early.
1726 	 */
1727 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1728 
1729 	iavf_for_each_ring(ring, q_vector->rx) {
1730 		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1731 
1732 		work_done += cleaned;
1733 		/* if we clean as many as budgeted, we must not be done */
1734 		if (cleaned >= budget_per_ring)
1735 			clean_complete = false;
1736 	}
1737 
1738 	/* If work not completed, return budget and polling will return */
1739 	if (!clean_complete) {
1740 		int cpu_id = smp_processor_id();
1741 
1742 		/* It is possible that the interrupt affinity has changed but,
1743 		 * if the cpu is pegged at 100%, polling will never exit while
1744 		 * traffic continues and the interrupt will be stuck on this
1745 		 * cpu.  We check to make sure affinity is correct before we
1746 		 * continue to poll, otherwise we must stop polling so the
1747 		 * interrupt can move to the correct cpu.
1748 		 */
1749 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1750 			/* Tell napi that we are done polling */
1751 			napi_complete_done(napi, work_done);
1752 
1753 			/* Force an interrupt */
1754 			iavf_force_wb(vsi, q_vector);
1755 
1756 			/* Return budget-1 so that polling stops */
1757 			return budget - 1;
1758 		}
1759 tx_only:
1760 		if (arm_wb) {
1761 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1762 			iavf_enable_wb_on_itr(vsi, q_vector);
1763 		}
1764 		return budget;
1765 	}
1766 
1767 	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1768 		q_vector->arm_wb_state = false;
1769 
1770 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1771 	 * poll us due to busy-polling
1772 	 */
1773 	if (likely(napi_complete_done(napi, work_done)))
1774 		iavf_update_enable_itr(vsi, q_vector);
1775 
1776 	return min_t(int, work_done, budget - 1);
1777 }
1778 
1779 /**
1780  * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1781  * @skb:     send buffer
1782  * @tx_ring: ring to send buffer on
1783  * @flags:   the tx flags to be set
1784  *
1785  * Checks the skb and set up correspondingly several generic transmit flags
1786  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1787  *
1788  * Returns error code indicate the frame should be dropped upon error and the
1789  * otherwise  returns 0 to indicate the flags has been set properly.
1790  **/
1791 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1792 				       struct iavf_ring *tx_ring, u32 *flags)
1793 {
1794 	u32  tx_flags = 0;
1795 
1796 
1797 	/* stack will only request hardware VLAN insertion offload for protocols
1798 	 * that the driver supports and has enabled
1799 	 */
1800 	if (!skb_vlan_tag_present(skb))
1801 		return;
1802 
1803 	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1804 	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1805 		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1806 	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1807 		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1808 	} else {
1809 		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1810 		return;
1811 	}
1812 
1813 	*flags = tx_flags;
1814 }
1815 
1816 /**
1817  * iavf_tso - set up the tso context descriptor
1818  * @first:    pointer to first Tx buffer for xmit
1819  * @hdr_len:  ptr to the size of the packet header
1820  * @cd_type_cmd_tso_mss: Quad Word 1
1821  *
1822  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1823  **/
1824 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1825 		    u64 *cd_type_cmd_tso_mss)
1826 {
1827 	struct sk_buff *skb = first->skb;
1828 	u64 cd_cmd, cd_tso_len, cd_mss;
1829 	union {
1830 		struct iphdr *v4;
1831 		struct ipv6hdr *v6;
1832 		unsigned char *hdr;
1833 	} ip;
1834 	union {
1835 		struct tcphdr *tcp;
1836 		struct udphdr *udp;
1837 		unsigned char *hdr;
1838 	} l4;
1839 	u32 paylen, l4_offset;
1840 	u16 gso_segs, gso_size;
1841 	int err;
1842 
1843 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1844 		return 0;
1845 
1846 	if (!skb_is_gso(skb))
1847 		return 0;
1848 
1849 	err = skb_cow_head(skb, 0);
1850 	if (err < 0)
1851 		return err;
1852 
1853 	ip.hdr = skb_network_header(skb);
1854 	l4.hdr = skb_transport_header(skb);
1855 
1856 	/* initialize outer IP header fields */
1857 	if (ip.v4->version == 4) {
1858 		ip.v4->tot_len = 0;
1859 		ip.v4->check = 0;
1860 	} else {
1861 		ip.v6->payload_len = 0;
1862 	}
1863 
1864 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1865 					 SKB_GSO_GRE_CSUM |
1866 					 SKB_GSO_IPXIP4 |
1867 					 SKB_GSO_IPXIP6 |
1868 					 SKB_GSO_UDP_TUNNEL |
