1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_schedule_reset - Set the flags and schedule a reset event 281 * @adapter: board private structure 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 283 **/ 284 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 285 { 286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 287 !(adapter->flags & 288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 289 adapter->flags |= flags; 290 queue_work(adapter->wq, &adapter->reset_task); 291 } 292 } 293 294 /** 295 * iavf_schedule_aq_request - Set the flags and schedule aq request 296 * @adapter: board private structure 297 * @flags: requested aq flags 298 **/ 299 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 300 { 301 adapter->aq_required |= flags; 302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 303 } 304 305 /** 306 * iavf_tx_timeout - Respond to a Tx Hang 307 * @netdev: network interface device structure 308 * @txqueue: queue number that is timing out 309 **/ 310 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 311 { 312 struct iavf_adapter *adapter = netdev_priv(netdev); 313 314 adapter->tx_timeout_count++; 315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 316 } 317 318 /** 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 320 * @adapter: board private structure 321 **/ 322 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 323 { 324 struct iavf_hw *hw = &adapter->hw; 325 326 if (!adapter->msix_entries) 327 return; 328 329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 330 331 iavf_flush(hw); 332 333 synchronize_irq(adapter->msix_entries[0].vector); 334 } 335 336 /** 337 * iavf_misc_irq_enable - Enable default interrupt generation settings 338 * @adapter: board private structure 339 **/ 340 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 341 { 342 struct iavf_hw *hw = &adapter->hw; 343 344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 347 348 iavf_flush(hw); 349 } 350 351 /** 352 * iavf_irq_disable - Mask off interrupt generation on the NIC 353 * @adapter: board private structure 354 **/ 355 static void iavf_irq_disable(struct iavf_adapter *adapter) 356 { 357 int i; 358 struct iavf_hw *hw = &adapter->hw; 359 360 if (!adapter->msix_entries) 361 return; 362 363 for (i = 1; i < adapter->num_msix_vectors; i++) { 364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 365 synchronize_irq(adapter->msix_entries[i].vector); 366 } 367 iavf_flush(hw); 368 } 369 370 /** 371 * iavf_irq_enable_queues - Enable interrupt for all queues 372 * @adapter: board private structure 373 **/ 374 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 375 { 376 struct iavf_hw *hw = &adapter->hw; 377 int i; 378 379 for (i = 1; i < adapter->num_msix_vectors; i++) { 380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 383 } 384 } 385 386 /** 387 * iavf_irq_enable - Enable default interrupt generation settings 388 * @adapter: board private structure 389 * @flush: boolean value whether to run rd32() 390 **/ 391 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 392 { 393 struct iavf_hw *hw = &adapter->hw; 394 395 iavf_misc_irq_enable(adapter); 396 iavf_irq_enable_queues(adapter); 397 398 if (flush) 399 iavf_flush(hw); 400 } 401 402 /** 403 * iavf_msix_aq - Interrupt handler for vector 0 404 * @irq: interrupt number 405 * @data: pointer to netdev 406 **/ 407 static irqreturn_t iavf_msix_aq(int irq, void *data) 408 { 409 struct net_device *netdev = data; 410 struct iavf_adapter *adapter = netdev_priv(netdev); 411 struct iavf_hw *hw = &adapter->hw; 412 413 /* handle non-queue interrupts, these reads clear the registers */ 414 rd32(hw, IAVF_VFINT_ICR01); 415 rd32(hw, IAVF_VFINT_ICR0_ENA1); 416 417 if (adapter->state != __IAVF_REMOVE) 418 /* schedule work on the private workqueue */ 419 queue_work(adapter->wq, &adapter->adminq_task); 420 421 return IRQ_HANDLED; 422 } 423 424 /** 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 426 * @irq: interrupt number 427 * @data: pointer to a q_vector 428 **/ 429 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 430 { 431 struct iavf_q_vector *q_vector = data; 432 433 if (!q_vector->tx.ring && !q_vector->rx.ring) 434 return IRQ_HANDLED; 435 436 napi_schedule_irqoff(&q_vector->napi); 437 438 return IRQ_HANDLED; 439 } 440 441 /** 442 * iavf_map_vector_to_rxq - associate irqs with rx queues 443 * @adapter: board private structure 444 * @v_idx: interrupt number 445 * @r_idx: queue number 446 **/ 447 static void 448 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 449 { 450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 452 struct iavf_hw *hw = &adapter->hw; 453 454 rx_ring->q_vector = q_vector; 455 rx_ring->next = q_vector->rx.ring; 456 rx_ring->vsi = &adapter->vsi; 457 q_vector->rx.ring = rx_ring; 458 q_vector->rx.count++; 459 q_vector->rx.next_update = jiffies + 1; 460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 461 q_vector->ring_mask |= BIT(r_idx); 462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 463 q_vector->rx.current_itr >> 1); 464 q_vector->rx.current_itr = q_vector->rx.target_itr; 465 } 466 467 /** 468 * iavf_map_vector_to_txq - associate irqs with tx queues 469 * @adapter: board private structure 470 * @v_idx: interrupt number 471 * @t_idx: queue number 472 **/ 473 static void 474 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 475 { 476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 478 struct iavf_hw *hw = &adapter->hw; 479 480 tx_ring->q_vector = q_vector; 481 tx_ring->next = q_vector->tx.ring; 482 tx_ring->vsi = &adapter->vsi; 483 q_vector->tx.ring = tx_ring; 484 q_vector->tx.count++; 485 q_vector->tx.next_update = jiffies + 1; 486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 487 q_vector->num_ringpairs++; 488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 489 q_vector->tx.target_itr >> 1); 490 q_vector->tx.current_itr = q_vector->tx.target_itr; 491 } 492 493 /** 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 495 * @adapter: board private structure to initialize 496 * 497 * This function maps descriptor rings to the queue-specific vectors 498 * we were allotted through the MSI-X enabling code. Ideally, we'd have 499 * one vector per ring/queue, but on a constrained vector budget, we 500 * group the rings as "efficiently" as possible. You would add new 501 * mapping configurations in here. 502 **/ 503 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 504 { 505 int rings_remaining = adapter->num_active_queues; 506 int ridx = 0, vidx = 0; 507 int q_vectors; 508 509 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 510 511 for (; ridx < rings_remaining; ridx++) { 512 iavf_map_vector_to_rxq(adapter, vidx, ridx); 513 iavf_map_vector_to_txq(adapter, vidx, ridx); 514 515 /* In the case where we have more queues than vectors, continue 516 * round-robin on vectors until all queues are mapped. 517 */ 518 if (++vidx >= q_vectors) 519 vidx = 0; 520 } 521 522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 523 } 524 525 /** 526 * iavf_irq_affinity_notify - Callback for affinity changes 527 * @notify: context as to what irq was changed 528 * @mask: the new affinity mask 529 * 530 * This is a callback function used by the irq_set_affinity_notifier function 531 * so that we may register to receive changes to the irq affinity masks. 532 **/ 533 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 534 const cpumask_t *mask) 535 { 536 struct iavf_q_vector *q_vector = 537 container_of(notify, struct iavf_q_vector, affinity_notify); 538 539 cpumask_copy(&q_vector->affinity_mask, mask); 540 } 541 542 /** 543 * iavf_irq_affinity_release - Callback for affinity notifier release 544 * @ref: internal core kernel usage 545 * 546 * This is a callback function used by the irq_set_affinity_notifier function 547 * to inform the current notification subscriber that they will no longer 548 * receive notifications. 549 **/ 550 static void iavf_irq_affinity_release(struct kref *ref) {} 551 552 /** 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 554 * @adapter: board private structure 555 * @basename: device basename 556 * 557 * Allocates MSI-X vectors for tx and rx handling, and requests 558 * interrupts from the kernel. 559 **/ 560 static int 561 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 562 { 563 unsigned int vector, q_vectors; 564 unsigned int rx_int_idx = 0, tx_int_idx = 0; 565 int irq_num, err; 566 int cpu; 567 568 iavf_irq_disable(adapter); 569 /* Decrement for Other and TCP Timer vectors */ 570 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 571 572 for (vector = 0; vector < q_vectors; vector++) { 573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 574 575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 576 577 if (q_vector->tx.ring && q_vector->rx.ring) { 578 snprintf(q_vector->name, sizeof(q_vector->name), 579 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 580 tx_int_idx++; 581 } else if (q_vector->rx.ring) { 582 snprintf(q_vector->name, sizeof(q_vector->name), 583 "iavf-%s-rx-%u", basename, rx_int_idx++); 584 } else if (q_vector->tx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-tx-%u", basename, tx_int_idx++); 587 } else { 588 /* skip this unused q_vector */ 589 continue; 590 } 591 err = request_irq(irq_num, 592 iavf_msix_clean_rings, 593 0, 594 q_vector->name, 595 q_vector); 596 if (err) { 597 dev_info(&adapter->pdev->dev, 598 "Request_irq failed, error: %d\n", err); 599 goto free_queue_irqs; 600 } 601 /* register for affinity change notifications */ 602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 603 q_vector->affinity_notify.release = 604 iavf_irq_affinity_release; 605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 606 /* Spread the IRQ affinity hints across online CPUs. Note that 607 * get_cpu_mask returns a mask with a permanent lifetime so 608 * it's safe to use as a hint for irq_update_affinity_hint. 609 */ 610 cpu = cpumask_local_spread(q_vector->v_idx, -1); 611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 612 } 613 614 return 0; 615 616 free_queue_irqs: 617 while (vector) { 618 vector--; 619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 620 irq_set_affinity_notifier(irq_num, NULL); 621 irq_update_affinity_hint(irq_num, NULL); 622 free_irq(irq_num, &adapter->q_vectors[vector]); 623 } 624 return err; 625 } 626 627 /** 628 * iavf_request_misc_irq - Initialize MSI-X interrupts 629 * @adapter: board private structure 630 * 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 632 * vector is only for the admin queue, and stays active even when the netdev 633 * is closed. 634 **/ 635 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 636 { 637 struct net_device *netdev = adapter->netdev; 638 int err; 639 640 snprintf(adapter->misc_vector_name, 641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 642 dev_name(&adapter->pdev->dev)); 643 err = request_irq(adapter->msix_entries[0].vector, 644 &iavf_msix_aq, 0, 645 adapter->misc_vector_name, netdev); 646 if (err) { 647 dev_err(&adapter->pdev->dev, 648 "request_irq for %s failed: %d\n", 649 adapter->misc_vector_name, err); 650 free_irq(adapter->msix_entries[0].vector, netdev); 651 } 652 return err; 653 } 654 655 /** 656 * iavf_free_traffic_irqs - Free MSI-X interrupts 657 * @adapter: board private structure 658 * 659 * Frees all MSI-X vectors other than 0. 660 **/ 661 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 662 { 663 int vector, irq_num, q_vectors; 664 665 if (!adapter->msix_entries) 666 return; 667 668 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 669 670 for (vector = 0; vector < q_vectors; vector++) { 671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 672 irq_set_affinity_notifier(irq_num, NULL); 673 irq_update_affinity_hint(irq_num, NULL); 674 free_irq(irq_num, &adapter->q_vectors[vector]); 675 } 676 } 677 678 /** 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 680 * @adapter: board private structure 681 * 682 * Frees MSI-X vector 0. 683 **/ 684 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 685 { 686 struct net_device *netdev = adapter->netdev; 687 688 if (!adapter->msix_entries) 689 return; 690 691 free_irq(adapter->msix_entries[0].vector, netdev); 692 } 693 694 /** 695 * iavf_configure_tx - Configure Transmit Unit after Reset 696 * @adapter: board private structure 697 * 698 * Configure the Tx unit of the MAC after a reset. 699 **/ 700 static void iavf_configure_tx(struct iavf_adapter *adapter) 701 { 702 struct iavf_hw *hw = &adapter->hw; 703 int i; 704 705 for (i = 0; i < adapter->num_active_queues; i++) 706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 707 } 708 709 /** 710 * iavf_configure_rx - Configure Receive Unit after Reset 711 * @adapter: board private structure 712 * 713 * Configure the Rx unit of the MAC after a reset. 714 **/ 715 static void iavf_configure_rx(struct iavf_adapter *adapter) 716 { 717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 718 struct iavf_hw *hw = &adapter->hw; 719 int i; 720 721 /* Legacy Rx will always default to a 2048 buffer size. */ 722 #if (PAGE_SIZE < 8192) 723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 724 struct net_device *netdev = adapter->netdev; 725 726 /* For jumbo frames on systems with 4K pages we have to use 727 * an order 1 page, so we might as well increase the size 728 * of our Rx buffer to make better use of the available space 729 */ 730 rx_buf_len = IAVF_RXBUFFER_3072; 731 732 /* We use a 1536 buffer size for configurations with 733 * standard Ethernet mtu. On x86 this gives us enough room 734 * for shared info and 192 bytes of padding. 735 */ 736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 737 (netdev->mtu <= ETH_DATA_LEN)) 738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 739 } 740 #endif 741 742 for (i = 0; i < adapter->num_active_queues; i++) { 743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 744 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 745 746 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 748 else 749 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 750 } 751 } 752 753 /** 754 * iavf_find_vlan - Search filter list for specific vlan filter 755 * @adapter: board private structure 756 * @vlan: vlan tag 757 * 758 * Returns ptr to the filter object or NULL. Must be called while holding the 759 * mac_vlan_list_lock. 760 **/ 761 static struct 762 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 763 struct iavf_vlan vlan) 764 { 765 struct iavf_vlan_filter *f; 766 767 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 768 if (f->vlan.vid == vlan.vid && 769 f->vlan.tpid == vlan.tpid) 770 return f; 771 } 772 773 return NULL; 774 } 775 776 /** 777 * iavf_add_vlan - Add a vlan filter to the list 778 * @adapter: board private structure 779 * @vlan: VLAN tag 780 * 781 * Returns ptr to the filter object or NULL when no memory available. 782 **/ 783 static struct 784 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 785 struct iavf_vlan vlan) 786 { 787 struct iavf_vlan_filter *f = NULL; 788 789 spin_lock_bh(&adapter->mac_vlan_list_lock); 790 791 f = iavf_find_vlan(adapter, vlan); 792 if (!f) { 793 f = kzalloc(sizeof(*f), GFP_ATOMIC); 794 if (!f) 795 goto clearout; 796 797 f->vlan = vlan; 798 799 list_add_tail(&f->list, &adapter->vlan_filter_list); 800 f->state = IAVF_VLAN_ADD; 801 adapter->num_vlan_filters++; 802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 803 } 804 805 clearout: 806 spin_unlock_bh(&adapter->mac_vlan_list_lock); 807 return f; 808 } 809 810 /** 811 * iavf_del_vlan - Remove a vlan filter from the list 812 * @adapter: board private structure 813 * @vlan: VLAN tag 814 **/ 815 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 816 { 817 struct iavf_vlan_filter *f; 818 819 spin_lock_bh(&adapter->mac_vlan_list_lock); 820 821 f = iavf_find_vlan(adapter, vlan); 822 if (f) { 823 f->state = IAVF_VLAN_REMOVE; 824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 825 } 826 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 } 829 830 /** 831 * iavf_restore_filters 832 * @adapter: board private structure 833 * 834 * Restore existing non MAC filters when VF netdev comes back up 835 **/ 836 static void iavf_restore_filters(struct iavf_adapter *adapter) 837 { 838 struct iavf_vlan_filter *f; 839 840 /* re-add all VLAN filters */ 841 spin_lock_bh(&adapter->mac_vlan_list_lock); 842 843 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 844 if (f->state == IAVF_VLAN_INACTIVE) 845 f->state = IAVF_VLAN_ADD; 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 850 } 851 852 /** 853 * iavf_get_num_vlans_added - get number of VLANs added 854 * @adapter: board private structure 855 */ 856 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 857 { 858 return adapter->num_vlan_filters; 859 } 860 861 /** 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 863 * @adapter: board private structure 864 * 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 866 * do not impose a limit as that maintains current behavior and for 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 868 **/ 869 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 870 { 871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 872 * never been a limit on the VF driver side 873 */ 874 if (VLAN_ALLOWED(adapter)) 875 return VLAN_N_VID; 876 else if (VLAN_V2_ALLOWED(adapter)) 877 return adapter->vlan_v2_caps.filtering.max_filters; 878 879 return 0; 880 } 881 882 /** 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 884 * @adapter: board private structure 885 **/ 886 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 887 { 888 if (iavf_get_num_vlans_added(adapter) < 889 iavf_get_max_vlans_allowed(adapter)) 890 return false; 891 892 return true; 893 } 894 895 /** 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 897 * @netdev: network device struct 898 * @proto: unused protocol data 899 * @vid: VLAN tag 900 **/ 901 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 902 __always_unused __be16 proto, u16 vid) 903 { 904 struct iavf_adapter *adapter = netdev_priv(netdev); 905 906 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 907 if (!vid) 908 return 0; 909 910 if (!VLAN_FILTERING_ALLOWED(adapter)) 911 return -EIO; 912 913 if (iavf_max_vlans_added(adapter)) { 914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 915 iavf_get_max_vlans_allowed(adapter)); 916 return -EIO; 917 } 918 919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 920 return -ENOMEM; 921 922 return 0; 923 } 924 925 /** 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 927 * @netdev: network device struct 928 * @proto: unused protocol data 929 * @vid: VLAN tag 930 **/ 931 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 932 __always_unused __be16 proto, u16 vid) 933 { 934 struct iavf_adapter *adapter = netdev_priv(netdev); 935 936 /* We do not track VLAN 0 filter */ 937 if (!vid) 938 return 0; 939 940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 941 return 0; 942 } 943 944 /** 945 * iavf_find_filter - Search filter list for specific mac filter 946 * @adapter: board private structure 947 * @macaddr: the MAC address 948 * 949 * Returns ptr to the filter object or NULL. Must be called while holding the 950 * mac_vlan_list_lock. 951 **/ 952 static struct 953 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 954 const u8 *macaddr) 955 { 956 struct iavf_mac_filter *f; 957 958 if (!macaddr) 959 return NULL; 960 961 list_for_each_entry(f, &adapter->mac_filter_list, list) { 962 if (ether_addr_equal(macaddr, f->macaddr)) 963 return f; 964 } 965 return NULL; 966 } 967 968 /** 969 * iavf_add_filter - Add a mac filter to the filter list 970 * @adapter: board private structure 971 * @macaddr: the MAC address 972 * 973 * Returns ptr to the filter object or NULL when no memory available. 