1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_prototype.h" 8 /* All iavf tracepoints are defined by the include below, which must 9 * be included exactly once across the whole kernel with 10 * CREATE_TRACE_POINTS defined 11 */ 12 #define CREATE_TRACE_POINTS 13 #include "iavf_trace.h" 14 15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 17 static int iavf_close(struct net_device *netdev); 18 static void iavf_init_get_resources(struct iavf_adapter *adapter); 19 static int iavf_check_reset_complete(struct iavf_hw *hw); 20 21 char iavf_driver_name[] = "iavf"; 22 static const char iavf_driver_string[] = 23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 24 25 static const char iavf_copyright[] = 26 "Copyright (c) 2013 - 2018 Intel Corporation."; 27 28 /* iavf_pci_tbl - PCI Device ID Table 29 * 30 * Wildcard entries (PCI_ANY_ID) should come last 31 * Last entry must be all 0s 32 * 33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 34 * Class, Class Mask, private data (not used) } 35 */ 36 static const struct pci_device_id iavf_pci_tbl[] = { 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 41 /* required last entry */ 42 {0, } 43 }; 44 45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 46 47 MODULE_ALIAS("i40evf"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_IMPORT_NS("LIBETH"); 50 MODULE_IMPORT_NS("LIBIE"); 51 MODULE_LICENSE("GPL v2"); 52 53 static const struct net_device_ops iavf_netdev_ops; 54 55 int iavf_status_to_errno(enum iavf_status status) 56 { 57 switch (status) { 58 case IAVF_SUCCESS: 59 return 0; 60 case IAVF_ERR_PARAM: 61 case IAVF_ERR_MAC_TYPE: 62 case IAVF_ERR_INVALID_MAC_ADDR: 63 case IAVF_ERR_INVALID_LINK_SETTINGS: 64 case IAVF_ERR_INVALID_PD_ID: 65 case IAVF_ERR_INVALID_QP_ID: 66 case IAVF_ERR_INVALID_CQ_ID: 67 case IAVF_ERR_INVALID_CEQ_ID: 68 case IAVF_ERR_INVALID_AEQ_ID: 69 case IAVF_ERR_INVALID_SIZE: 70 case IAVF_ERR_INVALID_ARP_INDEX: 71 case IAVF_ERR_INVALID_FPM_FUNC_ID: 72 case IAVF_ERR_QP_INVALID_MSG_SIZE: 73 case IAVF_ERR_INVALID_FRAG_COUNT: 74 case IAVF_ERR_INVALID_ALIGNMENT: 75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 76 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 77 case IAVF_ERR_INVALID_VF_ID: 78 case IAVF_ERR_INVALID_HMCFN_ID: 79 case IAVF_ERR_INVALID_PBLE_INDEX: 80 case IAVF_ERR_INVALID_SD_INDEX: 81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 82 case IAVF_ERR_INVALID_SD_TYPE: 83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 86 return -EINVAL; 87 case IAVF_ERR_NVM: 88 case IAVF_ERR_NVM_CHECKSUM: 89 case IAVF_ERR_PHY: 90 case IAVF_ERR_CONFIG: 91 case IAVF_ERR_UNKNOWN_PHY: 92 case IAVF_ERR_LINK_SETUP: 93 case IAVF_ERR_ADAPTER_STOPPED: 94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 95 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 96 case IAVF_ERR_RESET_FAILED: 97 case IAVF_ERR_BAD_PTR: 98 case IAVF_ERR_SWFW_SYNC: 99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 100 case IAVF_ERR_QUEUE_EMPTY: 101 case IAVF_ERR_FLUSHED_QUEUE: 102 case IAVF_ERR_OPCODE_MISMATCH: 103 case IAVF_ERR_CQP_COMPL_ERROR: 104 case IAVF_ERR_BACKING_PAGE_ERROR: 105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 106 case IAVF_ERR_MEMCPY_FAILED: 107 case IAVF_ERR_SRQ_ENABLED: 108 case IAVF_ERR_ADMIN_QUEUE_ERROR: 109 case IAVF_ERR_ADMIN_QUEUE_FULL: 110 case IAVF_ERR_BAD_RDMA_CQE: 111 case IAVF_ERR_NVM_BLANK_MODE: 112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 113 case IAVF_ERR_DIAG_TEST_FAILED: 114 case IAVF_ERR_FIRMWARE_API_VERSION: 115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 116 return -EIO; 117 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 118 return -ENODEV; 119 case IAVF_ERR_NO_AVAILABLE_VSI: 120 case IAVF_ERR_RING_FULL: 121 return -ENOSPC; 122 case IAVF_ERR_NO_MEMORY: 123 return -ENOMEM; 124 case IAVF_ERR_TIMEOUT: 125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 126 return -ETIMEDOUT; 127 case IAVF_ERR_NOT_IMPLEMENTED: 128 case IAVF_NOT_SUPPORTED: 129 return -EOPNOTSUPP; 130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 131 return -EALREADY; 132 case IAVF_ERR_NOT_READY: 133 return -EBUSY; 134 case IAVF_ERR_BUF_TOO_SHORT: 135 return -EMSGSIZE; 136 } 137 138 return -EIO; 139 } 140 141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 142 { 143 switch (v_status) { 144 case VIRTCHNL_STATUS_SUCCESS: 145 return 0; 146 case VIRTCHNL_STATUS_ERR_PARAM: 147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 148 return -EINVAL; 149 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 150 return -ENOMEM; 151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 154 return -EIO; 155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 156 return -EOPNOTSUPP; 157 } 158 159 return -EIO; 160 } 161 162 /** 163 * iavf_pdev_to_adapter - go from pci_dev to adapter 164 * @pdev: pci_dev pointer 165 */ 166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 167 { 168 return netdev_priv(pci_get_drvdata(pdev)); 169 } 170 171 /** 172 * iavf_is_reset_in_progress - Check if a reset is in progress 173 * @adapter: board private structure 174 */ 175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 176 { 177 if (adapter->state == __IAVF_RESETTING || 178 adapter->flags & (IAVF_FLAG_RESET_PENDING | 179 IAVF_FLAG_RESET_NEEDED)) 180 return true; 181 182 return false; 183 } 184 185 /** 186 * iavf_wait_for_reset - Wait for reset to finish. 187 * @adapter: board private structure 188 * 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 190 */ 191 int iavf_wait_for_reset(struct iavf_adapter *adapter) 192 { 193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 194 !iavf_is_reset_in_progress(adapter), 195 msecs_to_jiffies(5000)); 196 197 /* If ret < 0 then it means wait was interrupted. 198 * If ret == 0 then it means we got a timeout while waiting 199 * for reset to finish. 200 * If ret > 0 it means reset has finished. 201 */ 202 if (ret > 0) 203 return 0; 204 else if (ret < 0) 205 return -EINTR; 206 else 207 return -EBUSY; 208 } 209 210 /** 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 212 * @hw: pointer to the HW structure 213 * @mem: ptr to mem struct to fill out 214 * @size: size of memory requested 215 * @alignment: what to align the allocation to 216 **/ 217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 218 struct iavf_dma_mem *mem, 219 u64 size, u32 alignment) 220 { 221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 222 223 if (!mem) 224 return IAVF_ERR_PARAM; 225 226 mem->size = ALIGN(size, alignment); 227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 228 (dma_addr_t *)&mem->pa, GFP_KERNEL); 229 if (mem->va) 230 return 0; 231 else 232 return IAVF_ERR_NO_MEMORY; 233 } 234 235 /** 236 * iavf_free_dma_mem - wrapper for DMA memory freeing 237 * @hw: pointer to the HW structure 238 * @mem: ptr to mem struct to free 239 **/ 240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 241 { 242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 243 244 if (!mem || !mem->va) 245 return IAVF_ERR_PARAM; 246 dma_free_coherent(&adapter->pdev->dev, mem->size, 247 mem->va, (dma_addr_t)mem->pa); 248 return 0; 249 } 250 251 /** 252 * iavf_allocate_virt_mem - virt memory alloc wrapper 253 * @hw: pointer to the HW structure 254 * @mem: ptr to mem struct to fill out 255 * @size: size of memory requested 256 **/ 257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 258 struct iavf_virt_mem *mem, u32 size) 259 { 260 if (!mem) 261 return IAVF_ERR_PARAM; 262 263 mem->size = size; 264 mem->va = kzalloc(size, GFP_KERNEL); 265 266 if (mem->va) 267 return 0; 268 else 269 return IAVF_ERR_NO_MEMORY; 270 } 271 272 /** 273 * iavf_free_virt_mem - virt memory free wrapper 274 * @hw: pointer to the HW structure 275 * @mem: ptr to mem struct to free 276 **/ 277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 278 { 279 kfree(mem->va); 280 } 281 282 /** 283 * iavf_schedule_reset - Set the flags and schedule a reset event 284 * @adapter: board private structure 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 286 **/ 287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 288 { 289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 290 !(adapter->flags & 291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 292 adapter->flags |= flags; 293 queue_work(adapter->wq, &adapter->reset_task); 294 } 295 } 296 297 /** 298 * iavf_schedule_aq_request - Set the flags and schedule aq request 299 * @adapter: board private structure 300 * @flags: requested aq flags 301 **/ 302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 303 { 304 adapter->aq_required |= flags; 305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 306 } 307 308 /** 309 * iavf_tx_timeout - Respond to a Tx Hang 310 * @netdev: network interface device structure 311 * @txqueue: queue number that is timing out 312 **/ 313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 314 { 315 struct iavf_adapter *adapter = netdev_priv(netdev); 316 317 adapter->tx_timeout_count++; 318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 319 } 320 321 /** 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 323 * @adapter: board private structure 324 **/ 325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 326 { 327 struct iavf_hw *hw = &adapter->hw; 328 329 if (!adapter->msix_entries) 330 return; 331 332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 333 334 iavf_flush(hw); 335 336 synchronize_irq(adapter->msix_entries[0].vector); 337 } 338 339 /** 340 * iavf_misc_irq_enable - Enable default interrupt generation settings 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 350 351 iavf_flush(hw); 352 } 353 354 /** 355 * iavf_irq_disable - Mask off interrupt generation on the NIC 356 * @adapter: board private structure 357 **/ 358 static void iavf_irq_disable(struct iavf_adapter *adapter) 359 { 360 int i; 361 struct iavf_hw *hw = &adapter->hw; 362 363 if (!adapter->msix_entries) 364 return; 365 366 for (i = 1; i < adapter->num_msix_vectors; i++) { 367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 368 synchronize_irq(adapter->msix_entries[i].vector); 369 } 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_enable_queues - Enable interrupt for all queues 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 378 { 379 struct iavf_hw *hw = &adapter->hw; 380 int i; 381 382 for (i = 1; i < adapter->num_msix_vectors; i++) { 383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 386 } 387 } 388 389 /** 390 * iavf_irq_enable - Enable default interrupt generation settings 391 * @adapter: board private structure 392 * @flush: boolean value whether to run rd32() 393 **/ 394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 395 { 396 struct iavf_hw *hw = &adapter->hw; 397 398 iavf_misc_irq_enable(adapter); 399 iavf_irq_enable_queues(adapter); 400 401 if (flush) 402 iavf_flush(hw); 403 } 404 405 /** 406 * iavf_msix_aq - Interrupt handler for vector 0 407 * @irq: interrupt number 408 * @data: pointer to netdev 409 **/ 410 static irqreturn_t iavf_msix_aq(int irq, void *data) 411 { 412 struct net_device *netdev = data; 413 struct iavf_adapter *adapter = netdev_priv(netdev); 414 struct iavf_hw *hw = &adapter->hw; 415 416 /* handle non-queue interrupts, these reads clear the registers */ 417 rd32(hw, IAVF_VFINT_ICR01); 418 rd32(hw, IAVF_VFINT_ICR0_ENA1); 419 420 if (adapter->state != __IAVF_REMOVE) 421 /* schedule work on the private workqueue */ 422 queue_work(adapter->wq, &adapter->adminq_task); 423 424 return IRQ_HANDLED; 425 } 426 427 /** 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 429 * @irq: interrupt number 430 * @data: pointer to a q_vector 431 **/ 432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 433 { 434 struct iavf_q_vector *q_vector = data; 435 436 if (!q_vector->tx.ring && !q_vector->rx.ring) 437 return IRQ_HANDLED; 438 439 napi_schedule_irqoff(&q_vector->napi); 440 441 return IRQ_HANDLED; 442 } 443 444 /** 445 * iavf_map_vector_to_rxq - associate irqs with rx queues 446 * @adapter: board private structure 447 * @v_idx: interrupt number 448 * @r_idx: queue number 449 **/ 450 static void 451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 452 { 453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 455 struct iavf_hw *hw = &adapter->hw; 456 457 rx_ring->q_vector = q_vector; 458 rx_ring->next = q_vector->rx.ring; 459 rx_ring->vsi = &adapter->vsi; 460 q_vector->rx.ring = rx_ring; 461 q_vector->rx.count++; 462 q_vector->rx.next_update = jiffies + 1; 463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 464 q_vector->ring_mask |= BIT(r_idx); 465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 466 q_vector->rx.current_itr >> 1); 467 q_vector->rx.current_itr = q_vector->rx.target_itr; 468 } 469 470 /** 471 * iavf_map_vector_to_txq - associate irqs with tx queues 472 * @adapter: board private structure 473 * @v_idx: interrupt number 474 * @t_idx: queue number 475 **/ 476 static void 477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 478 { 479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 481 struct iavf_hw *hw = &adapter->hw; 482 483 tx_ring->q_vector = q_vector; 484 tx_ring->next = q_vector->tx.ring; 485 tx_ring->vsi = &adapter->vsi; 486 q_vector->tx.ring = tx_ring; 487 q_vector->tx.count++; 488 q_vector->tx.next_update = jiffies + 1; 489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 490 q_vector->num_ringpairs++; 491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 492 q_vector->tx.target_itr >> 1); 493 q_vector->tx.current_itr = q_vector->tx.target_itr; 494 } 495 496 /** 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 498 * @adapter: board private structure to initialize 499 * 500 * This function maps descriptor rings to the queue-specific vectors 501 * we were allotted through the MSI-X enabling code. Ideally, we'd have 502 * one vector per ring/queue, but on a constrained vector budget, we 503 * group the rings as "efficiently" as possible. You would add new 504 * mapping configurations in here. 505 **/ 506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 507 { 508 int rings_remaining = adapter->num_active_queues; 509 int ridx = 0, vidx = 0; 510 int q_vectors; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (; ridx < rings_remaining; ridx++) { 515 iavf_map_vector_to_rxq(adapter, vidx, ridx); 516 iavf_map_vector_to_txq(adapter, vidx, ridx); 517 518 /* In the case where we have more queues than vectors, continue 519 * round-robin on vectors until all queues are mapped. 520 */ 521 if (++vidx >= q_vectors) 522 vidx = 0; 523 } 524 525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 526 } 527 528 /** 529 * iavf_irq_affinity_notify - Callback for affinity changes 530 * @notify: context as to what irq was changed 531 * @mask: the new affinity mask 532 * 533 * This is a callback function used by the irq_set_affinity_notifier function 534 * so that we may register to receive changes to the irq affinity masks. 535 **/ 536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 537 const cpumask_t *mask) 538 { 539 struct iavf_q_vector *q_vector = 540 container_of(notify, struct iavf_q_vector, affinity_notify); 541 542 cpumask_copy(&q_vector->affinity_mask, mask); 543 } 544 545 /** 546 * iavf_irq_affinity_release - Callback for affinity notifier release 547 * @ref: internal core kernel usage 548 * 549 * This is a callback function used by the irq_set_affinity_notifier function 550 * to inform the current notification subscriber that they will no longer 551 * receive notifications. 552 **/ 553 static void iavf_irq_affinity_release(struct kref *ref) {} 554 555 /** 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 557 * @adapter: board private structure 558 * @basename: device basename 559 * 560 * Allocates MSI-X vectors for tx and rx handling, and requests 561 * interrupts from the kernel. 562 **/ 563 static int 564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 565 { 566 unsigned int vector, q_vectors; 567 unsigned int rx_int_idx = 0, tx_int_idx = 0; 568 int irq_num, err; 569 int cpu; 570 571 iavf_irq_disable(adapter); 572 /* Decrement for Other and TCP Timer vectors */ 573 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 574 575 for (vector = 0; vector < q_vectors; vector++) { 576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 577 578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 579 580 if (q_vector->tx.ring && q_vector->rx.ring) { 581 snprintf(q_vector->name, sizeof(q_vector->name), 582 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 583 tx_int_idx++; 584 } else if (q_vector->rx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-rx-%u", basename, rx_int_idx++); 587 } else if (q_vector->tx.ring) { 588 snprintf(q_vector->name, sizeof(q_vector->name), 589 "iavf-%s-tx-%u", basename, tx_int_idx++); 590 } else { 591 /* skip this unused q_vector */ 592 continue; 593 } 594 err = request_irq(irq_num, 595 iavf_msix_clean_rings, 596 0, 597 q_vector->name, 598 q_vector); 599 if (err) { 600 dev_info(&adapter->pdev->dev, 601 "Request_irq failed, error: %d\n", err); 602 goto free_queue_irqs; 603 } 604 /* register for affinity change notifications */ 605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 606 q_vector->affinity_notify.release = 607 iavf_irq_affinity_release; 608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 609 /* Spread the IRQ affinity hints across online CPUs. Note that 610 * get_cpu_mask returns a mask with a permanent lifetime so 611 * it's safe to use as a hint for irq_update_affinity_hint. 612 */ 613 cpu = cpumask_local_spread(q_vector->v_idx, -1); 614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 615 } 616 617 return 0; 618 619 free_queue_irqs: 620 while (vector) { 621 vector--; 622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 623 irq_set_affinity_notifier(irq_num, NULL); 624 irq_update_affinity_hint(irq_num, NULL); 625 free_irq(irq_num, &adapter->q_vectors[vector]); 626 } 627 return err; 628 } 629 630 /** 631 * iavf_request_misc_irq - Initialize MSI-X interrupts 632 * @adapter: board private structure 633 * 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 635 * vector is only for the admin queue, and stays active even when the netdev 636 * is closed. 637 **/ 638 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 639 { 640 struct net_device *netdev = adapter->netdev; 641 int err; 642 643 snprintf(adapter->misc_vector_name, 644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 645 dev_name(&adapter->pdev->dev)); 646 err = request_irq(adapter->msix_entries[0].vector, 647 &iavf_msix_aq, 0, 648 adapter->misc_vector_name, netdev); 649 if (err) { 650 dev_err(&adapter->pdev->dev, 651 "request_irq for %s failed: %d\n", 652 adapter->misc_vector_name, err); 653 free_irq(adapter->msix_entries[0].vector, netdev); 654 } 655 return err; 656 } 657 658 /** 659 * iavf_free_traffic_irqs - Free MSI-X interrupts 660 * @adapter: board private structure 661 * 662 * Frees all MSI-X vectors other than 0. 663 **/ 664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 665 { 666 int vector, irq_num, q_vectors; 667 668 if (!adapter->msix_entries) 669 return; 670 671 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 672 673 for (vector = 0; vector < q_vectors; vector++) { 674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 675 irq_set_affinity_notifier(irq_num, NULL); 676 irq_update_affinity_hint(irq_num, NULL); 677 free_irq(irq_num, &adapter->q_vectors[vector]); 678 } 679 } 680 681 /** 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 683 * @adapter: board private structure 684 * 685 * Frees MSI-X vector 0. 686 **/ 687 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 688 { 689 struct net_device *netdev = adapter->netdev; 690 691 if (!adapter->msix_entries) 692 return; 693 694 free_irq(adapter->msix_entries[0].vector, netdev); 695 } 696 697 /** 698 * iavf_configure_tx - Configure Transmit Unit after Reset 699 * @adapter: board private structure 700 * 701 * Configure the Tx unit of the MAC after a reset. 702 **/ 703 static void iavf_configure_tx(struct iavf_adapter *adapter) 704 { 705 struct iavf_hw *hw = &adapter->hw; 706 int i; 707 708 for (i = 0; i < adapter->num_active_queues; i++) 709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 710 } 711 712 /** 713 * iavf_configure_rx - Configure Receive Unit after Reset 714 * @adapter: board private structure 715 * 716 * Configure the Rx unit of the MAC after a reset. 717 **/ 718 static void iavf_configure_rx(struct iavf_adapter *adapter) 719 { 720 struct iavf_hw *hw = &adapter->hw; 721 722 for (u32 i = 0; i < adapter->num_active_queues; i++) 723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 724 } 725 726 /** 727 * iavf_find_vlan - Search filter list for specific vlan filter 728 * @adapter: board private structure 729 * @vlan: vlan tag 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 736 struct iavf_vlan vlan) 737 { 738 struct iavf_vlan_filter *f; 739 740 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 741 if (f->vlan.vid == vlan.vid && 742 f->vlan.tpid == vlan.tpid) 743 return f; 744 } 745 746 return NULL; 747 } 748 749 /** 750 * iavf_add_vlan - Add a vlan filter to the list 751 * @adapter: board private structure 752 * @vlan: VLAN tag 753 * 754 * Returns ptr to the filter object or NULL when no memory available. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f = NULL; 761 762 spin_lock_bh(&adapter->mac_vlan_list_lock); 763 764 f = iavf_find_vlan(adapter, vlan); 765 if (!f) { 766 f = kzalloc(sizeof(*f), GFP_ATOMIC); 767 if (!f) 768 goto clearout; 769 770 f->vlan = vlan; 771 772 list_add_tail(&f->list, &adapter->vlan_filter_list); 773 f->state = IAVF_VLAN_ADD; 774 adapter->num_vlan_filters++; 775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 776 } else if (f->state == IAVF_VLAN_REMOVE) { 777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 778 * We can safely only change the state here. 779 */ 780 f->state = IAVF_VLAN_ACTIVE; 781 } 782 783 clearout: 784 spin_unlock_bh(&adapter->mac_vlan_list_lock); 785 return f; 786 } 787 788 /** 789 * iavf_del_vlan - Remove a vlan filter from the list 790 * @adapter: board private structure 791 * @vlan: VLAN tag 792 **/ 793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 794 { 795 struct iavf_vlan_filter *f; 796 797 spin_lock_bh(&adapter->mac_vlan_list_lock); 798 799 f = iavf_find_vlan(adapter, vlan); 800 if (f) { 801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 802 * Remove it from the list. 803 */ 804 if (f->state == IAVF_VLAN_ADD) { 805 list_del(&f->list); 806 kfree(f); 807 adapter->num_vlan_filters--; 808 } else { 809 f->state = IAVF_VLAN_REMOVE; 810 iavf_schedule_aq_request(adapter, 811 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 812 } 813 } 814 815 spin_unlock_bh(&adapter->mac_vlan_list_lock); 816 } 817 818 /** 819 * iavf_restore_filters 820 * @adapter: board private structure 821 * 822 * Restore existing non MAC filters when VF netdev comes back up 823 **/ 824 static void iavf_restore_filters(struct iavf_adapter *adapter) 825 { 826 struct iavf_vlan_filter *f; 827 828 /* re-add all VLAN filters */ 829 spin_lock_bh(&adapter->mac_vlan_list_lock); 830 831 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 832 if (f->state == IAVF_VLAN_INACTIVE) 833 f->state = IAVF_VLAN_ADD; 834 } 835 836 spin_unlock_bh(&adapter->mac_vlan_list_lock); 837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 838 } 839 840 /** 841 * iavf_get_num_vlans_added - get number of VLANs added 842 * @adapter: board private structure 843 */ 844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 845 { 846 return adapter->num_vlan_filters; 847 } 848 849 /** 850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 851 * @adapter: board private structure 852 * 853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 854 * do not impose a limit as that maintains current behavior and for 855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 856 **/ 857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 858 { 859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 860 * never been a limit on the VF driver side 861 */ 862 if (VLAN_ALLOWED(adapter)) 863 return VLAN_N_VID; 864 else if (VLAN_V2_ALLOWED(adapter)) 865 return adapter->vlan_v2_caps.filtering.max_filters; 866 867 return 0; 868 } 869 870 /** 871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 872 * @adapter: board private structure 873 **/ 874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 875 { 876 if (iavf_get_num_vlans_added(adapter) < 877 iavf_get_max_vlans_allowed(adapter)) 878 return false; 879 880 return true; 881 } 882 883 /** 884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 885 * @netdev: network device struct 886 * @proto: unused protocol data 887 * @vid: VLAN tag 888 **/ 889 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 890 __always_unused __be16 proto, u16 vid) 891 { 892 struct iavf_adapter *adapter = netdev_priv(netdev); 893 894 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 895 if (!vid) 896 return 0; 897 898 if (!VLAN_FILTERING_ALLOWED(adapter)) 899 return -EIO; 900 901 if (iavf_max_vlans_added(adapter)) { 902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 903 iavf_get_max_vlans_allowed(adapter)); 904 return -EIO; 905 } 906 907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 908 return -ENOMEM; 909 910 return 0; 911 } 912 913 /** 914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 915 * @netdev: network device struct 916 * @proto: unused protocol data 917 * @vid: VLAN tag 918 **/ 919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 920 __always_unused __be16 proto, u16 vid) 921 { 922 struct iavf_adapter *adapter = netdev_priv(netdev); 923 924 /* We do not track VLAN 0 filter */ 925 if (!vid) 926 return 0; 927 928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *new_f; 1008 struct iavf_mac_filter *old_f; 1009 1010 spin_lock_bh(&adapter->mac_vlan_list_lock); 1011 1012 new_f = iavf_add_filter(adapter, new_mac); 1013 if (!new_f) { 1014 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1015 return -ENOMEM; 1016 } 1017 1018 old_f = iavf_find_filter(adapter, hw->mac.addr); 1019 if (old_f) { 1020 old_f->is_primary = false; 1021 old_f->remove = true; 1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1023 } 1024 /* Always send the request to add if changing primary MAC, 1025 * even if filter is already present on the list 1026 */ 1027 new_f->is_primary = true; 1028 new_f->add = true; 1029 ether_addr_copy(hw->mac.addr, new_mac); 1030 1031 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1032 1033 /* schedule the watchdog task to immediately process the request */ 1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1035 return 0; 1036 } 1037 1038 /** 1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1040 * @netdev: network interface device structure 1041 * @macaddr: MAC address to set 1042 * 1043 * Returns true on success, false on failure 1044 */ 1045 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1046 const u8 *macaddr) 1047 { 1048 struct iavf_adapter *adapter = netdev_priv(netdev); 1049 struct iavf_mac_filter *f; 1050 bool ret = false; 1051 1052 spin_lock_bh(&adapter->mac_vlan_list_lock); 1053 1054 f = iavf_find_filter(adapter, macaddr); 1055 1056 if (!f || (!f->add && f->add_handled)) 1057 ret = true; 1058 1059 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1060 1061 return ret; 1062 } 1063 1064 /** 1065 * iavf_set_mac - NDO callback to set port MAC address 1066 * @netdev: network interface device structure 1067 * @p: pointer to an address structure 1068 * 1069 * Returns 0 on success, negative on failure 1070 */ 1071 static int iavf_set_mac(struct net_device *netdev, void *p) 1072 { 1073 struct iavf_adapter *adapter = netdev_priv(netdev); 1074 struct sockaddr *addr = p; 1075 int ret; 1076 1077 if (!is_valid_ether_addr(addr->sa_data)) 1078 return -EADDRNOTAVAIL; 1079 1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1081 1082 if (ret) 1083 return ret; 1084 1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1086 iavf_is_mac_set_handled(netdev, addr->sa_data), 1087 msecs_to_jiffies(2500)); 1088 1089 /* If ret < 0 then it means wait was interrupted. 1090 * If ret == 0 then it means we got a timeout. 1091 * else it means we got response for set MAC from PF, 1092 * check if netdev MAC was updated to requested MAC, 1093 * if yes then set MAC succeeded otherwise it failed return -EACCES 1094 */ 1095 if (ret < 0) 1096 return ret; 1097 1098 if (!ret) 1099 return -EAGAIN; 1100 1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1102 return -EACCES; 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1109 * @netdev: the netdevice 1110 * @addr: address to add 1111 * 1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1114 */ 1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1116 { 1117 struct iavf_adapter *adapter = netdev_priv(netdev); 1118 1119 if (iavf_add_filter(adapter, addr)) 1120 return 0; 1121 else 1122 return -ENOMEM; 1123 } 1124 1125 /** 1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1127 * @netdev: the netdevice 1128 * @addr: address to add 1129 * 1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1132 */ 1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1134 { 1135 struct iavf_adapter *adapter = netdev_priv(netdev); 1136 struct iavf_mac_filter *f; 1137 1138 /* Under some circumstances, we might receive a request to delete 1139 * our own device address from our uc list. Because we store the 1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1141 * such requests and not delete our device address from this list. 1142 */ 1143 if (ether_addr_equal(addr, netdev->dev_addr)) 1144 return 0; 1145 1146 f = iavf_find_filter(adapter, addr); 1147 if (f) { 1148 f->remove = true; 1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1150 } 1151 return 0; 1152 } 1153 1154 /** 1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1156 * @adapter: device specific adapter 1157 */ 1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1159 { 1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1161 (IFF_PROMISC | IFF_ALLMULTI); 1162 } 1163 1164 /** 1165 * iavf_set_rx_mode - NDO callback to set the netdev filters 1166 * @netdev: network interface device structure 1167 **/ 1168 static void iavf_set_rx_mode(struct net_device *netdev) 1169 { 1170 struct iavf_adapter *adapter = netdev_priv(netdev); 1171 1172 spin_lock_bh(&adapter->mac_vlan_list_lock); 1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1175 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1176 1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1178 if (iavf_promiscuous_mode_changed(adapter)) 1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1181 } 1182 1183 /** 1184 * iavf_napi_enable_all - enable NAPI on all queue vectors 1185 * @adapter: board private structure 1186 **/ 1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1188 { 1189 int q_idx; 1190 struct iavf_q_vector *q_vector; 1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1192 1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1194 struct napi_struct *napi; 1195 1196 q_vector = &adapter->q_vectors[q_idx]; 1197 napi = &q_vector->napi; 1198 napi_enable_locked(napi); 1199 } 1200 } 1201 1202 /** 1203 * iavf_napi_disable_all - disable NAPI on all queue vectors 1204 * @adapter: board private structure 1205 **/ 1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1207 { 1208 int q_idx; 1209 struct iavf_q_vector *q_vector; 1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1211 1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1213 q_vector = &adapter->q_vectors[q_idx]; 1214 napi_disable_locked(&q_vector->napi); 1215 } 1216 } 1217 1218 /** 1219 * iavf_configure - set up transmit and receive data structures 1220 * @adapter: board private structure 1221 **/ 1222 static void iavf_configure(struct iavf_adapter *adapter) 1223 { 1224 struct net_device *netdev = adapter->netdev; 1225 int i; 1226 1227 iavf_set_rx_mode(netdev); 1228 1229 iavf_configure_tx(adapter); 1230 iavf_configure_rx(adapter); 1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1232 1233 for (i = 0; i < adapter->num_active_queues; i++) { 1234 struct iavf_ring *ring = &adapter->rx_rings[i]; 1235 1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1237 } 1238 } 1239 1240 /** 1241 * iavf_up_complete - Finish the last steps of bringing up a connection 1242 * @adapter: board private structure 1243 * 1244 * Expects to be called while holding crit_lock. 1245 **/ 1246 static void iavf_up_complete(struct iavf_adapter *adapter) 1247 { 1248 iavf_change_state(adapter, __IAVF_RUNNING); 1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1250 1251 iavf_napi_enable_all(adapter); 1252 1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1254 } 1255 1256 /** 1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1258 * yet and mark other to be removed. 1259 * @adapter: board private structure 1260 **/ 1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1262 { 1263 struct iavf_vlan_filter *vlf, *vlftmp; 1264 struct iavf_mac_filter *f, *ftmp; 1265 1266 spin_lock_bh(&adapter->mac_vlan_list_lock); 1267 /* clear the sync flag on all filters */ 1268 __dev_uc_unsync(adapter->netdev, NULL); 1269 __dev_mc_unsync(adapter->netdev, NULL); 1270 1271 /* remove all MAC filters */ 1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1273 list) { 1274 if (f->add) { 1275 list_del(&f->list); 1276 kfree(f); 1277 } else { 1278 f->remove = true; 1279 } 1280 } 1281 1282 /* disable all VLAN filters */ 1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1284 list) 1285 vlf->state = IAVF_VLAN_DISABLE; 1286 1287 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1288 } 1289 1290 /** 1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1292 * mark other to be removed. 1293 * @adapter: board private structure 1294 **/ 1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1296 { 1297 struct iavf_cloud_filter *cf, *cftmp; 1298 1299 /* remove all cloud filters */ 1300 spin_lock_bh(&adapter->cloud_filter_list_lock); 1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1302 list) { 1303 if (cf->add) { 1304 list_del(&cf->list); 1305 kfree(cf); 1306 adapter->num_cloud_filters--; 1307 } else { 1308 cf->del = true; 1309 } 1310 } 1311 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1312 } 1313 1314 /** 1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1316 * other to be removed. 1317 * @adapter: board private structure 1318 **/ 1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1320 { 1321 struct iavf_fdir_fltr *fdir; 1322 1323 /* remove all Flow Director filters */ 1324 spin_lock_bh(&adapter->fdir_fltr_lock); 1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1327 /* Cancel a request, keep filter as inactive */ 1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1331 /* Disable filters which are active or have a pending 1332 * request to PF to be added 1333 */ 1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1335 } 1336 } 1337 spin_unlock_bh(&adapter->fdir_fltr_lock); 1338 } 1339 1340 /** 1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1342 * other to be removed. 1343 * @adapter: board private structure 1344 **/ 1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1346 { 1347 struct iavf_adv_rss *rss, *rsstmp; 1348 1349 /* remove all advance RSS configuration */ 1350 spin_lock_bh(&adapter->adv_rss_lock); 1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1352 list) { 1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1354 list_del(&rss->list); 1355 kfree(rss); 1356 } else { 1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1358 } 1359 } 1360 spin_unlock_bh(&adapter->adv_rss_lock); 1361 } 1362 1363 /** 1364 * iavf_down - Shutdown the connection processing 1365 * @adapter: board private structure 1366 * 1367 * Expects to be called while holding crit_lock. 1368 **/ 1369 void iavf_down(struct iavf_adapter *adapter) 1370 { 1371 struct net_device *netdev = adapter->netdev; 1372 1373 if (adapter->state <= __IAVF_DOWN_PENDING) 1374 return; 1375 1376 netif_carrier_off(netdev); 1377 netif_tx_disable(netdev); 1378 adapter->link_up = false; 1379 iavf_napi_disable_all(adapter); 1380 iavf_irq_disable(adapter); 1381 1382 iavf_clear_mac_vlan_filters(adapter); 1383 iavf_clear_cloud_filters(adapter); 1384 iavf_clear_fdir_filters(adapter); 1385 iavf_clear_adv_rss_conf(adapter); 1386 1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1388 return; 1389 1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1391 /* cancel any current operation */ 1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1393 /* Schedule operations to close down the HW. Don't wait 1394 * here for this to complete. The watchdog is still running 1395 * and it will take care of this. 1396 */ 1397 if (!list_empty(&adapter->mac_filter_list)) 1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1399 if (!list_empty(&adapter->vlan_filter_list)) 1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1401 if (!list_empty(&adapter->cloud_filter_list)) 1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1403 if (!list_empty(&adapter->fdir_list_head)) 1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1405 if (!list_empty(&adapter->adv_rss_list_head)) 1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1407 } 1408 1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1410 } 1411 1412 /** 1413 * iavf_acquire_msix_vectors - Setup the MSIX capability 1414 * @adapter: board private structure 1415 * @vectors: number of vectors to request 1416 * 1417 * Work with the OS to set up the MSIX vectors needed. 1418 * 1419 * Returns 0 on success, negative on failure 1420 **/ 1421 static int 1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1423 { 1424 int err, vector_threshold; 1425 1426 /* We'll want at least 3 (vector_threshold): 1427 * 0) Other (Admin Queue and link, mostly) 1428 * 1) TxQ[0] Cleanup 1429 * 2) RxQ[0] Cleanup 1430 */ 1431 vector_threshold = MIN_MSIX_COUNT; 1432 1433 /* The more we get, the more we will assign to Tx/Rx Cleanup 1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1435 * Right now, we simply care about how many we'll get; we'll 1436 * set them up later while requesting irq's. 1437 */ 1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1439 vector_threshold, vectors); 1440 if (err < 0) { 1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1442 kfree(adapter->msix_entries); 1443 adapter->msix_entries = NULL; 1444 return err; 1445 } 1446 1447 /* Adjust for only the vectors we'll use, which is minimum 1448 * of max_msix_q_vectors + NONQ_VECS, or the number of 1449 * vectors we were allocated. 1450 */ 1451 adapter->num_msix_vectors = err; 1452 return 0; 1453 } 1454 1455 /** 1456 * iavf_free_queues - Free memory for all rings 1457 * @adapter: board private structure to initialize 1458 * 1459 * Free all of the memory associated with queue pairs. 1460 **/ 1461 static void iavf_free_queues(struct iavf_adapter *adapter) 1462 { 1463 if (!adapter->vsi_res) 1464 return; 1465 adapter->num_active_queues = 0; 1466 kfree(adapter->tx_rings); 1467 adapter->tx_rings = NULL; 1468 kfree(adapter->rx_rings); 1469 adapter->rx_rings = NULL; 1470 } 1471 1472 /** 1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1474 * @adapter: board private structure 1475 * 1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1477 * stripped in certain descriptor fields. Instead of checking the offload 1478 * capability bits in the hot path, cache the location the ring specific 1479 * flags. 1480 */ 1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1482 { 1483 int i; 1484 1485 for (i = 0; i < adapter->num_active_queues; i++) { 1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1488 1489 /* prevent multiple L2TAG bits being set after VFR */ 1490 tx_ring->flags &= 1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1493 rx_ring->flags &= 1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1496 1497 if (VLAN_ALLOWED(adapter)) { 1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1500 } else if (VLAN_V2_ALLOWED(adapter)) { 1501 struct virtchnl_vlan_supported_caps *stripping_support; 1502 struct virtchnl_vlan_supported_caps *insertion_support; 1503 1504 stripping_support = 1505 &adapter->vlan_v2_caps.offloads.stripping_support; 1506 insertion_support = 1507 &adapter->vlan_v2_caps.offloads.insertion_support; 1508 1509 if (stripping_support->outer) { 1510 if (stripping_support->outer & 1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1512 rx_ring->flags |= 1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1514 else if (stripping_support->outer & 1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1516 rx_ring->flags |= 1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1518 } else if (stripping_support->inner) { 1519 if (stripping_support->inner & 1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1521 rx_ring->flags |= 1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1523 else if (stripping_support->inner & 1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1525 rx_ring->flags |= 1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1527 } 1528 1529 if (insertion_support->outer) { 1530 if (insertion_support->outer & 1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1532 tx_ring->flags |= 1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 else if (insertion_support->outer & 1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1536 tx_ring->flags |= 1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1538 } else if (insertion_support->inner) { 1539 if (insertion_support->inner & 1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1541 tx_ring->flags |= 1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1543 else if (insertion_support->inner & 1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1545 tx_ring->flags |= 1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1547 } 1548 } 1549 } 1550 } 1551 1552 /** 1553 * iavf_alloc_queues - Allocate memory for all rings 1554 * @adapter: board private structure to initialize 1555 * 1556 * We allocate one ring per queue at run-time since we don't know the 1557 * number of queues at compile-time. The polling_netdev array is 1558 * intended for Multiqueue, but should work fine with a single queue. 