1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_prototype.h" 8 /* All iavf tracepoints are defined by the include below, which must 9 * be included exactly once across the whole kernel with 10 * CREATE_TRACE_POINTS defined 11 */ 12 #define CREATE_TRACE_POINTS 13 #include "iavf_trace.h" 14 15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 17 static int iavf_close(struct net_device *netdev); 18 static void iavf_init_get_resources(struct iavf_adapter *adapter); 19 static int iavf_check_reset_complete(struct iavf_hw *hw); 20 21 char iavf_driver_name[] = "iavf"; 22 static const char iavf_driver_string[] = 23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 24 25 static const char iavf_copyright[] = 26 "Copyright (c) 2013 - 2018 Intel Corporation."; 27 28 /* iavf_pci_tbl - PCI Device ID Table 29 * 30 * Wildcard entries (PCI_ANY_ID) should come last 31 * Last entry must be all 0s 32 * 33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 34 * Class, Class Mask, private data (not used) } 35 */ 36 static const struct pci_device_id iavf_pci_tbl[] = { 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 41 /* required last entry */ 42 {0, } 43 }; 44 45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 46 47 MODULE_ALIAS("i40evf"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_IMPORT_NS(LIBETH); 50 MODULE_IMPORT_NS(LIBIE); 51 MODULE_LICENSE("GPL v2"); 52 53 static const struct net_device_ops iavf_netdev_ops; 54 55 int iavf_status_to_errno(enum iavf_status status) 56 { 57 switch (status) { 58 case IAVF_SUCCESS: 59 return 0; 60 case IAVF_ERR_PARAM: 61 case IAVF_ERR_MAC_TYPE: 62 case IAVF_ERR_INVALID_MAC_ADDR: 63 case IAVF_ERR_INVALID_LINK_SETTINGS: 64 case IAVF_ERR_INVALID_PD_ID: 65 case IAVF_ERR_INVALID_QP_ID: 66 case IAVF_ERR_INVALID_CQ_ID: 67 case IAVF_ERR_INVALID_CEQ_ID: 68 case IAVF_ERR_INVALID_AEQ_ID: 69 case IAVF_ERR_INVALID_SIZE: 70 case IAVF_ERR_INVALID_ARP_INDEX: 71 case IAVF_ERR_INVALID_FPM_FUNC_ID: 72 case IAVF_ERR_QP_INVALID_MSG_SIZE: 73 case IAVF_ERR_INVALID_FRAG_COUNT: 74 case IAVF_ERR_INVALID_ALIGNMENT: 75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 76 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 77 case IAVF_ERR_INVALID_VF_ID: 78 case IAVF_ERR_INVALID_HMCFN_ID: 79 case IAVF_ERR_INVALID_PBLE_INDEX: 80 case IAVF_ERR_INVALID_SD_INDEX: 81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 82 case IAVF_ERR_INVALID_SD_TYPE: 83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 86 return -EINVAL; 87 case IAVF_ERR_NVM: 88 case IAVF_ERR_NVM_CHECKSUM: 89 case IAVF_ERR_PHY: 90 case IAVF_ERR_CONFIG: 91 case IAVF_ERR_UNKNOWN_PHY: 92 case IAVF_ERR_LINK_SETUP: 93 case IAVF_ERR_ADAPTER_STOPPED: 94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 95 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 96 case IAVF_ERR_RESET_FAILED: 97 case IAVF_ERR_BAD_PTR: 98 case IAVF_ERR_SWFW_SYNC: 99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 100 case IAVF_ERR_QUEUE_EMPTY: 101 case IAVF_ERR_FLUSHED_QUEUE: 102 case IAVF_ERR_OPCODE_MISMATCH: 103 case IAVF_ERR_CQP_COMPL_ERROR: 104 case IAVF_ERR_BACKING_PAGE_ERROR: 105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 106 case IAVF_ERR_MEMCPY_FAILED: 107 case IAVF_ERR_SRQ_ENABLED: 108 case IAVF_ERR_ADMIN_QUEUE_ERROR: 109 case IAVF_ERR_ADMIN_QUEUE_FULL: 110 case IAVF_ERR_BAD_RDMA_CQE: 111 case IAVF_ERR_NVM_BLANK_MODE: 112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 113 case IAVF_ERR_DIAG_TEST_FAILED: 114 case IAVF_ERR_FIRMWARE_API_VERSION: 115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 116 return -EIO; 117 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 118 return -ENODEV; 119 case IAVF_ERR_NO_AVAILABLE_VSI: 120 case IAVF_ERR_RING_FULL: 121 return -ENOSPC; 122 case IAVF_ERR_NO_MEMORY: 123 return -ENOMEM; 124 case IAVF_ERR_TIMEOUT: 125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 126 return -ETIMEDOUT; 127 case IAVF_ERR_NOT_IMPLEMENTED: 128 case IAVF_NOT_SUPPORTED: 129 return -EOPNOTSUPP; 130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 131 return -EALREADY; 132 case IAVF_ERR_NOT_READY: 133 return -EBUSY; 134 case IAVF_ERR_BUF_TOO_SHORT: 135 return -EMSGSIZE; 136 } 137 138 return -EIO; 139 } 140 141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 142 { 143 switch (v_status) { 144 case VIRTCHNL_STATUS_SUCCESS: 145 return 0; 146 case VIRTCHNL_STATUS_ERR_PARAM: 147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 148 return -EINVAL; 149 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 150 return -ENOMEM; 151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 154 return -EIO; 155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 156 return -EOPNOTSUPP; 157 } 158 159 return -EIO; 160 } 161 162 /** 163 * iavf_pdev_to_adapter - go from pci_dev to adapter 164 * @pdev: pci_dev pointer 165 */ 166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 167 { 168 return netdev_priv(pci_get_drvdata(pdev)); 169 } 170 171 /** 172 * iavf_is_reset_in_progress - Check if a reset is in progress 173 * @adapter: board private structure 174 */ 175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 176 { 177 if (adapter->state == __IAVF_RESETTING || 178 adapter->flags & (IAVF_FLAG_RESET_PENDING | 179 IAVF_FLAG_RESET_NEEDED)) 180 return true; 181 182 return false; 183 } 184 185 /** 186 * iavf_wait_for_reset - Wait for reset to finish. 187 * @adapter: board private structure 188 * 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 190 */ 191 int iavf_wait_for_reset(struct iavf_adapter *adapter) 192 { 193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 194 !iavf_is_reset_in_progress(adapter), 195 msecs_to_jiffies(5000)); 196 197 /* If ret < 0 then it means wait was interrupted. 198 * If ret == 0 then it means we got a timeout while waiting 199 * for reset to finish. 200 * If ret > 0 it means reset has finished. 201 */ 202 if (ret > 0) 203 return 0; 204 else if (ret < 0) 205 return -EINTR; 206 else 207 return -EBUSY; 208 } 209 210 /** 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 212 * @hw: pointer to the HW structure 213 * @mem: ptr to mem struct to fill out 214 * @size: size of memory requested 215 * @alignment: what to align the allocation to 216 **/ 217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 218 struct iavf_dma_mem *mem, 219 u64 size, u32 alignment) 220 { 221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 222 223 if (!mem) 224 return IAVF_ERR_PARAM; 225 226 mem->size = ALIGN(size, alignment); 227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 228 (dma_addr_t *)&mem->pa, GFP_KERNEL); 229 if (mem->va) 230 return 0; 231 else 232 return IAVF_ERR_NO_MEMORY; 233 } 234 235 /** 236 * iavf_free_dma_mem - wrapper for DMA memory freeing 237 * @hw: pointer to the HW structure 238 * @mem: ptr to mem struct to free 239 **/ 240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 241 { 242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 243 244 if (!mem || !mem->va) 245 return IAVF_ERR_PARAM; 246 dma_free_coherent(&adapter->pdev->dev, mem->size, 247 mem->va, (dma_addr_t)mem->pa); 248 return 0; 249 } 250 251 /** 252 * iavf_allocate_virt_mem - virt memory alloc wrapper 253 * @hw: pointer to the HW structure 254 * @mem: ptr to mem struct to fill out 255 * @size: size of memory requested 256 **/ 257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 258 struct iavf_virt_mem *mem, u32 size) 259 { 260 if (!mem) 261 return IAVF_ERR_PARAM; 262 263 mem->size = size; 264 mem->va = kzalloc(size, GFP_KERNEL); 265 266 if (mem->va) 267 return 0; 268 else 269 return IAVF_ERR_NO_MEMORY; 270 } 271 272 /** 273 * iavf_free_virt_mem - virt memory free wrapper 274 * @hw: pointer to the HW structure 275 * @mem: ptr to mem struct to free 276 **/ 277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 278 { 279 kfree(mem->va); 280 } 281 282 /** 283 * iavf_schedule_reset - Set the flags and schedule a reset event 284 * @adapter: board private structure 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 286 **/ 287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 288 { 289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 290 !(adapter->flags & 291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 292 adapter->flags |= flags; 293 queue_work(adapter->wq, &adapter->reset_task); 294 } 295 } 296 297 /** 298 * iavf_schedule_aq_request - Set the flags and schedule aq request 299 * @adapter: board private structure 300 * @flags: requested aq flags 301 **/ 302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 303 { 304 adapter->aq_required |= flags; 305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 306 } 307 308 /** 309 * iavf_tx_timeout - Respond to a Tx Hang 310 * @netdev: network interface device structure 311 * @txqueue: queue number that is timing out 312 **/ 313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 314 { 315 struct iavf_adapter *adapter = netdev_priv(netdev); 316 317 adapter->tx_timeout_count++; 318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 319 } 320 321 /** 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 323 * @adapter: board private structure 324 **/ 325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 326 { 327 struct iavf_hw *hw = &adapter->hw; 328 329 if (!adapter->msix_entries) 330 return; 331 332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 333 334 iavf_flush(hw); 335 336 synchronize_irq(adapter->msix_entries[0].vector); 337 } 338 339 /** 340 * iavf_misc_irq_enable - Enable default interrupt generation settings 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 350 351 iavf_flush(hw); 352 } 353 354 /** 355 * iavf_irq_disable - Mask off interrupt generation on the NIC 356 * @adapter: board private structure 357 **/ 358 static void iavf_irq_disable(struct iavf_adapter *adapter) 359 { 360 int i; 361 struct iavf_hw *hw = &adapter->hw; 362 363 if (!adapter->msix_entries) 364 return; 365 366 for (i = 1; i < adapter->num_msix_vectors; i++) { 367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 368 synchronize_irq(adapter->msix_entries[i].vector); 369 } 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_enable_queues - Enable interrupt for all queues 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 378 { 379 struct iavf_hw *hw = &adapter->hw; 380 int i; 381 382 for (i = 1; i < adapter->num_msix_vectors; i++) { 383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 386 } 387 } 388 389 /** 390 * iavf_irq_enable - Enable default interrupt generation settings 391 * @adapter: board private structure 392 * @flush: boolean value whether to run rd32() 393 **/ 394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 395 { 396 struct iavf_hw *hw = &adapter->hw; 397 398 iavf_misc_irq_enable(adapter); 399 iavf_irq_enable_queues(adapter); 400 401 if (flush) 402 iavf_flush(hw); 403 } 404 405 /** 406 * iavf_msix_aq - Interrupt handler for vector 0 407 * @irq: interrupt number 408 * @data: pointer to netdev 409 **/ 410 static irqreturn_t iavf_msix_aq(int irq, void *data) 411 { 412 struct net_device *netdev = data; 413 struct iavf_adapter *adapter = netdev_priv(netdev); 414 struct iavf_hw *hw = &adapter->hw; 415 416 /* handle non-queue interrupts, these reads clear the registers */ 417 rd32(hw, IAVF_VFINT_ICR01); 418 rd32(hw, IAVF_VFINT_ICR0_ENA1); 419 420 if (adapter->state != __IAVF_REMOVE) 421 /* schedule work on the private workqueue */ 422 queue_work(adapter->wq, &adapter->adminq_task); 423 424 return IRQ_HANDLED; 425 } 426 427 /** 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 429 * @irq: interrupt number 430 * @data: pointer to a q_vector 431 **/ 432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 433 { 434 struct iavf_q_vector *q_vector = data; 435 436 if (!q_vector->tx.ring && !q_vector->rx.ring) 437 return IRQ_HANDLED; 438 439 napi_schedule_irqoff(&q_vector->napi); 440 441 return IRQ_HANDLED; 442 } 443 444 /** 445 * iavf_map_vector_to_rxq - associate irqs with rx queues 446 * @adapter: board private structure 447 * @v_idx: interrupt number 448 * @r_idx: queue number 449 **/ 450 static void 451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 452 { 453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 455 struct iavf_hw *hw = &adapter->hw; 456 457 rx_ring->q_vector = q_vector; 458 rx_ring->next = q_vector->rx.ring; 459 rx_ring->vsi = &adapter->vsi; 460 q_vector->rx.ring = rx_ring; 461 q_vector->rx.count++; 462 q_vector->rx.next_update = jiffies + 1; 463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 464 q_vector->ring_mask |= BIT(r_idx); 465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 466 q_vector->rx.current_itr >> 1); 467 q_vector->rx.current_itr = q_vector->rx.target_itr; 468 } 469 470 /** 471 * iavf_map_vector_to_txq - associate irqs with tx queues 472 * @adapter: board private structure 473 * @v_idx: interrupt number 474 * @t_idx: queue number 475 **/ 476 static void 477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 478 { 479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 481 struct iavf_hw *hw = &adapter->hw; 482 483 tx_ring->q_vector = q_vector; 484 tx_ring->next = q_vector->tx.ring; 485 tx_ring->vsi = &adapter->vsi; 486 q_vector->tx.ring = tx_ring; 487 q_vector->tx.count++; 488 q_vector->tx.next_update = jiffies + 1; 489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 490 q_vector->num_ringpairs++; 491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 492 q_vector->tx.target_itr >> 1); 493 q_vector->tx.current_itr = q_vector->tx.target_itr; 494 } 495 496 /** 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 498 * @adapter: board private structure to initialize 499 * 500 * This function maps descriptor rings to the queue-specific vectors 501 * we were allotted through the MSI-X enabling code. Ideally, we'd have 502 * one vector per ring/queue, but on a constrained vector budget, we 503 * group the rings as "efficiently" as possible. You would add new 504 * mapping configurations in here. 505 **/ 506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 507 { 508 int rings_remaining = adapter->num_active_queues; 509 int ridx = 0, vidx = 0; 510 int q_vectors; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (; ridx < rings_remaining; ridx++) { 515 iavf_map_vector_to_rxq(adapter, vidx, ridx); 516 iavf_map_vector_to_txq(adapter, vidx, ridx); 517 518 /* In the case where we have more queues than vectors, continue 519 * round-robin on vectors until all queues are mapped. 520 */ 521 if (++vidx >= q_vectors) 522 vidx = 0; 523 } 524 525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 526 } 527 528 /** 529 * iavf_irq_affinity_notify - Callback for affinity changes 530 * @notify: context as to what irq was changed 531 * @mask: the new affinity mask 532 * 533 * This is a callback function used by the irq_set_affinity_notifier function 534 * so that we may register to receive changes to the irq affinity masks. 535 **/ 536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 537 const cpumask_t *mask) 538 { 539 struct iavf_q_vector *q_vector = 540 container_of(notify, struct iavf_q_vector, affinity_notify); 541 542 cpumask_copy(&q_vector->affinity_mask, mask); 543 } 544 545 /** 546 * iavf_irq_affinity_release - Callback for affinity notifier release 547 * @ref: internal core kernel usage 548 * 549 * This is a callback function used by the irq_set_affinity_notifier function 550 * to inform the current notification subscriber that they will no longer 551 * receive notifications. 552 **/ 553 static void iavf_irq_affinity_release(struct kref *ref) {} 554 555 /** 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 557 * @adapter: board private structure 558 * @basename: device basename 559 * 560 * Allocates MSI-X vectors for tx and rx handling, and requests 561 * interrupts from the kernel. 562 **/ 563 static int 564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 565 { 566 unsigned int vector, q_vectors; 567 unsigned int rx_int_idx = 0, tx_int_idx = 0; 568 int irq_num, err; 569 int cpu; 570 571 iavf_irq_disable(adapter); 572 /* Decrement for Other and TCP Timer vectors */ 573 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 574 575 for (vector = 0; vector < q_vectors; vector++) { 576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 577 578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 579 580 if (q_vector->tx.ring && q_vector->rx.ring) { 581 snprintf(q_vector->name, sizeof(q_vector->name), 582 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 583 tx_int_idx++; 584 } else if (q_vector->rx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-rx-%u", basename, rx_int_idx++); 587 } else if (q_vector->tx.ring) { 588 snprintf(q_vector->name, sizeof(q_vector->name), 589 "iavf-%s-tx-%u", basename, tx_int_idx++); 590 } else { 591 /* skip this unused q_vector */ 592 continue; 593 } 594 err = request_irq(irq_num, 595 iavf_msix_clean_rings, 596 0, 597 q_vector->name, 598 q_vector); 599 if (err) { 600 dev_info(&adapter->pdev->dev, 601 "Request_irq failed, error: %d\n", err); 602 goto free_queue_irqs; 603 } 604 /* register for affinity change notifications */ 605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 606 q_vector->affinity_notify.release = 607 iavf_irq_affinity_release; 608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 609 /* Spread the IRQ affinity hints across online CPUs. Note that 610 * get_cpu_mask returns a mask with a permanent lifetime so 611 * it's safe to use as a hint for irq_update_affinity_hint. 612 */ 613 cpu = cpumask_local_spread(q_vector->v_idx, -1); 614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 615 } 616 617 return 0; 618 619 free_queue_irqs: 620 while (vector) { 621 vector--; 622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 623 irq_set_affinity_notifier(irq_num, NULL); 624 irq_update_affinity_hint(irq_num, NULL); 625 free_irq(irq_num, &adapter->q_vectors[vector]); 626 } 627 return err; 628 } 629 630 /** 631 * iavf_request_misc_irq - Initialize MSI-X interrupts 632 * @adapter: board private structure 633 * 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 635 * vector is only for the admin queue, and stays active even when the netdev 636 * is closed. 637 **/ 638 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 639 { 640 struct net_device *netdev = adapter->netdev; 641 int err; 642 643 snprintf(adapter->misc_vector_name, 644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 645 dev_name(&adapter->pdev->dev)); 646 err = request_irq(adapter->msix_entries[0].vector, 647 &iavf_msix_aq, 0, 648 adapter->misc_vector_name, netdev); 649 if (err) { 650 dev_err(&adapter->pdev->dev, 651 "request_irq for %s failed: %d\n", 652 adapter->misc_vector_name, err); 653 free_irq(adapter->msix_entries[0].vector, netdev); 654 } 655 return err; 656 } 657 658 /** 659 * iavf_free_traffic_irqs - Free MSI-X interrupts 660 * @adapter: board private structure 661 * 662 * Frees all MSI-X vectors other than 0. 663 **/ 664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 665 { 666 int vector, irq_num, q_vectors; 667 668 if (!adapter->msix_entries) 669 return; 670 671 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 672 673 for (vector = 0; vector < q_vectors; vector++) { 674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 675 irq_set_affinity_notifier(irq_num, NULL); 676 irq_update_affinity_hint(irq_num, NULL); 677 free_irq(irq_num, &adapter->q_vectors[vector]); 678 } 679 } 680 681 /** 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 683 * @adapter: board private structure 684 * 685 * Frees MSI-X vector 0. 686 **/ 687 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 688 { 689 struct net_device *netdev = adapter->netdev; 690 691 if (!adapter->msix_entries) 692 return; 693 694 free_irq(adapter->msix_entries[0].vector, netdev); 695 } 696 697 /** 698 * iavf_configure_tx - Configure Transmit Unit after Reset 699 * @adapter: board private structure 700 * 701 * Configure the Tx unit of the MAC after a reset. 702 **/ 703 static void iavf_configure_tx(struct iavf_adapter *adapter) 704 { 705 struct iavf_hw *hw = &adapter->hw; 706 int i; 707 708 for (i = 0; i < adapter->num_active_queues; i++) 709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 710 } 711 712 /** 713 * iavf_configure_rx - Configure Receive Unit after Reset 714 * @adapter: board private structure 715 * 716 * Configure the Rx unit of the MAC after a reset. 717 **/ 718 static void iavf_configure_rx(struct iavf_adapter *adapter) 719 { 720 struct iavf_hw *hw = &adapter->hw; 721 722 for (u32 i = 0; i < adapter->num_active_queues; i++) 723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 724 } 725 726 /** 727 * iavf_find_vlan - Search filter list for specific vlan filter 728 * @adapter: board private structure 729 * @vlan: vlan tag 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 736 struct iavf_vlan vlan) 737 { 738 struct iavf_vlan_filter *f; 739 740 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 741 if (f->vlan.vid == vlan.vid && 742 f->vlan.tpid == vlan.tpid) 743 return f; 744 } 745 746 return NULL; 747 } 748 749 /** 750 * iavf_add_vlan - Add a vlan filter to the list 751 * @adapter: board private structure 752 * @vlan: VLAN tag 753 * 754 * Returns ptr to the filter object or NULL when no memory available. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f = NULL; 761 762 spin_lock_bh(&adapter->mac_vlan_list_lock); 763 764 f = iavf_find_vlan(adapter, vlan); 765 if (!f) { 766 f = kzalloc(sizeof(*f), GFP_ATOMIC); 767 if (!f) 768 goto clearout; 769 770 f->vlan = vlan; 771 772 list_add_tail(&f->list, &adapter->vlan_filter_list); 773 f->state = IAVF_VLAN_ADD; 774 adapter->num_vlan_filters++; 775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 776 } 777 778 clearout: 779 spin_unlock_bh(&adapter->mac_vlan_list_lock); 780 return f; 781 } 782 783 /** 784 * iavf_del_vlan - Remove a vlan filter from the list 785 * @adapter: board private structure 786 * @vlan: VLAN tag 787 **/ 788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 789 { 790 struct iavf_vlan_filter *f; 791 792 spin_lock_bh(&adapter->mac_vlan_list_lock); 793 794 f = iavf_find_vlan(adapter, vlan); 795 if (f) { 796 f->state = IAVF_VLAN_REMOVE; 797 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 798 } 799 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 } 802 803 /** 804 * iavf_restore_filters 805 * @adapter: board private structure 806 * 807 * Restore existing non MAC filters when VF netdev comes back up 808 **/ 809 static void iavf_restore_filters(struct iavf_adapter *adapter) 810 { 811 struct iavf_vlan_filter *f; 812 813 /* re-add all VLAN filters */ 814 spin_lock_bh(&adapter->mac_vlan_list_lock); 815 816 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 817 if (f->state == IAVF_VLAN_INACTIVE) 818 f->state = IAVF_VLAN_ADD; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 823 } 824 825 /** 826 * iavf_get_num_vlans_added - get number of VLANs added 827 * @adapter: board private structure 828 */ 829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 830 { 831 return adapter->num_vlan_filters; 832 } 833 834 /** 835 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 836 * @adapter: board private structure 837 * 838 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 839 * do not impose a limit as that maintains current behavior and for 840 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 841 **/ 842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 843 { 844 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 845 * never been a limit on the VF driver side 846 */ 847 if (VLAN_ALLOWED(adapter)) 848 return VLAN_N_VID; 849 else if (VLAN_V2_ALLOWED(adapter)) 850 return adapter->vlan_v2_caps.filtering.max_filters; 851 852 return 0; 853 } 854 855 /** 856 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 857 * @adapter: board private structure 858 **/ 859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 860 { 861 if (iavf_get_num_vlans_added(adapter) < 862 iavf_get_max_vlans_allowed(adapter)) 863 return false; 864 865 return true; 866 } 867 868 /** 869 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 870 * @netdev: network device struct 871 * @proto: unused protocol data 872 * @vid: VLAN tag 873 **/ 874 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 875 __always_unused __be16 proto, u16 vid) 876 { 877 struct iavf_adapter *adapter = netdev_priv(netdev); 878 879 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 880 if (!vid) 881 return 0; 882 883 if (!VLAN_FILTERING_ALLOWED(adapter)) 884 return -EIO; 885 886 if (iavf_max_vlans_added(adapter)) { 887 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 888 iavf_get_max_vlans_allowed(adapter)); 889 return -EIO; 890 } 891 892 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 893 return -ENOMEM; 894 895 return 0; 896 } 897 898 /** 899 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 900 * @netdev: network device struct 901 * @proto: unused protocol data 902 * @vid: VLAN tag 903 **/ 904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 905 __always_unused __be16 proto, u16 vid) 906 { 907 struct iavf_adapter *adapter = netdev_priv(netdev); 908 909 /* We do not track VLAN 0 filter */ 910 if (!vid) 911 return 0; 912 913 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 914 return 0; 915 } 916 917 /** 918 * iavf_find_filter - Search filter list for specific mac filter 919 * @adapter: board private structure 920 * @macaddr: the MAC address 921 * 922 * Returns ptr to the filter object or NULL. Must be called while holding the 923 * mac_vlan_list_lock. 924 **/ 925 static struct 926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 927 const u8 *macaddr) 928 { 929 struct iavf_mac_filter *f; 930 931 if (!macaddr) 932 return NULL; 933 934 list_for_each_entry(f, &adapter->mac_filter_list, list) { 935 if (ether_addr_equal(macaddr, f->macaddr)) 936 return f; 937 } 938 return NULL; 939 } 940 941 /** 942 * iavf_add_filter - Add a mac filter to the filter list 943 * @adapter: board private structure 944 * @macaddr: the MAC address 945 * 946 * Returns ptr to the filter object or NULL when no memory available. 947 **/ 948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 949 const u8 *macaddr) 950 { 951 struct iavf_mac_filter *f; 952 953 if (!macaddr) 954 return NULL; 955 956 f = iavf_find_filter(adapter, macaddr); 957 if (!f) { 958 f = kzalloc(sizeof(*f), GFP_ATOMIC); 959 if (!f) 960 return f; 961 962 ether_addr_copy(f->macaddr, macaddr); 963 964 list_add_tail(&f->list, &adapter->mac_filter_list); 965 f->add = true; 966 f->add_handled = false; 967 f->is_new_mac = true; 968 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 970 } else { 971 f->remove = false; 972 } 973 974 return f; 975 } 976 977 /** 978 * iavf_replace_primary_mac - Replace current primary address 979 * @adapter: board private structure 980 * @new_mac: new MAC address to be applied 981 * 982 * Replace current dev_addr and send request to PF for removal of previous 983 * primary MAC address filter and addition of new primary MAC filter. 984 * Return 0 for success, -ENOMEM for failure. 985 * 986 * Do not call this with mac_vlan_list_lock! 987 **/ 988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 989 const u8 *new_mac) 990 { 991 struct iavf_hw *hw = &adapter->hw; 992 struct iavf_mac_filter *new_f; 993 struct iavf_mac_filter *old_f; 994 995 spin_lock_bh(&adapter->mac_vlan_list_lock); 996 997 new_f = iavf_add_filter(adapter, new_mac); 998 if (!new_f) { 999 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1000 return -ENOMEM; 1001 } 1002 1003 old_f = iavf_find_filter(adapter, hw->mac.addr); 1004 if (old_f) { 1005 old_f->is_primary = false; 1006 old_f->remove = true; 1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1008 } 1009 /* Always send the request to add if changing primary MAC, 1010 * even if filter is already present on the list 1011 */ 1012 new_f->is_primary = true; 1013 new_f->add = true; 1014 ether_addr_copy(hw->mac.addr, new_mac); 1015 1016 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1017 1018 /* schedule the watchdog task to immediately process the request */ 1019 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1020 return 0; 1021 } 1022 1023 /** 1024 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1025 * @netdev: network interface device structure 1026 * @macaddr: MAC address to set 1027 * 1028 * Returns true on success, false on failure 1029 */ 1030 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1031 const u8 *macaddr) 1032 { 1033 struct iavf_adapter *adapter = netdev_priv(netdev); 1034 struct iavf_mac_filter *f; 1035 bool ret = false; 1036 1037 spin_lock_bh(&adapter->mac_vlan_list_lock); 1038 1039 f = iavf_find_filter(adapter, macaddr); 1040 1041 if (!f || (!f->add && f->add_handled)) 1042 ret = true; 1043 1044 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1045 1046 return ret; 1047 } 1048 1049 /** 1050 * iavf_set_mac - NDO callback to set port MAC address 1051 * @netdev: network interface device structure 1052 * @p: pointer to an address structure 1053 * 1054 * Returns 0 on success, negative on failure 1055 */ 1056 static int iavf_set_mac(struct net_device *netdev, void *p) 1057 { 1058 struct iavf_adapter *adapter = netdev_priv(netdev); 1059 struct sockaddr *addr = p; 1060 int ret; 1061 1062 if (!is_valid_ether_addr(addr->sa_data)) 1063 return -EADDRNOTAVAIL; 1064 1065 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1066 1067 if (ret) 1068 return ret; 1069 1070 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1071 iavf_is_mac_set_handled(netdev, addr->sa_data), 1072 msecs_to_jiffies(2500)); 1073 1074 /* If ret < 0 then it means wait was interrupted. 1075 * If ret == 0 then it means we got a timeout. 1076 * else it means we got response for set MAC from PF, 1077 * check if netdev MAC was updated to requested MAC, 1078 * if yes then set MAC succeeded otherwise it failed return -EACCES 1079 */ 1080 if (ret < 0) 1081 return ret; 1082 1083 if (!ret) 1084 return -EAGAIN; 1085 1086 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1087 return -EACCES; 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1094 * @netdev: the netdevice 1095 * @addr: address to add 1096 * 1097 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1098 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1099 */ 1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1101 { 1102 struct iavf_adapter *adapter = netdev_priv(netdev); 1103 1104 if (iavf_add_filter(adapter, addr)) 1105 return 0; 1106 else 1107 return -ENOMEM; 1108 } 1109 1110 /** 1111 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1112 * @netdev: the netdevice 1113 * @addr: address to add 1114 * 1115 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1116 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1117 */ 1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct iavf_mac_filter *f; 1122 1123 /* Under some circumstances, we might receive a request to delete 1124 * our own device address from our uc list. Because we store the 1125 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1126 * such requests and not delete our device address from this list. 1127 */ 1128 if (ether_addr_equal(addr, netdev->dev_addr)) 1129 return 0; 1130 1131 f = iavf_find_filter(adapter, addr); 1132 if (f) { 1133 f->remove = true; 1134 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1141 * @adapter: device specific adapter 1142 */ 1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1144 { 1145 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1146 (IFF_PROMISC | IFF_ALLMULTI); 1147 } 1148 1149 /** 1150 * iavf_set_rx_mode - NDO callback to set the netdev filters 1151 * @netdev: network interface device structure 1152 **/ 1153 static void iavf_set_rx_mode(struct net_device *netdev) 1154 { 1155 struct iavf_adapter *adapter = netdev_priv(netdev); 1156 1157 spin_lock_bh(&adapter->mac_vlan_list_lock); 1158 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1159 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1160 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1161 1162 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1163 if (iavf_promiscuous_mode_changed(adapter)) 1164 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1165 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1166 } 1167 1168 /** 1169 * iavf_napi_enable_all - enable NAPI on all queue vectors 1170 * @adapter: board private structure 1171 **/ 1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1173 { 1174 int q_idx; 1175 struct iavf_q_vector *q_vector; 1176 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1177 1178 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1179 struct napi_struct *napi; 1180 1181 q_vector = &adapter->q_vectors[q_idx]; 1182 napi = &q_vector->napi; 1183 napi_enable(napi); 1184 } 1185 } 1186 1187 /** 1188 * iavf_napi_disable_all - disable NAPI on all queue vectors 1189 * @adapter: board private structure 1190 **/ 1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1192 { 1193 int q_idx; 1194 struct iavf_q_vector *q_vector; 1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1196 1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1198 q_vector = &adapter->q_vectors[q_idx]; 1199 napi_disable(&q_vector->napi); 1200 } 1201 } 1202 1203 /** 1204 * iavf_configure - set up transmit and receive data structures 1205 * @adapter: board private structure 1206 **/ 1207 static void iavf_configure(struct iavf_adapter *adapter) 1208 { 1209 struct net_device *netdev = adapter->netdev; 1210 int i; 1211 1212 iavf_set_rx_mode(netdev); 1213 1214 iavf_configure_tx(adapter); 1215 iavf_configure_rx(adapter); 1216 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1217 1218 for (i = 0; i < adapter->num_active_queues; i++) { 1219 struct iavf_ring *ring = &adapter->rx_rings[i]; 1220 1221 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1222 } 1223 } 1224 1225 /** 1226 * iavf_up_complete - Finish the last steps of bringing up a connection 1227 * @adapter: board private structure 1228 * 1229 * Expects to be called while holding crit_lock. 1230 **/ 1231 static void iavf_up_complete(struct iavf_adapter *adapter) 1232 { 1233 iavf_change_state(adapter, __IAVF_RUNNING); 1234 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1235 1236 iavf_napi_enable_all(adapter); 1237 1238 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1239 } 1240 1241 /** 1242 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1243 * yet and mark other to be removed. 1244 * @adapter: board private structure 1245 **/ 1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1247 { 1248 struct iavf_vlan_filter *vlf, *vlftmp; 1249 struct iavf_mac_filter *f, *ftmp; 1250 1251 spin_lock_bh(&adapter->mac_vlan_list_lock); 1252 /* clear the sync flag on all filters */ 1253 __dev_uc_unsync(adapter->netdev, NULL); 1254 __dev_mc_unsync(adapter->netdev, NULL); 1255 1256 /* remove all MAC filters */ 1257 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1258 list) { 1259 if (f->add) { 1260 list_del(&f->list); 1261 kfree(f); 1262 } else { 1263 f->remove = true; 1264 } 1265 } 1266 1267 /* disable all VLAN filters */ 1268 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1269 list) 1270 vlf->state = IAVF_VLAN_DISABLE; 1271 1272 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1273 } 1274 1275 /** 1276 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1277 * mark other to be removed. 1278 * @adapter: board private structure 1279 **/ 1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1281 { 1282 struct iavf_cloud_filter *cf, *cftmp; 1283 1284 /* remove all cloud filters */ 1285 spin_lock_bh(&adapter->cloud_filter_list_lock); 1286 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1287 list) { 1288 if (cf->add) { 1289 list_del(&cf->list); 1290 kfree(cf); 1291 adapter->num_cloud_filters--; 1292 } else { 1293 cf->del = true; 1294 } 1295 } 1296 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1297 } 1298 1299 /** 1300 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1301 * other to be removed. 1302 * @adapter: board private structure 1303 **/ 1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1305 { 1306 struct iavf_fdir_fltr *fdir; 1307 1308 /* remove all Flow Director filters */ 1309 spin_lock_bh(&adapter->fdir_fltr_lock); 1310 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1311 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1312 /* Cancel a request, keep filter as inactive */ 1313 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1314 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1315 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1316 /* Disable filters which are active or have a pending 1317 * request to PF to be added 1318 */ 1319 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1320 } 1321 } 1322 spin_unlock_bh(&adapter->fdir_fltr_lock); 1323 } 1324 1325 /** 1326 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1327 * other to be removed. 1328 * @adapter: board private structure 1329 **/ 1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1331 { 1332 struct iavf_adv_rss *rss, *rsstmp; 1333 1334 /* remove all advance RSS configuration */ 1335 spin_lock_bh(&adapter->adv_rss_lock); 1336 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1337 list) { 1338 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1339 list_del(&rss->list); 1340 kfree(rss); 1341 } else { 1342 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1343 } 1344 } 1345 spin_unlock_bh(&adapter->adv_rss_lock); 1346 } 1347 1348 /** 1349 * iavf_down - Shutdown the connection processing 1350 * @adapter: board private structure 1351 * 1352 * Expects to be called while holding crit_lock. 1353 **/ 1354 void iavf_down(struct iavf_adapter *adapter) 1355 { 1356 struct net_device *netdev = adapter->netdev; 1357 1358 if (adapter->state <= __IAVF_DOWN_PENDING) 1359 return; 1360 1361 netif_carrier_off(netdev); 1362 netif_tx_disable(netdev); 1363 adapter->link_up = false; 1364 iavf_napi_disable_all(adapter); 1365 iavf_irq_disable(adapter); 1366 1367 iavf_clear_mac_vlan_filters(adapter); 1368 iavf_clear_cloud_filters(adapter); 1369 iavf_clear_fdir_filters(adapter); 1370 iavf_clear_adv_rss_conf(adapter); 1371 1372 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1373 return; 1374 1375 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1376 /* cancel any current operation */ 1377 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1378 /* Schedule operations to close down the HW. Don't wait 1379 * here for this to complete. The watchdog is still running 1380 * and it will take care of this. 1381 */ 1382 if (!list_empty(&adapter->mac_filter_list)) 1383 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1384 if (!list_empty(&adapter->vlan_filter_list)) 1385 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1386 if (!list_empty(&adapter->cloud_filter_list)) 1387 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1388 if (!list_empty(&adapter->fdir_list_head)) 1389 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1390 if (!list_empty(&adapter->adv_rss_list_head)) 1391 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1392 } 1393 1394 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1395 } 1396 1397 /** 1398 * iavf_acquire_msix_vectors - Setup the MSIX capability 1399 * @adapter: board private structure 1400 * @vectors: number of vectors to request 1401 * 1402 * Work with the OS to set up the MSIX vectors needed. 1403 * 1404 * Returns 0 on success, negative on failure 1405 **/ 1406 static int 1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1408 { 1409 int err, vector_threshold; 1410 1411 /* We'll want at least 3 (vector_threshold): 1412 * 0) Other (Admin Queue and link, mostly) 1413 * 1) TxQ[0] Cleanup 1414 * 2) RxQ[0] Cleanup 1415 */ 1416 vector_threshold = MIN_MSIX_COUNT; 1417 1418 /* The more we get, the more we will assign to Tx/Rx Cleanup 1419 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1420 * Right now, we simply care about how many we'll get; we'll 1421 * set them up later while requesting irq's. 1422 */ 1423 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1424 vector_threshold, vectors); 1425 if (err < 0) { 1426 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1427 kfree(adapter->msix_entries); 1428 adapter->msix_entries = NULL; 1429 return err; 1430 } 1431 1432 /* Adjust for only the vectors we'll use, which is minimum 1433 * of max_msix_q_vectors + NONQ_VECS, or the number of 1434 * vectors we were allocated. 1435 */ 1436 adapter->num_msix_vectors = err; 1437 return 0; 1438 } 1439 1440 /** 1441 * iavf_free_queues - Free memory for all rings 1442 * @adapter: board private structure to initialize 1443 * 1444 * Free all of the memory associated with queue pairs. 1445 **/ 1446 static void iavf_free_queues(struct iavf_adapter *adapter) 1447 { 1448 if (!adapter->vsi_res) 1449 return; 1450 adapter->num_active_queues = 0; 1451 kfree(adapter->tx_rings); 1452 adapter->tx_rings = NULL; 1453 kfree(adapter->rx_rings); 1454 adapter->rx_rings = NULL; 1455 } 1456 1457 /** 1458 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1459 * @adapter: board private structure 1460 * 1461 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1462 * stripped in certain descriptor fields. Instead of checking the offload 1463 * capability bits in the hot path, cache the location the ring specific 1464 * flags. 