974 **/ 975 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 976 const u8 *macaddr) 977 { 978 struct iavf_mac_filter *f; 979 980 if (!macaddr) 981 return NULL; 982 983 f = iavf_find_filter(adapter, macaddr); 984 if (!f) { 985 f = kzalloc(sizeof(*f), GFP_ATOMIC); 986 if (!f) 987 return f; 988 989 ether_addr_copy(f->macaddr, macaddr); 990 991 list_add_tail(&f->list, &adapter->mac_filter_list); 992 f->add = true; 993 f->add_handled = false; 994 f->is_new_mac = true; 995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 997 } else { 998 f->remove = false; 999 } 1000 1001 return f; 1002 } 1003 1004 /** 1005 * iavf_replace_primary_mac - Replace current primary address 1006 * @adapter: board private structure 1007 * @new_mac: new MAC address to be applied 1008 * 1009 * Replace current dev_addr and send request to PF for removal of previous 1010 * primary MAC address filter and addition of new primary MAC filter. 1011 * Return 0 for success, -ENOMEM for failure. 1012 * 1013 * Do not call this with mac_vlan_list_lock! 1014 **/ 1015 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1016 const u8 *new_mac) 1017 { 1018 struct iavf_hw *hw = &adapter->hw; 1019 struct iavf_mac_filter *new_f; 1020 struct iavf_mac_filter *old_f; 1021 1022 spin_lock_bh(&adapter->mac_vlan_list_lock); 1023 1024 new_f = iavf_add_filter(adapter, new_mac); 1025 if (!new_f) { 1026 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1027 return -ENOMEM; 1028 } 1029 1030 old_f = iavf_find_filter(adapter, hw->mac.addr); 1031 if (old_f) { 1032 old_f->is_primary = false; 1033 old_f->remove = true; 1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1035 } 1036 /* Always send the request to add if changing primary MAC, 1037 * even if filter is already present on the list 1038 */ 1039 new_f->is_primary = true; 1040 new_f->add = true; 1041 ether_addr_copy(hw->mac.addr, new_mac); 1042 1043 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1044 1045 /* schedule the watchdog task to immediately process the request */ 1046 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1047 return 0; 1048 } 1049 1050 /** 1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1052 * @netdev: network interface device structure 1053 * @macaddr: MAC address to set 1054 * 1055 * Returns true on success, false on failure 1056 */ 1057 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1058 const u8 *macaddr) 1059 { 1060 struct iavf_adapter *adapter = netdev_priv(netdev); 1061 struct iavf_mac_filter *f; 1062 bool ret = false; 1063 1064 spin_lock_bh(&adapter->mac_vlan_list_lock); 1065 1066 f = iavf_find_filter(adapter, macaddr); 1067 1068 if (!f || (!f->add && f->add_handled)) 1069 ret = true; 1070 1071 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1072 1073 return ret; 1074 } 1075 1076 /** 1077 * iavf_set_mac - NDO callback to set port MAC address 1078 * @netdev: network interface device structure 1079 * @p: pointer to an address structure 1080 * 1081 * Returns 0 on success, negative on failure 1082 */ 1083 static int iavf_set_mac(struct net_device *netdev, void *p) 1084 { 1085 struct iavf_adapter *adapter = netdev_priv(netdev); 1086 struct sockaddr *addr = p; 1087 int ret; 1088 1089 if (!is_valid_ether_addr(addr->sa_data)) 1090 return -EADDRNOTAVAIL; 1091 1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1093 1094 if (ret) 1095 return ret; 1096 1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1098 iavf_is_mac_set_handled(netdev, addr->sa_data), 1099 msecs_to_jiffies(2500)); 1100 1101 /* If ret < 0 then it means wait was interrupted. 1102 * If ret == 0 then it means we got a timeout. 1103 * else it means we got response for set MAC from PF, 1104 * check if netdev MAC was updated to requested MAC, 1105 * if yes then set MAC succeeded otherwise it failed return -EACCES 1106 */ 1107 if (ret < 0) 1108 return ret; 1109 1110 if (!ret) 1111 return -EAGAIN; 1112 1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1114 return -EACCES; 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1121 * @netdev: the netdevice 1122 * @addr: address to add 1123 * 1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1126 */ 1127 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1128 { 1129 struct iavf_adapter *adapter = netdev_priv(netdev); 1130 1131 if (iavf_add_filter(adapter, addr)) 1132 return 0; 1133 else 1134 return -ENOMEM; 1135 } 1136 1137 /** 1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1139 * @netdev: the netdevice 1140 * @addr: address to add 1141 * 1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1144 */ 1145 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1146 { 1147 struct iavf_adapter *adapter = netdev_priv(netdev); 1148 struct iavf_mac_filter *f; 1149 1150 /* Under some circumstances, we might receive a request to delete 1151 * our own device address from our uc list. Because we store the 1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1153 * such requests and not delete our device address from this list. 1154 */ 1155 if (ether_addr_equal(addr, netdev->dev_addr)) 1156 return 0; 1157 1158 f = iavf_find_filter(adapter, addr); 1159 if (f) { 1160 f->remove = true; 1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1162 } 1163 return 0; 1164 } 1165 1166 /** 1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1168 * @adapter: device specific adapter 1169 */ 1170 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1171 { 1172 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1173 (IFF_PROMISC | IFF_ALLMULTI); 1174 } 1175 1176 /** 1177 * iavf_set_rx_mode - NDO callback to set the netdev filters 1178 * @netdev: network interface device structure 1179 **/ 1180 static void iavf_set_rx_mode(struct net_device *netdev) 1181 { 1182 struct iavf_adapter *adapter = netdev_priv(netdev); 1183 1184 spin_lock_bh(&adapter->mac_vlan_list_lock); 1185 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1186 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1187 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1188 1189 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1190 if (iavf_promiscuous_mode_changed(adapter)) 1191 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1192 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1193 } 1194 1195 /** 1196 * iavf_napi_enable_all - enable NAPI on all queue vectors 1197 * @adapter: board private structure 1198 **/ 1199 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1200 { 1201 int q_idx; 1202 struct iavf_q_vector *q_vector; 1203 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1204 1205 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1206 struct napi_struct *napi; 1207 1208 q_vector = &adapter->q_vectors[q_idx]; 1209 napi = &q_vector->napi; 1210 napi_enable(napi); 1211 } 1212 } 1213 1214 /** 1215 * iavf_napi_disable_all - disable NAPI on all queue vectors 1216 * @adapter: board private structure 1217 **/ 1218 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1219 { 1220 int q_idx; 1221 struct iavf_q_vector *q_vector; 1222 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1223 1224 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1225 q_vector = &adapter->q_vectors[q_idx]; 1226 napi_disable(&q_vector->napi); 1227 } 1228 } 1229 1230 /** 1231 * iavf_configure - set up transmit and receive data structures 1232 * @adapter: board private structure 1233 **/ 1234 static void iavf_configure(struct iavf_adapter *adapter) 1235 { 1236 struct net_device *netdev = adapter->netdev; 1237 int i; 1238 1239 iavf_set_rx_mode(netdev); 1240 1241 iavf_configure_tx(adapter); 1242 iavf_configure_rx(adapter); 1243 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1244 1245 for (i = 0; i < adapter->num_active_queues; i++) { 1246 struct iavf_ring *ring = &adapter->rx_rings[i]; 1247 1248 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1249 } 1250 } 1251 1252 /** 1253 * iavf_up_complete - Finish the last steps of bringing up a connection 1254 * @adapter: board private structure 1255 * 1256 * Expects to be called while holding crit_lock. 1257 **/ 1258 static void iavf_up_complete(struct iavf_adapter *adapter) 1259 { 1260 iavf_change_state(adapter, __IAVF_RUNNING); 1261 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1262 1263 iavf_napi_enable_all(adapter); 1264 1265 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1266 } 1267 1268 /** 1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1270 * yet and mark other to be removed. 1271 * @adapter: board private structure 1272 **/ 1273 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1274 { 1275 struct iavf_vlan_filter *vlf, *vlftmp; 1276 struct iavf_mac_filter *f, *ftmp; 1277 1278 spin_lock_bh(&adapter->mac_vlan_list_lock); 1279 /* clear the sync flag on all filters */ 1280 __dev_uc_unsync(adapter->netdev, NULL); 1281 __dev_mc_unsync(adapter->netdev, NULL); 1282 1283 /* remove all MAC filters */ 1284 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1285 list) { 1286 if (f->add) { 1287 list_del(&f->list); 1288 kfree(f); 1289 } else { 1290 f->remove = true; 1291 } 1292 } 1293 1294 /* disable all VLAN filters */ 1295 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1296 list) 1297 vlf->state = IAVF_VLAN_DISABLE; 1298 1299 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1300 } 1301 1302 /** 1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1304 * mark other to be removed. 1305 * @adapter: board private structure 1306 **/ 1307 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1308 { 1309 struct iavf_cloud_filter *cf, *cftmp; 1310 1311 /* remove all cloud filters */ 1312 spin_lock_bh(&adapter->cloud_filter_list_lock); 1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1314 list) { 1315 if (cf->add) { 1316 list_del(&cf->list); 1317 kfree(cf); 1318 adapter->num_cloud_filters--; 1319 } else { 1320 cf->del = true; 1321 } 1322 } 1323 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1324 } 1325 1326 /** 1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1328 * other to be removed. 1329 * @adapter: board private structure 1330 **/ 1331 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1332 { 1333 struct iavf_fdir_fltr *fdir; 1334 1335 /* remove all Flow Director filters */ 1336 spin_lock_bh(&adapter->fdir_fltr_lock); 1337 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1339 /* Cancel a request, keep filter as inactive */ 1340 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1341 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1342 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1343 /* Disable filters which are active or have a pending 1344 * request to PF to be added 1345 */ 1346 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1347 } 1348 } 1349 spin_unlock_bh(&adapter->fdir_fltr_lock); 1350 } 1351 1352 /** 1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1354 * other to be removed. 1355 * @adapter: board private structure 1356 **/ 1357 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1358 { 1359 struct iavf_adv_rss *rss, *rsstmp; 1360 1361 /* remove all advance RSS configuration */ 1362 spin_lock_bh(&adapter->adv_rss_lock); 1363 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1364 list) { 1365 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1366 list_del(&rss->list); 1367 kfree(rss); 1368 } else { 1369 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1370 } 1371 } 1372 spin_unlock_bh(&adapter->adv_rss_lock); 1373 } 1374 1375 /** 1376 * iavf_down - Shutdown the connection processing 1377 * @adapter: board private structure 1378 * 1379 * Expects to be called while holding crit_lock. 1380 **/ 1381 void iavf_down(struct iavf_adapter *adapter) 1382 { 1383 struct net_device *netdev = adapter->netdev; 1384 1385 if (adapter->state <= __IAVF_DOWN_PENDING) 1386 return; 1387 1388 netif_carrier_off(netdev); 1389 netif_tx_disable(netdev); 1390 adapter->link_up = false; 1391 iavf_napi_disable_all(adapter); 1392 iavf_irq_disable(adapter); 1393 1394 iavf_clear_mac_vlan_filters(adapter); 1395 iavf_clear_cloud_filters(adapter); 1396 iavf_clear_fdir_filters(adapter); 1397 iavf_clear_adv_rss_conf(adapter); 1398 1399 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1400 return; 1401 1402 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1403 /* cancel any current operation */ 1404 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1405 /* Schedule operations to close down the HW. Don't wait 1406 * here for this to complete. The watchdog is still running 1407 * and it will take care of this. 1408 */ 1409 if (!list_empty(&adapter->mac_filter_list)) 1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1411 if (!list_empty(&adapter->vlan_filter_list)) 1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1413 if (!list_empty(&adapter->cloud_filter_list)) 1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1415 if (!list_empty(&adapter->fdir_list_head)) 1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1417 if (!list_empty(&adapter->adv_rss_list_head)) 1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1419 } 1420 1421 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1422 } 1423 1424 /** 1425 * iavf_acquire_msix_vectors - Setup the MSIX capability 1426 * @adapter: board private structure 1427 * @vectors: number of vectors to request 1428 * 1429 * Work with the OS to set up the MSIX vectors needed. 1430 * 1431 * Returns 0 on success, negative on failure 1432 **/ 1433 static int 1434 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1435 { 1436 int err, vector_threshold; 1437 1438 /* We'll want at least 3 (vector_threshold): 1439 * 0) Other (Admin Queue and link, mostly) 1440 * 1) TxQ[0] Cleanup 1441 * 2) RxQ[0] Cleanup 1442 */ 1443 vector_threshold = MIN_MSIX_COUNT; 1444 1445 /* The more we get, the more we will assign to Tx/Rx Cleanup 1446 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1447 * Right now, we simply care about how many we'll get; we'll 1448 * set them up later while requesting irq's. 1449 */ 1450 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1451 vector_threshold, vectors); 1452 if (err < 0) { 1453 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1454 kfree(adapter->msix_entries); 1455 adapter->msix_entries = NULL; 1456 return err; 1457 } 1458 1459 /* Adjust for only the vectors we'll use, which is minimum 1460 * of max_msix_q_vectors + NONQ_VECS, or the number of 1461 * vectors we were allocated. 1462 */ 1463 adapter->num_msix_vectors = err; 1464 return 0; 1465 } 1466 1467 /** 1468 * iavf_free_queues - Free memory for all rings 1469 * @adapter: board private structure to initialize 1470 * 1471 * Free all of the memory associated with queue pairs. 1472 **/ 1473 static void iavf_free_queues(struct iavf_adapter *adapter) 1474 { 1475 if (!adapter->vsi_res) 1476 return; 1477 adapter->num_active_queues = 0; 1478 kfree(adapter->tx_rings); 1479 adapter->tx_rings = NULL; 1480 kfree(adapter->rx_rings); 1481 adapter->rx_rings = NULL; 1482 } 1483 1484 /** 1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1486 * @adapter: board private structure 1487 * 1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1489 * stripped in certain descriptor fields. Instead of checking the offload 1490 * capability bits in the hot path, cache the location the ring specific 1491 * flags. 1492 */ 1493 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1494 { 1495 int i; 1496 1497 for (i = 0; i < adapter->num_active_queues; i++) { 1498 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1499 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1500 1501 /* prevent multiple L2TAG bits being set after VFR */ 1502 tx_ring->flags &= 1503 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1504 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1505 rx_ring->flags &= 1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1507 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1508 1509 if (VLAN_ALLOWED(adapter)) { 1510 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1511 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1512 } else if (VLAN_V2_ALLOWED(adapter)) { 1513 struct virtchnl_vlan_supported_caps *stripping_support; 1514 struct virtchnl_vlan_supported_caps *insertion_support; 1515 1516 stripping_support = 1517 &adapter->vlan_v2_caps.offloads.stripping_support; 1518 insertion_support = 1519 &adapter->vlan_v2_caps.offloads.insertion_support; 1520 1521 if (stripping_support->outer) { 1522 if (stripping_support->outer & 1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1524 rx_ring->flags |= 1525 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1526 else if (stripping_support->outer & 1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1528 rx_ring->flags |= 1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1530 } else if (stripping_support->inner) { 1531 if (stripping_support->inner & 1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1533 rx_ring->flags |= 1534 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 else if (stripping_support->inner & 1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1537 rx_ring->flags |= 1538 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1539 } 1540 1541 if (insertion_support->outer) { 1542 if (insertion_support->outer & 1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1544 tx_ring->flags |= 1545 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 else if (insertion_support->outer & 1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1548 tx_ring->flags |= 1549 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1550 } else if (insertion_support->inner) { 1551 if (insertion_support->inner & 1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1553 tx_ring->flags |= 1554 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1555 else if (insertion_support->inner & 1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1557 tx_ring->flags |= 1558 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1559 } 1560 } 1561 } 1562 } 1563 1564 /** 1565 * iavf_alloc_queues - Allocate memory for all rings 1566 * @adapter: board private structure to initialize 1567 * 1568 * We allocate one ring per queue at run-time since we don't know the 1569 * number of queues at compile-time. The polling_netdev array is 1570 * intended for Multiqueue, but should work fine with a single queue. 