1559 **/ 1560 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1561 { 1562 int i, num_active_queues; 1563 1564 /* If we're in reset reallocating queues we don't actually know yet for 1565 * certain the PF gave us the number of queues we asked for but we'll 1566 * assume it did. Once basic reset is finished we'll confirm once we 1567 * start negotiating config with PF. 1568 */ 1569 if (adapter->num_req_queues) 1570 num_active_queues = adapter->num_req_queues; 1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1572 adapter->num_tc) 1573 num_active_queues = adapter->ch_config.total_qps; 1574 else 1575 num_active_queues = min_t(int, 1576 adapter->vsi_res->num_queue_pairs, 1577 (int)(num_online_cpus())); 1578 1579 1580 adapter->tx_rings = kcalloc(num_active_queues, 1581 sizeof(struct iavf_ring), GFP_KERNEL); 1582 if (!adapter->tx_rings) 1583 goto err_out; 1584 adapter->rx_rings = kcalloc(num_active_queues, 1585 sizeof(struct iavf_ring), GFP_KERNEL); 1586 if (!adapter->rx_rings) 1587 goto err_out; 1588 1589 for (i = 0; i < num_active_queues; i++) { 1590 struct iavf_ring *tx_ring; 1591 struct iavf_ring *rx_ring; 1592 1593 tx_ring = &adapter->tx_rings[i]; 1594 1595 tx_ring->queue_index = i; 1596 tx_ring->netdev = adapter->netdev; 1597 tx_ring->dev = &adapter->pdev->dev; 1598 tx_ring->count = adapter->tx_desc_count; 1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1602 1603 rx_ring = &adapter->rx_rings[i]; 1604 rx_ring->queue_index = i; 1605 rx_ring->netdev = adapter->netdev; 1606 rx_ring->count = adapter->rx_desc_count; 1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1608 } 1609 1610 adapter->num_active_queues = num_active_queues; 1611 1612 iavf_set_queue_vlan_tag_loc(adapter); 1613 1614 return 0; 1615 1616 err_out: 1617 iavf_free_queues(adapter); 1618 return -ENOMEM; 1619 } 1620 1621 /** 1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1623 * @adapter: board private structure to initialize 1624 * 1625 * Attempt to configure the interrupts using the best available 1626 * capabilities of the hardware and the kernel. 1627 **/ 1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1629 { 1630 int vector, v_budget; 1631 int pairs = 0; 1632 int err = 0; 1633 1634 if (!adapter->vsi_res) { 1635 err = -EIO; 1636 goto out; 1637 } 1638 pairs = adapter->num_active_queues; 1639 1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1641 * us much good if we have more vectors than CPUs. However, we already 1642 * limit the total number of queues by the number of CPUs so we do not 1643 * need any further limiting here. 1644 */ 1645 v_budget = min_t(int, pairs + NONQ_VECS, 1646 (int)adapter->vf_res->max_vectors); 1647 1648 adapter->msix_entries = kcalloc(v_budget, 1649 sizeof(struct msix_entry), GFP_KERNEL); 1650 if (!adapter->msix_entries) { 1651 err = -ENOMEM; 1652 goto out; 1653 } 1654 1655 for (vector = 0; vector < v_budget; vector++) 1656 adapter->msix_entries[vector].entry = vector; 1657 1658 err = iavf_acquire_msix_vectors(adapter, v_budget); 1659 if (!err) 1660 iavf_schedule_finish_config(adapter); 1661 1662 out: 1663 return err; 1664 } 1665 1666 /** 1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1668 * @adapter: board private structure 1669 * 1670 * Return 0 on success, negative on failure 1671 **/ 1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1673 { 1674 struct iavf_aqc_get_set_rss_key_data *rss_key = 1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1676 struct iavf_hw *hw = &adapter->hw; 1677 enum iavf_status status; 1678 1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1680 /* bail because we already have a command pending */ 1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1682 adapter->current_op); 1683 return -EBUSY; 1684 } 1685 1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1687 if (status) { 1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1689 iavf_stat_str(hw, status), 1690 iavf_aq_str(hw, hw->aq.asq_last_status)); 1691 return iavf_status_to_errno(status); 1692 1693 } 1694 1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1696 adapter->rss_lut, adapter->rss_lut_size); 1697 if (status) { 1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1699 iavf_stat_str(hw, status), 1700 iavf_aq_str(hw, hw->aq.asq_last_status)); 1701 return iavf_status_to_errno(status); 1702 } 1703 1704 return 0; 1705 1706 } 1707 1708 /** 1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1710 * @adapter: board private structure 1711 * 1712 * Returns 0 on success, negative on failure 1713 **/ 1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1715 { 1716 struct iavf_hw *hw = &adapter->hw; 1717 u32 *dw; 1718 u16 i; 1719 1720 dw = (u32 *)adapter->rss_key; 1721 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1723 1724 dw = (u32 *)adapter->rss_lut; 1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1727 1728 iavf_flush(hw); 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * iavf_config_rss - Configure RSS keys and lut 1735 * @adapter: board private structure 1736 * 1737 * Returns 0 on success, negative on failure 1738 **/ 1739 int iavf_config_rss(struct iavf_adapter *adapter) 1740 { 1741 1742 if (RSS_PF(adapter)) { 1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1744 IAVF_FLAG_AQ_SET_RSS_KEY; 1745 return 0; 1746 } else if (RSS_AQ(adapter)) { 1747 return iavf_config_rss_aq(adapter); 1748 } else { 1749 return iavf_config_rss_reg(adapter); 1750 } 1751 } 1752 1753 /** 1754 * iavf_fill_rss_lut - Fill the lut with default values 1755 * @adapter: board private structure 1756 **/ 1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1758 { 1759 u16 i; 1760 1761 for (i = 0; i < adapter->rss_lut_size; i++) 1762 adapter->rss_lut[i] = i % adapter->num_active_queues; 1763 } 1764 1765 /** 1766 * iavf_init_rss - Prepare for RSS 1767 * @adapter: board private structure 1768 * 1769 * Return 0 on success, negative on failure 1770 **/ 1771 static int iavf_init_rss(struct iavf_adapter *adapter) 1772 { 1773 struct iavf_hw *hw = &adapter->hw; 1774 1775 if (!RSS_PF(adapter)) { 1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1777 if (adapter->vf_res->vf_cap_flags & 1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1780 else 1781 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1782 1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1785 } 1786 1787 iavf_fill_rss_lut(adapter); 1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1789 1790 return iavf_config_rss(adapter); 1791 } 1792 1793 /** 1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1795 * @adapter: board private structure to initialize 1796 * 1797 * We allocate one q_vector per queue interrupt. If allocation fails we 1798 * return -ENOMEM. 1799 **/ 1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1801 { 1802 int q_idx = 0, num_q_vectors; 1803 struct iavf_q_vector *q_vector; 1804 1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1807 GFP_KERNEL); 1808 if (!adapter->q_vectors) 1809 return -ENOMEM; 1810 1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1812 q_vector = &adapter->q_vectors[q_idx]; 1813 q_vector->adapter = adapter; 1814 q_vector->vsi = &adapter->vsi; 1815 q_vector->v_idx = q_idx; 1816 q_vector->reg_idx = q_idx; 1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1818 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1819 iavf_napi_poll); 1820 } 1821 1822 return 0; 1823 } 1824 1825 /** 1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1827 * @adapter: board private structure to initialize 1828 * 1829 * This function frees the memory allocated to the q_vectors. In addition if 1830 * NAPI is enabled it will delete any references to the NAPI struct prior 1831 * to freeing the q_vector. 1832 **/ 1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1834 { 1835 int q_idx, num_q_vectors; 1836 1837 if (!adapter->q_vectors) 1838 return; 1839 1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1841 1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1844 1845 netif_napi_del_locked(&q_vector->napi); 1846 } 1847 kfree(adapter->q_vectors); 1848 adapter->q_vectors = NULL; 1849 } 1850 1851 /** 1852 * iavf_reset_interrupt_capability - Reset MSIX setup 1853 * @adapter: board private structure 1854 * 1855 **/ 1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1857 { 1858 if (!adapter->msix_entries) 1859 return; 1860 1861 pci_disable_msix(adapter->pdev); 1862 kfree(adapter->msix_entries); 1863 adapter->msix_entries = NULL; 1864 } 1865 1866 /** 1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1868 * @adapter: board private structure to initialize 1869 * 1870 **/ 1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1872 { 1873 int err; 1874 1875 err = iavf_alloc_queues(adapter); 1876 if (err) { 1877 dev_err(&adapter->pdev->dev, 1878 "Unable to allocate memory for queues\n"); 1879 goto err_alloc_queues; 1880 } 1881 1882 err = iavf_set_interrupt_capability(adapter); 1883 if (err) { 1884 dev_err(&adapter->pdev->dev, 1885 "Unable to setup interrupt capabilities\n"); 1886 goto err_set_interrupt; 1887 } 1888 1889 err = iavf_alloc_q_vectors(adapter); 1890 if (err) { 1891 dev_err(&adapter->pdev->dev, 1892 "Unable to allocate memory for queue vectors\n"); 1893 goto err_alloc_q_vectors; 1894 } 1895 1896 /* If we've made it so far while ADq flag being ON, then we haven't 1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1898 * resources have been allocated in the reset path. 1899 * Now we can truly claim that ADq is enabled. 1900 */ 1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1902 adapter->num_tc) 1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1904 adapter->num_tc); 1905 1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1908 adapter->num_active_queues); 1909 1910 return 0; 1911 err_alloc_q_vectors: 1912 iavf_reset_interrupt_capability(adapter); 1913 err_set_interrupt: 1914 iavf_free_queues(adapter); 1915 err_alloc_queues: 1916 return err; 1917 } 1918 1919 /** 1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1921 * @adapter: board private structure 1922 **/ 1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1924 { 1925 iavf_free_q_vectors(adapter); 1926 iavf_reset_interrupt_capability(adapter); 1927 iavf_free_queues(adapter); 1928 } 1929 1930 /** 1931 * iavf_free_rss - Free memory used by RSS structs 1932 * @adapter: board private structure 1933 **/ 1934 static void iavf_free_rss(struct iavf_adapter *adapter) 1935 { 1936 kfree(adapter->rss_key); 1937 adapter->rss_key = NULL; 1938 1939 kfree(adapter->rss_lut); 1940 adapter->rss_lut = NULL; 1941 } 1942 1943 /** 1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1945 * @adapter: board private structure 1946 * @running: true if adapter->state == __IAVF_RUNNING 1947 * 1948 * Returns 0 on success, negative on failure 1949 **/ 1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1951 { 1952 struct net_device *netdev = adapter->netdev; 1953 int err; 1954 1955 if (running) 1956 iavf_free_traffic_irqs(adapter); 1957 iavf_free_misc_irq(adapter); 1958 iavf_free_interrupt_scheme(adapter); 1959 1960 err = iavf_init_interrupt_scheme(adapter); 1961 if (err) 1962 goto err; 1963 1964 netif_tx_stop_all_queues(netdev); 1965 1966 err = iavf_request_misc_irq(adapter); 1967 if (err) 1968 goto err; 1969 1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1971 1972 iavf_map_rings_to_vectors(adapter); 1973 err: 1974 return err; 1975 } 1976 1977 /** 1978 * iavf_finish_config - do all netdev work that needs RTNL 1979 * @work: our work_struct 1980 * 1981 * Do work that needs both RTNL and crit_lock. 1982 **/ 1983 static void iavf_finish_config(struct work_struct *work) 1984 { 1985 struct iavf_adapter *adapter; 1986 bool locks_released = false; 1987 int pairs, err; 1988 1989 adapter = container_of(work, struct iavf_adapter, finish_config); 1990 1991 /* Always take RTNL first to prevent circular lock dependency; 1992 * The dev->lock is needed to update the queue number 1993 */ 1994 rtnl_lock(); 1995 netdev_lock(adapter->netdev); 1996 mutex_lock(&adapter->crit_lock); 1997 1998 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 1999 adapter->netdev->reg_state == NETREG_REGISTERED && 2000 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2001 netdev_update_features(adapter->netdev); 2002 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2003 } 2004 2005 switch (adapter->state) { 2006 case __IAVF_DOWN: 2007 /* Set the real number of queues when reset occurs while 2008 * state == __IAVF_DOWN 2009 */ 2010 pairs = adapter->num_active_queues; 2011 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2012 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2013 2014 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2015 mutex_unlock(&adapter->crit_lock); 2016 netdev_unlock(adapter->netdev); 2017 locks_released = true; 2018 err = register_netdevice(adapter->netdev); 2019 if (err) { 2020 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2021 err); 2022 2023 /* go back and try again.*/ 2024 mutex_lock(&adapter->crit_lock); 2025 iavf_free_rss(adapter); 2026 iavf_free_misc_irq(adapter); 2027 iavf_reset_interrupt_capability(adapter); 2028 iavf_change_state(adapter, 2029 __IAVF_INIT_CONFIG_ADAPTER); 2030 mutex_unlock(&adapter->crit_lock); 2031 goto out; 2032 } 2033 } 2034 break; 2035 case __IAVF_RUNNING: 2036 pairs = adapter->num_active_queues; 2037 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2038 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2039 break; 2040 2041 default: 2042 break; 2043 } 2044 2045 out: 2046 if (!locks_released) { 2047 mutex_unlock(&adapter->crit_lock); 2048 netdev_unlock(adapter->netdev); 2049 } 2050 rtnl_unlock(); 2051 } 2052 2053 /** 2054 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2055 * @adapter: board private structure 2056 **/ 2057 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2058 { 2059 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2060 queue_work(adapter->wq, &adapter->finish_config); 2061 } 2062 2063 /** 2064 * iavf_process_aq_command - process aq_required flags 2065 * and sends aq command 2066 * @adapter: pointer to iavf adapter structure 2067 * 2068 * Returns 0 on success 2069 * Returns error code if no command was sent 2070 * or error code if the command failed. 2071 **/ 2072 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2073 { 2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2075 return iavf_send_vf_config_msg(adapter); 2076 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2077 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2078 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2079 iavf_disable_queues(adapter); 2080 return 0; 2081 } 2082 2083 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2084 iavf_map_queues(adapter); 2085 return 0; 2086 } 2087 2088 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2089 iavf_add_ether_addrs(adapter); 2090 return 0; 2091 } 2092 2093 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2094 iavf_add_vlans(adapter); 2095 return 0; 2096 } 2097 2098 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2099 iavf_del_ether_addrs(adapter); 2100 return 0; 2101 } 2102 2103 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2104 iavf_del_vlans(adapter); 2105 return 0; 2106 } 2107 2108 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2109 iavf_enable_vlan_stripping(adapter); 2110 return 0; 2111 } 2112 2113 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2114 iavf_disable_vlan_stripping(adapter); 2115 return 0; 2116 } 2117 2118 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2119 iavf_cfg_queues_bw(adapter); 2120 return 0; 2121 } 2122 2123 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2124 iavf_get_qos_caps(adapter); 2125 return 0; 2126 } 2127 2128 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2129 iavf_cfg_queues_quanta_size(adapter); 2130 return 0; 2131 } 2132 2133 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2134 iavf_configure_queues(adapter); 2135 return 0; 2136 } 2137 2138 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2139 iavf_enable_queues(adapter); 2140 return 0; 2141 } 2142 2143 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2144 /* This message goes straight to the firmware, not the 2145 * PF, so we don't have to set current_op as we will 2146 * not get a response through the ARQ. 2147 */ 2148 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2149 return 0; 2150 } 2151 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2152 iavf_get_hena(adapter); 2153 return 0; 2154 } 2155 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2156 iavf_set_hena(adapter); 2157 return 0; 2158 } 2159 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2160 iavf_set_rss_key(adapter); 2161 return 0; 2162 } 2163 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2164 iavf_set_rss_lut(adapter); 2165 return 0; 2166 } 2167 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2168 iavf_set_rss_hfunc(adapter); 2169 return 0; 2170 } 2171 2172 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2173 iavf_set_promiscuous(adapter); 2174 return 0; 2175 } 2176 2177 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2178 iavf_enable_channels(adapter); 2179 return 0; 2180 } 2181 2182 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2183 iavf_disable_channels(adapter); 2184 return 0; 2185 } 2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2187 iavf_add_cloud_filter(adapter); 2188 return 0; 2189 } 2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2191 iavf_del_cloud_filter(adapter); 2192 return 0; 2193 } 2194 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2195 iavf_add_fdir_filter(adapter); 2196 return IAVF_SUCCESS; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2199 iavf_del_fdir_filter(adapter); 2200 return IAVF_SUCCESS; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2203 iavf_add_adv_rss_cfg(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2207 iavf_del_adv_rss_cfg(adapter); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2211 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2215 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2219 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2220 return 0; 2221 } 2222 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2223 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2224 return 0; 2225 } 2226 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2227 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2228 return 0; 2229 } 2230 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2231 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2232 return 0; 2233 } 2234 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2235 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2236 return 0; 2237 } 2238 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2239 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2240 return 0; 2241 } 2242 2243 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2244 iavf_request_stats(adapter); 2245 return 0; 2246 } 2247 2248 return -EAGAIN; 2249 } 2250 2251 /** 2252 * iavf_set_vlan_offload_features - set VLAN offload configuration 2253 * @adapter: board private structure 2254 * @prev_features: previous features used for comparison 2255 * @features: updated features used for configuration 2256 * 2257 * Set the aq_required bit(s) based on the requested features passed in to 2258 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2259 * the watchdog if any changes are requested to expedite the request via 2260 * virtchnl. 2261 **/ 2262 static void 2263 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2264 netdev_features_t prev_features, 2265 netdev_features_t features) 2266 { 2267 bool enable_stripping = true, enable_insertion = true; 2268 u16 vlan_ethertype = 0; 2269 u64 aq_required = 0; 2270 2271 /* keep cases separate because one ethertype for offloads can be 2272 * disabled at the same time as another is disabled, so check for an 2273 * enabled ethertype first, then check for disabled. Default to 2274 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2275 * stripping. 2276 */ 2277 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2278 vlan_ethertype = ETH_P_8021AD; 2279 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2280 vlan_ethertype = ETH_P_8021Q; 2281 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2282 vlan_ethertype = ETH_P_8021AD; 2283 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2284 vlan_ethertype = ETH_P_8021Q; 2285 else 2286 vlan_ethertype = ETH_P_8021Q; 2287 2288 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2289 enable_stripping = false; 2290 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2291 enable_insertion = false; 2292 2293 if (VLAN_ALLOWED(adapter)) { 2294 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2295 * stripping via virtchnl. VLAN insertion can be toggled on the 2296 * netdev, but it doesn't require a virtchnl message 2297 */ 2298 if (enable_stripping) 2299 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2300 else 2301 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2302 2303 } else if (VLAN_V2_ALLOWED(adapter)) { 2304 switch (vlan_ethertype) { 2305 case ETH_P_8021Q: 2306 if (enable_stripping) 2307 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2308 else 2309 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2310 2311 if (enable_insertion) 2312 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2313 else 2314 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2315 break; 2316 case ETH_P_8021AD: 2317 if (enable_stripping) 2318 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2319 else 2320 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2321 2322 if (enable_insertion) 2323 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2324 else 2325 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2326 break; 2327 } 2328 } 2329 2330 if (aq_required) 2331 iavf_schedule_aq_request(adapter, aq_required); 2332 } 2333 2334 /** 2335 * iavf_startup - first step of driver startup 2336 * @adapter: board private structure 2337 * 2338 * Function process __IAVF_STARTUP driver state. 