1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/bitfield.h> 5 #include <linux/net/intel/libie/rx.h> 6 #include <linux/prefetch.h> 7 8 #include "iavf.h" 9 #include "iavf_trace.h" 10 #include "iavf_prototype.h" 11 12 static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 13 u32 td_tag) 14 { 15 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 16 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 17 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 18 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 19 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 20 } 21 22 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 23 24 /** 25 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 26 * @ring: the ring that owns the buffer 27 * @tx_buffer: the buffer to free 28 **/ 29 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 30 struct iavf_tx_buffer *tx_buffer) 31 { 32 if (tx_buffer->skb) { 33 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 34 kfree(tx_buffer->raw_buf); 35 else 36 dev_kfree_skb_any(tx_buffer->skb); 37 if (dma_unmap_len(tx_buffer, len)) 38 dma_unmap_single(ring->dev, 39 dma_unmap_addr(tx_buffer, dma), 40 dma_unmap_len(tx_buffer, len), 41 DMA_TO_DEVICE); 42 } else if (dma_unmap_len(tx_buffer, len)) { 43 dma_unmap_page(ring->dev, 44 dma_unmap_addr(tx_buffer, dma), 45 dma_unmap_len(tx_buffer, len), 46 DMA_TO_DEVICE); 47 } 48 49 tx_buffer->next_to_watch = NULL; 50 tx_buffer->skb = NULL; 51 dma_unmap_len_set(tx_buffer, len, 0); 52 /* tx_buffer must be completely set up in the transmit path */ 53 } 54 55 /** 56 * iavf_clean_tx_ring - Free any empty Tx buffers 57 * @tx_ring: ring to be cleaned 58 **/ 59 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 60 { 61 unsigned long bi_size; 62 u16 i; 63 64 /* ring already cleared, nothing to do */ 65 if (!tx_ring->tx_bi) 66 return; 67 68 /* Free all the Tx ring sk_buffs */ 69 for (i = 0; i < tx_ring->count; i++) 70 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 71 72 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 73 memset(tx_ring->tx_bi, 0, bi_size); 74 75 /* Zero out the descriptor ring */ 76 memset(tx_ring->desc, 0, tx_ring->size); 77 78 tx_ring->next_to_use = 0; 79 tx_ring->next_to_clean = 0; 80 81 if (!tx_ring->netdev) 82 return; 83 84 /* cleanup Tx queue statistics */ 85 netdev_tx_reset_queue(txring_txq(tx_ring)); 86 } 87 88 /** 89 * iavf_free_tx_resources - Free Tx resources per queue 90 * @tx_ring: Tx descriptor ring for a specific queue 91 * 92 * Free all transmit software resources 93 **/ 94 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 95 { 96 iavf_clean_tx_ring(tx_ring); 97 kfree(tx_ring->tx_bi); 98 tx_ring->tx_bi = NULL; 99 100 if (tx_ring->desc) { 101 dma_free_coherent(tx_ring->dev, tx_ring->size, 102 tx_ring->desc, tx_ring->dma); 103 tx_ring->desc = NULL; 104 } 105 } 106 107 /** 108 * iavf_get_tx_pending - how many Tx descriptors not processed 109 * @ring: the ring of descriptors 110 * @in_sw: is tx_pending being checked in SW or HW 111 * 112 * Since there is no access to the ring head register 113 * in XL710, we need to use our local copies 114 **/ 115 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 116 { 117 u32 head, tail; 118 119 /* underlying hardware might not allow access and/or always return 120 * 0 for the head/tail registers so just use the cached values 121 */ 122 head = ring->next_to_clean; 123 tail = ring->next_to_use; 124 125 if (head != tail) 126 return (head < tail) ? 127 tail - head : (tail + ring->count - head); 128 129 return 0; 130 } 131 132 /** 133 * iavf_force_wb - Issue SW Interrupt so HW does a wb 134 * @vsi: the VSI we care about 135 * @q_vector: the vector on which to force writeback 136 **/ 137 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 138 { 139 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 140 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 141 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 142 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 143 /* allow 00 to be written to the index */; 144 145 wr32(&vsi->back->hw, 146 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 147 val); 148 } 149 150 /** 151 * iavf_detect_recover_hung - Function to detect and recover hung_queues 152 * @vsi: pointer to vsi struct with tx queues 153 * 154 * VSI has netdev and netdev has TX queues. This function is to check each of 155 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 156 **/ 157 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 158 { 159 struct iavf_ring *tx_ring = NULL; 160 struct net_device *netdev; 161 unsigned int i; 162 int packets; 163 164 if (!vsi) 165 return; 166 167 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 168 return; 169 170 netdev = vsi->netdev; 171 if (!netdev) 172 return; 173 174 if (!netif_carrier_ok(netdev)) 175 return; 176 177 for (i = 0; i < vsi->back->num_active_queues; i++) { 178 tx_ring = &vsi->back->tx_rings[i]; 179 if (tx_ring && tx_ring->desc) { 180 /* If packet counter has not changed the queue is 181 * likely stalled, so force an interrupt for this 182 * queue. 183 * 184 * prev_pkt_ctr would be negative if there was no 185 * pending work. 186 */ 187 packets = tx_ring->stats.packets & INT_MAX; 188 if (tx_ring->prev_pkt_ctr == packets) { 189 iavf_force_wb(vsi, tx_ring->q_vector); 190 continue; 191 } 192 193 /* Memory barrier between read of packet count and call 194 * to iavf_get_tx_pending() 195 */ 196 smp_rmb(); 197 tx_ring->prev_pkt_ctr = 198 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 199 } 200 } 201 } 202 203 #define WB_STRIDE 4 204 205 /** 206 * iavf_clean_tx_irq - Reclaim resources after transmit completes 207 * @vsi: the VSI we care about 208 * @tx_ring: Tx ring to clean 209 * @napi_budget: Used to determine if we are in netpoll 210 * 211 * Returns true if there's any budget left (e.g. the clean is finished) 212 **/ 213 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 214 struct iavf_ring *tx_ring, int napi_budget) 215 { 216 int i = tx_ring->next_to_clean; 217 struct iavf_tx_buffer *tx_buf; 218 struct iavf_tx_desc *tx_desc; 219 unsigned int total_bytes = 0, total_packets = 0; 220 unsigned int budget = IAVF_DEFAULT_IRQ_WORK; 221 222 tx_buf = &tx_ring->tx_bi[i]; 223 tx_desc = IAVF_TX_DESC(tx_ring, i); 224 i -= tx_ring->count; 225 226 do { 227 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 228 229 /* if next_to_watch is not set then there is no work pending */ 230 if (!eop_desc) 231 break; 232 233 /* prevent any other reads prior to eop_desc */ 234 smp_rmb(); 235 236 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 237 /* if the descriptor isn't done, no work yet to do */ 238 if (!(eop_desc->cmd_type_offset_bsz & 239 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 240 break; 241 242 /* clear next_to_watch to prevent false hangs */ 243 tx_buf->next_to_watch = NULL; 244 245 /* update the statistics for this packet */ 246 total_bytes += tx_buf->bytecount; 247 total_packets += tx_buf->gso_segs; 248 249 /* free the skb */ 250 napi_consume_skb(tx_buf->skb, napi_budget); 251 252 /* unmap skb header data */ 253 dma_unmap_single(tx_ring->dev, 254 dma_unmap_addr(tx_buf, dma), 255 dma_unmap_len(tx_buf, len), 256 DMA_TO_DEVICE); 257 258 /* clear tx_buffer data */ 259 tx_buf->skb = NULL; 260 dma_unmap_len_set(tx_buf, len, 0); 261 262 /* unmap remaining buffers */ 263 while (tx_desc != eop_desc) { 264 iavf_trace(clean_tx_irq_unmap, 265 tx_ring, tx_desc, tx_buf); 266 267 tx_buf++; 268 tx_desc++; 269 i++; 270 if (unlikely(!i)) { 271 i -= tx_ring->count; 272 tx_buf = tx_ring->tx_bi; 273 tx_desc = IAVF_TX_DESC(tx_ring, 0); 274 } 275 276 /* unmap any remaining paged data */ 277 if (dma_unmap_len(tx_buf, len)) { 278 dma_unmap_page(tx_ring->dev, 279 dma_unmap_addr(tx_buf, dma), 280 dma_unmap_len(tx_buf, len), 281 DMA_TO_DEVICE); 282 dma_unmap_len_set(tx_buf, len, 0); 283 } 284 } 285 286 /* move us one more past the eop_desc for start of next pkt */ 287 tx_buf++; 288 tx_desc++; 289 i++; 290 if (unlikely(!i)) { 291 i -= tx_ring->count; 292 tx_buf = tx_ring->tx_bi; 293 tx_desc = IAVF_TX_DESC(tx_ring, 0); 294 } 295 296 prefetch(tx_desc); 297 298 /* update budget accounting */ 299 budget--; 300 } while (likely(budget)); 301 302 i += tx_ring->count; 303 tx_ring->next_to_clean = i; 304 u64_stats_update_begin(&tx_ring->syncp); 305 tx_ring->stats.bytes += total_bytes; 306 tx_ring->stats.packets += total_packets; 307 u64_stats_update_end(&tx_ring->syncp); 308 tx_ring->q_vector->tx.total_bytes += total_bytes; 309 tx_ring->q_vector->tx.total_packets += total_packets; 310 311 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 312 /* check to see if there are < 4 descriptors 313 * waiting to be written back, then kick the hardware to force 314 * them to be written back in case we stay in NAPI. 315 * In this mode on X722 we do not enable Interrupt. 