1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_ptp.h" 8 #include "iavf_prototype.h" 9 /* All iavf tracepoints are defined by the include below, which must 10 * be included exactly once across the whole kernel with 11 * CREATE_TRACE_POINTS defined 12 */ 13 #define CREATE_TRACE_POINTS 14 #include "iavf_trace.h" 15 16 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 17 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 18 static int iavf_close(struct net_device *netdev); 19 static void iavf_init_get_resources(struct iavf_adapter *adapter); 20 static int iavf_check_reset_complete(struct iavf_hw *hw); 21 22 char iavf_driver_name[] = "iavf"; 23 static const char iavf_driver_string[] = 24 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 25 26 static const char iavf_copyright[] = 27 "Copyright (c) 2013 - 2018 Intel Corporation."; 28 29 /* iavf_pci_tbl - PCI Device ID Table 30 * 31 * Wildcard entries (PCI_ANY_ID) should come last 32 * Last entry must be all 0s 33 * 34 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 35 * Class, Class Mask, private data (not used) } 36 */ 37 static const struct pci_device_id iavf_pci_tbl[] = { 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 41 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 42 /* required last entry */ 43 {0, } 44 }; 45 46 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 47 48 MODULE_ALIAS("i40evf"); 49 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 50 MODULE_IMPORT_NS("LIBETH"); 51 MODULE_IMPORT_NS("LIBIE"); 52 MODULE_LICENSE("GPL v2"); 53 54 static const struct net_device_ops iavf_netdev_ops; 55 56 int iavf_status_to_errno(enum iavf_status status) 57 { 58 switch (status) { 59 case IAVF_SUCCESS: 60 return 0; 61 case IAVF_ERR_PARAM: 62 case IAVF_ERR_MAC_TYPE: 63 case IAVF_ERR_INVALID_MAC_ADDR: 64 case IAVF_ERR_INVALID_LINK_SETTINGS: 65 case IAVF_ERR_INVALID_PD_ID: 66 case IAVF_ERR_INVALID_QP_ID: 67 case IAVF_ERR_INVALID_CQ_ID: 68 case IAVF_ERR_INVALID_CEQ_ID: 69 case IAVF_ERR_INVALID_AEQ_ID: 70 case IAVF_ERR_INVALID_SIZE: 71 case IAVF_ERR_INVALID_ARP_INDEX: 72 case IAVF_ERR_INVALID_FPM_FUNC_ID: 73 case IAVF_ERR_QP_INVALID_MSG_SIZE: 74 case IAVF_ERR_INVALID_FRAG_COUNT: 75 case IAVF_ERR_INVALID_ALIGNMENT: 76 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 77 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 78 case IAVF_ERR_INVALID_VF_ID: 79 case IAVF_ERR_INVALID_HMCFN_ID: 80 case IAVF_ERR_INVALID_PBLE_INDEX: 81 case IAVF_ERR_INVALID_SD_INDEX: 82 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 83 case IAVF_ERR_INVALID_SD_TYPE: 84 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 85 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 86 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 87 return -EINVAL; 88 case IAVF_ERR_NVM: 89 case IAVF_ERR_NVM_CHECKSUM: 90 case IAVF_ERR_PHY: 91 case IAVF_ERR_CONFIG: 92 case IAVF_ERR_UNKNOWN_PHY: 93 case IAVF_ERR_LINK_SETUP: 94 case IAVF_ERR_ADAPTER_STOPPED: 95 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 96 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 97 case IAVF_ERR_RESET_FAILED: 98 case IAVF_ERR_BAD_PTR: 99 case IAVF_ERR_SWFW_SYNC: 100 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 101 case IAVF_ERR_QUEUE_EMPTY: 102 case IAVF_ERR_FLUSHED_QUEUE: 103 case IAVF_ERR_OPCODE_MISMATCH: 104 case IAVF_ERR_CQP_COMPL_ERROR: 105 case IAVF_ERR_BACKING_PAGE_ERROR: 106 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 107 case IAVF_ERR_MEMCPY_FAILED: 108 case IAVF_ERR_SRQ_ENABLED: 109 case IAVF_ERR_ADMIN_QUEUE_ERROR: 110 case IAVF_ERR_ADMIN_QUEUE_FULL: 111 case IAVF_ERR_BAD_RDMA_CQE: 112 case IAVF_ERR_NVM_BLANK_MODE: 113 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 114 case IAVF_ERR_DIAG_TEST_FAILED: 115 case IAVF_ERR_FIRMWARE_API_VERSION: 116 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 117 return -EIO; 118 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 119 return -ENODEV; 120 case IAVF_ERR_NO_AVAILABLE_VSI: 121 case IAVF_ERR_RING_FULL: 122 return -ENOSPC; 123 case IAVF_ERR_NO_MEMORY: 124 return -ENOMEM; 125 case IAVF_ERR_TIMEOUT: 126 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 127 return -ETIMEDOUT; 128 case IAVF_ERR_NOT_IMPLEMENTED: 129 case IAVF_NOT_SUPPORTED: 130 return -EOPNOTSUPP; 131 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 132 return -EALREADY; 133 case IAVF_ERR_NOT_READY: 134 return -EBUSY; 135 case IAVF_ERR_BUF_TOO_SHORT: 136 return -EMSGSIZE; 137 } 138 139 return -EIO; 140 } 141 142 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 143 { 144 switch (v_status) { 145 case VIRTCHNL_STATUS_SUCCESS: 146 return 0; 147 case VIRTCHNL_STATUS_ERR_PARAM: 148 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 149 return -EINVAL; 150 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 151 return -ENOMEM; 152 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 153 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 154 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 155 return -EIO; 156 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 157 return -EOPNOTSUPP; 158 } 159 160 return -EIO; 161 } 162 163 /** 164 * iavf_pdev_to_adapter - go from pci_dev to adapter 165 * @pdev: pci_dev pointer 166 */ 167 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 168 { 169 return netdev_priv(pci_get_drvdata(pdev)); 170 } 171 172 /** 173 * iavf_is_reset_in_progress - Check if a reset is in progress 174 * @adapter: board private structure 175 */ 176 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 177 { 178 if (adapter->state == __IAVF_RESETTING || 179 adapter->flags & (IAVF_FLAG_RESET_PENDING | 180 IAVF_FLAG_RESET_NEEDED)) 181 return true; 182 183 return false; 184 } 185 186 /** 187 * iavf_wait_for_reset - Wait for reset to finish. 188 * @adapter: board private structure 189 * 190 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 191 */ 192 int iavf_wait_for_reset(struct iavf_adapter *adapter) 193 { 194 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 195 !iavf_is_reset_in_progress(adapter), 196 msecs_to_jiffies(5000)); 197 198 /* If ret < 0 then it means wait was interrupted. 199 * If ret == 0 then it means we got a timeout while waiting 200 * for reset to finish. 201 * If ret > 0 it means reset has finished. 202 */ 203 if (ret > 0) 204 return 0; 205 else if (ret < 0) 206 return -EINTR; 207 else 208 return -EBUSY; 209 } 210 211 /** 212 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 213 * @hw: pointer to the HW structure 214 * @mem: ptr to mem struct to fill out 215 * @size: size of memory requested 216 * @alignment: what to align the allocation to 217 **/ 218 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 219 struct iavf_dma_mem *mem, 220 u64 size, u32 alignment) 221 { 222 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 223 224 if (!mem) 225 return IAVF_ERR_PARAM; 226 227 mem->size = ALIGN(size, alignment); 228 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 229 (dma_addr_t *)&mem->pa, GFP_KERNEL); 230 if (mem->va) 231 return 0; 232 else 233 return IAVF_ERR_NO_MEMORY; 234 } 235 236 /** 237 * iavf_free_dma_mem - wrapper for DMA memory freeing 238 * @hw: pointer to the HW structure 239 * @mem: ptr to mem struct to free 240 **/ 241 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 242 { 243 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 244 245 if (!mem || !mem->va) 246 return IAVF_ERR_PARAM; 247 dma_free_coherent(&adapter->pdev->dev, mem->size, 248 mem->va, (dma_addr_t)mem->pa); 249 return 0; 250 } 251 252 /** 253 * iavf_allocate_virt_mem - virt memory alloc wrapper 254 * @hw: pointer to the HW structure 255 * @mem: ptr to mem struct to fill out 256 * @size: size of memory requested 257 **/ 258 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 259 struct iavf_virt_mem *mem, u32 size) 260 { 261 if (!mem) 262 return IAVF_ERR_PARAM; 263 264 mem->size = size; 265 mem->va = kzalloc(size, GFP_KERNEL); 266 267 if (mem->va) 268 return 0; 269 else 270 return IAVF_ERR_NO_MEMORY; 271 } 272 273 /** 274 * iavf_free_virt_mem - virt memory free wrapper 275 * @hw: pointer to the HW structure 276 * @mem: ptr to mem struct to free 277 **/ 278 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 279 { 280 kfree(mem->va); 281 } 282 283 /** 284 * iavf_schedule_reset - Set the flags and schedule a reset event 285 * @adapter: board private structure 286 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 287 **/ 288 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 289 { 290 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 291 !(adapter->flags & 292 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 293 adapter->flags |= flags; 294 queue_work(adapter->wq, &adapter->reset_task); 295 } 296 } 297 298 /** 299 * iavf_schedule_aq_request - Set the flags and schedule aq request 300 * @adapter: board private structure 301 * @flags: requested aq flags 302 **/ 303 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 304 { 305 adapter->aq_required |= flags; 306 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 307 } 308 309 /** 310 * iavf_tx_timeout - Respond to a Tx Hang 311 * @netdev: network interface device structure 312 * @txqueue: queue number that is timing out 313 **/ 314 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 315 { 316 struct iavf_adapter *adapter = netdev_priv(netdev); 317 318 adapter->tx_timeout_count++; 319 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 320 } 321 322 /** 323 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 324 * @adapter: board private structure 325 **/ 326 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 327 { 328 struct iavf_hw *hw = &adapter->hw; 329 330 if (!adapter->msix_entries) 331 return; 332 333 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 334 335 iavf_flush(hw); 336 337 synchronize_irq(adapter->msix_entries[0].vector); 338 } 339 340 /** 341 * iavf_misc_irq_enable - Enable default interrupt generation settings 342 * @adapter: board private structure 343 **/ 344 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 345 { 346 struct iavf_hw *hw = &adapter->hw; 347 348 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 349 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 350 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 351 352 iavf_flush(hw); 353 } 354 355 /** 356 * iavf_irq_disable - Mask off interrupt generation on the NIC 357 * @adapter: board private structure 358 **/ 359 static void iavf_irq_disable(struct iavf_adapter *adapter) 360 { 361 int i; 362 struct iavf_hw *hw = &adapter->hw; 363 364 if (!adapter->msix_entries) 365 return; 366 367 for (i = 1; i < adapter->num_msix_vectors; i++) { 368 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 369 synchronize_irq(adapter->msix_entries[i].vector); 370 } 371 iavf_flush(hw); 372 } 373 374 /** 375 * iavf_irq_enable_queues - Enable interrupt for all queues 376 * @adapter: board private structure 377 **/ 378 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 379 { 380 struct iavf_hw *hw = &adapter->hw; 381 int i; 382 383 for (i = 1; i < adapter->num_msix_vectors; i++) { 384 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 385 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 386 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 387 } 388 } 389 390 /** 391 * iavf_irq_enable - Enable default interrupt generation settings 392 * @adapter: board private structure 393 * @flush: boolean value whether to run rd32() 394 **/ 395 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 396 { 397 struct iavf_hw *hw = &adapter->hw; 398 399 iavf_misc_irq_enable(adapter); 400 iavf_irq_enable_queues(adapter); 401 402 if (flush) 403 iavf_flush(hw); 404 } 405 406 /** 407 * iavf_msix_aq - Interrupt handler for vector 0 408 * @irq: interrupt number 409 * @data: pointer to netdev 410 **/ 411 static irqreturn_t iavf_msix_aq(int irq, void *data) 412 { 413 struct net_device *netdev = data; 414 struct iavf_adapter *adapter = netdev_priv(netdev); 415 struct iavf_hw *hw = &adapter->hw; 416 417 /* handle non-queue interrupts, these reads clear the registers */ 418 rd32(hw, IAVF_VFINT_ICR01); 419 rd32(hw, IAVF_VFINT_ICR0_ENA1); 420 421 if (adapter->state != __IAVF_REMOVE) 422 /* schedule work on the private workqueue */ 423 queue_work(adapter->wq, &adapter->adminq_task); 424 425 return IRQ_HANDLED; 426 } 427 428 /** 429 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 430 * @irq: interrupt number 431 * @data: pointer to a q_vector 432 **/ 433 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 434 { 435 struct iavf_q_vector *q_vector = data; 436 437 if (!q_vector->tx.ring && !q_vector->rx.ring) 438 return IRQ_HANDLED; 439 440 napi_schedule_irqoff(&q_vector->napi); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * iavf_map_vector_to_rxq - associate irqs with rx queues 447 * @adapter: board private structure 448 * @v_idx: interrupt number 449 * @r_idx: queue number 450 **/ 451 static void 452 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 453 { 454 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 455 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 456 struct iavf_hw *hw = &adapter->hw; 457 458 rx_ring->q_vector = q_vector; 459 rx_ring->next = q_vector->rx.ring; 460 rx_ring->vsi = &adapter->vsi; 461 q_vector->rx.ring = rx_ring; 462 q_vector->rx.count++; 463 q_vector->rx.next_update = jiffies + 1; 464 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 465 q_vector->ring_mask |= BIT(r_idx); 466 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 467 q_vector->rx.current_itr >> 1); 468 q_vector->rx.current_itr = q_vector->rx.target_itr; 469 } 470 471 /** 472 * iavf_map_vector_to_txq - associate irqs with tx queues 473 * @adapter: board private structure 474 * @v_idx: interrupt number 475 * @t_idx: queue number 476 **/ 477 static void 478 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 479 { 480 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 481 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 482 struct iavf_hw *hw = &adapter->hw; 483 484 tx_ring->q_vector = q_vector; 485 tx_ring->next = q_vector->tx.ring; 486 tx_ring->vsi = &adapter->vsi; 487 q_vector->tx.ring = tx_ring; 488 q_vector->tx.count++; 489 q_vector->tx.next_update = jiffies + 1; 490 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 491 q_vector->num_ringpairs++; 492 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 493 q_vector->tx.target_itr >> 1); 494 q_vector->tx.current_itr = q_vector->tx.target_itr; 495 } 496 497 /** 498 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 499 * @adapter: board private structure to initialize 500 * 501 * This function maps descriptor rings to the queue-specific vectors 502 * we were allotted through the MSI-X enabling code. Ideally, we'd have 503 * one vector per ring/queue, but on a constrained vector budget, we 504 * group the rings as "efficiently" as possible. You would add new 505 * mapping configurations in here. 506 **/ 507 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 508 { 509 int rings_remaining = adapter->num_active_queues; 510 int ridx = 0, vidx = 0; 511 int q_vectors; 512 513 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 514 515 for (; ridx < rings_remaining; ridx++) { 516 iavf_map_vector_to_rxq(adapter, vidx, ridx); 517 iavf_map_vector_to_txq(adapter, vidx, ridx); 518 519 /* In the case where we have more queues than vectors, continue 520 * round-robin on vectors until all queues are mapped. 521 */ 522 if (++vidx >= q_vectors) 523 vidx = 0; 524 } 525 526 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 527 } 528 529 /** 530 * iavf_irq_affinity_notify - Callback for affinity changes 531 * @notify: context as to what irq was changed 532 * @mask: the new affinity mask 533 * 534 * This is a callback function used by the irq_set_affinity_notifier function 535 * so that we may register to receive changes to the irq affinity masks. 536 **/ 537 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 538 const cpumask_t *mask) 539 { 540 struct iavf_q_vector *q_vector = 541 container_of(notify, struct iavf_q_vector, affinity_notify); 542 543 cpumask_copy(&q_vector->affinity_mask, mask); 544 } 545 546 /** 547 * iavf_irq_affinity_release - Callback for affinity notifier release 548 * @ref: internal core kernel usage 549 * 550 * This is a callback function used by the irq_set_affinity_notifier function 551 * to inform the current notification subscriber that they will no longer 552 * receive notifications. 553 **/ 554 static void iavf_irq_affinity_release(struct kref *ref) {} 555 556 /** 557 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 558 * @adapter: board private structure 559 * @basename: device basename 560 * 561 * Allocates MSI-X vectors for tx and rx handling, and requests 562 * interrupts from the kernel. 563 **/ 564 static int 565 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 566 { 567 unsigned int vector, q_vectors; 568 unsigned int rx_int_idx = 0, tx_int_idx = 0; 569 int irq_num, err; 570 int cpu; 571 572 iavf_irq_disable(adapter); 573 /* Decrement for Other and TCP Timer vectors */ 574 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 575 576 for (vector = 0; vector < q_vectors; vector++) { 577 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 578 579 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 580 581 if (q_vector->tx.ring && q_vector->rx.ring) { 582 snprintf(q_vector->name, sizeof(q_vector->name), 583 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 584 tx_int_idx++; 585 } else if (q_vector->rx.ring) { 586 snprintf(q_vector->name, sizeof(q_vector->name), 587 "iavf-%s-rx-%u", basename, rx_int_idx++); 588 } else if (q_vector->tx.ring) { 589 snprintf(q_vector->name, sizeof(q_vector->name), 590 "iavf-%s-tx-%u", basename, tx_int_idx++); 591 } else { 592 /* skip this unused q_vector */ 593 continue; 594 } 595 err = request_irq(irq_num, 596 iavf_msix_clean_rings, 597 0, 598 q_vector->name, 599 q_vector); 600 if (err) { 601 dev_info(&adapter->pdev->dev, 602 "Request_irq failed, error: %d\n", err); 603 goto free_queue_irqs; 604 } 605 /* register for affinity change notifications */ 606 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 607 q_vector->affinity_notify.release = 608 iavf_irq_affinity_release; 609 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 610 /* Spread the IRQ affinity hints across online CPUs. Note that 611 * get_cpu_mask returns a mask with a permanent lifetime so 612 * it's safe to use as a hint for irq_update_affinity_hint. 613 */ 614 cpu = cpumask_local_spread(q_vector->v_idx, -1); 615 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 616 } 617 618 return 0; 619 620 free_queue_irqs: 621 while (vector) { 622 vector--; 623 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 624 irq_set_affinity_notifier(irq_num, NULL); 625 irq_update_affinity_hint(irq_num, NULL); 626 free_irq(irq_num, &adapter->q_vectors[vector]); 627 } 628 return err; 629 } 630 631 /** 632 * iavf_request_misc_irq - Initialize MSI-X interrupts 633 * @adapter: board private structure 634 * 635 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 636 * vector is only for the admin queue, and stays active even when the netdev 637 * is closed. 638 **/ 639 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 640 { 641 struct net_device *netdev = adapter->netdev; 642 int err; 643 644 snprintf(adapter->misc_vector_name, 645 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 646 dev_name(&adapter->pdev->dev)); 647 err = request_irq(adapter->msix_entries[0].vector, 648 &iavf_msix_aq, 0, 649 adapter->misc_vector_name, netdev); 650 if (err) { 651 dev_err(&adapter->pdev->dev, 652 "request_irq for %s failed: %d\n", 653 adapter->misc_vector_name, err); 654 free_irq(adapter->msix_entries[0].vector, netdev); 655 } 656 return err; 657 } 658 659 /** 660 * iavf_free_traffic_irqs - Free MSI-X interrupts 661 * @adapter: board private structure 662 * 663 * Frees all MSI-X vectors other than 0. 664 **/ 665 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 666 { 667 int vector, irq_num, q_vectors; 668 669 if (!adapter->msix_entries) 670 return; 671 672 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 673 674 for (vector = 0; vector < q_vectors; vector++) { 675 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 676 irq_set_affinity_notifier(irq_num, NULL); 677 irq_update_affinity_hint(irq_num, NULL); 678 free_irq(irq_num, &adapter->q_vectors[vector]); 679 } 680 } 681 682 /** 683 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 684 * @adapter: board private structure 685 * 686 * Frees MSI-X vector 0. 687 **/ 688 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 689 { 690 struct net_device *netdev = adapter->netdev; 691 692 if (!adapter->msix_entries) 693 return; 694 695 free_irq(adapter->msix_entries[0].vector, netdev); 696 } 697 698 /** 699 * iavf_configure_tx - Configure Transmit Unit after Reset 700 * @adapter: board private structure 701 * 702 * Configure the Tx unit of the MAC after a reset. 703 **/ 704 static void iavf_configure_tx(struct iavf_adapter *adapter) 705 { 706 struct iavf_hw *hw = &adapter->hw; 707 int i; 708 709 for (i = 0; i < adapter->num_active_queues; i++) 710 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 711 } 712 713 /** 714 * iavf_select_rx_desc_format - Select Rx descriptor format 715 * @adapter: adapter private structure 716 * 717 * Select what Rx descriptor format based on availability and enabled 718 * features. 719 * 720 * Return: the desired RXDID to select for a given Rx queue, as defined by 721 * enum virtchnl_rxdid_format. 722 */ 723 static u8 iavf_select_rx_desc_format(const struct iavf_adapter *adapter) 724 { 725 u64 rxdids = adapter->supp_rxdids; 726 727 /* If we did not negotiate VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC, we must 728 * stick with the default value of the legacy 32 byte format. 729 */ 730 if (!IAVF_RXDID_ALLOWED(adapter)) 731 return VIRTCHNL_RXDID_1_32B_BASE; 732 733 /* Rx timestamping requires the use of flexible NIC descriptors */ 734 if (iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) { 735 if (rxdids & BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC)) 736 return VIRTCHNL_RXDID_2_FLEX_SQ_NIC; 737 738 pci_warn(adapter->pdev, 739 "Unable to negotiate flexible descriptor format\n"); 740 } 741 742 /* Warn if the PF does not list support for the default legacy 743 * descriptor format. This shouldn't happen, as this is the format 744 * used if VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is not supported. It is 745 * likely caused by a bug in the PF implementation failing to indicate 746 * support for the format. 747 */ 748 if (!