1869 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1870 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1871 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1872 			l4.udp->len = 0;
1873 
1874 			/* determine offset of outer transport header */
1875 			l4_offset = l4.hdr - skb->data;
1876 
1877 			/* remove payload length from outer checksum */
1878 			paylen = skb->len - l4_offset;
1879 			csum_replace_by_diff(&l4.udp->check,
1880 					     (__force __wsum)htonl(paylen));
1881 		}
1882 
1883 		/* reset pointers to inner headers */
1884 		ip.hdr = skb_inner_network_header(skb);
1885 		l4.hdr = skb_inner_transport_header(skb);
1886 
1887 		/* initialize inner IP header fields */
1888 		if (ip.v4->version == 4) {
1889 			ip.v4->tot_len = 0;
1890 			ip.v4->check = 0;
1891 		} else {
1892 			ip.v6->payload_len = 0;
1893 		}
1894 	}
1895 
1896 	/* determine offset of inner transport header */
1897 	l4_offset = l4.hdr - skb->data;
1898 	/* remove payload length from inner checksum */
1899 	paylen = skb->len - l4_offset;
1900 
1901 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1902 		csum_replace_by_diff(&l4.udp->check,
1903 				     (__force __wsum)htonl(paylen));
1904 		/* compute length of UDP segmentation header */
1905 		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1906 	} else {
1907 		csum_replace_by_diff(&l4.tcp->check,
1908 				     (__force __wsum)htonl(paylen));
1909 		/* compute length of TCP segmentation header */
1910 		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1911 	}
1912 
1913 	/* pull values out of skb_shinfo */
1914 	gso_size = skb_shinfo(skb)->gso_size;
1915 	gso_segs = skb_shinfo(skb)->gso_segs;
1916 
1917 	/* update GSO size and bytecount with header size */
1918 	first->gso_segs = gso_segs;
1919 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1920 
1921 	/* find the field values */
1922 	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1923 	cd_tso_len = skb->len - *hdr_len;
1924 	cd_mss = gso_size;
1925 	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1926 				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1927 				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1928 	return 1;
1929 }
1930 
1931 /**
1932  * iavf_tx_enable_csum - Enable Tx checksum offloads
1933  * @skb: send buffer
1934  * @tx_flags: pointer to Tx flags currently set
1935  * @td_cmd: Tx descriptor command bits to set
1936  * @td_offset: Tx descriptor header offsets to set
1937  * @tx_ring: Tx descriptor ring
1938  * @cd_tunneling: ptr to context desc bits
1939  **/
1940 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1941 			       u32 *td_cmd, u32 *td_offset,
1942 			       struct iavf_ring *tx_ring,
1943 			       u32 *cd_tunneling)
1944 {
1945 	union {
1946 		struct iphdr *v4;
1947 		struct ipv6hdr *v6;
1948 		unsigned char *hdr;
1949 	} ip;
1950 	union {
1951 		struct tcphdr *tcp;
1952 		struct udphdr *udp;
1953 		unsigned char *hdr;
1954 	} l4;
1955 	unsigned char *exthdr;
1956 	u32 offset, cmd = 0;
1957 	__be16 frag_off;
1958 	u8 l4_proto = 0;
1959 
1960 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1961 		return 0;
1962 
1963 	ip.hdr = skb_network_header(skb);
1964 	l4.hdr = skb_transport_header(skb);
1965 
1966 	/* compute outer L2 header size */
1967 	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1968 
1969 	if (skb->encapsulation) {
1970 		u32 tunnel = 0;
1971 		/* define outer network header type */
1972 		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1973 			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1974 				  IAVF_TX_CTX_EXT_IP_IPV4 :
1975 				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1976 
1977 			l4_proto = ip.v4->protocol;
1978 		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1979 			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1980 
1981 			exthdr = ip.hdr + sizeof(*ip.v6);
1982 			l4_proto = ip.v6->nexthdr;
1983 			if (l4.hdr != exthdr)
1984 				ipv6_skip_exthdr(skb, exthdr - skb->data,
1985 						 &l4_proto, &frag_off);
1986 		}
1987 
1988 		/* define outer transport */
1989 		switch (l4_proto) {
1990 		case IPPROTO_UDP:
1991 			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
1992 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1993 			break;
1994 		case IPPROTO_GRE:
1995 			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
1996 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1997 			break;
1998 		case IPPROTO_IPIP:
1999 		case IPPROTO_IPV6:
2000 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2001 			l4.hdr = skb_inner_network_header(skb);
2002 			break;
2003 		default:
2004 			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2005 				return -1;