2339 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2340 * when fails the state is changed to __IAVF_INIT_FAILED 2341 **/ 2342 static void iavf_startup(struct iavf_adapter *adapter) 2343 { 2344 struct pci_dev *pdev = adapter->pdev; 2345 struct iavf_hw *hw = &adapter->hw; 2346 enum iavf_status status; 2347 int ret; 2348 2349 WARN_ON(adapter->state != __IAVF_STARTUP); 2350 2351 /* driver loaded, probe complete */ 2352 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2353 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2354 2355 ret = iavf_check_reset_complete(hw); 2356 if (ret) { 2357 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2358 ret); 2359 goto err; 2360 } 2361 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2362 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2363 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2364 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2365 2366 status = iavf_init_adminq(hw); 2367 if (status) { 2368 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2369 status); 2370 goto err; 2371 } 2372 ret = iavf_send_api_ver(adapter); 2373 if (ret) { 2374 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2375 iavf_shutdown_adminq(hw); 2376 goto err; 2377 } 2378 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2379 return; 2380 err: 2381 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2382 } 2383 2384 /** 2385 * iavf_init_version_check - second step of driver startup 2386 * @adapter: board private structure 2387 * 2388 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2389 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2390 * when fails the state is changed to __IAVF_INIT_FAILED 2391 **/ 2392 static void iavf_init_version_check(struct iavf_adapter *adapter) 2393 { 2394 struct pci_dev *pdev = adapter->pdev; 2395 struct iavf_hw *hw = &adapter->hw; 2396 int err = -EAGAIN; 2397 2398 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2399 2400 if (!iavf_asq_done(hw)) { 2401 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2402 iavf_shutdown_adminq(hw); 2403 iavf_change_state(adapter, __IAVF_STARTUP); 2404 goto err; 2405 } 2406 2407 /* aq msg sent, awaiting reply */ 2408 err = iavf_verify_api_ver(adapter); 2409 if (err) { 2410 if (err == -EALREADY) 2411 err = iavf_send_api_ver(adapter); 2412 else 2413 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2414 adapter->pf_version.major, 2415 adapter->pf_version.minor, 2416 VIRTCHNL_VERSION_MAJOR, 2417 VIRTCHNL_VERSION_MINOR); 2418 goto err; 2419 } 2420 err = iavf_send_vf_config_msg(adapter); 2421 if (err) { 2422 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2423 err); 2424 goto err; 2425 } 2426 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2427 return; 2428 err: 2429 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2430 } 2431 2432 /** 2433 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2434 * @adapter: board private structure 2435 */ 2436 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2437 { 2438 int i, num_req_queues = adapter->num_req_queues; 2439 struct iavf_vsi *vsi = &adapter->vsi; 2440 2441 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2442 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2443 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2444 } 2445 if (!adapter->vsi_res) { 2446 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2447 return -ENODEV; 2448 } 2449 2450 if (num_req_queues && 2451 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2452 /* Problem. The PF gave us fewer queues than what we had 2453 * negotiated in our request. Need a reset to see if we can't 2454 * get back to a working state. 2455 */ 2456 dev_err(&adapter->pdev->dev, 2457 "Requested %d queues, but PF only gave us %d.\n", 2458 num_req_queues, 2459 adapter->vsi_res->num_queue_pairs); 2460 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2461 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2462 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2463 2464 return -EAGAIN; 2465 } 2466 adapter->num_req_queues = 0; 2467 adapter->vsi.id = adapter->vsi_res->vsi_id; 2468 2469 adapter->vsi.back = adapter; 2470 adapter->vsi.base_vector = 1; 2471 vsi->netdev = adapter->netdev; 2472 vsi->qs_handle = adapter->vsi_res->qset_handle; 2473 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2474 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2475 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2476 } else { 2477 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2478 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2479 } 2480 2481 return 0; 2482 } 2483 2484 /** 2485 * iavf_init_get_resources - third step of driver startup 2486 * @adapter: board private structure 2487 * 2488 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2489 * finishes driver initialization procedure. 2490 * When success the state is changed to __IAVF_DOWN 2491 * when fails the state is changed to __IAVF_INIT_FAILED 2492 **/ 2493 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2494 { 2495 struct pci_dev *pdev = adapter->pdev; 2496 struct iavf_hw *hw = &adapter->hw; 2497 int err; 2498 2499 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2500 /* aq msg sent, awaiting reply */ 2501 if (!adapter->vf_res) { 2502 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2503 GFP_KERNEL); 2504 if (!adapter->vf_res) { 2505 err = -ENOMEM; 2506 goto err; 2507 } 2508 } 2509 err = iavf_get_vf_config(adapter); 2510 if (err == -EALREADY) { 2511 err = iavf_send_vf_config_msg(adapter); 2512 goto err; 2513 } else if (err == -EINVAL) { 2514 /* We only get -EINVAL if the device is in a very bad 2515 * state or if we've been disabled for previous bad 2516 * behavior. Either way, we're done now. 2517 */ 2518 iavf_shutdown_adminq(hw); 2519 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2520 return; 2521 } 2522 if (err) { 2523 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2524 goto err_alloc; 2525 } 2526 2527 err = iavf_parse_vf_resource_msg(adapter); 2528 if (err) { 2529 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2530 err); 2531 goto err_alloc; 2532 } 2533 /* Some features require additional messages to negotiate extended 2534 * capabilities. These are processed in sequence by the 2535 * __IAVF_INIT_EXTENDED_CAPS driver state. 2536 */ 2537 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2538 2539 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2540 return; 2541 2542 err_alloc: 2543 kfree(adapter->vf_res); 2544 adapter->vf_res = NULL; 2545 err: 2546 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2547 } 2548 2549 /** 2550 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2551 * @adapter: board private structure 2552 * 2553 * Function processes send of the extended VLAN V2 capability message to the 2554 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2555 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2556 */ 2557 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2558 { 2559 int ret; 2560 2561 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2562 2563 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2564 if (ret && ret == -EOPNOTSUPP) { 2565 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2566 * we did not send the capability exchange message and do not 2567 * expect a response. 2568 */ 2569 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2570 } 2571 2572 /* We sent the message, so move on to the next step */ 2573 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2574 } 2575 2576 /** 2577 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2578 * @adapter: board private structure 2579 * 2580 * Function processes receipt of the extended VLAN V2 capability message from 2581 * the PF. 2582 **/ 2583 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2584 { 2585 int ret; 2586 2587 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2588 2589 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2590 2591 ret = iavf_get_vf_vlan_v2_caps(adapter); 2592 if (ret) 2593 goto err; 2594 2595 /* We've processed receipt of the VLAN V2 caps message */ 2596 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2597 return; 2598 err: 2599 /* We didn't receive a reply. Make sure we try sending again when 2600 * __IAVF_INIT_FAILED attempts to recover. 2601 */ 2602 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2603 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2604 } 2605 2606 /** 2607 * iavf_init_process_extended_caps - Part of driver startup 2608 * @adapter: board private structure 2609 * 2610 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2611 * handles negotiating capabilities for features which require an additional 2612 * message. 2613 * 2614 * Once all extended capabilities exchanges are finished, the driver will 2615 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2616 */ 2617 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2618 { 2619 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2620 2621 /* Process capability exchange for VLAN V2 */ 2622 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2623 iavf_init_send_offload_vlan_v2_caps(adapter); 2624 return; 2625 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2626 iavf_init_recv_offload_vlan_v2_caps(adapter); 2627 return; 2628 } 2629 2630 /* When we reach here, no further extended capabilities exchanges are 2631 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2632 */ 2633 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2634 } 2635 2636 /** 2637 * iavf_init_config_adapter - last part of driver startup 2638 * @adapter: board private structure 2639 * 2640 * After all the supported capabilities are negotiated, then the 2641 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2642 */ 2643 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2644 { 2645 struct net_device *netdev = adapter->netdev; 2646 struct pci_dev *pdev = adapter->pdev; 2647 int err; 2648 2649 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2650 2651 if (iavf_process_config(adapter)) 2652 goto err; 2653 2654 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2655 2656 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2657 2658 netdev->netdev_ops = &iavf_netdev_ops; 2659 iavf_set_ethtool_ops(netdev); 2660 netdev->watchdog_timeo = 5 * HZ; 2661 2662 netdev->min_mtu = ETH_MIN_MTU; 2663 netdev->max_mtu = LIBIE_MAX_MTU; 2664 2665 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2666 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2667 adapter->hw.mac.addr); 2668 eth_hw_addr_random(netdev); 2669 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2670 } else { 2671 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2672 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2673 } 2674 2675 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2676 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2677 err = iavf_init_interrupt_scheme(adapter); 2678 if (err) 2679 goto err_sw_init; 2680 iavf_map_rings_to_vectors(adapter); 2681 if (adapter->vf_res->vf_cap_flags & 2682 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2683 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2684 2685 err = iavf_request_misc_irq(adapter); 2686 if (err) 2687 goto err_sw_init; 2688 2689 netif_carrier_off(netdev); 2690 adapter->link_up = false; 2691 netif_tx_stop_all_queues(netdev); 2692 2693 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2694 if (netdev->features & NETIF_F_GRO) 2695 dev_info(&pdev->dev, "GRO is enabled\n"); 2696 2697 iavf_change_state(adapter, __IAVF_DOWN); 2698 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2699 2700 iavf_misc_irq_enable(adapter); 2701 wake_up(&adapter->down_waitqueue); 2702 2703 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2704 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2705 if (!adapter->rss_key || !adapter->rss_lut) { 2706 err = -ENOMEM; 2707 goto err_mem; 2708 } 2709 if (RSS_AQ(adapter)) 2710 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2711 else 2712 iavf_init_rss(adapter); 2713 2714 if (VLAN_V2_ALLOWED(adapter)) 2715 /* request initial VLAN offload settings */ 2716 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2717 2718 if (QOS_ALLOWED(adapter)) 2719 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2720 2721 iavf_schedule_finish_config(adapter); 2722 return; 2723 2724 err_mem: 2725 iavf_free_rss(adapter); 2726 iavf_free_misc_irq(adapter); 2727 err_sw_init: 2728 iavf_reset_interrupt_capability(adapter); 2729 err: 2730 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2731 } 2732 2733 /** 2734 * iavf_watchdog_task - Periodic call-back task 2735 * @work: pointer to work_struct 2736 **/ 2737 static void iavf_watchdog_task(struct work_struct *work) 2738 { 2739 struct iavf_adapter *adapter = container_of(work, 2740 struct iavf_adapter, 2741 watchdog_task.work); 2742 struct net_device *netdev = adapter->netdev; 2743 struct iavf_hw *hw = &adapter->hw; 2744 u32 reg_val; 2745 2746 netdev_lock(netdev); 2747 if (!mutex_trylock(&adapter->crit_lock)) { 2748 if (adapter->state == __IAVF_REMOVE) { 2749 netdev_unlock(netdev); 2750 return; 2751 } 2752 2753 goto restart_watchdog; 2754 } 2755 2756 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2757 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2758 2759 switch (adapter->state) { 2760 case __IAVF_STARTUP: 2761 iavf_startup(adapter); 2762 mutex_unlock(&adapter->crit_lock); 2763 netdev_unlock(netdev); 2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2765 msecs_to_jiffies(30)); 2766 return; 2767 case __IAVF_INIT_VERSION_CHECK: 2768 iavf_init_version_check(adapter); 2769 mutex_unlock(&adapter->crit_lock); 2770 netdev_unlock(netdev); 2771 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2772 msecs_to_jiffies(30)); 2773 return; 2774 case __IAVF_INIT_GET_RESOURCES: 2775 iavf_init_get_resources(adapter); 2776 mutex_unlock(&adapter->crit_lock); 2777 netdev_unlock(netdev); 2778 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2779 msecs_to_jiffies(1)); 2780 return; 2781 case __IAVF_INIT_EXTENDED_CAPS: 2782 iavf_init_process_extended_caps(adapter); 2783 mutex_unlock(&adapter->crit_lock); 2784 netdev_unlock(netdev); 2785 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2786 msecs_to_jiffies(1)); 2787 return; 2788 case __IAVF_INIT_CONFIG_ADAPTER: 2789 iavf_init_config_adapter(adapter); 2790 mutex_unlock(&adapter->crit_lock); 2791 netdev_unlock(netdev); 2792 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2793 msecs_to_jiffies(1)); 2794 return; 2795 case __IAVF_INIT_FAILED: 2796 if (test_bit(__IAVF_IN_REMOVE_TASK, 2797 &adapter->crit_section)) { 2798 /* Do not update the state and do not reschedule 2799 * watchdog task, iavf_remove should handle this state 2800 * as it can loop forever 2801 */ 2802 mutex_unlock(&adapter->crit_lock); 2803 netdev_unlock(netdev); 2804 return; 2805 } 2806 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2807 dev_err(&adapter->pdev->dev, 2808 "Failed to communicate with PF; waiting before retry\n"); 2809 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2810 iavf_shutdown_adminq(hw); 2811 mutex_unlock(&adapter->crit_lock); 2812 netdev_unlock(netdev); 2813 queue_delayed_work(adapter->wq, 2814 &adapter->watchdog_task, (5 * HZ)); 2815 return; 2816 } 2817 /* Try again from failed step*/ 2818 iavf_change_state(adapter, adapter->last_state); 2819 mutex_unlock(&adapter->crit_lock); 2820 netdev_unlock(netdev); 2821 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2822 return; 2823 case __IAVF_COMM_FAILED: 2824 if (test_bit(__IAVF_IN_REMOVE_TASK, 2825 &adapter->crit_section)) { 2826 /* Set state to __IAVF_INIT_FAILED and perform remove 2827 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2828 * doesn't bring the state back to __IAVF_COMM_FAILED. 2829 */ 2830 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2831 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2832 mutex_unlock(&adapter->crit_lock); 2833 netdev_unlock(netdev); 2834 return; 2835 } 2836 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2837 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2838 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2839 reg_val == VIRTCHNL_VFR_COMPLETED) { 2840 /* A chance for redemption! */ 2841 dev_err(&adapter->pdev->dev, 2842 "Hardware came out of reset. Attempting reinit.\n"); 2843 /* When init task contacts the PF and 2844 * gets everything set up again, it'll restart the 2845 * watchdog for us. Down, boy. Sit. Stay. Woof. 2846 */ 2847 iavf_change_state(adapter, __IAVF_STARTUP); 2848 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2849 } 2850 adapter->aq_required = 0; 2851 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2852 mutex_unlock(&adapter->crit_lock); 2853 netdev_unlock(netdev); 2854 queue_delayed_work(adapter->wq, 2855 &adapter->watchdog_task, 2856 msecs_to_jiffies(10)); 2857 return; 2858 case __IAVF_RESETTING: 2859 mutex_unlock(&adapter->crit_lock); 2860 netdev_unlock(netdev); 2861 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2862 HZ * 2); 2863 return; 2864 case __IAVF_DOWN: 2865 case __IAVF_DOWN_PENDING: 2866 case __IAVF_TESTING: 2867 case __IAVF_RUNNING: 2868 if (adapter->current_op) { 2869 if (!iavf_asq_done(hw)) { 2870 dev_dbg(&adapter->pdev->dev, 2871 "Admin queue timeout\n"); 2872 iavf_send_api_ver(adapter); 2873 } 2874 } else { 2875 int ret = iavf_process_aq_command(adapter); 2876 2877 /* An error will be returned if no commands were 2878 * processed; use this opportunity to update stats 2879 * if the error isn't -ENOTSUPP 2880 */ 2881 if (ret && ret != -EOPNOTSUPP && 2882 adapter->state == __IAVF_RUNNING) 2883 iavf_request_stats(adapter); 2884 } 2885 if (adapter->state == __IAVF_RUNNING) 2886 iavf_detect_recover_hung(&adapter->vsi); 2887 break; 2888 case __IAVF_REMOVE: 2889 default: 2890 mutex_unlock(&adapter->crit_lock); 2891 netdev_unlock(netdev); 2892 return; 2893 } 2894 2895 /* check for hw reset */ 2896 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2897 if (!reg_val) { 2898 adapter->aq_required = 0; 2899 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2900 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2901 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2902 mutex_unlock(&adapter->crit_lock); 2903 netdev_unlock(netdev); 2904 queue_delayed_work(adapter->wq, 2905 &adapter->watchdog_task, HZ * 2); 2906 return; 2907 } 2908 2909 mutex_unlock(&adapter->crit_lock); 2910 restart_watchdog: 2911 netdev_unlock(netdev); 2912 if (adapter->state >= __IAVF_DOWN) 2913 queue_work(adapter->wq, &adapter->adminq_task); 2914 if (adapter->aq_required) 2915 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2916 msecs_to_jiffies(20)); 2917 else 2918 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2919 HZ * 2); 2920 } 2921 2922 /** 2923 * iavf_disable_vf - disable VF 2924 * @adapter: board private structure 2925 * 2926 * Set communication failed flag and free all resources. 2927 * NOTE: This function is expected to be called with crit_lock being held. 2928 **/ 2929 static void iavf_disable_vf(struct iavf_adapter *adapter) 2930 { 2931 struct iavf_mac_filter *f, *ftmp; 2932 struct iavf_vlan_filter *fv, *fvtmp; 2933 struct iavf_cloud_filter *cf, *cftmp; 2934 2935 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2936 2937 /* We don't use netif_running() because it may be true prior to 2938 * ndo_open() returning, so we can't assume it means all our open 2939 * tasks have finished, since we're not holding the rtnl_lock here. 2940 */ 2941 if (adapter->state == __IAVF_RUNNING) { 2942 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2943 netif_carrier_off(adapter->netdev); 2944 netif_tx_disable(adapter->netdev); 2945 adapter->link_up = false; 2946 iavf_napi_disable_all(adapter); 2947 iavf_irq_disable(adapter); 2948 iavf_free_traffic_irqs(adapter); 2949 iavf_free_all_tx_resources(adapter); 2950 iavf_free_all_rx_resources(adapter); 2951 } 2952 2953 spin_lock_bh(&adapter->mac_vlan_list_lock); 2954 2955 /* Delete all of the filters */ 2956 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2957 list_del(&f->list); 2958 kfree(f); 2959 } 2960 2961 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2962 list_del(&fv->list); 2963 kfree(fv); 2964 } 2965 adapter->num_vlan_filters = 0; 2966 2967 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2968 2969 spin_lock_bh(&adapter->cloud_filter_list_lock); 2970 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2971 list_del(&cf->list); 2972 kfree(cf); 2973 adapter->num_cloud_filters--; 2974 } 2975 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2976 2977 iavf_free_misc_irq(adapter); 2978 iavf_free_interrupt_scheme(adapter); 2979 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2980 iavf_shutdown_adminq(&adapter->hw); 2981 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2982 iavf_change_state(adapter, __IAVF_DOWN); 2983 wake_up(&adapter->down_waitqueue); 2984 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2985 } 2986 2987 /** 2988 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 2989 * @adapter: board private structure 2990 * 2991 * After a reset, the shaper parameters of queues need to be replayed again. 