xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/net/intel/libie/rx.h>
5 
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9  * be included exactly once across the whole kernel with
10  * CREATE_TRACE_POINTS defined
11  */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14 
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20 
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24 
25 static const char iavf_copyright[] =
26 	"Copyright (c) 2013 - 2018 Intel Corporation.";
27 
28 /* iavf_pci_tbl - PCI Device ID Table
29  *
30  * Wildcard entries (PCI_ANY_ID) should come last
31  * Last entry must be all 0s
32  *
33  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34  *   Class, Class Mask, private data (not used) }
35  */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 	/* required last entry */
42 	{0, }
43 };
44 
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46 
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS(LIBETH);
50 MODULE_IMPORT_NS(LIBIE);
51 MODULE_LICENSE("GPL v2");
52 
53 static const struct net_device_ops iavf_netdev_ops;
54 
55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 	switch (status) {
58 	case IAVF_SUCCESS:
59 		return 0;
60 	case IAVF_ERR_PARAM:
61 	case IAVF_ERR_MAC_TYPE:
62 	case IAVF_ERR_INVALID_MAC_ADDR:
63 	case IAVF_ERR_INVALID_LINK_SETTINGS:
64 	case IAVF_ERR_INVALID_PD_ID:
65 	case IAVF_ERR_INVALID_QP_ID:
66 	case IAVF_ERR_INVALID_CQ_ID:
67 	case IAVF_ERR_INVALID_CEQ_ID:
68 	case IAVF_ERR_INVALID_AEQ_ID:
69 	case IAVF_ERR_INVALID_SIZE:
70 	case IAVF_ERR_INVALID_ARP_INDEX:
71 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 	case IAVF_ERR_INVALID_FRAG_COUNT:
74 	case IAVF_ERR_INVALID_ALIGNMENT:
75 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 	case IAVF_ERR_INVALID_VF_ID:
78 	case IAVF_ERR_INVALID_HMCFN_ID:
79 	case IAVF_ERR_INVALID_PBLE_INDEX:
80 	case IAVF_ERR_INVALID_SD_INDEX:
81 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 	case IAVF_ERR_INVALID_SD_TYPE:
83 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 		return -EINVAL;
87 	case IAVF_ERR_NVM:
88 	case IAVF_ERR_NVM_CHECKSUM:
89 	case IAVF_ERR_PHY:
90 	case IAVF_ERR_CONFIG:
91 	case IAVF_ERR_UNKNOWN_PHY:
92 	case IAVF_ERR_LINK_SETUP:
93 	case IAVF_ERR_ADAPTER_STOPPED:
94 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 	case IAVF_ERR_RESET_FAILED:
97 	case IAVF_ERR_BAD_PTR:
98 	case IAVF_ERR_SWFW_SYNC:
99 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 	case IAVF_ERR_QUEUE_EMPTY:
101 	case IAVF_ERR_FLUSHED_QUEUE:
102 	case IAVF_ERR_OPCODE_MISMATCH:
103 	case IAVF_ERR_CQP_COMPL_ERROR:
104 	case IAVF_ERR_BACKING_PAGE_ERROR:
105 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 	case IAVF_ERR_MEMCPY_FAILED:
107 	case IAVF_ERR_SRQ_ENABLED:
108 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 	case IAVF_ERR_ADMIN_QUEUE_FULL:
110 	case IAVF_ERR_BAD_RDMA_CQE:
111 	case IAVF_ERR_NVM_BLANK_MODE:
112 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 	case IAVF_ERR_DIAG_TEST_FAILED:
114 	case IAVF_ERR_FIRMWARE_API_VERSION:
115 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 		return -EIO;
117 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 		return -ENODEV;
119 	case IAVF_ERR_NO_AVAILABLE_VSI:
120 	case IAVF_ERR_RING_FULL:
121 		return -ENOSPC;
122 	case IAVF_ERR_NO_MEMORY:
123 		return -ENOMEM;
124 	case IAVF_ERR_TIMEOUT:
125 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 		return -ETIMEDOUT;
127 	case IAVF_ERR_NOT_IMPLEMENTED:
128 	case IAVF_NOT_SUPPORTED:
129 		return -EOPNOTSUPP;
130 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 		return -EALREADY;
132 	case IAVF_ERR_NOT_READY:
133 		return -EBUSY;
134 	case IAVF_ERR_BUF_TOO_SHORT:
135 		return -EMSGSIZE;
136 	}
137 
138 	return -EIO;
139 }
140 
141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 	switch (v_status) {
144 	case VIRTCHNL_STATUS_SUCCESS:
145 		return 0;
146 	case VIRTCHNL_STATUS_ERR_PARAM:
147 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 		return -EINVAL;
149 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 		return -ENOMEM;
151 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 		return -EIO;
155 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 		return -EOPNOTSUPP;
157 	}
158 
159 	return -EIO;
160 }
161 
162 /**
163  * iavf_pdev_to_adapter - go from pci_dev to adapter
164  * @pdev: pci_dev pointer
165  */
166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 	return netdev_priv(pci_get_drvdata(pdev));
169 }
170 
171 /**
172  * iavf_is_reset_in_progress - Check if a reset is in progress
173  * @adapter: board private structure
174  */
175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 	if (adapter->state == __IAVF_RESETTING ||
178 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 			      IAVF_FLAG_RESET_NEEDED))
180 		return true;
181 
182 	return false;
183 }
184 
185 /**
186  * iavf_wait_for_reset - Wait for reset to finish.