2006 
2007 			skb_checksum_help(skb);
2008 			return 0;
2009 		}
2010 
2011 		/* compute outer L3 header size */
2012 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2013 			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2014 
2015 		/* switch IP header pointer from outer to inner header */
2016 		ip.hdr = skb_inner_network_header(skb);
2017 
2018 		/* compute tunnel header size */
2019 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2020 			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2021 
2022 		/* indicate if we need to offload outer UDP header */
2023 		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2024 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2025 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2026 			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2027 
2028 		/* record tunnel offload values */
2029 		*cd_tunneling |= tunnel;
2030 
2031 		/* switch L4 header pointer from outer to inner */
2032 		l4.hdr = skb_inner_transport_header(skb);
2033 		l4_proto = 0;
2034 
2035 		/* reset type as we transition from outer to inner headers */
2036 		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2037 		if (ip.v4->version == 4)
2038 			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2039 		if (ip.v6->version == 6)
2040 			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2041 	}
2042 
2043 	/* Enable IP checksum offloads */
2044 	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2045 		l4_proto = ip.v4->protocol;
2046 		/* the stack computes the IP header already, the only time we
2047 		 * need the hardware to recompute it is in the case of TSO.
2048 		 */
2049 		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2050 		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2051 		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2052 	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2053 		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2054 
2055 		exthdr = ip.hdr + sizeof(*ip.v6);
2056 		l4_proto = ip.v6->nexthdr;
2057 		if (l4.hdr != exthdr)
2058 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2059 					 &l4_proto, &frag_off);
2060 	}
2061 
2062 	/* compute inner L3 header size */
2063 	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2064 
2065 	/* Enable L4 checksum offloads */
2066 	switch (l4_proto) {
2067 	case IPPROTO_TCP:
2068 		/* enable checksum offloads */
2069 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2070 		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2071 		break;
2072 	case IPPROTO_SCTP:
2073 		/* enable SCTP checksum offload */
2074 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2075 		offset |= (sizeof(struct sctphdr) >> 2) <<
2076 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2077 		break;
2078 	case IPPROTO_UDP:
2079 		/* enable UDP checksum offload */
2080 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2081 		offset |= (sizeof(struct udphdr) >> 2) <<
2082 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2083 		break;
2084 	default:
2085 		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2086 			return -1;
2087 		skb_checksum_help(skb);
2088 		return 0;
2089 	}
2090 
2091 	*td_cmd |= cmd;
2092 	*td_offset |= offset;
2093 
2094 	return 1;
2095 }
2096 
2097 /**
2098  * iavf_create_tx_ctx - Build the Tx context descriptor
2099  * @tx_ring:  ring to create the descriptor on
2100  * @cd_type_cmd_tso_mss: Quad Word 1
2101  * @cd_tunneling: Quad Word 0 - bits 0-31
2102  * @cd_l2tag2: Quad Word 0 - bits 32-63
2103  **/
2104 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2105 			       const u64 cd_type_cmd_tso_mss,
2106 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2107 {
2108 	struct iavf_tx_context_desc *context_desc;
2109 	int i = tx_ring->next_to_use;
2110 
2111 	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2112 	    !cd_tunneling && !cd_l2tag2)
2113 		return;
2114 
2115 	/* grab the next descriptor */
2116 	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2117 
2118 	i++;
2119 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2120 
2121 	/* cpu_to_le32 and assign to struct fields */
2122 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2123 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2124 	context_desc->rsvd = cpu_to_le16(0);
2125 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2126 }
2127 
2128 /**
2129  * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2130  * @skb:      send buffer
2131  *
2132  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2133  * and so we need to figure out the cases where we need to linearize the skb.