1571 **/ 1572 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1573 { 1574 int i, num_active_queues; 1575 1576 /* If we're in reset reallocating queues we don't actually know yet for 1577 * certain the PF gave us the number of queues we asked for but we'll 1578 * assume it did. Once basic reset is finished we'll confirm once we 1579 * start negotiating config with PF. 1580 */ 1581 if (adapter->num_req_queues) 1582 num_active_queues = adapter->num_req_queues; 1583 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1584 adapter->num_tc) 1585 num_active_queues = adapter->ch_config.total_qps; 1586 else 1587 num_active_queues = min_t(int, 1588 adapter->vsi_res->num_queue_pairs, 1589 (int)(num_online_cpus())); 1590 1591 1592 adapter->tx_rings = kcalloc(num_active_queues, 1593 sizeof(struct iavf_ring), GFP_KERNEL); 1594 if (!adapter->tx_rings) 1595 goto err_out; 1596 adapter->rx_rings = kcalloc(num_active_queues, 1597 sizeof(struct iavf_ring), GFP_KERNEL); 1598 if (!adapter->rx_rings) 1599 goto err_out; 1600 1601 for (i = 0; i < num_active_queues; i++) { 1602 struct iavf_ring *tx_ring; 1603 struct iavf_ring *rx_ring; 1604 1605 tx_ring = &adapter->tx_rings[i]; 1606 1607 tx_ring->queue_index = i; 1608 tx_ring->netdev = adapter->netdev; 1609 tx_ring->dev = &adapter->pdev->dev; 1610 tx_ring->count = adapter->tx_desc_count; 1611 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1612 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1613 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1614 1615 rx_ring = &adapter->rx_rings[i]; 1616 rx_ring->queue_index = i; 1617 rx_ring->netdev = adapter->netdev; 1618 rx_ring->dev = &adapter->pdev->dev; 1619 rx_ring->count = adapter->rx_desc_count; 1620 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1621 } 1622 1623 adapter->num_active_queues = num_active_queues; 1624 1625 iavf_set_queue_vlan_tag_loc(adapter); 1626 1627 return 0; 1628 1629 err_out: 1630 iavf_free_queues(adapter); 1631 return -ENOMEM; 1632 } 1633 1634 /** 1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1636 * @adapter: board private structure to initialize 1637 * 1638 * Attempt to configure the interrupts using the best available 1639 * capabilities of the hardware and the kernel. 1640 **/ 1641 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1642 { 1643 int vector, v_budget; 1644 int pairs = 0; 1645 int err = 0; 1646 1647 if (!adapter->vsi_res) { 1648 err = -EIO; 1649 goto out; 1650 } 1651 pairs = adapter->num_active_queues; 1652 1653 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1654 * us much good if we have more vectors than CPUs. However, we already 1655 * limit the total number of queues by the number of CPUs so we do not 1656 * need any further limiting here. 1657 */ 1658 v_budget = min_t(int, pairs + NONQ_VECS, 1659 (int)adapter->vf_res->max_vectors); 1660 1661 adapter->msix_entries = kcalloc(v_budget, 1662 sizeof(struct msix_entry), GFP_KERNEL); 1663 if (!adapter->msix_entries) { 1664 err = -ENOMEM; 1665 goto out; 1666 } 1667 1668 for (vector = 0; vector < v_budget; vector++) 1669 adapter->msix_entries[vector].entry = vector; 1670 1671 err = iavf_acquire_msix_vectors(adapter, v_budget); 1672 if (!err) 1673 iavf_schedule_finish_config(adapter); 1674 1675 out: 1676 return err; 1677 } 1678 1679 /** 1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1681 * @adapter: board private structure 1682 * 1683 * Return 0 on success, negative on failure 1684 **/ 1685 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1686 { 1687 struct iavf_aqc_get_set_rss_key_data *rss_key = 1688 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1689 struct iavf_hw *hw = &adapter->hw; 1690 enum iavf_status status; 1691 1692 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1693 /* bail because we already have a command pending */ 1694 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1695 adapter->current_op); 1696 return -EBUSY; 1697 } 1698 1699 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1700 if (status) { 1701 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1702 iavf_stat_str(hw, status), 1703 iavf_aq_str(hw, hw->aq.asq_last_status)); 1704 return iavf_status_to_errno(status); 1705 1706 } 1707 1708 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1709 adapter->rss_lut, adapter->rss_lut_size); 1710 if (status) { 1711 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1712 iavf_stat_str(hw, status), 1713 iavf_aq_str(hw, hw->aq.asq_last_status)); 1714 return iavf_status_to_errno(status); 1715 } 1716 1717 return 0; 1718 1719 } 1720 1721 /** 1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1723 * @adapter: board private structure 1724 * 1725 * Returns 0 on success, negative on failure 1726 **/ 1727 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1728 { 1729 struct iavf_hw *hw = &adapter->hw; 1730 u32 *dw; 1731 u16 i; 1732 1733 dw = (u32 *)adapter->rss_key; 1734 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1735 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1736 1737 dw = (u32 *)adapter->rss_lut; 1738 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1739 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1740 1741 iavf_flush(hw); 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * iavf_config_rss - Configure RSS keys and lut 1748 * @adapter: board private structure 1749 * 1750 * Returns 0 on success, negative on failure 1751 **/ 1752 int iavf_config_rss(struct iavf_adapter *adapter) 1753 { 1754 1755 if (RSS_PF(adapter)) { 1756 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1757 IAVF_FLAG_AQ_SET_RSS_KEY; 1758 return 0; 1759 } else if (RSS_AQ(adapter)) { 1760 return iavf_config_rss_aq(adapter); 1761 } else { 1762 return iavf_config_rss_reg(adapter); 1763 } 1764 } 1765 1766 /** 1767 * iavf_fill_rss_lut - Fill the lut with default values 1768 * @adapter: board private structure 1769 **/ 1770 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1771 { 1772 u16 i; 1773 1774 for (i = 0; i < adapter->rss_lut_size; i++) 1775 adapter->rss_lut[i] = i % adapter->num_active_queues; 1776 } 1777 1778 /** 1779 * iavf_init_rss - Prepare for RSS 1780 * @adapter: board private structure 1781 * 1782 * Return 0 on success, negative on failure 1783 **/ 1784 static int iavf_init_rss(struct iavf_adapter *adapter) 1785 { 1786 struct iavf_hw *hw = &adapter->hw; 1787 1788 if (!RSS_PF(adapter)) { 1789 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1790 if (adapter->vf_res->vf_cap_flags & 1791 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1792 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1793 else 1794 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1795 1796 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1797 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1798 } 1799 1800 iavf_fill_rss_lut(adapter); 1801 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1802 1803 return iavf_config_rss(adapter); 1804 } 1805 1806 /** 1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1808 * @adapter: board private structure to initialize 1809 * 1810 * We allocate one q_vector per queue interrupt. If allocation fails we 1811 * return -ENOMEM. 1812 **/ 1813 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1814 { 1815 int q_idx = 0, num_q_vectors; 1816 struct iavf_q_vector *q_vector; 1817 1818 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1819 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1820 GFP_KERNEL); 1821 if (!adapter->q_vectors) 1822 return -ENOMEM; 1823 1824 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1825 q_vector = &adapter->q_vectors[q_idx]; 1826 q_vector->adapter = adapter; 1827 q_vector->vsi = &adapter->vsi; 1828 q_vector->v_idx = q_idx; 1829 q_vector->reg_idx = q_idx; 1830 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1831 netif_napi_add(adapter->netdev, &q_vector->napi, 1832 iavf_napi_poll); 1833 } 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1840 * @adapter: board private structure to initialize 1841 * 1842 * This function frees the memory allocated to the q_vectors. In addition if 1843 * NAPI is enabled it will delete any references to the NAPI struct prior 1844 * to freeing the q_vector. 1845 **/ 1846 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1847 { 1848 int q_idx, num_q_vectors; 1849 1850 if (!adapter->q_vectors) 1851 return; 1852 1853 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1854 1855 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1856 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1857 1858 netif_napi_del(&q_vector->napi); 1859 } 1860 kfree(adapter->q_vectors); 1861 adapter->q_vectors = NULL; 1862 } 1863 1864 /** 1865 * iavf_reset_interrupt_capability - Reset MSIX setup 1866 * @adapter: board private structure 1867 * 1868 **/ 1869 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1870 { 1871 if (!adapter->msix_entries) 1872 return; 1873 1874 pci_disable_msix(adapter->pdev); 1875 kfree(adapter->msix_entries); 1876 adapter->msix_entries = NULL; 1877 } 1878 1879 /** 1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1881 * @adapter: board private structure to initialize 1882 * 1883 **/ 1884 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1885 { 1886 int err; 1887 1888 err = iavf_alloc_queues(adapter); 1889 if (err) { 1890 dev_err(&adapter->pdev->dev, 1891 "Unable to allocate memory for queues\n"); 1892 goto err_alloc_queues; 1893 } 1894 1895 err = iavf_set_interrupt_capability(adapter); 1896 if (err) { 1897 dev_err(&adapter->pdev->dev, 1898 "Unable to setup interrupt capabilities\n"); 1899 goto err_set_interrupt; 1900 } 1901 1902 err = iavf_alloc_q_vectors(adapter); 1903 if (err) { 1904 dev_err(&adapter->pdev->dev, 1905 "Unable to allocate memory for queue vectors\n"); 1906 goto err_alloc_q_vectors; 1907 } 1908 1909 /* If we've made it so far while ADq flag being ON, then we haven't 1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1911 * resources have been allocated in the reset path. 1912 * Now we can truly claim that ADq is enabled. 1913 */ 1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1915 adapter->num_tc) 1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1917 adapter->num_tc); 1918 1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1921 adapter->num_active_queues); 1922 1923 return 0; 1924 err_alloc_q_vectors: 1925 iavf_reset_interrupt_capability(adapter); 1926 err_set_interrupt: 1927 iavf_free_queues(adapter); 1928 err_alloc_queues: 1929 return err; 1930 } 1931 1932 /** 1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1934 * @adapter: board private structure 1935 **/ 1936 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1937 { 1938 iavf_free_q_vectors(adapter); 1939 iavf_reset_interrupt_capability(adapter); 1940 iavf_free_queues(adapter); 1941 } 1942 1943 /** 1944 * iavf_free_rss - Free memory used by RSS structs 1945 * @adapter: board private structure 1946 **/ 1947 static void iavf_free_rss(struct iavf_adapter *adapter) 1948 { 1949 kfree(adapter->rss_key); 1950 adapter->rss_key = NULL; 1951 1952 kfree(adapter->rss_lut); 1953 adapter->rss_lut = NULL; 1954 } 1955 1956 /** 1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1958 * @adapter: board private structure 1959 * @running: true if adapter->state == __IAVF_RUNNING 1960 * 1961 * Returns 0 on success, negative on failure 1962 **/ 1963 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1964 { 1965 struct net_device *netdev = adapter->netdev; 1966 int err; 1967 1968 if (running) 1969 iavf_free_traffic_irqs(adapter); 1970 iavf_free_misc_irq(adapter); 1971 iavf_free_interrupt_scheme(adapter); 1972 1973 err = iavf_init_interrupt_scheme(adapter); 1974 if (err) 1975 goto err; 1976 1977 netif_tx_stop_all_queues(netdev); 1978 1979 err = iavf_request_misc_irq(adapter); 1980 if (err) 1981 goto err; 1982 1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1984 1985 iavf_map_rings_to_vectors(adapter); 1986 err: 1987 return err; 1988 } 1989 1990 /** 1991 * iavf_finish_config - do all netdev work that needs RTNL 1992 * @work: our work_struct 1993 * 1994 * Do work that needs both RTNL and crit_lock. 1995 **/ 1996 static void iavf_finish_config(struct work_struct *work) 1997 { 1998 struct iavf_adapter *adapter; 1999 int pairs, err; 2000 2001 adapter = container_of(work, struct iavf_adapter, finish_config); 2002 2003 /* Always take RTNL first to prevent circular lock dependency */ 2004 rtnl_lock(); 2005 mutex_lock(&adapter->crit_lock); 2006 2007 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2008 adapter->netdev->reg_state == NETREG_REGISTERED && 2009 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2010 netdev_update_features(adapter->netdev); 2011 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2012 } 2013 2014 switch (adapter->state) { 2015 case __IAVF_DOWN: 2016 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2017 err = register_netdevice(adapter->netdev); 2018 if (err) { 2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2020 err); 2021 2022 /* go back and try again.*/ 2023 iavf_free_rss(adapter); 2024 iavf_free_misc_irq(adapter); 2025 iavf_reset_interrupt_capability(adapter); 2026 iavf_change_state(adapter, 2027 __IAVF_INIT_CONFIG_ADAPTER); 2028 goto out; 2029 } 2030 } 2031 2032 /* Set the real number of queues when reset occurs while 2033 * state == __IAVF_DOWN 2034 */ 2035 fallthrough; 2036 case __IAVF_RUNNING: 2037 pairs = adapter->num_active_queues; 2038 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2039 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2040 break; 2041 2042 default: 2043 break; 2044 } 2045 2046 out: 2047 mutex_unlock(&adapter->crit_lock); 2048 rtnl_unlock(); 2049 } 2050 2051 /** 2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2053 * @adapter: board private structure 2054 **/ 2055 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2056 { 2057 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2058 queue_work(adapter->wq, &adapter->finish_config); 2059 } 2060 2061 /** 2062 * iavf_process_aq_command - process aq_required flags 2063 * and sends aq command 2064 * @adapter: pointer to iavf adapter structure 2065 * 2066 * Returns 0 on success 2067 * Returns error code if no command was sent 2068 * or error code if the command failed. 2069 **/ 2070 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2071 { 2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2073 return iavf_send_vf_config_msg(adapter); 2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2075 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2076 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2077 iavf_disable_queues(adapter); 2078 return 0; 2079 } 2080 2081 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2082 iavf_map_queues(adapter); 2083 return 0; 2084 } 2085 2086 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2087 iavf_add_ether_addrs(adapter); 2088 return 0; 2089 } 2090 2091 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2092 iavf_add_vlans(adapter); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2097 iavf_del_ether_addrs(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2102 iavf_del_vlans(adapter); 2103 return 0; 2104 } 2105 2106 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2107 iavf_enable_vlan_stripping(adapter); 2108 return 0; 2109 } 2110 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2112 iavf_disable_vlan_stripping(adapter); 2113 return 0; 2114 } 2115 2116 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2117 iavf_configure_queues(adapter); 2118 return 0; 2119 } 2120 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2122 iavf_enable_queues(adapter); 2123 return 0; 2124 } 2125 2126 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2127 /* This message goes straight to the firmware, not the 2128 * PF, so we don't have to set current_op as we will 2129 * not get a response through the ARQ. 2130 */ 2131 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2132 return 0; 2133 } 2134 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2135 iavf_get_hena(adapter); 2136 return 0; 2137 } 2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2139 iavf_set_hena(adapter); 2140 return 0; 2141 } 2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2143 iavf_set_rss_key(adapter); 2144 return 0; 2145 } 2146 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2147 iavf_set_rss_lut(adapter); 2148 return 0; 2149 } 2150 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2151 iavf_set_rss_hfunc(adapter); 2152 return 0; 2153 } 2154 2155 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2156 iavf_set_promiscuous(adapter); 2157 return 0; 2158 } 2159 2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2161 iavf_enable_channels(adapter); 2162 return 0; 2163 } 2164 2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2166 iavf_disable_channels(adapter); 2167 return 0; 2168 } 2169 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2170 iavf_add_cloud_filter(adapter); 2171 return 0; 2172 } 2173 2174 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2175 iavf_del_cloud_filter(adapter); 2176 return 0; 2177 } 2178 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2179 iavf_del_cloud_filter(adapter); 2180 return 0; 2181 } 2182 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2183 iavf_add_cloud_filter(adapter); 2184 return 0; 2185 } 2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2187 iavf_add_fdir_filter(adapter); 2188 return IAVF_SUCCESS; 2189 } 2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2191 iavf_del_fdir_filter(adapter); 2192 return IAVF_SUCCESS; 2193 } 2194 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2195 iavf_add_adv_rss_cfg(adapter); 2196 return 0; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2199 iavf_del_adv_rss_cfg(adapter); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2203 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2207 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2211 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2215 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2219 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2220 return 0; 2221 } 2222 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2223 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2224 return 0; 2225 } 2226 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2227 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2228 return 0; 2229 } 2230 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2231 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2232 return 0; 2233 } 2234 2235 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2236 iavf_request_stats(adapter); 2237 return 0; 2238 } 2239 2240 return -EAGAIN; 2241 } 2242 2243 /** 2244 * iavf_set_vlan_offload_features - set VLAN offload configuration 2245 * @adapter: board private structure 2246 * @prev_features: previous features used for comparison 2247 * @features: updated features used for configuration 2248 * 2249 * Set the aq_required bit(s) based on the requested features passed in to 2250 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2251 * the watchdog if any changes are requested to expedite the request via 2252 * virtchnl. 2253 **/ 2254 static void 2255 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2256 netdev_features_t prev_features, 2257 netdev_features_t features) 2258 { 2259 bool enable_stripping = true, enable_insertion = true; 2260 u16 vlan_ethertype = 0; 2261 u64 aq_required = 0; 2262 2263 /* keep cases separate because one ethertype for offloads can be 2264 * disabled at the same time as another is disabled, so check for an 2265 * enabled ethertype first, then check for disabled. Default to 2266 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2267 * stripping. 