2992 * Since the net_shaper object inside TX rings persists across reset, 2993 * set the update flag for all queues so that the virtchnl message is triggered 2994 * for all queues. 2995 **/ 2996 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 2997 { 2998 int i, num = 0; 2999 3000 for (i = 0; i < adapter->num_active_queues; i++) 3001 if (adapter->tx_rings[i].q_shaper.bw_min || 3002 adapter->tx_rings[i].q_shaper.bw_max) { 3003 adapter->tx_rings[i].q_shaper_update = true; 3004 num++; 3005 } 3006 3007 if (num) 3008 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3009 } 3010 3011 /** 3012 * iavf_reset_task - Call-back task to handle hardware reset 3013 * @work: pointer to work_struct 3014 * 3015 * During reset we need to shut down and reinitialize the admin queue 3016 * before we can use it to communicate with the PF again. We also clear 3017 * and reinit the rings because that context is lost as well. 3018 **/ 3019 static void iavf_reset_task(struct work_struct *work) 3020 { 3021 struct iavf_adapter *adapter = container_of(work, 3022 struct iavf_adapter, 3023 reset_task); 3024 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3025 struct net_device *netdev = adapter->netdev; 3026 struct iavf_hw *hw = &adapter->hw; 3027 struct iavf_mac_filter *f, *ftmp; 3028 struct iavf_cloud_filter *cf; 3029 enum iavf_status status; 3030 u32 reg_val; 3031 int i = 0, err; 3032 bool running; 3033 3034 /* When device is being removed it doesn't make sense to run the reset 3035 * task, just return in such a case. 3036 */ 3037 netdev_lock(netdev); 3038 if (!mutex_trylock(&adapter->crit_lock)) { 3039 if (adapter->state != __IAVF_REMOVE) 3040 queue_work(adapter->wq, &adapter->reset_task); 3041 3042 netdev_unlock(netdev); 3043 return; 3044 } 3045 3046 iavf_misc_irq_disable(adapter); 3047 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3048 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3049 /* Restart the AQ here. If we have been reset but didn't 3050 * detect it, or if the PF had to reinit, our AQ will be hosed. 3051 */ 3052 iavf_shutdown_adminq(hw); 3053 iavf_init_adminq(hw); 3054 iavf_request_reset(adapter); 3055 } 3056 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3057 3058 /* poll until we see the reset actually happen */ 3059 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3060 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3061 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3062 if (!reg_val) 3063 break; 3064 usleep_range(5000, 10000); 3065 } 3066 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3067 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3068 goto continue_reset; /* act like the reset happened */ 3069 } 3070 3071 /* wait until the reset is complete and the PF is responding to us */ 3072 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3073 /* sleep first to make sure a minimum wait time is met */ 3074 msleep(IAVF_RESET_WAIT_MS); 3075 3076 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3077 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3078 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3079 break; 3080 } 3081 3082 pci_set_master(adapter->pdev); 3083 pci_restore_msi_state(adapter->pdev); 3084 3085 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3086 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3087 reg_val); 3088 iavf_disable_vf(adapter); 3089 mutex_unlock(&adapter->crit_lock); 3090 netdev_unlock(netdev); 3091 return; /* Do not attempt to reinit. It's dead, Jim. */ 3092 } 3093 3094 continue_reset: 3095 /* We don't use netif_running() because it may be true prior to 3096 * ndo_open() returning, so we can't assume it means all our open 3097 * tasks have finished, since we're not holding the rtnl_lock here. 3098 */ 3099 running = adapter->state == __IAVF_RUNNING; 3100 3101 if (running) { 3102 netif_carrier_off(netdev); 3103 netif_tx_stop_all_queues(netdev); 3104 adapter->link_up = false; 3105 iavf_napi_disable_all(adapter); 3106 } 3107 iavf_irq_disable(adapter); 3108 3109 iavf_change_state(adapter, __IAVF_RESETTING); 3110 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3111 3112 /* free the Tx/Rx rings and descriptors, might be better to just 3113 * re-use them sometime in the future 3114 */ 3115 iavf_free_all_rx_resources(adapter); 3116 iavf_free_all_tx_resources(adapter); 3117 3118 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3119 /* kill and reinit the admin queue */ 3120 iavf_shutdown_adminq(hw); 3121 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3122 status = iavf_init_adminq(hw); 3123 if (status) { 3124 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3125 status); 3126 goto reset_err; 3127 } 3128 adapter->aq_required = 0; 3129 3130 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3131 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3132 err = iavf_reinit_interrupt_scheme(adapter, running); 3133 if (err) 3134 goto reset_err; 3135 } 3136 3137 if (RSS_AQ(adapter)) { 3138 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3139 } else { 3140 err = iavf_init_rss(adapter); 3141 if (err) 3142 goto reset_err; 3143 } 3144 3145 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3146 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3147 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3148 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3149 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3150 * been successfully sent and negotiated 3151 */ 3152 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3153 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3154 3155 spin_lock_bh(&adapter->mac_vlan_list_lock); 3156 3157 /* Delete filter for the current MAC address, it could have 3158 * been changed by the PF via administratively set MAC. 3159 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3160 */ 3161 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3162 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3163 list_del(&f->list); 3164 kfree(f); 3165 } 3166 } 3167 /* re-add all MAC filters */ 3168 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3169 f->add = true; 3170 } 3171 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3172 3173 /* check if TCs are running and re-add all cloud filters */ 3174 spin_lock_bh(&adapter->cloud_filter_list_lock); 3175 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3176 adapter->num_tc) { 3177 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3178 cf->add = true; 3179 } 3180 } 3181 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3182 3183 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3184 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3185 iavf_misc_irq_enable(adapter); 3186 3187 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3188 3189 /* We were running when the reset started, so we need to restore some 3190 * state here. 3191 */ 3192 if (running) { 3193 /* allocate transmit descriptors */ 3194 err = iavf_setup_all_tx_resources(adapter); 3195 if (err) 3196 goto reset_err; 3197 3198 /* allocate receive descriptors */ 3199 err = iavf_setup_all_rx_resources(adapter); 3200 if (err) 3201 goto reset_err; 3202 3203 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3204 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3205 err = iavf_request_traffic_irqs(adapter, netdev->name); 3206 if (err) 3207 goto reset_err; 3208 3209 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3210 } 3211 3212 iavf_configure(adapter); 3213 3214 /* iavf_up_complete() will switch device back 3215 * to __IAVF_RUNNING 3216 */ 3217 iavf_up_complete(adapter); 3218 3219 iavf_irq_enable(adapter, true); 3220 3221 iavf_reconfig_qs_bw(adapter); 3222 } else { 3223 iavf_change_state(adapter, __IAVF_DOWN); 3224 wake_up(&adapter->down_waitqueue); 3225 } 3226 3227 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3228 3229 wake_up(&adapter->reset_waitqueue); 3230 mutex_unlock(&adapter->crit_lock); 3231 netdev_unlock(netdev); 3232 3233 return; 3234 reset_err: 3235 if (running) { 3236 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3237 iavf_free_traffic_irqs(adapter); 3238 } 3239 iavf_disable_vf(adapter); 3240 3241 mutex_unlock(&adapter->crit_lock); 3242 netdev_unlock(netdev); 3243 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3244 } 3245 3246 /** 3247 * iavf_adminq_task - worker thread to clean the admin queue 3248 * @work: pointer to work_struct containing our data 3249 **/ 3250 static void iavf_adminq_task(struct work_struct *work) 3251 { 3252 struct iavf_adapter *adapter = 3253 container_of(work, struct iavf_adapter, adminq_task); 3254 struct iavf_hw *hw = &adapter->hw; 3255 struct iavf_arq_event_info event; 3256 enum virtchnl_ops v_op; 3257 enum iavf_status ret, v_ret; 3258 u32 val, oldval; 3259 u16 pending; 3260 3261 if (!mutex_trylock(&adapter->crit_lock)) { 3262 if (adapter->state == __IAVF_REMOVE) 3263 return; 3264 3265 queue_work(adapter->wq, &adapter->adminq_task); 3266 goto out; 3267 } 3268 3269 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3270 goto unlock; 3271 3272 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3274 if (!event.msg_buf) 3275 goto unlock; 3276 3277 do { 3278 ret = iavf_clean_arq_element(hw, &event, &pending); 3279 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3280 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3281 3282 if (ret || !v_op) 3283 break; /* No event to process or error cleaning ARQ */ 3284 3285 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3286 event.msg_len); 3287 if (pending != 0) 3288 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3289 } while (pending); 3290 3291 if (iavf_is_reset_in_progress(adapter)) 3292 goto freedom; 3293 3294 /* check for error indications */ 3295 val = rd32(hw, IAVF_VF_ARQLEN1); 3296 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3297 goto freedom; 3298 oldval = val; 3299 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3300 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3301 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3302 } 3303 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3304 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3305 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3306 } 3307 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3308 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3309 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3310 } 3311 if (oldval != val) 3312 wr32(hw, IAVF_VF_ARQLEN1, val); 3313 3314 val = rd32(hw, IAVF_VF_ATQLEN1); 3315 oldval = val; 3316 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3317 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3318 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3319 } 3320 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3321 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3322 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3323 } 3324 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3325 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3326 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3327 } 3328 if (oldval != val) 3329 wr32(hw, IAVF_VF_ATQLEN1, val); 3330 3331 freedom: 3332 kfree(event.msg_buf); 3333 unlock: 3334 mutex_unlock(&adapter->crit_lock); 3335 out: 3336 /* re-enable Admin queue interrupt cause */ 3337 iavf_misc_irq_enable(adapter); 3338 } 3339 3340 /** 3341 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3342 * @adapter: board private structure 3343 * 3344 * Free all transmit software resources 3345 **/ 3346 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3347 { 3348 int i; 3349 3350 if (!adapter->tx_rings) 3351 return; 3352 3353 for (i = 0; i < adapter->num_active_queues; i++) 3354 if (adapter->tx_rings[i].desc) 3355 iavf_free_tx_resources(&adapter->tx_rings[i]); 3356 } 3357 3358 /** 3359 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3360 * @adapter: board private structure 3361 * 3362 * If this function returns with an error, then it's possible one or 3363 * more of the rings is populated (while the rest are not). It is the 3364 * callers duty to clean those orphaned rings. 3365 * 3366 * Return 0 on success, negative on failure 3367 **/ 3368 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3369 { 3370 int i, err = 0; 3371 3372 for (i = 0; i < adapter->num_active_queues; i++) { 3373 adapter->tx_rings[i].count = adapter->tx_desc_count; 3374 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3375 if (!err) 3376 continue; 3377 dev_err(&adapter->pdev->dev, 3378 "Allocation for Tx Queue %u failed\n", i); 3379 break; 3380 } 3381 3382 return err; 3383 } 3384 3385 /** 3386 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3387 * @adapter: board private structure 3388 * 3389 * If this function returns with an error, then it's possible one or 3390 * more of the rings is populated (while the rest are not). It is the 3391 * callers duty to clean those orphaned rings. 3392 * 3393 * Return 0 on success, negative on failure 3394 **/ 3395 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3396 { 3397 int i, err = 0; 3398 3399 for (i = 0; i < adapter->num_active_queues; i++) { 3400 adapter->rx_rings[i].count = adapter->rx_desc_count; 3401 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3402 if (!err) 3403 continue; 3404 dev_err(&adapter->pdev->dev, 3405 "Allocation for Rx Queue %u failed\n", i); 3406 break; 3407 } 3408 return err; 3409 } 3410 3411 /** 3412 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3413 * @adapter: board private structure 3414 * 3415 * Free all receive software resources 3416 **/ 3417 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3418 { 3419 int i; 3420 3421 if (!adapter->rx_rings) 3422 return; 3423 3424 for (i = 0; i < adapter->num_active_queues; i++) 3425 if (adapter->rx_rings[i].desc) 3426 iavf_free_rx_resources(&adapter->rx_rings[i]); 3427 } 3428 3429 /** 3430 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3431 * @adapter: board private structure 3432 * @max_tx_rate: max Tx bw for a tc 3433 **/ 3434 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3435 u64 max_tx_rate) 3436 { 3437 int speed = 0, ret = 0; 3438 3439 if (ADV_LINK_SUPPORT(adapter)) { 3440 if (adapter->link_speed_mbps < U32_MAX) { 3441 speed = adapter->link_speed_mbps; 3442 goto validate_bw; 3443 } else { 3444 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3445 return -EINVAL; 3446 } 3447 } 3448 3449 switch (adapter->link_speed) { 3450 case VIRTCHNL_LINK_SPEED_40GB: 3451 speed = SPEED_40000; 3452 break; 3453 case VIRTCHNL_LINK_SPEED_25GB: 3454 speed = SPEED_25000; 3455 break; 3456 case VIRTCHNL_LINK_SPEED_20GB: 3457 speed = SPEED_20000; 3458 break; 3459 case VIRTCHNL_LINK_SPEED_10GB: 3460 speed = SPEED_10000; 3461 break; 3462 case VIRTCHNL_LINK_SPEED_5GB: 3463 speed = SPEED_5000; 3464 break; 3465 case VIRTCHNL_LINK_SPEED_2_5GB: 3466 speed = SPEED_2500; 3467 break; 3468 case VIRTCHNL_LINK_SPEED_1GB: 3469 speed = SPEED_1000; 3470 break; 3471 case VIRTCHNL_LINK_SPEED_100MB: 3472 speed = SPEED_100; 3473 break; 3474 default: 3475 break; 3476 } 3477 3478 validate_bw: 3479 if (max_tx_rate > speed) { 3480 dev_err(&adapter->pdev->dev, 3481 "Invalid tx rate specified\n"); 3482 ret = -EINVAL; 3483 } 3484 3485 return ret; 3486 } 3487 3488 /** 3489 * iavf_validate_ch_config - validate queue mapping info 3490 * @adapter: board private structure 3491 * @mqprio_qopt: queue parameters 3492 * 3493 * This function validates if the config provided by the user to 3494 * configure queue channels is valid or not. Returns 0 on a valid 3495 * config. 3496 **/ 3497 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3498 struct tc_mqprio_qopt_offload *mqprio_qopt) 3499 { 3500 u64 total_max_rate = 0; 3501 u32 tx_rate_rem = 0; 3502 int i, num_qps = 0; 3503 u64 tx_rate = 0; 3504 int ret = 0; 3505 3506 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3507 mqprio_qopt->qopt.num_tc < 1) 3508 return -EINVAL; 3509 3510 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3511 if (!mqprio_qopt->qopt.count[i] || 3512 mqprio_qopt->qopt.offset[i] != num_qps) 3513 return -EINVAL; 3514 if (mqprio_qopt->min_rate[i]) { 3515 dev_err(&adapter->pdev->dev, 3516 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3517 i); 3518 return -EINVAL; 3519 } 3520 3521 /* convert to Mbps */ 3522 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3523 IAVF_MBPS_DIVISOR); 3524 3525 if (mqprio_qopt->max_rate[i] && 3526 tx_rate < IAVF_MBPS_QUANTA) { 3527 dev_err(&adapter->pdev->dev, 3528 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3529 i, IAVF_MBPS_QUANTA); 3530 return -EINVAL; 3531 } 3532 3533 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3534 3535 if (tx_rate_rem != 0) { 3536 dev_err(&adapter->pdev->dev, 3537 "Invalid max tx rate for TC%d, not divisible by %d\n", 3538 i, IAVF_MBPS_QUANTA); 3539 return -EINVAL; 3540 } 3541 3542 total_max_rate += tx_rate; 3543 num_qps += mqprio_qopt->qopt.count[i]; 3544 } 3545 if (num_qps > adapter->num_active_queues) { 3546 dev_err(&adapter->pdev->dev, 3547 "Cannot support requested number of queues\n"); 3548 return -EINVAL; 3549 } 3550 3551 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3552 return ret; 3553 } 3554 3555 /** 3556 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3557 * @adapter: board private structure 3558 **/ 3559 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3560 { 3561 struct iavf_cloud_filter *cf, *cftmp; 3562 3563 spin_lock_bh(&adapter->cloud_filter_list_lock); 3564 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3565 list) { 3566 list_del(&cf->list); 3567 kfree(cf); 3568 adapter->num_cloud_filters--; 3569 } 3570 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3571 } 3572 3573 /** 3574 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3575 * TC config already configured on this adapter. 3576 * @adapter: board private structure 3577 * @mqprio_qopt: TC config received from kernel. 3578 * 3579 * This function compares the TC config received from the kernel 3580 * with the config already configured on the adapter. 3581 * 3582 * Return: True if configuration is same, false otherwise. 3583 **/ 3584 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3585 struct tc_mqprio_qopt *mqprio_qopt) 3586 { 3587 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3588 int i; 3589 3590 if (adapter->num_tc != mqprio_qopt->num_tc) 3591 return false; 3592 3593 for (i = 0; i < adapter->num_tc; i++) { 3594 if (ch[i].count != mqprio_qopt->count[i] || 3595 ch[i].offset != mqprio_qopt->offset[i]) 3596 return false; 3597 } 3598 return true; 3599 } 3600 3601 /** 3602 * __iavf_setup_tc - configure multiple traffic classes 3603 * @netdev: network interface device structure 3604 * @type_data: tc offload data 3605 * 3606 * This function processes the config information provided by the 3607 * user to configure traffic classes/queue channels and packages the 3608 * information to request the PF to setup traffic classes. 3609 * 3610 * Returns 0 on success. 