1465 */ 1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1467 { 1468 int i; 1469 1470 for (i = 0; i < adapter->num_active_queues; i++) { 1471 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1472 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1473 1474 /* prevent multiple L2TAG bits being set after VFR */ 1475 tx_ring->flags &= 1476 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1478 rx_ring->flags &= 1479 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1480 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1481 1482 if (VLAN_ALLOWED(adapter)) { 1483 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1484 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1485 } else if (VLAN_V2_ALLOWED(adapter)) { 1486 struct virtchnl_vlan_supported_caps *stripping_support; 1487 struct virtchnl_vlan_supported_caps *insertion_support; 1488 1489 stripping_support = 1490 &adapter->vlan_v2_caps.offloads.stripping_support; 1491 insertion_support = 1492 &adapter->vlan_v2_caps.offloads.insertion_support; 1493 1494 if (stripping_support->outer) { 1495 if (stripping_support->outer & 1496 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1497 rx_ring->flags |= 1498 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1499 else if (stripping_support->outer & 1500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1501 rx_ring->flags |= 1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1503 } else if (stripping_support->inner) { 1504 if (stripping_support->inner & 1505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1506 rx_ring->flags |= 1507 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1508 else if (stripping_support->inner & 1509 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1510 rx_ring->flags |= 1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1512 } 1513 1514 if (insertion_support->outer) { 1515 if (insertion_support->outer & 1516 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1517 tx_ring->flags |= 1518 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1519 else if (insertion_support->outer & 1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1521 tx_ring->flags |= 1522 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1523 } else if (insertion_support->inner) { 1524 if (insertion_support->inner & 1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1526 tx_ring->flags |= 1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1528 else if (insertion_support->inner & 1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1530 tx_ring->flags |= 1531 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1532 } 1533 } 1534 } 1535 } 1536 1537 /** 1538 * iavf_alloc_queues - Allocate memory for all rings 1539 * @adapter: board private structure to initialize 1540 * 1541 * We allocate one ring per queue at run-time since we don't know the 1542 * number of queues at compile-time. The polling_netdev array is 1543 * intended for Multiqueue, but should work fine with a single queue. 1544 **/ 1545 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1546 { 1547 int i, num_active_queues; 1548 1549 /* If we're in reset reallocating queues we don't actually know yet for 1550 * certain the PF gave us the number of queues we asked for but we'll 1551 * assume it did. Once basic reset is finished we'll confirm once we 1552 * start negotiating config with PF. 1553 */ 1554 if (adapter->num_req_queues) 1555 num_active_queues = adapter->num_req_queues; 1556 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1557 adapter->num_tc) 1558 num_active_queues = adapter->ch_config.total_qps; 1559 else 1560 num_active_queues = min_t(int, 1561 adapter->vsi_res->num_queue_pairs, 1562 (int)(num_online_cpus())); 1563 1564 1565 adapter->tx_rings = kcalloc(num_active_queues, 1566 sizeof(struct iavf_ring), GFP_KERNEL); 1567 if (!adapter->tx_rings) 1568 goto err_out; 1569 adapter->rx_rings = kcalloc(num_active_queues, 1570 sizeof(struct iavf_ring), GFP_KERNEL); 1571 if (!adapter->rx_rings) 1572 goto err_out; 1573 1574 for (i = 0; i < num_active_queues; i++) { 1575 struct iavf_ring *tx_ring; 1576 struct iavf_ring *rx_ring; 1577 1578 tx_ring = &adapter->tx_rings[i]; 1579 1580 tx_ring->queue_index = i; 1581 tx_ring->netdev = adapter->netdev; 1582 tx_ring->dev = &adapter->pdev->dev; 1583 tx_ring->count = adapter->tx_desc_count; 1584 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1585 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1586 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1587 1588 rx_ring = &adapter->rx_rings[i]; 1589 rx_ring->queue_index = i; 1590 rx_ring->netdev = adapter->netdev; 1591 rx_ring->count = adapter->rx_desc_count; 1592 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1593 } 1594 1595 adapter->num_active_queues = num_active_queues; 1596 1597 iavf_set_queue_vlan_tag_loc(adapter); 1598 1599 return 0; 1600 1601 err_out: 1602 iavf_free_queues(adapter); 1603 return -ENOMEM; 1604 } 1605 1606 /** 1607 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1608 * @adapter: board private structure to initialize 1609 * 1610 * Attempt to configure the interrupts using the best available 1611 * capabilities of the hardware and the kernel. 1612 **/ 1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1614 { 1615 int vector, v_budget; 1616 int pairs = 0; 1617 int err = 0; 1618 1619 if (!adapter->vsi_res) { 1620 err = -EIO; 1621 goto out; 1622 } 1623 pairs = adapter->num_active_queues; 1624 1625 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1626 * us much good if we have more vectors than CPUs. However, we already 1627 * limit the total number of queues by the number of CPUs so we do not 1628 * need any further limiting here. 1629 */ 1630 v_budget = min_t(int, pairs + NONQ_VECS, 1631 (int)adapter->vf_res->max_vectors); 1632 1633 adapter->msix_entries = kcalloc(v_budget, 1634 sizeof(struct msix_entry), GFP_KERNEL); 1635 if (!adapter->msix_entries) { 1636 err = -ENOMEM; 1637 goto out; 1638 } 1639 1640 for (vector = 0; vector < v_budget; vector++) 1641 adapter->msix_entries[vector].entry = vector; 1642 1643 err = iavf_acquire_msix_vectors(adapter, v_budget); 1644 if (!err) 1645 iavf_schedule_finish_config(adapter); 1646 1647 out: 1648 return err; 1649 } 1650 1651 /** 1652 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1653 * @adapter: board private structure 1654 * 1655 * Return 0 on success, negative on failure 1656 **/ 1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1658 { 1659 struct iavf_aqc_get_set_rss_key_data *rss_key = 1660 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1661 struct iavf_hw *hw = &adapter->hw; 1662 enum iavf_status status; 1663 1664 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1665 /* bail because we already have a command pending */ 1666 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1667 adapter->current_op); 1668 return -EBUSY; 1669 } 1670 1671 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1672 if (status) { 1673 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1674 iavf_stat_str(hw, status), 1675 iavf_aq_str(hw, hw->aq.asq_last_status)); 1676 return iavf_status_to_errno(status); 1677 1678 } 1679 1680 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1681 adapter->rss_lut, adapter->rss_lut_size); 1682 if (status) { 1683 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1684 iavf_stat_str(hw, status), 1685 iavf_aq_str(hw, hw->aq.asq_last_status)); 1686 return iavf_status_to_errno(status); 1687 } 1688 1689 return 0; 1690 1691 } 1692 1693 /** 1694 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1695 * @adapter: board private structure 1696 * 1697 * Returns 0 on success, negative on failure 1698 **/ 1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1700 { 1701 struct iavf_hw *hw = &adapter->hw; 1702 u32 *dw; 1703 u16 i; 1704 1705 dw = (u32 *)adapter->rss_key; 1706 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1707 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1708 1709 dw = (u32 *)adapter->rss_lut; 1710 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1711 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1712 1713 iavf_flush(hw); 1714 1715 return 0; 1716 } 1717 1718 /** 1719 * iavf_config_rss - Configure RSS keys and lut 1720 * @adapter: board private structure 1721 * 1722 * Returns 0 on success, negative on failure 1723 **/ 1724 int iavf_config_rss(struct iavf_adapter *adapter) 1725 { 1726 1727 if (RSS_PF(adapter)) { 1728 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1729 IAVF_FLAG_AQ_SET_RSS_KEY; 1730 return 0; 1731 } else if (RSS_AQ(adapter)) { 1732 return iavf_config_rss_aq(adapter); 1733 } else { 1734 return iavf_config_rss_reg(adapter); 1735 } 1736 } 1737 1738 /** 1739 * iavf_fill_rss_lut - Fill the lut with default values 1740 * @adapter: board private structure 1741 **/ 1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1743 { 1744 u16 i; 1745 1746 for (i = 0; i < adapter->rss_lut_size; i++) 1747 adapter->rss_lut[i] = i % adapter->num_active_queues; 1748 } 1749 1750 /** 1751 * iavf_init_rss - Prepare for RSS 1752 * @adapter: board private structure 1753 * 1754 * Return 0 on success, negative on failure 1755 **/ 1756 static int iavf_init_rss(struct iavf_adapter *adapter) 1757 { 1758 struct iavf_hw *hw = &adapter->hw; 1759 1760 if (!RSS_PF(adapter)) { 1761 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1762 if (adapter->vf_res->vf_cap_flags & 1763 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1764 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1765 else 1766 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1767 1768 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1769 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1770 } 1771 1772 iavf_fill_rss_lut(adapter); 1773 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1774 1775 return iavf_config_rss(adapter); 1776 } 1777 1778 /** 1779 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1780 * @adapter: board private structure to initialize 1781 * 1782 * We allocate one q_vector per queue interrupt. If allocation fails we 1783 * return -ENOMEM. 1784 **/ 1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1786 { 1787 int q_idx = 0, num_q_vectors; 1788 struct iavf_q_vector *q_vector; 1789 1790 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1791 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1792 GFP_KERNEL); 1793 if (!adapter->q_vectors) 1794 return -ENOMEM; 1795 1796 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1797 q_vector = &adapter->q_vectors[q_idx]; 1798 q_vector->adapter = adapter; 1799 q_vector->vsi = &adapter->vsi; 1800 q_vector->v_idx = q_idx; 1801 q_vector->reg_idx = q_idx; 1802 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1803 netif_napi_add(adapter->netdev, &q_vector->napi, 1804 iavf_napi_poll); 1805 } 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1812 * @adapter: board private structure to initialize 1813 * 1814 * This function frees the memory allocated to the q_vectors. In addition if 1815 * NAPI is enabled it will delete any references to the NAPI struct prior 1816 * to freeing the q_vector. 1817 **/ 1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1819 { 1820 int q_idx, num_q_vectors; 1821 1822 if (!adapter->q_vectors) 1823 return; 1824 1825 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1826 1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1828 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1829 1830 netif_napi_del(&q_vector->napi); 1831 } 1832 kfree(adapter->q_vectors); 1833 adapter->q_vectors = NULL; 1834 } 1835 1836 /** 1837 * iavf_reset_interrupt_capability - Reset MSIX setup 1838 * @adapter: board private structure 1839 * 1840 **/ 1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1842 { 1843 if (!adapter->msix_entries) 1844 return; 1845 1846 pci_disable_msix(adapter->pdev); 1847 kfree(adapter->msix_entries); 1848 adapter->msix_entries = NULL; 1849 } 1850 1851 /** 1852 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1853 * @adapter: board private structure to initialize 1854 * 1855 **/ 1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1857 { 1858 int err; 1859 1860 err = iavf_alloc_queues(adapter); 1861 if (err) { 1862 dev_err(&adapter->pdev->dev, 1863 "Unable to allocate memory for queues\n"); 1864 goto err_alloc_queues; 1865 } 1866 1867 err = iavf_set_interrupt_capability(adapter); 1868 if (err) { 1869 dev_err(&adapter->pdev->dev, 1870 "Unable to setup interrupt capabilities\n"); 1871 goto err_set_interrupt; 1872 } 1873 1874 err = iavf_alloc_q_vectors(adapter); 1875 if (err) { 1876 dev_err(&adapter->pdev->dev, 1877 "Unable to allocate memory for queue vectors\n"); 1878 goto err_alloc_q_vectors; 1879 } 1880 1881 /* If we've made it so far while ADq flag being ON, then we haven't 1882 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1883 * resources have been allocated in the reset path. 1884 * Now we can truly claim that ADq is enabled. 1885 */ 1886 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1887 adapter->num_tc) 1888 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1889 adapter->num_tc); 1890 1891 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1892 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1893 adapter->num_active_queues); 1894 1895 return 0; 1896 err_alloc_q_vectors: 1897 iavf_reset_interrupt_capability(adapter); 1898 err_set_interrupt: 1899 iavf_free_queues(adapter); 1900 err_alloc_queues: 1901 return err; 1902 } 1903 1904 /** 1905 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1906 * @adapter: board private structure 1907 **/ 1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1909 { 1910 iavf_free_q_vectors(adapter); 1911 iavf_reset_interrupt_capability(adapter); 1912 iavf_free_queues(adapter); 1913 } 1914 1915 /** 1916 * iavf_free_rss - Free memory used by RSS structs 1917 * @adapter: board private structure 1918 **/ 1919 static void iavf_free_rss(struct iavf_adapter *adapter) 1920 { 1921 kfree(adapter->rss_key); 1922 adapter->rss_key = NULL; 1923 1924 kfree(adapter->rss_lut); 1925 adapter->rss_lut = NULL; 1926 } 1927 1928 /** 1929 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1930 * @adapter: board private structure 1931 * @running: true if adapter->state == __IAVF_RUNNING 1932 * 1933 * Returns 0 on success, negative on failure 1934 **/ 1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1936 { 1937 struct net_device *netdev = adapter->netdev; 1938 int err; 1939 1940 if (running) 1941 iavf_free_traffic_irqs(adapter); 1942 iavf_free_misc_irq(adapter); 1943 iavf_free_interrupt_scheme(adapter); 1944 1945 err = iavf_init_interrupt_scheme(adapter); 1946 if (err) 1947 goto err; 1948 1949 netif_tx_stop_all_queues(netdev); 1950 1951 err = iavf_request_misc_irq(adapter); 1952 if (err) 1953 goto err; 1954 1955 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1956 1957 iavf_map_rings_to_vectors(adapter); 1958 err: 1959 return err; 1960 } 1961 1962 /** 1963 * iavf_finish_config - do all netdev work that needs RTNL 1964 * @work: our work_struct 1965 * 1966 * Do work that needs both RTNL and crit_lock. 1967 **/ 1968 static void iavf_finish_config(struct work_struct *work) 1969 { 1970 struct iavf_adapter *adapter; 1971 int pairs, err; 1972 1973 adapter = container_of(work, struct iavf_adapter, finish_config); 1974 1975 /* Always take RTNL first to prevent circular lock dependency */ 1976 rtnl_lock(); 1977 mutex_lock(&adapter->crit_lock); 1978 1979 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 1980 adapter->netdev->reg_state == NETREG_REGISTERED && 1981 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1982 netdev_update_features(adapter->netdev); 1983 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 1984 } 1985 1986 switch (adapter->state) { 1987 case __IAVF_DOWN: 1988 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 1989 err = register_netdevice(adapter->netdev); 1990 if (err) { 1991 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 1992 err); 1993 1994 /* go back and try again.*/ 1995 iavf_free_rss(adapter); 1996 iavf_free_misc_irq(adapter); 1997 iavf_reset_interrupt_capability(adapter); 1998 iavf_change_state(adapter, 1999 __IAVF_INIT_CONFIG_ADAPTER); 2000 goto out; 2001 } 2002 } 2003 2004 /* Set the real number of queues when reset occurs while 2005 * state == __IAVF_DOWN 2006 */ 2007 fallthrough; 2008 case __IAVF_RUNNING: 2009 pairs = adapter->num_active_queues; 2010 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2011 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2012 break; 2013 2014 default: 2015 break; 2016 } 2017 2018 out: 2019 mutex_unlock(&adapter->crit_lock); 2020 rtnl_unlock(); 2021 } 2022 2023 /** 2024 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2025 * @adapter: board private structure 2026 **/ 2027 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2028 { 2029 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2030 queue_work(adapter->wq, &adapter->finish_config); 2031 } 2032 2033 /** 2034 * iavf_process_aq_command - process aq_required flags 2035 * and sends aq command 2036 * @adapter: pointer to iavf adapter structure 2037 * 2038 * Returns 0 on success 2039 * Returns error code if no command was sent 2040 * or error code if the command failed. 2041 **/ 2042 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2043 { 2044 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2045 return iavf_send_vf_config_msg(adapter); 2046 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2047 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2048 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2049 iavf_disable_queues(adapter); 2050 return 0; 2051 } 2052 2053 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2054 iavf_map_queues(adapter); 2055 return 0; 2056 } 2057 2058 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2059 iavf_add_ether_addrs(adapter); 2060 return 0; 2061 } 2062 2063 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2064 iavf_add_vlans(adapter); 2065 return 0; 2066 } 2067 2068 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2069 iavf_del_ether_addrs(adapter); 2070 return 0; 2071 } 2072 2073 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2074 iavf_del_vlans(adapter); 2075 return 0; 2076 } 2077 2078 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2079 iavf_enable_vlan_stripping(adapter); 2080 return 0; 2081 } 2082 2083 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2084 iavf_disable_vlan_stripping(adapter); 2085 return 0; 2086 } 2087 2088 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2089 iavf_configure_queues(adapter); 2090 return 0; 2091 } 2092 2093 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2094 iavf_enable_queues(adapter); 2095 return 0; 2096 } 2097 2098 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2099 /* This message goes straight to the firmware, not the 2100 * PF, so we don't have to set current_op as we will 2101 * not get a response through the ARQ. 2102 */ 2103 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2104 return 0; 2105 } 2106 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2107 iavf_get_hena(adapter); 2108 return 0; 2109 } 2110 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2111 iavf_set_hena(adapter); 2112 return 0; 2113 } 2114 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2115 iavf_set_rss_key(adapter); 2116 return 0; 2117 } 2118 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2119 iavf_set_rss_lut(adapter); 2120 return 0; 2121 } 2122 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2123 iavf_set_rss_hfunc(adapter); 2124 return 0; 2125 } 2126 2127 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2128 iavf_set_promiscuous(adapter); 2129 return 0; 2130 } 2131 2132 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2133 iavf_enable_channels(adapter); 2134 return 0; 2135 } 2136 2137 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2138 iavf_disable_channels(adapter); 2139 return 0; 2140 } 2141 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2142 iavf_add_cloud_filter(adapter); 2143 return 0; 2144 } 2145 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2146 iavf_del_cloud_filter(adapter); 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2150 iavf_add_fdir_filter(adapter); 2151 return IAVF_SUCCESS; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2154 iavf_del_fdir_filter(adapter); 2155 return IAVF_SUCCESS; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2158 iavf_add_adv_rss_cfg(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2162 iavf_del_adv_rss_cfg(adapter); 2163 return 0; 2164 } 2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2166 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2167 return 0; 2168 } 2169 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2170 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2171 return 0; 2172 } 2173 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2174 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2175 return 0; 2176 } 2177 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2178 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2179 return 0; 2180 } 2181 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2182 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2183 return 0; 2184 } 2185 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2186 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2187 return 0; 2188 } 2189 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2190 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2191 return 0; 2192 } 2193 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2194 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2195 return 0; 2196 } 2197 2198 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2199 iavf_request_stats(adapter); 2200 return 0; 2201 } 2202 2203 return -EAGAIN; 2204 } 2205 2206 /** 2207 * iavf_set_vlan_offload_features - set VLAN offload configuration 2208 * @adapter: board private structure 2209 * @prev_features: previous features used for comparison 2210 * @features: updated features used for configuration 2211 * 2212 * Set the aq_required bit(s) based on the requested features passed in to 2213 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2214 * the watchdog if any changes are requested to expedite the request via 2215 * virtchnl. 