2134  *
2135  * For TSO we need to count the TSO header and segment payload separately.
2136  * As such we need to check cases where we have 7 fragments or more as we
2137  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2138  * the segment payload in the first descriptor, and another 7 for the
2139  * fragments.
2140  **/
2141 bool __iavf_chk_linearize(struct sk_buff *skb)
2142 {
2143 	const skb_frag_t *frag, *stale;
2144 	int nr_frags, sum;
2145 
2146 	/* no need to check if number of frags is less than 7 */
2147 	nr_frags = skb_shinfo(skb)->nr_frags;
2148 	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2149 		return false;
2150 
2151 	/* We need to walk through the list and validate that each group
2152 	 * of 6 fragments totals at least gso_size.
2153 	 */
2154 	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2155 	frag = &skb_shinfo(skb)->frags[0];
2156 
2157 	/* Initialize size to the negative value of gso_size minus 1.  We
2158 	 * use this as the worst case scenerio in which the frag ahead
2159 	 * of us only provides one byte which is why we are limited to 6
2160 	 * descriptors for a single transmit as the header and previous
2161 	 * fragment are already consuming 2 descriptors.
2162 	 */
2163 	sum = 1 - skb_shinfo(skb)->gso_size;
2164 
2165 	/* Add size of frags 0 through 4 to create our initial sum */
2166 	sum += skb_frag_size(frag++);
2167 	sum += skb_frag_size(frag++);
2168 	sum += skb_frag_size(frag++);
2169 	sum += skb_frag_size(frag++);
2170 	sum += skb_frag_size(frag++);
2171 
2172 	/* Walk through fragments adding latest fragment, testing it, and
2173 	 * then removing stale fragments from the sum.
2174 	 */
2175 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2176 		int stale_size = skb_frag_size(stale);
2177 
2178 		sum += skb_frag_size(frag++);
2179 
2180 		/* The stale fragment may present us with a smaller
2181 		 * descriptor than the actual fragment size. To account
2182 		 * for that we need to remove all the data on the front and
2183 		 * figure out what the remainder would be in the last
2184 		 * descriptor associated with the fragment.
2185 		 */
2186 		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2187 			int align_pad = -(skb_frag_off(stale)) &
2188 					(IAVF_MAX_READ_REQ_SIZE - 1);
2189 
2190 			sum -= align_pad;
2191 			stale_size -= align_pad;
2192 
2193 			do {
2194 				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2195 				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2196 			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2197 		}
2198 
2199 		/* if sum is negative we failed to make sufficient progress */
2200 		if (sum < 0)
2201 			return true;
2202 
2203 		if (!nr_frags--)
2204 			break;
2205 
2206 		sum -= stale_size;
2207 	}
2208 
2209 	return false;
2210 }
2211 
2212 /**
2213  * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2214  * @tx_ring: the ring to be checked
2215  * @size:    the size buffer we want to assure is available
2216  *
2217  * Returns -EBUSY if a stop is needed, else 0
2218  **/
2219 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2220 {
2221 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2222 	/* Memory barrier before checking head and tail */
2223 	smp_mb();
2224 
2225 	/* Check again in a case another CPU has just made room available. */
2226 	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2227 		return -EBUSY;
2228 
2229 	/* A reprieve! - use start_queue because it doesn't call schedule */
2230 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2231 	++tx_ring->tx_stats.restart_queue;