2268 */ 2269 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2270 vlan_ethertype = ETH_P_8021AD; 2271 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2272 vlan_ethertype = ETH_P_8021Q; 2273 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2274 vlan_ethertype = ETH_P_8021AD; 2275 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2276 vlan_ethertype = ETH_P_8021Q; 2277 else 2278 vlan_ethertype = ETH_P_8021Q; 2279 2280 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2281 enable_stripping = false; 2282 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2283 enable_insertion = false; 2284 2285 if (VLAN_ALLOWED(adapter)) { 2286 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2287 * stripping via virtchnl. VLAN insertion can be toggled on the 2288 * netdev, but it doesn't require a virtchnl message 2289 */ 2290 if (enable_stripping) 2291 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2292 else 2293 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2294 2295 } else if (VLAN_V2_ALLOWED(adapter)) { 2296 switch (vlan_ethertype) { 2297 case ETH_P_8021Q: 2298 if (enable_stripping) 2299 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2300 else 2301 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2302 2303 if (enable_insertion) 2304 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2305 else 2306 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2307 break; 2308 case ETH_P_8021AD: 2309 if (enable_stripping) 2310 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2311 else 2312 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2313 2314 if (enable_insertion) 2315 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2316 else 2317 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2318 break; 2319 } 2320 } 2321 2322 if (aq_required) 2323 iavf_schedule_aq_request(adapter, aq_required); 2324 } 2325 2326 /** 2327 * iavf_startup - first step of driver startup 2328 * @adapter: board private structure 2329 * 2330 * Function process __IAVF_STARTUP driver state. 2331 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2332 * when fails the state is changed to __IAVF_INIT_FAILED 2333 **/ 2334 static void iavf_startup(struct iavf_adapter *adapter) 2335 { 2336 struct pci_dev *pdev = adapter->pdev; 2337 struct iavf_hw *hw = &adapter->hw; 2338 enum iavf_status status; 2339 int ret; 2340 2341 WARN_ON(adapter->state != __IAVF_STARTUP); 2342 2343 /* driver loaded, probe complete */ 2344 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2345 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2346 2347 ret = iavf_check_reset_complete(hw); 2348 if (ret) { 2349 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2350 ret); 2351 goto err; 2352 } 2353 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2354 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2355 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2356 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2357 2358 status = iavf_init_adminq(hw); 2359 if (status) { 2360 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2361 status); 2362 goto err; 2363 } 2364 ret = iavf_send_api_ver(adapter); 2365 if (ret) { 2366 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2367 iavf_shutdown_adminq(hw); 2368 goto err; 2369 } 2370 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2371 return; 2372 err: 2373 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2374 } 2375 2376 /** 2377 * iavf_init_version_check - second step of driver startup 2378 * @adapter: board private structure 2379 * 2380 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2381 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2382 * when fails the state is changed to __IAVF_INIT_FAILED 2383 **/ 2384 static void iavf_init_version_check(struct iavf_adapter *adapter) 2385 { 2386 struct pci_dev *pdev = adapter->pdev; 2387 struct iavf_hw *hw = &adapter->hw; 2388 int err = -EAGAIN; 2389 2390 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2391 2392 if (!iavf_asq_done(hw)) { 2393 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2394 iavf_shutdown_adminq(hw); 2395 iavf_change_state(adapter, __IAVF_STARTUP); 2396 goto err; 2397 } 2398 2399 /* aq msg sent, awaiting reply */ 2400 err = iavf_verify_api_ver(adapter); 2401 if (err) { 2402 if (err == -EALREADY) 2403 err = iavf_send_api_ver(adapter); 2404 else 2405 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2406 adapter->pf_version.major, 2407 adapter->pf_version.minor, 2408 VIRTCHNL_VERSION_MAJOR, 2409 VIRTCHNL_VERSION_MINOR); 2410 goto err; 2411 } 2412 err = iavf_send_vf_config_msg(adapter); 2413 if (err) { 2414 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2415 err); 2416 goto err; 2417 } 2418 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2419 return; 2420 err: 2421 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2422 } 2423 2424 /** 2425 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2426 * @adapter: board private structure 2427 */ 2428 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2429 { 2430 int i, num_req_queues = adapter->num_req_queues; 2431 struct iavf_vsi *vsi = &adapter->vsi; 2432 2433 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2434 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2435 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2436 } 2437 if (!adapter->vsi_res) { 2438 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2439 return -ENODEV; 2440 } 2441 2442 if (num_req_queues && 2443 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2444 /* Problem. The PF gave us fewer queues than what we had 2445 * negotiated in our request. Need a reset to see if we can't 2446 * get back to a working state. 2447 */ 2448 dev_err(&adapter->pdev->dev, 2449 "Requested %d queues, but PF only gave us %d.\n", 2450 num_req_queues, 2451 adapter->vsi_res->num_queue_pairs); 2452 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2453 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2454 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2455 2456 return -EAGAIN; 2457 } 2458 adapter->num_req_queues = 0; 2459 adapter->vsi.id = adapter->vsi_res->vsi_id; 2460 2461 adapter->vsi.back = adapter; 2462 adapter->vsi.base_vector = 1; 2463 vsi->netdev = adapter->netdev; 2464 vsi->qs_handle = adapter->vsi_res->qset_handle; 2465 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2466 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2467 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2468 } else { 2469 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2470 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2471 } 2472 2473 return 0; 2474 } 2475 2476 /** 2477 * iavf_init_get_resources - third step of driver startup 2478 * @adapter: board private structure 2479 * 2480 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2481 * finishes driver initialization procedure. 2482 * When success the state is changed to __IAVF_DOWN 2483 * when fails the state is changed to __IAVF_INIT_FAILED 2484 **/ 2485 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2486 { 2487 struct pci_dev *pdev = adapter->pdev; 2488 struct iavf_hw *hw = &adapter->hw; 2489 int err; 2490 2491 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2492 /* aq msg sent, awaiting reply */ 2493 if (!adapter->vf_res) { 2494 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2495 GFP_KERNEL); 2496 if (!adapter->vf_res) { 2497 err = -ENOMEM; 2498 goto err; 2499 } 2500 } 2501 err = iavf_get_vf_config(adapter); 2502 if (err == -EALREADY) { 2503 err = iavf_send_vf_config_msg(adapter); 2504 goto err; 2505 } else if (err == -EINVAL) { 2506 /* We only get -EINVAL if the device is in a very bad 2507 * state or if we've been disabled for previous bad 2508 * behavior. Either way, we're done now. 2509 */ 2510 iavf_shutdown_adminq(hw); 2511 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2512 return; 2513 } 2514 if (err) { 2515 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2516 goto err_alloc; 2517 } 2518 2519 err = iavf_parse_vf_resource_msg(adapter); 2520 if (err) { 2521 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2522 err); 2523 goto err_alloc; 2524 } 2525 /* Some features require additional messages to negotiate extended 2526 * capabilities. These are processed in sequence by the 2527 * __IAVF_INIT_EXTENDED_CAPS driver state. 2528 */ 2529 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2530 2531 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2532 return; 2533 2534 err_alloc: 2535 kfree(adapter->vf_res); 2536 adapter->vf_res = NULL; 2537 err: 2538 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2539 } 2540 2541 /** 2542 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2543 * @adapter: board private structure 2544 * 2545 * Function processes send of the extended VLAN V2 capability message to the 2546 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2547 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2548 */ 2549 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2550 { 2551 int ret; 2552 2553 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2554 2555 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2556 if (ret && ret == -EOPNOTSUPP) { 2557 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2558 * we did not send the capability exchange message and do not 2559 * expect a response. 2560 */ 2561 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2562 } 2563 2564 /* We sent the message, so move on to the next step */ 2565 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2566 } 2567 2568 /** 2569 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2570 * @adapter: board private structure 2571 * 2572 * Function processes receipt of the extended VLAN V2 capability message from 2573 * the PF. 2574 **/ 2575 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2576 { 2577 int ret; 2578 2579 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2580 2581 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2582 2583 ret = iavf_get_vf_vlan_v2_caps(adapter); 2584 if (ret) 2585 goto err; 2586 2587 /* We've processed receipt of the VLAN V2 caps message */ 2588 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2589 return; 2590 err: 2591 /* We didn't receive a reply. Make sure we try sending again when 2592 * __IAVF_INIT_FAILED attempts to recover. 2593 */ 2594 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2595 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2596 } 2597 2598 /** 2599 * iavf_init_process_extended_caps - Part of driver startup 2600 * @adapter: board private structure 2601 * 2602 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2603 * handles negotiating capabilities for features which require an additional 2604 * message. 2605 * 2606 * Once all extended capabilities exchanges are finished, the driver will 2607 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2608 */ 2609 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2610 { 2611 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2612 2613 /* Process capability exchange for VLAN V2 */ 2614 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2615 iavf_init_send_offload_vlan_v2_caps(adapter); 2616 return; 2617 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2618 iavf_init_recv_offload_vlan_v2_caps(adapter); 2619 return; 2620 } 2621 2622 /* When we reach here, no further extended capabilities exchanges are 2623 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2624 */ 2625 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2626 } 2627 2628 /** 2629 * iavf_init_config_adapter - last part of driver startup 2630 * @adapter: board private structure 2631 * 2632 * After all the supported capabilities are negotiated, then the 2633 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2634 */ 2635 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2636 { 2637 struct net_device *netdev = adapter->netdev; 2638 struct pci_dev *pdev = adapter->pdev; 2639 int err; 2640 2641 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2642 2643 if (iavf_process_config(adapter)) 2644 goto err; 2645 2646 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2647 2648 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2649 2650 netdev->netdev_ops = &iavf_netdev_ops; 2651 iavf_set_ethtool_ops(netdev); 2652 netdev->watchdog_timeo = 5 * HZ; 2653 2654 /* MTU range: 68 - 9710 */ 2655 netdev->min_mtu = ETH_MIN_MTU; 2656 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2657 2658 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2659 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2660 adapter->hw.mac.addr); 2661 eth_hw_addr_random(netdev); 2662 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2663 } else { 2664 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2665 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2666 } 2667 2668 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2669 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2670 err = iavf_init_interrupt_scheme(adapter); 2671 if (err) 2672 goto err_sw_init; 2673 iavf_map_rings_to_vectors(adapter); 2674 if (adapter->vf_res->vf_cap_flags & 2675 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2676 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2677 2678 err = iavf_request_misc_irq(adapter); 2679 if (err) 2680 goto err_sw_init; 2681 2682 netif_carrier_off(netdev); 2683 adapter->link_up = false; 2684 netif_tx_stop_all_queues(netdev); 2685 2686 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2687 if (netdev->features & NETIF_F_GRO) 2688 dev_info(&pdev->dev, "GRO is enabled\n"); 2689 2690 iavf_change_state(adapter, __IAVF_DOWN); 2691 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2692 2693 iavf_misc_irq_enable(adapter); 2694 wake_up(&adapter->down_waitqueue); 2695 2696 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2697 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2698 if (!adapter->rss_key || !adapter->rss_lut) { 2699 err = -ENOMEM; 2700 goto err_mem; 2701 } 2702 if (RSS_AQ(adapter)) 2703 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2704 else 2705 iavf_init_rss(adapter); 2706 2707 if (VLAN_V2_ALLOWED(adapter)) 2708 /* request initial VLAN offload settings */ 2709 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2710 2711 iavf_schedule_finish_config(adapter); 2712 return; 2713 2714 err_mem: 2715 iavf_free_rss(adapter); 2716 iavf_free_misc_irq(adapter); 2717 err_sw_init: 2718 iavf_reset_interrupt_capability(adapter); 2719 err: 2720 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2721 } 2722 2723 /** 2724 * iavf_watchdog_task - Periodic call-back task 2725 * @work: pointer to work_struct 2726 **/ 2727 static void iavf_watchdog_task(struct work_struct *work) 2728 { 2729 struct iavf_adapter *adapter = container_of(work, 2730 struct iavf_adapter, 2731 watchdog_task.work); 2732 struct iavf_hw *hw = &adapter->hw; 2733 u32 reg_val; 2734 2735 if (!mutex_trylock(&adapter->crit_lock)) { 2736 if (adapter->state == __IAVF_REMOVE) 2737 return; 2738 2739 goto restart_watchdog; 2740 } 2741 2742 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2743 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2744 2745 switch (adapter->state) { 2746 case __IAVF_STARTUP: 2747 iavf_startup(adapter); 2748 mutex_unlock(&adapter->crit_lock); 2749 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2750 msecs_to_jiffies(30)); 2751 return; 2752 case __IAVF_INIT_VERSION_CHECK: 2753 iavf_init_version_check(adapter); 2754 mutex_unlock(&adapter->crit_lock); 2755 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2756 msecs_to_jiffies(30)); 2757 return; 2758 case __IAVF_INIT_GET_RESOURCES: 2759 iavf_init_get_resources(adapter); 2760 mutex_unlock(&adapter->crit_lock); 2761 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2762 msecs_to_jiffies(1)); 2763 return; 2764 case __IAVF_INIT_EXTENDED_CAPS: 2765 iavf_init_process_extended_caps(adapter); 2766 mutex_unlock(&adapter->crit_lock); 2767 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2768 msecs_to_jiffies(1)); 2769 return; 2770 case __IAVF_INIT_CONFIG_ADAPTER: 2771 iavf_init_config_adapter(adapter); 2772 mutex_unlock(&adapter->crit_lock); 2773 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2774 msecs_to_jiffies(1)); 2775 return; 2776 case __IAVF_INIT_FAILED: 2777 if (test_bit(__IAVF_IN_REMOVE_TASK, 2778 &adapter->crit_section)) { 2779 /* Do not update the state and do not reschedule 2780 * watchdog task, iavf_remove should handle this state 2781 * as it can loop forever 2782 */ 2783 mutex_unlock(&adapter->crit_lock); 2784 return; 2785 } 2786 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2787 dev_err(&adapter->pdev->dev, 2788 "Failed to communicate with PF; waiting before retry\n"); 2789 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2790 iavf_shutdown_adminq(hw); 2791 mutex_unlock(&adapter->crit_lock); 2792 queue_delayed_work(adapter->wq, 2793 &adapter->watchdog_task, (5 * HZ)); 2794 return; 2795 } 2796 /* Try again from failed step*/ 2797 iavf_change_state(adapter, adapter->last_state); 2798 mutex_unlock(&adapter->crit_lock); 2799 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2800 return; 2801 case __IAVF_COMM_FAILED: 2802 if (test_bit(__IAVF_IN_REMOVE_TASK, 2803 &adapter->crit_section)) { 2804 /* Set state to __IAVF_INIT_FAILED and perform remove 2805 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2806 * doesn't bring the state back to __IAVF_COMM_FAILED. 2807 */ 2808 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2809 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2810 mutex_unlock(&adapter->crit_lock); 2811 return; 2812 } 2813 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2814 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2815 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2816 reg_val == VIRTCHNL_VFR_COMPLETED) { 2817 /* A chance for redemption! */ 2818 dev_err(&adapter->pdev->dev, 2819 "Hardware came out of reset. Attempting reinit.\n"); 2820 /* When init task contacts the PF and 2821 * gets everything set up again, it'll restart the 2822 * watchdog for us. Down, boy. Sit. Stay. Woof. 2823 */ 2824 iavf_change_state(adapter, __IAVF_STARTUP); 2825 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2826 } 2827 adapter->aq_required = 0; 2828 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2829 mutex_unlock(&adapter->crit_lock); 2830 queue_delayed_work(adapter->wq, 2831 &adapter->watchdog_task, 2832 msecs_to_jiffies(10)); 2833 return; 2834 case __IAVF_RESETTING: 2835 mutex_unlock(&adapter->crit_lock); 2836 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2837 HZ * 2); 2838 return; 2839 case __IAVF_DOWN: 2840 case __IAVF_DOWN_PENDING: 2841 case __IAVF_TESTING: 2842 case __IAVF_RUNNING: 2843 if (adapter->current_op) { 2844 if (!iavf_asq_done(hw)) { 2845 dev_dbg(&adapter->pdev->dev, 2846 "Admin queue timeout\n"); 2847 iavf_send_api_ver(adapter); 2848 } 2849 } else { 2850 int ret = iavf_process_aq_command(adapter); 2851 2852 /* An error will be returned if no commands were 2853 * processed; use this opportunity to update stats 2854 * if the error isn't -ENOTSUPP 2855 */ 2856 if (ret && ret != -EOPNOTSUPP && 2857 adapter->state == __IAVF_RUNNING) 2858 iavf_request_stats(adapter); 2859 } 2860 if (adapter->state == __IAVF_RUNNING) 2861 iavf_detect_recover_hung(&adapter->vsi); 2862 break; 2863 case __IAVF_REMOVE: 2864 default: 2865 mutex_unlock(&adapter->crit_lock); 2866 return; 2867 } 2868 2869 /* check for hw reset */ 2870 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2871 if (!reg_val) { 2872 adapter->aq_required = 0; 2873 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2874 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2875 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2876 mutex_unlock(&adapter->crit_lock); 2877 queue_delayed_work(adapter->wq, 2878 &adapter->watchdog_task, HZ * 2); 2879 return; 2880 } 2881 2882 mutex_unlock(&adapter->crit_lock); 2883 restart_watchdog: 2884 if (adapter->state >= __IAVF_DOWN) 2885 queue_work(adapter->wq, &adapter->adminq_task); 2886 if (adapter->aq_required) 2887 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2888 msecs_to_jiffies(20)); 2889 else 2890 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2891 HZ * 2); 2892 } 2893 2894 /** 2895 * iavf_disable_vf - disable VF 2896 * @adapter: board private structure 2897 * 2898 * Set communication failed flag and free all resources. 