2216 **/ 2217 static void 2218 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2219 netdev_features_t prev_features, 2220 netdev_features_t features) 2221 { 2222 bool enable_stripping = true, enable_insertion = true; 2223 u16 vlan_ethertype = 0; 2224 u64 aq_required = 0; 2225 2226 /* keep cases separate because one ethertype for offloads can be 2227 * disabled at the same time as another is disabled, so check for an 2228 * enabled ethertype first, then check for disabled. Default to 2229 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2230 * stripping. 2231 */ 2232 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2233 vlan_ethertype = ETH_P_8021AD; 2234 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2235 vlan_ethertype = ETH_P_8021Q; 2236 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2237 vlan_ethertype = ETH_P_8021AD; 2238 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2239 vlan_ethertype = ETH_P_8021Q; 2240 else 2241 vlan_ethertype = ETH_P_8021Q; 2242 2243 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2244 enable_stripping = false; 2245 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2246 enable_insertion = false; 2247 2248 if (VLAN_ALLOWED(adapter)) { 2249 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2250 * stripping via virtchnl. VLAN insertion can be toggled on the 2251 * netdev, but it doesn't require a virtchnl message 2252 */ 2253 if (enable_stripping) 2254 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2255 else 2256 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2257 2258 } else if (VLAN_V2_ALLOWED(adapter)) { 2259 switch (vlan_ethertype) { 2260 case ETH_P_8021Q: 2261 if (enable_stripping) 2262 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2263 else 2264 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2265 2266 if (enable_insertion) 2267 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2268 else 2269 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2270 break; 2271 case ETH_P_8021AD: 2272 if (enable_stripping) 2273 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2274 else 2275 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2276 2277 if (enable_insertion) 2278 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2279 else 2280 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2281 break; 2282 } 2283 } 2284 2285 if (aq_required) 2286 iavf_schedule_aq_request(adapter, aq_required); 2287 } 2288 2289 /** 2290 * iavf_startup - first step of driver startup 2291 * @adapter: board private structure 2292 * 2293 * Function process __IAVF_STARTUP driver state. 2294 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2295 * when fails the state is changed to __IAVF_INIT_FAILED 2296 **/ 2297 static void iavf_startup(struct iavf_adapter *adapter) 2298 { 2299 struct pci_dev *pdev = adapter->pdev; 2300 struct iavf_hw *hw = &adapter->hw; 2301 enum iavf_status status; 2302 int ret; 2303 2304 WARN_ON(adapter->state != __IAVF_STARTUP); 2305 2306 /* driver loaded, probe complete */ 2307 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2308 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2309 2310 ret = iavf_check_reset_complete(hw); 2311 if (ret) { 2312 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2313 ret); 2314 goto err; 2315 } 2316 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2317 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2318 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2319 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2320 2321 status = iavf_init_adminq(hw); 2322 if (status) { 2323 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2324 status); 2325 goto err; 2326 } 2327 ret = iavf_send_api_ver(adapter); 2328 if (ret) { 2329 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2330 iavf_shutdown_adminq(hw); 2331 goto err; 2332 } 2333 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2334 return; 2335 err: 2336 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2337 } 2338 2339 /** 2340 * iavf_init_version_check - second step of driver startup 2341 * @adapter: board private structure 2342 * 2343 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2344 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2345 * when fails the state is changed to __IAVF_INIT_FAILED 2346 **/ 2347 static void iavf_init_version_check(struct iavf_adapter *adapter) 2348 { 2349 struct pci_dev *pdev = adapter->pdev; 2350 struct iavf_hw *hw = &adapter->hw; 2351 int err = -EAGAIN; 2352 2353 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2354 2355 if (!iavf_asq_done(hw)) { 2356 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2357 iavf_shutdown_adminq(hw); 2358 iavf_change_state(adapter, __IAVF_STARTUP); 2359 goto err; 2360 } 2361 2362 /* aq msg sent, awaiting reply */ 2363 err = iavf_verify_api_ver(adapter); 2364 if (err) { 2365 if (err == -EALREADY) 2366 err = iavf_send_api_ver(adapter); 2367 else 2368 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2369 adapter->pf_version.major, 2370 adapter->pf_version.minor, 2371 VIRTCHNL_VERSION_MAJOR, 2372 VIRTCHNL_VERSION_MINOR); 2373 goto err; 2374 } 2375 err = iavf_send_vf_config_msg(adapter); 2376 if (err) { 2377 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2378 err); 2379 goto err; 2380 } 2381 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2382 return; 2383 err: 2384 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2385 } 2386 2387 /** 2388 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2389 * @adapter: board private structure 2390 */ 2391 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2392 { 2393 int i, num_req_queues = adapter->num_req_queues; 2394 struct iavf_vsi *vsi = &adapter->vsi; 2395 2396 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2397 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2398 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2399 } 2400 if (!adapter->vsi_res) { 2401 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2402 return -ENODEV; 2403 } 2404 2405 if (num_req_queues && 2406 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2407 /* Problem. The PF gave us fewer queues than what we had 2408 * negotiated in our request. Need a reset to see if we can't 2409 * get back to a working state. 2410 */ 2411 dev_err(&adapter->pdev->dev, 2412 "Requested %d queues, but PF only gave us %d.\n", 2413 num_req_queues, 2414 adapter->vsi_res->num_queue_pairs); 2415 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2416 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2417 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2418 2419 return -EAGAIN; 2420 } 2421 adapter->num_req_queues = 0; 2422 adapter->vsi.id = adapter->vsi_res->vsi_id; 2423 2424 adapter->vsi.back = adapter; 2425 adapter->vsi.base_vector = 1; 2426 vsi->netdev = adapter->netdev; 2427 vsi->qs_handle = adapter->vsi_res->qset_handle; 2428 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2429 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2430 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2431 } else { 2432 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2433 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2434 } 2435 2436 return 0; 2437 } 2438 2439 /** 2440 * iavf_init_get_resources - third step of driver startup 2441 * @adapter: board private structure 2442 * 2443 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2444 * finishes driver initialization procedure. 2445 * When success the state is changed to __IAVF_DOWN 2446 * when fails the state is changed to __IAVF_INIT_FAILED 2447 **/ 2448 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2449 { 2450 struct pci_dev *pdev = adapter->pdev; 2451 struct iavf_hw *hw = &adapter->hw; 2452 int err; 2453 2454 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2455 /* aq msg sent, awaiting reply */ 2456 if (!adapter->vf_res) { 2457 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2458 GFP_KERNEL); 2459 if (!adapter->vf_res) { 2460 err = -ENOMEM; 2461 goto err; 2462 } 2463 } 2464 err = iavf_get_vf_config(adapter); 2465 if (err == -EALREADY) { 2466 err = iavf_send_vf_config_msg(adapter); 2467 goto err; 2468 } else if (err == -EINVAL) { 2469 /* We only get -EINVAL if the device is in a very bad 2470 * state or if we've been disabled for previous bad 2471 * behavior. Either way, we're done now. 2472 */ 2473 iavf_shutdown_adminq(hw); 2474 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2475 return; 2476 } 2477 if (err) { 2478 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2479 goto err_alloc; 2480 } 2481 2482 err = iavf_parse_vf_resource_msg(adapter); 2483 if (err) { 2484 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2485 err); 2486 goto err_alloc; 2487 } 2488 /* Some features require additional messages to negotiate extended 2489 * capabilities. These are processed in sequence by the 2490 * __IAVF_INIT_EXTENDED_CAPS driver state. 2491 */ 2492 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2493 2494 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2495 return; 2496 2497 err_alloc: 2498 kfree(adapter->vf_res); 2499 adapter->vf_res = NULL; 2500 err: 2501 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2502 } 2503 2504 /** 2505 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2506 * @adapter: board private structure 2507 * 2508 * Function processes send of the extended VLAN V2 capability message to the 2509 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2510 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2511 */ 2512 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2513 { 2514 int ret; 2515 2516 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2517 2518 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2519 if (ret && ret == -EOPNOTSUPP) { 2520 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2521 * we did not send the capability exchange message and do not 2522 * expect a response. 2523 */ 2524 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2525 } 2526 2527 /* We sent the message, so move on to the next step */ 2528 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2529 } 2530 2531 /** 2532 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2533 * @adapter: board private structure 2534 * 2535 * Function processes receipt of the extended VLAN V2 capability message from 2536 * the PF. 2537 **/ 2538 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2539 { 2540 int ret; 2541 2542 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2543 2544 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2545 2546 ret = iavf_get_vf_vlan_v2_caps(adapter); 2547 if (ret) 2548 goto err; 2549 2550 /* We've processed receipt of the VLAN V2 caps message */ 2551 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2552 return; 2553 err: 2554 /* We didn't receive a reply. Make sure we try sending again when 2555 * __IAVF_INIT_FAILED attempts to recover. 2556 */ 2557 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2558 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2559 } 2560 2561 /** 2562 * iavf_init_process_extended_caps - Part of driver startup 2563 * @adapter: board private structure 2564 * 2565 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2566 * handles negotiating capabilities for features which require an additional 2567 * message. 2568 * 2569 * Once all extended capabilities exchanges are finished, the driver will 2570 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2571 */ 2572 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2573 { 2574 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2575 2576 /* Process capability exchange for VLAN V2 */ 2577 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2578 iavf_init_send_offload_vlan_v2_caps(adapter); 2579 return; 2580 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2581 iavf_init_recv_offload_vlan_v2_caps(adapter); 2582 return; 2583 } 2584 2585 /* When we reach here, no further extended capabilities exchanges are 2586 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2587 */ 2588 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2589 } 2590 2591 /** 2592 * iavf_init_config_adapter - last part of driver startup 2593 * @adapter: board private structure 2594 * 2595 * After all the supported capabilities are negotiated, then the 2596 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2597 */ 2598 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2599 { 2600 struct net_device *netdev = adapter->netdev; 2601 struct pci_dev *pdev = adapter->pdev; 2602 int err; 2603 2604 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2605 2606 if (iavf_process_config(adapter)) 2607 goto err; 2608 2609 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2610 2611 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2612 2613 netdev->netdev_ops = &iavf_netdev_ops; 2614 iavf_set_ethtool_ops(netdev); 2615 netdev->watchdog_timeo = 5 * HZ; 2616 2617 netdev->min_mtu = ETH_MIN_MTU; 2618 netdev->max_mtu = LIBIE_MAX_MTU; 2619 2620 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2621 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2622 adapter->hw.mac.addr); 2623 eth_hw_addr_random(netdev); 2624 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2625 } else { 2626 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2627 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2628 } 2629 2630 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2631 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2632 err = iavf_init_interrupt_scheme(adapter); 2633 if (err) 2634 goto err_sw_init; 2635 iavf_map_rings_to_vectors(adapter); 2636 if (adapter->vf_res->vf_cap_flags & 2637 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2638 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2639 2640 err = iavf_request_misc_irq(adapter); 2641 if (err) 2642 goto err_sw_init; 2643 2644 netif_carrier_off(netdev); 2645 adapter->link_up = false; 2646 netif_tx_stop_all_queues(netdev); 2647 2648 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2649 if (netdev->features & NETIF_F_GRO) 2650 dev_info(&pdev->dev, "GRO is enabled\n"); 2651 2652 iavf_change_state(adapter, __IAVF_DOWN); 2653 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2654 2655 iavf_misc_irq_enable(adapter); 2656 wake_up(&adapter->down_waitqueue); 2657 2658 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2659 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2660 if (!adapter->rss_key || !adapter->rss_lut) { 2661 err = -ENOMEM; 2662 goto err_mem; 2663 } 2664 if (RSS_AQ(adapter)) 2665 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2666 else 2667 iavf_init_rss(adapter); 2668 2669 if (VLAN_V2_ALLOWED(adapter)) 2670 /* request initial VLAN offload settings */ 2671 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2672 2673 iavf_schedule_finish_config(adapter); 2674 return; 2675 2676 err_mem: 2677 iavf_free_rss(adapter); 2678 iavf_free_misc_irq(adapter); 2679 err_sw_init: 2680 iavf_reset_interrupt_capability(adapter); 2681 err: 2682 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2683 } 2684 2685 /** 2686 * iavf_watchdog_task - Periodic call-back task 2687 * @work: pointer to work_struct 2688 **/ 2689 static void iavf_watchdog_task(struct work_struct *work) 2690 { 2691 struct iavf_adapter *adapter = container_of(work, 2692 struct iavf_adapter, 2693 watchdog_task.work); 2694 struct iavf_hw *hw = &adapter->hw; 2695 u32 reg_val; 2696 2697 if (!mutex_trylock(&adapter->crit_lock)) { 2698 if (adapter->state == __IAVF_REMOVE) 2699 return; 2700 2701 goto restart_watchdog; 2702 } 2703 2704 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2705 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2706 2707 switch (adapter->state) { 2708 case __IAVF_STARTUP: 2709 iavf_startup(adapter); 2710 mutex_unlock(&adapter->crit_lock); 2711 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2712 msecs_to_jiffies(30)); 2713 return; 2714 case __IAVF_INIT_VERSION_CHECK: 2715 iavf_init_version_check(adapter); 2716 mutex_unlock(&adapter->crit_lock); 2717 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2718 msecs_to_jiffies(30)); 2719 return; 2720 case __IAVF_INIT_GET_RESOURCES: 2721 iavf_init_get_resources(adapter); 2722 mutex_unlock(&adapter->crit_lock); 2723 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2724 msecs_to_jiffies(1)); 2725 return; 2726 case __IAVF_INIT_EXTENDED_CAPS: 2727 iavf_init_process_extended_caps(adapter); 2728 mutex_unlock(&adapter->crit_lock); 2729 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2730 msecs_to_jiffies(1)); 2731 return; 2732 case __IAVF_INIT_CONFIG_ADAPTER: 2733 iavf_init_config_adapter(adapter); 2734 mutex_unlock(&adapter->crit_lock); 2735 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2736 msecs_to_jiffies(1)); 2737 return; 2738 case __IAVF_INIT_FAILED: 2739 if (test_bit(__IAVF_IN_REMOVE_TASK, 2740 &adapter->crit_section)) { 2741 /* Do not update the state and do not reschedule 2742 * watchdog task, iavf_remove should handle this state 2743 * as it can loop forever 2744 */ 2745 mutex_unlock(&adapter->crit_lock); 2746 return; 2747 } 2748 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2749 dev_err(&adapter->pdev->dev, 2750 "Failed to communicate with PF; waiting before retry\n"); 2751 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2752 iavf_shutdown_adminq(hw); 2753 mutex_unlock(&adapter->crit_lock); 2754 queue_delayed_work(adapter->wq, 2755 &adapter->watchdog_task, (5 * HZ)); 2756 return; 2757 } 2758 /* Try again from failed step*/ 2759 iavf_change_state(adapter, adapter->last_state); 2760 mutex_unlock(&adapter->crit_lock); 2761 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2762 return; 2763 case __IAVF_COMM_FAILED: 2764 if (test_bit(__IAVF_IN_REMOVE_TASK, 2765 &adapter->crit_section)) { 2766 /* Set state to __IAVF_INIT_FAILED and perform remove 2767 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2768 * doesn't bring the state back to __IAVF_COMM_FAILED. 2769 */ 2770 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2771 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2772 mutex_unlock(&adapter->crit_lock); 2773 return; 2774 } 2775 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2776 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2777 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2778 reg_val == VIRTCHNL_VFR_COMPLETED) { 2779 /* A chance for redemption! */ 2780 dev_err(&adapter->pdev->dev, 2781 "Hardware came out of reset. Attempting reinit.