316 */ 317 unsigned int j = iavf_get_tx_pending(tx_ring, false); 318 319 if (budget && 320 ((j / WB_STRIDE) == 0) && (j > 0) && 321 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 322 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 323 tx_ring->flags |= IAVF_TXR_FLAGS_ARM_WB; 324 } 325 326 /* notify netdev of completed buffers */ 327 netdev_tx_completed_queue(txring_txq(tx_ring), 328 total_packets, total_bytes); 329 330 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 331 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 332 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 333 /* Make sure that anybody stopping the queue after this 334 * sees the new next_to_clean. 335 */ 336 smp_mb(); 337 if (__netif_subqueue_stopped(tx_ring->netdev, 338 tx_ring->queue_index) && 339 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 340 netif_wake_subqueue(tx_ring->netdev, 341 tx_ring->queue_index); 342 ++tx_ring->tx_stats.restart_queue; 343 } 344 } 345 346 return !!budget; 347 } 348 349 /** 350 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 351 * @vsi: the VSI we care about 352 * @q_vector: the vector on which to enable writeback 353 * 354 **/ 355 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 356 struct iavf_q_vector *q_vector) 357 { 358 u16 flags = q_vector->tx.ring[0].flags; 359 u32 val; 360 361 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 362 return; 363 364 if (q_vector->arm_wb_state) 365 return; 366 367 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 368 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 369 370 wr32(&vsi->back->hw, 371 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 372 q_vector->arm_wb_state = true; 373 } 374 375 static bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 376 struct iavf_ring_container *rc) 377 { 378 return &q_vector->rx == rc; 379 } 380 381 #define IAVF_AIM_MULTIPLIER_100G 2560 382 #define IAVF_AIM_MULTIPLIER_50G 1280 383 #define IAVF_AIM_MULTIPLIER_40G 1024 384 #define IAVF_AIM_MULTIPLIER_20G 512 385 #define IAVF_AIM_MULTIPLIER_10G 256 386 #define IAVF_AIM_MULTIPLIER_1G 32 387 388 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps) 389 { 390 switch (speed_mbps) { 391 case SPEED_100000: 392 return IAVF_AIM_MULTIPLIER_100G; 393 case SPEED_50000: 394 return IAVF_AIM_MULTIPLIER_50G; 395 case SPEED_40000: 396 return IAVF_AIM_MULTIPLIER_40G; 397 case SPEED_25000: 398 case SPEED_20000: 399 return IAVF_AIM_MULTIPLIER_20G; 400 case SPEED_10000: 401 default: 402 return IAVF_AIM_MULTIPLIER_10G; 403 case SPEED_1000: 404 case SPEED_100: 405 return IAVF_AIM_MULTIPLIER_1G; 406 } 407 } 408 409 static unsigned int 410 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl) 411 { 412 switch (speed_virtchnl) { 413 case VIRTCHNL_LINK_SPEED_40GB: 414 return IAVF_AIM_MULTIPLIER_40G; 415 case VIRTCHNL_LINK_SPEED_25GB: 416 case VIRTCHNL_LINK_SPEED_20GB: 417 return IAVF_AIM_MULTIPLIER_20G; 418 case VIRTCHNL_LINK_SPEED_10GB: 419 default: 420 return IAVF_AIM_MULTIPLIER_10G; 421 case VIRTCHNL_LINK_SPEED_1GB: 422 case VIRTCHNL_LINK_SPEED_100MB: 423 return IAVF_AIM_MULTIPLIER_1G; 424 } 425 } 426 427 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter) 428 { 429 if (ADV_LINK_SUPPORT(adapter)) 430 return IAVF_ITR_ADAPTIVE_MIN_INC * 431 iavf_mbps_itr_multiplier(adapter->link_speed_mbps); 432 else 433 return IAVF_ITR_ADAPTIVE_MIN_INC * 434 iavf_virtchnl_itr_multiplier(adapter->link_speed); 435 } 436 437 /** 438 * iavf_update_itr - update the dynamic ITR value based on statistics 439 * @q_vector: structure containing interrupt and ring information 440 * @rc: structure containing ring performance data 441 * 442 * Stores a new ITR value based on packets and byte 443 * counts during the last interrupt. The advantage of per interrupt 444 * computation is faster updates and more accurate ITR for the current 445 * traffic pattern. Constants in this function were computed 446 * based on theoretical maximum wire speed and thresholds were set based 447 * on testing data as well as attempting to minimize response time 448 * while increasing bulk throughput. 449 **/ 450 static void iavf_update_itr(struct iavf_q_vector *q_vector, 451 struct iavf_ring_container *rc) 452 { 453 unsigned int avg_wire_size, packets, bytes, itr; 454 unsigned long next_update = jiffies; 455 456 /* If we don't have any rings just leave ourselves set for maximum 457 * possible latency so we take ourselves out of the equation. 458 */ 459 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 460 return; 461 462 /* For Rx we want to push the delay up and default to low latency. 463 * for Tx we want to pull the delay down and default to high latency. 464 */ 465 itr = iavf_container_is_rx(q_vector, rc) ? 466 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 467 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 468 469 /* If we didn't update within up to 1 - 2 jiffies we can assume 470 * that either packets are coming in so slow there hasn't been 471 * any work, or that there is so much work that NAPI is dealing 472 * with interrupt moderation and we don't need to do anything. 473 */ 474 if (time_after(next_update, rc->next_update)) 475 goto clear_counts; 476 477 /* If itr_countdown is set it means we programmed an ITR within 478 * the last 4 interrupt cycles. This has a side effect of us 479 * potentially firing an early interrupt. In order to work around 480 * this we need to throw out any data received for a few 481 * interrupts following the update. 482 */ 483 if (q_vector->itr_countdown) { 484 itr = rc->target_itr; 485 goto clear_counts; 486 } 487 488 packets = rc->total_packets; 489 bytes = rc->total_bytes; 490 491 if (iavf_container_is_rx(q_vector, rc)) { 492 /* If Rx there are 1 to 4 packets and bytes are less than 493 * 9000 assume insufficient data to use bulk rate limiting 494 * approach unless Tx is already in bulk rate limiting. We 495 * are likely latency driven. 496 */ 497 if (packets && packets < 4 && bytes < 9000 && 498 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 499 itr = IAVF_ITR_ADAPTIVE_LATENCY; 500 goto adjust_by_size; 501 } 502 } else if (packets < 4) { 503 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 504 * bulk mode and we are receiving 4 or fewer packets just 505 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 506 * that the Rx can relax. 507 */ 508 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 509 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 510 IAVF_ITR_ADAPTIVE_MAX_USECS) 511 goto clear_counts; 512 } else if (packets > 32) { 513 /* If we have processed over 32 packets in a single interrupt 514 * for Tx assume we need to switch over to "bulk" mode. 515 */ 516 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 517 } 518 519 /* We have no packets to actually measure against. This means 520 * either one of the other queues on this vector is active or 521 * we are a Tx queue doing TSO with too high of an interrupt rate. 522 * 523 * Between 4 and 56 we can assume that our current interrupt delay 524 * is only slightly too low. As such we should increase it by a small 525 * fixed amount. 526 */ 527 if (packets < 56) { 528 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 529 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 530 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 531 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 532 } 533 goto clear_counts; 534 } 535 536 if (packets <= 256) { 537 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 538 itr &= IAVF_ITR_MASK; 539 540 /* Between 56 and 112 is our "goldilocks" zone where we are 541 * working out "just right". Just report that our current 542 * ITR is good for us. 543 */ 544 if (packets <= 112) 545 goto clear_counts; 546 547 /* If packet count is 128 or greater we are likely looking 548 * at a slight overrun of the delay we want. Try halving 549 * our delay to see if that will cut the number of packets 550 * in half per interrupt. 