(rxdids & VIRTCHNL_RXDID_1_32B_BASE_M)) 749 netdev_warn(adapter->netdev, "PF does not list support for default Rx descriptor format\n"); 750 751 return VIRTCHNL_RXDID_1_32B_BASE; 752 } 753 754 /** 755 * iavf_configure_rx - Configure Receive Unit after Reset 756 * @adapter: board private structure 757 * 758 * Configure the Rx unit of the MAC after a reset. 759 **/ 760 static void iavf_configure_rx(struct iavf_adapter *adapter) 761 { 762 struct iavf_hw *hw = &adapter->hw; 763 764 adapter->rxdid = iavf_select_rx_desc_format(adapter); 765 766 for (u32 i = 0; i < adapter->num_active_queues; i++) { 767 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 768 adapter->rx_rings[i].rxdid = adapter->rxdid; 769 } 770 } 771 772 /** 773 * iavf_find_vlan - Search filter list for specific vlan filter 774 * @adapter: board private structure 775 * @vlan: vlan tag 776 * 777 * Returns ptr to the filter object or NULL. Must be called while holding the 778 * mac_vlan_list_lock. 779 **/ 780 static struct 781 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 782 struct iavf_vlan vlan) 783 { 784 struct iavf_vlan_filter *f; 785 786 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 787 if (f->vlan.vid == vlan.vid && 788 f->vlan.tpid == vlan.tpid) 789 return f; 790 } 791 792 return NULL; 793 } 794 795 /** 796 * iavf_add_vlan - Add a vlan filter to the list 797 * @adapter: board private structure 798 * @vlan: VLAN tag 799 * 800 * Returns ptr to the filter object or NULL when no memory available. 801 **/ 802 static struct 803 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 804 struct iavf_vlan vlan) 805 { 806 struct iavf_vlan_filter *f = NULL; 807 808 spin_lock_bh(&adapter->mac_vlan_list_lock); 809 810 f = iavf_find_vlan(adapter, vlan); 811 if (!f) { 812 f = kzalloc(sizeof(*f), GFP_ATOMIC); 813 if (!f) 814 goto clearout; 815 816 f->vlan = vlan; 817 818 list_add_tail(&f->list, &adapter->vlan_filter_list); 819 f->state = IAVF_VLAN_ADD; 820 adapter->num_vlan_filters++; 821 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 822 } else if (f->state == IAVF_VLAN_REMOVE) { 823 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 824 * We can safely only change the state here. 825 */ 826 f->state = IAVF_VLAN_ACTIVE; 827 } 828 829 clearout: 830 spin_unlock_bh(&adapter->mac_vlan_list_lock); 831 return f; 832 } 833 834 /** 835 * iavf_del_vlan - Remove a vlan filter from the list 836 * @adapter: board private structure 837 * @vlan: VLAN tag 838 **/ 839 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 840 { 841 struct iavf_vlan_filter *f; 842 843 spin_lock_bh(&adapter->mac_vlan_list_lock); 844 845 f = iavf_find_vlan(adapter, vlan); 846 if (f) { 847 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 848 * Remove it from the list. 849 */ 850 if (f->state == IAVF_VLAN_ADD) { 851 list_del(&f->list); 852 kfree(f); 853 adapter->num_vlan_filters--; 854 } else { 855 f->state = IAVF_VLAN_REMOVE; 856 iavf_schedule_aq_request(adapter, 857 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 858 } 859 } 860 861 spin_unlock_bh(&adapter->mac_vlan_list_lock); 862 } 863 864 /** 865 * iavf_restore_filters 866 * @adapter: board private structure 867 * 868 * Restore existing non MAC filters when VF netdev comes back up 869 **/ 870 static void iavf_restore_filters(struct iavf_adapter *adapter) 871 { 872 struct iavf_vlan_filter *f; 873 874 /* re-add all VLAN filters */ 875 spin_lock_bh(&adapter->mac_vlan_list_lock); 876 877 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 878 if (f->state == IAVF_VLAN_INACTIVE) 879 f->state = IAVF_VLAN_ADD; 880 } 881 882 spin_unlock_bh(&adapter->mac_vlan_list_lock); 883 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 884 } 885 886 /** 887 * iavf_get_num_vlans_added - get number of VLANs added 888 * @adapter: board private structure 889 */ 890 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 891 { 892 return adapter->num_vlan_filters; 893 } 894 895 /** 896 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 897 * @adapter: board private structure 898 * 899 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 900 * do not impose a limit as that maintains current behavior and for 901 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 902 **/ 903 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 904 { 905 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 906 * never been a limit on the VF driver side 907 */ 908 if (VLAN_ALLOWED(adapter)) 909 return VLAN_N_VID; 910 else if (VLAN_V2_ALLOWED(adapter)) 911 return adapter->vlan_v2_caps.filtering.max_filters; 912 913 return 0; 914 } 915 916 /** 917 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 918 * @adapter: board private structure 919 **/ 920 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 921 { 922 if (iavf_get_num_vlans_added(adapter) < 923 iavf_get_max_vlans_allowed(adapter)) 924 return false; 925 926 return true; 927 } 928 929 /** 930 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 931 * @netdev: network device struct 932 * @proto: unused protocol data 933 * @vid: VLAN tag 934 **/ 935 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 936 __always_unused __be16 proto, u16 vid) 937 { 938 struct iavf_adapter *adapter = netdev_priv(netdev); 939 940 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 941 if (!vid) 942 return 0; 943 944 if (!VLAN_FILTERING_ALLOWED(adapter)) 945 return -EIO; 946 947 if (iavf_max_vlans_added(adapter)) { 948 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 949 iavf_get_max_vlans_allowed(adapter)); 950 return -EIO; 951 } 952 953 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 954 return -ENOMEM; 955 956 return 0; 957 } 958 959 /** 960 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 961 * @netdev: network device struct 962 * @proto: unused protocol data 963 * @vid: VLAN tag 964 **/ 965 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 966 __always_unused __be16 proto, u16 vid) 967 { 968 struct iavf_adapter *adapter = netdev_priv(netdev); 969 970 /* We do not track VLAN 0 filter */ 971 if (!vid) 972 return 0; 973 974 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 975 return 0; 976 } 977 978 /** 979 * iavf_find_filter - Search filter list for specific mac filter 980 * @adapter: board private structure 981 * @macaddr: the MAC address 982 * 983 * Returns ptr to the filter object or NULL. Must be called while holding the 984 * mac_vlan_list_lock. 985 **/ 986 static struct 987 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 988 const u8 *macaddr) 989 { 990 struct iavf_mac_filter *f; 991 992 if (!macaddr) 993 return NULL; 994 995 list_for_each_entry(f, &adapter->mac_filter_list, list) { 996 if (ether_addr_equal(macaddr, f->macaddr)) 997 return f; 998 } 999 return NULL; 1000 } 1001 1002 /** 1003 * iavf_add_filter - Add a mac filter to the filter list 1004 * @adapter: board private structure 1005 * @macaddr: the MAC address 1006 * 1007 * Returns ptr to the filter object or NULL when no memory available. 1008 **/ 1009 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1010 const u8 *macaddr) 1011 { 1012 struct iavf_mac_filter *f; 1013 1014 if (!macaddr) 1015 return NULL; 1016 1017 f = iavf_find_filter(adapter, macaddr); 1018 if (!f) { 1019 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1020 if (!f) 1021 return f; 1022 1023 ether_addr_copy(f->macaddr, macaddr); 1024 1025 list_add_tail(&f->list, &adapter->mac_filter_list); 1026 f->add = true; 1027 f->add_handled = false; 1028 f->is_new_mac = true; 1029 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1030 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1031 } else { 1032 f->remove = false; 1033 } 1034 1035 return f; 1036 } 1037 1038 /** 1039 * iavf_replace_primary_mac - Replace current primary address 1040 * @adapter: board private structure 1041 * @new_mac: new MAC address to be applied 1042 * 1043 * Replace current dev_addr and send request to PF for removal of previous 1044 * primary MAC address filter and addition of new primary MAC filter. 1045 * Return 0 for success, -ENOMEM for failure. 1046 * 1047 * Do not call this with mac_vlan_list_lock! 1048 **/ 1049 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1050 const u8 *new_mac) 1051 { 1052 struct iavf_hw *hw = &adapter->hw; 1053 struct iavf_mac_filter *new_f; 1054 struct iavf_mac_filter *old_f; 1055 1056 spin_lock_bh(&adapter->mac_vlan_list_lock); 1057 1058 new_f = iavf_add_filter(adapter, new_mac); 1059 if (!new_f) { 1060 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1061 return -ENOMEM; 1062 } 1063 1064 old_f = iavf_find_filter(adapter, hw->mac.addr); 1065 if (old_f) { 1066 old_f->is_primary = false; 1067 old_f->remove = true; 1068 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1069 } 1070 /* Always send the request to add if changing primary MAC, 1071 * even if filter is already present on the list 1072 */ 1073 new_f->is_primary = true; 1074 new_f->add = true; 1075 ether_addr_copy(hw->mac.addr, new_mac); 1076 1077 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1078 1079 /* schedule the watchdog task to immediately process the request */ 1080 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1081 return 0; 1082 } 1083 1084 /** 1085 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1086 * @netdev: network interface device structure 1087 * @macaddr: MAC address to set 1088 * 1089 * Returns true on success, false on failure 1090 */ 1091 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1092 const u8 *macaddr) 1093 { 1094 struct iavf_adapter *adapter = netdev_priv(netdev); 1095 struct iavf_mac_filter *f; 1096 bool ret = false; 1097 1098 spin_lock_bh(&adapter->mac_vlan_list_lock); 1099 1100 f = iavf_find_filter(adapter, macaddr); 1101 1102 if (!f || (!f->add && f->add_handled)) 1103 ret = true; 1104 1105 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1106 1107 return ret; 1108 } 1109 1110 /** 1111 * iavf_set_mac - NDO callback to set port MAC address 1112 * @netdev: network interface device structure 1113 * @p: pointer to an address structure 1114 * 1115 * Returns 0 on success, negative on failure 1116 */ 1117 static int iavf_set_mac(struct net_device *netdev, void *p) 1118 { 1119 struct iavf_adapter *adapter = netdev_priv(netdev); 1120 struct sockaddr *addr = p; 1121 int ret; 1122 1123 if (!is_valid_ether_addr(addr->sa_data)) 1124 return -EADDRNOTAVAIL; 1125 1126 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1127 1128 if (ret) 1129 return ret; 1130 1131 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1132 iavf_is_mac_set_handled(netdev, addr->sa_data), 1133 msecs_to_jiffies(2500)); 1134 1135 /* If ret < 0 then it means wait was interrupted. 1136 * If ret == 0 then it means we got a timeout. 1137 * else it means we got response for set MAC from PF, 1138 * check if netdev MAC was updated to requested MAC, 1139 * if yes then set MAC succeeded otherwise it failed return -EACCES 1140 */ 1141 if (ret < 0) 1142 return ret; 1143 1144 if (!ret) 1145 return -EAGAIN; 1146 1147 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1148 return -EACCES; 1149 1150 return 0; 1151 } 1152 1153 /** 1154 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1155 * @netdev: the netdevice 1156 * @addr: address to add 1157 * 1158 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1159 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1160 */ 1161 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1162 { 1163 struct iavf_adapter *adapter = netdev_priv(netdev); 1164 1165 if (iavf_add_filter(adapter, addr)) 1166 return 0; 1167 else 1168 return -ENOMEM; 1169 } 1170 1171 /** 1172 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1173 * @netdev: the netdevice 1174 * @addr: address to add 1175 * 1176 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1177 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1178 */ 1179 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1180 { 1181 struct iavf_adapter *adapter = netdev_priv(netdev); 1182 struct iavf_mac_filter *f; 1183 1184 /* Under some circumstances, we might receive a request to delete 1185 * our own device address from our uc list. Because we store the 1186 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1187 * such requests and not delete our device address from this list. 1188 */ 1189 if (ether_addr_equal(addr, netdev->dev_addr)) 1190 return 0; 1191 1192 f = iavf_find_filter(adapter, addr); 1193 if (f) { 1194 f->remove = true; 1195 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1196 } 1197 return 0; 1198 } 1199 1200 /** 1201 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1202 * @adapter: device specific adapter 1203 */ 1204 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1205 { 1206 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1207 (IFF_PROMISC | IFF_ALLMULTI); 1208 } 1209 1210 /** 1211 * iavf_set_rx_mode - NDO callback to set the netdev filters 1212 * @netdev: network interface device structure 1213 **/ 1214 static void iavf_set_rx_mode(struct net_device *netdev) 1215 { 1216 struct iavf_adapter *adapter = netdev_priv(netdev); 1217 1218 spin_lock_bh(&adapter->mac_vlan_list_lock); 1219 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1220 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1221 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1222 1223 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1224 if (iavf_promiscuous_mode_changed(adapter)) 1225 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1226 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1227 } 1228 1229 /** 1230 * iavf_napi_enable_all - enable NAPI on all queue vectors 1231 * @adapter: board private structure 1232 **/ 1233 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1234 { 1235 int q_idx; 1236 struct iavf_q_vector *q_vector; 1237 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1238 1239 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1240 struct napi_struct *napi; 1241 1242 q_vector = &adapter->q_vectors[q_idx]; 1243 napi = &q_vector->napi; 1244 napi_enable_locked(napi); 1245 } 1246 } 1247 1248 /** 1249 * iavf_napi_disable_all - disable NAPI on all queue vectors 1250 * @adapter: board private structure 1251 **/ 1252 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1253 { 1254 int q_idx; 1255 struct iavf_q_vector *q_vector; 1256 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1257 1258 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1259 q_vector = &adapter->q_vectors[q_idx]; 1260 napi_disable_locked(&q_vector->napi); 1261 } 1262 } 1263 1264 /** 1265 * iavf_configure - set up transmit and receive data structures 1266 * @adapter: board private structure 1267 **/ 1268 static void iavf_configure(struct iavf_adapter *adapter) 1269 { 1270 struct net_device *netdev = adapter->netdev; 1271 int i; 1272 1273 iavf_set_rx_mode(netdev); 1274 1275 iavf_configure_tx(adapter); 1276 iavf_configure_rx(adapter); 1277 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1278 1279 for (i = 0; i < adapter->num_active_queues; i++) { 1280 struct iavf_ring *ring = &adapter->rx_rings[i]; 1281 1282 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1283 } 1284 } 1285 1286 /** 1287 * iavf_up_complete - Finish the last steps of bringing up a connection 1288 * @adapter: board private structure 1289 * 1290 * Expects to be called while holding crit_lock. 1291 **/ 1292 static void iavf_up_complete(struct iavf_adapter *adapter) 1293 { 1294 iavf_change_state(adapter, __IAVF_RUNNING); 1295 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1296 1297 iavf_napi_enable_all(adapter); 1298 1299 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1300 } 1301 1302 /** 1303 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1304 * yet and mark other to be removed. 1305 * @adapter: board private structure 1306 **/ 1307 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1308 { 1309 struct iavf_vlan_filter *vlf, *vlftmp; 1310 struct iavf_mac_filter *f, *ftmp; 1311 1312 spin_lock_bh(&adapter->mac_vlan_list_lock); 1313 /* clear the sync flag on all filters */ 1314 __dev_uc_unsync(adapter->netdev, NULL); 1315 __dev_mc_unsync(adapter->netdev, NULL); 1316 1317 /* remove all MAC filters */ 1318 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1319 list) { 1320 if (f->add) { 1321 list_del(&f->list); 1322 kfree(f); 1323 } else { 1324 f->remove = true; 1325 } 1326 } 1327 1328 /* disable all VLAN filters */ 1329 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1330 list) 1331 vlf->state = IAVF_VLAN_DISABLE; 1332 1333 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1334 } 1335 1336 /** 1337 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1338 * mark other to be removed. 1339 * @adapter: board private structure 1340 **/ 1341 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1342 { 1343 struct iavf_cloud_filter *cf, *cftmp; 1344 1345 /* remove all cloud filters */ 1346 spin_lock_bh(&adapter->cloud_filter_list_lock); 1347 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1348 list) { 1349 if (cf->add) { 1350 list_del(&cf->list); 1351 kfree(cf); 1352 adapter->num_cloud_filters--; 1353 } else { 1354 cf->del = true; 1355 } 1356 } 1357 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1358 } 1359 1360 /** 1361 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1362 * other to be removed. 1363 * @adapter: board private structure 1364 **/ 1365 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1366 { 1367 struct iavf_fdir_fltr *fdir; 1368 1369 /* remove all Flow Director filters */ 1370 spin_lock_bh(&adapter->fdir_fltr_lock); 1371 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1372 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1373 /* Cancel a request, keep filter as inactive */ 1374 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1375 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1376 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1377 /* Disable filters which are active or have a pending 1378 * request to PF to be added 1379 */ 1380 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1381 } 1382 } 1383 spin_unlock_bh(&adapter->fdir_fltr_lock); 1384 } 1385 1386 /** 1387 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1388 * other to be removed. 1389 * @adapter: board private structure 1390 **/ 1391 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1392 { 1393 struct iavf_adv_rss *rss, *rsstmp; 1394 1395 /* remove all advance RSS configuration */ 1396 spin_lock_bh(&adapter->adv_rss_lock); 1397 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1398 list) { 1399 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1400 list_del(&rss->list); 1401 kfree(rss); 1402 } else { 1403 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1404 } 1405 } 1406 spin_unlock_bh(&adapter->adv_rss_lock); 1407 } 1408 1409 /** 1410 * iavf_down - Shutdown the connection processing 1411 * @adapter: board private structure 1412 * 1413 * Expects to be called while holding crit_lock. 1414 **/ 1415 void iavf_down(struct iavf_adapter *adapter) 1416 { 1417 struct net_device *netdev = adapter->netdev; 1418 1419 if (adapter->state <= __IAVF_DOWN_PENDING) 1420 return; 1421 1422 netif_carrier_off(netdev); 1423 netif_tx_disable(netdev); 1424 adapter->link_up = false; 1425 iavf_napi_disable_all(adapter); 1426 iavf_irq_disable(adapter); 1427 1428 iavf_clear_mac_vlan_filters(adapter); 1429 iavf_clear_cloud_filters(adapter); 1430 iavf_clear_fdir_filters(adapter); 1431 iavf_clear_adv_rss_conf(adapter); 1432 1433 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1434 return; 1435 1436 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1437 /* cancel any current operation */ 1438 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1439 /* Schedule operations to close down the HW. Don't wait 1440 * here for this to complete. The watchdog is still running 1441 * and it will take care of this. 1442 */ 1443 if (!list_empty(&adapter->mac_filter_list)) 1444 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1445 if (!list_empty(&adapter->vlan_filter_list)) 1446 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1447 if (!list_empty(&adapter->cloud_filter_list)) 1448 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1449 if (!list_empty(&adapter->fdir_list_head)) 1450 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1451 if (!list_empty(&adapter->adv_rss_list_head)) 1452 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1453 } 1454 1455 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1456 } 1457 1458 /** 1459 * iavf_acquire_msix_vectors - Setup the MSIX capability 1460 * @adapter: board private structure 1461 * @vectors: number of vectors to request 1462 * 1463 * Work with the OS to set up the MSIX vectors needed. 1464 * 1465 * Returns 0 on success, negative on failure 1466 **/ 1467 static int 1468 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1469 { 1470 int err, vector_threshold; 1471 1472 /* We'll want at least 3 (vector_threshold): 1473 * 0) Other (Admin Queue and link, mostly) 1474 * 1) TxQ[0] Cleanup 1475 * 2) RxQ[0] Cleanup 1476 */ 1477 vector_threshold = MIN_MSIX_COUNT; 1478 1479 /* The more we get, the more we will assign to Tx/Rx Cleanup 1480 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1481 * Right now, we simply care about how many we'll get; we'll 1482 * set them up later while requesting irq's. 1483 */ 1484 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1485 vector_threshold, vectors); 1486 if (err < 0) { 1487 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1488 kfree(adapter->msix_entries); 1489 adapter->msix_entries = NULL; 1490 return err; 1491 } 1492 1493 /* Adjust for only the vectors we'll use, which is minimum 1494 * of max_msix_q_vectors + NONQ_VECS, or the number of 1495 * vectors we were allocated. 1496 */ 1497 adapter->num_msix_vectors = err; 1498 return 0; 1499 } 1500 1501 /** 1502 * iavf_free_queues - Free memory for all rings 1503 * @adapter: board private structure to initialize 1504 * 1505 * Free all of the memory associated with queue pairs. 1506 **/ 1507 static void iavf_free_queues(struct iavf_adapter *adapter) 1508 { 1509 if (!adapter->vsi_res) 1510 return; 1511 adapter->num_active_queues = 0; 1512 kfree(adapter->tx_rings); 1513 adapter->tx_rings = NULL; 1514 kfree(adapter->rx_rings); 1515 adapter->rx_rings = NULL; 1516 } 1517 1518 /** 1519 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1520 * @adapter: board private structure 1521 * 1522 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1523 * stripped in certain descriptor fields. Instead of checking the offload 1524 * capability bits in the hot path, cache the location the ring specific 1525 * flags. 