\n"); 2782 /* When init task contacts the PF and 2783 * gets everything set up again, it'll restart the 2784 * watchdog for us. Down, boy. Sit. Stay. Woof. 2785 */ 2786 iavf_change_state(adapter, __IAVF_STARTUP); 2787 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2788 } 2789 adapter->aq_required = 0; 2790 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2791 mutex_unlock(&adapter->crit_lock); 2792 queue_delayed_work(adapter->wq, 2793 &adapter->watchdog_task, 2794 msecs_to_jiffies(10)); 2795 return; 2796 case __IAVF_RESETTING: 2797 mutex_unlock(&adapter->crit_lock); 2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2799 HZ * 2); 2800 return; 2801 case __IAVF_DOWN: 2802 case __IAVF_DOWN_PENDING: 2803 case __IAVF_TESTING: 2804 case __IAVF_RUNNING: 2805 if (adapter->current_op) { 2806 if (!iavf_asq_done(hw)) { 2807 dev_dbg(&adapter->pdev->dev, 2808 "Admin queue timeout\n"); 2809 iavf_send_api_ver(adapter); 2810 } 2811 } else { 2812 int ret = iavf_process_aq_command(adapter); 2813 2814 /* An error will be returned if no commands were 2815 * processed; use this opportunity to update stats 2816 * if the error isn't -ENOTSUPP 2817 */ 2818 if (ret && ret != -EOPNOTSUPP && 2819 adapter->state == __IAVF_RUNNING) 2820 iavf_request_stats(adapter); 2821 } 2822 if (adapter->state == __IAVF_RUNNING) 2823 iavf_detect_recover_hung(&adapter->vsi); 2824 break; 2825 case __IAVF_REMOVE: 2826 default: 2827 mutex_unlock(&adapter->crit_lock); 2828 return; 2829 } 2830 2831 /* check for hw reset */ 2832 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2833 if (!reg_val) { 2834 adapter->aq_required = 0; 2835 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2836 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2837 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2838 mutex_unlock(&adapter->crit_lock); 2839 queue_delayed_work(adapter->wq, 2840 &adapter->watchdog_task, HZ * 2); 2841 return; 2842 } 2843 2844 mutex_unlock(&adapter->crit_lock); 2845 restart_watchdog: 2846 if (adapter->state >= __IAVF_DOWN) 2847 queue_work(adapter->wq, &adapter->adminq_task); 2848 if (adapter->aq_required) 2849 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2850 msecs_to_jiffies(20)); 2851 else 2852 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2853 HZ * 2); 2854 } 2855 2856 /** 2857 * iavf_disable_vf - disable VF 2858 * @adapter: board private structure 2859 * 2860 * Set communication failed flag and free all resources. 2861 * NOTE: This function is expected to be called with crit_lock being held. 2862 **/ 2863 static void iavf_disable_vf(struct iavf_adapter *adapter) 2864 { 2865 struct iavf_mac_filter *f, *ftmp; 2866 struct iavf_vlan_filter *fv, *fvtmp; 2867 struct iavf_cloud_filter *cf, *cftmp; 2868 2869 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2870 2871 /* We don't use netif_running() because it may be true prior to 2872 * ndo_open() returning, so we can't assume it means all our open 2873 * tasks have finished, since we're not holding the rtnl_lock here. 2874 */ 2875 if (adapter->state == __IAVF_RUNNING) { 2876 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2877 netif_carrier_off(adapter->netdev); 2878 netif_tx_disable(adapter->netdev); 2879 adapter->link_up = false; 2880 iavf_napi_disable_all(adapter); 2881 iavf_irq_disable(adapter); 2882 iavf_free_traffic_irqs(adapter); 2883 iavf_free_all_tx_resources(adapter); 2884 iavf_free_all_rx_resources(adapter); 2885 } 2886 2887 spin_lock_bh(&adapter->mac_vlan_list_lock); 2888 2889 /* Delete all of the filters */ 2890 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2891 list_del(&f->list); 2892 kfree(f); 2893 } 2894 2895 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2896 list_del(&fv->list); 2897 kfree(fv); 2898 } 2899 adapter->num_vlan_filters = 0; 2900 2901 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2902 2903 spin_lock_bh(&adapter->cloud_filter_list_lock); 2904 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2905 list_del(&cf->list); 2906 kfree(cf); 2907 adapter->num_cloud_filters--; 2908 } 2909 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2910 2911 iavf_free_misc_irq(adapter); 2912 iavf_free_interrupt_scheme(adapter); 2913 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2914 iavf_shutdown_adminq(&adapter->hw); 2915 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2916 iavf_change_state(adapter, __IAVF_DOWN); 2917 wake_up(&adapter->down_waitqueue); 2918 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2919 } 2920 2921 /** 2922 * iavf_reset_task - Call-back task to handle hardware reset 2923 * @work: pointer to work_struct 2924 * 2925 * During reset we need to shut down and reinitialize the admin queue 2926 * before we can use it to communicate with the PF again. We also clear 2927 * and reinit the rings because that context is lost as well. 2928 **/ 2929 static void iavf_reset_task(struct work_struct *work) 2930 { 2931 struct iavf_adapter *adapter = container_of(work, 2932 struct iavf_adapter, 2933 reset_task); 2934 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2935 struct net_device *netdev = adapter->netdev; 2936 struct iavf_hw *hw = &adapter->hw; 2937 struct iavf_mac_filter *f, *ftmp; 2938 struct iavf_cloud_filter *cf; 2939 enum iavf_status status; 2940 u32 reg_val; 2941 int i = 0, err; 2942 bool running; 2943 2944 /* When device is being removed it doesn't make sense to run the reset 2945 * task, just return in such a case. 2946 */ 2947 if (!mutex_trylock(&adapter->crit_lock)) { 2948 if (adapter->state != __IAVF_REMOVE) 2949 queue_work(adapter->wq, &adapter->reset_task); 2950 2951 return; 2952 } 2953 2954 iavf_misc_irq_disable(adapter); 2955 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2956 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2957 /* Restart the AQ here. If we have been reset but didn't 2958 * detect it, or if the PF had to reinit, our AQ will be hosed. 2959 */ 2960 iavf_shutdown_adminq(hw); 2961 iavf_init_adminq(hw); 2962 iavf_request_reset(adapter); 2963 } 2964 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2965 2966 /* poll until we see the reset actually happen */ 2967 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2968 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2969 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2970 if (!reg_val) 2971 break; 2972 usleep_range(5000, 10000); 2973 } 2974 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2975 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2976 goto continue_reset; /* act like the reset happened */ 2977 } 2978 2979 /* wait until the reset is complete and the PF is responding to us */ 2980 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2981 /* sleep first to make sure a minimum wait time is met */ 2982 msleep(IAVF_RESET_WAIT_MS); 2983 2984 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2985 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2986 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2987 break; 2988 } 2989 2990 pci_set_master(adapter->pdev); 2991 pci_restore_msi_state(adapter->pdev); 2992 2993 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2994 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2995 reg_val); 2996 iavf_disable_vf(adapter); 2997 mutex_unlock(&adapter->crit_lock); 2998 return; /* Do not attempt to reinit. It's dead, Jim. */ 2999 } 3000 3001 continue_reset: 3002 /* We don't use netif_running() because it may be true prior to 3003 * ndo_open() returning, so we can't assume it means all our open 3004 * tasks have finished, since we're not holding the rtnl_lock here. 3005 */ 3006 running = adapter->state == __IAVF_RUNNING; 3007 3008 if (running) { 3009 netif_carrier_off(netdev); 3010 netif_tx_stop_all_queues(netdev); 3011 adapter->link_up = false; 3012 iavf_napi_disable_all(adapter); 3013 } 3014 iavf_irq_disable(adapter); 3015 3016 iavf_change_state(adapter, __IAVF_RESETTING); 3017 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3018 3019 /* free the Tx/Rx rings and descriptors, might be better to just 3020 * re-use them sometime in the future 3021 */ 3022 iavf_free_all_rx_resources(adapter); 3023 iavf_free_all_tx_resources(adapter); 3024 3025 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3026 /* kill and reinit the admin queue */ 3027 iavf_shutdown_adminq(hw); 3028 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3029 status = iavf_init_adminq(hw); 3030 if (status) { 3031 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3032 status); 3033 goto reset_err; 3034 } 3035 adapter->aq_required = 0; 3036 3037 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3038 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3039 err = iavf_reinit_interrupt_scheme(adapter, running); 3040 if (err) 3041 goto reset_err; 3042 } 3043 3044 if (RSS_AQ(adapter)) { 3045 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3046 } else { 3047 err = iavf_init_rss(adapter); 3048 if (err) 3049 goto reset_err; 3050 } 3051 3052 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3053 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3054 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3055 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3056 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3057 * been successfully sent and negotiated 3058 */ 3059 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3060 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3061 3062 spin_lock_bh(&adapter->mac_vlan_list_lock); 3063 3064 /* Delete filter for the current MAC address, it could have 3065 * been changed by the PF via administratively set MAC. 3066 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3067 */ 3068 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3069 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3070 list_del(&f->list); 3071 kfree(f); 3072 } 3073 } 3074 /* re-add all MAC filters */ 3075 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3076 f->add = true; 3077 } 3078 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3079 3080 /* check if TCs are running and re-add all cloud filters */ 3081 spin_lock_bh(&adapter->cloud_filter_list_lock); 3082 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3083 adapter->num_tc) { 3084 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3085 cf->add = true; 3086 } 3087 } 3088 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3089 3090 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3091 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3092 iavf_misc_irq_enable(adapter); 3093 3094 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3095 3096 /* We were running when the reset started, so we need to restore some 3097 * state here. 3098 */ 3099 if (running) { 3100 /* allocate transmit descriptors */ 3101 err = iavf_setup_all_tx_resources(adapter); 3102 if (err) 3103 goto reset_err; 3104 3105 /* allocate receive descriptors */ 3106 err = iavf_setup_all_rx_resources(adapter); 3107 if (err) 3108 goto reset_err; 3109 3110 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3111 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3112 err = iavf_request_traffic_irqs(adapter, netdev->name); 3113 if (err) 3114 goto reset_err; 3115 3116 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3117 } 3118 3119 iavf_configure(adapter); 3120 3121 /* iavf_up_complete() will switch device back 3122 * to __IAVF_RUNNING 3123 */ 3124 iavf_up_complete(adapter); 3125 3126 iavf_irq_enable(adapter, true); 3127 } else { 3128 iavf_change_state(adapter, __IAVF_DOWN); 3129 wake_up(&adapter->down_waitqueue); 3130 } 3131 3132 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3133 3134 wake_up(&adapter->reset_waitqueue); 3135 mutex_unlock(&adapter->crit_lock); 3136 3137 return; 3138 reset_err: 3139 if (running) { 3140 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3141 iavf_free_traffic_irqs(adapter); 3142 } 3143 iavf_disable_vf(adapter); 3144 3145 mutex_unlock(&adapter->crit_lock); 3146 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3147 } 3148 3149 /** 3150 * iavf_adminq_task - worker thread to clean the admin queue 3151 * @work: pointer to work_struct containing our data 3152 **/ 3153 static void iavf_adminq_task(struct work_struct *work) 3154 { 3155 struct iavf_adapter *adapter = 3156 container_of(work, struct iavf_adapter, adminq_task); 3157 struct iavf_hw *hw = &adapter->hw; 3158 struct iavf_arq_event_info event; 3159 enum virtchnl_ops v_op; 3160 enum iavf_status ret, v_ret; 3161 u32 val, oldval; 3162 u16 pending; 3163 3164 if (!mutex_trylock(&adapter->crit_lock)) { 3165 if (adapter->state == __IAVF_REMOVE) 3166 return; 3167 3168 queue_work(adapter->wq, &adapter->adminq_task); 3169 goto out; 3170 } 3171 3172 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3173 goto unlock; 3174 3175 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3176 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3177 if (!event.msg_buf) 3178 goto unlock; 3179 3180 do { 3181 ret = iavf_clean_arq_element(hw, &event, &pending); 3182 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3183 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3184 3185 if (ret || !v_op) 3186 break; /* No event to process or error cleaning ARQ */ 3187 3188 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3189 event.msg_len); 3190 if (pending != 0) 3191 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3192 } while (pending); 3193 3194 if (iavf_is_reset_in_progress(adapter)) 3195 goto freedom; 3196 3197 /* check for error indications */ 3198 val = rd32(hw, IAVF_VF_ARQLEN1); 3199 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3200 goto freedom; 3201 oldval = val; 3202 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3203 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3204 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3205 } 3206 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3207 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3208 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3209 } 3210 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3211 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3212 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3213 } 3214 if (oldval != val) 3215 wr32(hw, IAVF_VF_ARQLEN1, val); 3216 3217 val = rd32(hw, IAVF_VF_ATQLEN1); 3218 oldval = val; 3219 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3220 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3221 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3222 } 3223 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3224 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3225 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3226 } 3227 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3228 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3229 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3230 } 3231 if (oldval != val) 3232 wr32(hw, IAVF_VF_ATQLEN1, val); 3233 3234 freedom: 3235 kfree(event.msg_buf); 3236 unlock: 3237 mutex_unlock(&adapter->crit_lock); 3238 out: 3239 /* re-enable Admin queue interrupt cause */ 3240 iavf_misc_irq_enable(adapter); 3241 } 3242 3243 /** 3244 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3245 * @adapter: board private structure 3246 * 3247 * Free all transmit software resources 3248 **/ 3249 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3250 { 3251 int i; 3252 3253 if (!adapter->tx_rings) 3254 return; 3255 3256 for (i = 0; i < adapter->num_active_queues; i++) 3257 if (adapter->tx_rings[i].desc) 3258 iavf_free_tx_resources(&adapter->tx_rings[i]); 3259 } 3260 3261 /** 3262 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3263 * @adapter: board private structure 3264 * 3265 * If this function returns with an error, then it's possible one or 3266 * more of the rings is populated (while the rest are not). It is the 3267 * callers duty to clean those orphaned rings. 3268 * 3269 * Return 0 on success, negative on failure 3270 **/ 3271 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3272 { 3273 int i, err = 0; 3274 3275 for (i = 0; i < adapter->num_active_queues; i++) { 3276 adapter->tx_rings[i].count = adapter->tx_desc_count; 3277 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3278 if (!err) 3279 continue; 3280 dev_err(&adapter->pdev->dev, 3281 "Allocation for Tx Queue %u failed\n", i); 3282 break; 3283 } 3284 3285 return err; 3286 } 3287 3288 /** 3289 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3290 * @adapter: board private structure 3291 * 3292 * If this function returns with an error, then it's possible one or 3293 * more of the rings is populated (while the rest are not). It is the 3294 * callers duty to clean those orphaned rings. 3295 * 3296 * Return 0 on success, negative on failure 3297 **/ 3298 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3299 { 3300 int i, err = 0; 3301 3302 for (i = 0; i < adapter->num_active_queues; i++) { 3303 adapter->rx_rings[i].count = adapter->rx_desc_count; 3304 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3305 if (!err) 3306 continue; 3307 dev_err(&adapter->pdev->dev, 3308 "Allocation for Rx Queue %u failed\n", i); 3309 break; 3310 } 3311 return err; 3312 } 3313 3314 /** 3315 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3316 * @adapter: board private structure 3317 * 3318 * Free all receive software resources 3319 **/ 3320 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3321 { 3322 int i; 3323 3324 if (!adapter->rx_rings) 3325 return; 3326 3327 for (i = 0; i < adapter->num_active_queues; i++) 3328 if (adapter->rx_rings[i].desc) 3329 iavf_free_rx_resources(&adapter->rx_rings[i]); 3330 } 3331 3332 /** 3333 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3334 * @adapter: board private structure 3335 * @max_tx_rate: max Tx bw for a tc 3336 **/ 3337 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3338 u64 max_tx_rate) 3339 { 3340 int speed = 0, ret = 0; 3341 3342 if (ADV_LINK_SUPPORT(adapter)) { 3343 if (adapter->link_speed_mbps < U32_MAX) { 3344 speed = adapter->link_speed_mbps; 3345 goto validate_bw; 3346 } else { 3347 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3348 return -EINVAL; 3349 } 3350 } 3351 3352 switch (adapter->link_speed) { 3353 case VIRTCHNL_LINK_SPEED_40GB: 3354 speed = SPEED_40000; 3355 break; 3356 case VIRTCHNL_LINK_SPEED_25GB: 3357 speed = SPEED_25000; 3358 break; 3359 case VIRTCHNL_LINK_SPEED_20GB: 3360 speed = SPEED_20000; 3361 break; 3362 case VIRTCHNL_LINK_SPEED_10GB: 3363 speed = SPEED_10000; 3364 break; 3365 case VIRTCHNL_LINK_SPEED_5GB: 3366 speed = SPEED_5000; 3367 break; 3368 case VIRTCHNL_LINK_SPEED_2_5GB: 3369 speed = SPEED_2500; 3370 break; 3371 case VIRTCHNL_LINK_SPEED_1GB: 3372 speed = SPEED_1000; 3373 break; 3374 case VIRTCHNL_LINK_SPEED_100MB: 3375 speed = SPEED_100; 3376 break; 3377 default: 3378 break; 3379 } 3380 3381 validate_bw: 3382 if (max_tx_rate > speed) { 3383 dev_err(&adapter->pdev->dev, 3384 "Invalid tx rate specified\n"); 3385 ret = -EINVAL; 3386 } 3387 3388 return ret; 3389 } 3390 3391 /** 3392 * iavf_validate_ch_config - validate queue mapping info 3393 * @adapter: board private structure 3394 * @mqprio_qopt: queue parameters 3395 * 3396 * This function validates if the config provided by the user to 3397 * configure queue channels is valid or not. Returns 0 on a valid 3398 * config. 3399 **/ 3400 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3401 struct tc_mqprio_qopt_offload *mqprio_qopt) 3402 { 3403 u64 total_max_rate = 0; 3404 u32 tx_rate_rem = 0; 3405 int i, num_qps = 0; 3406 u64 tx_rate = 0; 3407 int ret = 0; 3408 3409 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3410 mqprio_qopt->qopt.num_tc < 1) 3411 return -EINVAL; 3412 3413 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3414 if (!mqprio_qopt->qopt.count[i] || 3415 mqprio_qopt->qopt.offset[i] != num_qps) 3416 return -EINVAL; 3417 if (mqprio_qopt->min_rate[i]) { 3418 dev_err(&adapter->pdev->dev, 3419 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3420 i); 3421 return -EINVAL; 3422 } 3423 3424 /* convert to Mbps */ 3425 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3426 IAVF_MBPS_DIVISOR); 3427 3428 if (mqprio_qopt->max_rate[i] && 3429 tx_rate < IAVF_MBPS_QUANTA) { 3430 dev_err(&adapter->pdev->dev, 3431 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3432 i, IAVF_MBPS_QUANTA); 3433 return -EINVAL; 3434 } 3435 3436 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3437 3438 if (tx_rate_rem != 0) { 3439 dev_err(&adapter->pdev->dev, 3440 "Invalid max tx rate for TC%d, not divisible by %d\n", 3441 i, IAVF_MBPS_QUANTA); 3442 return -EINVAL; 3443 } 3444 3445 total_max_rate += tx_rate; 3446 num_qps += mqprio_qopt->qopt.count[i]; 3447 } 3448 if (num_qps > adapter->num_active_queues) { 3449 dev_err(&adapter->pdev->dev, 3450 "Cannot support requested number of queues\n"); 3451 return -EINVAL; 3452 } 3453 3454 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3455 return ret; 3456 } 3457 3458 /** 3459 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3460 * @adapter: board private structure 3461 **/ 3462 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3463 { 3464 struct iavf_cloud_filter *cf, *cftmp; 3465 3466 spin_lock_bh(&adapter->cloud_filter_list_lock); 3467 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3468 list) { 3469 list_del(&cf->list); 3470 kfree(cf); 3471 adapter->num_cloud_filters--; 3472 } 3473 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3474 } 3475 3476 /** 3477 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3478 * TC config already configured on this adapter. 3479 * @adapter: board private structure 3480 * @mqprio_qopt: TC config received from kernel. 3481 * 3482 * This function compares the TC config received from the kernel 3483 * with the config already configured on the adapter. 3484 * 3485 * Return: True if configuration is same, false otherwise. 