551 */ 552 itr /= 2; 553 itr &= IAVF_ITR_MASK; 554 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 555 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 556 557 goto clear_counts; 558 } 559 560 /* The paths below assume we are dealing with a bulk ITR since 561 * number of packets is greater than 256. We are just going to have 562 * to compute a value and try to bring the count under control, 563 * though for smaller packet sizes there isn't much we can do as 564 * NAPI polling will likely be kicking in sooner rather than later. 565 */ 566 itr = IAVF_ITR_ADAPTIVE_BULK; 567 568 adjust_by_size: 569 /* If packet counts are 256 or greater we can assume we have a gross 570 * overestimation of what the rate should be. Instead of trying to fine 571 * tune it just use the formula below to try and dial in an exact value 572 * give the current packet size of the frame. 573 */ 574 avg_wire_size = bytes / packets; 575 576 /* The following is a crude approximation of: 577 * wmem_default / (size + overhead) = desired_pkts_per_int 578 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 579 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 580 * 581 * Assuming wmem_default is 212992 and overhead is 640 bytes per 582 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 583 * formula down to 584 * 585 * (170 * (size + 24)) / (size + 640) = ITR 586 * 587 * We first do some math on the packet size and then finally bitshift 588 * by 8 after rounding up. We also have to account for PCIe link speed 589 * difference as ITR scales based on this. 590 */ 591 if (avg_wire_size <= 60) { 592 /* Start at 250k ints/sec */ 593 avg_wire_size = 4096; 594 } else if (avg_wire_size <= 380) { 595 /* 250K ints/sec to 60K ints/sec */ 596 avg_wire_size *= 40; 597 avg_wire_size += 1696; 598 } else if (avg_wire_size <= 1084) { 599 /* 60K ints/sec to 36K ints/sec */ 600 avg_wire_size *= 15; 601 avg_wire_size += 11452; 602 } else if (avg_wire_size <= 1980) { 603 /* 36K ints/sec to 30K ints/sec */ 604 avg_wire_size *= 5; 605 avg_wire_size += 22420; 606 } else { 607 /* plateau at a limit of 30K ints/sec */ 608 avg_wire_size = 32256; 609 } 610 611 /* If we are in low latency mode halve our delay which doubles the 612 * rate to somewhere between 100K to 16K ints/sec 613 */ 614 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 615 avg_wire_size /= 2; 616 617 /* Resultant value is 256 times larger than it needs to be. This 618 * gives us room to adjust the value as needed to either increase 619 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 620 * 621 * Use addition as we have already recorded the new latency flag 622 * for the ITR value. 623 */ 624 itr += DIV_ROUND_UP(avg_wire_size, 625 iavf_itr_divisor(q_vector->adapter)) * 626 IAVF_ITR_ADAPTIVE_MIN_INC; 627 628 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 629 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 630 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 631 } 632 633 clear_counts: 634 /* write back value */ 635 rc->target_itr = itr; 636 637 /* next update should occur within next jiffy */ 638 rc->next_update = next_update + 1; 639 640 rc->total_bytes = 0; 641 rc->total_packets = 0; 642 } 643 644 /** 645 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 646 * @tx_ring: the tx ring to set up 647 * 648 * Return 0 on success, negative on error 649 **/ 650 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 651 { 652 struct device *dev = tx_ring->dev; 653 int bi_size; 654 655 if (!dev) 656 return -ENOMEM; 657 658 /* warn if we are about to overwrite the pointer */ 659 WARN_ON(tx_ring->tx_bi); 660 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 661 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 662 if (!tx_ring->tx_bi) 663 goto err; 664 665 /* round up to nearest 4K */ 666 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 667 tx_ring->size = ALIGN(tx_ring->size, 4096); 668 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 669 &tx_ring->dma, GFP_KERNEL); 670 if (!tx_ring->desc) { 671 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 672 tx_ring->size); 673 goto err; 674 } 675 676 tx_ring->next_to_use = 0; 677 tx_ring->next_to_clean = 0; 678 tx_ring->prev_pkt_ctr = -1; 679 return 0; 680 681 err: 682 kfree(tx_ring->tx_bi); 683 tx_ring->tx_bi = NULL; 684 return -ENOMEM; 685 } 686 687 /** 688 * iavf_clean_rx_ring - Free Rx buffers 689 * @rx_ring: ring to be cleaned 690 **/ 691 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 692 { 693 /* ring already cleared, nothing to do */ 694 if (!rx_ring->rx_fqes) 695 return; 696 697 if (rx_ring->skb) { 698 dev_kfree_skb(rx_ring->skb); 699 rx_ring->skb = NULL; 700 } 701 702 /* Free all the Rx ring buffers */ 703 for (u32 i = rx_ring->next_to_clean; i != rx_ring->next_to_use; ) { 704 const struct libeth_fqe *rx_fqes = &rx_ring->rx_fqes[i]; 705 706 page_pool_put_full_page(rx_ring->pp, rx_fqes->page, false); 707 708 if (unlikely(++i == rx_ring->count)) 709 i = 0; 710 } 711 712 rx_ring->next_to_clean = 0; 713 rx_ring->next_to_use = 0; 714 } 715 716 /** 717 * iavf_free_rx_resources - Free Rx resources 718 * @rx_ring: ring to clean the resources from 719 * 720 * Free all receive software resources 721 **/ 722 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 723 { 724 struct libeth_fq fq = { 725 .fqes = rx_ring->rx_fqes, 726 .pp = rx_ring->pp, 727 }; 728 729 iavf_clean_rx_ring(rx_ring); 730 731 if (rx_ring->desc) { 732 dma_free_coherent(rx_ring->pp->p.dev, rx_ring->size, 733 rx_ring->desc, rx_ring->dma); 734 rx_ring->desc = NULL; 735 } 736 737 libeth_rx_fq_destroy(&fq); 738 rx_ring->rx_fqes = NULL; 739 rx_ring->pp = NULL; 740 } 741 742 /** 743 * iavf_setup_rx_descriptors - Allocate Rx descriptors 744 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 745 * 746 * Returns 0 on success, negative on failure 747 **/ 748 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 749 { 750 struct libeth_fq fq = { 751 .count = rx_ring->count, 752 .buf_len = LIBIE_MAX_RX_BUF_LEN, 753 .nid = NUMA_NO_NODE, 754 }; 755 int ret; 756 757 ret = libeth_rx_fq_create(&fq, &rx_ring->q_vector->napi); 758 if (ret) 759 return ret; 760 761 rx_ring->pp = fq.pp; 762 rx_ring->rx_fqes = fq.fqes; 763 rx_ring->truesize = fq.truesize; 764 rx_ring->rx_buf_len = fq.buf_len; 765 766 u64_stats_init(&rx_ring->syncp); 767 768 /* Round up to nearest 4K */ 769 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 770 rx_ring->size = ALIGN(rx_ring->size, 4096); 771 rx_ring->desc = dma_alloc_coherent(fq.pp->p.dev, rx_ring->size, 772 &rx_ring->dma, GFP_KERNEL); 773 774 if (!rx_ring->desc) { 775 dev_info(fq.pp->p.dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 776 rx_ring->size); 777 goto err; 778 } 779 780 rx_ring->next_to_clean = 0; 781 rx_ring->next_to_use = 0; 782 783 return 0; 784 785 err: 786 libeth_rx_fq_destroy(&fq); 787 rx_ring->rx_fqes = NULL; 788 rx_ring->pp = NULL; 789 790 return -ENOMEM; 791 } 792 793 /** 794 * iavf_release_rx_desc - Store the new tail and head values 795 * @rx_ring: ring to bump 796 * @val: new head index 797 **/ 798 static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 799 { 800 rx_ring->next_to_use = val; 801 802 /* Force memory writes to complete before letting h/w 803 * know there are new descriptors to fetch. (Only 804 * applicable for weak-ordered memory model archs, 805 * such as IA-64). 806 */ 807 wmb(); 808 writel(val, rx_ring->tail); 809 } 810 811 /** 812 * iavf_receive_skb - Send a completed packet up the stack 813 * @rx_ring: rx ring in play 814 * @skb: packet to send up 815 * @vlan_tag: vlan tag for packet 816 **/ 817 static void iavf_receive_skb(struct iavf_ring *rx_ring, 818 struct sk_buff *skb, u16 vlan_tag) 819 { 820 struct iavf_q_vector *q_vector = rx_ring->q_vector; 821 822 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 823 (vlan_tag & VLAN_VID_MASK)) 824 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 825 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) && 826 vlan_tag & VLAN_VID_MASK) 827 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag); 828 829 napi_gro_receive(&q_vector->napi, skb); 830 } 831 832 /** 833 * iavf_alloc_rx_buffers - Replace used receive buffers 834 * @rx_ring: ring to place buffers on 835 * @cleaned_count: number of buffers to replace 836 * 837 * Returns false if all allocations were successful, true if any fail 838 **/ 839 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 840 { 841 const struct libeth_fq_fp fq = { 842 .pp = rx_ring->pp, 843 .fqes = rx_ring->rx_fqes, 844 .truesize = rx_ring->truesize, 845 .count = rx_ring->count, 846 }; 847 u16 ntu = rx_ring->next_to_use; 848 union iavf_rx_desc *rx_desc; 849 850 /* do nothing if no valid netdev defined */ 851 if (!rx_ring->netdev || !cleaned_count) 852 return false; 853 854 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 