187  * @adapter: board private structure
188  *
189  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190  */
191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 					!iavf_is_reset_in_progress(adapter),
195 					msecs_to_jiffies(5000));
196 
197 	/* If ret < 0 then it means wait was interrupted.
198 	 * If ret == 0 then it means we got a timeout while waiting
199 	 * for reset to finish.
200 	 * If ret > 0 it means reset has finished.
201 	 */
202 	if (ret > 0)
203 		return 0;
204 	else if (ret < 0)
205 		return -EINTR;
206 	else
207 		return -EBUSY;
208 }
209 
210 /**
211  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212  * @hw:   pointer to the HW structure
213  * @mem:  ptr to mem struct to fill out
214  * @size: size of memory requested
215  * @alignment: what to align the allocation to
216  **/
217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 					 struct iavf_dma_mem *mem,
219 					 u64 size, u32 alignment)
220 {
221 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222 
223 	if (!mem)
224 		return IAVF_ERR_PARAM;
225 
226 	mem->size = ALIGN(size, alignment);
227 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 	if (mem->va)
230 		return 0;
231 	else
232 		return IAVF_ERR_NO_MEMORY;
233 }
234 
235 /**
236  * iavf_free_dma_mem - wrapper for DMA memory freeing
237  * @hw:   pointer to the HW structure
238  * @mem:  ptr to mem struct to free
239  **/
240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243 
244 	if (!mem || !mem->va)
245 		return IAVF_ERR_PARAM;
246 	dma_free_coherent(&adapter->pdev->dev, mem->size,
247 			  mem->va, (dma_addr_t)mem->pa);
248 	return 0;
249 }
250 
251 /**
252  * iavf_allocate_virt_mem - virt memory alloc wrapper
253  * @hw:   pointer to the HW structure
254  * @mem:  ptr to mem struct to fill out
255  * @size: size of memory requested
256  **/
257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 					struct iavf_virt_mem *mem, u32 size)
259 {
260 	if (!mem)
261 		return IAVF_ERR_PARAM;
262 
263 	mem->size = size;
264 	mem->va = kzalloc(size, GFP_KERNEL);
265 
266 	if (mem->va)
267 		return 0;
268 	else
269 		return IAVF_ERR_NO_MEMORY;
270 }
271 
272 /**
273  * iavf_free_virt_mem - virt memory free wrapper
274  * @hw:   pointer to the HW structure
275  * @mem:  ptr to mem struct to free
276  **/
277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 	kfree(mem->va);
280 }
281 
282 /**
283  * iavf_schedule_reset - Set the flags and schedule a reset event
284  * @adapter: board private structure
285  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286  **/
287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 	    !(adapter->flags &
291 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 		adapter->flags |= flags;
293 		queue_work(adapter->wq, &adapter->reset_task);
294 	}
295 }
296 
297 /**
298  * iavf_schedule_aq_request - Set the flags and schedule aq request
299  * @adapter: board private structure
300  * @flags: requested aq flags
301  **/
302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 	adapter->aq_required |= flags;
305 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307 
308 /**
309  * iavf_tx_timeout - Respond to a Tx Hang
310  * @netdev: network interface device structure
311  * @txqueue: queue number that is timing out
312  **/
313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 	struct iavf_adapter *adapter = netdev_priv(netdev);
316 
317 	adapter->tx_timeout_count++;
318 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320 
321 /**
322  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323  * @adapter: board private structure
324  **/
325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 	struct iavf_hw *hw = &adapter->hw;
328 
329 	if (!adapter->msix_entries)
330 		return;
331 
332 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333 
334 	iavf_flush(hw);
335 
336 	synchronize_irq(adapter->msix_entries[0].vector);
337 }
338 
339 /**
340  * iavf_misc_irq_enable - Enable default interrupt generation settings
341  * @adapter: board private structure
342  **/
343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 	struct iavf_hw *hw = &adapter->hw;
346 
347 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350 
351 	iavf_flush(hw);
352 }
353 
354 /**
355  * iavf_irq_disable - Mask off interrupt generation on the NIC
356  * @adapter: board private structure
357  **/
358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 	int i;
361 	struct iavf_hw *hw = &adapter->hw;
362 
363 	if (!adapter->msix_entries)
364 		return;
365 
366 	for (i = 1; i < adapter->num_msix_vectors; i++) {
367 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 		synchronize_irq(adapter->msix_entries[i].vector);
369 	}
370 	iavf_flush(hw);
371 }
372 
373 /**