3486 **/ 3487 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3488 struct tc_mqprio_qopt *mqprio_qopt) 3489 { 3490 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3491 int i; 3492 3493 if (adapter->num_tc != mqprio_qopt->num_tc) 3494 return false; 3495 3496 for (i = 0; i < adapter->num_tc; i++) { 3497 if (ch[i].count != mqprio_qopt->count[i] || 3498 ch[i].offset != mqprio_qopt->offset[i]) 3499 return false; 3500 } 3501 return true; 3502 } 3503 3504 /** 3505 * __iavf_setup_tc - configure multiple traffic classes 3506 * @netdev: network interface device structure 3507 * @type_data: tc offload data 3508 * 3509 * This function processes the config information provided by the 3510 * user to configure traffic classes/queue channels and packages the 3511 * information to request the PF to setup traffic classes. 3512 * 3513 * Returns 0 on success. 3514 **/ 3515 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3516 { 3517 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3518 struct iavf_adapter *adapter = netdev_priv(netdev); 3519 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3520 u8 num_tc = 0, total_qps = 0; 3521 int ret = 0, netdev_tc = 0; 3522 u64 max_tx_rate; 3523 u16 mode; 3524 int i; 3525 3526 num_tc = mqprio_qopt->qopt.num_tc; 3527 mode = mqprio_qopt->mode; 3528 3529 /* delete queue_channel */ 3530 if (!mqprio_qopt->qopt.hw) { 3531 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3532 /* reset the tc configuration */ 3533 netdev_reset_tc(netdev); 3534 adapter->num_tc = 0; 3535 netif_tx_stop_all_queues(netdev); 3536 netif_tx_disable(netdev); 3537 iavf_del_all_cloud_filters(adapter); 3538 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3539 total_qps = adapter->orig_num_active_queues; 3540 goto exit; 3541 } else { 3542 return -EINVAL; 3543 } 3544 } 3545 3546 /* add queue channel */ 3547 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3548 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3549 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3550 return -EOPNOTSUPP; 3551 } 3552 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3553 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3554 return -EINVAL; 3555 } 3556 3557 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3558 if (ret) 3559 return ret; 3560 /* Return if same TC config is requested */ 3561 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3562 return 0; 3563 adapter->num_tc = num_tc; 3564 3565 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3566 if (i < num_tc) { 3567 adapter->ch_config.ch_info[i].count = 3568 mqprio_qopt->qopt.count[i]; 3569 adapter->ch_config.ch_info[i].offset = 3570 mqprio_qopt->qopt.offset[i]; 3571 total_qps += mqprio_qopt->qopt.count[i]; 3572 max_tx_rate = mqprio_qopt->max_rate[i]; 3573 /* convert to Mbps */ 3574 max_tx_rate = div_u64(max_tx_rate, 3575 IAVF_MBPS_DIVISOR); 3576 adapter->ch_config.ch_info[i].max_tx_rate = 3577 max_tx_rate; 3578 } else { 3579 adapter->ch_config.ch_info[i].count = 1; 3580 adapter->ch_config.ch_info[i].offset = 0; 3581 } 3582 } 3583 3584 /* Take snapshot of original config such as "num_active_queues" 3585 * It is used later when delete ADQ flow is exercised, so that 3586 * once delete ADQ flow completes, VF shall go back to its 3587 * original queue configuration 3588 */ 3589 3590 adapter->orig_num_active_queues = adapter->num_active_queues; 3591 3592 /* Store queue info based on TC so that VF gets configured 3593 * with correct number of queues when VF completes ADQ config 3594 * flow 3595 */ 3596 adapter->ch_config.total_qps = total_qps; 3597 3598 netif_tx_stop_all_queues(netdev); 3599 netif_tx_disable(netdev); 3600 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3601 netdev_reset_tc(netdev); 3602 /* Report the tc mapping up the stack */ 3603 netdev_set_num_tc(adapter->netdev, num_tc); 3604 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3605 u16 qcount = mqprio_qopt->qopt.count[i]; 3606 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3607 3608 if (i < num_tc) 3609 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3610 qoffset); 3611 } 3612 } 3613 exit: 3614 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3615 return 0; 3616 3617 netif_set_real_num_rx_queues(netdev, total_qps); 3618 netif_set_real_num_tx_queues(netdev, total_qps); 3619 3620 return ret; 3621 } 3622 3623 /** 3624 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3625 * @adapter: board private structure 3626 * @f: pointer to struct flow_cls_offload 3627 * @filter: pointer to cloud filter structure 3628 */ 3629 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3630 struct flow_cls_offload *f, 3631 struct iavf_cloud_filter *filter) 3632 { 3633 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3634 struct flow_dissector *dissector = rule->match.dissector; 3635 u16 n_proto_mask = 0; 3636 u16 n_proto_key = 0; 3637 u8 field_flags = 0; 3638 u16 addr_type = 0; 3639 u16 n_proto = 0; 3640 int i = 0; 3641 struct virtchnl_filter *vf = &filter->f; 3642 3643 if (dissector->used_keys & 3644 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3645 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3646 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3647 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3648 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3649 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3650 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3651 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3652 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3653 dissector->used_keys); 3654 return -EOPNOTSUPP; 3655 } 3656 3657 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3658 struct flow_match_enc_keyid match; 3659 3660 flow_rule_match_enc_keyid(rule, &match); 3661 if (match.mask->keyid != 0) 3662 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3663 } 3664 3665 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3666 struct flow_match_basic match; 3667 3668 flow_rule_match_basic(rule, &match); 3669 n_proto_key = ntohs(match.key->n_proto); 3670 n_proto_mask = ntohs(match.mask->n_proto); 3671 3672 if (n_proto_key == ETH_P_ALL) { 3673 n_proto_key = 0; 3674 n_proto_mask = 0; 3675 } 3676 n_proto = n_proto_key & n_proto_mask; 3677 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3678 return -EINVAL; 3679 if (n_proto == ETH_P_IPV6) { 3680 /* specify flow type as TCP IPv6 */ 3681 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3682 } 3683 3684 if (match.key->ip_proto != IPPROTO_TCP) { 3685 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3686 return -EINVAL; 3687 } 3688 } 3689 3690 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3691 struct flow_match_eth_addrs match; 3692 3693 flow_rule_match_eth_addrs(rule, &match); 3694 3695 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3696 if (!is_zero_ether_addr(match.mask->dst)) { 3697 if (is_broadcast_ether_addr(match.mask->dst)) { 3698 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3699 } else { 3700 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3701 match.mask->dst); 3702 return -EINVAL; 3703 } 3704 } 3705 3706 if (!is_zero_ether_addr(match.mask->src)) { 3707 if (is_broadcast_ether_addr(match.mask->src)) { 3708 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3709 } else { 3710 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3711 match.mask->src); 3712 return -EINVAL; 3713 } 3714 } 3715 3716 if (!is_zero_ether_addr(match.key->dst)) 3717 if (is_valid_ether_addr(match.key->dst) || 3718 is_multicast_ether_addr(match.key->dst)) { 3719 /* set the mask if a valid dst_mac address */ 3720 for (i = 0; i < ETH_ALEN; i++) 3721 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3722 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3723 match.key->dst); 3724 } 3725 3726 if (!is_zero_ether_addr(match.key->src)) 3727 if (is_valid_ether_addr(match.key->src) || 3728 is_multicast_ether_addr(match.key->src)) { 3729 /* set the mask if a valid dst_mac address */ 3730 for (i = 0; i < ETH_ALEN; i++) 3731 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3732 ether_addr_copy(vf->data.tcp_spec.src_mac, 3733 match.key->src); 3734 } 3735 } 3736 3737 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3738 struct flow_match_vlan match; 3739 3740 flow_rule_match_vlan(rule, &match); 3741 if (match.mask->vlan_id) { 3742 if (match.mask->vlan_id == VLAN_VID_MASK) { 3743 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3744 } else { 3745 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3746 match.mask->vlan_id); 3747 return -EINVAL; 3748 } 3749 } 3750 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3751 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3752 } 3753 3754 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3755 struct flow_match_control match; 3756 3757 flow_rule_match_control(rule, &match); 3758 addr_type = match.key->addr_type; 3759 3760 if (flow_rule_has_control_flags(match.mask->flags, 3761 f->common.extack)) 3762 return -EOPNOTSUPP; 3763 } 3764 3765 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3766 struct flow_match_ipv4_addrs match; 3767 3768 flow_rule_match_ipv4_addrs(rule, &match); 3769 if (match.mask->dst) { 3770 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3771 field_flags |= IAVF_CLOUD_FIELD_IIP; 3772 } else { 3773 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3774 be32_to_cpu(match.mask->dst)); 3775 return -EINVAL; 3776 } 3777 } 3778 3779 if (match.mask->src) { 3780 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3781 field_flags |= IAVF_CLOUD_FIELD_IIP; 3782 } else { 3783 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3784 be32_to_cpu(match.mask->src)); 3785 return -EINVAL; 3786 } 3787 } 3788 3789 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3790 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3791 return -EINVAL; 3792 } 3793 if (match.key->dst) { 3794 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3795 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3796 } 3797 if (match.key->src) { 3798 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3799 vf->data.tcp_spec.src_ip[0] = match.key->src; 3800 } 3801 } 3802 3803 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3804 struct flow_match_ipv6_addrs match; 3805 3806 flow_rule_match_ipv6_addrs(rule, &match); 3807 3808 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3809 if (ipv6_addr_any(&match.mask->dst)) { 3810 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3811 IPV6_ADDR_ANY); 3812 return -EINVAL; 3813 } 3814 3815 /* src and dest IPv6 address should not be LOOPBACK 3816 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3817 */ 3818 if (ipv6_addr_loopback(&match.key->dst) || 3819 ipv6_addr_loopback(&match.key->src)) { 3820 dev_err(&adapter->pdev->dev, 3821 "ipv6 addr should not be loopback\n"); 3822 return -EINVAL; 3823 } 3824 if (!ipv6_addr_any(&match.mask->dst) || 3825 !ipv6_addr_any(&match.mask->src)) 3826 field_flags |= IAVF_CLOUD_FIELD_IIP; 3827 3828 for (i = 0; i < 4; i++) 3829 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3830 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3831 sizeof(vf->data.tcp_spec.dst_ip)); 3832 for (i = 0; i < 4; i++) 3833 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3834 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3835 sizeof(vf->data.tcp_spec.src_ip)); 3836 } 3837 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3838 struct flow_match_ports match; 3839 3840 flow_rule_match_ports(rule, &match); 3841 if (match.mask->src) { 3842 if (match.mask->src == cpu_to_be16(0xffff)) { 3843 field_flags |= IAVF_CLOUD_FIELD_IIP; 3844 } else { 3845 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3846 be16_to_cpu(match.mask->src)); 3847 return -EINVAL; 3848 } 3849 } 3850 3851 if (match.mask->dst) { 3852 if (match.mask->dst == cpu_to_be16(0xffff)) { 3853 field_flags |= IAVF_CLOUD_FIELD_IIP; 3854 } else { 3855 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3856 be16_to_cpu(match.mask->dst)); 3857 return -EINVAL; 3858 } 3859 } 3860 if (match.key->dst) { 3861 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3862 vf->data.tcp_spec.dst_port = match.key->dst; 3863 } 3864 3865 if (match.key->src) { 3866 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3867 vf->data.tcp_spec.src_port = match.key->src; 3868 } 3869 } 3870 vf->field_flags = field_flags; 3871 3872 return 0; 3873 } 3874 3875 /** 3876 * iavf_handle_tclass - Forward to a traffic class on the device 3877 * @adapter: board private structure 3878 * @tc: traffic class index on the device 3879 * @filter: pointer to cloud filter structure 3880 */ 3881 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3882 struct iavf_cloud_filter *filter) 3883 { 3884 if (tc == 0) 3885 return 0; 3886 if (tc < adapter->num_tc) { 3887 if (!filter->f.data.tcp_spec.dst_port) { 3888 dev_err(&adapter->pdev->dev, 3889 "Specify destination port to redirect to traffic class other than TC0\n"); 3890 return -EINVAL; 3891 } 3892 } 3893 /* redirect to a traffic class on the same device */ 3894 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3895 filter->f.action_meta = tc; 3896 return 0; 3897 } 3898 3899 /** 3900 * iavf_find_cf - Find the cloud filter in the list 3901 * @adapter: Board private structure 3902 * @cookie: filter specific cookie 3903 * 3904 * Returns ptr to the filter object or NULL. Must be called while holding the 3905 * cloud_filter_list_lock. 3906 */ 3907 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3908 unsigned long *cookie) 3909 { 3910 struct iavf_cloud_filter *filter = NULL; 3911 3912 if (!cookie) 3913 return NULL; 3914 3915 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3916 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3917 return filter; 3918 } 3919 return NULL; 3920 } 3921 3922 /** 3923 * iavf_configure_clsflower - Add tc flower filters 3924 * @adapter: board private structure 3925 * @cls_flower: Pointer to struct flow_cls_offload 3926 */ 3927 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3928 struct flow_cls_offload *cls_flower) 3929 { 3930 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3931 struct iavf_cloud_filter *filter = NULL; 3932 int err = -EINVAL, count = 50; 3933 3934 if (tc < 0) { 3935 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3936 return -EINVAL; 3937 } 3938 3939 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3940 if (!filter) 3941 return -ENOMEM; 3942 3943 while (!mutex_trylock(&adapter->crit_lock)) { 3944 if (--count == 0) { 3945 kfree(filter); 3946 return err; 3947 } 3948 udelay(1); 3949 } 3950 3951 filter->cookie = cls_flower->cookie; 3952 3953 /* bail out here if filter already exists */ 3954 spin_lock_bh(&adapter->cloud_filter_list_lock); 3955 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3956 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3957 err = -EEXIST; 3958 goto spin_unlock; 3959 } 3960 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3961 3962 /* set the mask to all zeroes to begin with */ 3963 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3964 /* start out with flow type and eth type IPv4 to begin with */ 3965 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3966 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3967 if (err) 3968 goto err; 3969 3970 err = iavf_handle_tclass(adapter, tc, filter); 3971 if (err) 3972 goto err; 3973 3974 /* add filter to the list */ 3975 spin_lock_bh(&adapter->cloud_filter_list_lock); 3976 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3977 adapter->num_cloud_filters++; 3978 filter->add = true; 3979 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3980 spin_unlock: 3981 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3982 err: 3983 if (err) 3984 kfree(filter); 3985 3986 mutex_unlock(&adapter->crit_lock); 3987 return err; 3988 } 3989 3990 /** 3991 * iavf_delete_clsflower - Remove tc flower filters 3992 * @adapter: board private structure 3993 * @cls_flower: Pointer to struct flow_cls_offload 3994 */ 3995 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3996 struct flow_cls_offload *cls_flower) 3997 { 3998 struct iavf_cloud_filter *filter = NULL; 3999 int err = 0; 4000 4001 spin_lock_bh(&adapter->cloud_filter_list_lock); 4002 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4003 if (filter) { 4004 filter->del = true; 4005 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4006 } else { 4007 err = -EINVAL; 4008 } 4009 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4010 4011 return err; 4012 } 4013 4014 /** 4015 * iavf_setup_tc_cls_flower - flower classifier offloads 4016 * @adapter: pointer to iavf adapter structure 4017 * @cls_flower: pointer to flow_cls_offload struct with flow info 4018 */ 4019 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4020 struct flow_cls_offload *cls_flower) 4021 { 4022 switch (cls_flower->command) { 4023 case FLOW_CLS_REPLACE: 4024 return iavf_configure_clsflower(adapter, cls_flower); 4025 case FLOW_CLS_DESTROY: 4026 return iavf_delete_clsflower(adapter, cls_flower); 4027 case FLOW_CLS_STATS: 4028 return -EOPNOTSUPP; 4029 default: 4030 return -EOPNOTSUPP; 4031 } 4032 } 4033 4034 /** 4035 * iavf_add_cls_u32 - Add U32 classifier offloads 4036 * @adapter: pointer to iavf adapter structure 4037 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4038 * 4039 * Return: 0 on success or negative errno on failure. 4040 */ 4041 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4042 struct tc_cls_u32_offload *cls_u32) 4043 { 4044 struct netlink_ext_ack *extack = cls_u32->common.extack; 4045 struct virtchnl_fdir_rule *rule_cfg; 4046 struct virtchnl_filter_action *vact; 4047 struct virtchnl_proto_hdrs *hdrs; 4048 struct ethhdr *spec_h, *mask_h; 4049 const struct tc_action *act; 4050 struct iavf_fdir_fltr *fltr; 4051 struct tcf_exts *exts; 4052 unsigned int q_index; 4053 int i, status = 0; 4054 int off_base = 0; 4055 4056 if (cls_u32->knode.link_handle) { 4057 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4058 return -EOPNOTSUPP; 4059 } 4060 4061 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4062 if (!fltr) 4063 return -ENOMEM; 4064 4065 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4066 hdrs = &rule_cfg->proto_hdrs; 4067 hdrs->count = 0; 4068 4069 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4070 switch (ntohs(cls_u32->common.protocol)) { 4071 case ETH_P_802_3: 4072 break; 4073 case ETH_P_IP: 4074 spec_h = (struct ethhdr *)hdrs->raw.spec; 4075 mask_h = (struct ethhdr *)hdrs->raw.mask; 4076 spec_h->h_proto = htons(ETH_P_IP); 4077 mask_h->h_proto = htons(0xFFFF); 4078 off_base += ETH_HLEN; 4079 break; 4080 default: 4081 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4082 status = -EOPNOTSUPP; 4083 goto free_alloc; 4084 } 4085 4086 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4087 __be32 val, mask; 4088 int off; 4089 4090 off = off_base + cls_u32->knode.sel->keys[i].off; 4091 val = cls_u32->knode.sel->keys[i].val; 4092 mask = cls_u32->knode.sel->keys[i].mask; 4093 4094 if (off >= sizeof(hdrs->raw.spec)) { 4095 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4096 status = -EINVAL; 4097 goto free_alloc; 4098 } 4099 4100 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4101 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4102 hdrs->raw.pkt_len = off + sizeof(val); 4103 } 4104 4105 /* Only one action is allowed */ 4106 rule_cfg->action_set.count = 1; 4107 vact = &rule_cfg->action_set.actions[0]; 4108 exts = cls_u32->knode.exts; 4109 4110 tcf_exts_for_each_action(i, act, exts) { 4111 /* FDIR queue */ 4112 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4113 q_index = tcf_skbedit_rx_queue_mapping(act); 4114 if (q_index >= adapter->num_active_queues) { 4115 status = -EINVAL; 4116 goto free_alloc; 4117 } 4118 4119 vact->type = VIRTCHNL_ACTION_QUEUE; 4120 vact->act_conf.queue.index = q_index; 4121 break; 4122 } 4123 4124 /* Drop */ 4125 if (is_tcf_gact_shot(act)) { 4126 vact->type = VIRTCHNL_ACTION_DROP; 4127 break; 4128 } 4129 4130 /* Unsupported action */ 4131 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4132 status = -EOPNOTSUPP; 4133 goto free_alloc; 4134 } 4135 4136 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4137 fltr->cls_u32_handle = cls_u32->knode.handle; 4138 return iavf_fdir_add_fltr(adapter, fltr); 4139 4140 free_alloc: 4141 kfree(fltr); 4142 return status; 4143 } 4144 4145 /** 4146 * iavf_del_cls_u32 - Delete U32 classifier offloads 4147 * @adapter: pointer to iavf adapter structure 4148 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4149 * 4150 * Return: 0 on success or negative errno on failure. 4151 */ 4152 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4153 struct tc_cls_u32_offload *cls_u32) 4154 { 4155 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4156 } 4157 4158 /** 4159 * iavf_setup_tc_cls_u32 - U32 filter offloads 4160 * @adapter: pointer to iavf adapter structure 4161 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4162 * 4163 * Return: 0 on success or negative errno on failure. 