3611 **/ 3612 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3613 { 3614 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3615 struct iavf_adapter *adapter = netdev_priv(netdev); 3616 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3617 u8 num_tc = 0, total_qps = 0; 3618 int ret = 0, netdev_tc = 0; 3619 u64 max_tx_rate; 3620 u16 mode; 3621 int i; 3622 3623 num_tc = mqprio_qopt->qopt.num_tc; 3624 mode = mqprio_qopt->mode; 3625 3626 /* delete queue_channel */ 3627 if (!mqprio_qopt->qopt.hw) { 3628 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3629 /* reset the tc configuration */ 3630 netdev_reset_tc(netdev); 3631 adapter->num_tc = 0; 3632 netif_tx_stop_all_queues(netdev); 3633 netif_tx_disable(netdev); 3634 iavf_del_all_cloud_filters(adapter); 3635 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3636 total_qps = adapter->orig_num_active_queues; 3637 goto exit; 3638 } else { 3639 return -EINVAL; 3640 } 3641 } 3642 3643 /* add queue channel */ 3644 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3645 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3646 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3647 return -EOPNOTSUPP; 3648 } 3649 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3650 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3651 return -EINVAL; 3652 } 3653 3654 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3655 if (ret) 3656 return ret; 3657 /* Return if same TC config is requested */ 3658 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3659 return 0; 3660 adapter->num_tc = num_tc; 3661 3662 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3663 if (i < num_tc) { 3664 adapter->ch_config.ch_info[i].count = 3665 mqprio_qopt->qopt.count[i]; 3666 adapter->ch_config.ch_info[i].offset = 3667 mqprio_qopt->qopt.offset[i]; 3668 total_qps += mqprio_qopt->qopt.count[i]; 3669 max_tx_rate = mqprio_qopt->max_rate[i]; 3670 /* convert to Mbps */ 3671 max_tx_rate = div_u64(max_tx_rate, 3672 IAVF_MBPS_DIVISOR); 3673 adapter->ch_config.ch_info[i].max_tx_rate = 3674 max_tx_rate; 3675 } else { 3676 adapter->ch_config.ch_info[i].count = 1; 3677 adapter->ch_config.ch_info[i].offset = 0; 3678 } 3679 } 3680 3681 /* Take snapshot of original config such as "num_active_queues" 3682 * It is used later when delete ADQ flow is exercised, so that 3683 * once delete ADQ flow completes, VF shall go back to its 3684 * original queue configuration 3685 */ 3686 3687 adapter->orig_num_active_queues = adapter->num_active_queues; 3688 3689 /* Store queue info based on TC so that VF gets configured 3690 * with correct number of queues when VF completes ADQ config 3691 * flow 3692 */ 3693 adapter->ch_config.total_qps = total_qps; 3694 3695 netif_tx_stop_all_queues(netdev); 3696 netif_tx_disable(netdev); 3697 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3698 netdev_reset_tc(netdev); 3699 /* Report the tc mapping up the stack */ 3700 netdev_set_num_tc(adapter->netdev, num_tc); 3701 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3702 u16 qcount = mqprio_qopt->qopt.count[i]; 3703 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3704 3705 if (i < num_tc) 3706 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3707 qoffset); 3708 } 3709 } 3710 exit: 3711 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3712 return 0; 3713 3714 netdev_lock(netdev); 3715 netif_set_real_num_rx_queues(netdev, total_qps); 3716 netif_set_real_num_tx_queues(netdev, total_qps); 3717 netdev_unlock(netdev); 3718 3719 return ret; 3720 } 3721 3722 /** 3723 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3724 * @adapter: board private structure 3725 * @f: pointer to struct flow_cls_offload 3726 * @filter: pointer to cloud filter structure 3727 */ 3728 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3729 struct flow_cls_offload *f, 3730 struct iavf_cloud_filter *filter) 3731 { 3732 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3733 struct flow_dissector *dissector = rule->match.dissector; 3734 u16 n_proto_mask = 0; 3735 u16 n_proto_key = 0; 3736 u8 field_flags = 0; 3737 u16 addr_type = 0; 3738 u16 n_proto = 0; 3739 int i = 0; 3740 struct virtchnl_filter *vf = &filter->f; 3741 3742 if (dissector->used_keys & 3743 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3744 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3745 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3746 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3747 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3748 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3749 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3750 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3751 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3752 dissector->used_keys); 3753 return -EOPNOTSUPP; 3754 } 3755 3756 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3757 struct flow_match_enc_keyid match; 3758 3759 flow_rule_match_enc_keyid(rule, &match); 3760 if (match.mask->keyid != 0) 3761 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3762 } 3763 3764 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3765 struct flow_match_basic match; 3766 3767 flow_rule_match_basic(rule, &match); 3768 n_proto_key = ntohs(match.key->n_proto); 3769 n_proto_mask = ntohs(match.mask->n_proto); 3770 3771 if (n_proto_key == ETH_P_ALL) { 3772 n_proto_key = 0; 3773 n_proto_mask = 0; 3774 } 3775 n_proto = n_proto_key & n_proto_mask; 3776 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3777 return -EINVAL; 3778 if (n_proto == ETH_P_IPV6) { 3779 /* specify flow type as TCP IPv6 */ 3780 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3781 } 3782 3783 if (match.key->ip_proto != IPPROTO_TCP) { 3784 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3785 return -EINVAL; 3786 } 3787 } 3788 3789 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3790 struct flow_match_eth_addrs match; 3791 3792 flow_rule_match_eth_addrs(rule, &match); 3793 3794 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3795 if (!is_zero_ether_addr(match.mask->dst)) { 3796 if (is_broadcast_ether_addr(match.mask->dst)) { 3797 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3798 } else { 3799 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3800 match.mask->dst); 3801 return -EINVAL; 3802 } 3803 } 3804 3805 if (!is_zero_ether_addr(match.mask->src)) { 3806 if (is_broadcast_ether_addr(match.mask->src)) { 3807 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3808 } else { 3809 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3810 match.mask->src); 3811 return -EINVAL; 3812 } 3813 } 3814 3815 if (!is_zero_ether_addr(match.key->dst)) 3816 if (is_valid_ether_addr(match.key->dst) || 3817 is_multicast_ether_addr(match.key->dst)) { 3818 /* set the mask if a valid dst_mac address */ 3819 for (i = 0; i < ETH_ALEN; i++) 3820 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3821 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3822 match.key->dst); 3823 } 3824 3825 if (!is_zero_ether_addr(match.key->src)) 3826 if (is_valid_ether_addr(match.key->src) || 3827 is_multicast_ether_addr(match.key->src)) { 3828 /* set the mask if a valid dst_mac address */ 3829 for (i = 0; i < ETH_ALEN; i++) 3830 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3831 ether_addr_copy(vf->data.tcp_spec.src_mac, 3832 match.key->src); 3833 } 3834 } 3835 3836 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3837 struct flow_match_vlan match; 3838 3839 flow_rule_match_vlan(rule, &match); 3840 if (match.mask->vlan_id) { 3841 if (match.mask->vlan_id == VLAN_VID_MASK) { 3842 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3843 } else { 3844 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3845 match.mask->vlan_id); 3846 return -EINVAL; 3847 } 3848 } 3849 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3850 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3851 } 3852 3853 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3854 struct flow_match_control match; 3855 3856 flow_rule_match_control(rule, &match); 3857 addr_type = match.key->addr_type; 3858 3859 if (flow_rule_has_control_flags(match.mask->flags, 3860 f->common.extack)) 3861 return -EOPNOTSUPP; 3862 } 3863 3864 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3865 struct flow_match_ipv4_addrs match; 3866 3867 flow_rule_match_ipv4_addrs(rule, &match); 3868 if (match.mask->dst) { 3869 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3870 field_flags |= IAVF_CLOUD_FIELD_IIP; 3871 } else { 3872 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3873 be32_to_cpu(match.mask->dst)); 3874 return -EINVAL; 3875 } 3876 } 3877 3878 if (match.mask->src) { 3879 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3880 field_flags |= IAVF_CLOUD_FIELD_IIP; 3881 } else { 3882 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3883 be32_to_cpu(match.mask->src)); 3884 return -EINVAL; 3885 } 3886 } 3887 3888 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3889 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3890 return -EINVAL; 3891 } 3892 if (match.key->dst) { 3893 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3894 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3895 } 3896 if (match.key->src) { 3897 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3898 vf->data.tcp_spec.src_ip[0] = match.key->src; 3899 } 3900 } 3901 3902 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3903 struct flow_match_ipv6_addrs match; 3904 3905 flow_rule_match_ipv6_addrs(rule, &match); 3906 3907 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3908 if (ipv6_addr_any(&match.mask->dst)) { 3909 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3910 IPV6_ADDR_ANY); 3911 return -EINVAL; 3912 } 3913 3914 /* src and dest IPv6 address should not be LOOPBACK 3915 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3916 */ 3917 if (ipv6_addr_loopback(&match.key->dst) || 3918 ipv6_addr_loopback(&match.key->src)) { 3919 dev_err(&adapter->pdev->dev, 3920 "ipv6 addr should not be loopback\n"); 3921 return -EINVAL; 3922 } 3923 if (!ipv6_addr_any(&match.mask->dst) || 3924 !ipv6_addr_any(&match.mask->src)) 3925 field_flags |= IAVF_CLOUD_FIELD_IIP; 3926 3927 for (i = 0; i < 4; i++) 3928 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3929 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3930 sizeof(vf->data.tcp_spec.dst_ip)); 3931 for (i = 0; i < 4; i++) 3932 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3933 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3934 sizeof(vf->data.tcp_spec.src_ip)); 3935 } 3936 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3937 struct flow_match_ports match; 3938 3939 flow_rule_match_ports(rule, &match); 3940 if (match.mask->src) { 3941 if (match.mask->src == cpu_to_be16(0xffff)) { 3942 field_flags |= IAVF_CLOUD_FIELD_IIP; 3943 } else { 3944 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3945 be16_to_cpu(match.mask->src)); 3946 return -EINVAL; 3947 } 3948 } 3949 3950 if (match.mask->dst) { 3951 if (match.mask->dst == cpu_to_be16(0xffff)) { 3952 field_flags |= IAVF_CLOUD_FIELD_IIP; 3953 } else { 3954 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3955 be16_to_cpu(match.mask->dst)); 3956 return -EINVAL; 3957 } 3958 } 3959 if (match.key->dst) { 3960 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3961 vf->data.tcp_spec.dst_port = match.key->dst; 3962 } 3963 3964 if (match.key->src) { 3965 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3966 vf->data.tcp_spec.src_port = match.key->src; 3967 } 3968 } 3969 vf->field_flags = field_flags; 3970 3971 return 0; 3972 } 3973 3974 /** 3975 * iavf_handle_tclass - Forward to a traffic class on the device 3976 * @adapter: board private structure 3977 * @tc: traffic class index on the device 3978 * @filter: pointer to cloud filter structure 3979 */ 3980 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3981 struct iavf_cloud_filter *filter) 3982 { 3983 if (tc == 0) 3984 return 0; 3985 if (tc < adapter->num_tc) { 3986 if (!filter->f.data.tcp_spec.dst_port) { 3987 dev_err(&adapter->pdev->dev, 3988 "Specify destination port to redirect to traffic class other than TC0\n"); 3989 return -EINVAL; 3990 } 3991 } 3992 /* redirect to a traffic class on the same device */ 3993 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3994 filter->f.action_meta = tc; 3995 return 0; 3996 } 3997 3998 /** 3999 * iavf_find_cf - Find the cloud filter in the list 4000 * @adapter: Board private structure 4001 * @cookie: filter specific cookie 4002 * 4003 * Returns ptr to the filter object or NULL. Must be called while holding the 4004 * cloud_filter_list_lock. 4005 */ 4006 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4007 unsigned long *cookie) 4008 { 4009 struct iavf_cloud_filter *filter = NULL; 4010 4011 if (!cookie) 4012 return NULL; 4013 4014 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4015 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4016 return filter; 4017 } 4018 return NULL; 4019 } 4020 4021 /** 4022 * iavf_configure_clsflower - Add tc flower filters 4023 * @adapter: board private structure 4024 * @cls_flower: Pointer to struct flow_cls_offload 4025 */ 4026 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4027 struct flow_cls_offload *cls_flower) 4028 { 4029 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4030 struct iavf_cloud_filter *filter = NULL; 4031 int err = -EINVAL, count = 50; 4032 4033 if (tc < 0) { 4034 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4035 return -EINVAL; 4036 } 4037 4038 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4039 if (!filter) 4040 return -ENOMEM; 4041 4042 while (!mutex_trylock(&adapter->crit_lock)) { 4043 if (--count == 0) { 4044 kfree(filter); 4045 return err; 4046 } 4047 udelay(1); 4048 } 4049 4050 filter->cookie = cls_flower->cookie; 4051 4052 /* bail out here if filter already exists */ 4053 spin_lock_bh(&adapter->cloud_filter_list_lock); 4054 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4055 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4056 err = -EEXIST; 4057 goto spin_unlock; 4058 } 4059 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4060 4061 /* set the mask to all zeroes to begin with */ 4062 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4063 /* start out with flow type and eth type IPv4 to begin with */ 4064 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4065 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4066 if (err) 4067 goto err; 4068 4069 err = iavf_handle_tclass(adapter, tc, filter); 4070 if (err) 4071 goto err; 4072 4073 /* add filter to the list */ 4074 spin_lock_bh(&adapter->cloud_filter_list_lock); 4075 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4076 adapter->num_cloud_filters++; 4077 filter->add = true; 4078 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4079 spin_unlock: 4080 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4081 err: 4082 if (err) 4083 kfree(filter); 4084 4085 mutex_unlock(&adapter->crit_lock); 4086 return err; 4087 } 4088 4089 /** 4090 * iavf_delete_clsflower - Remove tc flower filters 4091 * @adapter: board private structure 4092 * @cls_flower: Pointer to struct flow_cls_offload 4093 */ 4094 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4095 struct flow_cls_offload *cls_flower) 4096 { 4097 struct iavf_cloud_filter *filter = NULL; 4098 int err = 0; 4099 4100 spin_lock_bh(&adapter->cloud_filter_list_lock); 4101 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4102 if (filter) { 4103 filter->del = true; 4104 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4105 } else { 4106 err = -EINVAL; 4107 } 4108 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4109 4110 return err; 4111 } 4112 4113 /** 4114 * iavf_setup_tc_cls_flower - flower classifier offloads 4115 * @adapter: pointer to iavf adapter structure 4116 * @cls_flower: pointer to flow_cls_offload struct with flow info 4117 */ 4118 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4119 struct flow_cls_offload *cls_flower) 4120 { 4121 switch (cls_flower->command) { 4122 case FLOW_CLS_REPLACE: 4123 return iavf_configure_clsflower(adapter, cls_flower); 4124 case FLOW_CLS_DESTROY: 4125 return iavf_delete_clsflower(adapter, cls_flower); 4126 case FLOW_CLS_STATS: 4127 return -EOPNOTSUPP; 4128 default: 4129 return -EOPNOTSUPP; 4130 } 4131 } 4132 4133 /** 4134 * iavf_add_cls_u32 - Add U32 classifier offloads 4135 * @adapter: pointer to iavf adapter structure 4136 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4137 * 4138 * Return: 0 on success or negative errno on failure. 4139 */ 4140 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4141 struct tc_cls_u32_offload *cls_u32) 4142 { 4143 struct netlink_ext_ack *extack = cls_u32->common.extack; 4144 struct virtchnl_fdir_rule *rule_cfg; 4145 struct virtchnl_filter_action *vact; 4146 struct virtchnl_proto_hdrs *hdrs; 4147 struct ethhdr *spec_h, *mask_h; 4148 const struct tc_action *act; 4149 struct iavf_fdir_fltr *fltr; 4150 struct tcf_exts *exts; 4151 unsigned int q_index; 4152 int i, status = 0; 4153 int off_base = 0; 4154 4155 if (cls_u32->knode.link_handle) { 4156 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4157 return -EOPNOTSUPP; 4158 } 4159 4160 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4161 if (!fltr) 4162 return -ENOMEM; 4163 4164 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4165 hdrs = &rule_cfg->proto_hdrs; 4166 hdrs->count = 0; 4167 4168 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4169 switch (ntohs(cls_u32->common.protocol)) { 4170 case ETH_P_802_3: 4171 break; 4172 case ETH_P_IP: 4173 spec_h = (struct ethhdr *)hdrs->raw.spec; 4174 mask_h = (struct ethhdr *)hdrs->raw.mask; 4175 spec_h->h_proto = htons(ETH_P_IP); 4176 mask_h->h_proto = htons(0xFFFF); 4177 off_base += ETH_HLEN; 4178 break; 4179 default: 4180 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4181 status = -EOPNOTSUPP; 4182 goto free_alloc; 4183 } 4184 4185 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4186 __be32 val, mask; 4187 int off; 4188 4189 off = off_base + cls_u32->knode.sel->keys[i].off; 4190 val = cls_u32->knode.sel->keys[i].val; 4191 mask = cls_u32->knode.sel->keys[i].mask; 4192 4193 if (off >= sizeof(hdrs->raw.spec)) { 4194 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4195 status = -EINVAL; 4196 goto free_alloc; 4197 } 4198 4199 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4200 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4201 hdrs->raw.pkt_len = off + sizeof(val); 4202 } 4203 4204 /* Only one action is allowed */ 4205 rule_cfg->action_set.count = 1; 4206 vact = &rule_cfg->action_set.actions[0]; 4207 exts = cls_u32->knode.exts; 4208 4209 tcf_exts_for_each_action(i, act, exts) { 4210 /* FDIR queue */ 4211 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4212 q_index = tcf_skbedit_rx_queue_mapping(act); 4213 if (q_index >= adapter->num_active_queues) { 4214 status = -EINVAL; 4215 goto free_alloc; 4216 } 4217 4218 vact->type = VIRTCHNL_ACTION_QUEUE; 4219 vact->act_conf.queue.index = q_index; 4220 break; 4221 } 4222 4223 /* Drop */ 4224 if (is_tcf_gact_shot(act)) { 4225 vact->type = VIRTCHNL_ACTION_DROP; 4226 break; 4227 } 4228 4229 /* Unsupported action */ 4230 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4231 status = -EOPNOTSUPP; 4232 goto free_alloc; 4233 } 4234 4235 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4236 fltr->cls_u32_handle = cls_u32->knode.handle; 4237 return iavf_fdir_add_fltr(adapter, fltr); 4238 4239 free_alloc: 4240 kfree(fltr); 4241 return status; 4242 } 4243 4244 /** 4245 * iavf_del_cls_u32 - Delete U32 classifier offloads 4246 * @adapter: pointer to iavf adapter structure 4247 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4248 * 4249 * Return: 0 on success or negative errno on failure. 4250 */ 4251 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4252 struct tc_cls_u32_offload *cls_u32) 4253 { 4254 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4255 } 4256 4257 /** 4258 * iavf_setup_tc_cls_u32 - U32 filter offloads 4259 * @adapter: pointer to iavf adapter structure 4260 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4261 * 4262 * Return: 0 on success or negative errno on failure. 4263 */ 4264 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4265 struct tc_cls_u32_offload *cls_u32) 4266 { 4267 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4268 return -EOPNOTSUPP; 4269 4270 switch (cls_u32->command) { 4271 case TC_CLSU32_NEW_KNODE: 4272 case TC_CLSU32_REPLACE_KNODE: 4273 return iavf_add_cls_u32(adapter, cls_u32); 4274 case TC_CLSU32_DELETE_KNODE: 4275 return iavf_del_cls_u32(adapter, cls_u32); 4276 default: 4277 return -EOPNOTSUPP; 4278 } 4279 } 4280 4281 /** 4282 * iavf_setup_tc_block_cb - block callback for tc 4283 * @type: type of offload 4284 * @type_data: offload data 4285 * @cb_priv: 4286 * 4287 * This function is the block callback for traffic classes 4288 **/ 4289 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4290 void *cb_priv) 4291 { 4292 struct iavf_adapter *adapter = cb_priv; 4293 4294 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4295 return -EOPNOTSUPP; 4296 4297 switch (type) { 4298 case TC_SETUP_CLSFLOWER: 4299 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4300 case TC_SETUP_CLSU32: 4301 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4302 default: 4303 return -EOPNOTSUPP; 4304 } 4305 } 4306 4307 static LIST_HEAD(iavf_block_cb_list); 4308 4309 /** 4310 * iavf_setup_tc - configure multiple traffic classes 4311 * @netdev: network interface device structure 4312 * @type: type of offload 4313 * @type_data: tc offload data 4314 * 4315 * This function is the callback to ndo_setup_tc in the 4316 * netdev_ops. 4317 * 4318 * Returns 0 on success 4319 **/ 4320 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4321 void *type_data) 4322 { 4323 struct iavf_adapter *adapter = netdev_priv(netdev); 4324 4325 switch (type) { 4326 case TC_SETUP_QDISC_MQPRIO: 4327 return __iavf_setup_tc(netdev, type_data); 4328 case TC_SETUP_BLOCK: 4329 return flow_block_cb_setup_simple(type_data, 4330 &iavf_block_cb_list, 4331 iavf_setup_tc_block_cb, 4332 adapter, adapter, true); 4333 default: 4334 return -EOPNOTSUPP; 4335 } 4336 } 4337 4338 /** 4339 * iavf_restore_fdir_filters 4340 * @adapter: board private structure 4341 * 4342 * Restore existing FDIR filters when VF netdev comes back up. 4343 **/ 4344 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4345 { 4346 struct iavf_fdir_fltr *f; 4347 4348 spin_lock_bh(&adapter->fdir_fltr_lock); 4349 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4350 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4351 /* Cancel a request, keep filter as active */ 4352 f->state = IAVF_FDIR_FLTR_ACTIVE; 4353 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4354 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4355 /* Add filters which are inactive or have a pending 4356 * request to PF to be deleted 4357 */ 4358 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4359 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4360 } 4361 } 4362 spin_unlock_bh(&adapter->fdir_fltr_lock); 4363 } 4364 4365 /** 4366 * iavf_open - Called when a network interface is made active 4367 * @netdev: network interface device structure 4368 * 4369 * Returns 0 on success, negative value on failure 4370 * 4371 * The open entry point is called when a network interface is made 4372 * active by the system (IFF_UP). At this point all resources needed 4373 * for transmit and receive operations are allocated, the interrupt 4374 * handler is registered with the OS, the watchdog is started, 4375 * and the stack is notified that the interface is ready. 