374  * iavf_irq_enable_queues - Enable interrupt for all queues
375  * @adapter: board private structure
376  **/
377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 	struct iavf_hw *hw = &adapter->hw;
380 	int i;
381 
382 	for (i = 1; i < adapter->num_msix_vectors; i++) {
383 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 	}
387 }
388 
389 /**
390  * iavf_irq_enable - Enable default interrupt generation settings
391  * @adapter: board private structure
392  * @flush: boolean value whether to run rd32()
393  **/
394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 	struct iavf_hw *hw = &adapter->hw;
397 
398 	iavf_misc_irq_enable(adapter);
399 	iavf_irq_enable_queues(adapter);
400 
401 	if (flush)
402 		iavf_flush(hw);
403 }
404 
405 /**
406  * iavf_msix_aq - Interrupt handler for vector 0
407  * @irq: interrupt number
408  * @data: pointer to netdev
409  **/
410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 	struct net_device *netdev = data;
413 	struct iavf_adapter *adapter = netdev_priv(netdev);
414 	struct iavf_hw *hw = &adapter->hw;
415 
416 	/* handle non-queue interrupts, these reads clear the registers */
417 	rd32(hw, IAVF_VFINT_ICR01);
418 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
419 
420 	if (adapter->state != __IAVF_REMOVE)
421 		/* schedule work on the private workqueue */
422 		queue_work(adapter->wq, &adapter->adminq_task);
423 
424 	return IRQ_HANDLED;
425 }
426 
427 /**
428  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429  * @irq: interrupt number
430  * @data: pointer to a q_vector
431  **/
432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 	struct iavf_q_vector *q_vector = data;
435 
436 	if (!q_vector->tx.ring && !q_vector->rx.ring)
437 		return IRQ_HANDLED;
438 
439 	napi_schedule_irqoff(&q_vector->napi);
440 
441 	return IRQ_HANDLED;
442 }
443 
444 /**
445  * iavf_map_vector_to_rxq - associate irqs with rx queues
446  * @adapter: board private structure
447  * @v_idx: interrupt number
448  * @r_idx: queue number
449  **/
450 static void
451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 	struct iavf_hw *hw = &adapter->hw;
456 
457 	rx_ring->q_vector = q_vector;
458 	rx_ring->next = q_vector->rx.ring;
459 	rx_ring->vsi = &adapter->vsi;
460 	q_vector->rx.ring = rx_ring;
461 	q_vector->rx.count++;
462 	q_vector->rx.next_update = jiffies + 1;
463 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 	q_vector->ring_mask |= BIT(r_idx);
465 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 	     q_vector->rx.current_itr >> 1);
467 	q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469 
470 /**
471  * iavf_map_vector_to_txq - associate irqs with tx queues
472  * @adapter: board private structure
473  * @v_idx: interrupt number
474  * @t_idx: queue number
475  **/
476 static void
477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 	struct iavf_hw *hw = &adapter->hw;
482 
483 	tx_ring->q_vector = q_vector;
484 	tx_ring->next = q_vector->tx.ring;
485 	tx_ring->vsi = &adapter->vsi;
486 	q_vector->tx.ring = tx_ring;
487 	q_vector->tx.count++;
488 	q_vector->tx.next_update = jiffies + 1;
489 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 	q_vector->num_ringpairs++;
491 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 	     q_vector->tx.target_itr >> 1);
493 	q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495 
496 /**
497  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498  * @adapter: board private structure to initialize
499  *
500  * This function maps descriptor rings to the queue-specific vectors
501  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
502  * one vector per ring/queue, but on a constrained vector budget, we
503  * group the rings as "efficiently" as possible.  You would add new
504  * mapping configurations in here.
505  **/
506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 	int rings_remaining = adapter->num_active_queues;
509 	int ridx = 0, vidx = 0;
510 	int q_vectors;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (; ridx < rings_remaining; ridx++) {
515 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 		iavf_map_vector_to_txq(adapter, vidx, ridx);
517 
518 		/* In the case where we have more queues than vectors, continue
519 		 * round-robin on vectors until all queues are mapped.
520 		 */
521 		if (++vidx >= q_vectors)
522 			vidx = 0;
523 	}
524 
525 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527 
528 /**
529  * iavf_irq_affinity_notify - Callback for affinity changes
530  * @notify: context as to what irq was changed
531  * @mask: the new affinity mask
532  *
533  * This is a callback function used by the irq_set_affinity_notifier function
534  * so that we may register to receive changes to the irq affinity masks.