1526 */ 1527 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1528 { 1529 int i; 1530 1531 for (i = 0; i < adapter->num_active_queues; i++) { 1532 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1533 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1534 1535 /* prevent multiple L2TAG bits being set after VFR */ 1536 tx_ring->flags &= 1537 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1538 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1539 rx_ring->flags &= 1540 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1541 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1542 1543 if (VLAN_ALLOWED(adapter)) { 1544 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1545 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 } else if (VLAN_V2_ALLOWED(adapter)) { 1547 struct virtchnl_vlan_supported_caps *stripping_support; 1548 struct virtchnl_vlan_supported_caps *insertion_support; 1549 1550 stripping_support = 1551 &adapter->vlan_v2_caps.offloads.stripping_support; 1552 insertion_support = 1553 &adapter->vlan_v2_caps.offloads.insertion_support; 1554 1555 if (stripping_support->outer) { 1556 if (stripping_support->outer & 1557 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1558 rx_ring->flags |= 1559 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1560 else if (stripping_support->outer & 1561 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1562 rx_ring->flags |= 1563 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1564 } else if (stripping_support->inner) { 1565 if (stripping_support->inner & 1566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1567 rx_ring->flags |= 1568 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1569 else if (stripping_support->inner & 1570 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1571 rx_ring->flags |= 1572 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1573 } 1574 1575 if (insertion_support->outer) { 1576 if (insertion_support->outer & 1577 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1578 tx_ring->flags |= 1579 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1580 else if (insertion_support->outer & 1581 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1582 tx_ring->flags |= 1583 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1584 } else if (insertion_support->inner) { 1585 if (insertion_support->inner & 1586 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1587 tx_ring->flags |= 1588 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1589 else if (insertion_support->inner & 1590 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1591 tx_ring->flags |= 1592 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1593 } 1594 } 1595 } 1596 } 1597 1598 /** 1599 * iavf_alloc_queues - Allocate memory for all rings 1600 * @adapter: board private structure to initialize 1601 * 1602 * We allocate one ring per queue at run-time since we don't know the 1603 * number of queues at compile-time. The polling_netdev array is 1604 * intended for Multiqueue, but should work fine with a single queue. 1605 **/ 1606 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1607 { 1608 int i, num_active_queues; 1609 1610 /* If we're in reset reallocating queues we don't actually know yet for 1611 * certain the PF gave us the number of queues we asked for but we'll 1612 * assume it did. Once basic reset is finished we'll confirm once we 1613 * start negotiating config with PF. 1614 */ 1615 if (adapter->num_req_queues) 1616 num_active_queues = adapter->num_req_queues; 1617 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1618 adapter->num_tc) 1619 num_active_queues = adapter->ch_config.total_qps; 1620 else 1621 num_active_queues = min_t(int, 1622 adapter->vsi_res->num_queue_pairs, 1623 (int)(num_online_cpus())); 1624 1625 1626 adapter->tx_rings = kcalloc(num_active_queues, 1627 sizeof(struct iavf_ring), GFP_KERNEL); 1628 if (!adapter->tx_rings) 1629 goto err_out; 1630 adapter->rx_rings = kcalloc(num_active_queues, 1631 sizeof(struct iavf_ring), GFP_KERNEL); 1632 if (!adapter->rx_rings) 1633 goto err_out; 1634 1635 for (i = 0; i < num_active_queues; i++) { 1636 struct iavf_ring *tx_ring; 1637 struct iavf_ring *rx_ring; 1638 1639 tx_ring = &adapter->tx_rings[i]; 1640 1641 tx_ring->queue_index = i; 1642 tx_ring->netdev = adapter->netdev; 1643 tx_ring->dev = &adapter->pdev->dev; 1644 tx_ring->count = adapter->tx_desc_count; 1645 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1646 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1647 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1648 1649 rx_ring = &adapter->rx_rings[i]; 1650 rx_ring->queue_index = i; 1651 rx_ring->netdev = adapter->netdev; 1652 rx_ring->count = adapter->rx_desc_count; 1653 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1654 } 1655 1656 adapter->num_active_queues = num_active_queues; 1657 1658 iavf_set_queue_vlan_tag_loc(adapter); 1659 1660 return 0; 1661 1662 err_out: 1663 iavf_free_queues(adapter); 1664 return -ENOMEM; 1665 } 1666 1667 /** 1668 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1669 * @adapter: board private structure to initialize 1670 * 1671 * Attempt to configure the interrupts using the best available 1672 * capabilities of the hardware and the kernel. 1673 **/ 1674 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1675 { 1676 int vector, v_budget; 1677 int pairs = 0; 1678 int err = 0; 1679 1680 if (!adapter->vsi_res) { 1681 err = -EIO; 1682 goto out; 1683 } 1684 pairs = adapter->num_active_queues; 1685 1686 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1687 * us much good if we have more vectors than CPUs. However, we already 1688 * limit the total number of queues by the number of CPUs so we do not 1689 * need any further limiting here. 1690 */ 1691 v_budget = min_t(int, pairs + NONQ_VECS, 1692 (int)adapter->vf_res->max_vectors); 1693 1694 adapter->msix_entries = kcalloc(v_budget, 1695 sizeof(struct msix_entry), GFP_KERNEL); 1696 if (!adapter->msix_entries) { 1697 err = -ENOMEM; 1698 goto out; 1699 } 1700 1701 for (vector = 0; vector < v_budget; vector++) 1702 adapter->msix_entries[vector].entry = vector; 1703 1704 err = iavf_acquire_msix_vectors(adapter, v_budget); 1705 if (!err) 1706 iavf_schedule_finish_config(adapter); 1707 1708 out: 1709 return err; 1710 } 1711 1712 /** 1713 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1714 * @adapter: board private structure 1715 * 1716 * Return 0 on success, negative on failure 1717 **/ 1718 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1719 { 1720 struct iavf_aqc_get_set_rss_key_data *rss_key = 1721 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1722 struct iavf_hw *hw = &adapter->hw; 1723 enum iavf_status status; 1724 1725 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1726 /* bail because we already have a command pending */ 1727 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1728 adapter->current_op); 1729 return -EBUSY; 1730 } 1731 1732 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1733 if (status) { 1734 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1735 iavf_stat_str(hw, status), 1736 iavf_aq_str(hw, hw->aq.asq_last_status)); 1737 return iavf_status_to_errno(status); 1738 1739 } 1740 1741 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1742 adapter->rss_lut, adapter->rss_lut_size); 1743 if (status) { 1744 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1745 iavf_stat_str(hw, status), 1746 iavf_aq_str(hw, hw->aq.asq_last_status)); 1747 return iavf_status_to_errno(status); 1748 } 1749 1750 return 0; 1751 1752 } 1753 1754 /** 1755 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1756 * @adapter: board private structure 1757 * 1758 * Returns 0 on success, negative on failure 1759 **/ 1760 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1761 { 1762 struct iavf_hw *hw = &adapter->hw; 1763 u32 *dw; 1764 u16 i; 1765 1766 dw = (u32 *)adapter->rss_key; 1767 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1768 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1769 1770 dw = (u32 *)adapter->rss_lut; 1771 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1772 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1773 1774 iavf_flush(hw); 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * iavf_config_rss - Configure RSS keys and lut 1781 * @adapter: board private structure 1782 * 1783 * Returns 0 on success, negative on failure 1784 **/ 1785 int iavf_config_rss(struct iavf_adapter *adapter) 1786 { 1787 1788 if (RSS_PF(adapter)) { 1789 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1790 IAVF_FLAG_AQ_SET_RSS_KEY; 1791 return 0; 1792 } else if (RSS_AQ(adapter)) { 1793 return iavf_config_rss_aq(adapter); 1794 } else { 1795 return iavf_config_rss_reg(adapter); 1796 } 1797 } 1798 1799 /** 1800 * iavf_fill_rss_lut - Fill the lut with default values 1801 * @adapter: board private structure 1802 **/ 1803 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1804 { 1805 u16 i; 1806 1807 for (i = 0; i < adapter->rss_lut_size; i++) 1808 adapter->rss_lut[i] = i % adapter->num_active_queues; 1809 } 1810 1811 /** 1812 * iavf_init_rss - Prepare for RSS 1813 * @adapter: board private structure 1814 * 1815 * Return 0 on success, negative on failure 1816 **/ 1817 static int iavf_init_rss(struct iavf_adapter *adapter) 1818 { 1819 struct iavf_hw *hw = &adapter->hw; 1820 1821 if (!RSS_PF(adapter)) { 1822 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1823 if (adapter->vf_res->vf_cap_flags & 1824 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1825 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1826 else 1827 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1828 1829 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1830 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1831 } 1832 1833 iavf_fill_rss_lut(adapter); 1834 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1835 1836 return iavf_config_rss(adapter); 1837 } 1838 1839 /** 1840 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1841 * @adapter: board private structure to initialize 1842 * 1843 * We allocate one q_vector per queue interrupt. If allocation fails we 1844 * return -ENOMEM. 1845 **/ 1846 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1847 { 1848 int q_idx = 0, num_q_vectors; 1849 struct iavf_q_vector *q_vector; 1850 1851 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1852 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1853 GFP_KERNEL); 1854 if (!adapter->q_vectors) 1855 return -ENOMEM; 1856 1857 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1858 q_vector = &adapter->q_vectors[q_idx]; 1859 q_vector->adapter = adapter; 1860 q_vector->vsi = &adapter->vsi; 1861 q_vector->v_idx = q_idx; 1862 q_vector->reg_idx = q_idx; 1863 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1864 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1865 iavf_napi_poll); 1866 } 1867 1868 return 0; 1869 } 1870 1871 /** 1872 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1873 * @adapter: board private structure to initialize 1874 * 1875 * This function frees the memory allocated to the q_vectors. In addition if 1876 * NAPI is enabled it will delete any references to the NAPI struct prior 1877 * to freeing the q_vector. 1878 **/ 1879 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1880 { 1881 int q_idx, num_q_vectors; 1882 1883 if (!adapter->q_vectors) 1884 return; 1885 1886 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1887 1888 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1889 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1890 1891 netif_napi_del_locked(&q_vector->napi); 1892 } 1893 kfree(adapter->q_vectors); 1894 adapter->q_vectors = NULL; 1895 } 1896 1897 /** 1898 * iavf_reset_interrupt_capability - Reset MSIX setup 1899 * @adapter: board private structure 1900 * 1901 **/ 1902 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1903 { 1904 if (!adapter->msix_entries) 1905 return; 1906 1907 pci_disable_msix(adapter->pdev); 1908 kfree(adapter->msix_entries); 1909 adapter->msix_entries = NULL; 1910 } 1911 1912 /** 1913 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1914 * @adapter: board private structure to initialize 1915 * 1916 **/ 1917 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1918 { 1919 int err; 1920 1921 err = iavf_alloc_queues(adapter); 1922 if (err) { 1923 dev_err(&adapter->pdev->dev, 1924 "Unable to allocate memory for queues\n"); 1925 goto err_alloc_queues; 1926 } 1927 1928 err = iavf_set_interrupt_capability(adapter); 1929 if (err) { 1930 dev_err(&adapter->pdev->dev, 1931 "Unable to setup interrupt capabilities\n"); 1932 goto err_set_interrupt; 1933 } 1934 1935 err = iavf_alloc_q_vectors(adapter); 1936 if (err) { 1937 dev_err(&adapter->pdev->dev, 1938 "Unable to allocate memory for queue vectors\n"); 1939 goto err_alloc_q_vectors; 1940 } 1941 1942 /* If we've made it so far while ADq flag being ON, then we haven't 1943 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1944 * resources have been allocated in the reset path. 1945 * Now we can truly claim that ADq is enabled. 1946 */ 1947 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1948 adapter->num_tc) 1949 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1950 adapter->num_tc); 1951 1952 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1953 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1954 adapter->num_active_queues); 1955 1956 return 0; 1957 err_alloc_q_vectors: 1958 iavf_reset_interrupt_capability(adapter); 1959 err_set_interrupt: 1960 iavf_free_queues(adapter); 1961 err_alloc_queues: 1962 return err; 1963 } 1964 1965 /** 1966 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1967 * @adapter: board private structure 1968 **/ 1969 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1970 { 1971 iavf_free_q_vectors(adapter); 1972 iavf_reset_interrupt_capability(adapter); 1973 iavf_free_queues(adapter); 1974 } 1975 1976 /** 1977 * iavf_free_rss - Free memory used by RSS structs 1978 * @adapter: board private structure 1979 **/ 1980 static void iavf_free_rss(struct iavf_adapter *adapter) 1981 { 1982 kfree(adapter->rss_key); 1983 adapter->rss_key = NULL; 1984 1985 kfree(adapter->rss_lut); 1986 adapter->rss_lut = NULL; 1987 } 1988 1989 /** 1990 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1991 * @adapter: board private structure 1992 * @running: true if adapter->state == __IAVF_RUNNING 1993 * 1994 * Returns 0 on success, negative on failure 1995 **/ 1996 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1997 { 1998 struct net_device *netdev = adapter->netdev; 1999 int err; 2000 2001 if (running) 2002 iavf_free_traffic_irqs(adapter); 2003 iavf_free_misc_irq(adapter); 2004 iavf_free_interrupt_scheme(adapter); 2005 2006 err = iavf_init_interrupt_scheme(adapter); 2007 if (err) 2008 goto err; 2009 2010 netif_tx_stop_all_queues(netdev); 2011 2012 err = iavf_request_misc_irq(adapter); 2013 if (err) 2014 goto err; 2015 2016 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2017 2018 iavf_map_rings_to_vectors(adapter); 2019 err: 2020 return err; 2021 } 2022 2023 /** 2024 * iavf_finish_config - do all netdev work that needs RTNL 2025 * @work: our work_struct 2026 * 2027 * Do work that needs both RTNL and crit_lock. 2028 **/ 2029 static void iavf_finish_config(struct work_struct *work) 2030 { 2031 struct iavf_adapter *adapter; 2032 bool locks_released = false; 2033 int pairs, err; 2034 2035 adapter = container_of(work, struct iavf_adapter, finish_config); 2036 2037 /* Always take RTNL first to prevent circular lock dependency; 2038 * The dev->lock is needed to update the queue number 2039 */ 2040 rtnl_lock(); 2041 netdev_lock(adapter->netdev); 2042 mutex_lock(&adapter->crit_lock); 2043 2044 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2045 adapter->netdev->reg_state == NETREG_REGISTERED && 2046 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2047 netdev_update_features(adapter->netdev); 2048 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2049 } 2050 2051 switch (adapter->state) { 2052 case __IAVF_DOWN: 2053 /* Set the real number of queues when reset occurs while 2054 * state == __IAVF_DOWN 2055 */ 2056 pairs = adapter->num_active_queues; 2057 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2058 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2059 2060 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2061 mutex_unlock(&adapter->crit_lock); 2062 netdev_unlock(adapter->netdev); 2063 locks_released = true; 2064 err = register_netdevice(adapter->netdev); 2065 if (err) { 2066 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2067 err); 2068 2069 /* go back and try again.*/ 2070 mutex_lock(&adapter->crit_lock); 2071 iavf_free_rss(adapter); 2072 iavf_free_misc_irq(adapter); 2073 iavf_reset_interrupt_capability(adapter); 2074 iavf_change_state(adapter, 2075 __IAVF_INIT_CONFIG_ADAPTER); 2076 mutex_unlock(&adapter->crit_lock); 2077 goto out; 2078 } 2079 } 2080 break; 2081 case __IAVF_RUNNING: 2082 pairs = adapter->num_active_queues; 2083 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2084 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2085 break; 2086 2087 default: 2088 break; 2089 } 2090 2091 out: 2092 if (!locks_released) { 2093 mutex_unlock(&adapter->crit_lock); 2094 netdev_unlock(adapter->netdev); 2095 } 2096 rtnl_unlock(); 2097 } 2098 2099 /** 2100 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2101 * @adapter: board private structure 2102 **/ 2103 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2104 { 2105 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2106 queue_work(adapter->wq, &adapter->finish_config); 2107 } 2108 2109 /** 2110 * iavf_process_aq_command - process aq_required flags 2111 * and sends aq command 2112 * @adapter: pointer to iavf adapter structure 2113 * 2114 * Returns 0 on success 2115 * Returns error code if no command was sent 2116 * or error code if the command failed. 2117 **/ 2118 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2119 { 2120 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2121 return iavf_send_vf_config_msg(adapter); 2122 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2123 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2124 if (adapter->aq_required & IAVF_FLAG_AQ_GET_SUPPORTED_RXDIDS) 2125 return iavf_send_vf_supported_rxdids_msg(adapter); 2126 if (adapter->aq_required & IAVF_FLAG_AQ_GET_PTP_CAPS) 2127 return iavf_send_vf_ptp_caps_msg(adapter); 2128 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2129 iavf_disable_queues(adapter); 2130 return 0; 2131 } 2132 2133 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2134 iavf_map_queues(adapter); 2135 return 0; 2136 } 2137 2138 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2139 iavf_add_ether_addrs(adapter); 2140 return 0; 2141 } 2142 2143 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2144 iavf_add_vlans(adapter); 2145 return 0; 2146 } 2147 2148 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2149 iavf_del_ether_addrs(adapter); 2150 return 0; 2151 } 2152 2153 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2154 iavf_del_vlans(adapter); 2155 return 0; 2156 } 2157 2158 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2159 iavf_enable_vlan_stripping(adapter); 2160 return 0; 2161 } 2162 2163 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2164 iavf_disable_vlan_stripping(adapter); 2165 return 0; 2166 } 2167 2168 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2169 iavf_cfg_queues_bw(adapter); 2170 return 0; 2171 } 2172 2173 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2174 iavf_get_qos_caps(adapter); 2175 return 0; 2176 } 2177 2178 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2179 iavf_cfg_queues_quanta_size(adapter); 2180 return 0; 2181 } 2182 2183 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2184 iavf_configure_queues(adapter); 2185 return 0; 2186 } 2187 2188 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2189 iavf_enable_queues(adapter); 2190 return 0; 2191 } 2192 2193 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2194 /* This message goes straight to the firmware, not the 2195 * PF, so we don't have to set current_op as we will 2196 * not get a response through the ARQ. 2197 */ 2198 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2199 return 0; 2200 } 2201 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2202 iavf_get_hena(adapter); 2203 return 0; 2204 } 2205 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2206 iavf_set_hena(adapter); 2207 return 0; 2208 } 2209 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2210 iavf_set_rss_key(adapter); 2211 return 0; 2212 } 2213 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2214 iavf_set_rss_lut(adapter); 2215 return 0; 2216 } 2217 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2218 iavf_set_rss_hfunc(adapter); 2219 return 0; 2220 } 2221 2222 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2223 iavf_set_promiscuous(adapter); 2224 return 0; 2225 } 2226 2227 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2228 iavf_enable_channels(adapter); 2229 return 0; 2230 } 2231 2232 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2233 iavf_disable_channels(adapter); 2234 return 0; 2235 } 2236 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2237 iavf_add_cloud_filter(adapter); 2238 return 0; 2239 } 2240 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2241 iavf_del_cloud_filter(adapter); 2242 return 0; 2243 } 2244 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2245 iavf_add_fdir_filter(adapter); 2246 return IAVF_SUCCESS; 2247 } 2248 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2249 iavf_del_fdir_filter(adapter); 2250 return IAVF_SUCCESS; 2251 } 2252 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2253 iavf_add_adv_rss_cfg(adapter); 2254 return 0; 2255 } 2256 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2257 iavf_del_adv_rss_cfg(adapter); 2258 return 0; 2259 } 2260 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2261 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2262 return 0; 2263 } 2264 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2265 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2266 return 0; 2267 } 2268 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2269 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2270 return 0; 2271 } 2272 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2273 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2274 return 0; 2275 } 2276 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2277 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2278 return 0; 2279 } 2280 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2281 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2282 return 0; 2283 } 2284 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2285 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2286 return 0; 2287 } 2288 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2289 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2290 return 0; 2291 } 2292 if (adapter->aq_required & IAVF_FLAG_AQ_SEND_PTP_CMD) { 2293 iavf_virtchnl_send_ptp_cmd(adapter); 2294 return IAVF_SUCCESS; 2295 } 2296 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2297 iavf_request_stats(adapter); 2298 return 0; 2299 } 2300 2301 return -EAGAIN; 2302 } 2303 2304 /** 2305 * iavf_set_vlan_offload_features - set VLAN offload configuration 2306 * @adapter: board private structure 2307 * @prev_features: previous features used for comparison 2308 * @features: updated features used for configuration 2309 * 2310 * Set the aq_required bit(s) based on the requested features passed in to 2311 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2312 * the watchdog if any changes are requested to expedite the request via 2313 * virtchnl. 