2899 * NOTE: This function is expected to be called with crit_lock being held. 2900 **/ 2901 static void iavf_disable_vf(struct iavf_adapter *adapter) 2902 { 2903 struct iavf_mac_filter *f, *ftmp; 2904 struct iavf_vlan_filter *fv, *fvtmp; 2905 struct iavf_cloud_filter *cf, *cftmp; 2906 2907 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2908 2909 /* We don't use netif_running() because it may be true prior to 2910 * ndo_open() returning, so we can't assume it means all our open 2911 * tasks have finished, since we're not holding the rtnl_lock here. 2912 */ 2913 if (adapter->state == __IAVF_RUNNING) { 2914 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2915 netif_carrier_off(adapter->netdev); 2916 netif_tx_disable(adapter->netdev); 2917 adapter->link_up = false; 2918 iavf_napi_disable_all(adapter); 2919 iavf_irq_disable(adapter); 2920 iavf_free_traffic_irqs(adapter); 2921 iavf_free_all_tx_resources(adapter); 2922 iavf_free_all_rx_resources(adapter); 2923 } 2924 2925 spin_lock_bh(&adapter->mac_vlan_list_lock); 2926 2927 /* Delete all of the filters */ 2928 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2929 list_del(&f->list); 2930 kfree(f); 2931 } 2932 2933 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2934 list_del(&fv->list); 2935 kfree(fv); 2936 } 2937 adapter->num_vlan_filters = 0; 2938 2939 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2940 2941 spin_lock_bh(&adapter->cloud_filter_list_lock); 2942 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2943 list_del(&cf->list); 2944 kfree(cf); 2945 adapter->num_cloud_filters--; 2946 } 2947 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2948 2949 iavf_free_misc_irq(adapter); 2950 iavf_free_interrupt_scheme(adapter); 2951 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2952 iavf_shutdown_adminq(&adapter->hw); 2953 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2954 iavf_change_state(adapter, __IAVF_DOWN); 2955 wake_up(&adapter->down_waitqueue); 2956 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2957 } 2958 2959 /** 2960 * iavf_reset_task - Call-back task to handle hardware reset 2961 * @work: pointer to work_struct 2962 * 2963 * During reset we need to shut down and reinitialize the admin queue 2964 * before we can use it to communicate with the PF again. We also clear 2965 * and reinit the rings because that context is lost as well. 2966 **/ 2967 static void iavf_reset_task(struct work_struct *work) 2968 { 2969 struct iavf_adapter *adapter = container_of(work, 2970 struct iavf_adapter, 2971 reset_task); 2972 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2973 struct net_device *netdev = adapter->netdev; 2974 struct iavf_hw *hw = &adapter->hw; 2975 struct iavf_mac_filter *f, *ftmp; 2976 struct iavf_cloud_filter *cf; 2977 enum iavf_status status; 2978 u32 reg_val; 2979 int i = 0, err; 2980 bool running; 2981 2982 /* When device is being removed it doesn't make sense to run the reset 2983 * task, just return in such a case. 2984 */ 2985 if (!mutex_trylock(&adapter->crit_lock)) { 2986 if (adapter->state != __IAVF_REMOVE) 2987 queue_work(adapter->wq, &adapter->reset_task); 2988 2989 return; 2990 } 2991 2992 iavf_misc_irq_disable(adapter); 2993 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2994 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2995 /* Restart the AQ here. If we have been reset but didn't 2996 * detect it, or if the PF had to reinit, our AQ will be hosed. 2997 */ 2998 iavf_shutdown_adminq(hw); 2999 iavf_init_adminq(hw); 3000 iavf_request_reset(adapter); 3001 } 3002 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3003 3004 /* poll until we see the reset actually happen */ 3005 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3006 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3007 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3008 if (!reg_val) 3009 break; 3010 usleep_range(5000, 10000); 3011 } 3012 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3013 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3014 goto continue_reset; /* act like the reset happened */ 3015 } 3016 3017 /* wait until the reset is complete and the PF is responding to us */ 3018 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3019 /* sleep first to make sure a minimum wait time is met */ 3020 msleep(IAVF_RESET_WAIT_MS); 3021 3022 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3023 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3024 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3025 break; 3026 } 3027 3028 pci_set_master(adapter->pdev); 3029 pci_restore_msi_state(adapter->pdev); 3030 3031 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3032 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3033 reg_val); 3034 iavf_disable_vf(adapter); 3035 mutex_unlock(&adapter->crit_lock); 3036 return; /* Do not attempt to reinit. It's dead, Jim. */ 3037 } 3038 3039 continue_reset: 3040 /* We don't use netif_running() because it may be true prior to 3041 * ndo_open() returning, so we can't assume it means all our open 3042 * tasks have finished, since we're not holding the rtnl_lock here. 3043 */ 3044 running = adapter->state == __IAVF_RUNNING; 3045 3046 if (running) { 3047 netif_carrier_off(netdev); 3048 netif_tx_stop_all_queues(netdev); 3049 adapter->link_up = false; 3050 iavf_napi_disable_all(adapter); 3051 } 3052 iavf_irq_disable(adapter); 3053 3054 iavf_change_state(adapter, __IAVF_RESETTING); 3055 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3056 3057 /* free the Tx/Rx rings and descriptors, might be better to just 3058 * re-use them sometime in the future 3059 */ 3060 iavf_free_all_rx_resources(adapter); 3061 iavf_free_all_tx_resources(adapter); 3062 3063 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3064 /* kill and reinit the admin queue */ 3065 iavf_shutdown_adminq(hw); 3066 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3067 status = iavf_init_adminq(hw); 3068 if (status) { 3069 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3070 status); 3071 goto reset_err; 3072 } 3073 adapter->aq_required = 0; 3074 3075 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3076 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3077 err = iavf_reinit_interrupt_scheme(adapter, running); 3078 if (err) 3079 goto reset_err; 3080 } 3081 3082 if (RSS_AQ(adapter)) { 3083 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3084 } else { 3085 err = iavf_init_rss(adapter); 3086 if (err) 3087 goto reset_err; 3088 } 3089 3090 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3091 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3092 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3093 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3094 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3095 * been successfully sent and negotiated 3096 */ 3097 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3098 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3099 3100 spin_lock_bh(&adapter->mac_vlan_list_lock); 3101 3102 /* Delete filter for the current MAC address, it could have 3103 * been changed by the PF via administratively set MAC. 3104 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3105 */ 3106 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3107 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3108 list_del(&f->list); 3109 kfree(f); 3110 } 3111 } 3112 /* re-add all MAC filters */ 3113 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3114 f->add = true; 3115 } 3116 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3117 3118 /* check if TCs are running and re-add all cloud filters */ 3119 spin_lock_bh(&adapter->cloud_filter_list_lock); 3120 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3121 adapter->num_tc) { 3122 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3123 cf->add = true; 3124 } 3125 } 3126 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3127 3128 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3129 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3130 iavf_misc_irq_enable(adapter); 3131 3132 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3133 3134 /* We were running when the reset started, so we need to restore some 3135 * state here. 3136 */ 3137 if (running) { 3138 /* allocate transmit descriptors */ 3139 err = iavf_setup_all_tx_resources(adapter); 3140 if (err) 3141 goto reset_err; 3142 3143 /* allocate receive descriptors */ 3144 err = iavf_setup_all_rx_resources(adapter); 3145 if (err) 3146 goto reset_err; 3147 3148 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3149 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3150 err = iavf_request_traffic_irqs(adapter, netdev->name); 3151 if (err) 3152 goto reset_err; 3153 3154 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3155 } 3156 3157 iavf_configure(adapter); 3158 3159 /* iavf_up_complete() will switch device back 3160 * to __IAVF_RUNNING 3161 */ 3162 iavf_up_complete(adapter); 3163 3164 iavf_irq_enable(adapter, true); 3165 } else { 3166 iavf_change_state(adapter, __IAVF_DOWN); 3167 wake_up(&adapter->down_waitqueue); 3168 } 3169 3170 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3171 3172 wake_up(&adapter->reset_waitqueue); 3173 mutex_unlock(&adapter->crit_lock); 3174 3175 return; 3176 reset_err: 3177 if (running) { 3178 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3179 iavf_free_traffic_irqs(adapter); 3180 } 3181 iavf_disable_vf(adapter); 3182 3183 mutex_unlock(&adapter->crit_lock); 3184 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3185 } 3186 3187 /** 3188 * iavf_adminq_task - worker thread to clean the admin queue 3189 * @work: pointer to work_struct containing our data 3190 **/ 3191 static void iavf_adminq_task(struct work_struct *work) 3192 { 3193 struct iavf_adapter *adapter = 3194 container_of(work, struct iavf_adapter, adminq_task); 3195 struct iavf_hw *hw = &adapter->hw; 3196 struct iavf_arq_event_info event; 3197 enum virtchnl_ops v_op; 3198 enum iavf_status ret, v_ret; 3199 u32 val, oldval; 3200 u16 pending; 3201 3202 if (!mutex_trylock(&adapter->crit_lock)) { 3203 if (adapter->state == __IAVF_REMOVE) 3204 return; 3205 3206 queue_work(adapter->wq, &adapter->adminq_task); 3207 goto out; 3208 } 3209 3210 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3211 goto unlock; 3212 3213 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3214 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3215 if (!event.msg_buf) 3216 goto unlock; 3217 3218 do { 3219 ret = iavf_clean_arq_element(hw, &event, &pending); 3220 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3221 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3222 3223 if (ret || !v_op) 3224 break; /* No event to process or error cleaning ARQ */ 3225 3226 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3227 event.msg_len); 3228 if (pending != 0) 3229 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3230 } while (pending); 3231 3232 if (iavf_is_reset_in_progress(adapter)) 3233 goto freedom; 3234 3235 /* check for error indications */ 3236 val = rd32(hw, IAVF_VF_ARQLEN1); 3237 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3238 goto freedom; 3239 oldval = val; 3240 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3241 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3242 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3243 } 3244 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3245 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3246 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3247 } 3248 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3249 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3250 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3251 } 3252 if (oldval != val) 3253 wr32(hw, IAVF_VF_ARQLEN1, val); 3254 3255 val = rd32(hw, IAVF_VF_ATQLEN1); 3256 oldval = val; 3257 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3258 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3259 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3260 } 3261 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3262 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3263 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3264 } 3265 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3266 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3267 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3268 } 3269 if (oldval != val) 3270 wr32(hw, IAVF_VF_ATQLEN1, val); 3271 3272 freedom: 3273 kfree(event.msg_buf); 3274 unlock: 3275 mutex_unlock(&adapter->crit_lock); 3276 out: 3277 /* re-enable Admin queue interrupt cause */ 3278 iavf_misc_irq_enable(adapter); 3279 } 3280 3281 /** 3282 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3283 * @adapter: board private structure 3284 * 3285 * Free all transmit software resources 3286 **/ 3287 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3288 { 3289 int i; 3290 3291 if (!adapter->tx_rings) 3292 return; 3293 3294 for (i = 0; i < adapter->num_active_queues; i++) 3295 if (adapter->tx_rings[i].desc) 3296 iavf_free_tx_resources(&adapter->tx_rings[i]); 3297 } 3298 3299 /** 3300 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3301 * @adapter: board private structure 3302 * 3303 * If this function returns with an error, then it's possible one or 3304 * more of the rings is populated (while the rest are not). It is the 3305 * callers duty to clean those orphaned rings. 3306 * 3307 * Return 0 on success, negative on failure 3308 **/ 3309 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3310 { 3311 int i, err = 0; 3312 3313 for (i = 0; i < adapter->num_active_queues; i++) { 3314 adapter->tx_rings[i].count = adapter->tx_desc_count; 3315 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3316 if (!err) 3317 continue; 3318 dev_err(&adapter->pdev->dev, 3319 "Allocation for Tx Queue %u failed\n", i); 3320 break; 3321 } 3322 3323 return err; 3324 } 3325 3326 /** 3327 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3328 * @adapter: board private structure 3329 * 3330 * If this function returns with an error, then it's possible one or 3331 * more of the rings is populated (while the rest are not). It is the 3332 * callers duty to clean those orphaned rings. 3333 * 3334 * Return 0 on success, negative on failure 3335 **/ 3336 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3337 { 3338 int i, err = 0; 3339 3340 for (i = 0; i < adapter->num_active_queues; i++) { 3341 adapter->rx_rings[i].count = adapter->rx_desc_count; 3342 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3343 if (!err) 3344 continue; 3345 dev_err(&adapter->pdev->dev, 3346 "Allocation for Rx Queue %u failed\n", i); 3347 break; 3348 } 3349 return err; 3350 } 3351 3352 /** 3353 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3354 * @adapter: board private structure 3355 * 3356 * Free all receive software resources 3357 **/ 3358 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3359 { 3360 int i; 3361 3362 if (!adapter->rx_rings) 3363 return; 3364 3365 for (i = 0; i < adapter->num_active_queues; i++) 3366 if (adapter->rx_rings[i].desc) 3367 iavf_free_rx_resources(&adapter->rx_rings[i]); 3368 } 3369 3370 /** 3371 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3372 * @adapter: board private structure 3373 * @max_tx_rate: max Tx bw for a tc 3374 **/ 3375 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3376 u64 max_tx_rate) 3377 { 3378 int speed = 0, ret = 0; 3379 3380 if (ADV_LINK_SUPPORT(adapter)) { 3381 if (adapter->link_speed_mbps < U32_MAX) { 3382 speed = adapter->link_speed_mbps; 3383 goto validate_bw; 3384 } else { 3385 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3386 return -EINVAL; 3387 } 3388 } 3389 3390 switch (adapter->link_speed) { 3391 case VIRTCHNL_LINK_SPEED_40GB: 3392 speed = SPEED_40000; 3393 break; 3394 case VIRTCHNL_LINK_SPEED_25GB: 3395 speed = SPEED_25000; 3396 break; 3397 case VIRTCHNL_LINK_SPEED_20GB: 3398 speed = SPEED_20000; 3399 break; 3400 case VIRTCHNL_LINK_SPEED_10GB: 3401 speed = SPEED_10000; 3402 break; 3403 case VIRTCHNL_LINK_SPEED_5GB: 3404 speed = SPEED_5000; 3405 break; 3406 case VIRTCHNL_LINK_SPEED_2_5GB: 3407 speed = SPEED_2500; 3408 break; 3409 case VIRTCHNL_LINK_SPEED_1GB: 3410 speed = SPEED_1000; 3411 break; 3412 case VIRTCHNL_LINK_SPEED_100MB: 3413 speed = SPEED_100; 3414 break; 3415 default: 3416 break; 3417 } 3418 3419 validate_bw: 3420 if (max_tx_rate > speed) { 3421 dev_err(&adapter->pdev->dev, 3422 "Invalid tx rate specified\n"); 3423 ret = -EINVAL; 3424 } 3425 3426 return ret; 3427 } 3428 3429 /** 3430 * iavf_validate_ch_config - validate queue mapping info 3431 * @adapter: board private structure 3432 * @mqprio_qopt: queue parameters 3433 * 3434 * This function validates if the config provided by the user to 3435 * configure queue channels is valid or not. Returns 0 on a valid 3436 * config. 3437 **/ 3438 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3439 struct tc_mqprio_qopt_offload *mqprio_qopt) 3440 { 3441 u64 total_max_rate = 0; 3442 u32 tx_rate_rem = 0; 3443 int i, num_qps = 0; 3444 u64 tx_rate = 0; 3445 int ret = 0; 3446 3447 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3448 mqprio_qopt->qopt.num_tc < 1) 3449 return -EINVAL; 3450 3451 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3452 if (!mqprio_qopt->qopt.count[i] || 3453 mqprio_qopt->qopt.offset[i] != num_qps) 3454 return -EINVAL; 3455 if (mqprio_qopt->min_rate[i]) { 3456 dev_err(&adapter->pdev->dev, 3457 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3458 i); 3459 return -EINVAL; 3460 } 3461 3462 /* convert to Mbps */ 3463 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3464 IAVF_MBPS_DIVISOR); 3465 3466 if (mqprio_qopt->max_rate[i] && 3467 tx_rate < IAVF_MBPS_QUANTA) { 3468 dev_err(&adapter->pdev->dev, 3469 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3470 i, IAVF_MBPS_QUANTA); 3471 return -EINVAL; 3472 } 3473 3474 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3475 3476 if (tx_rate_rem != 0) { 3477 dev_err(&adapter->pdev->dev, 3478 "Invalid max tx rate for TC%d, not divisible by %d\n", 3479 i, IAVF_MBPS_QUANTA); 3480 return -EINVAL; 3481 } 3482 3483 total_max_rate += tx_rate; 3484 num_qps += mqprio_qopt->qopt.count[i]; 3485 } 3486 if (num_qps > adapter->num_active_queues) { 3487 dev_err(&adapter->pdev->dev, 3488 "Cannot support requested number of queues\n"); 3489 return -EINVAL; 3490 } 3491 3492 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3493 return ret; 3494 } 3495 3496 /** 3497 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3498 * @adapter: board private structure 3499 **/ 3500 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3501 { 3502 struct iavf_cloud_filter *cf, *cftmp; 3503 3504 spin_lock_bh(&adapter->cloud_filter_list_lock); 3505 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3506 list) { 3507 list_del(&cf->list); 3508 kfree(cf); 3509 adapter->num_cloud_filters--; 3510 } 3511 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3512 } 3513 3514 /** 3515 * __iavf_setup_tc - configure multiple traffic classes 3516 * @netdev: network interface device structure 3517 * @type_data: tc offload data 3518 * 3519 * This function processes the config information provided by the 3520 * user to configure traffic classes/queue channels and packages the 3521 * information to request the PF to setup traffic classes. 