4376 **/ 4377 static int iavf_open(struct net_device *netdev) 4378 { 4379 struct iavf_adapter *adapter = netdev_priv(netdev); 4380 int err; 4381 4382 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4383 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4384 return -EIO; 4385 } 4386 4387 netdev_lock(netdev); 4388 while (!mutex_trylock(&adapter->crit_lock)) { 4389 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4390 * is already taken and iavf_open is called from an upper 4391 * device's notifier reacting on NETDEV_REGISTER event. 4392 * We have to leave here to avoid dead lock. 4393 */ 4394 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) { 4395 netdev_unlock(netdev); 4396 return -EBUSY; 4397 } 4398 4399 usleep_range(500, 1000); 4400 } 4401 4402 if (adapter->state != __IAVF_DOWN) { 4403 err = -EBUSY; 4404 goto err_unlock; 4405 } 4406 4407 if (adapter->state == __IAVF_RUNNING && 4408 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4409 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4410 err = 0; 4411 goto err_unlock; 4412 } 4413 4414 /* allocate transmit descriptors */ 4415 err = iavf_setup_all_tx_resources(adapter); 4416 if (err) 4417 goto err_setup_tx; 4418 4419 /* allocate receive descriptors */ 4420 err = iavf_setup_all_rx_resources(adapter); 4421 if (err) 4422 goto err_setup_rx; 4423 4424 /* clear any pending interrupts, may auto mask */ 4425 err = iavf_request_traffic_irqs(adapter, netdev->name); 4426 if (err) 4427 goto err_req_irq; 4428 4429 spin_lock_bh(&adapter->mac_vlan_list_lock); 4430 4431 iavf_add_filter(adapter, adapter->hw.mac.addr); 4432 4433 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4434 4435 /* Restore filters that were removed with IFF_DOWN */ 4436 iavf_restore_filters(adapter); 4437 iavf_restore_fdir_filters(adapter); 4438 4439 iavf_configure(adapter); 4440 4441 iavf_up_complete(adapter); 4442 4443 iavf_irq_enable(adapter, true); 4444 4445 mutex_unlock(&adapter->crit_lock); 4446 netdev_unlock(netdev); 4447 4448 return 0; 4449 4450 err_req_irq: 4451 iavf_down(adapter); 4452 iavf_free_traffic_irqs(adapter); 4453 err_setup_rx: 4454 iavf_free_all_rx_resources(adapter); 4455 err_setup_tx: 4456 iavf_free_all_tx_resources(adapter); 4457 err_unlock: 4458 mutex_unlock(&adapter->crit_lock); 4459 netdev_unlock(netdev); 4460 4461 return err; 4462 } 4463 4464 /** 4465 * iavf_close - Disables a network interface 4466 * @netdev: network interface device structure 4467 * 4468 * Returns 0, this is not allowed to fail 4469 * 4470 * The close entry point is called when an interface is de-activated 4471 * by the OS. The hardware is still under the drivers control, but 4472 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4473 * are freed, along with all transmit and receive resources. 4474 **/ 4475 static int iavf_close(struct net_device *netdev) 4476 { 4477 struct iavf_adapter *adapter = netdev_priv(netdev); 4478 u64 aq_to_restore; 4479 int status; 4480 4481 netdev_lock(netdev); 4482 mutex_lock(&adapter->crit_lock); 4483 4484 if (adapter->state <= __IAVF_DOWN_PENDING) { 4485 mutex_unlock(&adapter->crit_lock); 4486 netdev_unlock(netdev); 4487 return 0; 4488 } 4489 4490 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4491 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4492 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4493 * deadlock with adminq_task() until iavf_close timeouts. We must send 4494 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4495 * disable queues possible for vf. Give only necessary flags to 4496 * iavf_down and save other to set them right before iavf_close() 4497 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4498 * iavf will be in DOWN state. 4499 */ 4500 aq_to_restore = adapter->aq_required; 4501 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4502 4503 /* Remove flags which we do not want to send after close or we want to 4504 * send before disable queues. 4505 */ 4506 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4507 IAVF_FLAG_AQ_ENABLE_QUEUES | 4508 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4509 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4510 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4511 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4512 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4513 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4514 4515 iavf_down(adapter); 4516 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4517 iavf_free_traffic_irqs(adapter); 4518 4519 mutex_unlock(&adapter->crit_lock); 4520 netdev_unlock(netdev); 4521 4522 /* We explicitly don't free resources here because the hardware is 4523 * still active and can DMA into memory. Resources are cleared in 4524 * iavf_virtchnl_completion() after we get confirmation from the PF 4525 * driver that the rings have been stopped. 4526 * 4527 * Also, we wait for state to transition to __IAVF_DOWN before 4528 * returning. State change occurs in iavf_virtchnl_completion() after 4529 * VF resources are released (which occurs after PF driver processes and 4530 * responds to admin queue commands). 4531 */ 4532 4533 status = wait_event_timeout(adapter->down_waitqueue, 4534 adapter->state == __IAVF_DOWN, 4535 msecs_to_jiffies(500)); 4536 if (!status) 4537 netdev_warn(netdev, "Device resources not yet released\n"); 4538 4539 mutex_lock(&adapter->crit_lock); 4540 adapter->aq_required |= aq_to_restore; 4541 mutex_unlock(&adapter->crit_lock); 4542 return 0; 4543 } 4544 4545 /** 4546 * iavf_change_mtu - Change the Maximum Transfer Unit 4547 * @netdev: network interface device structure 4548 * @new_mtu: new value for maximum frame size 4549 * 4550 * Returns 0 on success, negative on failure 4551 **/ 4552 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4553 { 4554 struct iavf_adapter *adapter = netdev_priv(netdev); 4555 int ret = 0; 4556 4557 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4558 netdev->mtu, new_mtu); 4559 WRITE_ONCE(netdev->mtu, new_mtu); 4560 4561 if (netif_running(netdev)) { 4562 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4563 ret = iavf_wait_for_reset(adapter); 4564 if (ret < 0) 4565 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4566 else if (ret) 4567 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4568 } 4569 4570 return ret; 4571 } 4572 4573 /** 4574 * iavf_disable_fdir - disable Flow Director and clear existing filters 4575 * @adapter: board private structure 4576 **/ 4577 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4578 { 4579 struct iavf_fdir_fltr *fdir, *fdirtmp; 4580 bool del_filters = false; 4581 4582 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4583 4584 /* remove all Flow Director filters */ 4585 spin_lock_bh(&adapter->fdir_fltr_lock); 4586 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4587 list) { 4588 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4589 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4590 /* Delete filters not registered in PF */ 4591 list_del(&fdir->list); 4592 iavf_dec_fdir_active_fltr(adapter, fdir); 4593 kfree(fdir); 4594 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4595 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4596 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4597 /* Filters registered in PF, schedule their deletion */ 4598 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4599 del_filters = true; 4600 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4601 /* Request to delete filter already sent to PF, change 4602 * state to DEL_PENDING to delete filter after PF's 4603 * response, not set as INACTIVE 4604 */ 4605 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4606 } 4607 } 4608 spin_unlock_bh(&adapter->fdir_fltr_lock); 4609 4610 if (del_filters) { 4611 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4612 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4613 } 4614 } 4615 4616 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4617 NETIF_F_HW_VLAN_CTAG_TX | \ 4618 NETIF_F_HW_VLAN_STAG_RX | \ 4619 NETIF_F_HW_VLAN_STAG_TX) 4620 4621 /** 4622 * iavf_set_features - set the netdev feature flags 4623 * @netdev: ptr to the netdev being adjusted 4624 * @features: the feature set that the stack is suggesting 4625 * Note: expects to be called while under rtnl_lock() 4626 **/ 4627 static int iavf_set_features(struct net_device *netdev, 4628 netdev_features_t features) 4629 { 4630 struct iavf_adapter *adapter = netdev_priv(netdev); 4631 4632 /* trigger update on any VLAN feature change */ 4633 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4634 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4635 iavf_set_vlan_offload_features(adapter, netdev->features, 4636 features); 4637 if (CRC_OFFLOAD_ALLOWED(adapter) && 4638 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4639 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4640 4641 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4642 if (features & NETIF_F_NTUPLE) 4643 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4644 else 4645 iavf_disable_fdir(adapter); 4646 } 4647 4648 return 0; 4649 } 4650 4651 /** 4652 * iavf_features_check - Validate encapsulated packet conforms to limits 4653 * @skb: skb buff 4654 * @dev: This physical port's netdev 4655 * @features: Offload features that the stack believes apply 4656 **/ 4657 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4658 struct net_device *dev, 4659 netdev_features_t features) 4660 { 4661 size_t len; 4662 4663 /* No point in doing any of this if neither checksum nor GSO are 4664 * being requested for this frame. We can rule out both by just 4665 * checking for CHECKSUM_PARTIAL 4666 */ 4667 if (skb->ip_summed != CHECKSUM_PARTIAL) 4668 return features; 4669 4670 /* We cannot support GSO if the MSS is going to be less than 4671 * 64 bytes. If it is then we need to drop support for GSO. 4672 */ 4673 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4674 features &= ~NETIF_F_GSO_MASK; 4675 4676 /* MACLEN can support at most 63 words */ 4677 len = skb_network_offset(skb); 4678 if (len & ~(63 * 2)) 4679 goto out_err; 4680 4681 /* IPLEN and EIPLEN can support at most 127 dwords */ 4682 len = skb_network_header_len(skb); 4683 if (len & ~(127 * 4)) 4684 goto out_err; 4685 4686 if (skb->encapsulation) { 4687 /* L4TUNLEN can support 127 words */ 4688 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4689 if (len & ~(127 * 2)) 4690 goto out_err; 4691 4692 /* IPLEN can support at most 127 dwords */ 4693 len = skb_inner_transport_header(skb) - 4694 skb_inner_network_header(skb); 4695 if (len & ~(127 * 4)) 4696 goto out_err; 4697 } 4698 4699 /* No need to validate L4LEN as TCP is the only protocol with a 4700 * flexible value and we support all possible values supported 4701 * by TCP, which is at most 15 dwords 4702 */ 4703 4704 return features; 4705 out_err: 4706 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4707 } 4708 4709 /** 4710 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4711 * @adapter: board private structure 4712 * 4713 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4714 * were negotiated determine the VLAN features that can be toggled on and off. 4715 **/ 4716 static netdev_features_t 4717 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4718 { 4719 netdev_features_t hw_features = 0; 4720 4721 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4722 return hw_features; 4723 4724 /* Enable VLAN features if supported */ 4725 if (VLAN_ALLOWED(adapter)) { 4726 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4727 NETIF_F_HW_VLAN_CTAG_RX); 4728 } else if (VLAN_V2_ALLOWED(adapter)) { 4729 struct virtchnl_vlan_caps *vlan_v2_caps = 4730 &adapter->vlan_v2_caps; 4731 struct virtchnl_vlan_supported_caps *stripping_support = 4732 &vlan_v2_caps->offloads.stripping_support; 4733 struct virtchnl_vlan_supported_caps *insertion_support = 4734 &vlan_v2_caps->offloads.insertion_support; 4735 4736 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4737 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4738 if (stripping_support->outer & 4739 VIRTCHNL_VLAN_ETHERTYPE_8100) 4740 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4741 if (stripping_support->outer & 4742 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4743 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4744 } else if (stripping_support->inner != 4745 VIRTCHNL_VLAN_UNSUPPORTED && 4746 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4747 if (stripping_support->inner & 4748 VIRTCHNL_VLAN_ETHERTYPE_8100) 4749 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4750 } 4751 4752 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4753 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4754 if (insertion_support->outer & 4755 VIRTCHNL_VLAN_ETHERTYPE_8100) 4756 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4757 if (insertion_support->outer & 4758 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4759 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4760 } else if (insertion_support->inner && 4761 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4762 if (insertion_support->inner & 4763 VIRTCHNL_VLAN_ETHERTYPE_8100) 4764 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4765 } 4766 } 4767 4768 if (CRC_OFFLOAD_ALLOWED(adapter)) 4769 hw_features |= NETIF_F_RXFCS; 4770 4771 return hw_features; 4772 } 4773 4774 /** 4775 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4776 * @adapter: board private structure 4777 * 4778 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4779 * were negotiated determine the VLAN features that are enabled by default. 4780 **/ 4781 static netdev_features_t 4782 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4783 { 4784 netdev_features_t features = 0; 4785 4786 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4787 return features; 4788 4789 if (VLAN_ALLOWED(adapter)) { 4790 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4791 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4792 } else if (VLAN_V2_ALLOWED(adapter)) { 4793 struct virtchnl_vlan_caps *vlan_v2_caps = 4794 &adapter->vlan_v2_caps; 4795 struct virtchnl_vlan_supported_caps *filtering_support = 4796 &vlan_v2_caps->filtering.filtering_support; 4797 struct virtchnl_vlan_supported_caps *stripping_support = 4798 &vlan_v2_caps->offloads.stripping_support; 4799 struct virtchnl_vlan_supported_caps *insertion_support = 4800 &vlan_v2_caps->offloads.insertion_support; 4801 u32 ethertype_init; 4802 4803 /* give priority to outer stripping and don't support both outer 4804 * and inner stripping 4805 */ 4806 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4807 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4808 if (stripping_support->outer & 4809 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4810 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4811 features |= NETIF_F_HW_VLAN_CTAG_RX; 4812 else if (stripping_support->outer & 4813 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4815 features |= NETIF_F_HW_VLAN_STAG_RX; 4816 } else if (stripping_support->inner != 4817 VIRTCHNL_VLAN_UNSUPPORTED) { 4818 if (stripping_support->inner & 4819 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4820 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4821 features |= NETIF_F_HW_VLAN_CTAG_RX; 4822 } 4823 4824 /* give priority to outer insertion and don't support both outer 4825 * and inner insertion 4826 */ 4827 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4828 if (insertion_support->outer & 4829 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4830 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4831 features |= NETIF_F_HW_VLAN_CTAG_TX; 4832 else if (insertion_support->outer & 4833 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4834 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4835 features |= NETIF_F_HW_VLAN_STAG_TX; 4836 } else if (insertion_support->inner != 4837 VIRTCHNL_VLAN_UNSUPPORTED) { 4838 if (insertion_support->inner & 4839 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4840 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4841 features |= NETIF_F_HW_VLAN_CTAG_TX; 4842 } 4843 4844 /* give priority to outer filtering and don't bother if both 4845 * outer and inner filtering are enabled 4846 */ 4847 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4848 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4849 if (filtering_support->outer & 4850 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4851 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4852 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4853 if (filtering_support->outer & 4854 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4855 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4856 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4857 } else if (filtering_support->inner != 4858 VIRTCHNL_VLAN_UNSUPPORTED) { 4859 if (filtering_support->inner & 4860 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4861 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4862 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4863 if (filtering_support->inner & 4864 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4865 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4866 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4867 } 4868 } 4869 4870 return features; 4871 } 4872 4873 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4874 (!(((requested) & (feature_bit)) && \ 4875 !((allowed) & (feature_bit)))) 4876 4877 /** 4878 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4879 * @adapter: board private structure 4880 * @requested_features: stack requested NETDEV features 4881 **/ 4882 static netdev_features_t 4883 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4884 netdev_features_t requested_features) 4885 { 4886 netdev_features_t allowed_features; 4887 4888 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4889 iavf_get_netdev_vlan_features(adapter); 4890 4891 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4892 allowed_features, 4893 NETIF_F_HW_VLAN_CTAG_TX)) 4894 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4895 4896 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4897 allowed_features, 4898 NETIF_F_HW_VLAN_CTAG_RX)) 4899 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4900 4901 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4902 allowed_features, 4903 NETIF_F_HW_VLAN_STAG_TX)) 4904 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4905 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4906 allowed_features, 4907 NETIF_F_HW_VLAN_STAG_RX)) 4908 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4909 4910 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4911 allowed_features, 4912 NETIF_F_HW_VLAN_CTAG_FILTER)) 4913 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4914 4915 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4916 allowed_features, 4917 NETIF_F_HW_VLAN_STAG_FILTER)) 4918 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4919 4920 if ((requested_features & 4921 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4922 (requested_features & 4923 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4924 adapter->vlan_v2_caps.offloads.ethertype_match == 4925 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4926 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4927 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4928 NETIF_F_HW_VLAN_STAG_TX); 4929 } 4930 4931 return requested_features; 4932 } 4933 4934 /** 4935 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4936 * @adapter: board private structure 4937 * @requested_features: stack requested NETDEV features 4938 * 4939 * Returns fixed-up features bits 4940 **/ 4941 static netdev_features_t 4942 iavf_fix_strip_features(struct iavf_adapter *adapter, 4943 netdev_features_t requested_features) 4944 { 4945 struct net_device *netdev = adapter->netdev; 4946 bool crc_offload_req, is_vlan_strip; 4947 netdev_features_t vlan_strip; 4948 int num_non_zero_vlan; 4949 4950 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4951 (requested_features & NETIF_F_RXFCS); 4952 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4953 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4954 is_vlan_strip = requested_features & vlan_strip; 4955 4956 if (!crc_offload_req) 4957 return requested_features; 4958 4959 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4960 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4961 requested_features &= ~vlan_strip; 4962 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4963 return requested_features; 4964 } 4965 4966 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4967 requested_features &= ~vlan_strip; 4968 if (!