855 856 do { 857 dma_addr_t addr; 858 859 addr = libeth_rx_alloc(&fq, ntu); 860 if (addr == DMA_MAPPING_ERROR) 861 goto no_buffers; 862 863 /* Refresh the desc even if buffer_addrs didn't change 864 * because each write-back erases this info. 865 */ 866 rx_desc->read.pkt_addr = cpu_to_le64(addr); 867 868 rx_desc++; 869 ntu++; 870 if (unlikely(ntu == rx_ring->count)) { 871 rx_desc = IAVF_RX_DESC(rx_ring, 0); 872 ntu = 0; 873 } 874 875 /* clear the status bits for the next_to_use descriptor */ 876 rx_desc->wb.qword1.status_error_len = 0; 877 878 cleaned_count--; 879 } while (cleaned_count); 880 881 if (rx_ring->next_to_use != ntu) 882 iavf_release_rx_desc(rx_ring, ntu); 883 884 return false; 885 886 no_buffers: 887 if (rx_ring->next_to_use != ntu) 888 iavf_release_rx_desc(rx_ring, ntu); 889 890 rx_ring->rx_stats.alloc_page_failed++; 891 892 /* make sure to come back via polling to try again after 893 * allocation failure 894 */ 895 return true; 896 } 897 898 /** 899 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 900 * @vsi: the VSI we care about 901 * @skb: skb currently being received and modified 902 * @rx_desc: the receive descriptor 903 **/ 904 static void iavf_rx_checksum(struct iavf_vsi *vsi, 905 struct sk_buff *skb, 906 union iavf_rx_desc *rx_desc) 907 { 908 struct libeth_rx_pt decoded; 909 u32 rx_error, rx_status; 910 bool ipv4, ipv6; 911 u8 ptype; 912 u64 qword; 913 914 skb->ip_summed = CHECKSUM_NONE; 915 916 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 917 ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword); 918 919 decoded = libie_rx_pt_parse(ptype); 920 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded)) 921 return; 922 923 rx_error = FIELD_GET(IAVF_RXD_QW1_ERROR_MASK, qword); 924 rx_status = FIELD_GET(IAVF_RXD_QW1_STATUS_MASK, qword); 925 926 /* did the hardware decode the packet and checksum? */ 927 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 928 return; 929 930 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4; 931 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6; 932 933 if (ipv4 && 934 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 935 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 936 goto checksum_fail; 937 938 /* likely incorrect csum if alternate IP extension headers found */ 939 if (ipv6 && 940 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 941 /* don't increment checksum err here, non-fatal err */ 942 return; 943 944 /* there was some L4 error, count error and punt packet to the stack */ 945 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 946 goto checksum_fail; 947 948 /* handle packets that were not able to be checksummed due 949 * to arrival speed, in this case the stack can compute 950 * the csum. 951 */ 952 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 953 return; 954 955 skb->ip_summed = CHECKSUM_UNNECESSARY; 956 return; 957 958 checksum_fail: 959 vsi->back->hw_csum_rx_error++; 960 } 961 962 /** 963 * iavf_rx_hash - set the hash value in the skb 964 * @ring: descriptor ring 965 * @rx_desc: specific descriptor 966 * @skb: skb currently being received and modified 967 * @rx_ptype: Rx packet type 968 **/ 969 static void iavf_rx_hash(struct iavf_ring *ring, 970 union iavf_rx_desc *rx_desc, 971 struct sk_buff *skb, 972 u8 rx_ptype) 973 { 974 struct libeth_rx_pt decoded; 975 u32 hash; 976 const __le64 rss_mask = 977 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 978 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 979 980 decoded = libie_rx_pt_parse(rx_ptype); 981 if (!libeth_rx_pt_has_hash(ring->netdev, decoded)) 982 return; 983 984 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 985 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 986 libeth_rx_pt_set_hash(skb, hash, decoded); 987 } 988 } 989 990 /** 991 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 992 * @rx_ring: rx descriptor ring packet is being transacted on 993 * @rx_desc: pointer to the EOP Rx descriptor 994 * @skb: pointer to current skb being populated 995 * @rx_ptype: the packet type decoded by hardware 996 * 997 * This function checks the ring, descriptor, and packet information in 998 * order to populate the hash, checksum, VLAN, protocol, and 999 * other fields within the skb. 1000 **/ 1001 static void 1002 iavf_process_skb_fields(struct iavf_ring *rx_ring, 1003 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1004 u8 rx_ptype) 1005 { 1006 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1007 1008 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1009 1010 skb_record_rx_queue(skb, rx_ring->queue_index); 1011 1012 /* modifies the skb - consumes the enet header */ 1013 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1014 } 1015 1016 /** 1017 * iavf_cleanup_headers - Correct empty headers 1018 * @rx_ring: rx descriptor ring packet is being transacted on 1019 * @skb: pointer to current skb being fixed 1020 * 1021 * Also address the case where we are pulling data in on pages only 1022 * and as such no data is present in the skb header. 1023 * 1024 * In addition if skb is not at least 60 bytes we need to pad it so that 1025 * it is large enough to qualify as a valid Ethernet frame. 1026 * 1027 * Returns true if an error was encountered and skb was freed. 1028 **/ 1029 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1030 { 1031 /* if eth_skb_pad returns an error the skb was freed */ 1032 if (eth_skb_pad(skb)) 1033 return true; 1034 1035 return false; 1036 } 1037 1038 /** 1039 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1040 * @skb: sk_buff to place the data into 1041 * @rx_buffer: buffer containing page to add 1042 * @size: packet length from rx_desc 1043 * 1044 * This function will add the data contained in rx_buffer->page to the skb. 1045 * It will just attach the page as a frag to the skb. 1046 * 1047 * The function will then update the page offset. 1048 **/ 1049 static void iavf_add_rx_frag(struct sk_buff *skb, 1050 const struct libeth_fqe *rx_buffer, 1051 unsigned int size) 1052 { 1053 u32 hr = rx_buffer->page->pp->p.offset; 1054 1055 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1056 rx_buffer->offset + hr, size, rx_buffer->truesize); 1057 } 1058 1059 /** 1060 * iavf_build_skb - Build skb around an existing buffer 1061 * @rx_buffer: Rx buffer to pull data from 1062 * @size: size of buffer to add to skb 1063 * 1064 * This function builds an skb around an existing Rx buffer, taking care 1065 * to set up the skb correctly and avoid any memcpy overhead. 1066 */ 1067 static struct sk_buff *iavf_build_skb(const struct libeth_fqe *rx_buffer, 1068 unsigned int size) 1069 { 1070 u32 hr = rx_buffer->page->pp->p.offset; 1071 struct sk_buff *skb; 1072 void *va; 1073 1074 /* prefetch first cache line of first page */ 1075 va = page_address(rx_buffer->page) + rx_buffer->offset; 1076 net_prefetch(va + hr); 1077 1078 /* build an skb around the page buffer */ 1079 skb = napi_build_skb(va, rx_buffer->truesize); 1080 if (unlikely(!skb)) 1081 return NULL; 1082 1083 skb_mark_for_recycle(skb); 1084 1085 /* update pointers within the skb to store the data */ 1086 skb_reserve(skb, hr); 1087 __skb_put(skb, size); 1088 1089 return skb; 1090 } 1091 1092 /** 1093 * iavf_is_non_eop - process handling of non-EOP buffers 1094 * @rx_ring: Rx ring being processed 1095 * @rx_desc: Rx descriptor for current buffer 1096 * @skb: Current socket buffer containing buffer in progress 1097 * 1098 * This function updates next to clean. If the buffer is an EOP buffer 1099 * this function exits returning false, otherwise it will place the 1100 * sk_buff in the next buffer to be chained and return true indicating 1101 * that this is in fact a non-EOP buffer. 1102 **/ 1103 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1104 union iavf_rx_desc *rx_desc, 1105 struct sk_buff *skb) 1106 { 1107 u32 ntc = rx_ring->next_to_clean + 1; 1108 1109 /* fetch, update, and store next to clean */ 1110 ntc = (ntc < rx_ring->count) ? ntc : 0; 1111 rx_ring->next_to_clean = ntc; 1112 1113 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1114 1115 /* if we are the last buffer then there is nothing else to do */ 1116 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1117 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1118 return false; 1119 1120 rx_ring->rx_stats.non_eop_descs++; 1121 1122 return true; 1123 } 1124 1125 /** 1126 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1127 * @rx_ring: rx descriptor ring to transact packets on 1128 * @budget: Total limit on number of packets to process 1129 * 1130 * This function provides a "bounce buffer" approach to Rx interrupt 1131 * processing. The advantage to this is that on systems that have 1132 * expensive overhead for IOMMU access this provides a means of avoiding 1133 * it by maintaining the mapping of the page to the system. 