3522 * 3523 * Returns 0 on success. 3524 **/ 3525 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3526 { 3527 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3528 struct iavf_adapter *adapter = netdev_priv(netdev); 3529 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3530 u8 num_tc = 0, total_qps = 0; 3531 int ret = 0, netdev_tc = 0; 3532 u64 max_tx_rate; 3533 u16 mode; 3534 int i; 3535 3536 num_tc = mqprio_qopt->qopt.num_tc; 3537 mode = mqprio_qopt->mode; 3538 3539 /* delete queue_channel */ 3540 if (!mqprio_qopt->qopt.hw) { 3541 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3542 /* reset the tc configuration */ 3543 netdev_reset_tc(netdev); 3544 adapter->num_tc = 0; 3545 netif_tx_stop_all_queues(netdev); 3546 netif_tx_disable(netdev); 3547 iavf_del_all_cloud_filters(adapter); 3548 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3549 total_qps = adapter->orig_num_active_queues; 3550 goto exit; 3551 } else { 3552 return -EINVAL; 3553 } 3554 } 3555 3556 /* add queue channel */ 3557 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3558 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3559 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3560 return -EOPNOTSUPP; 3561 } 3562 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3563 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3564 return -EINVAL; 3565 } 3566 3567 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3568 if (ret) 3569 return ret; 3570 /* Return if same TC config is requested */ 3571 if (adapter->num_tc == num_tc) 3572 return 0; 3573 adapter->num_tc = num_tc; 3574 3575 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3576 if (i < num_tc) { 3577 adapter->ch_config.ch_info[i].count = 3578 mqprio_qopt->qopt.count[i]; 3579 adapter->ch_config.ch_info[i].offset = 3580 mqprio_qopt->qopt.offset[i]; 3581 total_qps += mqprio_qopt->qopt.count[i]; 3582 max_tx_rate = mqprio_qopt->max_rate[i]; 3583 /* convert to Mbps */ 3584 max_tx_rate = div_u64(max_tx_rate, 3585 IAVF_MBPS_DIVISOR); 3586 adapter->ch_config.ch_info[i].max_tx_rate = 3587 max_tx_rate; 3588 } else { 3589 adapter->ch_config.ch_info[i].count = 1; 3590 adapter->ch_config.ch_info[i].offset = 0; 3591 } 3592 } 3593 3594 /* Take snapshot of original config such as "num_active_queues" 3595 * It is used later when delete ADQ flow is exercised, so that 3596 * once delete ADQ flow completes, VF shall go back to its 3597 * original queue configuration 3598 */ 3599 3600 adapter->orig_num_active_queues = adapter->num_active_queues; 3601 3602 /* Store queue info based on TC so that VF gets configured 3603 * with correct number of queues when VF completes ADQ config 3604 * flow 3605 */ 3606 adapter->ch_config.total_qps = total_qps; 3607 3608 netif_tx_stop_all_queues(netdev); 3609 netif_tx_disable(netdev); 3610 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3611 netdev_reset_tc(netdev); 3612 /* Report the tc mapping up the stack */ 3613 netdev_set_num_tc(adapter->netdev, num_tc); 3614 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3615 u16 qcount = mqprio_qopt->qopt.count[i]; 3616 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3617 3618 if (i < num_tc) 3619 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3620 qoffset); 3621 } 3622 } 3623 exit: 3624 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3625 return 0; 3626 3627 netif_set_real_num_rx_queues(netdev, total_qps); 3628 netif_set_real_num_tx_queues(netdev, total_qps); 3629 3630 return ret; 3631 } 3632 3633 /** 3634 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3635 * @adapter: board private structure 3636 * @f: pointer to struct flow_cls_offload 3637 * @filter: pointer to cloud filter structure 3638 */ 3639 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3640 struct flow_cls_offload *f, 3641 struct iavf_cloud_filter *filter) 3642 { 3643 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3644 struct flow_dissector *dissector = rule->match.dissector; 3645 u16 n_proto_mask = 0; 3646 u16 n_proto_key = 0; 3647 u8 field_flags = 0; 3648 u16 addr_type = 0; 3649 u16 n_proto = 0; 3650 int i = 0; 3651 struct virtchnl_filter *vf = &filter->f; 3652 3653 if (dissector->used_keys & 3654 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3655 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3656 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3657 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3658 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3659 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3660 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3661 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3662 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3663 dissector->used_keys); 3664 return -EOPNOTSUPP; 3665 } 3666 3667 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3668 struct flow_match_enc_keyid match; 3669 3670 flow_rule_match_enc_keyid(rule, &match); 3671 if (match.mask->keyid != 0) 3672 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3673 } 3674 3675 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3676 struct flow_match_basic match; 3677 3678 flow_rule_match_basic(rule, &match); 3679 n_proto_key = ntohs(match.key->n_proto); 3680 n_proto_mask = ntohs(match.mask->n_proto); 3681 3682 if (n_proto_key == ETH_P_ALL) { 3683 n_proto_key = 0; 3684 n_proto_mask = 0; 3685 } 3686 n_proto = n_proto_key & n_proto_mask; 3687 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3688 return -EINVAL; 3689 if (n_proto == ETH_P_IPV6) { 3690 /* specify flow type as TCP IPv6 */ 3691 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3692 } 3693 3694 if (match.key->ip_proto != IPPROTO_TCP) { 3695 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3696 return -EINVAL; 3697 } 3698 } 3699 3700 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3701 struct flow_match_eth_addrs match; 3702 3703 flow_rule_match_eth_addrs(rule, &match); 3704 3705 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3706 if (!is_zero_ether_addr(match.mask->dst)) { 3707 if (is_broadcast_ether_addr(match.mask->dst)) { 3708 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3709 } else { 3710 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3711 match.mask->dst); 3712 return -EINVAL; 3713 } 3714 } 3715 3716 if (!is_zero_ether_addr(match.mask->src)) { 3717 if (is_broadcast_ether_addr(match.mask->src)) { 3718 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3719 } else { 3720 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3721 match.mask->src); 3722 return -EINVAL; 3723 } 3724 } 3725 3726 if (!is_zero_ether_addr(match.key->dst)) 3727 if (is_valid_ether_addr(match.key->dst) || 3728 is_multicast_ether_addr(match.key->dst)) { 3729 /* set the mask if a valid dst_mac address */ 3730 for (i = 0; i < ETH_ALEN; i++) 3731 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3732 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3733 match.key->dst); 3734 } 3735 3736 if (!is_zero_ether_addr(match.key->src)) 3737 if (is_valid_ether_addr(match.key->src) || 3738 is_multicast_ether_addr(match.key->src)) { 3739 /* set the mask if a valid dst_mac address */ 3740 for (i = 0; i < ETH_ALEN; i++) 3741 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3742 ether_addr_copy(vf->data.tcp_spec.src_mac, 3743 match.key->src); 3744 } 3745 } 3746 3747 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3748 struct flow_match_vlan match; 3749 3750 flow_rule_match_vlan(rule, &match); 3751 if (match.mask->vlan_id) { 3752 if (match.mask->vlan_id == VLAN_VID_MASK) { 3753 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3754 } else { 3755 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3756 match.mask->vlan_id); 3757 return -EINVAL; 3758 } 3759 } 3760 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3761 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3762 } 3763 3764 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3765 struct flow_match_control match; 3766 3767 flow_rule_match_control(rule, &match); 3768 addr_type = match.key->addr_type; 3769 } 3770 3771 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3772 struct flow_match_ipv4_addrs match; 3773 3774 flow_rule_match_ipv4_addrs(rule, &match); 3775 if (match.mask->dst) { 3776 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3777 field_flags |= IAVF_CLOUD_FIELD_IIP; 3778 } else { 3779 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3780 be32_to_cpu(match.mask->dst)); 3781 return -EINVAL; 3782 } 3783 } 3784 3785 if (match.mask->src) { 3786 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3787 field_flags |= IAVF_CLOUD_FIELD_IIP; 3788 } else { 3789 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3790 be32_to_cpu(match.mask->src)); 3791 return -EINVAL; 3792 } 3793 } 3794 3795 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3796 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3797 return -EINVAL; 3798 } 3799 if (match.key->dst) { 3800 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3801 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3802 } 3803 if (match.key->src) { 3804 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3805 vf->data.tcp_spec.src_ip[0] = match.key->src; 3806 } 3807 } 3808 3809 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3810 struct flow_match_ipv6_addrs match; 3811 3812 flow_rule_match_ipv6_addrs(rule, &match); 3813 3814 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3815 if (ipv6_addr_any(&match.mask->dst)) { 3816 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3817 IPV6_ADDR_ANY); 3818 return -EINVAL; 3819 } 3820 3821 /* src and dest IPv6 address should not be LOOPBACK 3822 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3823 */ 3824 if (ipv6_addr_loopback(&match.key->dst) || 3825 ipv6_addr_loopback(&match.key->src)) { 3826 dev_err(&adapter->pdev->dev, 3827 "ipv6 addr should not be loopback\n"); 3828 return -EINVAL; 3829 } 3830 if (!ipv6_addr_any(&match.mask->dst) || 3831 !ipv6_addr_any(&match.mask->src)) 3832 field_flags |= IAVF_CLOUD_FIELD_IIP; 3833 3834 for (i = 0; i < 4; i++) 3835 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3836 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3837 sizeof(vf->data.tcp_spec.dst_ip)); 3838 for (i = 0; i < 4; i++) 3839 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3840 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3841 sizeof(vf->data.tcp_spec.src_ip)); 3842 } 3843 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3844 struct flow_match_ports match; 3845 3846 flow_rule_match_ports(rule, &match); 3847 if (match.mask->src) { 3848 if (match.mask->src == cpu_to_be16(0xffff)) { 3849 field_flags |= IAVF_CLOUD_FIELD_IIP; 3850 } else { 3851 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3852 be16_to_cpu(match.mask->src)); 3853 return -EINVAL; 3854 } 3855 } 3856 3857 if (match.mask->dst) { 3858 if (match.mask->dst == cpu_to_be16(0xffff)) { 3859 field_flags |= IAVF_CLOUD_FIELD_IIP; 3860 } else { 3861 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3862 be16_to_cpu(match.mask->dst)); 3863 return -EINVAL; 3864 } 3865 } 3866 if (match.key->dst) { 3867 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3868 vf->data.tcp_spec.dst_port = match.key->dst; 3869 } 3870 3871 if (match.key->src) { 3872 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3873 vf->data.tcp_spec.src_port = match.key->src; 3874 } 3875 } 3876 vf->field_flags = field_flags; 3877 3878 return 0; 3879 } 3880 3881 /** 3882 * iavf_handle_tclass - Forward to a traffic class on the device 3883 * @adapter: board private structure 3884 * @tc: traffic class index on the device 3885 * @filter: pointer to cloud filter structure 3886 */ 3887 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3888 struct iavf_cloud_filter *filter) 3889 { 3890 if (tc == 0) 3891 return 0; 3892 if (tc < adapter->num_tc) { 3893 if (!filter->f.data.tcp_spec.dst_port) { 3894 dev_err(&adapter->pdev->dev, 3895 "Specify destination port to redirect to traffic class other than TC0\n"); 3896 return -EINVAL; 3897 } 3898 } 3899 /* redirect to a traffic class on the same device */ 3900 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3901 filter->f.action_meta = tc; 3902 return 0; 3903 } 3904 3905 /** 3906 * iavf_find_cf - Find the cloud filter in the list 3907 * @adapter: Board private structure 3908 * @cookie: filter specific cookie 3909 * 3910 * Returns ptr to the filter object or NULL. Must be called while holding the 3911 * cloud_filter_list_lock. 3912 */ 3913 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3914 unsigned long *cookie) 3915 { 3916 struct iavf_cloud_filter *filter = NULL; 3917 3918 if (!cookie) 3919 return NULL; 3920 3921 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3922 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3923 return filter; 3924 } 3925 return NULL; 3926 } 3927 3928 /** 3929 * iavf_configure_clsflower - Add tc flower filters 3930 * @adapter: board private structure 3931 * @cls_flower: Pointer to struct flow_cls_offload 3932 */ 3933 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3934 struct flow_cls_offload *cls_flower) 3935 { 3936 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3937 struct iavf_cloud_filter *filter = NULL; 3938 int err = -EINVAL, count = 50; 3939 3940 if (tc < 0) { 3941 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3942 return -EINVAL; 3943 } 3944 3945 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3946 if (!filter) 3947 return -ENOMEM; 3948 3949 while (!mutex_trylock(&adapter->crit_lock)) { 3950 if (--count == 0) { 3951 kfree(filter); 3952 return err; 3953 } 3954 udelay(1); 3955 } 3956 3957 filter->cookie = cls_flower->cookie; 3958 3959 /* bail out here if filter already exists */ 3960 spin_lock_bh(&adapter->cloud_filter_list_lock); 3961 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3962 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3963 err = -EEXIST; 3964 goto spin_unlock; 3965 } 3966 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3967 3968 /* set the mask to all zeroes to begin with */ 3969 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3970 /* start out with flow type and eth type IPv4 to begin with */ 3971 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3972 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3973 if (err) 3974 goto err; 3975 3976 err = iavf_handle_tclass(adapter, tc, filter); 3977 if (err) 3978 goto err; 3979 3980 /* add filter to the list */ 3981 spin_lock_bh(&adapter->cloud_filter_list_lock); 3982 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3983 adapter->num_cloud_filters++; 3984 filter->add = true; 3985 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3986 spin_unlock: 3987 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3988 err: 3989 if (err) 3990 kfree(filter); 3991 3992 mutex_unlock(&adapter->crit_lock); 3993 return err; 3994 } 3995 3996 /** 3997 * iavf_delete_clsflower - Remove tc flower filters 3998 * @adapter: board private structure 3999 * @cls_flower: Pointer to struct flow_cls_offload 4000 */ 4001 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4002 struct flow_cls_offload *cls_flower) 4003 { 4004 struct iavf_cloud_filter *filter = NULL; 4005 int err = 0; 4006 4007 spin_lock_bh(&adapter->cloud_filter_list_lock); 4008 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4009 if (filter) { 4010 filter->del = true; 4011 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4012 } else { 4013 err = -EINVAL; 4014 } 4015 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4016 4017 return err; 4018 } 4019 4020 /** 4021 * iavf_setup_tc_cls_flower - flower classifier offloads 4022 * @adapter: board private structure 4023 * @cls_flower: pointer to flow_cls_offload struct with flow info 4024 */ 4025 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4026 struct flow_cls_offload *cls_flower) 4027 { 4028 switch (cls_flower->command) { 4029 case FLOW_CLS_REPLACE: 4030 return iavf_configure_clsflower(adapter, cls_flower); 4031 case FLOW_CLS_DESTROY: 4032 return iavf_delete_clsflower(adapter, cls_flower); 4033 case FLOW_CLS_STATS: 4034 return -EOPNOTSUPP; 4035 default: 4036 return -EOPNOTSUPP; 4037 } 4038 } 4039 4040 /** 4041 * iavf_setup_tc_block_cb - block callback for tc 4042 * @type: type of offload 4043 * @type_data: offload data 4044 * @cb_priv: 4045 * 4046 * This function is the block callback for traffic classes 4047 **/ 4048 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4049 void *cb_priv) 4050 { 4051 struct iavf_adapter *adapter = cb_priv; 4052 4053 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4054 return -EOPNOTSUPP; 4055 4056 switch (type) { 4057 case TC_SETUP_CLSFLOWER: 4058 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4059 default: 4060 return -EOPNOTSUPP; 4061 } 4062 } 4063 4064 static LIST_HEAD(iavf_block_cb_list); 4065 4066 /** 4067 * iavf_setup_tc - configure multiple traffic classes 4068 * @netdev: network interface device structure 4069 * @type: type of offload 4070 * @type_data: tc offload data 4071 * 4072 * This function is the callback to ndo_setup_tc in the 4073 * netdev_ops. 4074 * 4075 * Returns 0 on success 4076 **/ 4077 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4078 void *type_data) 4079 { 4080 struct iavf_adapter *adapter = netdev_priv(netdev); 4081 4082 switch (type) { 4083 case TC_SETUP_QDISC_MQPRIO: 4084 return __iavf_setup_tc(netdev, type_data); 4085 case TC_SETUP_BLOCK: 4086 return flow_block_cb_setup_simple(type_data, 4087 &iavf_block_cb_list, 4088 iavf_setup_tc_block_cb, 4089 adapter, adapter, true); 4090 default: 4091 return -EOPNOTSUPP; 4092 } 4093 } 4094 4095 /** 4096 * iavf_restore_fdir_filters 4097 * @adapter: board private structure 4098 * 4099 * Restore existing FDIR filters when VF netdev comes back up. 4100 **/ 4101 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4102 { 4103 struct iavf_fdir_fltr *f; 4104 4105 spin_lock_bh(&adapter->fdir_fltr_lock); 4106 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4107 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4108 /* Cancel a request, keep filter as active */ 4109 f->state = IAVF_FDIR_FLTR_ACTIVE; 4110 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4111 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4112 /* Add filters which are inactive or have a pending 4113 * request to PF to be deleted 4114 */ 4115 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4116 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4117 } 4118 } 4119 spin_unlock_bh(&adapter->fdir_fltr_lock); 4120 } 4121 4122 /** 4123 * iavf_open - Called when a network interface is made active 4124 * @netdev: network interface device structure 4125 * 4126 * Returns 0 on success, negative value on failure 4127 * 4128 * The open entry point is called when a network interface is made 4129 * active by the system (IFF_UP). At this point all resources needed 4130 * for transmit and receive operations are allocated, the interrupt 4131 * handler is registered with the OS, the watchdog is started, 4132 * and the stack is notified that the interface is ready. 