(netdev->features & vlan_strip)) 4969 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4970 4971 return requested_features; 4972 } 4973 4974 if (num_non_zero_vlan && is_vlan_strip && 4975 !(netdev->features & NETIF_F_RXFCS)) { 4976 requested_features &= ~NETIF_F_RXFCS; 4977 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4978 } 4979 4980 return requested_features; 4981 } 4982 4983 /** 4984 * iavf_fix_features - fix up the netdev feature bits 4985 * @netdev: our net device 4986 * @features: desired feature bits 4987 * 4988 * Returns fixed-up features bits 4989 **/ 4990 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4991 netdev_features_t features) 4992 { 4993 struct iavf_adapter *adapter = netdev_priv(netdev); 4994 4995 features = iavf_fix_netdev_vlan_features(adapter, features); 4996 4997 if (!FDIR_FLTR_SUPPORT(adapter)) 4998 features &= ~NETIF_F_NTUPLE; 4999 5000 return iavf_fix_strip_features(adapter, features); 5001 } 5002 5003 static int 5004 iavf_verify_shaper(struct net_shaper_binding *binding, 5005 const struct net_shaper *shaper, 5006 struct netlink_ext_ack *extack) 5007 { 5008 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5009 u64 vf_max; 5010 5011 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5012 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5013 if (vf_max && shaper->bw_max > vf_max) { 5014 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5015 shaper->bw_max, shaper->handle.id, 5016 vf_max); 5017 return -EINVAL; 5018 } 5019 } 5020 return 0; 5021 } 5022 5023 static int 5024 iavf_shaper_set(struct net_shaper_binding *binding, 5025 const struct net_shaper *shaper, 5026 struct netlink_ext_ack *extack) 5027 { 5028 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5029 const struct net_shaper_handle *handle = &shaper->handle; 5030 struct iavf_ring *tx_ring; 5031 int ret = 0; 5032 5033 mutex_lock(&adapter->crit_lock); 5034 if (handle->id >= adapter->num_active_queues) 5035 goto unlock; 5036 5037 ret = iavf_verify_shaper(binding, shaper, extack); 5038 if (ret) 5039 goto unlock; 5040 5041 tx_ring = &adapter->tx_rings[handle->id]; 5042 5043 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5044 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5045 tx_ring->q_shaper_update = true; 5046 5047 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5048 5049 unlock: 5050 mutex_unlock(&adapter->crit_lock); 5051 return ret; 5052 } 5053 5054 static int iavf_shaper_del(struct net_shaper_binding *binding, 5055 const struct net_shaper_handle *handle, 5056 struct netlink_ext_ack *extack) 5057 { 5058 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5059 struct iavf_ring *tx_ring; 5060 5061 mutex_lock(&adapter->crit_lock); 5062 if (handle->id >= adapter->num_active_queues) 5063 goto unlock; 5064 5065 tx_ring = &adapter->tx_rings[handle->id]; 5066 tx_ring->q_shaper.bw_min = 0; 5067 tx_ring->q_shaper.bw_max = 0; 5068 tx_ring->q_shaper_update = true; 5069 5070 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5071 5072 unlock: 5073 mutex_unlock(&adapter->crit_lock); 5074 return 0; 5075 } 5076 5077 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5078 enum net_shaper_scope scope, 5079 unsigned long *flags) 5080 { 5081 if (scope != NET_SHAPER_SCOPE_QUEUE) 5082 return; 5083 5084 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5085 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5086 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5087 } 5088 5089 static const struct net_shaper_ops iavf_shaper_ops = { 5090 .set = iavf_shaper_set, 5091 .delete = iavf_shaper_del, 5092 .capabilities = iavf_shaper_cap, 5093 }; 5094 5095 static const struct net_device_ops iavf_netdev_ops = { 5096 .ndo_open = iavf_open, 5097 .ndo_stop = iavf_close, 5098 .ndo_start_xmit = iavf_xmit_frame, 5099 .ndo_set_rx_mode = iavf_set_rx_mode, 5100 .ndo_validate_addr = eth_validate_addr, 5101 .ndo_set_mac_address = iavf_set_mac, 5102 .ndo_change_mtu = iavf_change_mtu, 5103 .ndo_tx_timeout = iavf_tx_timeout, 5104 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5105 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5106 .ndo_features_check = iavf_features_check, 5107 .ndo_fix_features = iavf_fix_features, 5108 .ndo_set_features = iavf_set_features, 5109 .ndo_setup_tc = iavf_setup_tc, 5110 .net_shaper_ops = &iavf_shaper_ops, 5111 }; 5112 5113 /** 5114 * iavf_check_reset_complete - check that VF reset is complete 5115 * @hw: pointer to hw struct 5116 * 5117 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5118 **/ 5119 static int iavf_check_reset_complete(struct iavf_hw *hw) 5120 { 5121 u32 rstat; 5122 int i; 5123 5124 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5125 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5126 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5127 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5128 (rstat == VIRTCHNL_VFR_COMPLETED)) 5129 return 0; 5130 msleep(IAVF_RESET_WAIT_MS); 5131 } 5132 return -EBUSY; 5133 } 5134 5135 /** 5136 * iavf_process_config - Process the config information we got from the PF 5137 * @adapter: board private structure 5138 * 5139 * Verify that we have a valid config struct, and set up our netdev features 5140 * and our VSI struct. 5141 **/ 5142 int iavf_process_config(struct iavf_adapter *adapter) 5143 { 5144 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5145 netdev_features_t hw_vlan_features, vlan_features; 5146 struct net_device *netdev = adapter->netdev; 5147 netdev_features_t hw_enc_features; 5148 netdev_features_t hw_features; 5149 5150 hw_enc_features = NETIF_F_SG | 5151 NETIF_F_IP_CSUM | 5152 NETIF_F_IPV6_CSUM | 5153 NETIF_F_HIGHDMA | 5154 NETIF_F_SOFT_FEATURES | 5155 NETIF_F_TSO | 5156 NETIF_F_TSO_ECN | 5157 NETIF_F_TSO6 | 5158 NETIF_F_SCTP_CRC | 5159 NETIF_F_RXHASH | 5160 NETIF_F_RXCSUM | 5161 0; 5162 5163 /* advertise to stack only if offloads for encapsulated packets is 5164 * supported 5165 */ 5166 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5167 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5168 NETIF_F_GSO_GRE | 5169 NETIF_F_GSO_GRE_CSUM | 5170 NETIF_F_GSO_IPXIP4 | 5171 NETIF_F_GSO_IPXIP6 | 5172 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5173 NETIF_F_GSO_PARTIAL | 5174 0; 5175 5176 if (!(vfres->vf_cap_flags & 5177 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5178 netdev->gso_partial_features |= 5179 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5180 5181 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5182 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5183 netdev->hw_enc_features |= hw_enc_features; 5184 } 5185 /* record features VLANs can make use of */ 5186 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5187 5188 /* Write features and hw_features separately to avoid polluting 5189 * with, or dropping, features that are set when we registered. 5190 */ 5191 hw_features = hw_enc_features; 5192 5193 /* get HW VLAN features that can be toggled */ 5194 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5195 5196 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5197 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5198 TC_U32_SUPPORT(adapter)) 5199 hw_features |= NETIF_F_HW_TC; 5200 5201 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5202 hw_features |= NETIF_F_GSO_UDP_L4; 5203 5204 netdev->hw_features |= hw_features | hw_vlan_features; 5205 vlan_features = iavf_get_netdev_vlan_features(adapter); 5206 5207 netdev->features |= hw_features | vlan_features; 5208 5209 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5210 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5211 5212 if (FDIR_FLTR_SUPPORT(adapter)) { 5213 netdev->hw_features |= NETIF_F_NTUPLE; 5214 netdev->features |= NETIF_F_NTUPLE; 5215 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5216 } 5217 5218 netdev->priv_flags |= IFF_UNICAST_FLT; 5219 5220 /* Do not turn on offloads when they are requested to be turned off. 5221 * TSO needs minimum 576 bytes to work correctly. 5222 */ 5223 if (netdev->wanted_features) { 5224 if (!(netdev->wanted_features & NETIF_F_TSO) || 5225 netdev->mtu < 576) 5226 netdev->features &= ~NETIF_F_TSO; 5227 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5228 netdev->mtu < 576) 5229 netdev->features &= ~NETIF_F_TSO6; 5230 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5231 netdev->features &= ~NETIF_F_TSO_ECN; 5232 if (!(netdev->wanted_features & NETIF_F_GRO)) 5233 netdev->features &= ~NETIF_F_GRO; 5234 if (!(netdev->wanted_features & NETIF_F_GSO)) 5235 netdev->features &= ~NETIF_F_GSO; 5236 } 5237 5238 return 0; 5239 } 5240 5241 /** 5242 * iavf_probe - Device Initialization Routine 5243 * @pdev: PCI device information struct 5244 * @ent: entry in iavf_pci_tbl 5245 * 5246 * Returns 0 on success, negative on failure 5247 * 5248 * iavf_probe initializes an adapter identified by a pci_dev structure. 5249 * The OS initialization, configuring of the adapter private structure, 5250 * and a hardware reset occur. 5251 **/ 5252 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5253 { 5254 struct net_device *netdev; 5255 struct iavf_adapter *adapter = NULL; 5256 struct iavf_hw *hw = NULL; 5257 int err, len; 5258 5259 err = pci_enable_device(pdev); 5260 if (err) 5261 return err; 5262 5263 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5264 if (err) { 5265 dev_err(&pdev->dev, 5266 "DMA configuration failed: 0x%x\n", err); 5267 goto err_dma; 5268 } 5269 5270 err = pci_request_regions(pdev, iavf_driver_name); 5271 if (err) { 5272 dev_err(&pdev->dev, 5273 "pci_request_regions failed 0x%x\n", err); 5274 goto err_pci_reg; 5275 } 5276 5277 pci_set_master(pdev); 5278 5279 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5280 IAVF_MAX_REQ_QUEUES); 5281 if (!netdev) { 5282 err = -ENOMEM; 5283 goto err_alloc_etherdev; 5284 } 5285 5286 SET_NETDEV_DEV(netdev, &pdev->dev); 5287 5288 pci_set_drvdata(pdev, netdev); 5289 adapter = netdev_priv(netdev); 5290 5291 adapter->netdev = netdev; 5292 adapter->pdev = pdev; 5293 5294 hw = &adapter->hw; 5295 hw->back = adapter; 5296 5297 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5298 iavf_driver_name); 5299 if (!adapter->wq) { 5300 err = -ENOMEM; 5301 goto err_alloc_wq; 5302 } 5303 5304 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5305 iavf_change_state(adapter, __IAVF_STARTUP); 5306 5307 /* Call save state here because it relies on the adapter struct. */ 5308 pci_save_state(pdev); 5309 5310 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5311 pci_resource_len(pdev, 0)); 5312 if (!hw->hw_addr) { 5313 err = -EIO; 5314 goto err_ioremap; 5315 } 5316 hw->vendor_id = pdev->vendor; 5317 hw->device_id = pdev->device; 5318 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5319 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5320 hw->subsystem_device_id = pdev->subsystem_device; 5321 hw->bus.device = PCI_SLOT(pdev->devfn); 5322 hw->bus.func = PCI_FUNC(pdev->devfn); 5323 hw->bus.bus_id = pdev->bus->number; 5324 5325 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5326 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5327 if (!adapter->qos_caps) { 5328 err = -ENOMEM; 5329 goto err_alloc_qos_cap; 5330 } 5331 5332 /* set up the locks for the AQ, do this only once in probe 5333 * and destroy them only once in remove 5334 */ 5335 mutex_init(&adapter->crit_lock); 5336 mutex_init(&hw->aq.asq_mutex); 5337 mutex_init(&hw->aq.arq_mutex); 5338 5339 spin_lock_init(&adapter->mac_vlan_list_lock); 5340 spin_lock_init(&adapter->cloud_filter_list_lock); 5341 spin_lock_init(&adapter->fdir_fltr_lock); 5342 spin_lock_init(&adapter->adv_rss_lock); 5343 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5344 5345 INIT_LIST_HEAD(&adapter->mac_filter_list); 5346 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5347 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5348 INIT_LIST_HEAD(&adapter->fdir_list_head); 5349 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5350 5351 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5352 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5353 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5354 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5355 5356 /* Setup the wait queue for indicating transition to down status */ 5357 init_waitqueue_head(&adapter->down_waitqueue); 5358 5359 /* Setup the wait queue for indicating transition to running state */ 5360 init_waitqueue_head(&adapter->reset_waitqueue); 5361 5362 /* Setup the wait queue for indicating virtchannel events */ 5363 init_waitqueue_head(&adapter->vc_waitqueue); 5364 5365 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5366 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5367 /* Initialization goes on in the work. Do not add more of it below. */ 5368 return 0; 5369 5370 err_alloc_qos_cap: 5371 iounmap(hw->hw_addr); 5372 err_ioremap: 5373 destroy_workqueue(adapter->wq); 5374 err_alloc_wq: 5375 free_netdev(netdev); 5376 err_alloc_etherdev: 5377 pci_release_regions(pdev); 5378 err_pci_reg: 5379 err_dma: 5380 pci_disable_device(pdev); 5381 return err; 5382 } 5383 5384 /** 5385 * iavf_suspend - Power management suspend routine 5386 * @dev_d: device info pointer 5387 * 5388 * Called when the system (VM) is entering sleep/suspend. 5389 **/ 5390 static int iavf_suspend(struct device *dev_d) 5391 { 5392 struct net_device *netdev = dev_get_drvdata(dev_d); 5393 struct iavf_adapter *adapter = netdev_priv(netdev); 5394 5395 netif_device_detach(netdev); 5396 5397 netdev_lock(netdev); 5398 mutex_lock(&adapter->crit_lock); 5399 5400 if (netif_running(netdev)) { 5401 rtnl_lock(); 5402 iavf_down(adapter); 5403 rtnl_unlock(); 5404 } 5405 iavf_free_misc_irq(adapter); 5406 iavf_reset_interrupt_capability(adapter); 5407 5408 mutex_unlock(&adapter->crit_lock); 5409 netdev_unlock(netdev); 5410 5411 return 0; 5412 } 5413 5414 /** 5415 * iavf_resume - Power management resume routine 5416 * @dev_d: device info pointer 5417 * 5418 * Called when the system (VM) is resumed from sleep/suspend. 5419 **/ 5420 static int iavf_resume(struct device *dev_d) 5421 { 5422 struct pci_dev *pdev = to_pci_dev(dev_d); 5423 struct iavf_adapter *adapter; 5424 u32 err; 5425 5426 adapter = iavf_pdev_to_adapter(pdev); 5427 5428 pci_set_master(pdev); 5429 5430 rtnl_lock(); 5431 err = iavf_set_interrupt_capability(adapter); 5432 if (err) { 5433 rtnl_unlock(); 5434 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5435 return err; 5436 } 5437 err = iavf_request_misc_irq(adapter); 5438 rtnl_unlock(); 5439 if (err) { 5440 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5441 return err; 5442 } 5443 5444 queue_work(adapter->wq, &adapter->reset_task); 5445 5446 netif_device_attach(adapter->netdev); 5447 5448 return err; 5449 } 5450 5451 /** 5452 * iavf_remove - Device Removal Routine 5453 * @pdev: PCI device information struct 5454 * 5455 * iavf_remove is called by the PCI subsystem to alert the driver 5456 * that it should release a PCI device. The could be caused by a 5457 * Hot-Plug event, or because the driver is going to be removed from 5458 * memory. 5459 **/ 5460 static void iavf_remove(struct pci_dev *pdev) 5461 { 5462 struct iavf_fdir_fltr *fdir, *fdirtmp; 5463 struct iavf_vlan_filter *vlf, *vlftmp; 5464 struct iavf_cloud_filter *cf, *cftmp; 5465 struct iavf_adv_rss *rss, *rsstmp; 5466 struct iavf_mac_filter *f, *ftmp; 5467 struct iavf_adapter *adapter; 5468 struct net_device *netdev; 5469 struct iavf_hw *hw; 5470 5471 /* Don't proceed with remove if netdev is already freed */ 5472 netdev = pci_get_drvdata(pdev); 5473 if (!netdev) 5474 return; 5475 5476 adapter = iavf_pdev_to_adapter(pdev); 5477 hw = &adapter->hw; 5478 5479 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5480 return; 5481 5482 /* Wait until port initialization is complete. 5483 * There are flows where register/unregister netdev may race. 5484 */ 5485 while (1) { 5486 mutex_lock(&adapter->crit_lock); 5487 if (adapter->state == __IAVF_RUNNING || 5488 adapter->state == __IAVF_DOWN || 5489 adapter->state == __IAVF_INIT_FAILED) { 5490 mutex_unlock(&adapter->crit_lock); 5491 break; 5492 } 5493 /* Simply return if we already went through iavf_shutdown */ 5494 if (adapter->state == __IAVF_REMOVE) { 5495 mutex_unlock(&adapter->crit_lock); 5496 return; 5497 } 5498 5499 mutex_unlock(&adapter->crit_lock); 5500 usleep_range(500, 1000); 5501 } 5502 cancel_delayed_work_sync(&adapter->watchdog_task); 5503 cancel_work_sync(&adapter->finish_config); 5504 5505 if (netdev->reg_state == NETREG_REGISTERED) 5506 unregister_netdev(netdev); 5507 5508 netdev_lock(netdev); 5509 mutex_lock(&adapter->crit_lock); 5510 dev_info(&adapter->pdev->dev, "Removing device\n"); 5511 iavf_change_state(adapter, __IAVF_REMOVE); 5512 5513 iavf_request_reset(adapter); 5514 msleep(50); 5515 /* If the FW isn't responding, kick it once, but only once. */ 5516 if (!iavf_asq_done(hw)) { 5517 iavf_request_reset(adapter); 5518 msleep(50); 5519 } 5520 5521 iavf_misc_irq_disable(adapter); 5522 /* Shut down all the garbage mashers on the detention level */ 5523 cancel_work_sync(&adapter->reset_task); 5524 cancel_delayed_work_sync(&adapter->watchdog_task); 5525 cancel_work_sync(&adapter->adminq_task); 5526 5527 adapter->aq_required = 0; 5528 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5529 5530 iavf_free_all_tx_resources(adapter); 5531 iavf_free_all_rx_resources(adapter); 5532 iavf_free_misc_irq(adapter); 5533 iavf_free_interrupt_scheme(adapter); 5534 5535 iavf_free_rss(adapter); 5536 5537 if (hw->aq.asq.count) 5538 iavf_shutdown_adminq(hw); 5539 5540 /* destroy the locks only once, here */ 5541 mutex_destroy(&hw->aq.arq_mutex); 5542 mutex_destroy(&hw->aq.asq_mutex); 5543 mutex_unlock(&adapter->crit_lock); 5544 mutex_destroy(&adapter->crit_lock); 5545 netdev_unlock(netdev); 5546 5547 iounmap(hw->hw_addr); 5548 pci_release_regions(pdev); 5549 kfree(adapter->vf_res); 5550 spin_lock_bh(&adapter->mac_vlan_list_lock); 5551 /* If we got removed before an up/down sequence, we've got a filter 5552 * hanging out there that we need to get rid of. 5553 */ 5554 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5555 list_del(&f->list); 5556 kfree(f); 5557 } 5558 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5559 list) { 5560 list_del(&vlf->list); 5561 kfree(vlf); 5562 } 5563 5564 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5565 5566 spin_lock_bh(&adapter->cloud_filter_list_lock); 5567 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5568 list_del(&cf->list); 5569 kfree(cf); 5570 } 5571 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5572 5573 spin_lock_bh(&adapter->fdir_fltr_lock); 5574 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5575 list_del(&fdir->list); 5576 kfree(fdir); 5577 } 5578 spin_unlock_bh(&adapter->fdir_fltr_lock); 5579 5580 spin_lock_bh(&adapter->adv_rss_lock); 5581 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5582 list) { 5583 list_del(&rss->list); 5584 kfree(rss); 5585 } 5586 spin_unlock_bh(&adapter->adv_rss_lock); 5587 5588 destroy_workqueue(adapter->wq); 5589 5590 pci_set_drvdata(pdev, NULL); 5591 5592 free_netdev(netdev); 5593 5594 pci_disable_device(pdev); 5595 } 5596 5597 /** 5598 * iavf_shutdown - Shutdown the device in preparation for a reboot 5599 * @pdev: pci device structure 5600 **/ 5601 static void iavf_shutdown(struct pci_dev *pdev) 5602 { 5603 iavf_remove(pdev); 5604 5605 if (system_state == SYSTEM_POWER_OFF) 5606 pci_set_power_state(pdev, PCI_D3hot); 5607 } 5608 5609 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5610 5611 static struct pci_driver iavf_driver = { 5612 .name = iavf_driver_name, 5613 .id_table = iavf_pci_tbl, 5614 .probe = iavf_probe, 5615 .remove = iavf_remove, 5616 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5617 .shutdown = iavf_shutdown, 5618 }; 5619 5620 /** 5621 * iavf_init_module - Driver Registration Routine 5622 * 5623 * iavf_init_module is the first routine called when the driver is 5624 * loaded. All it does is register with the PCI subsystem. 5625 **/ 5626 static int __init iavf_init_module(void) 5627 { 5628 pr_info("iavf: %s\n", iavf_driver_string); 5629 5630 pr_info("%s\n", iavf_copyright); 5631 5632 return pci_register_driver(&iavf_driver); 5633 } 5634 5635 module_init(iavf_init_module); 5636 5637 /** 5638 * iavf_exit_module - Driver Exit Cleanup Routine 5639 * 5640 * iavf_exit_module is called just before the driver is removed 5641 * from memory. 5642 **/ 5643 static void __exit iavf_exit_module(void) 5644 { 5645 pci_unregister_driver(&iavf_driver); 5646 } 5647 5648 module_exit(iavf_exit_module); 5649 5650 /* iavf_main.c */ 5651