4164 */ 4165 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4166 struct tc_cls_u32_offload *cls_u32) 4167 { 4168 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4169 return -EOPNOTSUPP; 4170 4171 switch (cls_u32->command) { 4172 case TC_CLSU32_NEW_KNODE: 4173 case TC_CLSU32_REPLACE_KNODE: 4174 return iavf_add_cls_u32(adapter, cls_u32); 4175 case TC_CLSU32_DELETE_KNODE: 4176 return iavf_del_cls_u32(adapter, cls_u32); 4177 default: 4178 return -EOPNOTSUPP; 4179 } 4180 } 4181 4182 /** 4183 * iavf_setup_tc_block_cb - block callback for tc 4184 * @type: type of offload 4185 * @type_data: offload data 4186 * @cb_priv: 4187 * 4188 * This function is the block callback for traffic classes 4189 **/ 4190 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4191 void *cb_priv) 4192 { 4193 struct iavf_adapter *adapter = cb_priv; 4194 4195 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4196 return -EOPNOTSUPP; 4197 4198 switch (type) { 4199 case TC_SETUP_CLSFLOWER: 4200 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4201 case TC_SETUP_CLSU32: 4202 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4203 default: 4204 return -EOPNOTSUPP; 4205 } 4206 } 4207 4208 static LIST_HEAD(iavf_block_cb_list); 4209 4210 /** 4211 * iavf_setup_tc - configure multiple traffic classes 4212 * @netdev: network interface device structure 4213 * @type: type of offload 4214 * @type_data: tc offload data 4215 * 4216 * This function is the callback to ndo_setup_tc in the 4217 * netdev_ops. 4218 * 4219 * Returns 0 on success 4220 **/ 4221 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4222 void *type_data) 4223 { 4224 struct iavf_adapter *adapter = netdev_priv(netdev); 4225 4226 switch (type) { 4227 case TC_SETUP_QDISC_MQPRIO: 4228 return __iavf_setup_tc(netdev, type_data); 4229 case TC_SETUP_BLOCK: 4230 return flow_block_cb_setup_simple(type_data, 4231 &iavf_block_cb_list, 4232 iavf_setup_tc_block_cb, 4233 adapter, adapter, true); 4234 default: 4235 return -EOPNOTSUPP; 4236 } 4237 } 4238 4239 /** 4240 * iavf_restore_fdir_filters 4241 * @adapter: board private structure 4242 * 4243 * Restore existing FDIR filters when VF netdev comes back up. 4244 **/ 4245 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4246 { 4247 struct iavf_fdir_fltr *f; 4248 4249 spin_lock_bh(&adapter->fdir_fltr_lock); 4250 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4251 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4252 /* Cancel a request, keep filter as active */ 4253 f->state = IAVF_FDIR_FLTR_ACTIVE; 4254 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4255 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4256 /* Add filters which are inactive or have a pending 4257 * request to PF to be deleted 4258 */ 4259 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4260 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4261 } 4262 } 4263 spin_unlock_bh(&adapter->fdir_fltr_lock); 4264 } 4265 4266 /** 4267 * iavf_open - Called when a network interface is made active 4268 * @netdev: network interface device structure 4269 * 4270 * Returns 0 on success, negative value on failure 4271 * 4272 * The open entry point is called when a network interface is made 4273 * active by the system (IFF_UP). At this point all resources needed 4274 * for transmit and receive operations are allocated, the interrupt 4275 * handler is registered with the OS, the watchdog is started, 4276 * and the stack is notified that the interface is ready. 4277 **/ 4278 static int iavf_open(struct net_device *netdev) 4279 { 4280 struct iavf_adapter *adapter = netdev_priv(netdev); 4281 int err; 4282 4283 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4284 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4285 return -EIO; 4286 } 4287 4288 while (!mutex_trylock(&adapter->crit_lock)) { 4289 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4290 * is already taken and iavf_open is called from an upper 4291 * device's notifier reacting on NETDEV_REGISTER event. 4292 * We have to leave here to avoid dead lock. 4293 */ 4294 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4295 return -EBUSY; 4296 4297 usleep_range(500, 1000); 4298 } 4299 4300 if (adapter->state != __IAVF_DOWN) { 4301 err = -EBUSY; 4302 goto err_unlock; 4303 } 4304 4305 if (adapter->state == __IAVF_RUNNING && 4306 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4307 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4308 err = 0; 4309 goto err_unlock; 4310 } 4311 4312 /* allocate transmit descriptors */ 4313 err = iavf_setup_all_tx_resources(adapter); 4314 if (err) 4315 goto err_setup_tx; 4316 4317 /* allocate receive descriptors */ 4318 err = iavf_setup_all_rx_resources(adapter); 4319 if (err) 4320 goto err_setup_rx; 4321 4322 /* clear any pending interrupts, may auto mask */ 4323 err = iavf_request_traffic_irqs(adapter, netdev->name); 4324 if (err) 4325 goto err_req_irq; 4326 4327 spin_lock_bh(&adapter->mac_vlan_list_lock); 4328 4329 iavf_add_filter(adapter, adapter->hw.mac.addr); 4330 4331 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4332 4333 /* Restore filters that were removed with IFF_DOWN */ 4334 iavf_restore_filters(adapter); 4335 iavf_restore_fdir_filters(adapter); 4336 4337 iavf_configure(adapter); 4338 4339 iavf_up_complete(adapter); 4340 4341 iavf_irq_enable(adapter, true); 4342 4343 mutex_unlock(&adapter->crit_lock); 4344 4345 return 0; 4346 4347 err_req_irq: 4348 iavf_down(adapter); 4349 iavf_free_traffic_irqs(adapter); 4350 err_setup_rx: 4351 iavf_free_all_rx_resources(adapter); 4352 err_setup_tx: 4353 iavf_free_all_tx_resources(adapter); 4354 err_unlock: 4355 mutex_unlock(&adapter->crit_lock); 4356 4357 return err; 4358 } 4359 4360 /** 4361 * iavf_close - Disables a network interface 4362 * @netdev: network interface device structure 4363 * 4364 * Returns 0, this is not allowed to fail 4365 * 4366 * The close entry point is called when an interface is de-activated 4367 * by the OS. The hardware is still under the drivers control, but 4368 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4369 * are freed, along with all transmit and receive resources. 4370 **/ 4371 static int iavf_close(struct net_device *netdev) 4372 { 4373 struct iavf_adapter *adapter = netdev_priv(netdev); 4374 u64 aq_to_restore; 4375 int status; 4376 4377 mutex_lock(&adapter->crit_lock); 4378 4379 if (adapter->state <= __IAVF_DOWN_PENDING) { 4380 mutex_unlock(&adapter->crit_lock); 4381 return 0; 4382 } 4383 4384 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4385 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4386 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4387 * deadlock with adminq_task() until iavf_close timeouts. We must send 4388 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4389 * disable queues possible for vf. Give only necessary flags to 4390 * iavf_down and save other to set them right before iavf_close() 4391 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4392 * iavf will be in DOWN state. 4393 */ 4394 aq_to_restore = adapter->aq_required; 4395 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4396 4397 /* Remove flags which we do not want to send after close or we want to 4398 * send before disable queues. 4399 */ 4400 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4401 IAVF_FLAG_AQ_ENABLE_QUEUES | 4402 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4403 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4404 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4405 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4406 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4407 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4408 4409 iavf_down(adapter); 4410 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4411 iavf_free_traffic_irqs(adapter); 4412 4413 mutex_unlock(&adapter->crit_lock); 4414 4415 /* We explicitly don't free resources here because the hardware is 4416 * still active and can DMA into memory. Resources are cleared in 4417 * iavf_virtchnl_completion() after we get confirmation from the PF 4418 * driver that the rings have been stopped. 4419 * 4420 * Also, we wait for state to transition to __IAVF_DOWN before 4421 * returning. State change occurs in iavf_virtchnl_completion() after 4422 * VF resources are released (which occurs after PF driver processes and 4423 * responds to admin queue commands). 4424 */ 4425 4426 status = wait_event_timeout(adapter->down_waitqueue, 4427 adapter->state == __IAVF_DOWN, 4428 msecs_to_jiffies(500)); 4429 if (!status) 4430 netdev_warn(netdev, "Device resources not yet released\n"); 4431 4432 mutex_lock(&adapter->crit_lock); 4433 adapter->aq_required |= aq_to_restore; 4434 mutex_unlock(&adapter->crit_lock); 4435 return 0; 4436 } 4437 4438 /** 4439 * iavf_change_mtu - Change the Maximum Transfer Unit 4440 * @netdev: network interface device structure 4441 * @new_mtu: new value for maximum frame size 4442 * 4443 * Returns 0 on success, negative on failure 4444 **/ 4445 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4446 { 4447 struct iavf_adapter *adapter = netdev_priv(netdev); 4448 int ret = 0; 4449 4450 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4451 netdev->mtu, new_mtu); 4452 WRITE_ONCE(netdev->mtu, new_mtu); 4453 4454 if (netif_running(netdev)) { 4455 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4456 ret = iavf_wait_for_reset(adapter); 4457 if (ret < 0) 4458 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4459 else if (ret) 4460 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4461 } 4462 4463 return ret; 4464 } 4465 4466 /** 4467 * iavf_disable_fdir - disable Flow Director and clear existing filters 4468 * @adapter: board private structure 4469 **/ 4470 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4471 { 4472 struct iavf_fdir_fltr *fdir, *fdirtmp; 4473 bool del_filters = false; 4474 4475 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4476 4477 /* remove all Flow Director filters */ 4478 spin_lock_bh(&adapter->fdir_fltr_lock); 4479 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4480 list) { 4481 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4482 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4483 /* Delete filters not registered in PF */ 4484 list_del(&fdir->list); 4485 iavf_dec_fdir_active_fltr(adapter, fdir); 4486 kfree(fdir); 4487 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4488 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4489 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4490 /* Filters registered in PF, schedule their deletion */ 4491 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4492 del_filters = true; 4493 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4494 /* Request to delete filter already sent to PF, change 4495 * state to DEL_PENDING to delete filter after PF's 4496 * response, not set as INACTIVE 4497 */ 4498 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4499 } 4500 } 4501 spin_unlock_bh(&adapter->fdir_fltr_lock); 4502 4503 if (del_filters) { 4504 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4505 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4506 } 4507 } 4508 4509 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4510 NETIF_F_HW_VLAN_CTAG_TX | \ 4511 NETIF_F_HW_VLAN_STAG_RX | \ 4512 NETIF_F_HW_VLAN_STAG_TX) 4513 4514 /** 4515 * iavf_set_features - set the netdev feature flags 4516 * @netdev: ptr to the netdev being adjusted 4517 * @features: the feature set that the stack is suggesting 4518 * Note: expects to be called while under rtnl_lock() 4519 **/ 4520 static int iavf_set_features(struct net_device *netdev, 4521 netdev_features_t features) 4522 { 4523 struct iavf_adapter *adapter = netdev_priv(netdev); 4524 4525 /* trigger update on any VLAN feature change */ 4526 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4527 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4528 iavf_set_vlan_offload_features(adapter, netdev->features, 4529 features); 4530 if (CRC_OFFLOAD_ALLOWED(adapter) && 4531 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4532 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4533 4534 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4535 if (features & NETIF_F_NTUPLE) 4536 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4537 else 4538 iavf_disable_fdir(adapter); 4539 } 4540 4541 return 0; 4542 } 4543 4544 /** 4545 * iavf_features_check - Validate encapsulated packet conforms to limits 4546 * @skb: skb buff 4547 * @dev: This physical port's netdev 4548 * @features: Offload features that the stack believes apply 4549 **/ 4550 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4551 struct net_device *dev, 4552 netdev_features_t features) 4553 { 4554 size_t len; 4555 4556 /* No point in doing any of this if neither checksum nor GSO are 4557 * being requested for this frame. We can rule out both by just 4558 * checking for CHECKSUM_PARTIAL 4559 */ 4560 if (skb->ip_summed != CHECKSUM_PARTIAL) 4561 return features; 4562 4563 /* We cannot support GSO if the MSS is going to be less than 4564 * 64 bytes. If it is then we need to drop support for GSO. 4565 */ 4566 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4567 features &= ~NETIF_F_GSO_MASK; 4568 4569 /* MACLEN can support at most 63 words */ 4570 len = skb_network_offset(skb); 4571 if (len & ~(63 * 2)) 4572 goto out_err; 4573 4574 /* IPLEN and EIPLEN can support at most 127 dwords */ 4575 len = skb_network_header_len(skb); 4576 if (len & ~(127 * 4)) 4577 goto out_err; 4578 4579 if (skb->encapsulation) { 4580 /* L4TUNLEN can support 127 words */ 4581 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4582 if (len & ~(127 * 2)) 4583 goto out_err; 4584 4585 /* IPLEN can support at most 127 dwords */ 4586 len = skb_inner_transport_header(skb) - 4587 skb_inner_network_header(skb); 4588 if (len & ~(127 * 4)) 4589 goto out_err; 4590 } 4591 4592 /* No need to validate L4LEN as TCP is the only protocol with a 4593 * flexible value and we support all possible values supported 4594 * by TCP, which is at most 15 dwords 4595 */ 4596 4597 return features; 4598 out_err: 4599 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4600 } 4601 4602 /** 4603 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4604 * @adapter: board private structure 4605 * 4606 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4607 * were negotiated determine the VLAN features that can be toggled on and off. 4608 **/ 4609 static netdev_features_t 4610 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4611 { 4612 netdev_features_t hw_features = 0; 4613 4614 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4615 return hw_features; 4616 4617 /* Enable VLAN features if supported */ 4618 if (VLAN_ALLOWED(adapter)) { 4619 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4620 NETIF_F_HW_VLAN_CTAG_RX); 4621 } else if (VLAN_V2_ALLOWED(adapter)) { 4622 struct virtchnl_vlan_caps *vlan_v2_caps = 4623 &adapter->vlan_v2_caps; 4624 struct virtchnl_vlan_supported_caps *stripping_support = 4625 &vlan_v2_caps->offloads.stripping_support; 4626 struct virtchnl_vlan_supported_caps *insertion_support = 4627 &vlan_v2_caps->offloads.insertion_support; 4628 4629 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4630 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4631 if (stripping_support->outer & 4632 VIRTCHNL_VLAN_ETHERTYPE_8100) 4633 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4634 if (stripping_support->outer & 4635 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4636 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4637 } else if (stripping_support->inner != 4638 VIRTCHNL_VLAN_UNSUPPORTED && 4639 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4640 if (stripping_support->inner & 4641 VIRTCHNL_VLAN_ETHERTYPE_8100) 4642 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4643 } 4644 4645 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4646 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4647 if (insertion_support->outer & 4648 VIRTCHNL_VLAN_ETHERTYPE_8100) 4649 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4650 if (insertion_support->outer & 4651 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4652 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4653 } else if (insertion_support->inner && 4654 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4655 if (insertion_support->inner & 4656 VIRTCHNL_VLAN_ETHERTYPE_8100) 4657 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4658 } 4659 } 4660 4661 if (CRC_OFFLOAD_ALLOWED(adapter)) 4662 hw_features |= NETIF_F_RXFCS; 4663 4664 return hw_features; 4665 } 4666 4667 /** 4668 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4669 * @adapter: board private structure 4670 * 4671 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4672 * were negotiated determine the VLAN features that are enabled by default. 4673 **/ 4674 static netdev_features_t 4675 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4676 { 4677 netdev_features_t features = 0; 4678 4679 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4680 return features; 4681 4682 if (VLAN_ALLOWED(adapter)) { 4683 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4684 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4685 } else if (VLAN_V2_ALLOWED(adapter)) { 4686 struct virtchnl_vlan_caps *vlan_v2_caps = 4687 &adapter->vlan_v2_caps; 4688 struct virtchnl_vlan_supported_caps *filtering_support = 4689 &vlan_v2_caps->filtering.filtering_support; 4690 struct virtchnl_vlan_supported_caps *stripping_support = 4691 &vlan_v2_caps->offloads.stripping_support; 4692 struct virtchnl_vlan_supported_caps *insertion_support = 4693 &vlan_v2_caps->offloads.insertion_support; 4694 u32 ethertype_init; 4695 4696 /* give priority to outer stripping and don't support both outer 4697 * and inner stripping 4698 */ 4699 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4700 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4701 if (stripping_support->outer & 4702 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4703 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4704 features |= NETIF_F_HW_VLAN_CTAG_RX; 4705 else if (stripping_support->outer & 4706 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4707 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4708 features |= NETIF_F_HW_VLAN_STAG_RX; 4709 } else if (stripping_support->inner != 4710 VIRTCHNL_VLAN_UNSUPPORTED) { 4711 if (stripping_support->inner & 4712 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4713 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4714 features |= NETIF_F_HW_VLAN_CTAG_RX; 4715 } 4716 4717 /* give priority to outer insertion and don't support both outer 4718 * and inner insertion 4719 */ 4720 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4721 if (insertion_support->outer & 4722 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4723 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4724 features |= NETIF_F_HW_VLAN_CTAG_TX; 4725 else if (insertion_support->outer & 4726 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4727 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4728 features |= NETIF_F_HW_VLAN_STAG_TX; 4729 } else if (insertion_support->inner != 4730 VIRTCHNL_VLAN_UNSUPPORTED) { 4731 if (insertion_support->inner & 4732 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4733 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4734 features |= NETIF_F_HW_VLAN_CTAG_TX; 4735 } 4736 4737 /* give priority to outer filtering and don't bother if both 4738 * outer and inner filtering are enabled 4739 */ 4740 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4741 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4742 if (filtering_support->outer & 4743 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4744 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4745 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4746 if (filtering_support->outer & 4747 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4748 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4749 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4750 } else if (filtering_support->inner != 4751 VIRTCHNL_VLAN_UNSUPPORTED) { 4752 if (filtering_support->inner & 4753 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4754 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4755 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4756 if (filtering_support->inner & 4757 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4758 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4759 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4760 } 4761 } 4762 4763 return features; 4764 } 4765 4766 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4767 (!