535  **/
536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 				     const cpumask_t *mask)
538 {
539 	struct iavf_q_vector *q_vector =
540 		container_of(notify, struct iavf_q_vector, affinity_notify);
541 
542 	cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544 
545 /**
546  * iavf_irq_affinity_release - Callback for affinity notifier release
547  * @ref: internal core kernel usage
548  *
549  * This is a callback function used by the irq_set_affinity_notifier function
550  * to inform the current notification subscriber that they will no longer
551  * receive notifications.
552  **/
553 static void iavf_irq_affinity_release(struct kref *ref) {}
554 
555 /**
556  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557  * @adapter: board private structure
558  * @basename: device basename
559  *
560  * Allocates MSI-X vectors for tx and rx handling, and requests
561  * interrupts from the kernel.
562  **/
563 static int
564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 	unsigned int vector, q_vectors;
567 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 	int irq_num, err;
569 	int cpu;
570 
571 	iavf_irq_disable(adapter);
572 	/* Decrement for Other and TCP Timer vectors */
573 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574 
575 	for (vector = 0; vector < q_vectors; vector++) {
576 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577 
578 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579 
580 		if (q_vector->tx.ring && q_vector->rx.ring) {
581 			snprintf(q_vector->name, sizeof(q_vector->name),
582 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 			tx_int_idx++;
584 		} else if (q_vector->rx.ring) {
585 			snprintf(q_vector->name, sizeof(q_vector->name),
586 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 		} else if (q_vector->tx.ring) {
588 			snprintf(q_vector->name, sizeof(q_vector->name),
589 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 		} else {
591 			/* skip this unused q_vector */
592 			continue;
593 		}
594 		err = request_irq(irq_num,
595 				  iavf_msix_clean_rings,
596 				  0,
597 				  q_vector->name,
598 				  q_vector);
599 		if (err) {
600 			dev_info(&adapter->pdev->dev,
601 				 "Request_irq failed, error: %d\n", err);
602 			goto free_queue_irqs;
603 		}
604 		/* register for affinity change notifications */
605 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 		q_vector->affinity_notify.release =
607 						   iavf_irq_affinity_release;
608 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 		/* Spread the IRQ affinity hints across online CPUs. Note that
610 		 * get_cpu_mask returns a mask with a permanent lifetime so
611 		 * it's safe to use as a hint for irq_update_affinity_hint.
612 		 */
613 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 	}
616 
617 	return 0;
618 
619 free_queue_irqs:
620 	while (vector) {
621 		vector--;
622 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 		irq_set_affinity_notifier(irq_num, NULL);
624 		irq_update_affinity_hint(irq_num, NULL);
625 		free_irq(irq_num, &adapter->q_vectors[vector]);
626 	}
627 	return err;
628 }
629 
630 /**
631  * iavf_request_misc_irq - Initialize MSI-X interrupts
632  * @adapter: board private structure
633  *
634  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635  * vector is only for the admin queue, and stays active even when the netdev
636  * is closed.
637  **/
638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 	struct net_device *netdev = adapter->netdev;
641 	int err;
642 
643 	snprintf(adapter->misc_vector_name,
644 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 		 dev_name(&adapter->pdev->dev));
646 	err = request_irq(adapter->msix_entries[0].vector,
647 			  &iavf_msix_aq, 0,
648 			  adapter->misc_vector_name, netdev);
649 	if (err) {
650 		dev_err(&adapter->pdev->dev,
651 			"request_irq for %s failed: %d\n",
652 			adapter->misc_vector_name, err);
653 		free_irq(adapter->msix_entries[0].vector, netdev);
654 	}
655 	return err;
656 }
657 
658 /**
659  * iavf_free_traffic_irqs - Free MSI-X interrupts
660  * @adapter: board private structure
661  *
662  * Frees all MSI-X vectors other than 0.
663  **/
664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 	int vector, irq_num, q_vectors;
667 
668 	if (!adapter->msix_entries)
669 		return;
670 
671 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672 
673 	for (vector = 0; vector < q_vectors; vector++) {
674 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 		irq_set_affinity_notifier(irq_num, NULL);
676 		irq_update_affinity_hint(irq_num, NULL);
677 		free_irq(irq_num, &adapter->q_vectors[vector]);
678 	}
679 }
680 
681 /**
682  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683  * @adapter: board private structure
684  *
685  * Frees MSI-X vector 0.
686  **/
687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 	struct net_device *netdev = adapter->netdev;
690 
691 	if (!adapter->msix_entries)
692 		return;
693 
694 	free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696 
697 /**
698  * iavf_configure_tx - Configure Transmit Unit after Reset
699  * @adapter: board private structure
700  *
701  * Configure the Tx unit of the MAC after a reset.
702  **/
703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 	struct iavf_hw *hw = &adapter->hw;
706 	int i;
707 
708 	for (i = 0; i < adapter->num_active_queues; i++)
709 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711 
712 /**
713  * iavf_configure_rx - Configure Receive Unit after Reset
714  * @adapter: board private structure
715  *
716  * Configure the Rx unit of the MAC after a reset.