1134 * 1135 * Returns amount of work completed 1136 **/ 1137 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1138 { 1139 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1140 struct sk_buff *skb = rx_ring->skb; 1141 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1142 bool failure = false; 1143 1144 while (likely(total_rx_packets < (unsigned int)budget)) { 1145 struct libeth_fqe *rx_buffer; 1146 union iavf_rx_desc *rx_desc; 1147 unsigned int size; 1148 u16 vlan_tag = 0; 1149 u8 rx_ptype; 1150 u64 qword; 1151 1152 /* return some buffers to hardware, one at a time is too slow */ 1153 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1154 failure = failure || 1155 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1156 cleaned_count = 0; 1157 } 1158 1159 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1160 1161 /* status_error_len will always be zero for unused descriptors 1162 * because it's cleared in cleanup, and overlaps with hdr_addr 1163 * which is always zero because packet split isn't used, if the 1164 * hardware wrote DD then the length will be non-zero 1165 */ 1166 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1167 1168 /* This memory barrier is needed to keep us from reading 1169 * any other fields out of the rx_desc until we have 1170 * verified the descriptor has been written back. 1171 */ 1172 dma_rmb(); 1173 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) 1174 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) 1175 break; 1176 1177 size = FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK, qword); 1178 1179 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1180 1181 rx_buffer = &rx_ring->rx_fqes[rx_ring->next_to_clean]; 1182 if (!libeth_rx_sync_for_cpu(rx_buffer, size)) 1183 goto skip_data; 1184 1185 /* retrieve a buffer from the ring */ 1186 if (skb) 1187 iavf_add_rx_frag(skb, rx_buffer, size); 1188 else 1189 skb = iavf_build_skb(rx_buffer, size); 1190 1191 /* exit if we failed to retrieve a buffer */ 1192 if (!skb) { 1193 rx_ring->rx_stats.alloc_buff_failed++; 1194 break; 1195 } 1196 1197 skip_data: 1198 cleaned_count++; 1199 1200 if (iavf_is_non_eop(rx_ring, rx_desc, skb) || unlikely(!skb)) 1201 continue; 1202 1203 /* ERR_MASK will only have valid bits if EOP set, and 1204 * what we are doing here is actually checking 1205 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1206 * the error field 1207 */ 1208 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1209 dev_kfree_skb_any(skb); 1210 skb = NULL; 1211 continue; 1212 } 1213 1214 if (iavf_cleanup_headers(rx_ring, skb)) { 1215 skb = NULL; 1216 continue; 1217 } 1218 1219 /* probably a little skewed due to removing CRC */ 1220 total_rx_bytes += skb->len; 1221 1222 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1223 rx_ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword); 1224 1225 /* populate checksum, VLAN, and protocol */ 1226 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1227 1228 if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) && 1229 rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) 1230 vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1); 1231 if (rx_desc->wb.qword2.ext_status & 1232 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) && 1233 rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) 1234 vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2); 1235 1236 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1237 iavf_receive_skb(rx_ring, skb, vlan_tag); 1238 skb = NULL; 1239 1240 /* update budget accounting */ 1241 total_rx_packets++; 1242 } 1243 1244 rx_ring->skb = skb; 1245 1246 u64_stats_update_begin(&rx_ring->syncp); 1247 rx_ring->stats.packets += total_rx_packets; 1248 rx_ring->stats.bytes += total_rx_bytes; 1249 u64_stats_update_end(&rx_ring->syncp); 1250 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1251 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1252 1253 /* guarantee a trip back through this routine if there was a failure */ 1254 return failure ? budget : (int)total_rx_packets; 1255 } 1256 1257 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1258 { 1259 u32 val; 1260 1261 /* We don't bother with setting the CLEARPBA bit as the data sheet 1262 * points out doing so is "meaningless since it was already 1263 * auto-cleared". The auto-clearing happens when the interrupt is 1264 * asserted. 1265 * 1266 * Hardware errata 28 for also indicates that writing to a 1267 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1268 * an event in the PBA anyway so we need to rely on the automask 1269 * to hold pending events for us until the interrupt is re-enabled 1270 * 1271 * The itr value is reported in microseconds, and the register 1272 * value is recorded in 2 microsecond units. For this reason we 1273 * only need to shift by the interval shift - 1 instead of the 1274 * full value. 1275 */ 1276 itr &= IAVF_ITR_MASK; 1277 1278 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1279 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1280 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1281 1282 return val; 1283 } 1284 1285 /* a small macro to shorten up some long lines */ 1286 #define INTREG IAVF_VFINT_DYN_CTLN1 1287 1288 /* The act of updating the ITR will cause it to immediately trigger. In order 1289 * to prevent this from throwing off adaptive update statistics we defer the 1290 * update so that it can only happen so often. So after either Tx or Rx are 1291 * updated we make the adaptive scheme wait until either the ITR completely 1292 * expires via the next_update expiration or we have been through at least 1293 * 3 interrupts. 1294 */ 1295 #define ITR_COUNTDOWN_START 3 1296 1297 /** 1298 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1299 * @vsi: the VSI we care about 1300 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1301 * 1302 **/ 1303 static void iavf_update_enable_itr(struct iavf_vsi *vsi, 1304 struct iavf_q_vector *q_vector) 1305 { 1306 struct iavf_hw *hw = &vsi->back->hw; 1307 u32 intval; 1308 1309 /* These will do nothing if dynamic updates are not enabled */ 1310 iavf_update_itr(q_vector, &q_vector->tx); 1311 iavf_update_itr(q_vector, &q_vector->rx); 1312 1313 /* This block of logic allows us to get away with only updating 1314 * one ITR value with each interrupt. The idea is to perform a 1315 * pseudo-lazy update with the following criteria. 1316 * 1317 * 1. Rx is given higher priority than Tx if both are in same state 1318 * 2. If we must reduce an ITR that is given highest priority. 1319 * 3. We then give priority to increasing ITR based on amount. 1320 */ 1321 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1322 /* Rx ITR needs to be reduced, this is highest priority */ 1323 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1324 q_vector->rx.target_itr); 1325 q_vector->rx.current_itr = q_vector->rx.target_itr; 1326 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1327 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1328 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1329 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1330 /* Tx ITR needs to be reduced, this is second priority 1331 * Tx ITR needs to be increased more than Rx, fourth priority 1332 */ 1333 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1334 q_vector->tx.target_itr); 1335 q_vector->tx.current_itr = q_vector->tx.target_itr; 1336 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1337 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1338 /* Rx ITR needs to be increased, third priority */ 1339 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1340 q_vector->rx.target_itr); 1341 q_vector->rx.current_itr = q_vector->rx.target_itr; 1342 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1343 } else { 1344 /* No ITR update, lowest priority */ 1345 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1346 if (q_vector->itr_countdown) 1347 q_vector->itr_countdown--; 1348 } 1349 1350 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1351 wr32(hw, INTREG(q_vector->reg_idx), intval); 1352 } 1353 1354 /** 1355 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1356 * @napi: napi struct with our devices info in it 1357 * @budget: amount of work driver is allowed to do this pass, in packets 1358 * 1359 * This function will clean all queues associated with a q_vector. 