2314 **/ 2315 static void 2316 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2317 netdev_features_t prev_features, 2318 netdev_features_t features) 2319 { 2320 bool enable_stripping = true, enable_insertion = true; 2321 u16 vlan_ethertype = 0; 2322 u64 aq_required = 0; 2323 2324 /* keep cases separate because one ethertype for offloads can be 2325 * disabled at the same time as another is disabled, so check for an 2326 * enabled ethertype first, then check for disabled. Default to 2327 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2328 * stripping. 2329 */ 2330 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2331 vlan_ethertype = ETH_P_8021AD; 2332 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2333 vlan_ethertype = ETH_P_8021Q; 2334 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2335 vlan_ethertype = ETH_P_8021AD; 2336 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2337 vlan_ethertype = ETH_P_8021Q; 2338 else 2339 vlan_ethertype = ETH_P_8021Q; 2340 2341 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2342 enable_stripping = false; 2343 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2344 enable_insertion = false; 2345 2346 if (VLAN_ALLOWED(adapter)) { 2347 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2348 * stripping via virtchnl. VLAN insertion can be toggled on the 2349 * netdev, but it doesn't require a virtchnl message 2350 */ 2351 if (enable_stripping) 2352 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2353 else 2354 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2355 2356 } else if (VLAN_V2_ALLOWED(adapter)) { 2357 switch (vlan_ethertype) { 2358 case ETH_P_8021Q: 2359 if (enable_stripping) 2360 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2361 else 2362 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2363 2364 if (enable_insertion) 2365 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2366 else 2367 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2368 break; 2369 case ETH_P_8021AD: 2370 if (enable_stripping) 2371 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2372 else 2373 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2374 2375 if (enable_insertion) 2376 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2377 else 2378 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2379 break; 2380 } 2381 } 2382 2383 if (aq_required) 2384 iavf_schedule_aq_request(adapter, aq_required); 2385 } 2386 2387 /** 2388 * iavf_startup - first step of driver startup 2389 * @adapter: board private structure 2390 * 2391 * Function process __IAVF_STARTUP driver state. 2392 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2393 * when fails the state is changed to __IAVF_INIT_FAILED 2394 **/ 2395 static void iavf_startup(struct iavf_adapter *adapter) 2396 { 2397 struct pci_dev *pdev = adapter->pdev; 2398 struct iavf_hw *hw = &adapter->hw; 2399 enum iavf_status status; 2400 int ret; 2401 2402 WARN_ON(adapter->state != __IAVF_STARTUP); 2403 2404 /* driver loaded, probe complete */ 2405 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2406 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2407 2408 ret = iavf_check_reset_complete(hw); 2409 if (ret) { 2410 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2411 ret); 2412 goto err; 2413 } 2414 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2415 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2416 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2417 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2418 2419 status = iavf_init_adminq(hw); 2420 if (status) { 2421 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2422 status); 2423 goto err; 2424 } 2425 ret = iavf_send_api_ver(adapter); 2426 if (ret) { 2427 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2428 iavf_shutdown_adminq(hw); 2429 goto err; 2430 } 2431 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2432 return; 2433 err: 2434 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2435 } 2436 2437 /** 2438 * iavf_init_version_check - second step of driver startup 2439 * @adapter: board private structure 2440 * 2441 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2442 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2443 * when fails the state is changed to __IAVF_INIT_FAILED 2444 **/ 2445 static void iavf_init_version_check(struct iavf_adapter *adapter) 2446 { 2447 struct pci_dev *pdev = adapter->pdev; 2448 struct iavf_hw *hw = &adapter->hw; 2449 int err = -EAGAIN; 2450 2451 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2452 2453 if (!iavf_asq_done(hw)) { 2454 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2455 iavf_shutdown_adminq(hw); 2456 iavf_change_state(adapter, __IAVF_STARTUP); 2457 goto err; 2458 } 2459 2460 /* aq msg sent, awaiting reply */ 2461 err = iavf_verify_api_ver(adapter); 2462 if (err) { 2463 if (err == -EALREADY) 2464 err = iavf_send_api_ver(adapter); 2465 else 2466 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2467 adapter->pf_version.major, 2468 adapter->pf_version.minor, 2469 VIRTCHNL_VERSION_MAJOR, 2470 VIRTCHNL_VERSION_MINOR); 2471 goto err; 2472 } 2473 err = iavf_send_vf_config_msg(adapter); 2474 if (err) { 2475 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2476 err); 2477 goto err; 2478 } 2479 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2480 return; 2481 err: 2482 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2483 } 2484 2485 /** 2486 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2487 * @adapter: board private structure 2488 */ 2489 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2490 { 2491 int i, num_req_queues = adapter->num_req_queues; 2492 struct iavf_vsi *vsi = &adapter->vsi; 2493 2494 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2495 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2496 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2497 } 2498 if (!adapter->vsi_res) { 2499 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2500 return -ENODEV; 2501 } 2502 2503 if (num_req_queues && 2504 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2505 /* Problem. The PF gave us fewer queues than what we had 2506 * negotiated in our request. Need a reset to see if we can't 2507 * get back to a working state. 2508 */ 2509 dev_err(&adapter->pdev->dev, 2510 "Requested %d queues, but PF only gave us %d.\n", 2511 num_req_queues, 2512 adapter->vsi_res->num_queue_pairs); 2513 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2514 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2515 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2516 2517 return -EAGAIN; 2518 } 2519 adapter->num_req_queues = 0; 2520 adapter->vsi.id = adapter->vsi_res->vsi_id; 2521 2522 adapter->vsi.back = adapter; 2523 adapter->vsi.base_vector = 1; 2524 vsi->netdev = adapter->netdev; 2525 vsi->qs_handle = adapter->vsi_res->qset_handle; 2526 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2527 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2528 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2529 } else { 2530 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2531 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * iavf_init_get_resources - third step of driver startup 2539 * @adapter: board private structure 2540 * 2541 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2542 * finishes driver initialization procedure. 2543 * When success the state is changed to __IAVF_DOWN 2544 * when fails the state is changed to __IAVF_INIT_FAILED 2545 **/ 2546 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2547 { 2548 struct pci_dev *pdev = adapter->pdev; 2549 struct iavf_hw *hw = &adapter->hw; 2550 int err; 2551 2552 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2553 /* aq msg sent, awaiting reply */ 2554 if (!adapter->vf_res) { 2555 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2556 GFP_KERNEL); 2557 if (!adapter->vf_res) { 2558 err = -ENOMEM; 2559 goto err; 2560 } 2561 } 2562 err = iavf_get_vf_config(adapter); 2563 if (err == -EALREADY) { 2564 err = iavf_send_vf_config_msg(adapter); 2565 goto err; 2566 } else if (err == -EINVAL) { 2567 /* We only get -EINVAL if the device is in a very bad 2568 * state or if we've been disabled for previous bad 2569 * behavior. Either way, we're done now. 2570 */ 2571 iavf_shutdown_adminq(hw); 2572 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2573 return; 2574 } 2575 if (err) { 2576 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2577 goto err_alloc; 2578 } 2579 2580 err = iavf_parse_vf_resource_msg(adapter); 2581 if (err) { 2582 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2583 err); 2584 goto err_alloc; 2585 } 2586 /* Some features require additional messages to negotiate extended 2587 * capabilities. These are processed in sequence by the 2588 * __IAVF_INIT_EXTENDED_CAPS driver state. 2589 */ 2590 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2591 2592 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2593 return; 2594 2595 err_alloc: 2596 kfree(adapter->vf_res); 2597 adapter->vf_res = NULL; 2598 err: 2599 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2600 } 2601 2602 /** 2603 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2604 * @adapter: board private structure 2605 * 2606 * Function processes send of the extended VLAN V2 capability message to the 2607 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2608 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2609 */ 2610 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2611 { 2612 int ret; 2613 2614 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2615 2616 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2617 if (ret && ret == -EOPNOTSUPP) { 2618 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2619 * we did not send the capability exchange message and do not 2620 * expect a response. 2621 */ 2622 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2623 } 2624 2625 /* We sent the message, so move on to the next step */ 2626 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2627 } 2628 2629 /** 2630 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2631 * @adapter: board private structure 2632 * 2633 * Function processes receipt of the extended VLAN V2 capability message from 2634 * the PF. 2635 **/ 2636 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2637 { 2638 int ret; 2639 2640 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2641 2642 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2643 2644 ret = iavf_get_vf_vlan_v2_caps(adapter); 2645 if (ret) 2646 goto err; 2647 2648 /* We've processed receipt of the VLAN V2 caps message */ 2649 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2650 return; 2651 err: 2652 /* We didn't receive a reply. Make sure we try sending again when 2653 * __IAVF_INIT_FAILED attempts to recover. 2654 */ 2655 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2656 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2657 } 2658 2659 /** 2660 * iavf_init_send_supported_rxdids - part of querying for supported RXDID 2661 * formats 2662 * @adapter: board private structure 2663 * 2664 * Function processes send of the request for supported RXDIDs to the PF. 2665 * Must clear IAVF_EXTENDED_CAP_RECV_RXDID if the message is not sent, e.g. 2666 * due to the PF not negotiating VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. 2667 */ 2668 static void iavf_init_send_supported_rxdids(struct iavf_adapter *adapter) 2669 { 2670 int ret; 2671 2672 ret = iavf_send_vf_supported_rxdids_msg(adapter); 2673 if (ret == -EOPNOTSUPP) { 2674 /* PF does not support VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. In this 2675 * case, we did not send the capability exchange message and 2676 * do not expect a response. 2677 */ 2678 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2679 } 2680 2681 /* We sent the message, so move on to the next step */ 2682 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_RXDID; 2683 } 2684 2685 /** 2686 * iavf_init_recv_supported_rxdids - part of querying for supported RXDID 2687 * formats 2688 * @adapter: board private structure 2689 * 2690 * Function processes receipt of the supported RXDIDs message from the PF. 2691 **/ 2692 static void iavf_init_recv_supported_rxdids(struct iavf_adapter *adapter) 2693 { 2694 int ret; 2695 2696 memset(&adapter->supp_rxdids, 0, sizeof(adapter->supp_rxdids)); 2697 2698 ret = iavf_get_vf_supported_rxdids(adapter); 2699 if (ret) 2700 goto err; 2701 2702 /* We've processed the PF response to the 2703 * VIRTCHNL_OP_GET_SUPPORTED_RXDIDS message we sent previously. 2704 */ 2705 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2706 return; 2707 2708 err: 2709 /* We didn't receive a reply. Make sure we try sending again when 2710 * __IAVF_INIT_FAILED attempts to recover. 2711 */ 2712 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_RXDID; 2713 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2714 } 2715 2716 /** 2717 * iavf_init_send_ptp_caps - part of querying for extended PTP capabilities 2718 * @adapter: board private structure 2719 * 2720 * Function processes send of the request for 1588 PTP capabilities to the PF. 2721 * Must clear IAVF_EXTENDED_CAP_SEND_PTP if the message is not sent, e.g. 2722 * due to the PF not negotiating VIRTCHNL_VF_PTP_CAP 2723 */ 2724 static void iavf_init_send_ptp_caps(struct iavf_adapter *adapter) 2725 { 2726 if (iavf_send_vf_ptp_caps_msg(adapter) == -EOPNOTSUPP) { 2727 /* PF does not support VIRTCHNL_VF_PTP_CAP. In this case, we 2728 * did not send the capability exchange message and do not 2729 * expect a response. 2730 */ 2731 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2732 } 2733 2734 /* We sent the message, so move on to the next step */ 2735 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_PTP; 2736 } 2737 2738 /** 2739 * iavf_init_recv_ptp_caps - part of querying for supported PTP capabilities 2740 * @adapter: board private structure 2741 * 2742 * Function processes receipt of the PTP capabilities supported on this VF. 2743 **/ 2744 static void iavf_init_recv_ptp_caps(struct iavf_adapter *adapter) 2745 { 2746 memset(&adapter->ptp.hw_caps, 0, sizeof(adapter->ptp.hw_caps)); 2747 2748 if (iavf_get_vf_ptp_caps(adapter)) 2749 goto err; 2750 2751 /* We've processed the PF response to the VIRTCHNL_OP_1588_PTP_GET_CAPS 2752 * message we sent previously. 2753 */ 2754 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2755 return; 2756 2757 err: 2758 /* We didn't receive a reply. Make sure we try sending again when 2759 * __IAVF_INIT_FAILED attempts to recover. 2760 */ 2761 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_PTP; 2762 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2763 } 2764 2765 /** 2766 * iavf_init_process_extended_caps - Part of driver startup 2767 * @adapter: board private structure 2768 * 2769 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2770 * handles negotiating capabilities for features which require an additional 2771 * message. 2772 * 2773 * Once all extended capabilities exchanges are finished, the driver will 2774 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2775 */ 2776 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2777 { 2778 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2779 2780 /* Process capability exchange for VLAN V2 */ 2781 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2782 iavf_init_send_offload_vlan_v2_caps(adapter); 2783 return; 2784 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2785 iavf_init_recv_offload_vlan_v2_caps(adapter); 2786 return; 2787 } 2788 2789 /* Process capability exchange for RXDID formats */ 2790 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID) { 2791 iavf_init_send_supported_rxdids(adapter); 2792 return; 2793 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID) { 2794 iavf_init_recv_supported_rxdids(adapter); 2795 return; 2796 } 2797 2798 /* Process capability exchange for PTP features */ 2799 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP) { 2800 iavf_init_send_ptp_caps(adapter); 2801 return; 2802 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP) { 2803 iavf_init_recv_ptp_caps(adapter); 2804 return; 2805 } 2806 2807 /* When we reach here, no further extended capabilities exchanges are 2808 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2809 */ 2810 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2811 } 2812 2813 /** 2814 * iavf_init_config_adapter - last part of driver startup 2815 * @adapter: board private structure 2816 * 2817 * After all the supported capabilities are negotiated, then the 2818 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2819 */ 2820 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2821 { 2822 struct net_device *netdev = adapter->netdev; 2823 struct pci_dev *pdev = adapter->pdev; 2824 int err; 2825 2826 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2827 2828 if (iavf_process_config(adapter)) 2829 goto err; 2830 2831 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2832 2833 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2834 2835 netdev->netdev_ops = &iavf_netdev_ops; 2836 iavf_set_ethtool_ops(netdev); 2837 netdev->watchdog_timeo = 5 * HZ; 2838 2839 netdev->min_mtu = ETH_MIN_MTU; 2840 netdev->max_mtu = LIBIE_MAX_MTU; 2841 2842 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2843 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2844 adapter->hw.mac.addr); 2845 eth_hw_addr_random(netdev); 2846 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2847 } else { 2848 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2849 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2850 } 2851 2852 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2853 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2854 err = iavf_init_interrupt_scheme(adapter); 2855 if (err) 2856 goto err_sw_init; 2857 iavf_map_rings_to_vectors(adapter); 2858 if (adapter->vf_res->vf_cap_flags & 2859 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2860 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2861 2862 err = iavf_request_misc_irq(adapter); 2863 if (err) 2864 goto err_sw_init; 2865 2866 netif_carrier_off(netdev); 2867 adapter->link_up = false; 2868 netif_tx_stop_all_queues(netdev); 2869 2870 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2871 if (netdev->features & NETIF_F_GRO) 2872 dev_info(&pdev->dev, "GRO is enabled\n"); 2873 2874 iavf_change_state(adapter, __IAVF_DOWN); 2875 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2876 2877 iavf_misc_irq_enable(adapter); 2878 wake_up(&adapter->down_waitqueue); 2879 2880 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2881 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2882 if (!adapter->rss_key || !adapter->rss_lut) { 2883 err = -ENOMEM; 2884 goto err_mem; 2885 } 2886 if (RSS_AQ(adapter)) 2887 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2888 else 2889 iavf_init_rss(adapter); 2890 2891 if (VLAN_V2_ALLOWED(adapter)) 2892 /* request initial VLAN offload settings */ 2893 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2894 2895 if (QOS_ALLOWED(adapter)) 2896 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2897 2898 /* Setup initial PTP configuration */ 2899 iavf_ptp_init(adapter); 2900 2901 iavf_schedule_finish_config(adapter); 2902 return; 2903 2904 err_mem: 2905 iavf_free_rss(adapter); 2906 iavf_free_misc_irq(adapter); 2907 err_sw_init: 2908 iavf_reset_interrupt_capability(adapter); 2909 err: 2910 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2911 } 2912 2913 /** 2914 * iavf_watchdog_task - Periodic call-back task 2915 * @work: pointer to work_struct 2916 **/ 2917 static void iavf_watchdog_task(struct work_struct *work) 2918 { 2919 struct iavf_adapter *adapter = container_of(work, 2920 struct iavf_adapter, 2921 watchdog_task.work); 2922 struct net_device *netdev = adapter->netdev; 2923 struct iavf_hw *hw = &adapter->hw; 2924 u32 reg_val; 2925 2926 netdev_lock(netdev); 2927 if (!mutex_trylock(&adapter->crit_lock)) { 2928 if (adapter->state == __IAVF_REMOVE) { 2929 netdev_unlock(netdev); 2930 return; 2931 } 2932 2933 goto restart_watchdog; 2934 } 2935 2936 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2937 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2938 2939 switch (adapter->state) { 2940 case __IAVF_STARTUP: 2941 iavf_startup(adapter); 2942 mutex_unlock(&adapter->crit_lock); 2943 netdev_unlock(netdev); 2944 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2945 msecs_to_jiffies(30)); 2946 return; 2947 case __IAVF_INIT_VERSION_CHECK: 2948 iavf_init_version_check(adapter); 2949 mutex_unlock(&adapter->crit_lock); 2950 netdev_unlock(netdev); 2951 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2952 msecs_to_jiffies(30)); 2953 return; 2954 case __IAVF_INIT_GET_RESOURCES: 2955 iavf_init_get_resources(adapter); 2956 mutex_unlock(&adapter->crit_lock); 2957 netdev_unlock(netdev); 2958 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2959 msecs_to_jiffies(1)); 2960 return; 2961 case __IAVF_INIT_EXTENDED_CAPS: 2962 iavf_init_process_extended_caps(adapter); 2963 mutex_unlock(&adapter->crit_lock); 2964 netdev_unlock(netdev); 2965 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2966 msecs_to_jiffies(1)); 2967 return; 2968 case __IAVF_INIT_CONFIG_ADAPTER: 2969 iavf_init_config_adapter(adapter); 2970 mutex_unlock(&adapter->crit_lock); 2971 netdev_unlock(netdev); 2972 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2973 msecs_to_jiffies(1)); 2974 return; 2975 case __IAVF_INIT_FAILED: 2976 if (test_bit(__IAVF_IN_REMOVE_TASK, 2977 &adapter->crit_section)) { 2978 /* Do not update the state and do not reschedule 2979 * watchdog task, iavf_remove should handle this state 2980 * as it can loop forever 2981 */ 2982 mutex_unlock(&adapter->crit_lock); 2983 netdev_unlock(netdev); 2984 return; 2985 } 2986 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2987 dev_err(&adapter->pdev->dev, 2988 "Failed to communicate with PF; waiting before retry\n"); 2989 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2990 iavf_shutdown_adminq(hw); 2991 mutex_unlock(&adapter->crit_lock); 2992 netdev_unlock(netdev); 2993 queue_delayed_work(adapter->wq, 2994 &adapter->watchdog_task, (5 * HZ)); 2995 return; 2996 } 2997 /* Try again from failed step*/ 2998 iavf_change_state(adapter, adapter->last_state); 2999 mutex_unlock(&adapter->crit_lock); 3000 netdev_unlock(netdev); 3001 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 3002 return; 3003 case __IAVF_COMM_FAILED: 3004 if (test_bit(__IAVF_IN_REMOVE_TASK, 3005 &adapter->crit_section)) { 3006 /* Set state to __IAVF_INIT_FAILED and perform remove 3007 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 3008 * doesn't bring the state back to __IAVF_COMM_FAILED. 