717  **/
718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 	struct iavf_hw *hw = &adapter->hw;
721 
722 	for (u32 i = 0; i < adapter->num_active_queues; i++)
723 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725 
726 /**
727  * iavf_find_vlan - Search filter list for specific vlan filter
728  * @adapter: board private structure
729  * @vlan: vlan tag
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 				 struct iavf_vlan vlan)
737 {
738 	struct iavf_vlan_filter *f;
739 
740 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 		if (f->vlan.vid == vlan.vid &&
742 		    f->vlan.tpid == vlan.tpid)
743 			return f;
744 	}
745 
746 	return NULL;
747 }
748 
749 /**
750  * iavf_add_vlan - Add a vlan filter to the list
751  * @adapter: board private structure
752  * @vlan: VLAN tag
753  *
754  * Returns ptr to the filter object or NULL when no memory available.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 				struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f = NULL;
761 
762 	spin_lock_bh(&adapter->mac_vlan_list_lock);
763 
764 	f = iavf_find_vlan(adapter, vlan);
765 	if (!f) {
766 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 		if (!f)
768 			goto clearout;
769 
770 		f->vlan = vlan;
771 
772 		list_add_tail(&f->list, &adapter->vlan_filter_list);
773 		f->state = IAVF_VLAN_ADD;
774 		adapter->num_vlan_filters++;
775 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 	}
777 
778 clearout:
779 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
780 	return f;
781 }
782 
783 /**
784  * iavf_del_vlan - Remove a vlan filter from the list
785  * @adapter: board private structure
786  * @vlan: VLAN tag
787  **/
788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
789 {
790 	struct iavf_vlan_filter *f;
791 
792 	spin_lock_bh(&adapter->mac_vlan_list_lock);
793 
794 	f = iavf_find_vlan(adapter, vlan);
795 	if (f) {
796 		f->state = IAVF_VLAN_REMOVE;
797 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
798 	}
799 
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 }
802 
803 /**
804  * iavf_restore_filters
805  * @adapter: board private structure
806  *
807  * Restore existing non MAC filters when VF netdev comes back up
808  **/
809 static void iavf_restore_filters(struct iavf_adapter *adapter)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	/* re-add all VLAN filters */
814 	spin_lock_bh(&adapter->mac_vlan_list_lock);
815 
816 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
817 		if (f->state == IAVF_VLAN_INACTIVE)
818 			f->state = IAVF_VLAN_ADD;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
823 }
824 
825 /**
826  * iavf_get_num_vlans_added - get number of VLANs added
827  * @adapter: board private structure
828  */
829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
830 {
831 	return adapter->num_vlan_filters;
832 }
833 
834 /**
835  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
836  * @adapter: board private structure
837  *
838  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
839  * do not impose a limit as that maintains current behavior and for
840  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
841  **/
842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
843 {
844 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
845 	 * never been a limit on the VF driver side
846 	 */
847 	if (VLAN_ALLOWED(adapter))
848 		return VLAN_N_VID;
849 	else if (VLAN_V2_ALLOWED(adapter))
850 		return adapter->vlan_v2_caps.filtering.max_filters;
851 
852 	return 0;
853 }
854 
855 /**
856  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
857  * @adapter: board private structure
858  **/
859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
860 {
861 	if (iavf_get_num_vlans_added(adapter) <
862 	    iavf_get_max_vlans_allowed(adapter))
863 		return false;
864 
865 	return true;
866 }
867 
868 /**
869  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
870  * @netdev: network device struct
871  * @proto: unused protocol data
872  * @vid: VLAN tag
873  **/
874 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
875 				__always_unused __be16 proto, u16 vid)
876 {
877 	struct iavf_adapter *adapter = netdev_priv(netdev);
878 
879 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
880 	if (!vid)
881 		return 0;
882 
883 	if (!VLAN_FILTERING_ALLOWED(adapter))
884 		return -EIO;
885 
886 	if (iavf_max_vlans_added(adapter)) {
887 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
888 			   iavf_get_max_vlans_allowed(adapter));
889 		return -EIO;
890 	}
891 
892 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
893 		return -ENOMEM;
894 
895 	return 0;
896 }
897 
898 /**
899  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
900  * @netdev: network device struct
901  * @proto: unused protocol data
902  * @vid: VLAN tag
903  **/
904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
905 				 __always_unused __be16 proto, u16 vid)
906 {
907 	struct iavf_adapter *adapter = netdev_priv(netdev);
908 
909 	/* We do not track VLAN 0 filter */
910 	if (!vid)
911 		return 0;
912 
913 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
914 	return 0;
915 }
916 
917 /**
918  * iavf_find_filter - Search filter list for specific mac filter
919  * @adapter: board private structure
920  * @macaddr: the MAC address
921  *
922  * Returns ptr to the filter object or NULL. Must be called while holding the
923  * mac_vlan_list_lock.