4133 **/ 4134 static int iavf_open(struct net_device *netdev) 4135 { 4136 struct iavf_adapter *adapter = netdev_priv(netdev); 4137 int err; 4138 4139 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4140 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4141 return -EIO; 4142 } 4143 4144 while (!mutex_trylock(&adapter->crit_lock)) { 4145 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4146 * is already taken and iavf_open is called from an upper 4147 * device's notifier reacting on NETDEV_REGISTER event. 4148 * We have to leave here to avoid dead lock. 4149 */ 4150 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4151 return -EBUSY; 4152 4153 usleep_range(500, 1000); 4154 } 4155 4156 if (adapter->state != __IAVF_DOWN) { 4157 err = -EBUSY; 4158 goto err_unlock; 4159 } 4160 4161 if (adapter->state == __IAVF_RUNNING && 4162 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4163 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4164 err = 0; 4165 goto err_unlock; 4166 } 4167 4168 /* allocate transmit descriptors */ 4169 err = iavf_setup_all_tx_resources(adapter); 4170 if (err) 4171 goto err_setup_tx; 4172 4173 /* allocate receive descriptors */ 4174 err = iavf_setup_all_rx_resources(adapter); 4175 if (err) 4176 goto err_setup_rx; 4177 4178 /* clear any pending interrupts, may auto mask */ 4179 err = iavf_request_traffic_irqs(adapter, netdev->name); 4180 if (err) 4181 goto err_req_irq; 4182 4183 spin_lock_bh(&adapter->mac_vlan_list_lock); 4184 4185 iavf_add_filter(adapter, adapter->hw.mac.addr); 4186 4187 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4188 4189 /* Restore filters that were removed with IFF_DOWN */ 4190 iavf_restore_filters(adapter); 4191 iavf_restore_fdir_filters(adapter); 4192 4193 iavf_configure(adapter); 4194 4195 iavf_up_complete(adapter); 4196 4197 iavf_irq_enable(adapter, true); 4198 4199 mutex_unlock(&adapter->crit_lock); 4200 4201 return 0; 4202 4203 err_req_irq: 4204 iavf_down(adapter); 4205 iavf_free_traffic_irqs(adapter); 4206 err_setup_rx: 4207 iavf_free_all_rx_resources(adapter); 4208 err_setup_tx: 4209 iavf_free_all_tx_resources(adapter); 4210 err_unlock: 4211 mutex_unlock(&adapter->crit_lock); 4212 4213 return err; 4214 } 4215 4216 /** 4217 * iavf_close - Disables a network interface 4218 * @netdev: network interface device structure 4219 * 4220 * Returns 0, this is not allowed to fail 4221 * 4222 * The close entry point is called when an interface is de-activated 4223 * by the OS. The hardware is still under the drivers control, but 4224 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4225 * are freed, along with all transmit and receive resources. 4226 **/ 4227 static int iavf_close(struct net_device *netdev) 4228 { 4229 struct iavf_adapter *adapter = netdev_priv(netdev); 4230 u64 aq_to_restore; 4231 int status; 4232 4233 mutex_lock(&adapter->crit_lock); 4234 4235 if (adapter->state <= __IAVF_DOWN_PENDING) { 4236 mutex_unlock(&adapter->crit_lock); 4237 return 0; 4238 } 4239 4240 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4241 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4242 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4243 * deadlock with adminq_task() until iavf_close timeouts. We must send 4244 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4245 * disable queues possible for vf. Give only necessary flags to 4246 * iavf_down and save other to set them right before iavf_close() 4247 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4248 * iavf will be in DOWN state. 4249 */ 4250 aq_to_restore = adapter->aq_required; 4251 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4252 4253 /* Remove flags which we do not want to send after close or we want to 4254 * send before disable queues. 4255 */ 4256 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4257 IAVF_FLAG_AQ_ENABLE_QUEUES | 4258 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4259 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4260 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4261 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4262 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4263 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4264 4265 iavf_down(adapter); 4266 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4267 iavf_free_traffic_irqs(adapter); 4268 4269 mutex_unlock(&adapter->crit_lock); 4270 4271 /* We explicitly don't free resources here because the hardware is 4272 * still active and can DMA into memory. Resources are cleared in 4273 * iavf_virtchnl_completion() after we get confirmation from the PF 4274 * driver that the rings have been stopped. 4275 * 4276 * Also, we wait for state to transition to __IAVF_DOWN before 4277 * returning. State change occurs in iavf_virtchnl_completion() after 4278 * VF resources are released (which occurs after PF driver processes and 4279 * responds to admin queue commands). 4280 */ 4281 4282 status = wait_event_timeout(adapter->down_waitqueue, 4283 adapter->state == __IAVF_DOWN, 4284 msecs_to_jiffies(500)); 4285 if (!status) 4286 netdev_warn(netdev, "Device resources not yet released\n"); 4287 4288 mutex_lock(&adapter->crit_lock); 4289 adapter->aq_required |= aq_to_restore; 4290 mutex_unlock(&adapter->crit_lock); 4291 return 0; 4292 } 4293 4294 /** 4295 * iavf_change_mtu - Change the Maximum Transfer Unit 4296 * @netdev: network interface device structure 4297 * @new_mtu: new value for maximum frame size 4298 * 4299 * Returns 0 on success, negative on failure 4300 **/ 4301 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4302 { 4303 struct iavf_adapter *adapter = netdev_priv(netdev); 4304 int ret = 0; 4305 4306 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4307 netdev->mtu, new_mtu); 4308 netdev->mtu = new_mtu; 4309 4310 if (netif_running(netdev)) { 4311 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4312 ret = iavf_wait_for_reset(adapter); 4313 if (ret < 0) 4314 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4315 else if (ret) 4316 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4317 } 4318 4319 return ret; 4320 } 4321 4322 /** 4323 * iavf_disable_fdir - disable Flow Director and clear existing filters 4324 * @adapter: board private structure 4325 **/ 4326 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4327 { 4328 struct iavf_fdir_fltr *fdir, *fdirtmp; 4329 bool del_filters = false; 4330 4331 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4332 4333 /* remove all Flow Director filters */ 4334 spin_lock_bh(&adapter->fdir_fltr_lock); 4335 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4336 list) { 4337 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4338 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4339 /* Delete filters not registered in PF */ 4340 list_del(&fdir->list); 4341 kfree(fdir); 4342 adapter->fdir_active_fltr--; 4343 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4344 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4345 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4346 /* Filters registered in PF, schedule their deletion */ 4347 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4348 del_filters = true; 4349 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4350 /* Request to delete filter already sent to PF, change 4351 * state to DEL_PENDING to delete filter after PF's 4352 * response, not set as INACTIVE 4353 */ 4354 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4355 } 4356 } 4357 spin_unlock_bh(&adapter->fdir_fltr_lock); 4358 4359 if (del_filters) { 4360 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4361 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4362 } 4363 } 4364 4365 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4366 NETIF_F_HW_VLAN_CTAG_TX | \ 4367 NETIF_F_HW_VLAN_STAG_RX | \ 4368 NETIF_F_HW_VLAN_STAG_TX) 4369 4370 /** 4371 * iavf_set_features - set the netdev feature flags 4372 * @netdev: ptr to the netdev being adjusted 4373 * @features: the feature set that the stack is suggesting 4374 * Note: expects to be called while under rtnl_lock() 4375 **/ 4376 static int iavf_set_features(struct net_device *netdev, 4377 netdev_features_t features) 4378 { 4379 struct iavf_adapter *adapter = netdev_priv(netdev); 4380 4381 /* trigger update on any VLAN feature change */ 4382 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4383 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4384 iavf_set_vlan_offload_features(adapter, netdev->features, 4385 features); 4386 if (CRC_OFFLOAD_ALLOWED(adapter) && 4387 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4388 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4389 4390 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4391 if (features & NETIF_F_NTUPLE) 4392 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4393 else 4394 iavf_disable_fdir(adapter); 4395 } 4396 4397 return 0; 4398 } 4399 4400 /** 4401 * iavf_features_check - Validate encapsulated packet conforms to limits 4402 * @skb: skb buff 4403 * @dev: This physical port's netdev 4404 * @features: Offload features that the stack believes apply 4405 **/ 4406 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4407 struct net_device *dev, 4408 netdev_features_t features) 4409 { 4410 size_t len; 4411 4412 /* No point in doing any of this if neither checksum nor GSO are 4413 * being requested for this frame. We can rule out both by just 4414 * checking for CHECKSUM_PARTIAL 4415 */ 4416 if (skb->ip_summed != CHECKSUM_PARTIAL) 4417 return features; 4418 4419 /* We cannot support GSO if the MSS is going to be less than 4420 * 64 bytes. If it is then we need to drop support for GSO. 4421 */ 4422 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4423 features &= ~NETIF_F_GSO_MASK; 4424 4425 /* MACLEN can support at most 63 words */ 4426 len = skb_network_header(skb) - skb->data; 4427 if (len & ~(63 * 2)) 4428 goto out_err; 4429 4430 /* IPLEN and EIPLEN can support at most 127 dwords */ 4431 len = skb_transport_header(skb) - skb_network_header(skb); 4432 if (len & ~(127 * 4)) 4433 goto out_err; 4434 4435 if (skb->encapsulation) { 4436 /* L4TUNLEN can support 127 words */ 4437 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4438 if (len & ~(127 * 2)) 4439 goto out_err; 4440 4441 /* IPLEN can support at most 127 dwords */ 4442 len = skb_inner_transport_header(skb) - 4443 skb_inner_network_header(skb); 4444 if (len & ~(127 * 4)) 4445 goto out_err; 4446 } 4447 4448 /* No need to validate L4LEN as TCP is the only protocol with a 4449 * flexible value and we support all possible values supported 4450 * by TCP, which is at most 15 dwords 4451 */ 4452 4453 return features; 4454 out_err: 4455 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4456 } 4457 4458 /** 4459 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4460 * @adapter: board private structure 4461 * 4462 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4463 * were negotiated determine the VLAN features that can be toggled on and off. 4464 **/ 4465 static netdev_features_t 4466 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4467 { 4468 netdev_features_t hw_features = 0; 4469 4470 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4471 return hw_features; 4472 4473 /* Enable VLAN features if supported */ 4474 if (VLAN_ALLOWED(adapter)) { 4475 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4476 NETIF_F_HW_VLAN_CTAG_RX); 4477 } else if (VLAN_V2_ALLOWED(adapter)) { 4478 struct virtchnl_vlan_caps *vlan_v2_caps = 4479 &adapter->vlan_v2_caps; 4480 struct virtchnl_vlan_supported_caps *stripping_support = 4481 &vlan_v2_caps->offloads.stripping_support; 4482 struct virtchnl_vlan_supported_caps *insertion_support = 4483 &vlan_v2_caps->offloads.insertion_support; 4484 4485 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4486 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4487 if (stripping_support->outer & 4488 VIRTCHNL_VLAN_ETHERTYPE_8100) 4489 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4490 if (stripping_support->outer & 4491 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4492 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4493 } else if (stripping_support->inner != 4494 VIRTCHNL_VLAN_UNSUPPORTED && 4495 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4496 if (stripping_support->inner & 4497 VIRTCHNL_VLAN_ETHERTYPE_8100) 4498 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4499 } 4500 4501 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4502 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4503 if (insertion_support->outer & 4504 VIRTCHNL_VLAN_ETHERTYPE_8100) 4505 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4506 if (insertion_support->outer & 4507 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4508 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4509 } else if (insertion_support->inner && 4510 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4511 if (insertion_support->inner & 4512 VIRTCHNL_VLAN_ETHERTYPE_8100) 4513 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4514 } 4515 } 4516 4517 if (CRC_OFFLOAD_ALLOWED(adapter)) 4518 hw_features |= NETIF_F_RXFCS; 4519 4520 return hw_features; 4521 } 4522 4523 /** 4524 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4525 * @adapter: board private structure 4526 * 4527 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4528 * were negotiated determine the VLAN features that are enabled by default. 4529 **/ 4530 static netdev_features_t 4531 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4532 { 4533 netdev_features_t features = 0; 4534 4535 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4536 return features; 4537 4538 if (VLAN_ALLOWED(adapter)) { 4539 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4540 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4541 } else if (VLAN_V2_ALLOWED(adapter)) { 4542 struct virtchnl_vlan_caps *vlan_v2_caps = 4543 &adapter->vlan_v2_caps; 4544 struct virtchnl_vlan_supported_caps *filtering_support = 4545 &vlan_v2_caps->filtering.filtering_support; 4546 struct virtchnl_vlan_supported_caps *stripping_support = 4547 &vlan_v2_caps->offloads.stripping_support; 4548 struct virtchnl_vlan_supported_caps *insertion_support = 4549 &vlan_v2_caps->offloads.insertion_support; 4550 u32 ethertype_init; 4551 4552 /* give priority to outer stripping and don't support both outer 4553 * and inner stripping 4554 */ 4555 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4556 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4557 if (stripping_support->outer & 4558 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4559 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4560 features |= NETIF_F_HW_VLAN_CTAG_RX; 4561 else if (stripping_support->outer & 4562 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4563 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4564 features |= NETIF_F_HW_VLAN_STAG_RX; 4565 } else if (stripping_support->inner != 4566 VIRTCHNL_VLAN_UNSUPPORTED) { 4567 if (stripping_support->inner & 4568 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4569 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4570 features |= NETIF_F_HW_VLAN_CTAG_RX; 4571 } 4572 4573 /* give priority to outer insertion and don't support both outer 4574 * and inner insertion 4575 */ 4576 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4577 if (insertion_support->outer & 4578 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4579 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4580 features |= NETIF_F_HW_VLAN_CTAG_TX; 4581 else if (insertion_support->outer & 4582 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4584 features |= NETIF_F_HW_VLAN_STAG_TX; 4585 } else if (insertion_support->inner != 4586 VIRTCHNL_VLAN_UNSUPPORTED) { 4587 if (insertion_support->inner & 4588 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4589 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4590 features |= NETIF_F_HW_VLAN_CTAG_TX; 4591 } 4592 4593 /* give priority to outer filtering and don't bother if both 4594 * outer and inner filtering are enabled 4595 */ 4596 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4597 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4598 if (filtering_support->outer & 4599 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4600 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4601 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4602 if (filtering_support->outer & 4603 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4604 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4605 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4606 } else if (filtering_support->inner != 4607 VIRTCHNL_VLAN_UNSUPPORTED) { 4608 if (filtering_support->inner & 4609 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4610 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4611 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4612 if (filtering_support->inner & 4613 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4614 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4615 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4616 } 4617 } 4618 4619 return features; 4620 } 4621 4622 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4623 (!(((requested) & (feature_bit)) && \ 4624 !