3009 */ 3010 iavf_change_state(adapter, __IAVF_INIT_FAILED); 3011 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 3012 mutex_unlock(&adapter->crit_lock); 3013 netdev_unlock(netdev); 3014 return; 3015 } 3016 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3017 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3018 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 3019 reg_val == VIRTCHNL_VFR_COMPLETED) { 3020 /* A chance for redemption! */ 3021 dev_err(&adapter->pdev->dev, 3022 "Hardware came out of reset. Attempting reinit.\n"); 3023 /* When init task contacts the PF and 3024 * gets everything set up again, it'll restart the 3025 * watchdog for us. Down, boy. Sit. Stay. Woof. 3026 */ 3027 iavf_change_state(adapter, __IAVF_STARTUP); 3028 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 3029 } 3030 adapter->aq_required = 0; 3031 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3032 mutex_unlock(&adapter->crit_lock); 3033 netdev_unlock(netdev); 3034 queue_delayed_work(adapter->wq, 3035 &adapter->watchdog_task, 3036 msecs_to_jiffies(10)); 3037 return; 3038 case __IAVF_RESETTING: 3039 mutex_unlock(&adapter->crit_lock); 3040 netdev_unlock(netdev); 3041 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3042 HZ * 2); 3043 return; 3044 case __IAVF_DOWN: 3045 case __IAVF_DOWN_PENDING: 3046 case __IAVF_TESTING: 3047 case __IAVF_RUNNING: 3048 if (adapter->current_op) { 3049 if (!iavf_asq_done(hw)) { 3050 dev_dbg(&adapter->pdev->dev, 3051 "Admin queue timeout\n"); 3052 iavf_send_api_ver(adapter); 3053 } 3054 } else { 3055 int ret = iavf_process_aq_command(adapter); 3056 3057 /* An error will be returned if no commands were 3058 * processed; use this opportunity to update stats 3059 * if the error isn't -ENOTSUPP 3060 */ 3061 if (ret && ret != -EOPNOTSUPP && 3062 adapter->state == __IAVF_RUNNING) 3063 iavf_request_stats(adapter); 3064 } 3065 if (adapter->state == __IAVF_RUNNING) 3066 iavf_detect_recover_hung(&adapter->vsi); 3067 break; 3068 case __IAVF_REMOVE: 3069 default: 3070 mutex_unlock(&adapter->crit_lock); 3071 netdev_unlock(netdev); 3072 return; 3073 } 3074 3075 /* check for hw reset */ 3076 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3077 if (!reg_val) { 3078 adapter->aq_required = 0; 3079 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3080 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 3081 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 3082 mutex_unlock(&adapter->crit_lock); 3083 netdev_unlock(netdev); 3084 queue_delayed_work(adapter->wq, 3085 &adapter->watchdog_task, HZ * 2); 3086 return; 3087 } 3088 3089 mutex_unlock(&adapter->crit_lock); 3090 restart_watchdog: 3091 netdev_unlock(netdev); 3092 if (adapter->state >= __IAVF_DOWN) 3093 queue_work(adapter->wq, &adapter->adminq_task); 3094 if (adapter->aq_required) 3095 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3096 msecs_to_jiffies(20)); 3097 else 3098 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3099 HZ * 2); 3100 } 3101 3102 /** 3103 * iavf_disable_vf - disable VF 3104 * @adapter: board private structure 3105 * 3106 * Set communication failed flag and free all resources. 3107 * NOTE: This function is expected to be called with crit_lock being held. 3108 **/ 3109 static void iavf_disable_vf(struct iavf_adapter *adapter) 3110 { 3111 struct iavf_mac_filter *f, *ftmp; 3112 struct iavf_vlan_filter *fv, *fvtmp; 3113 struct iavf_cloud_filter *cf, *cftmp; 3114 3115 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3116 3117 /* We don't use netif_running() because it may be true prior to 3118 * ndo_open() returning, so we can't assume it means all our open 3119 * tasks have finished, since we're not holding the rtnl_lock here. 3120 */ 3121 if (adapter->state == __IAVF_RUNNING) { 3122 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3123 netif_carrier_off(adapter->netdev); 3124 netif_tx_disable(adapter->netdev); 3125 adapter->link_up = false; 3126 iavf_napi_disable_all(adapter); 3127 iavf_irq_disable(adapter); 3128 iavf_free_traffic_irqs(adapter); 3129 iavf_free_all_tx_resources(adapter); 3130 iavf_free_all_rx_resources(adapter); 3131 } 3132 3133 spin_lock_bh(&adapter->mac_vlan_list_lock); 3134 3135 /* Delete all of the filters */ 3136 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3137 list_del(&f->list); 3138 kfree(f); 3139 } 3140 3141 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 3142 list_del(&fv->list); 3143 kfree(fv); 3144 } 3145 adapter->num_vlan_filters = 0; 3146 3147 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3148 3149 spin_lock_bh(&adapter->cloud_filter_list_lock); 3150 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3151 list_del(&cf->list); 3152 kfree(cf); 3153 adapter->num_cloud_filters--; 3154 } 3155 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3156 3157 iavf_free_misc_irq(adapter); 3158 iavf_free_interrupt_scheme(adapter); 3159 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 3160 iavf_shutdown_adminq(&adapter->hw); 3161 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3162 iavf_change_state(adapter, __IAVF_DOWN); 3163 wake_up(&adapter->down_waitqueue); 3164 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 3165 } 3166 3167 /** 3168 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 3169 * @adapter: board private structure 3170 * 3171 * After a reset, the shaper parameters of queues need to be replayed again. 3172 * Since the net_shaper object inside TX rings persists across reset, 3173 * set the update flag for all queues so that the virtchnl message is triggered 3174 * for all queues. 3175 **/ 3176 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 3177 { 3178 int i, num = 0; 3179 3180 for (i = 0; i < adapter->num_active_queues; i++) 3181 if (adapter->tx_rings[i].q_shaper.bw_min || 3182 adapter->tx_rings[i].q_shaper.bw_max) { 3183 adapter->tx_rings[i].q_shaper_update = true; 3184 num++; 3185 } 3186 3187 if (num) 3188 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3189 } 3190 3191 /** 3192 * iavf_reset_task - Call-back task to handle hardware reset 3193 * @work: pointer to work_struct 3194 * 3195 * During reset we need to shut down and reinitialize the admin queue 3196 * before we can use it to communicate with the PF again. We also clear 3197 * and reinit the rings because that context is lost as well. 3198 **/ 3199 static void iavf_reset_task(struct work_struct *work) 3200 { 3201 struct iavf_adapter *adapter = container_of(work, 3202 struct iavf_adapter, 3203 reset_task); 3204 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3205 struct net_device *netdev = adapter->netdev; 3206 struct iavf_hw *hw = &adapter->hw; 3207 struct iavf_mac_filter *f, *ftmp; 3208 struct iavf_cloud_filter *cf; 3209 enum iavf_status status; 3210 u32 reg_val; 3211 int i = 0, err; 3212 bool running; 3213 3214 /* When device is being removed it doesn't make sense to run the reset 3215 * task, just return in such a case. 3216 */ 3217 netdev_lock(netdev); 3218 if (!mutex_trylock(&adapter->crit_lock)) { 3219 if (adapter->state != __IAVF_REMOVE) 3220 queue_work(adapter->wq, &adapter->reset_task); 3221 3222 netdev_unlock(netdev); 3223 return; 3224 } 3225 3226 iavf_misc_irq_disable(adapter); 3227 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3228 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3229 /* Restart the AQ here. If we have been reset but didn't 3230 * detect it, or if the PF had to reinit, our AQ will be hosed. 3231 */ 3232 iavf_shutdown_adminq(hw); 3233 iavf_init_adminq(hw); 3234 iavf_request_reset(adapter); 3235 } 3236 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3237 3238 /* poll until we see the reset actually happen */ 3239 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3240 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3241 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3242 if (!reg_val) 3243 break; 3244 usleep_range(5000, 10000); 3245 } 3246 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3247 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3248 goto continue_reset; /* act like the reset happened */ 3249 } 3250 3251 /* wait until the reset is complete and the PF is responding to us */ 3252 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3253 /* sleep first to make sure a minimum wait time is met */ 3254 msleep(IAVF_RESET_WAIT_MS); 3255 3256 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3257 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3258 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3259 break; 3260 } 3261 3262 pci_set_master(adapter->pdev); 3263 pci_restore_msi_state(adapter->pdev); 3264 3265 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3266 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3267 reg_val); 3268 iavf_disable_vf(adapter); 3269 mutex_unlock(&adapter->crit_lock); 3270 netdev_unlock(netdev); 3271 return; /* Do not attempt to reinit. It's dead, Jim. */ 3272 } 3273 3274 continue_reset: 3275 /* We don't use netif_running() because it may be true prior to 3276 * ndo_open() returning, so we can't assume it means all our open 3277 * tasks have finished, since we're not holding the rtnl_lock here. 3278 */ 3279 running = adapter->state == __IAVF_RUNNING; 3280 3281 if (running) { 3282 netif_carrier_off(netdev); 3283 netif_tx_stop_all_queues(netdev); 3284 adapter->link_up = false; 3285 iavf_napi_disable_all(adapter); 3286 } 3287 iavf_irq_disable(adapter); 3288 3289 iavf_change_state(adapter, __IAVF_RESETTING); 3290 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3291 3292 /* free the Tx/Rx rings and descriptors, might be better to just 3293 * re-use them sometime in the future 3294 */ 3295 iavf_free_all_rx_resources(adapter); 3296 iavf_free_all_tx_resources(adapter); 3297 3298 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3299 /* kill and reinit the admin queue */ 3300 iavf_shutdown_adminq(hw); 3301 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3302 status = iavf_init_adminq(hw); 3303 if (status) { 3304 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3305 status); 3306 goto reset_err; 3307 } 3308 adapter->aq_required = 0; 3309 3310 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3311 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3312 err = iavf_reinit_interrupt_scheme(adapter, running); 3313 if (err) 3314 goto reset_err; 3315 } 3316 3317 if (RSS_AQ(adapter)) { 3318 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3319 } else { 3320 err = iavf_init_rss(adapter); 3321 if (err) 3322 goto reset_err; 3323 } 3324 3325 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3326 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3327 3328 /* Certain capabilities require an extended negotiation process using 3329 * extra messages that must be processed after getting the VF 3330 * configuration. The related checks such as VLAN_V2_ALLOWED() are not 3331 * reliable here, since the configuration has not yet been negotiated. 3332 * 3333 * Always set these flags, since them related VIRTCHNL messages won't 3334 * be sent until after VIRTCHNL_OP_GET_VF_RESOURCES. 3335 */ 3336 adapter->aq_required |= IAVF_FLAG_AQ_EXTENDED_CAPS; 3337 3338 spin_lock_bh(&adapter->mac_vlan_list_lock); 3339 3340 /* Delete filter for the current MAC address, it could have 3341 * been changed by the PF via administratively set MAC. 3342 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3343 */ 3344 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3345 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3346 list_del(&f->list); 3347 kfree(f); 3348 } 3349 } 3350 /* re-add all MAC filters */ 3351 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3352 f->add = true; 3353 } 3354 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3355 3356 /* check if TCs are running and re-add all cloud filters */ 3357 spin_lock_bh(&adapter->cloud_filter_list_lock); 3358 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3359 adapter->num_tc) { 3360 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3361 cf->add = true; 3362 } 3363 } 3364 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3365 3366 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3367 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3368 iavf_misc_irq_enable(adapter); 3369 3370 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3371 3372 /* We were running when the reset started, so we need to restore some 3373 * state here. 3374 */ 3375 if (running) { 3376 /* allocate transmit descriptors */ 3377 err = iavf_setup_all_tx_resources(adapter); 3378 if (err) 3379 goto reset_err; 3380 3381 /* allocate receive descriptors */ 3382 err = iavf_setup_all_rx_resources(adapter); 3383 if (err) 3384 goto reset_err; 3385 3386 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3387 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3388 err = iavf_request_traffic_irqs(adapter, netdev->name); 3389 if (err) 3390 goto reset_err; 3391 3392 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3393 } 3394 3395 iavf_configure(adapter); 3396 3397 /* iavf_up_complete() will switch device back 3398 * to __IAVF_RUNNING 3399 */ 3400 iavf_up_complete(adapter); 3401 3402 iavf_irq_enable(adapter, true); 3403 3404 iavf_reconfig_qs_bw(adapter); 3405 } else { 3406 iavf_change_state(adapter, __IAVF_DOWN); 3407 wake_up(&adapter->down_waitqueue); 3408 } 3409 3410 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3411 3412 wake_up(&adapter->reset_waitqueue); 3413 mutex_unlock(&adapter->crit_lock); 3414 netdev_unlock(netdev); 3415 3416 return; 3417 reset_err: 3418 if (running) { 3419 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3420 iavf_free_traffic_irqs(adapter); 3421 } 3422 iavf_disable_vf(adapter); 3423 3424 mutex_unlock(&adapter->crit_lock); 3425 netdev_unlock(netdev); 3426 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3427 } 3428 3429 /** 3430 * iavf_adminq_task - worker thread to clean the admin queue 3431 * @work: pointer to work_struct containing our data 3432 **/ 3433 static void iavf_adminq_task(struct work_struct *work) 3434 { 3435 struct iavf_adapter *adapter = 3436 container_of(work, struct iavf_adapter, adminq_task); 3437 struct iavf_hw *hw = &adapter->hw; 3438 struct iavf_arq_event_info event; 3439 enum virtchnl_ops v_op; 3440 enum iavf_status ret, v_ret; 3441 u32 val, oldval; 3442 u16 pending; 3443 3444 if (!mutex_trylock(&adapter->crit_lock)) { 3445 if (adapter->state == __IAVF_REMOVE) 3446 return; 3447 3448 queue_work(adapter->wq, &adapter->adminq_task); 3449 goto out; 3450 } 3451 3452 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3453 goto unlock; 3454 3455 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3456 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3457 if (!event.msg_buf) 3458 goto unlock; 3459 3460 do { 3461 ret = iavf_clean_arq_element(hw, &event, &pending); 3462 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3463 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3464 3465 if (ret || !v_op) 3466 break; /* No event to process or error cleaning ARQ */ 3467 3468 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3469 event.msg_len); 3470 if (pending != 0) 3471 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3472 } while (pending); 3473 3474 if (iavf_is_reset_in_progress(adapter)) 3475 goto freedom; 3476 3477 /* check for error indications */ 3478 val = rd32(hw, IAVF_VF_ARQLEN1); 3479 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3480 goto freedom; 3481 oldval = val; 3482 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3483 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3484 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3485 } 3486 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3487 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3488 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3489 } 3490 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3491 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3492 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3493 } 3494 if (oldval != val) 3495 wr32(hw, IAVF_VF_ARQLEN1, val); 3496 3497 val = rd32(hw, IAVF_VF_ATQLEN1); 3498 oldval = val; 3499 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3500 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3501 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3502 } 3503 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3504 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3505 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3506 } 3507 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3508 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3509 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3510 } 3511 if (oldval != val) 3512 wr32(hw, IAVF_VF_ATQLEN1, val); 3513 3514 freedom: 3515 kfree(event.msg_buf); 3516 unlock: 3517 mutex_unlock(&adapter->crit_lock); 3518 out: 3519 /* re-enable Admin queue interrupt cause */ 3520 iavf_misc_irq_enable(adapter); 3521 } 3522 3523 /** 3524 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3525 * @adapter: board private structure 3526 * 3527 * Free all transmit software resources 3528 **/ 3529 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3530 { 3531 int i; 3532 3533 if (!adapter->tx_rings) 3534 return; 3535 3536 for (i = 0; i < adapter->num_active_queues; i++) 3537 if (adapter->tx_rings[i].desc) 3538 iavf_free_tx_resources(&adapter->tx_rings[i]); 3539 } 3540 3541 /** 3542 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3543 * @adapter: board private structure 3544 * 3545 * If this function returns with an error, then it's possible one or 3546 * more of the rings is populated (while the rest are not). It is the 3547 * callers duty to clean those orphaned rings. 3548 * 3549 * Return 0 on success, negative on failure 3550 **/ 3551 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3552 { 3553 int i, err = 0; 3554 3555 for (i = 0; i < adapter->num_active_queues; i++) { 3556 adapter->tx_rings[i].count = adapter->tx_desc_count; 3557 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3558 if (!err) 3559 continue; 3560 dev_err(&adapter->pdev->dev, 3561 "Allocation for Tx Queue %u failed\n", i); 3562 break; 3563 } 3564 3565 return err; 3566 } 3567 3568 /** 3569 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3570 * @adapter: board private structure 3571 * 3572 * If this function returns with an error, then it's possible one or 3573 * more of the rings is populated (while the rest are not). It is the 3574 * callers duty to clean those orphaned rings. 3575 * 3576 * Return 0 on success, negative on failure 3577 **/ 3578 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3579 { 3580 int i, err = 0; 3581 3582 for (i = 0; i < adapter->num_active_queues; i++) { 3583 adapter->rx_rings[i].count = adapter->rx_desc_count; 3584 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3585 if (!err) 3586 continue; 3587 dev_err(&adapter->pdev->dev, 3588 "Allocation for Rx Queue %u failed\n", i); 3589 break; 3590 } 3591 return err; 3592 } 3593 3594 /** 3595 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3596 * @adapter: board private structure 3597 * 3598 * Free all receive software resources 3599 **/ 3600 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3601 { 3602 int i; 3603 3604 if (!adapter->rx_rings) 3605 return; 3606 3607 for (i = 0; i < adapter->num_active_queues; i++) 3608 if (adapter->rx_rings[i].desc) 3609 iavf_free_rx_resources(&adapter->rx_rings[i]); 3610 } 3611 3612 /** 3613 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3614 * @adapter: board private structure 3615 * @max_tx_rate: max Tx bw for a tc 3616 **/ 3617 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3618 u64 max_tx_rate) 3619 { 3620 int speed = 0, ret = 0; 3621 3622 if (ADV_LINK_SUPPORT(adapter)) { 3623 if (adapter->link_speed_mbps < U32_MAX) { 3624 speed = adapter->link_speed_mbps; 3625 goto validate_bw; 3626 } else { 3627 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3628 return -EINVAL; 3629 } 3630 } 3631 3632 switch (adapter->link_speed) { 3633 case VIRTCHNL_LINK_SPEED_40GB: 3634 speed = SPEED_40000; 3635 break; 3636 case VIRTCHNL_LINK_SPEED_25GB: 3637 speed = SPEED_25000; 3638 break; 3639 case VIRTCHNL_LINK_SPEED_20GB: 3640 speed = SPEED_20000; 3641 break; 3642 case VIRTCHNL_LINK_SPEED_10GB: 3643 speed = SPEED_10000; 3644 break; 3645 case VIRTCHNL_LINK_SPEED_5GB: 3646 speed = SPEED_5000; 3647 break; 3648 case VIRTCHNL_LINK_SPEED_2_5GB: 3649 speed = SPEED_2500; 3650 break; 3651 case VIRTCHNL_LINK_SPEED_1GB: 3652 speed = SPEED_1000; 3653 break; 3654 case VIRTCHNL_LINK_SPEED_100MB: 3655 speed = SPEED_100; 3656 break; 3657 default: 3658 break; 3659 } 3660 3661 validate_bw: 3662 if (max_tx_rate > speed) { 3663 dev_err(&adapter->pdev->dev, 3664 "Invalid tx rate specified\n"); 3665 ret = -EINVAL; 3666 } 3667 3668 return ret; 3669 } 3670 3671 /** 3672 * iavf_validate_ch_config - validate queue mapping info 3673 * @adapter: board private structure 3674 * @mqprio_qopt: queue parameters 3675 * 3676 * This function validates if the config provided by the user to 3677 * configure queue channels is valid or not. Returns 0 on a valid 3678 * config. 