(((requested) & (feature_bit)) && \ 4768 !((allowed) & (feature_bit)))) 4769 4770 /** 4771 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4772 * @adapter: board private structure 4773 * @requested_features: stack requested NETDEV features 4774 **/ 4775 static netdev_features_t 4776 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4777 netdev_features_t requested_features) 4778 { 4779 netdev_features_t allowed_features; 4780 4781 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4782 iavf_get_netdev_vlan_features(adapter); 4783 4784 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4785 allowed_features, 4786 NETIF_F_HW_VLAN_CTAG_TX)) 4787 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4788 4789 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4790 allowed_features, 4791 NETIF_F_HW_VLAN_CTAG_RX)) 4792 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4793 4794 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4795 allowed_features, 4796 NETIF_F_HW_VLAN_STAG_TX)) 4797 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4798 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4799 allowed_features, 4800 NETIF_F_HW_VLAN_STAG_RX)) 4801 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4802 4803 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4804 allowed_features, 4805 NETIF_F_HW_VLAN_CTAG_FILTER)) 4806 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4807 4808 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4809 allowed_features, 4810 NETIF_F_HW_VLAN_STAG_FILTER)) 4811 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4812 4813 if ((requested_features & 4814 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4815 (requested_features & 4816 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4817 adapter->vlan_v2_caps.offloads.ethertype_match == 4818 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4819 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4820 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4821 NETIF_F_HW_VLAN_STAG_TX); 4822 } 4823 4824 return requested_features; 4825 } 4826 4827 /** 4828 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4829 * @adapter: board private structure 4830 * @requested_features: stack requested NETDEV features 4831 * 4832 * Returns fixed-up features bits 4833 **/ 4834 static netdev_features_t 4835 iavf_fix_strip_features(struct iavf_adapter *adapter, 4836 netdev_features_t requested_features) 4837 { 4838 struct net_device *netdev = adapter->netdev; 4839 bool crc_offload_req, is_vlan_strip; 4840 netdev_features_t vlan_strip; 4841 int num_non_zero_vlan; 4842 4843 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4844 (requested_features & NETIF_F_RXFCS); 4845 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4846 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4847 is_vlan_strip = requested_features & vlan_strip; 4848 4849 if (!crc_offload_req) 4850 return requested_features; 4851 4852 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4853 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4854 requested_features &= ~vlan_strip; 4855 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4856 return requested_features; 4857 } 4858 4859 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4860 requested_features &= ~vlan_strip; 4861 if (!(netdev->features & vlan_strip)) 4862 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4863 4864 return requested_features; 4865 } 4866 4867 if (num_non_zero_vlan && is_vlan_strip && 4868 !(netdev->features & NETIF_F_RXFCS)) { 4869 requested_features &= ~NETIF_F_RXFCS; 4870 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4871 } 4872 4873 return requested_features; 4874 } 4875 4876 /** 4877 * iavf_fix_features - fix up the netdev feature bits 4878 * @netdev: our net device 4879 * @features: desired feature bits 4880 * 4881 * Returns fixed-up features bits 4882 **/ 4883 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4884 netdev_features_t features) 4885 { 4886 struct iavf_adapter *adapter = netdev_priv(netdev); 4887 4888 features = iavf_fix_netdev_vlan_features(adapter, features); 4889 4890 if (!FDIR_FLTR_SUPPORT(adapter)) 4891 features &= ~NETIF_F_NTUPLE; 4892 4893 return iavf_fix_strip_features(adapter, features); 4894 } 4895 4896 static const struct net_device_ops iavf_netdev_ops = { 4897 .ndo_open = iavf_open, 4898 .ndo_stop = iavf_close, 4899 .ndo_start_xmit = iavf_xmit_frame, 4900 .ndo_set_rx_mode = iavf_set_rx_mode, 4901 .ndo_validate_addr = eth_validate_addr, 4902 .ndo_set_mac_address = iavf_set_mac, 4903 .ndo_change_mtu = iavf_change_mtu, 4904 .ndo_tx_timeout = iavf_tx_timeout, 4905 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4906 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4907 .ndo_features_check = iavf_features_check, 4908 .ndo_fix_features = iavf_fix_features, 4909 .ndo_set_features = iavf_set_features, 4910 .ndo_setup_tc = iavf_setup_tc, 4911 }; 4912 4913 /** 4914 * iavf_check_reset_complete - check that VF reset is complete 4915 * @hw: pointer to hw struct 4916 * 4917 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4918 **/ 4919 static int iavf_check_reset_complete(struct iavf_hw *hw) 4920 { 4921 u32 rstat; 4922 int i; 4923 4924 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4925 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4926 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4927 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4928 (rstat == VIRTCHNL_VFR_COMPLETED)) 4929 return 0; 4930 msleep(IAVF_RESET_WAIT_MS); 4931 } 4932 return -EBUSY; 4933 } 4934 4935 /** 4936 * iavf_process_config - Process the config information we got from the PF 4937 * @adapter: board private structure 4938 * 4939 * Verify that we have a valid config struct, and set up our netdev features 4940 * and our VSI struct. 4941 **/ 4942 int iavf_process_config(struct iavf_adapter *adapter) 4943 { 4944 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4945 netdev_features_t hw_vlan_features, vlan_features; 4946 struct net_device *netdev = adapter->netdev; 4947 netdev_features_t hw_enc_features; 4948 netdev_features_t hw_features; 4949 4950 hw_enc_features = NETIF_F_SG | 4951 NETIF_F_IP_CSUM | 4952 NETIF_F_IPV6_CSUM | 4953 NETIF_F_HIGHDMA | 4954 NETIF_F_SOFT_FEATURES | 4955 NETIF_F_TSO | 4956 NETIF_F_TSO_ECN | 4957 NETIF_F_TSO6 | 4958 NETIF_F_SCTP_CRC | 4959 NETIF_F_RXHASH | 4960 NETIF_F_RXCSUM | 4961 0; 4962 4963 /* advertise to stack only if offloads for encapsulated packets is 4964 * supported 4965 */ 4966 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4967 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4968 NETIF_F_GSO_GRE | 4969 NETIF_F_GSO_GRE_CSUM | 4970 NETIF_F_GSO_IPXIP4 | 4971 NETIF_F_GSO_IPXIP6 | 4972 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4973 NETIF_F_GSO_PARTIAL | 4974 0; 4975 4976 if (!(vfres->vf_cap_flags & 4977 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4978 netdev->gso_partial_features |= 4979 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4980 4981 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4982 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4983 netdev->hw_enc_features |= hw_enc_features; 4984 } 4985 /* record features VLANs can make use of */ 4986 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4987 4988 /* Write features and hw_features separately to avoid polluting 4989 * with, or dropping, features that are set when we registered. 4990 */ 4991 hw_features = hw_enc_features; 4992 4993 /* get HW VLAN features that can be toggled */ 4994 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4995 4996 /* Enable HW TC offload if ADQ or tc U32 is supported */ 4997 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 4998 TC_U32_SUPPORT(adapter)) 4999 hw_features |= NETIF_F_HW_TC; 5000 5001 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5002 hw_features |= NETIF_F_GSO_UDP_L4; 5003 5004 netdev->hw_features |= hw_features | hw_vlan_features; 5005 vlan_features = iavf_get_netdev_vlan_features(adapter); 5006 5007 netdev->features |= hw_features | vlan_features; 5008 5009 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5010 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5011 5012 if (FDIR_FLTR_SUPPORT(adapter)) { 5013 netdev->hw_features |= NETIF_F_NTUPLE; 5014 netdev->features |= NETIF_F_NTUPLE; 5015 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5016 } 5017 5018 netdev->priv_flags |= IFF_UNICAST_FLT; 5019 5020 /* Do not turn on offloads when they are requested to be turned off. 5021 * TSO needs minimum 576 bytes to work correctly. 5022 */ 5023 if (netdev->wanted_features) { 5024 if (!(netdev->wanted_features & NETIF_F_TSO) || 5025 netdev->mtu < 576) 5026 netdev->features &= ~NETIF_F_TSO; 5027 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5028 netdev->mtu < 576) 5029 netdev->features &= ~NETIF_F_TSO6; 5030 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5031 netdev->features &= ~NETIF_F_TSO_ECN; 5032 if (!(netdev->wanted_features & NETIF_F_GRO)) 5033 netdev->features &= ~NETIF_F_GRO; 5034 if (!(netdev->wanted_features & NETIF_F_GSO)) 5035 netdev->features &= ~NETIF_F_GSO; 5036 } 5037 5038 return 0; 5039 } 5040 5041 /** 5042 * iavf_probe - Device Initialization Routine 5043 * @pdev: PCI device information struct 5044 * @ent: entry in iavf_pci_tbl 5045 * 5046 * Returns 0 on success, negative on failure 5047 * 5048 * iavf_probe initializes an adapter identified by a pci_dev structure. 5049 * The OS initialization, configuring of the adapter private structure, 5050 * and a hardware reset occur. 5051 **/ 5052 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5053 { 5054 struct net_device *netdev; 5055 struct iavf_adapter *adapter = NULL; 5056 struct iavf_hw *hw = NULL; 5057 int err; 5058 5059 err = pci_enable_device(pdev); 5060 if (err) 5061 return err; 5062 5063 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5064 if (err) { 5065 dev_err(&pdev->dev, 5066 "DMA configuration failed: 0x%x\n", err); 5067 goto err_dma; 5068 } 5069 5070 err = pci_request_regions(pdev, iavf_driver_name); 5071 if (err) { 5072 dev_err(&pdev->dev, 5073 "pci_request_regions failed 0x%x\n", err); 5074 goto err_pci_reg; 5075 } 5076 5077 pci_set_master(pdev); 5078 5079 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5080 IAVF_MAX_REQ_QUEUES); 5081 if (!netdev) { 5082 err = -ENOMEM; 5083 goto err_alloc_etherdev; 5084 } 5085 5086 SET_NETDEV_DEV(netdev, &pdev->dev); 5087 5088 pci_set_drvdata(pdev, netdev); 5089 adapter = netdev_priv(netdev); 5090 5091 adapter->netdev = netdev; 5092 adapter->pdev = pdev; 5093 5094 hw = &adapter->hw; 5095 hw->back = adapter; 5096 5097 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5098 iavf_driver_name); 5099 if (!adapter->wq) { 5100 err = -ENOMEM; 5101 goto err_alloc_wq; 5102 } 5103 5104 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5105 iavf_change_state(adapter, __IAVF_STARTUP); 5106 5107 /* Call save state here because it relies on the adapter struct. */ 5108 pci_save_state(pdev); 5109 5110 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5111 pci_resource_len(pdev, 0)); 5112 if (!hw->hw_addr) { 5113 err = -EIO; 5114 goto err_ioremap; 5115 } 5116 hw->vendor_id = pdev->vendor; 5117 hw->device_id = pdev->device; 5118 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5119 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5120 hw->subsystem_device_id = pdev->subsystem_device; 5121 hw->bus.device = PCI_SLOT(pdev->devfn); 5122 hw->bus.func = PCI_FUNC(pdev->devfn); 5123 hw->bus.bus_id = pdev->bus->number; 5124 5125 /* set up the locks for the AQ, do this only once in probe 5126 * and destroy them only once in remove 5127 */ 5128 mutex_init(&adapter->crit_lock); 5129 mutex_init(&hw->aq.asq_mutex); 5130 mutex_init(&hw->aq.arq_mutex); 5131 5132 spin_lock_init(&adapter->mac_vlan_list_lock); 5133 spin_lock_init(&adapter->cloud_filter_list_lock); 5134 spin_lock_init(&adapter->fdir_fltr_lock); 5135 spin_lock_init(&adapter->adv_rss_lock); 5136 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5137 5138 INIT_LIST_HEAD(&adapter->mac_filter_list); 5139 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5140 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5141 INIT_LIST_HEAD(&adapter->fdir_list_head); 5142 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5143 5144 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5145 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5146 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5147 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5148 5149 /* Setup the wait queue for indicating transition to down status */ 5150 init_waitqueue_head(&adapter->down_waitqueue); 5151 5152 /* Setup the wait queue for indicating transition to running state */ 5153 init_waitqueue_head(&adapter->reset_waitqueue); 5154 5155 /* Setup the wait queue for indicating virtchannel events */ 5156 init_waitqueue_head(&adapter->vc_waitqueue); 5157 5158 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5159 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5160 /* Initialization goes on in the work. Do not add more of it below. */ 5161 return 0; 5162 5163 err_ioremap: 5164 destroy_workqueue(adapter->wq); 5165 err_alloc_wq: 5166 free_netdev(netdev); 5167 err_alloc_etherdev: 5168 pci_release_regions(pdev); 5169 err_pci_reg: 5170 err_dma: 5171 pci_disable_device(pdev); 5172 return err; 5173 } 5174 5175 /** 5176 * iavf_suspend - Power management suspend routine 5177 * @dev_d: device info pointer 5178 * 5179 * Called when the system (VM) is entering sleep/suspend. 5180 **/ 5181 static int iavf_suspend(struct device *dev_d) 5182 { 5183 struct net_device *netdev = dev_get_drvdata(dev_d); 5184 struct iavf_adapter *adapter = netdev_priv(netdev); 5185 5186 netif_device_detach(netdev); 5187 5188 mutex_lock(&adapter->crit_lock); 5189 5190 if (netif_running(netdev)) { 5191 rtnl_lock(); 5192 iavf_down(adapter); 5193 rtnl_unlock(); 5194 } 5195 iavf_free_misc_irq(adapter); 5196 iavf_reset_interrupt_capability(adapter); 5197 5198 mutex_unlock(&adapter->crit_lock); 5199 5200 return 0; 5201 } 5202 5203 /** 5204 * iavf_resume - Power management resume routine 5205 * @dev_d: device info pointer 5206 * 5207 * Called when the system (VM) is resumed from sleep/suspend. 5208 **/ 5209 static int iavf_resume(struct device *dev_d) 5210 { 5211 struct pci_dev *pdev = to_pci_dev(dev_d); 5212 struct iavf_adapter *adapter; 5213 u32 err; 5214 5215 adapter = iavf_pdev_to_adapter(pdev); 5216 5217 pci_set_master(pdev); 5218 5219 rtnl_lock(); 5220 err = iavf_set_interrupt_capability(adapter); 5221 if (err) { 5222 rtnl_unlock(); 5223 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5224 return err; 5225 } 5226 err = iavf_request_misc_irq(adapter); 5227 rtnl_unlock(); 5228 if (err) { 5229 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5230 return err; 5231 } 5232 5233 queue_work(adapter->wq, &adapter->reset_task); 5234 5235 netif_device_attach(adapter->netdev); 5236 5237 return err; 5238 } 5239 5240 /** 5241 * iavf_remove - Device Removal Routine 5242 * @pdev: PCI device information struct 5243 * 5244 * iavf_remove is called by the PCI subsystem to alert the driver 5245 * that it should release a PCI device. The could be caused by a 5246 * Hot-Plug event, or because the driver is going to be removed from 5247 * memory. 5248 **/ 5249 static void iavf_remove(struct pci_dev *pdev) 5250 { 5251 struct iavf_fdir_fltr *fdir, *fdirtmp; 5252 struct iavf_vlan_filter *vlf, *vlftmp; 5253 struct iavf_cloud_filter *cf, *cftmp; 5254 struct iavf_adv_rss *rss, *rsstmp; 5255 struct iavf_mac_filter *f, *ftmp; 5256 struct iavf_adapter *adapter; 5257 struct net_device *netdev; 5258 struct iavf_hw *hw; 5259 5260 /* Don't proceed with remove if netdev is already freed */ 5261 netdev = pci_get_drvdata(pdev); 5262 if (!netdev) 5263 return; 5264 5265 adapter = iavf_pdev_to_adapter(pdev); 5266 hw = &adapter->hw; 5267 5268 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5269 return; 5270 5271 /* Wait until port initialization is complete. 5272 * There are flows where register/unregister netdev may race. 5273 */ 5274 while (1) { 5275 mutex_lock(&adapter->crit_lock); 5276 if (adapter->state == __IAVF_RUNNING || 5277 adapter->state == __IAVF_DOWN || 5278 adapter->state == __IAVF_INIT_FAILED) { 5279 mutex_unlock(&adapter->crit_lock); 5280 break; 5281 } 5282 /* Simply return if we already went through iavf_shutdown */ 5283 if (adapter->state == __IAVF_REMOVE) { 5284 mutex_unlock(&adapter->crit_lock); 5285 return; 5286 } 5287 5288 mutex_unlock(&adapter->crit_lock); 5289 usleep_range(500, 1000); 5290 } 5291 cancel_delayed_work_sync(&adapter->watchdog_task); 5292 cancel_work_sync(&adapter->finish_config); 5293 5294 if (netdev->reg_state == NETREG_REGISTERED) 5295 unregister_netdev(netdev); 5296 5297 mutex_lock(&adapter->crit_lock); 5298 dev_info(&adapter->pdev->dev, "Removing device\n"); 5299 iavf_change_state(adapter, __IAVF_REMOVE); 5300 5301 iavf_request_reset(adapter); 5302 msleep(50); 5303 /* If the FW isn't responding, kick it once, but only once. */ 5304 if (!iavf_asq_done(hw)) { 5305 iavf_request_reset(adapter); 5306 msleep(50); 5307 } 5308 5309 iavf_misc_irq_disable(adapter); 5310 /* Shut down all the garbage mashers on the detention level */ 5311 cancel_work_sync(&adapter->reset_task); 5312 cancel_delayed_work_sync(&adapter->watchdog_task); 5313 cancel_work_sync(&adapter->adminq_task); 5314 5315 adapter->aq_required = 0; 5316 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5317 5318 iavf_free_all_tx_resources(adapter); 5319 iavf_free_all_rx_resources(adapter); 5320 iavf_free_misc_irq(adapter); 5321 iavf_free_interrupt_scheme(adapter); 5322 5323 iavf_free_rss(adapter); 5324 5325 if (hw->aq.asq.count) 5326 iavf_shutdown_adminq(hw); 5327 5328 /* destroy the locks only once, here */ 5329 mutex_destroy(&hw->aq.arq_mutex); 5330 mutex_destroy(&hw->aq.asq_mutex); 5331 mutex_unlock(&adapter->crit_lock); 5332 mutex_destroy(&adapter->crit_lock); 5333 5334 iounmap(hw->hw_addr); 5335 pci_release_regions(pdev); 5336 kfree(adapter->vf_res); 5337 spin_lock_bh(&adapter->mac_vlan_list_lock); 5338 /* If we got removed before an up/down sequence, we've got a filter 5339 * hanging out there that we need to get rid of. 5340 */ 5341 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5342 list_del(&f->list); 5343 kfree(f); 5344 } 5345 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5346 list) { 5347 list_del(&vlf->list); 5348 kfree(vlf); 5349 } 5350 5351 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5352 5353 spin_lock_bh(&adapter->cloud_filter_list_lock); 5354 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5355 list_del(&cf->list); 5356 kfree(cf); 5357 } 5358 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5359 5360 spin_lock_bh(&adapter->fdir_fltr_lock); 5361 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5362 list_del(&fdir->list); 5363 kfree(fdir); 5364 } 5365 spin_unlock_bh(&adapter->fdir_fltr_lock); 5366 5367 spin_lock_bh(&adapter->adv_rss_lock); 5368 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5369 list) { 5370 list_del(&rss->list); 5371 kfree(rss); 5372 } 5373 spin_unlock_bh(&adapter->adv_rss_lock); 5374 5375 destroy_workqueue(adapter->wq); 5376 5377 pci_set_drvdata(pdev, NULL); 5378 5379 free_netdev(netdev); 5380 5381 pci_disable_device(pdev); 5382 } 5383 5384 /** 5385 * iavf_shutdown - Shutdown the device in preparation for a reboot 5386 * @pdev: pci device structure 5387 **/ 5388 static void iavf_shutdown(struct pci_dev *pdev) 5389 { 5390 iavf_remove(pdev); 5391 5392 if (system_state == SYSTEM_POWER_OFF) 5393 pci_set_power_state(pdev, PCI_D3hot); 5394 } 5395 5396 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5397 5398 static struct pci_driver iavf_driver = { 5399 .name = iavf_driver_name, 5400 .id_table = iavf_pci_tbl, 5401 .probe = iavf_probe, 5402 .remove = iavf_remove, 5403 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5404 .shutdown = iavf_shutdown, 5405 }; 5406 5407 /** 5408 * iavf_init_module - Driver Registration Routine 5409 * 5410 * iavf_init_module is the first routine called when the driver is 5411 * loaded. All it does is register with the PCI subsystem. 5412 **/ 5413 static int __init iavf_init_module(void) 5414 { 5415 pr_info("iavf: %s\n", iavf_driver_string); 5416 5417 pr_info("%s\n", iavf_copyright); 5418 5419 return pci_register_driver(&iavf_driver); 5420 } 5421 5422 module_init(iavf_init_module); 5423 5424 /** 5425 * iavf_exit_module - Driver Exit Cleanup Routine 5426 * 5427 * iavf_exit_module is called just before the driver is removed 5428 * from memory. 5429 **/ 5430 static void __exit iavf_exit_module(void) 5431 { 5432 pci_unregister_driver(&iavf_driver); 5433 } 5434 5435 module_exit(iavf_exit_module); 5436 5437 /* iavf_main.c */ 5438