1360 * 1361 * Returns the amount of work done 1362 **/ 1363 int iavf_napi_poll(struct napi_struct *napi, int budget) 1364 { 1365 struct iavf_q_vector *q_vector = 1366 container_of(napi, struct iavf_q_vector, napi); 1367 struct iavf_vsi *vsi = q_vector->vsi; 1368 struct iavf_ring *ring; 1369 bool clean_complete = true; 1370 bool arm_wb = false; 1371 int budget_per_ring; 1372 int work_done = 0; 1373 1374 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1375 napi_complete(napi); 1376 return 0; 1377 } 1378 1379 /* Since the actual Tx work is minimal, we can give the Tx a larger 1380 * budget and be more aggressive about cleaning up the Tx descriptors. 1381 */ 1382 iavf_for_each_ring(ring, q_vector->tx) { 1383 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1384 clean_complete = false; 1385 continue; 1386 } 1387 arm_wb |= !!(ring->flags & IAVF_TXR_FLAGS_ARM_WB); 1388 ring->flags &= ~IAVF_TXR_FLAGS_ARM_WB; 1389 } 1390 1391 /* Handle case where we are called by netpoll with a budget of 0 */ 1392 if (budget <= 0) 1393 goto tx_only; 1394 1395 /* We attempt to distribute budget to each Rx queue fairly, but don't 1396 * allow the budget to go below 1 because that would exit polling early. 1397 */ 1398 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1399 1400 iavf_for_each_ring(ring, q_vector->rx) { 1401 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1402 1403 work_done += cleaned; 1404 /* if we clean as many as budgeted, we must not be done */ 1405 if (cleaned >= budget_per_ring) 1406 clean_complete = false; 1407 } 1408 1409 /* If work not completed, return budget and polling will return */ 1410 if (!clean_complete) { 1411 int cpu_id = smp_processor_id(); 1412 1413 /* It is possible that the interrupt affinity has changed but, 1414 * if the cpu is pegged at 100%, polling will never exit while 1415 * traffic continues and the interrupt will be stuck on this 1416 * cpu. We check to make sure affinity is correct before we 1417 * continue to poll, otherwise we must stop polling so the 1418 * interrupt can move to the correct cpu. 1419 */ 1420 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1421 /* Tell napi that we are done polling */ 1422 napi_complete_done(napi, work_done); 1423 1424 /* Force an interrupt */ 1425 iavf_force_wb(vsi, q_vector); 1426 1427 /* Return budget-1 so that polling stops */ 1428 return budget - 1; 1429 } 1430 tx_only: 1431 if (arm_wb) { 1432 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1433 iavf_enable_wb_on_itr(vsi, q_vector); 1434 } 1435 return budget; 1436 } 1437 1438 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1439 q_vector->arm_wb_state = false; 1440 1441 /* Exit the polling mode, but don't re-enable interrupts if stack might 1442 * poll us due to busy-polling 1443 */ 1444 if (likely(napi_complete_done(napi, work_done))) 1445 iavf_update_enable_itr(vsi, q_vector); 1446 1447 return min_t(int, work_done, budget - 1); 1448 } 1449 1450 /** 1451 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1452 * @skb: send buffer 1453 * @tx_ring: ring to send buffer on 1454 * @flags: the tx flags to be set 1455 * 1456 * Checks the skb and set up correspondingly several generic transmit flags 1457 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1458 * 1459 * Returns error code indicate the frame should be dropped upon error and the 1460 * otherwise returns 0 to indicate the flags has been set properly. 1461 **/ 1462 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1463 struct iavf_ring *tx_ring, u32 *flags) 1464 { 1465 u32 tx_flags = 0; 1466 1467 1468 /* stack will only request hardware VLAN insertion offload for protocols 1469 * that the driver supports and has enabled 1470 */ 1471 if (!skb_vlan_tag_present(skb)) 1472 return; 1473 1474 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1475 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) { 1476 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1477 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) { 1478 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1479 } else { 1480 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n"); 1481 return; 1482 } 1483 1484 *flags = tx_flags; 1485 } 1486 1487 /** 1488 * iavf_tso - set up the tso context descriptor 1489 * @first: pointer to first Tx buffer for xmit 1490 * @hdr_len: ptr to the size of the packet header 1491 * @cd_type_cmd_tso_mss: Quad Word 1 1492 * 1493 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1494 **/ 1495 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1496 u64 *cd_type_cmd_tso_mss) 1497 { 1498 struct sk_buff *skb = first->skb; 1499 u64 cd_cmd, cd_tso_len, cd_mss; 1500 union { 1501 struct iphdr *v4; 1502 struct ipv6hdr *v6; 1503 unsigned char *hdr; 1504 } ip; 1505 union { 1506 struct tcphdr *tcp; 1507 struct udphdr *udp; 1508 unsigned char *hdr; 1509 } l4; 1510 u32 paylen, l4_offset; 1511 u16 gso_segs, gso_size; 1512 int err; 1513 1514 if (skb->ip_summed != CHECKSUM_PARTIAL) 1515 return 0; 1516 1517 if (!skb_is_gso(skb)) 1518 return 0; 1519 1520 err = skb_cow_head(skb, 0); 1521 if (err < 0) 1522 return err; 1523 1524 ip.hdr = skb_network_header(skb); 1525 l4.hdr = skb_transport_header(skb); 1526 1527 /* initialize outer IP header fields */ 1528 if (ip.v4->version == 4) { 1529 ip.v4->tot_len = 0; 1530 ip.v4->check = 0; 1531 } else { 1532 ip.v6->payload_len = 0; 1533 } 1534 1535 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1536 SKB_GSO_GRE_CSUM | 1537 SKB_GSO_IPXIP4 | 1538 SKB_GSO_IPXIP6 | 1539 SKB_GSO_UDP_TUNNEL | 1540 SKB_GSO_UDP_TUNNEL_CSUM)) { 1541 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1542 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1543 l4.udp->len = 0; 1544 1545 /* determine offset of outer transport header */ 1546 l4_offset = l4.hdr - skb->data; 1547 1548 /* remove payload length from outer checksum */ 1549 paylen = skb->len - l4_offset; 1550 csum_replace_by_diff(&l4.udp->check, 1551 (__force __wsum)htonl(paylen)); 1552 } 1553 1554 /* reset pointers to inner headers */ 1555 ip.hdr = skb_inner_network_header(skb); 1556 l4.hdr = skb_inner_transport_header(skb); 1557 1558 /* initialize inner IP header fields */ 1559 if (ip.v4->version == 4) { 1560 ip.v4->tot_len = 0; 1561 ip.v4->check = 0; 1562 } else { 1563 ip.v6->payload_len = 0; 1564 } 1565 } 1566 1567 /* determine offset of inner transport header */ 1568 l4_offset = l4.hdr - skb->data; 1569 /* remove payload length from inner checksum */ 1570 paylen = skb->len - l4_offset; 1571 1572 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1573 csum_replace_by_diff(&l4.udp->check, 1574 (__force __wsum)htonl(paylen)); 1575 /* compute length of UDP segmentation header */ 1576 *hdr_len = (u8)sizeof(l4.udp) + l4_offset; 1577 } else { 1578 csum_replace_by_diff(&l4.tcp->check, 1579 (__force __wsum)htonl(paylen)); 1580 /* compute length of TCP segmentation header */ 1581 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset); 1582 } 1583 1584 /* pull values out of skb_shinfo */ 1585 gso_size = skb_shinfo(skb)->gso_size; 1586 gso_segs = skb_shinfo(skb)->gso_segs; 1587 1588 /* update GSO size and bytecount with header size */ 1589 first->gso_segs = gso_segs; 1590 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1591 1592 /* find the field values */ 1593 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1594 cd_tso_len = skb->len - *hdr_len; 1595 cd_mss = gso_size; 1596 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1597 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1598 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1599 return 1; 1600 } 1601 1602 /** 1603 * iavf_tx_enable_csum - Enable Tx checksum offloads 1604 * @skb: send buffer 1605 * @tx_flags: pointer to Tx flags currently set 1606 * @td_cmd: Tx descriptor command bits to set 1607 * @td_offset: Tx descriptor header offsets to set 1608 * @tx_ring: Tx descriptor ring 1609 * @cd_tunneling: ptr to context desc bits 1610 **/ 1611 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1612 u32 *td_cmd, u32 *td_offset, 1613 struct iavf_ring *tx_ring, 1614 u32 *cd_tunneling) 1615 { 1616 union { 1617 struct iphdr *v4; 1618 struct ipv6hdr *v6; 1619 unsigned char *hdr; 1620 } ip; 1621 union { 1622 struct tcphdr *tcp; 1623 struct udphdr *udp; 1624 unsigned char *hdr; 1625 } l4; 1626 unsigned char *exthdr; 1627 u32 offset, cmd = 0; 1628 __be16 frag_off; 1629 u8 l4_proto = 0; 1630 1631 if (skb->ip_summed != CHECKSUM_PARTIAL) 1632 return 0; 1633 1634 ip.hdr = skb_network_header(skb); 1635 l4.hdr = skb_transport_header(skb); 1636 1637 /* compute outer L2 header size */ 1638 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 1639 1640 if (skb->encapsulation) { 1641 u32 tunnel = 0; 1642 /* define outer network header type */ 1643 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 1644 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 1645 IAVF_TX_CTX_EXT_IP_IPV4 : 1646 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 1647 1648 l4_proto = ip.v4->protocol; 1649 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 1650 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 1651 1652 exthdr = ip.hdr + sizeof(*ip.v6); 1653 l4_proto = ip.v6->nexthdr; 1654 if (l4.hdr != exthdr) 1655 ipv6_skip_exthdr(skb, exthdr - skb->data, 1656 &l4_proto, &frag_off); 1657 } 1658 1659 /* define outer transport */ 1660 switch (l4_proto) { 1661 case IPPROTO_UDP: 1662 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 1663 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 1664 break; 1665 case IPPROTO_GRE: 1666 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 1667 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 1668 break; 1669 case IPPROTO_IPIP: 1670 case IPPROTO_IPV6: 1671 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 1672 l4.hdr = skb_inner_network_header(skb); 1673 break; 1674 default: 1675 if (*tx_flags & IAVF_TX_FLAGS_TSO) 1676 return -1; 1677 1678 skb_checksum_help(skb); 1679 return 0; 1680 } 1681 1682 /* compute outer L3 header size */ 1683 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1684 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 1685 1686 /* switch IP header pointer from outer to inner header */ 1687 ip.hdr = skb_inner_network_header(skb); 1688 1689 /* compute tunnel header size */ 1690 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1691 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 1692 1693 /* indicate if we need to offload outer UDP header */ 1694 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 1695 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1696 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1697 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 1698 1699 /* record tunnel offload values */ 1700 *cd_tunneling |= tunnel; 1701 1702 /* switch L4 header pointer from outer to inner */ 1703 l4.hdr = skb_inner_transport_header(skb); 1704 l4_proto = 0; 1705 1706 /* reset type as we transition from outer to inner headers */ 1707 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 1708 if (ip.v4->version == 4) 1709 *tx_flags |= IAVF_TX_FLAGS_IPV4; 1710 if (ip.v6->version == 6) 1711 *tx_flags |= IAVF_TX_FLAGS_IPV6; 1712 } 1713 1714 /* Enable IP checksum offloads */ 1715 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 1716 l4_proto = ip.v4->protocol; 1717 /* the stack computes the IP header already, the only time we 1718 * need the hardware to recompute it is in the case of TSO. 1719 */ 1720 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 1721 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 1722 IAVF_TX_DESC_CMD_IIPT_IPV4; 1723 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 1724 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 1725 1726 exthdr = ip.hdr + sizeof(*ip.v6); 1727 l4_proto = ip.v6->nexthdr; 1728 if (l4.hdr != exthdr) 1729 ipv6_skip_exthdr(skb, exthdr - skb->data, 1730 &l4_proto, &frag_off); 1731 } 1732 1733 /* compute inner L3 header size */ 1734 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 1735 1736 /* Enable L4 checksum offloads */ 1737 switch (l4_proto) { 1738 case IPPROTO_TCP: 1739 /* enable checksum offloads */ 1740 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 1741 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 1742 break; 1743 case IPPROTO_SCTP: 1744 /* enable SCTP checksum offload */ 1745 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 1746 offset |= (sizeof(struct sctphdr) >> 2) << 1747 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 1748 break; 1749 case IPPROTO_UDP: 1750 /* enable UDP checksum offload */ 1751 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 1752 offset |= (sizeof(struct udphdr) >> 2) << 1753 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 1754 break; 1755 default: 1756 if (*tx_flags & IAVF_TX_FLAGS_TSO) 1757 return -1; 1758 skb_checksum_help(skb); 1759 return 0; 1760 } 1761 1762 *td_cmd |= cmd; 1763 *td_offset |= offset; 1764 1765 return 1; 1766 } 1767 1768 /** 1769 * iavf_create_tx_ctx - Build the Tx context descriptor 1770 * @tx_ring: ring to create the descriptor on 1771 * @cd_type_cmd_tso_mss: Quad Word 1 1772 * @cd_tunneling: Quad Word 0 - bits 0-31 1773 * @cd_l2tag2: Quad Word 0 - bits 32-63 1774 **/ 1775 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 1776 const u64 cd_type_cmd_tso_mss, 1777 const u32 cd_tunneling, const u32 cd_l2tag2) 1778 { 1779 struct iavf_tx_context_desc *context_desc; 1780 int i = tx_ring->next_to_use; 1781 1782 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 1783 !cd_tunneling && !cd_l2tag2) 1784 return; 1785 1786 /* grab the next descriptor */ 1787 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 1788 1789 i++; 1790 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1791 1792 /* cpu_to_le32 and assign to struct fields */ 1793 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 1794 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 1795 context_desc->rsvd = cpu_to_le16(0); 1796 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 1797 } 1798 1799 /** 1800 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 1801 * @skb: send buffer 1802 * 1803 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 1804 * and so we need to figure out the cases where we need to linearize the skb. 1805 * 1806 * For TSO we need to count the TSO header and segment payload separately. 1807 * As such we need to check cases where we have 7 fragments or more as we 1808 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 1809 * the segment payload in the first descriptor, and another 7 for the 1810 * fragments. 1811 **/ 1812 bool __iavf_chk_linearize(struct sk_buff *skb) 1813 { 1814 const skb_frag_t *frag, *stale; 1815 int nr_frags, sum; 1816 1817 /* no need to check if number of frags is less than 7 */ 1818 nr_frags = skb_shinfo(skb)->nr_frags; 1819 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 1820 return false; 1821 1822 /* We need to walk through the list and validate that each group 1823 * of 6 fragments totals at least gso_size. 1824 */ 1825 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 1826 frag = &skb_shinfo(skb)->frags[0]; 1827 1828 /* Initialize size to the negative value of gso_size minus 1. We 1829 * use this as the worst case scenerio in which the frag ahead 1830 * of us only provides one byte which is why we are limited to 6 1831 * descriptors for a single transmit as the header and previous 1832 * fragment are already consuming 2 descriptors. 1833 */ 1834 sum = 1 - skb_shinfo(skb)->gso_size; 1835 1836 /* Add size of frags 0 through 4 to create our initial sum */ 1837 sum += skb_frag_size(frag++); 1838 sum += skb_frag_size(frag++); 1839 sum += skb_frag_size(frag++); 1840 sum += skb_frag_size(frag++); 1841 sum += skb_frag_size(frag++); 1842 1843 /* Walk through fragments adding latest fragment, testing it, and 1844 * then removing stale fragments from the sum. 1845 */ 1846 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 1847 int stale_size = skb_frag_size(stale); 1848 1849 sum += skb_frag_size(frag++); 1850 1851 /* The stale fragment may present us with a smaller 1852 * descriptor than the actual fragment size. To account 1853 * for that we need to remove all the data on the front and 1854 * figure out what the remainder would be in the last 1855 * descriptor associated with the fragment. 