3679 **/ 3680 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3681 struct tc_mqprio_qopt_offload *mqprio_qopt) 3682 { 3683 u64 total_max_rate = 0; 3684 u32 tx_rate_rem = 0; 3685 int i, num_qps = 0; 3686 u64 tx_rate = 0; 3687 int ret = 0; 3688 3689 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3690 mqprio_qopt->qopt.num_tc < 1) 3691 return -EINVAL; 3692 3693 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3694 if (!mqprio_qopt->qopt.count[i] || 3695 mqprio_qopt->qopt.offset[i] != num_qps) 3696 return -EINVAL; 3697 if (mqprio_qopt->min_rate[i]) { 3698 dev_err(&adapter->pdev->dev, 3699 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3700 i); 3701 return -EINVAL; 3702 } 3703 3704 /* convert to Mbps */ 3705 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3706 IAVF_MBPS_DIVISOR); 3707 3708 if (mqprio_qopt->max_rate[i] && 3709 tx_rate < IAVF_MBPS_QUANTA) { 3710 dev_err(&adapter->pdev->dev, 3711 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3712 i, IAVF_MBPS_QUANTA); 3713 return -EINVAL; 3714 } 3715 3716 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3717 3718 if (tx_rate_rem != 0) { 3719 dev_err(&adapter->pdev->dev, 3720 "Invalid max tx rate for TC%d, not divisible by %d\n", 3721 i, IAVF_MBPS_QUANTA); 3722 return -EINVAL; 3723 } 3724 3725 total_max_rate += tx_rate; 3726 num_qps += mqprio_qopt->qopt.count[i]; 3727 } 3728 if (num_qps > adapter->num_active_queues) { 3729 dev_err(&adapter->pdev->dev, 3730 "Cannot support requested number of queues\n"); 3731 return -EINVAL; 3732 } 3733 3734 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3735 return ret; 3736 } 3737 3738 /** 3739 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3740 * @adapter: board private structure 3741 **/ 3742 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3743 { 3744 struct iavf_cloud_filter *cf, *cftmp; 3745 3746 spin_lock_bh(&adapter->cloud_filter_list_lock); 3747 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3748 list) { 3749 list_del(&cf->list); 3750 kfree(cf); 3751 adapter->num_cloud_filters--; 3752 } 3753 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3754 } 3755 3756 /** 3757 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3758 * TC config already configured on this adapter. 3759 * @adapter: board private structure 3760 * @mqprio_qopt: TC config received from kernel. 3761 * 3762 * This function compares the TC config received from the kernel 3763 * with the config already configured on the adapter. 3764 * 3765 * Return: True if configuration is same, false otherwise. 3766 **/ 3767 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3768 struct tc_mqprio_qopt *mqprio_qopt) 3769 { 3770 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3771 int i; 3772 3773 if (adapter->num_tc != mqprio_qopt->num_tc) 3774 return false; 3775 3776 for (i = 0; i < adapter->num_tc; i++) { 3777 if (ch[i].count != mqprio_qopt->count[i] || 3778 ch[i].offset != mqprio_qopt->offset[i]) 3779 return false; 3780 } 3781 return true; 3782 } 3783 3784 /** 3785 * __iavf_setup_tc - configure multiple traffic classes 3786 * @netdev: network interface device structure 3787 * @type_data: tc offload data 3788 * 3789 * This function processes the config information provided by the 3790 * user to configure traffic classes/queue channels and packages the 3791 * information to request the PF to setup traffic classes. 3792 * 3793 * Returns 0 on success. 3794 **/ 3795 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3796 { 3797 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3798 struct iavf_adapter *adapter = netdev_priv(netdev); 3799 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3800 u8 num_tc = 0, total_qps = 0; 3801 int ret = 0, netdev_tc = 0; 3802 u64 max_tx_rate; 3803 u16 mode; 3804 int i; 3805 3806 num_tc = mqprio_qopt->qopt.num_tc; 3807 mode = mqprio_qopt->mode; 3808 3809 /* delete queue_channel */ 3810 if (!mqprio_qopt->qopt.hw) { 3811 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3812 /* reset the tc configuration */ 3813 netdev_reset_tc(netdev); 3814 adapter->num_tc = 0; 3815 netif_tx_stop_all_queues(netdev); 3816 netif_tx_disable(netdev); 3817 iavf_del_all_cloud_filters(adapter); 3818 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3819 total_qps = adapter->orig_num_active_queues; 3820 goto exit; 3821 } else { 3822 return -EINVAL; 3823 } 3824 } 3825 3826 /* add queue channel */ 3827 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3828 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3829 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3830 return -EOPNOTSUPP; 3831 } 3832 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3833 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3834 return -EINVAL; 3835 } 3836 3837 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3838 if (ret) 3839 return ret; 3840 /* Return if same TC config is requested */ 3841 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3842 return 0; 3843 adapter->num_tc = num_tc; 3844 3845 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3846 if (i < num_tc) { 3847 adapter->ch_config.ch_info[i].count = 3848 mqprio_qopt->qopt.count[i]; 3849 adapter->ch_config.ch_info[i].offset = 3850 mqprio_qopt->qopt.offset[i]; 3851 total_qps += mqprio_qopt->qopt.count[i]; 3852 max_tx_rate = mqprio_qopt->max_rate[i]; 3853 /* convert to Mbps */ 3854 max_tx_rate = div_u64(max_tx_rate, 3855 IAVF_MBPS_DIVISOR); 3856 adapter->ch_config.ch_info[i].max_tx_rate = 3857 max_tx_rate; 3858 } else { 3859 adapter->ch_config.ch_info[i].count = 1; 3860 adapter->ch_config.ch_info[i].offset = 0; 3861 } 3862 } 3863 3864 /* Take snapshot of original config such as "num_active_queues" 3865 * It is used later when delete ADQ flow is exercised, so that 3866 * once delete ADQ flow completes, VF shall go back to its 3867 * original queue configuration 3868 */ 3869 3870 adapter->orig_num_active_queues = adapter->num_active_queues; 3871 3872 /* Store queue info based on TC so that VF gets configured 3873 * with correct number of queues when VF completes ADQ config 3874 * flow 3875 */ 3876 adapter->ch_config.total_qps = total_qps; 3877 3878 netif_tx_stop_all_queues(netdev); 3879 netif_tx_disable(netdev); 3880 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3881 netdev_reset_tc(netdev); 3882 /* Report the tc mapping up the stack */ 3883 netdev_set_num_tc(adapter->netdev, num_tc); 3884 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3885 u16 qcount = mqprio_qopt->qopt.count[i]; 3886 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3887 3888 if (i < num_tc) 3889 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3890 qoffset); 3891 } 3892 } 3893 exit: 3894 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3895 return 0; 3896 3897 netdev_lock(netdev); 3898 netif_set_real_num_rx_queues(netdev, total_qps); 3899 netif_set_real_num_tx_queues(netdev, total_qps); 3900 netdev_unlock(netdev); 3901 3902 return ret; 3903 } 3904 3905 /** 3906 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3907 * @adapter: board private structure 3908 * @f: pointer to struct flow_cls_offload 3909 * @filter: pointer to cloud filter structure 3910 */ 3911 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3912 struct flow_cls_offload *f, 3913 struct iavf_cloud_filter *filter) 3914 { 3915 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3916 struct flow_dissector *dissector = rule->match.dissector; 3917 u16 n_proto_mask = 0; 3918 u16 n_proto_key = 0; 3919 u8 field_flags = 0; 3920 u16 addr_type = 0; 3921 u16 n_proto = 0; 3922 int i = 0; 3923 struct virtchnl_filter *vf = &filter->f; 3924 3925 if (dissector->used_keys & 3926 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3927 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3928 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3929 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3930 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3931 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3932 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3933 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3934 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3935 dissector->used_keys); 3936 return -EOPNOTSUPP; 3937 } 3938 3939 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3940 struct flow_match_enc_keyid match; 3941 3942 flow_rule_match_enc_keyid(rule, &match); 3943 if (match.mask->keyid != 0) 3944 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3945 } 3946 3947 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3948 struct flow_match_basic match; 3949 3950 flow_rule_match_basic(rule, &match); 3951 n_proto_key = ntohs(match.key->n_proto); 3952 n_proto_mask = ntohs(match.mask->n_proto); 3953 3954 if (n_proto_key == ETH_P_ALL) { 3955 n_proto_key = 0; 3956 n_proto_mask = 0; 3957 } 3958 n_proto = n_proto_key & n_proto_mask; 3959 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3960 return -EINVAL; 3961 if (n_proto == ETH_P_IPV6) { 3962 /* specify flow type as TCP IPv6 */ 3963 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3964 } 3965 3966 if (match.key->ip_proto != IPPROTO_TCP) { 3967 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3968 return -EINVAL; 3969 } 3970 } 3971 3972 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3973 struct flow_match_eth_addrs match; 3974 3975 flow_rule_match_eth_addrs(rule, &match); 3976 3977 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3978 if (!is_zero_ether_addr(match.mask->dst)) { 3979 if (is_broadcast_ether_addr(match.mask->dst)) { 3980 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3981 } else { 3982 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3983 match.mask->dst); 3984 return -EINVAL; 3985 } 3986 } 3987 3988 if (!is_zero_ether_addr(match.mask->src)) { 3989 if (is_broadcast_ether_addr(match.mask->src)) { 3990 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3991 } else { 3992 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3993 match.mask->src); 3994 return -EINVAL; 3995 } 3996 } 3997 3998 if (!is_zero_ether_addr(match.key->dst)) 3999 if (is_valid_ether_addr(match.key->dst) || 4000 is_multicast_ether_addr(match.key->dst)) { 4001 /* set the mask if a valid dst_mac address */ 4002 for (i = 0; i < ETH_ALEN; i++) 4003 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 4004 ether_addr_copy(vf->data.tcp_spec.dst_mac, 4005 match.key->dst); 4006 } 4007 4008 if (!is_zero_ether_addr(match.key->src)) 4009 if (is_valid_ether_addr(match.key->src) || 4010 is_multicast_ether_addr(match.key->src)) { 4011 /* set the mask if a valid dst_mac address */ 4012 for (i = 0; i < ETH_ALEN; i++) 4013 vf->mask.tcp_spec.src_mac[i] |= 0xff; 4014 ether_addr_copy(vf->data.tcp_spec.src_mac, 4015 match.key->src); 4016 } 4017 } 4018 4019 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 4020 struct flow_match_vlan match; 4021 4022 flow_rule_match_vlan(rule, &match); 4023 if (match.mask->vlan_id) { 4024 if (match.mask->vlan_id == VLAN_VID_MASK) { 4025 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 4026 } else { 4027 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 4028 match.mask->vlan_id); 4029 return -EINVAL; 4030 } 4031 } 4032 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 4033 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 4034 } 4035 4036 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 4037 struct flow_match_control match; 4038 4039 flow_rule_match_control(rule, &match); 4040 addr_type = match.key->addr_type; 4041 4042 if (flow_rule_has_control_flags(match.mask->flags, 4043 f->common.extack)) 4044 return -EOPNOTSUPP; 4045 } 4046 4047 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 4048 struct flow_match_ipv4_addrs match; 4049 4050 flow_rule_match_ipv4_addrs(rule, &match); 4051 if (match.mask->dst) { 4052 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 4053 field_flags |= IAVF_CLOUD_FIELD_IIP; 4054 } else { 4055 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 4056 be32_to_cpu(match.mask->dst)); 4057 return -EINVAL; 4058 } 4059 } 4060 4061 if (match.mask->src) { 4062 if (match.mask->src == cpu_to_be32(0xffffffff)) { 4063 field_flags |= IAVF_CLOUD_FIELD_IIP; 4064 } else { 4065 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 4066 be32_to_cpu(match.mask->src)); 4067 return -EINVAL; 4068 } 4069 } 4070 4071 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 4072 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 4073 return -EINVAL; 4074 } 4075 if (match.key->dst) { 4076 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 4077 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 4078 } 4079 if (match.key->src) { 4080 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 4081 vf->data.tcp_spec.src_ip[0] = match.key->src; 4082 } 4083 } 4084 4085 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 4086 struct flow_match_ipv6_addrs match; 4087 4088 flow_rule_match_ipv6_addrs(rule, &match); 4089 4090 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 4091 if (ipv6_addr_any(&match.mask->dst)) { 4092 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 4093 IPV6_ADDR_ANY); 4094 return -EINVAL; 4095 } 4096 4097 /* src and dest IPv6 address should not be LOOPBACK 4098 * (0:0:0:0:0:0:0:1) which can be represented as ::1 4099 */ 4100 if (ipv6_addr_loopback(&match.key->dst) || 4101 ipv6_addr_loopback(&match.key->src)) { 4102 dev_err(&adapter->pdev->dev, 4103 "ipv6 addr should not be loopback\n"); 4104 return -EINVAL; 4105 } 4106 if (!ipv6_addr_any(&match.mask->dst) || 4107 !ipv6_addr_any(&match.mask->src)) 4108 field_flags |= IAVF_CLOUD_FIELD_IIP; 4109 4110 for (i = 0; i < 4; i++) 4111 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 4112 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 4113 sizeof(vf->data.tcp_spec.dst_ip)); 4114 for (i = 0; i < 4; i++) 4115 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 4116 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 4117 sizeof(vf->data.tcp_spec.src_ip)); 4118 } 4119 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 4120 struct flow_match_ports match; 4121 4122 flow_rule_match_ports(rule, &match); 4123 if (match.mask->src) { 4124 if (match.mask->src == cpu_to_be16(0xffff)) { 4125 field_flags |= IAVF_CLOUD_FIELD_IIP; 4126 } else { 4127 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 4128 be16_to_cpu(match.mask->src)); 4129 return -EINVAL; 4130 } 4131 } 4132 4133 if (match.mask->dst) { 4134 if (match.mask->dst == cpu_to_be16(0xffff)) { 4135 field_flags |= IAVF_CLOUD_FIELD_IIP; 4136 } else { 4137 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 4138 be16_to_cpu(match.mask->dst)); 4139 return -EINVAL; 4140 } 4141 } 4142 if (match.key->dst) { 4143 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 4144 vf->data.tcp_spec.dst_port = match.key->dst; 4145 } 4146 4147 if (match.key->src) { 4148 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 4149 vf->data.tcp_spec.src_port = match.key->src; 4150 } 4151 } 4152 vf->field_flags = field_flags; 4153 4154 return 0; 4155 } 4156 4157 /** 4158 * iavf_handle_tclass - Forward to a traffic class on the device 4159 * @adapter: board private structure 4160 * @tc: traffic class index on the device 4161 * @filter: pointer to cloud filter structure 4162 */ 4163 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 4164 struct iavf_cloud_filter *filter) 4165 { 4166 if (tc == 0) 4167 return 0; 4168 if (tc < adapter->num_tc) { 4169 if (!filter->f.data.tcp_spec.dst_port) { 4170 dev_err(&adapter->pdev->dev, 4171 "Specify destination port to redirect to traffic class other than TC0\n"); 4172 return -EINVAL; 4173 } 4174 } 4175 /* redirect to a traffic class on the same device */ 4176 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 4177 filter->f.action_meta = tc; 4178 return 0; 4179 } 4180 4181 /** 4182 * iavf_find_cf - Find the cloud filter in the list 4183 * @adapter: Board private structure 4184 * @cookie: filter specific cookie 4185 * 4186 * Returns ptr to the filter object or NULL. Must be called while holding the 4187 * cloud_filter_list_lock. 4188 */ 4189 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4190 unsigned long *cookie) 4191 { 4192 struct iavf_cloud_filter *filter = NULL; 4193 4194 if (!cookie) 4195 return NULL; 4196 4197 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4198 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4199 return filter; 4200 } 4201 return NULL; 4202 } 4203 4204 /** 4205 * iavf_configure_clsflower - Add tc flower filters 4206 * @adapter: board private structure 4207 * @cls_flower: Pointer to struct flow_cls_offload 4208 */ 4209 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4210 struct flow_cls_offload *cls_flower) 4211 { 4212 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4213 struct iavf_cloud_filter *filter = NULL; 4214 int err = -EINVAL, count = 50; 4215 4216 if (tc < 0) { 4217 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4218 return -EINVAL; 4219 } 4220 4221 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4222 if (!filter) 4223 return -ENOMEM; 4224 4225 while (!mutex_trylock(&adapter->crit_lock)) { 4226 if (--count == 0) { 4227 kfree(filter); 4228 return err; 4229 } 4230 udelay(1); 4231 } 4232 4233 filter->cookie = cls_flower->cookie; 4234 4235 /* bail out here if filter already exists */ 4236 spin_lock_bh(&adapter->cloud_filter_list_lock); 4237 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4238 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4239 err = -EEXIST; 4240 goto spin_unlock; 4241 } 4242 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4243 4244 /* set the mask to all zeroes to begin with */ 4245 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4246 /* start out with flow type and eth type IPv4 to begin with */ 4247 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4248 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4249 if (err) 4250 goto err; 4251 4252 err = iavf_handle_tclass(adapter, tc, filter); 4253 if (err) 4254 goto err; 4255 4256 /* add filter to the list */ 4257 spin_lock_bh(&adapter->cloud_filter_list_lock); 4258 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4259 adapter->num_cloud_filters++; 4260 filter->add = true; 4261 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4262 spin_unlock: 4263 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4264 err: 4265 if (err) 4266 kfree(filter); 4267 4268 mutex_unlock(&adapter->crit_lock); 4269 return err; 4270 } 4271 4272 /** 4273 * iavf_delete_clsflower - Remove tc flower filters 4274 * @adapter: board private structure 4275 * @cls_flower: Pointer to struct flow_cls_offload 4276 */ 4277 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4278 struct flow_cls_offload *cls_flower) 4279 { 4280 struct iavf_cloud_filter *filter = NULL; 4281 int err = 0; 4282 4283 spin_lock_bh(&adapter->cloud_filter_list_lock); 4284 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4285 if (filter) { 4286 filter->del = true; 4287 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4288 } else { 4289 err = -EINVAL; 4290 } 4291 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4292 4293 return err; 4294 } 4295 4296 /** 4297 * iavf_setup_tc_cls_flower - flower classifier offloads 4298 * @adapter: pointer to iavf adapter structure 4299 * @cls_flower: pointer to flow_cls_offload struct with flow info 4300 */ 4301 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4302 struct flow_cls_offload *cls_flower) 4303 { 4304 switch (cls_flower->command) { 4305 case FLOW_CLS_REPLACE: 4306 return iavf_configure_clsflower(adapter, cls_flower); 4307 case FLOW_CLS_DESTROY: 4308 return iavf_delete_clsflower(adapter, cls_flower); 4309 case FLOW_CLS_STATS: 4310 return -EOPNOTSUPP; 4311 default: 4312 return -EOPNOTSUPP; 4313 } 4314 } 4315 4316 /** 4317 * iavf_add_cls_u32 - Add U32 classifier offloads 4318 * @adapter: pointer to iavf adapter structure 4319 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4320 * 4321 * Return: 0 on success or negative errno on failure. 4322 */ 4323 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4324 struct tc_cls_u32_offload *cls_u32) 4325 { 4326 struct netlink_ext_ack *extack = cls_u32->common.extack; 4327 struct virtchnl_fdir_rule *rule_cfg; 4328 struct virtchnl_filter_action *vact; 4329 struct virtchnl_proto_hdrs *hdrs; 4330 struct ethhdr *spec_h, *mask_h; 4331 const struct tc_action *act; 4332 struct iavf_fdir_fltr *fltr; 4333 struct tcf_exts *exts; 4334 unsigned int q_index; 4335 int i, status = 0; 4336 int off_base = 0; 4337 4338 if (cls_u32->knode.link_handle) { 4339 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4340 return -EOPNOTSUPP; 4341 } 4342 4343 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4344 if (!fltr) 4345 return -ENOMEM; 4346 4347 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4348 hdrs = &rule_cfg->proto_hdrs; 4349 hdrs->count = 0; 4350 4351 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4352 switch (ntohs(cls_u32->common.protocol)) { 4353 case ETH_P_802_3: 4354 break; 4355 case ETH_P_IP: 4356 spec_h = (struct ethhdr *)hdrs->raw.spec; 4357 mask_h = (struct ethhdr *)hdrs->raw.mask; 4358 spec_h->h_proto = htons(ETH_P_IP); 4359 mask_h->h_proto = htons(0xFFFF); 4360 off_base += ETH_HLEN; 4361 break; 4362 default: 4363 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4364 status = -EOPNOTSUPP; 4365 goto free_alloc; 4366 } 4367 4368 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4369 __be32 val, mask; 4370 int off; 4371 4372 off = off_base + cls_u32->knode.sel->keys[i].off; 4373 val = cls_u32->knode.sel->keys[i].val; 4374 mask = cls_u32->knode.sel->keys[i].mask; 4375 4376 if (off >= sizeof(hdrs->raw.spec)) { 4377 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4378 status = -EINVAL; 4379 goto free_alloc; 4380 } 4381 4382 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4383 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4384 hdrs->raw.pkt_len = off + sizeof(val); 4385 } 4386 4387 /* Only one action is allowed */ 4388 rule_cfg->action_set.count = 1; 4389 vact = &rule_cfg->action_set.actions[0]; 4390 exts = cls_u32->knode.exts; 4391 4392 tcf_exts_for_each_action(i, act, exts) { 4393 /* FDIR queue */ 4394 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4395 q_index = tcf_skbedit_rx_queue_mapping(act); 4396 if (q_index >= adapter->num_active_queues) { 4397 status = -EINVAL; 4398 goto free_alloc; 4399 } 4400 4401 vact->type = VIRTCHNL_ACTION_QUEUE; 4402 vact->act_conf.queue.index = q_index; 4403 break; 4404 } 4405 4406 /* Drop */ 4407 if (is_tcf_gact_shot(act)) { 4408 vact->type = VIRTCHNL_ACTION_DROP; 4409 break; 4410 } 4411 4412 /* Unsupported action */ 4413 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4414 status = -EOPNOTSUPP; 4415 goto free_alloc; 4416 } 4417 4418 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4419 fltr->cls_u32_handle = cls_u32->knode.handle; 4420 return iavf_fdir_add_fltr(adapter, fltr); 4421 4422 free_alloc: 4423 kfree(fltr); 4424 return status; 4425 } 4426 4427 /** 4428 * iavf_del_cls_u32 - Delete U32 classifier offloads 4429 * @adapter: pointer to iavf adapter structure 4430 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4431 * 4432 * Return: 0 on success or negative errno on failure. 4433 */ 4434 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4435 struct tc_cls_u32_offload *cls_u32) 4436 { 4437 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4438 } 4439 4440 /** 4441 * iavf_setup_tc_cls_u32 - U32 filter offloads 4442 * @adapter: pointer to iavf adapter structure 4443 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4444 * 4445 * Return: 0 on success or negative errno on failure. 