2232 	return 0;
2233 }
2234 
2235 /**
2236  * iavf_tx_map - Build the Tx descriptor
2237  * @tx_ring:  ring to send buffer on
2238  * @skb:      send buffer
2239  * @first:    first buffer info buffer to use
2240  * @tx_flags: collected send information
2241  * @hdr_len:  size of the packet header
2242  * @td_cmd:   the command field in the descriptor
2243  * @td_offset: offset for checksum or crc
2244  **/
2245 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2246 			       struct iavf_tx_buffer *first, u32 tx_flags,
2247 			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2248 {
2249 	unsigned int data_len = skb->data_len;
2250 	unsigned int size = skb_headlen(skb);
2251 	skb_frag_t *frag;
2252 	struct iavf_tx_buffer *tx_bi;
2253 	struct iavf_tx_desc *tx_desc;
2254 	u16 i = tx_ring->next_to_use;
2255 	u32 td_tag = 0;
2256 	dma_addr_t dma;
2257 
2258 	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2259 		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2260 		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2261 			 IAVF_TX_FLAGS_VLAN_SHIFT;
2262 	}
2263 
2264 	first->tx_flags = tx_flags;
2265 
2266 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2267 
2268 	tx_desc = IAVF_TX_DESC(tx_ring, i);
2269 	tx_bi = first;
2270 
2271 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2272 		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2273 
2274 		if (dma_mapping_error(tx_ring->dev, dma))
2275 			goto dma_error;
2276 
2277 		/* record length, and DMA address */
2278 		dma_unmap_len_set(tx_bi, len, size);
2279 		dma_unmap_addr_set(tx_bi, dma, dma);
2280 
2281 		/* align size to end of page */
2282 		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2283 		tx_desc->buffer_addr = cpu_to_le64(dma);
2284 
2285 		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2286 			tx_desc->cmd_type_offset_bsz =
2287 				build_ctob(td_cmd, td_offset,
2288 					   max_data, td_tag);
2289 
2290 			tx_desc++;
2291 			i++;
2292 
2293 			if (i == tx_ring->count) {
2294 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2295 				i = 0;
2296 			}
2297 
2298 			dma += max_data;
2299 			size -= max_data;
2300 
2301 			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2302 			tx_desc->buffer_addr = cpu_to_le64(dma);
2303 		}
2304 
2305 		if (likely(!data_len))
2306 			break;
2307 
2308 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2309 							  size, td_tag);
2310 
2311 		tx_desc++;
2312 		i++;
2313 
2314 		if (i == tx_ring->count) {
2315 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2316 			i = 0;
2317 		}
2318 
2319 		size = skb_frag_size(frag);
2320 		data_len -= size;
2321 
2322 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2323 				       DMA_TO_DEVICE);
2324 
2325 		tx_bi = &tx_ring->tx_bi[i];
2326 	}
2327 
2328 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2329 
2330 	i++;
2331 	if (i == tx_ring->count)
2332 		i = 0;
2333 
2334 	tx_ring->next_to_use = i;
2335 
2336 	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2337 
2338 	/* write last descriptor with RS and EOP bits */
2339 	td_cmd |= IAVF_TXD_CMD;
2340 	tx_desc->cmd_type_offset_bsz =
2341 			build_ctob(td_cmd, td_offset, size, td_tag);
2342 
2343 	skb_tx_timestamp(skb);
2344 
2345 	/* Force memory writes to complete before letting h/w know there
2346 	 * are new descriptors to fetch.
2347 	 *
2348 	 * We also use this memory barrier to make certain all of the
2349 	 * status bits have been updated before next_to_watch is written.