924  **/
925 static struct
926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
927 				  const u8 *macaddr)
928 {
929 	struct iavf_mac_filter *f;
930 
931 	if (!macaddr)
932 		return NULL;
933 
934 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
935 		if (ether_addr_equal(macaddr, f->macaddr))
936 			return f;
937 	}
938 	return NULL;
939 }
940 
941 /**
942  * iavf_add_filter - Add a mac filter to the filter list
943  * @adapter: board private structure
944  * @macaddr: the MAC address
945  *
946  * Returns ptr to the filter object or NULL when no memory available.
947  **/
948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
949 					const u8 *macaddr)
950 {
951 	struct iavf_mac_filter *f;
952 
953 	if (!macaddr)
954 		return NULL;
955 
956 	f = iavf_find_filter(adapter, macaddr);
957 	if (!f) {
958 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
959 		if (!f)
960 			return f;
961 
962 		ether_addr_copy(f->macaddr, macaddr);
963 
964 		list_add_tail(&f->list, &adapter->mac_filter_list);
965 		f->add = true;
966 		f->add_handled = false;
967 		f->is_new_mac = true;
968 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
969 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
970 	} else {
971 		f->remove = false;
972 	}
973 
974 	return f;
975 }
976 
977 /**
978  * iavf_replace_primary_mac - Replace current primary address
979  * @adapter: board private structure
980  * @new_mac: new MAC address to be applied
981  *
982  * Replace current dev_addr and send request to PF for removal of previous
983  * primary MAC address filter and addition of new primary MAC filter.
984  * Return 0 for success, -ENOMEM for failure.
985  *
986  * Do not call this with mac_vlan_list_lock!
987  **/
988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
989 				    const u8 *new_mac)
990 {
991 	struct iavf_hw *hw = &adapter->hw;
992 	struct iavf_mac_filter *new_f;
993 	struct iavf_mac_filter *old_f;
994 
995 	spin_lock_bh(&adapter->mac_vlan_list_lock);
996 
997 	new_f = iavf_add_filter(adapter, new_mac);
998 	if (!new_f) {
999 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1000 		return -ENOMEM;
1001 	}
1002 
1003 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1004 	if (old_f) {
1005 		old_f->is_primary = false;
1006 		old_f->remove = true;
1007 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008 	}
1009 	/* Always send the request to add if changing primary MAC,
1010 	 * even if filter is already present on the list
1011 	 */
1012 	new_f->is_primary = true;
1013 	new_f->add = true;
1014 	ether_addr_copy(hw->mac.addr, new_mac);
1015 
1016 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1017 
1018 	/* schedule the watchdog task to immediately process the request */
1019 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1020 	return 0;
1021 }
1022 
1023 /**
1024  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1025  * @netdev: network interface device structure
1026  * @macaddr: MAC address to set
1027  *
1028  * Returns true on success, false on failure
1029  */
1030 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1031 				    const u8 *macaddr)
1032 {
1033 	struct iavf_adapter *adapter = netdev_priv(netdev);
1034 	struct iavf_mac_filter *f;
1035 	bool ret = false;
1036 
1037 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1038 
1039 	f = iavf_find_filter(adapter, macaddr);
1040 
1041 	if (!f || (!f->add && f->add_handled))
1042 		ret = true;
1043 
1044 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * iavf_set_mac - NDO callback to set port MAC address
1051  * @netdev: network interface device structure
1052  * @p: pointer to an address structure
1053  *
1054  * Returns 0 on success, negative on failure
1055  */
1056 static int iavf_set_mac(struct net_device *netdev, void *p)
1057 {
1058 	struct iavf_adapter *adapter = netdev_priv(netdev);
1059 	struct sockaddr *addr = p;
1060 	int ret;
1061 
1062 	if (!is_valid_ether_addr(addr->sa_data))
1063 		return -EADDRNOTAVAIL;
1064 
1065 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1066 
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1071 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1072 					       msecs_to_jiffies(2500));
1073 
1074 	/* If ret < 0 then it means wait was interrupted.
1075 	 * If ret == 0 then it means we got a timeout.
1076 	 * else it means we got response for set MAC from PF,
1077 	 * check if netdev MAC was updated to requested MAC,
1078 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1079 	 */
1080 	if (ret < 0)
1081 		return ret;
1082 
1083 	if (!ret)
1084 		return -EAGAIN;
1085 
1086 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1087 		return -EACCES;
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1094  * @netdev: the netdevice
1095  * @addr: address to add
1096  *
1097  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1098  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1099  */
1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1101 {
1102 	struct iavf_adapter *adapter = netdev_priv(netdev);
1103 
1104 	if (iavf_add_filter(adapter, addr))
1105 		return 0;
1106 	else
1107 		return -ENOMEM;
1108 }
1109 
1110 /**
1111  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1112  * @netdev: the netdevice
1113  * @addr: address to add
1114  *
1115  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1116  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1117  */
1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1119 {
1120 	struct iavf_adapter *adapter = netdev_priv(netdev);
1121 	struct iavf_mac_filter *f;
1122 
1123 	/* Under some circumstances, we might receive a request to delete
1124 	 * our own device address from our uc list. Because we store the
1125 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1126 	 * such requests and not delete our device address from this list.