4446 */ 4447 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4448 struct tc_cls_u32_offload *cls_u32) 4449 { 4450 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4451 return -EOPNOTSUPP; 4452 4453 switch (cls_u32->command) { 4454 case TC_CLSU32_NEW_KNODE: 4455 case TC_CLSU32_REPLACE_KNODE: 4456 return iavf_add_cls_u32(adapter, cls_u32); 4457 case TC_CLSU32_DELETE_KNODE: 4458 return iavf_del_cls_u32(adapter, cls_u32); 4459 default: 4460 return -EOPNOTSUPP; 4461 } 4462 } 4463 4464 /** 4465 * iavf_setup_tc_block_cb - block callback for tc 4466 * @type: type of offload 4467 * @type_data: offload data 4468 * @cb_priv: 4469 * 4470 * This function is the block callback for traffic classes 4471 **/ 4472 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4473 void *cb_priv) 4474 { 4475 struct iavf_adapter *adapter = cb_priv; 4476 4477 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4478 return -EOPNOTSUPP; 4479 4480 switch (type) { 4481 case TC_SETUP_CLSFLOWER: 4482 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4483 case TC_SETUP_CLSU32: 4484 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4485 default: 4486 return -EOPNOTSUPP; 4487 } 4488 } 4489 4490 static LIST_HEAD(iavf_block_cb_list); 4491 4492 /** 4493 * iavf_setup_tc - configure multiple traffic classes 4494 * @netdev: network interface device structure 4495 * @type: type of offload 4496 * @type_data: tc offload data 4497 * 4498 * This function is the callback to ndo_setup_tc in the 4499 * netdev_ops. 4500 * 4501 * Returns 0 on success 4502 **/ 4503 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4504 void *type_data) 4505 { 4506 struct iavf_adapter *adapter = netdev_priv(netdev); 4507 4508 switch (type) { 4509 case TC_SETUP_QDISC_MQPRIO: 4510 return __iavf_setup_tc(netdev, type_data); 4511 case TC_SETUP_BLOCK: 4512 return flow_block_cb_setup_simple(type_data, 4513 &iavf_block_cb_list, 4514 iavf_setup_tc_block_cb, 4515 adapter, adapter, true); 4516 default: 4517 return -EOPNOTSUPP; 4518 } 4519 } 4520 4521 /** 4522 * iavf_restore_fdir_filters 4523 * @adapter: board private structure 4524 * 4525 * Restore existing FDIR filters when VF netdev comes back up. 4526 **/ 4527 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4528 { 4529 struct iavf_fdir_fltr *f; 4530 4531 spin_lock_bh(&adapter->fdir_fltr_lock); 4532 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4533 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4534 /* Cancel a request, keep filter as active */ 4535 f->state = IAVF_FDIR_FLTR_ACTIVE; 4536 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4537 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4538 /* Add filters which are inactive or have a pending 4539 * request to PF to be deleted 4540 */ 4541 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4542 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4543 } 4544 } 4545 spin_unlock_bh(&adapter->fdir_fltr_lock); 4546 } 4547 4548 /** 4549 * iavf_open - Called when a network interface is made active 4550 * @netdev: network interface device structure 4551 * 4552 * Returns 0 on success, negative value on failure 4553 * 4554 * The open entry point is called when a network interface is made 4555 * active by the system (IFF_UP). At this point all resources needed 4556 * for transmit and receive operations are allocated, the interrupt 4557 * handler is registered with the OS, the watchdog is started, 4558 * and the stack is notified that the interface is ready. 4559 **/ 4560 static int iavf_open(struct net_device *netdev) 4561 { 4562 struct iavf_adapter *adapter = netdev_priv(netdev); 4563 int err; 4564 4565 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4566 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4567 return -EIO; 4568 } 4569 4570 netdev_lock(netdev); 4571 while (!mutex_trylock(&adapter->crit_lock)) { 4572 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4573 * is already taken and iavf_open is called from an upper 4574 * device's notifier reacting on NETDEV_REGISTER event. 4575 * We have to leave here to avoid dead lock. 4576 */ 4577 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) { 4578 netdev_unlock(netdev); 4579 return -EBUSY; 4580 } 4581 4582 usleep_range(500, 1000); 4583 } 4584 4585 if (adapter->state != __IAVF_DOWN) { 4586 err = -EBUSY; 4587 goto err_unlock; 4588 } 4589 4590 if (adapter->state == __IAVF_RUNNING && 4591 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4592 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4593 err = 0; 4594 goto err_unlock; 4595 } 4596 4597 /* allocate transmit descriptors */ 4598 err = iavf_setup_all_tx_resources(adapter); 4599 if (err) 4600 goto err_setup_tx; 4601 4602 /* allocate receive descriptors */ 4603 err = iavf_setup_all_rx_resources(adapter); 4604 if (err) 4605 goto err_setup_rx; 4606 4607 /* clear any pending interrupts, may auto mask */ 4608 err = iavf_request_traffic_irqs(adapter, netdev->name); 4609 if (err) 4610 goto err_req_irq; 4611 4612 spin_lock_bh(&adapter->mac_vlan_list_lock); 4613 4614 iavf_add_filter(adapter, adapter->hw.mac.addr); 4615 4616 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4617 4618 /* Restore filters that were removed with IFF_DOWN */ 4619 iavf_restore_filters(adapter); 4620 iavf_restore_fdir_filters(adapter); 4621 4622 iavf_configure(adapter); 4623 4624 iavf_up_complete(adapter); 4625 4626 iavf_irq_enable(adapter, true); 4627 4628 mutex_unlock(&adapter->crit_lock); 4629 netdev_unlock(netdev); 4630 4631 return 0; 4632 4633 err_req_irq: 4634 iavf_down(adapter); 4635 iavf_free_traffic_irqs(adapter); 4636 err_setup_rx: 4637 iavf_free_all_rx_resources(adapter); 4638 err_setup_tx: 4639 iavf_free_all_tx_resources(adapter); 4640 err_unlock: 4641 mutex_unlock(&adapter->crit_lock); 4642 netdev_unlock(netdev); 4643 4644 return err; 4645 } 4646 4647 /** 4648 * iavf_close - Disables a network interface 4649 * @netdev: network interface device structure 4650 * 4651 * Returns 0, this is not allowed to fail 4652 * 4653 * The close entry point is called when an interface is de-activated 4654 * by the OS. The hardware is still under the drivers control, but 4655 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4656 * are freed, along with all transmit and receive resources. 4657 **/ 4658 static int iavf_close(struct net_device *netdev) 4659 { 4660 struct iavf_adapter *adapter = netdev_priv(netdev); 4661 u64 aq_to_restore; 4662 int status; 4663 4664 netdev_lock(netdev); 4665 mutex_lock(&adapter->crit_lock); 4666 4667 if (adapter->state <= __IAVF_DOWN_PENDING) { 4668 mutex_unlock(&adapter->crit_lock); 4669 netdev_unlock(netdev); 4670 return 0; 4671 } 4672 4673 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4674 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4675 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4676 * deadlock with adminq_task() until iavf_close timeouts. We must send 4677 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4678 * disable queues possible for vf. Give only necessary flags to 4679 * iavf_down and save other to set them right before iavf_close() 4680 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4681 * iavf will be in DOWN state. 4682 */ 4683 aq_to_restore = adapter->aq_required; 4684 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4685 4686 /* Remove flags which we do not want to send after close or we want to 4687 * send before disable queues. 4688 */ 4689 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4690 IAVF_FLAG_AQ_ENABLE_QUEUES | 4691 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4692 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4693 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4694 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4695 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4696 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4697 4698 iavf_down(adapter); 4699 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4700 iavf_free_traffic_irqs(adapter); 4701 4702 mutex_unlock(&adapter->crit_lock); 4703 netdev_unlock(netdev); 4704 4705 /* We explicitly don't free resources here because the hardware is 4706 * still active and can DMA into memory. Resources are cleared in 4707 * iavf_virtchnl_completion() after we get confirmation from the PF 4708 * driver that the rings have been stopped. 4709 * 4710 * Also, we wait for state to transition to __IAVF_DOWN before 4711 * returning. State change occurs in iavf_virtchnl_completion() after 4712 * VF resources are released (which occurs after PF driver processes and 4713 * responds to admin queue commands). 4714 */ 4715 4716 status = wait_event_timeout(adapter->down_waitqueue, 4717 adapter->state == __IAVF_DOWN, 4718 msecs_to_jiffies(500)); 4719 if (!status) 4720 netdev_warn(netdev, "Device resources not yet released\n"); 4721 4722 mutex_lock(&adapter->crit_lock); 4723 adapter->aq_required |= aq_to_restore; 4724 mutex_unlock(&adapter->crit_lock); 4725 return 0; 4726 } 4727 4728 /** 4729 * iavf_change_mtu - Change the Maximum Transfer Unit 4730 * @netdev: network interface device structure 4731 * @new_mtu: new value for maximum frame size 4732 * 4733 * Returns 0 on success, negative on failure 4734 **/ 4735 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4736 { 4737 struct iavf_adapter *adapter = netdev_priv(netdev); 4738 int ret = 0; 4739 4740 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4741 netdev->mtu, new_mtu); 4742 WRITE_ONCE(netdev->mtu, new_mtu); 4743 4744 if (netif_running(netdev)) { 4745 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4746 ret = iavf_wait_for_reset(adapter); 4747 if (ret < 0) 4748 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4749 else if (ret) 4750 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4751 } 4752 4753 return ret; 4754 } 4755 4756 /** 4757 * iavf_disable_fdir - disable Flow Director and clear existing filters 4758 * @adapter: board private structure 4759 **/ 4760 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4761 { 4762 struct iavf_fdir_fltr *fdir, *fdirtmp; 4763 bool del_filters = false; 4764 4765 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4766 4767 /* remove all Flow Director filters */ 4768 spin_lock_bh(&adapter->fdir_fltr_lock); 4769 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4770 list) { 4771 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4772 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4773 /* Delete filters not registered in PF */ 4774 list_del(&fdir->list); 4775 iavf_dec_fdir_active_fltr(adapter, fdir); 4776 kfree(fdir); 4777 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4778 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4779 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4780 /* Filters registered in PF, schedule their deletion */ 4781 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4782 del_filters = true; 4783 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4784 /* Request to delete filter already sent to PF, change 4785 * state to DEL_PENDING to delete filter after PF's 4786 * response, not set as INACTIVE 4787 */ 4788 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4789 } 4790 } 4791 spin_unlock_bh(&adapter->fdir_fltr_lock); 4792 4793 if (del_filters) { 4794 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4795 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4796 } 4797 } 4798 4799 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4800 NETIF_F_HW_VLAN_CTAG_TX | \ 4801 NETIF_F_HW_VLAN_STAG_RX | \ 4802 NETIF_F_HW_VLAN_STAG_TX) 4803 4804 /** 4805 * iavf_set_features - set the netdev feature flags 4806 * @netdev: ptr to the netdev being adjusted 4807 * @features: the feature set that the stack is suggesting 4808 * Note: expects to be called while under rtnl_lock() 4809 **/ 4810 static int iavf_set_features(struct net_device *netdev, 4811 netdev_features_t features) 4812 { 4813 struct iavf_adapter *adapter = netdev_priv(netdev); 4814 4815 /* trigger update on any VLAN feature change */ 4816 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4817 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4818 iavf_set_vlan_offload_features(adapter, netdev->features, 4819 features); 4820 if (CRC_OFFLOAD_ALLOWED(adapter) && 4821 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4822 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4823 4824 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4825 if (features & NETIF_F_NTUPLE) 4826 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4827 else 4828 iavf_disable_fdir(adapter); 4829 } 4830 4831 return 0; 4832 } 4833 4834 /** 4835 * iavf_features_check - Validate encapsulated packet conforms to limits 4836 * @skb: skb buff 4837 * @dev: This physical port's netdev 4838 * @features: Offload features that the stack believes apply 4839 **/ 4840 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4841 struct net_device *dev, 4842 netdev_features_t features) 4843 { 4844 size_t len; 4845 4846 /* No point in doing any of this if neither checksum nor GSO are 4847 * being requested for this frame. We can rule out both by just 4848 * checking for CHECKSUM_PARTIAL 4849 */ 4850 if (skb->ip_summed != CHECKSUM_PARTIAL) 4851 return features; 4852 4853 /* We cannot support GSO if the MSS is going to be less than 4854 * 64 bytes. If it is then we need to drop support for GSO. 4855 */ 4856 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4857 features &= ~NETIF_F_GSO_MASK; 4858 4859 /* MACLEN can support at most 63 words */ 4860 len = skb_network_offset(skb); 4861 if (len & ~(63 * 2)) 4862 goto out_err; 4863 4864 /* IPLEN and EIPLEN can support at most 127 dwords */ 4865 len = skb_network_header_len(skb); 4866 if (len & ~(127 * 4)) 4867 goto out_err; 4868 4869 if (skb->encapsulation) { 4870 /* L4TUNLEN can support 127 words */ 4871 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4872 if (len & ~(127 * 2)) 4873 goto out_err; 4874 4875 /* IPLEN can support at most 127 dwords */ 4876 len = skb_inner_transport_header(skb) - 4877 skb_inner_network_header(skb); 4878 if (len & ~(127 * 4)) 4879 goto out_err; 4880 } 4881 4882 /* No need to validate L4LEN as TCP is the only protocol with a 4883 * flexible value and we support all possible values supported 4884 * by TCP, which is at most 15 dwords 4885 */ 4886 4887 return features; 4888 out_err: 4889 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4890 } 4891 4892 /** 4893 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4894 * @adapter: board private structure 4895 * 4896 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4897 * were negotiated determine the VLAN features that can be toggled on and off. 4898 **/ 4899 static netdev_features_t 4900 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4901 { 4902 netdev_features_t hw_features = 0; 4903 4904 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4905 return hw_features; 4906 4907 /* Enable VLAN features if supported */ 4908 if (VLAN_ALLOWED(adapter)) { 4909 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4910 NETIF_F_HW_VLAN_CTAG_RX); 4911 } else if (VLAN_V2_ALLOWED(adapter)) { 4912 struct virtchnl_vlan_caps *vlan_v2_caps = 4913 &adapter->vlan_v2_caps; 4914 struct virtchnl_vlan_supported_caps *stripping_support = 4915 &vlan_v2_caps->offloads.stripping_support; 4916 struct virtchnl_vlan_supported_caps *insertion_support = 4917 &vlan_v2_caps->offloads.insertion_support; 4918 4919 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4920 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4921 if (stripping_support->outer & 4922 VIRTCHNL_VLAN_ETHERTYPE_8100) 4923 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4924 if (stripping_support->outer & 4925 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4926 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4927 } else if (stripping_support->inner != 4928 VIRTCHNL_VLAN_UNSUPPORTED && 4929 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4930 if (stripping_support->inner & 4931 VIRTCHNL_VLAN_ETHERTYPE_8100) 4932 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4933 } 4934 4935 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4936 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4937 if (insertion_support->outer & 4938 VIRTCHNL_VLAN_ETHERTYPE_8100) 4939 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4940 if (insertion_support->outer & 4941 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4942 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4943 } else if (insertion_support->inner && 4944 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4945 if (insertion_support->inner & 4946 VIRTCHNL_VLAN_ETHERTYPE_8100) 4947 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4948 } 4949 } 4950 4951 if (CRC_OFFLOAD_ALLOWED(adapter)) 4952 hw_features |= NETIF_F_RXFCS; 4953 4954 return hw_features; 4955 } 4956 4957 /** 4958 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4959 * @adapter: board private structure 4960 * 4961 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4962 * were negotiated determine the VLAN features that are enabled by default. 4963 **/ 4964 static netdev_features_t 4965 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4966 { 4967 netdev_features_t features = 0; 4968 4969 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4970 return features; 4971 4972 if (VLAN_ALLOWED(adapter)) { 4973 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4974 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4975 } else if (VLAN_V2_ALLOWED(adapter)) { 4976 struct virtchnl_vlan_caps *vlan_v2_caps = 4977 &adapter->vlan_v2_caps; 4978 struct virtchnl_vlan_supported_caps *filtering_support = 4979 &vlan_v2_caps->filtering.filtering_support; 4980 struct virtchnl_vlan_supported_caps *stripping_support = 4981 &vlan_v2_caps->offloads.stripping_support; 4982 struct virtchnl_vlan_supported_caps *insertion_support = 4983 &vlan_v2_caps->offloads.insertion_support; 4984 u32 ethertype_init; 4985 4986 /* give priority to outer stripping and don't support both outer 4987 * and inner stripping 4988 */ 4989 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4990 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4991 if (stripping_support->outer & 4992 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4993 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4994 features |= NETIF_F_HW_VLAN_CTAG_RX; 4995 else if (stripping_support->outer & 4996 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4997 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4998 features |= NETIF_F_HW_VLAN_STAG_RX; 4999 } else if (stripping_support->inner != 5000 VIRTCHNL_VLAN_UNSUPPORTED) { 5001 if (stripping_support->inner & 5002 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5003 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5004 features |= NETIF_F_HW_VLAN_CTAG_RX; 5005 } 5006 5007 /* give priority to outer insertion and don't support both outer 5008 * and inner insertion 5009 */ 5010 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 5011 if (insertion_support->outer & 5012 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5013 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5014 features |= NETIF_F_HW_VLAN_CTAG_TX; 5015 else if (insertion_support->outer & 5016 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5017 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5018 features |= NETIF_F_HW_VLAN_STAG_TX; 5019 } else if (insertion_support->inner != 5020 VIRTCHNL_VLAN_UNSUPPORTED) { 5021 if (insertion_support->inner & 5022 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5023 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5024 features |= NETIF_F_HW_VLAN_CTAG_TX; 5025 } 5026 5027 /* give priority to outer filtering and don't bother if both 5028 * outer and inner filtering are enabled 5029 */ 5030 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 5031 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 5032 if (filtering_support->outer & 5033 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5034 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5035 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5036 if (filtering_support->outer & 5037 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5038 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5039 features |= NETIF_F_HW_VLAN_STAG_FILTER; 5040 } else if (filtering_support->inner != 5041 VIRTCHNL_VLAN_UNSUPPORTED) { 5042 if (filtering_support->inner & 5043 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5044 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5045 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5046 if (filtering_support->inner & 5047 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5048 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5049 features |= NETIF_F_HW_VLAN_STAG_FILTER; 5050 } 5051 } 5052 5053 return features; 5054 } 5055 5056 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 5057 (!(((requested) & (feature_bit)) && \ 5058 !((allowed) & (feature_bit)))) 5059 5060 /** 5061 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 5062 * @adapter: board private structure 5063 * @requested_features: stack requested NETDEV features 5064 **/ 5065 static netdev_features_t 5066 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 5067 netdev_features_t requested_features) 5068 { 5069 netdev_features_t allowed_features; 5070 5071 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 5072 iavf_get_netdev_vlan_features(adapter); 5073 5074 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5075 allowed_features, 5076 NETIF_F_HW_VLAN_CTAG_TX)) 5077 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5078 5079 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5080 allowed_features, 5081 NETIF_F_HW_VLAN_CTAG_RX)) 5082 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 5083 5084 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5085 allowed_features, 5086 NETIF_F_HW_VLAN_STAG_TX)) 5087 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 5088 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5089 allowed_features, 5090 NETIF_F_HW_VLAN_STAG_RX)) 5091 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 5092 5093 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5094 allowed_features, 5095 NETIF_F_HW_VLAN_CTAG_FILTER)) 5096 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 5097 5098 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5099 allowed_features, 5100 NETIF_F_HW_VLAN_STAG_FILTER)) 5101 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 5102 5103 if ((requested_features & 5104 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5105 (requested_features & 5106 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 5107 adapter->vlan_v2_caps.offloads.ethertype_match == 5108 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 5109 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5110 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5111 NETIF_F_HW_VLAN_STAG_TX); 5112 } 5113 5114 return requested_features; 5115 } 5116 5117 /** 5118 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 5119 * @adapter: board private structure 5120 * @requested_features: stack requested NETDEV features 5121 * 5122 * Returns fixed-up features bits 5123 **/ 5124 static netdev_features_t 5125 iavf_fix_strip_features(struct iavf_adapter *adapter, 5126 netdev_features_t requested_features) 5127 { 5128 struct net_device *netdev = adapter->netdev; 5129 bool crc_offload_req, is_vlan_strip; 5130 netdev_features_t vlan_strip; 5131 int num_non_zero_vlan; 5132 5133 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 5134 (requested_features & NETIF_F_RXFCS); 5135 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 5136 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 5137 is_vlan_strip = requested_features & vlan_strip; 5138 5139 if (!crc_offload_req) 5140 return requested_features; 5141 5142 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 5143 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5144 requested_features &= ~vlan_strip; 5145 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5146 return requested_features; 5147 } 5148 5149 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5150 requested_features &= ~vlan_strip; 5151 if (!