2350 	 */
2351 	wmb();
2352 
2353 	/* set next_to_watch value indicating a packet is present */
2354 	first->next_to_watch = tx_desc;
2355 
2356 	/* notify HW of packet */
2357 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2358 		writel(i, tx_ring->tail);
2359 	}
2360 
2361 	return;
2362 
2363 dma_error:
2364 	dev_info(tx_ring->dev, "TX DMA map failed\n");
2365 
2366 	/* clear dma mappings for failed tx_bi map */
2367 	for (;;) {
2368 		tx_bi = &tx_ring->tx_bi[i];
2369 		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2370 		if (tx_bi == first)
2371 			break;
2372 		if (i == 0)
2373 			i = tx_ring->count;
2374 		i--;
2375 	}
2376 
2377 	tx_ring->next_to_use = i;
2378 }
2379 
2380 /**
2381  * iavf_xmit_frame_ring - Sends buffer on Tx ring
2382  * @skb:     send buffer
2383  * @tx_ring: ring to send buffer on
2384  *
2385  * Returns NETDEV_TX_OK if sent, else an error code
2386  **/
2387 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2388 					struct iavf_ring *tx_ring)
2389 {
2390 	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2391 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2392 	struct iavf_tx_buffer *first;
2393 	u32 td_offset = 0;
2394 	u32 tx_flags = 0;
2395 	__be16 protocol;
2396 	u32 td_cmd = 0;
2397 	u8 hdr_len = 0;
2398 	int tso, count;
2399 
2400 	/* prefetch the data, we'll need it later */
2401 	prefetch(skb->data);
2402 
2403 	iavf_trace(xmit_frame_ring, skb, tx_ring);
2404 
2405 	count = iavf_xmit_descriptor_count(skb);
2406 	if (iavf_chk_linearize(skb, count)) {
2407 		if (__skb_linearize(skb)) {
2408 			dev_kfree_skb_any(skb);
2409 			return NETDEV_TX_OK;
2410 		}
2411 		count = iavf_txd_use_count(skb->len);
2412 		tx_ring->tx_stats.tx_linearize++;
2413 	}
2414 
2415 	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2416 	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2417 	 *       + 4 desc gap to avoid the cache line where head is,
2418 	 *       + 1 desc for context descriptor,
2419 	 * otherwise try next time
2420 	 */
2421 	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2422 		tx_ring->tx_stats.tx_busy++;
2423 		return NETDEV_TX_BUSY;
2424 	}
2425 
2426 	/* record the location of the first descriptor for this packet */
2427 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2428 	first->skb = skb;
2429 	first->bytecount = skb->len;
2430 	first->gso_segs = 1;
2431 
2432 	/* prepare the xmit flags */
2433 	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2434 	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2435 		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2436 			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2437 		cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2438 			IAVF_TX_FLAGS_VLAN_SHIFT;
2439 	}
2440 
2441 	/* obtain protocol of skb */
2442 	protocol = vlan_get_protocol(skb);
2443 
2444 	/* setup IPv4/IPv6 offloads */
2445 	if (protocol == htons(ETH_P_IP))
2446 		tx_flags |= IAVF_TX_FLAGS_IPV4;
2447 	else if (protocol == htons(ETH_P_IPV6))
2448 		tx_flags |= IAVF_TX_FLAGS_IPV6;
2449 
2450 	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2451 
2452 	if (tso < 0)
2453 		goto out_drop;
2454 	else if (tso)
2455 		tx_flags |= IAVF_TX_FLAGS_TSO;
2456 
2457 	/* Always offload the checksum, since it's in the data descriptor */
2458 	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2459 				  tx_ring, &cd_tunneling);
2460 	if (tso < 0)
2461 		goto out_drop;
2462 
2463 	/* always enable CRC insertion offload */
2464 	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2465 
2466 	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2467 			   cd_tunneling, cd_l2tag2);
2468 
2469 	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2470 		    td_cmd, td_offset);
2471 
2472 	return NETDEV_TX_OK;
2473 
2474 out_drop:
2475 	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2476 	dev_kfree_skb_any(first->skb);
2477 	first->skb = NULL;
2478 	return NETDEV_TX_OK;
2479 }
2480 
2481 /**
2482  * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2483  * @skb:    send buffer
2484  * @netdev: network interface device structure
2485  *
2486  * Returns NETDEV_TX_OK if sent, else an error code
2487  **/
2488 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2489 {
2490 	struct iavf_adapter *adapter = netdev_priv(netdev);
2491 	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2492 
2493 	/* hardware can't handle really short frames, hardware padding works
2494 	 * beyond this point
2495 	 */
2496 	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2497 		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2498 			return NETDEV_TX_OK;
2499 		skb->len = IAVF_MIN_TX_LEN;
2500 		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2501 	}
2502 
2503 	return iavf_xmit_frame_ring(skb, tx_ring);
2504 }
2505