1127 	 */
1128 	if (ether_addr_equal(addr, netdev->dev_addr))
1129 		return 0;
1130 
1131 	f = iavf_find_filter(adapter, addr);
1132 	if (f) {
1133 		f->remove = true;
1134 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1141  * @adapter: device specific adapter
1142  */
1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1144 {
1145 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1146 		(IFF_PROMISC | IFF_ALLMULTI);
1147 }
1148 
1149 /**
1150  * iavf_set_rx_mode - NDO callback to set the netdev filters
1151  * @netdev: network interface device structure
1152  **/
1153 static void iavf_set_rx_mode(struct net_device *netdev)
1154 {
1155 	struct iavf_adapter *adapter = netdev_priv(netdev);
1156 
1157 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1158 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1159 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1160 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1161 
1162 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1163 	if (iavf_promiscuous_mode_changed(adapter))
1164 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1165 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1166 }
1167 
1168 /**
1169  * iavf_napi_enable_all - enable NAPI on all queue vectors
1170  * @adapter: board private structure
1171  **/
1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1173 {
1174 	int q_idx;
1175 	struct iavf_q_vector *q_vector;
1176 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1177 
1178 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1179 		struct napi_struct *napi;
1180 
1181 		q_vector = &adapter->q_vectors[q_idx];
1182 		napi = &q_vector->napi;
1183 		napi_enable(napi);
1184 	}
1185 }
1186 
1187 /**
1188  * iavf_napi_disable_all - disable NAPI on all queue vectors
1189  * @adapter: board private structure
1190  **/
1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1192 {
1193 	int q_idx;
1194 	struct iavf_q_vector *q_vector;
1195 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1196 
1197 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1198 		q_vector = &adapter->q_vectors[q_idx];
1199 		napi_disable(&q_vector->napi);
1200 	}
1201 }
1202 
1203 /**
1204  * iavf_configure - set up transmit and receive data structures
1205  * @adapter: board private structure
1206  **/
1207 static void iavf_configure(struct iavf_adapter *adapter)
1208 {
1209 	struct net_device *netdev = adapter->netdev;
1210 	int i;
1211 
1212 	iavf_set_rx_mode(netdev);
1213 
1214 	iavf_configure_tx(adapter);
1215 	iavf_configure_rx(adapter);
1216 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1217 
1218 	for (i = 0; i < adapter->num_active_queues; i++) {
1219 		struct iavf_ring *ring = &adapter->rx_rings[i];
1220 
1221 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1222 	}
1223 }
1224 
1225 /**
1226  * iavf_up_complete - Finish the last steps of bringing up a connection
1227  * @adapter: board private structure
1228  *
1229  * Expects to be called while holding crit_lock.
1230  **/
1231 static void iavf_up_complete(struct iavf_adapter *adapter)
1232 {
1233 	iavf_change_state(adapter, __IAVF_RUNNING);
1234 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1235 
1236 	iavf_napi_enable_all(adapter);
1237 
1238 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1239 }
1240 
1241 /**
1242  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1243  * yet and mark other to be removed.
1244  * @adapter: board private structure
1245  **/
1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1247 {
1248 	struct iavf_vlan_filter *vlf, *vlftmp;
1249 	struct iavf_mac_filter *f, *ftmp;
1250 
1251 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1252 	/* clear the sync flag on all filters */
1253 	__dev_uc_unsync(adapter->netdev, NULL);
1254 	__dev_mc_unsync(adapter->netdev, NULL);
1255 
1256 	/* remove all MAC filters */
1257 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1258 				 list) {
1259 		if (f->add) {
1260 			list_del(&f->list);
1261 			kfree(f);
1262 		} else {
1263 			f->remove = true;
1264 		}
1265 	}
1266 
1267 	/* disable all VLAN filters */
1268 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1269 				 list)
1270 		vlf->state = IAVF_VLAN_DISABLE;
1271 
1272 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1273 }
1274 
1275 /**
1276  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1277  * mark other to be removed.
1278  * @adapter: board private structure
1279  **/
1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1281 {
1282 	struct iavf_cloud_filter *cf, *cftmp;
1283 
1284 	/* remove all cloud filters */
1285 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1286 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1287 				 list) {
1288 		if (cf->add) {
1289 			list_del(&cf->list);
1290 			kfree(cf);
1291 			adapter->num_cloud_filters--;
1292 		} else {
1293 			cf->del = true;
1294 		}
1295 	}
1296 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1297 }
1298 
1299 /**
1300  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1301  * other to be removed.