(netdev->features & vlan_strip)) 5152 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 5153 5154 return requested_features; 5155 } 5156 5157 if (num_non_zero_vlan && is_vlan_strip && 5158 !(netdev->features & NETIF_F_RXFCS)) { 5159 requested_features &= ~NETIF_F_RXFCS; 5160 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 5161 } 5162 5163 return requested_features; 5164 } 5165 5166 /** 5167 * iavf_fix_features - fix up the netdev feature bits 5168 * @netdev: our net device 5169 * @features: desired feature bits 5170 * 5171 * Returns fixed-up features bits 5172 **/ 5173 static netdev_features_t iavf_fix_features(struct net_device *netdev, 5174 netdev_features_t features) 5175 { 5176 struct iavf_adapter *adapter = netdev_priv(netdev); 5177 5178 features = iavf_fix_netdev_vlan_features(adapter, features); 5179 5180 if (!FDIR_FLTR_SUPPORT(adapter)) 5181 features &= ~NETIF_F_NTUPLE; 5182 5183 return iavf_fix_strip_features(adapter, features); 5184 } 5185 5186 static int iavf_hwstamp_get(struct net_device *netdev, 5187 struct kernel_hwtstamp_config *config) 5188 { 5189 struct iavf_adapter *adapter = netdev_priv(netdev); 5190 5191 *config = adapter->ptp.hwtstamp_config; 5192 5193 return 0; 5194 } 5195 5196 static int iavf_hwstamp_set(struct net_device *netdev, 5197 struct kernel_hwtstamp_config *config, 5198 struct netlink_ext_ack *extack) 5199 { 5200 struct iavf_adapter *adapter = netdev_priv(netdev); 5201 5202 return iavf_ptp_set_ts_config(adapter, config, extack); 5203 } 5204 5205 static int 5206 iavf_verify_shaper(struct net_shaper_binding *binding, 5207 const struct net_shaper *shaper, 5208 struct netlink_ext_ack *extack) 5209 { 5210 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5211 u64 vf_max; 5212 5213 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5214 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5215 if (vf_max && shaper->bw_max > vf_max) { 5216 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5217 shaper->bw_max, shaper->handle.id, 5218 vf_max); 5219 return -EINVAL; 5220 } 5221 } 5222 return 0; 5223 } 5224 5225 static int 5226 iavf_shaper_set(struct net_shaper_binding *binding, 5227 const struct net_shaper *shaper, 5228 struct netlink_ext_ack *extack) 5229 { 5230 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5231 const struct net_shaper_handle *handle = &shaper->handle; 5232 struct iavf_ring *tx_ring; 5233 int ret = 0; 5234 5235 mutex_lock(&adapter->crit_lock); 5236 if (handle->id >= adapter->num_active_queues) 5237 goto unlock; 5238 5239 ret = iavf_verify_shaper(binding, shaper, extack); 5240 if (ret) 5241 goto unlock; 5242 5243 tx_ring = &adapter->tx_rings[handle->id]; 5244 5245 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5246 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5247 tx_ring->q_shaper_update = true; 5248 5249 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5250 5251 unlock: 5252 mutex_unlock(&adapter->crit_lock); 5253 return ret; 5254 } 5255 5256 static int iavf_shaper_del(struct net_shaper_binding *binding, 5257 const struct net_shaper_handle *handle, 5258 struct netlink_ext_ack *extack) 5259 { 5260 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5261 struct iavf_ring *tx_ring; 5262 5263 mutex_lock(&adapter->crit_lock); 5264 if (handle->id >= adapter->num_active_queues) 5265 goto unlock; 5266 5267 tx_ring = &adapter->tx_rings[handle->id]; 5268 tx_ring->q_shaper.bw_min = 0; 5269 tx_ring->q_shaper.bw_max = 0; 5270 tx_ring->q_shaper_update = true; 5271 5272 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5273 5274 unlock: 5275 mutex_unlock(&adapter->crit_lock); 5276 return 0; 5277 } 5278 5279 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5280 enum net_shaper_scope scope, 5281 unsigned long *flags) 5282 { 5283 if (scope != NET_SHAPER_SCOPE_QUEUE) 5284 return; 5285 5286 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5287 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5288 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5289 } 5290 5291 static const struct net_shaper_ops iavf_shaper_ops = { 5292 .set = iavf_shaper_set, 5293 .delete = iavf_shaper_del, 5294 .capabilities = iavf_shaper_cap, 5295 }; 5296 5297 static const struct net_device_ops iavf_netdev_ops = { 5298 .ndo_open = iavf_open, 5299 .ndo_stop = iavf_close, 5300 .ndo_start_xmit = iavf_xmit_frame, 5301 .ndo_set_rx_mode = iavf_set_rx_mode, 5302 .ndo_validate_addr = eth_validate_addr, 5303 .ndo_set_mac_address = iavf_set_mac, 5304 .ndo_change_mtu = iavf_change_mtu, 5305 .ndo_tx_timeout = iavf_tx_timeout, 5306 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5307 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5308 .ndo_features_check = iavf_features_check, 5309 .ndo_fix_features = iavf_fix_features, 5310 .ndo_set_features = iavf_set_features, 5311 .ndo_setup_tc = iavf_setup_tc, 5312 .net_shaper_ops = &iavf_shaper_ops, 5313 .ndo_hwtstamp_get = iavf_hwstamp_get, 5314 .ndo_hwtstamp_set = iavf_hwstamp_set, 5315 }; 5316 5317 /** 5318 * iavf_check_reset_complete - check that VF reset is complete 5319 * @hw: pointer to hw struct 5320 * 5321 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5322 **/ 5323 static int iavf_check_reset_complete(struct iavf_hw *hw) 5324 { 5325 u32 rstat; 5326 int i; 5327 5328 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5329 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5330 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5331 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5332 (rstat == VIRTCHNL_VFR_COMPLETED)) 5333 return 0; 5334 msleep(IAVF_RESET_WAIT_MS); 5335 } 5336 return -EBUSY; 5337 } 5338 5339 /** 5340 * iavf_process_config - Process the config information we got from the PF 5341 * @adapter: board private structure 5342 * 5343 * Verify that we have a valid config struct, and set up our netdev features 5344 * and our VSI struct. 5345 **/ 5346 int iavf_process_config(struct iavf_adapter *adapter) 5347 { 5348 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5349 netdev_features_t hw_vlan_features, vlan_features; 5350 struct net_device *netdev = adapter->netdev; 5351 netdev_features_t hw_enc_features; 5352 netdev_features_t hw_features; 5353 5354 hw_enc_features = NETIF_F_SG | 5355 NETIF_F_IP_CSUM | 5356 NETIF_F_IPV6_CSUM | 5357 NETIF_F_HIGHDMA | 5358 NETIF_F_SOFT_FEATURES | 5359 NETIF_F_TSO | 5360 NETIF_F_TSO_ECN | 5361 NETIF_F_TSO6 | 5362 NETIF_F_SCTP_CRC | 5363 NETIF_F_RXHASH | 5364 NETIF_F_RXCSUM | 5365 0; 5366 5367 /* advertise to stack only if offloads for encapsulated packets is 5368 * supported 5369 */ 5370 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5371 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5372 NETIF_F_GSO_GRE | 5373 NETIF_F_GSO_GRE_CSUM | 5374 NETIF_F_GSO_IPXIP4 | 5375 NETIF_F_GSO_IPXIP6 | 5376 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5377 NETIF_F_GSO_PARTIAL | 5378 0; 5379 5380 if (!(vfres->vf_cap_flags & 5381 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5382 netdev->gso_partial_features |= 5383 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5384 5385 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5386 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5387 netdev->hw_enc_features |= hw_enc_features; 5388 } 5389 /* record features VLANs can make use of */ 5390 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5391 5392 /* Write features and hw_features separately to avoid polluting 5393 * with, or dropping, features that are set when we registered. 5394 */ 5395 hw_features = hw_enc_features; 5396 5397 /* get HW VLAN features that can be toggled */ 5398 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5399 5400 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5401 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5402 TC_U32_SUPPORT(adapter)) 5403 hw_features |= NETIF_F_HW_TC; 5404 5405 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5406 hw_features |= NETIF_F_GSO_UDP_L4; 5407 5408 netdev->hw_features |= hw_features | hw_vlan_features; 5409 vlan_features = iavf_get_netdev_vlan_features(adapter); 5410 5411 netdev->features |= hw_features | vlan_features; 5412 5413 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5414 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5415 5416 if (FDIR_FLTR_SUPPORT(adapter)) { 5417 netdev->hw_features |= NETIF_F_NTUPLE; 5418 netdev->features |= NETIF_F_NTUPLE; 5419 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5420 } 5421 5422 netdev->priv_flags |= IFF_UNICAST_FLT; 5423 5424 /* Do not turn on offloads when they are requested to be turned off. 5425 * TSO needs minimum 576 bytes to work correctly. 5426 */ 5427 if (netdev->wanted_features) { 5428 if (!(netdev->wanted_features & NETIF_F_TSO) || 5429 netdev->mtu < 576) 5430 netdev->features &= ~NETIF_F_TSO; 5431 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5432 netdev->mtu < 576) 5433 netdev->features &= ~NETIF_F_TSO6; 5434 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5435 netdev->features &= ~NETIF_F_TSO_ECN; 5436 if (!(netdev->wanted_features & NETIF_F_GRO)) 5437 netdev->features &= ~NETIF_F_GRO; 5438 if (!(netdev->wanted_features & NETIF_F_GSO)) 5439 netdev->features &= ~NETIF_F_GSO; 5440 } 5441 5442 return 0; 5443 } 5444 5445 /** 5446 * iavf_probe - Device Initialization Routine 5447 * @pdev: PCI device information struct 5448 * @ent: entry in iavf_pci_tbl 5449 * 5450 * Returns 0 on success, negative on failure 5451 * 5452 * iavf_probe initializes an adapter identified by a pci_dev structure. 5453 * The OS initialization, configuring of the adapter private structure, 5454 * and a hardware reset occur. 5455 **/ 5456 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5457 { 5458 struct net_device *netdev; 5459 struct iavf_adapter *adapter = NULL; 5460 struct iavf_hw *hw = NULL; 5461 int err, len; 5462 5463 err = pci_enable_device(pdev); 5464 if (err) 5465 return err; 5466 5467 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5468 if (err) { 5469 dev_err(&pdev->dev, 5470 "DMA configuration failed: 0x%x\n", err); 5471 goto err_dma; 5472 } 5473 5474 err = pci_request_regions(pdev, iavf_driver_name); 5475 if (err) { 5476 dev_err(&pdev->dev, 5477 "pci_request_regions failed 0x%x\n", err); 5478 goto err_pci_reg; 5479 } 5480 5481 pci_set_master(pdev); 5482 5483 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5484 IAVF_MAX_REQ_QUEUES); 5485 if (!netdev) { 5486 err = -ENOMEM; 5487 goto err_alloc_etherdev; 5488 } 5489 5490 SET_NETDEV_DEV(netdev, &pdev->dev); 5491 5492 pci_set_drvdata(pdev, netdev); 5493 adapter = netdev_priv(netdev); 5494 5495 adapter->netdev = netdev; 5496 adapter->pdev = pdev; 5497 5498 hw = &adapter->hw; 5499 hw->back = adapter; 5500 5501 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5502 iavf_driver_name); 5503 if (!adapter->wq) { 5504 err = -ENOMEM; 5505 goto err_alloc_wq; 5506 } 5507 5508 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5509 iavf_change_state(adapter, __IAVF_STARTUP); 5510 5511 /* Call save state here because it relies on the adapter struct. */ 5512 pci_save_state(pdev); 5513 5514 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5515 pci_resource_len(pdev, 0)); 5516 if (!hw->hw_addr) { 5517 err = -EIO; 5518 goto err_ioremap; 5519 } 5520 hw->vendor_id = pdev->vendor; 5521 hw->device_id = pdev->device; 5522 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5523 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5524 hw->subsystem_device_id = pdev->subsystem_device; 5525 hw->bus.device = PCI_SLOT(pdev->devfn); 5526 hw->bus.func = PCI_FUNC(pdev->devfn); 5527 hw->bus.bus_id = pdev->bus->number; 5528 5529 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5530 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5531 if (!adapter->qos_caps) { 5532 err = -ENOMEM; 5533 goto err_alloc_qos_cap; 5534 } 5535 5536 /* set up the locks for the AQ, do this only once in probe 5537 * and destroy them only once in remove 5538 */ 5539 mutex_init(&adapter->crit_lock); 5540 mutex_init(&hw->aq.asq_mutex); 5541 mutex_init(&hw->aq.arq_mutex); 5542 5543 spin_lock_init(&adapter->mac_vlan_list_lock); 5544 spin_lock_init(&adapter->cloud_filter_list_lock); 5545 spin_lock_init(&adapter->fdir_fltr_lock); 5546 spin_lock_init(&adapter->adv_rss_lock); 5547 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5548 5549 INIT_LIST_HEAD(&adapter->mac_filter_list); 5550 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5551 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5552 INIT_LIST_HEAD(&adapter->fdir_list_head); 5553 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5554 5555 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5556 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5557 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5558 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5559 5560 /* Setup the wait queue for indicating transition to down status */ 5561 init_waitqueue_head(&adapter->down_waitqueue); 5562 5563 /* Setup the wait queue for indicating transition to running state */ 5564 init_waitqueue_head(&adapter->reset_waitqueue); 5565 5566 /* Setup the wait queue for indicating virtchannel events */ 5567 init_waitqueue_head(&adapter->vc_waitqueue); 5568 5569 INIT_LIST_HEAD(&adapter->ptp.aq_cmds); 5570 init_waitqueue_head(&adapter->ptp.phc_time_waitqueue); 5571 mutex_init(&adapter->ptp.aq_cmd_lock); 5572 5573 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5574 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5575 /* Initialization goes on in the work. Do not add more of it below. */ 5576 return 0; 5577 5578 err_alloc_qos_cap: 5579 iounmap(hw->hw_addr); 5580 err_ioremap: 5581 destroy_workqueue(adapter->wq); 5582 err_alloc_wq: 5583 free_netdev(netdev); 5584 err_alloc_etherdev: 5585 pci_release_regions(pdev); 5586 err_pci_reg: 5587 err_dma: 5588 pci_disable_device(pdev); 5589 return err; 5590 } 5591 5592 /** 5593 * iavf_suspend - Power management suspend routine 5594 * @dev_d: device info pointer 5595 * 5596 * Called when the system (VM) is entering sleep/suspend. 5597 **/ 5598 static int iavf_suspend(struct device *dev_d) 5599 { 5600 struct net_device *netdev = dev_get_drvdata(dev_d); 5601 struct iavf_adapter *adapter = netdev_priv(netdev); 5602 5603 netif_device_detach(netdev); 5604 5605 netdev_lock(netdev); 5606 mutex_lock(&adapter->crit_lock); 5607 5608 if (netif_running(netdev)) { 5609 rtnl_lock(); 5610 iavf_down(adapter); 5611 rtnl_unlock(); 5612 } 5613 iavf_free_misc_irq(adapter); 5614 iavf_reset_interrupt_capability(adapter); 5615 5616 mutex_unlock(&adapter->crit_lock); 5617 netdev_unlock(netdev); 5618 5619 return 0; 5620 } 5621 5622 /** 5623 * iavf_resume - Power management resume routine 5624 * @dev_d: device info pointer 5625 * 5626 * Called when the system (VM) is resumed from sleep/suspend. 5627 **/ 5628 static int iavf_resume(struct device *dev_d) 5629 { 5630 struct pci_dev *pdev = to_pci_dev(dev_d); 5631 struct iavf_adapter *adapter; 5632 u32 err; 5633 5634 adapter = iavf_pdev_to_adapter(pdev); 5635 5636 pci_set_master(pdev); 5637 5638 rtnl_lock(); 5639 err = iavf_set_interrupt_capability(adapter); 5640 if (err) { 5641 rtnl_unlock(); 5642 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5643 return err; 5644 } 5645 err = iavf_request_misc_irq(adapter); 5646 rtnl_unlock(); 5647 if (err) { 5648 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5649 return err; 5650 } 5651 5652 queue_work(adapter->wq, &adapter->reset_task); 5653 5654 netif_device_attach(adapter->netdev); 5655 5656 return err; 5657 } 5658 5659 /** 5660 * iavf_remove - Device Removal Routine 5661 * @pdev: PCI device information struct 5662 * 5663 * iavf_remove is called by the PCI subsystem to alert the driver 5664 * that it should release a PCI device. The could be caused by a 5665 * Hot-Plug event, or because the driver is going to be removed from 5666 * memory. 5667 **/ 5668 static void iavf_remove(struct pci_dev *pdev) 5669 { 5670 struct iavf_fdir_fltr *fdir, *fdirtmp; 5671 struct iavf_vlan_filter *vlf, *vlftmp; 5672 struct iavf_cloud_filter *cf, *cftmp; 5673 struct iavf_adv_rss *rss, *rsstmp; 5674 struct iavf_mac_filter *f, *ftmp; 5675 struct iavf_adapter *adapter; 5676 struct net_device *netdev; 5677 struct iavf_hw *hw; 5678 5679 /* Don't proceed with remove if netdev is already freed */ 5680 netdev = pci_get_drvdata(pdev); 5681 if (!netdev) 5682 return; 5683 5684 adapter = iavf_pdev_to_adapter(pdev); 5685 hw = &adapter->hw; 5686 5687 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5688 return; 5689 5690 /* Wait until port initialization is complete. 5691 * There are flows where register/unregister netdev may race. 5692 */ 5693 while (1) { 5694 mutex_lock(&adapter->crit_lock); 5695 if (adapter->state == __IAVF_RUNNING || 5696 adapter->state == __IAVF_DOWN || 5697 adapter->state == __IAVF_INIT_FAILED) { 5698 mutex_unlock(&adapter->crit_lock); 5699 break; 5700 } 5701 /* Simply return if we already went through iavf_shutdown */ 5702 if (adapter->state == __IAVF_REMOVE) { 5703 mutex_unlock(&adapter->crit_lock); 5704 return; 5705 } 5706 5707 mutex_unlock(&adapter->crit_lock); 5708 usleep_range(500, 1000); 5709 } 5710 cancel_delayed_work_sync(&adapter->watchdog_task); 5711 cancel_work_sync(&adapter->finish_config); 5712 5713 if (netdev->reg_state == NETREG_REGISTERED) 5714 unregister_netdev(netdev); 5715 5716 netdev_lock(netdev); 5717 mutex_lock(&adapter->crit_lock); 5718 dev_info(&adapter->pdev->dev, "Removing device\n"); 5719 iavf_change_state(adapter, __IAVF_REMOVE); 5720 5721 iavf_request_reset(adapter); 5722 msleep(50); 5723 /* If the FW isn't responding, kick it once, but only once. */ 5724 if (!iavf_asq_done(hw)) { 5725 iavf_request_reset(adapter); 5726 msleep(50); 5727 } 5728 5729 iavf_ptp_release(adapter); 5730 5731 iavf_misc_irq_disable(adapter); 5732 /* Shut down all the garbage mashers on the detention level */ 5733 cancel_work_sync(&adapter->reset_task); 5734 cancel_delayed_work_sync(&adapter->watchdog_task); 5735 cancel_work_sync(&adapter->adminq_task); 5736 5737 adapter->aq_required = 0; 5738 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5739 5740 iavf_free_all_tx_resources(adapter); 5741 iavf_free_all_rx_resources(adapter); 5742 iavf_free_misc_irq(adapter); 5743 iavf_free_interrupt_scheme(adapter); 5744 5745 iavf_free_rss(adapter); 5746 5747 if (hw->aq.asq.count) 5748 iavf_shutdown_adminq(hw); 5749 5750 /* destroy the locks only once, here */ 5751 mutex_destroy(&hw->aq.arq_mutex); 5752 mutex_destroy(&hw->aq.asq_mutex); 5753 mutex_unlock(&adapter->crit_lock); 5754 mutex_destroy(&adapter->crit_lock); 5755 netdev_unlock(netdev); 5756 5757 iounmap(hw->hw_addr); 5758 pci_release_regions(pdev); 5759 kfree(adapter->vf_res); 5760 spin_lock_bh(&adapter->mac_vlan_list_lock); 5761 /* If we got removed before an up/down sequence, we've got a filter 5762 * hanging out there that we need to get rid of. 5763 */ 5764 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5765 list_del(&f->list); 5766 kfree(f); 5767 } 5768 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5769 list) { 5770 list_del(&vlf->list); 5771 kfree(vlf); 5772 } 5773 5774 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5775 5776 spin_lock_bh(&adapter->cloud_filter_list_lock); 5777 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5778 list_del(&cf->list); 5779 kfree(cf); 5780 } 5781 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5782 5783 spin_lock_bh(&adapter->fdir_fltr_lock); 5784 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5785 list_del(&fdir->list); 5786 kfree(fdir); 5787 } 5788 spin_unlock_bh(&adapter->fdir_fltr_lock); 5789 5790 spin_lock_bh(&adapter->adv_rss_lock); 5791 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5792 list) { 5793 list_del(&rss->list); 5794 kfree(rss); 5795 } 5796 spin_unlock_bh(&adapter->adv_rss_lock); 5797 5798 destroy_workqueue(adapter->wq); 5799 5800 pci_set_drvdata(pdev, NULL); 5801 5802 free_netdev(netdev); 5803 5804 pci_disable_device(pdev); 5805 } 5806 5807 /** 5808 * iavf_shutdown - Shutdown the device in preparation for a reboot 5809 * @pdev: pci device structure 5810 **/ 5811 static void iavf_shutdown(struct pci_dev *pdev) 5812 { 5813 iavf_remove(pdev); 5814 5815 if (system_state == SYSTEM_POWER_OFF) 5816 pci_set_power_state(pdev, PCI_D3hot); 5817 } 5818 5819 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5820 5821 static struct pci_driver iavf_driver = { 5822 .name = iavf_driver_name, 5823 .id_table = iavf_pci_tbl, 5824 .probe = iavf_probe, 5825 .remove = iavf_remove, 5826 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5827 .shutdown = iavf_shutdown, 5828 }; 5829 5830 /** 5831 * iavf_init_module - Driver Registration Routine 5832 * 5833 * iavf_init_module is the first routine called when the driver is 5834 * loaded. All it does is register with the PCI subsystem. 5835 **/ 5836 static int __init iavf_init_module(void) 5837 { 5838 pr_info("iavf: %s\n", iavf_driver_string); 5839 5840 pr_info("%s\n", iavf_copyright); 5841 5842 return pci_register_driver(&iavf_driver); 5843 } 5844 5845 module_init(iavf_init_module); 5846 5847 /** 5848 * iavf_exit_module - Driver Exit Cleanup Routine 5849 * 5850 * iavf_exit_module is called just before the driver is removed 5851 * from memory. 5852 **/ 5853 static void __exit iavf_exit_module(void) 5854 { 5855 pci_unregister_driver(&iavf_driver); 5856 } 5857 5858 module_exit(iavf_exit_module); 5859 5860 /* iavf_main.c */ 5861