1856 */ 1857 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 1858 int align_pad = -(skb_frag_off(stale)) & 1859 (IAVF_MAX_READ_REQ_SIZE - 1); 1860 1861 sum -= align_pad; 1862 stale_size -= align_pad; 1863 1864 do { 1865 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 1866 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 1867 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 1868 } 1869 1870 /* if sum is negative we failed to make sufficient progress */ 1871 if (sum < 0) 1872 return true; 1873 1874 if (!nr_frags--) 1875 break; 1876 1877 sum -= stale_size; 1878 } 1879 1880 return false; 1881 } 1882 1883 /** 1884 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 1885 * @tx_ring: the ring to be checked 1886 * @size: the size buffer we want to assure is available 1887 * 1888 * Returns -EBUSY if a stop is needed, else 0 1889 **/ 1890 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 1891 { 1892 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 1893 /* Memory barrier before checking head and tail */ 1894 smp_mb(); 1895 1896 /* Check again in a case another CPU has just made room available. */ 1897 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 1898 return -EBUSY; 1899 1900 /* A reprieve! - use start_queue because it doesn't call schedule */ 1901 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 1902 ++tx_ring->tx_stats.restart_queue; 1903 return 0; 1904 } 1905 1906 /** 1907 * iavf_tx_map - Build the Tx descriptor 1908 * @tx_ring: ring to send buffer on 1909 * @skb: send buffer 1910 * @first: first buffer info buffer to use 1911 * @tx_flags: collected send information 1912 * @hdr_len: size of the packet header 1913 * @td_cmd: the command field in the descriptor 1914 * @td_offset: offset for checksum or crc 1915 **/ 1916 static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 1917 struct iavf_tx_buffer *first, u32 tx_flags, 1918 const u8 hdr_len, u32 td_cmd, u32 td_offset) 1919 { 1920 unsigned int data_len = skb->data_len; 1921 unsigned int size = skb_headlen(skb); 1922 skb_frag_t *frag; 1923 struct iavf_tx_buffer *tx_bi; 1924 struct iavf_tx_desc *tx_desc; 1925 u16 i = tx_ring->next_to_use; 1926 u32 td_tag = 0; 1927 dma_addr_t dma; 1928 1929 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 1930 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 1931 td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags); 1932 } 1933 1934 first->tx_flags = tx_flags; 1935 1936 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1937 1938 tx_desc = IAVF_TX_DESC(tx_ring, i); 1939 tx_bi = first; 1940 1941 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1942 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 1943 1944 if (dma_mapping_error(tx_ring->dev, dma)) 1945 goto dma_error; 1946 1947 /* record length, and DMA address */ 1948 dma_unmap_len_set(tx_bi, len, size); 1949 dma_unmap_addr_set(tx_bi, dma, dma); 1950 1951 /* align size to end of page */ 1952 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 1953 tx_desc->buffer_addr = cpu_to_le64(dma); 1954 1955 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 1956 tx_desc->cmd_type_offset_bsz = 1957 build_ctob(td_cmd, td_offset, 1958 max_data, td_tag); 1959 1960 tx_desc++; 1961 i++; 1962 1963 if (i == tx_ring->count) { 1964 tx_desc = IAVF_TX_DESC(tx_ring, 0); 1965 i = 0; 1966 } 1967 1968 dma += max_data; 1969 size -= max_data; 1970 1971 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 1972 tx_desc->buffer_addr = cpu_to_le64(dma); 1973 } 1974 1975 if (likely(!data_len)) 1976 break; 1977 1978 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 1979 size, td_tag); 1980 1981 tx_desc++; 1982 i++; 1983 1984 if (i == tx_ring->count) { 1985 tx_desc = IAVF_TX_DESC(tx_ring, 0); 1986 i = 0; 1987 } 1988 1989 size = skb_frag_size(frag); 1990 data_len -= size; 1991 1992 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1993 DMA_TO_DEVICE); 1994 1995 tx_bi = &tx_ring->tx_bi[i]; 1996 } 1997 1998 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1999 2000 i++; 2001 if (i == tx_ring->count) 2002 i = 0; 2003 2004 tx_ring->next_to_use = i; 2005 2006 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2007 2008 /* write last descriptor with RS and EOP bits */ 2009 td_cmd |= IAVF_TXD_CMD; 2010 tx_desc->cmd_type_offset_bsz = 2011 build_ctob(td_cmd, td_offset, size, td_tag); 2012 2013 skb_tx_timestamp(skb); 2014 2015 /* Force memory writes to complete before letting h/w know there 2016 * are new descriptors to fetch. 2017 * 2018 * We also use this memory barrier to make certain all of the 2019 * status bits have been updated before next_to_watch is written. 2020 */ 2021 wmb(); 2022 2023 /* set next_to_watch value indicating a packet is present */ 2024 first->next_to_watch = tx_desc; 2025 2026 /* notify HW of packet */ 2027 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 2028 writel(i, tx_ring->tail); 2029 } 2030 2031 return; 2032 2033 dma_error: 2034 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2035 2036 /* clear dma mappings for failed tx_bi map */ 2037 for (;;) { 2038 tx_bi = &tx_ring->tx_bi[i]; 2039 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2040 if (tx_bi == first) 2041 break; 2042 if (i == 0) 2043 i = tx_ring->count; 2044 i--; 2045 } 2046 2047 tx_ring->next_to_use = i; 2048 } 2049 2050 /** 2051 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2052 * @skb: send buffer 2053 * @tx_ring: ring to send buffer on 2054 * 2055 * Returns NETDEV_TX_OK if sent, else an error code 2056 **/ 2057 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2058 struct iavf_ring *tx_ring) 2059 { 2060 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2061 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2062 struct iavf_tx_buffer *first; 2063 u32 td_offset = 0; 2064 u32 tx_flags = 0; 2065 __be16 protocol; 2066 u32 td_cmd = 0; 2067 u8 hdr_len = 0; 2068 int tso, count; 2069 2070 /* prefetch the data, we'll need it later */ 2071 prefetch(skb->data); 2072 2073 iavf_trace(xmit_frame_ring, skb, tx_ring); 2074 2075 count = iavf_xmit_descriptor_count(skb); 2076 if (iavf_chk_linearize(skb, count)) { 2077 if (__skb_linearize(skb)) { 2078 dev_kfree_skb_any(skb); 2079 return NETDEV_TX_OK; 2080 } 2081 count = iavf_txd_use_count(skb->len); 2082 tx_ring->tx_stats.tx_linearize++; 2083 } 2084 2085 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2086 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2087 * + 4 desc gap to avoid the cache line where head is, 2088 * + 1 desc for context descriptor, 2089 * otherwise try next time 2090 */ 2091 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2092 tx_ring->tx_stats.tx_busy++; 2093 return NETDEV_TX_BUSY; 2094 } 2095 2096 /* record the location of the first descriptor for this packet */ 2097 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2098 first->skb = skb; 2099 first->bytecount = skb->len; 2100 first->gso_segs = 1; 2101 2102 /* prepare the xmit flags */ 2103 iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags); 2104 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2105 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 << 2106 IAVF_TXD_CTX_QW1_CMD_SHIFT; 2107 cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags); 2108 } 2109 2110 /* obtain protocol of skb */ 2111 protocol = vlan_get_protocol(skb); 2112 2113 /* setup IPv4/IPv6 offloads */ 2114 if (protocol == htons(ETH_P_IP)) 2115 tx_flags |= IAVF_TX_FLAGS_IPV4; 2116 else if (protocol == htons(ETH_P_IPV6)) 2117 tx_flags |= IAVF_TX_FLAGS_IPV6; 2118 2119 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2120 2121 if (tso < 0) 2122 goto out_drop; 2123 else if (tso) 2124 tx_flags |= IAVF_TX_FLAGS_TSO; 2125 2126 /* Always offload the checksum, since it's in the data descriptor */ 2127 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2128 tx_ring, &cd_tunneling); 2129 if (tso < 0) 2130 goto out_drop; 2131 2132 /* always enable CRC insertion offload */ 2133 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2134 2135 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2136 cd_tunneling, cd_l2tag2); 2137 2138 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2139 td_cmd, td_offset); 2140 2141 return NETDEV_TX_OK; 2142 2143 out_drop: 2144 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2145 dev_kfree_skb_any(first->skb); 2146 first->skb = NULL; 2147 return NETDEV_TX_OK; 2148 } 2149 2150 /** 2151 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2152 * @skb: send buffer 2153 * @netdev: network interface device structure 2154 * 2155 * Returns NETDEV_TX_OK if sent, else an error code 2156 **/ 2157 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2158 { 2159 struct iavf_adapter *adapter = netdev_priv(netdev); 2160 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2161 2162 /* hardware can't handle really short frames, hardware padding works 2163 * beyond this point 2164 */ 2165 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2166 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2167 return NETDEV_TX_OK; 2168 skb->len = IAVF_MIN_TX_LEN; 2169 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2170 } 2171 2172 return iavf_xmit_frame_ring(skb, tx_ring); 2173 } 2174