((allowed) & (feature_bit)))) 4625 4626 /** 4627 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4628 * @adapter: board private structure 4629 * @requested_features: stack requested NETDEV features 4630 **/ 4631 static netdev_features_t 4632 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4633 netdev_features_t requested_features) 4634 { 4635 netdev_features_t allowed_features; 4636 4637 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4638 iavf_get_netdev_vlan_features(adapter); 4639 4640 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4641 allowed_features, 4642 NETIF_F_HW_VLAN_CTAG_TX)) 4643 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4644 4645 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4646 allowed_features, 4647 NETIF_F_HW_VLAN_CTAG_RX)) 4648 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4649 4650 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4651 allowed_features, 4652 NETIF_F_HW_VLAN_STAG_TX)) 4653 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4654 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4655 allowed_features, 4656 NETIF_F_HW_VLAN_STAG_RX)) 4657 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4658 4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4660 allowed_features, 4661 NETIF_F_HW_VLAN_CTAG_FILTER)) 4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4663 4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4665 allowed_features, 4666 NETIF_F_HW_VLAN_STAG_FILTER)) 4667 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4668 4669 if ((requested_features & 4670 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4671 (requested_features & 4672 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4673 adapter->vlan_v2_caps.offloads.ethertype_match == 4674 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4675 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4676 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4677 NETIF_F_HW_VLAN_STAG_TX); 4678 } 4679 4680 return requested_features; 4681 } 4682 4683 /** 4684 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4685 * @adapter: board private structure 4686 * @requested_features: stack requested NETDEV features 4687 * 4688 * Returns fixed-up features bits 4689 **/ 4690 static netdev_features_t 4691 iavf_fix_strip_features(struct iavf_adapter *adapter, 4692 netdev_features_t requested_features) 4693 { 4694 struct net_device *netdev = adapter->netdev; 4695 bool crc_offload_req, is_vlan_strip; 4696 netdev_features_t vlan_strip; 4697 int num_non_zero_vlan; 4698 4699 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4700 (requested_features & NETIF_F_RXFCS); 4701 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4702 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4703 is_vlan_strip = requested_features & vlan_strip; 4704 4705 if (!crc_offload_req) 4706 return requested_features; 4707 4708 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4709 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4710 requested_features &= ~vlan_strip; 4711 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4712 return requested_features; 4713 } 4714 4715 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4716 requested_features &= ~vlan_strip; 4717 if (!(netdev->features & vlan_strip)) 4718 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4719 4720 return requested_features; 4721 } 4722 4723 if (num_non_zero_vlan && is_vlan_strip && 4724 !(netdev->features & NETIF_F_RXFCS)) { 4725 requested_features &= ~NETIF_F_RXFCS; 4726 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4727 } 4728 4729 return requested_features; 4730 } 4731 4732 /** 4733 * iavf_fix_features - fix up the netdev feature bits 4734 * @netdev: our net device 4735 * @features: desired feature bits 4736 * 4737 * Returns fixed-up features bits 4738 **/ 4739 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4740 netdev_features_t features) 4741 { 4742 struct iavf_adapter *adapter = netdev_priv(netdev); 4743 4744 features = iavf_fix_netdev_vlan_features(adapter, features); 4745 4746 if (!FDIR_FLTR_SUPPORT(adapter)) 4747 features &= ~NETIF_F_NTUPLE; 4748 4749 return iavf_fix_strip_features(adapter, features); 4750 } 4751 4752 static const struct net_device_ops iavf_netdev_ops = { 4753 .ndo_open = iavf_open, 4754 .ndo_stop = iavf_close, 4755 .ndo_start_xmit = iavf_xmit_frame, 4756 .ndo_set_rx_mode = iavf_set_rx_mode, 4757 .ndo_validate_addr = eth_validate_addr, 4758 .ndo_set_mac_address = iavf_set_mac, 4759 .ndo_change_mtu = iavf_change_mtu, 4760 .ndo_tx_timeout = iavf_tx_timeout, 4761 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4762 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4763 .ndo_features_check = iavf_features_check, 4764 .ndo_fix_features = iavf_fix_features, 4765 .ndo_set_features = iavf_set_features, 4766 .ndo_setup_tc = iavf_setup_tc, 4767 }; 4768 4769 /** 4770 * iavf_check_reset_complete - check that VF reset is complete 4771 * @hw: pointer to hw struct 4772 * 4773 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4774 **/ 4775 static int iavf_check_reset_complete(struct iavf_hw *hw) 4776 { 4777 u32 rstat; 4778 int i; 4779 4780 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4781 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4782 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4783 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4784 (rstat == VIRTCHNL_VFR_COMPLETED)) 4785 return 0; 4786 msleep(IAVF_RESET_WAIT_MS); 4787 } 4788 return -EBUSY; 4789 } 4790 4791 /** 4792 * iavf_process_config - Process the config information we got from the PF 4793 * @adapter: board private structure 4794 * 4795 * Verify that we have a valid config struct, and set up our netdev features 4796 * and our VSI struct. 4797 **/ 4798 int iavf_process_config(struct iavf_adapter *adapter) 4799 { 4800 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4801 netdev_features_t hw_vlan_features, vlan_features; 4802 struct net_device *netdev = adapter->netdev; 4803 netdev_features_t hw_enc_features; 4804 netdev_features_t hw_features; 4805 4806 hw_enc_features = NETIF_F_SG | 4807 NETIF_F_IP_CSUM | 4808 NETIF_F_IPV6_CSUM | 4809 NETIF_F_HIGHDMA | 4810 NETIF_F_SOFT_FEATURES | 4811 NETIF_F_TSO | 4812 NETIF_F_TSO_ECN | 4813 NETIF_F_TSO6 | 4814 NETIF_F_SCTP_CRC | 4815 NETIF_F_RXHASH | 4816 NETIF_F_RXCSUM | 4817 0; 4818 4819 /* advertise to stack only if offloads for encapsulated packets is 4820 * supported 4821 */ 4822 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4823 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4824 NETIF_F_GSO_GRE | 4825 NETIF_F_GSO_GRE_CSUM | 4826 NETIF_F_GSO_IPXIP4 | 4827 NETIF_F_GSO_IPXIP6 | 4828 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4829 NETIF_F_GSO_PARTIAL | 4830 0; 4831 4832 if (!(vfres->vf_cap_flags & 4833 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4834 netdev->gso_partial_features |= 4835 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4836 4837 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4838 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4839 netdev->hw_enc_features |= hw_enc_features; 4840 } 4841 /* record features VLANs can make use of */ 4842 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4843 4844 /* Write features and hw_features separately to avoid polluting 4845 * with, or dropping, features that are set when we registered. 4846 */ 4847 hw_features = hw_enc_features; 4848 4849 /* get HW VLAN features that can be toggled */ 4850 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4851 4852 /* Enable cloud filter if ADQ is supported */ 4853 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4854 hw_features |= NETIF_F_HW_TC; 4855 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4856 hw_features |= NETIF_F_GSO_UDP_L4; 4857 4858 netdev->hw_features |= hw_features | hw_vlan_features; 4859 vlan_features = iavf_get_netdev_vlan_features(adapter); 4860 4861 netdev->features |= hw_features | vlan_features; 4862 4863 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4864 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4865 4866 if (FDIR_FLTR_SUPPORT(adapter)) { 4867 netdev->hw_features |= NETIF_F_NTUPLE; 4868 netdev->features |= NETIF_F_NTUPLE; 4869 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4870 } 4871 4872 netdev->priv_flags |= IFF_UNICAST_FLT; 4873 4874 /* Do not turn on offloads when they are requested to be turned off. 4875 * TSO needs minimum 576 bytes to work correctly. 4876 */ 4877 if (netdev->wanted_features) { 4878 if (!(netdev->wanted_features & NETIF_F_TSO) || 4879 netdev->mtu < 576) 4880 netdev->features &= ~NETIF_F_TSO; 4881 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4882 netdev->mtu < 576) 4883 netdev->features &= ~NETIF_F_TSO6; 4884 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4885 netdev->features &= ~NETIF_F_TSO_ECN; 4886 if (!(netdev->wanted_features & NETIF_F_GRO)) 4887 netdev->features &= ~NETIF_F_GRO; 4888 if (!(netdev->wanted_features & NETIF_F_GSO)) 4889 netdev->features &= ~NETIF_F_GSO; 4890 } 4891 4892 return 0; 4893 } 4894 4895 /** 4896 * iavf_probe - Device Initialization Routine 4897 * @pdev: PCI device information struct 4898 * @ent: entry in iavf_pci_tbl 4899 * 4900 * Returns 0 on success, negative on failure 4901 * 4902 * iavf_probe initializes an adapter identified by a pci_dev structure. 4903 * The OS initialization, configuring of the adapter private structure, 4904 * and a hardware reset occur. 4905 **/ 4906 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4907 { 4908 struct net_device *netdev; 4909 struct iavf_adapter *adapter = NULL; 4910 struct iavf_hw *hw = NULL; 4911 int err; 4912 4913 err = pci_enable_device(pdev); 4914 if (err) 4915 return err; 4916 4917 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4918 if (err) { 4919 dev_err(&pdev->dev, 4920 "DMA configuration failed: 0x%x\n", err); 4921 goto err_dma; 4922 } 4923 4924 err = pci_request_regions(pdev, iavf_driver_name); 4925 if (err) { 4926 dev_err(&pdev->dev, 4927 "pci_request_regions failed 0x%x\n", err); 4928 goto err_pci_reg; 4929 } 4930 4931 pci_set_master(pdev); 4932 4933 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4934 IAVF_MAX_REQ_QUEUES); 4935 if (!netdev) { 4936 err = -ENOMEM; 4937 goto err_alloc_etherdev; 4938 } 4939 4940 SET_NETDEV_DEV(netdev, &pdev->dev); 4941 4942 pci_set_drvdata(pdev, netdev); 4943 adapter = netdev_priv(netdev); 4944 4945 adapter->netdev = netdev; 4946 adapter->pdev = pdev; 4947 4948 hw = &adapter->hw; 4949 hw->back = adapter; 4950 4951 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4952 iavf_driver_name); 4953 if (!adapter->wq) { 4954 err = -ENOMEM; 4955 goto err_alloc_wq; 4956 } 4957 4958 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4959 iavf_change_state(adapter, __IAVF_STARTUP); 4960 4961 /* Call save state here because it relies on the adapter struct. */ 4962 pci_save_state(pdev); 4963 4964 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4965 pci_resource_len(pdev, 0)); 4966 if (!hw->hw_addr) { 4967 err = -EIO; 4968 goto err_ioremap; 4969 } 4970 hw->vendor_id = pdev->vendor; 4971 hw->device_id = pdev->device; 4972 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4973 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4974 hw->subsystem_device_id = pdev->subsystem_device; 4975 hw->bus.device = PCI_SLOT(pdev->devfn); 4976 hw->bus.func = PCI_FUNC(pdev->devfn); 4977 hw->bus.bus_id = pdev->bus->number; 4978 4979 /* set up the locks for the AQ, do this only once in probe 4980 * and destroy them only once in remove 4981 */ 4982 mutex_init(&adapter->crit_lock); 4983 mutex_init(&hw->aq.asq_mutex); 4984 mutex_init(&hw->aq.arq_mutex); 4985 4986 spin_lock_init(&adapter->mac_vlan_list_lock); 4987 spin_lock_init(&adapter->cloud_filter_list_lock); 4988 spin_lock_init(&adapter->fdir_fltr_lock); 4989 spin_lock_init(&adapter->adv_rss_lock); 4990 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4991 4992 INIT_LIST_HEAD(&adapter->mac_filter_list); 4993 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4994 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4995 INIT_LIST_HEAD(&adapter->fdir_list_head); 4996 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4997 4998 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4999 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5000 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5001 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5002 5003 /* Setup the wait queue for indicating transition to down status */ 5004 init_waitqueue_head(&adapter->down_waitqueue); 5005 5006 /* Setup the wait queue for indicating transition to running state */ 5007 init_waitqueue_head(&adapter->reset_waitqueue); 5008 5009 /* Setup the wait queue for indicating virtchannel events */ 5010 init_waitqueue_head(&adapter->vc_waitqueue); 5011 5012 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5013 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5014 /* Initialization goes on in the work. Do not add more of it below. */ 5015 return 0; 5016 5017 err_ioremap: 5018 destroy_workqueue(adapter->wq); 5019 err_alloc_wq: 5020 free_netdev(netdev); 5021 err_alloc_etherdev: 5022 pci_release_regions(pdev); 5023 err_pci_reg: 5024 err_dma: 5025 pci_disable_device(pdev); 5026 return err; 5027 } 5028 5029 /** 5030 * iavf_suspend - Power management suspend routine 5031 * @dev_d: device info pointer 5032 * 5033 * Called when the system (VM) is entering sleep/suspend. 5034 **/ 5035 static int __maybe_unused iavf_suspend(struct device *dev_d) 5036 { 5037 struct net_device *netdev = dev_get_drvdata(dev_d); 5038 struct iavf_adapter *adapter = netdev_priv(netdev); 5039 5040 netif_device_detach(netdev); 5041 5042 mutex_lock(&adapter->crit_lock); 5043 5044 if (netif_running(netdev)) { 5045 rtnl_lock(); 5046 iavf_down(adapter); 5047 rtnl_unlock(); 5048 } 5049 iavf_free_misc_irq(adapter); 5050 iavf_reset_interrupt_capability(adapter); 5051 5052 mutex_unlock(&adapter->crit_lock); 5053 5054 return 0; 5055 } 5056 5057 /** 5058 * iavf_resume - Power management resume routine 5059 * @dev_d: device info pointer 5060 * 5061 * Called when the system (VM) is resumed from sleep/suspend. 5062 **/ 5063 static int __maybe_unused iavf_resume(struct device *dev_d) 5064 { 5065 struct pci_dev *pdev = to_pci_dev(dev_d); 5066 struct iavf_adapter *adapter; 5067 u32 err; 5068 5069 adapter = iavf_pdev_to_adapter(pdev); 5070 5071 pci_set_master(pdev); 5072 5073 rtnl_lock(); 5074 err = iavf_set_interrupt_capability(adapter); 5075 if (err) { 5076 rtnl_unlock(); 5077 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5078 return err; 5079 } 5080 err = iavf_request_misc_irq(adapter); 5081 rtnl_unlock(); 5082 if (err) { 5083 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5084 return err; 5085 } 5086 5087 queue_work(adapter->wq, &adapter->reset_task); 5088 5089 netif_device_attach(adapter->netdev); 5090 5091 return err; 5092 } 5093 5094 /** 5095 * iavf_remove - Device Removal Routine 5096 * @pdev: PCI device information struct 5097 * 5098 * iavf_remove is called by the PCI subsystem to alert the driver 5099 * that it should release a PCI device. The could be caused by a 5100 * Hot-Plug event, or because the driver is going to be removed from 5101 * memory. 5102 **/ 5103 static void iavf_remove(struct pci_dev *pdev) 5104 { 5105 struct iavf_fdir_fltr *fdir, *fdirtmp; 5106 struct iavf_vlan_filter *vlf, *vlftmp; 5107 struct iavf_cloud_filter *cf, *cftmp; 5108 struct iavf_adv_rss *rss, *rsstmp; 5109 struct iavf_mac_filter *f, *ftmp; 5110 struct iavf_adapter *adapter; 5111 struct net_device *netdev; 5112 struct iavf_hw *hw; 5113 5114 /* Don't proceed with remove if netdev is already freed */ 5115 netdev = pci_get_drvdata(pdev); 5116 if (!netdev) 5117 return; 5118 5119 adapter = iavf_pdev_to_adapter(pdev); 5120 hw = &adapter->hw; 5121 5122 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5123 return; 5124 5125 /* Wait until port initialization is complete. 5126 * There are flows where register/unregister netdev may race. 5127 */ 5128 while (1) { 5129 mutex_lock(&adapter->crit_lock); 5130 if (adapter->state == __IAVF_RUNNING || 5131 adapter->state == __IAVF_DOWN || 5132 adapter->state == __IAVF_INIT_FAILED) { 5133 mutex_unlock(&adapter->crit_lock); 5134 break; 5135 } 5136 /* Simply return if we already went through iavf_shutdown */ 5137 if (adapter->state == __IAVF_REMOVE) { 5138 mutex_unlock(&adapter->crit_lock); 5139 return; 5140 } 5141 5142 mutex_unlock(&adapter->crit_lock); 5143 usleep_range(500, 1000); 5144 } 5145 cancel_delayed_work_sync(&adapter->watchdog_task); 5146 cancel_work_sync(&adapter->finish_config); 5147 5148 if (netdev->reg_state == NETREG_REGISTERED) 5149 unregister_netdev(netdev); 5150 5151 mutex_lock(&adapter->crit_lock); 5152 dev_info(&adapter->pdev->dev, "Removing device\n"); 5153 iavf_change_state(adapter, __IAVF_REMOVE); 5154 5155 iavf_request_reset(adapter); 5156 msleep(50); 5157 /* If the FW isn't responding, kick it once, but only once. */ 5158 if (!iavf_asq_done(hw)) { 5159 iavf_request_reset(adapter); 5160 msleep(50); 5161 } 5162 5163 iavf_misc_irq_disable(adapter); 5164 /* Shut down all the garbage mashers on the detention level */ 5165 cancel_work_sync(&adapter->reset_task); 5166 cancel_delayed_work_sync(&adapter->watchdog_task); 5167 cancel_work_sync(&adapter->adminq_task); 5168 5169 adapter->aq_required = 0; 5170 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5171 5172 iavf_free_all_tx_resources(adapter); 5173 iavf_free_all_rx_resources(adapter); 5174 iavf_free_misc_irq(adapter); 5175 iavf_free_interrupt_scheme(adapter); 5176 5177 iavf_free_rss(adapter); 5178 5179 if (hw->aq.asq.count) 5180 iavf_shutdown_adminq(hw); 5181 5182 /* destroy the locks only once, here */ 5183 mutex_destroy(&hw->aq.arq_mutex); 5184 mutex_destroy(&hw->aq.asq_mutex); 5185 mutex_unlock(&adapter->crit_lock); 5186 mutex_destroy(&adapter->crit_lock); 5187 5188 iounmap(hw->hw_addr); 5189 pci_release_regions(pdev); 5190 kfree(adapter->vf_res); 5191 spin_lock_bh(&adapter->mac_vlan_list_lock); 5192 /* If we got removed before an up/down sequence, we've got a filter 5193 * hanging out there that we need to get rid of. 5194 */ 5195 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5196 list_del(&f->list); 5197 kfree(f); 5198 } 5199 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5200 list) { 5201 list_del(&vlf->list); 5202 kfree(vlf); 5203 } 5204 5205 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5206 5207 spin_lock_bh(&adapter->cloud_filter_list_lock); 5208 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5209 list_del(&cf->list); 5210 kfree(cf); 5211 } 5212 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5213 5214 spin_lock_bh(&adapter->fdir_fltr_lock); 5215 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5216 list_del(&fdir->list); 5217 kfree(fdir); 5218 } 5219 spin_unlock_bh(&adapter->fdir_fltr_lock); 5220 5221 spin_lock_bh(&adapter->adv_rss_lock); 5222 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5223 list) { 5224 list_del(&rss->list); 5225 kfree(rss); 5226 } 5227 spin_unlock_bh(&adapter->adv_rss_lock); 5228 5229 destroy_workqueue(adapter->wq); 5230 5231 pci_set_drvdata(pdev, NULL); 5232 5233 free_netdev(netdev); 5234 5235 pci_disable_device(pdev); 5236 } 5237 5238 /** 5239 * iavf_shutdown - Shutdown the device in preparation for a reboot 5240 * @pdev: pci device structure 5241 **/ 5242 static void iavf_shutdown(struct pci_dev *pdev) 5243 { 5244 iavf_remove(pdev); 5245 5246 if (system_state == SYSTEM_POWER_OFF) 5247 pci_set_power_state(pdev, PCI_D3hot); 5248 } 5249 5250 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5251 5252 static struct pci_driver iavf_driver = { 5253 .name = iavf_driver_name, 5254 .id_table = iavf_pci_tbl, 5255 .probe = iavf_probe, 5256 .remove = iavf_remove, 5257 .driver.pm = &iavf_pm_ops, 5258 .shutdown = iavf_shutdown, 5259 }; 5260 5261 /** 5262 * iavf_init_module - Driver Registration Routine 5263 * 5264 * iavf_init_module is the first routine called when the driver is 5265 * loaded. All it does is register with the PCI subsystem. 5266 **/ 5267 static int __init iavf_init_module(void) 5268 { 5269 pr_info("iavf: %s\n", iavf_driver_string); 5270 5271 pr_info("%s\n", iavf_copyright); 5272 5273 return pci_register_driver(&iavf_driver); 5274 } 5275 5276 module_init(iavf_init_module); 5277 5278 /** 5279 * iavf_exit_module - Driver Exit Cleanup Routine 5280 * 5281 * iavf_exit_module is called just before the driver is removed 5282 * from memory. 5283 **/ 5284 static void __exit iavf_exit_module(void) 5285 { 5286 pci_unregister_driver(&iavf_driver); 5287 } 5288 5289 module_exit(iavf_exit_module); 5290 5291 /* iavf_main.c */ 5292