1302  * @adapter: board private structure
1303  **/
1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1305 {
1306 	struct iavf_fdir_fltr *fdir;
1307 
1308 	/* remove all Flow Director filters */
1309 	spin_lock_bh(&adapter->fdir_fltr_lock);
1310 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1311 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1312 			/* Cancel a request, keep filter as inactive */
1313 			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1314 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1315 			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1316 			/* Disable filters which are active or have a pending
1317 			 * request to PF to be added
1318 			 */
1319 			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1320 		}
1321 	}
1322 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1323 }
1324 
1325 /**
1326  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1327  * other to be removed.
1328  * @adapter: board private structure
1329  **/
1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1331 {
1332 	struct iavf_adv_rss *rss, *rsstmp;
1333 
1334 	/* remove all advance RSS configuration */
1335 	spin_lock_bh(&adapter->adv_rss_lock);
1336 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1337 				 list) {
1338 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1339 			list_del(&rss->list);
1340 			kfree(rss);
1341 		} else {
1342 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1343 		}
1344 	}
1345 	spin_unlock_bh(&adapter->adv_rss_lock);
1346 }
1347 
1348 /**
1349  * iavf_down - Shutdown the connection processing
1350  * @adapter: board private structure
1351  *
1352  * Expects to be called while holding crit_lock.
1353  **/
1354 void iavf_down(struct iavf_adapter *adapter)
1355 {
1356 	struct net_device *netdev = adapter->netdev;
1357 
1358 	if (adapter->state <= __IAVF_DOWN_PENDING)
1359 		return;
1360 
1361 	netif_carrier_off(netdev);
1362 	netif_tx_disable(netdev);
1363 	adapter->link_up = false;
1364 	iavf_napi_disable_all(adapter);
1365 	iavf_irq_disable(adapter);
1366 
1367 	iavf_clear_mac_vlan_filters(adapter);
1368 	iavf_clear_cloud_filters(adapter);
1369 	iavf_clear_fdir_filters(adapter);
1370 	iavf_clear_adv_rss_conf(adapter);
1371 
1372 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1373 		return;
1374 
1375 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1376 		/* cancel any current operation */
1377 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1378 		/* Schedule operations to close down the HW. Don't wait
1379 		 * here for this to complete. The watchdog is still running
1380 		 * and it will take care of this.
1381 		 */
1382 		if (!list_empty(&adapter->mac_filter_list))
1383 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1384 		if (!list_empty(&adapter->vlan_filter_list))
1385 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1386 		if (!list_empty(&adapter->cloud_filter_list))
1387 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1388 		if (!list_empty(&adapter->fdir_list_head))
1389 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1390 		if (!list_empty(&adapter->adv_rss_list_head))
1391 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1392 	}
1393 
1394 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1395 }
1396 
1397 /**
1398  * iavf_acquire_msix_vectors - Setup the MSIX capability
1399  * @adapter: board private structure
1400  * @vectors: number of vectors to request
1401  *
1402  * Work with the OS to set up the MSIX vectors needed.
1403  *
1404  * Returns 0 on success, negative on failure
1405  **/
1406 static int
1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1408 {
1409 	int err, vector_threshold;
1410 
1411 	/* We'll want at least 3 (vector_threshold):
1412 	 * 0) Other (Admin Queue and link, mostly)
1413 	 * 1) TxQ[0] Cleanup
1414 	 * 2) RxQ[0] Cleanup
1415 	 */
1416 	vector_threshold = MIN_MSIX_COUNT;
1417 
1418 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1419 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1420 	 * Right now, we simply care about how many we'll get; we'll
1421 	 * set them up later while requesting irq's.
1422 	 */
1423 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1424 				    vector_threshold, vectors);
1425 	if (err < 0) {
1426 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1427 		kfree(adapter->msix_entries);
1428 		adapter->msix_entries = NULL;
1429 		return err;
1430 	}
1431 
1432 	/* Adjust for only the vectors we'll use, which is minimum
1433 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1434 	 * vectors we were allocated.
1435 	 */
1436 	adapter->num_msix_vectors = err;
1437 	return 0;
1438 }
1439 
1440 /**
1441  * iavf_free_queues - Free memory for all rings
1442  * @adapter: board private structure to initialize
1443  *
1444  * Free all of the memory associated with queue pairs.
1445  **/
1446 static void iavf_free_queues(struct iavf_adapter *adapter)
1447 {
1448 	if (!adapter->vsi_res)
1449 		return;
1450 	adapter->num_active_queues = 0;
1451 	kfree(adapter->tx_rings);
1452 	adapter->tx_rings = NULL;
1453 	kfree(adapter->rx_rings);
1454 	adapter->rx_rings = NULL;
1455 }
1456 
1457 /**
1458  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1459  * @adapter: board private structure
1460  *
1461  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1462  * stripped in certain descriptor fields. Instead of checking the offload
1463  * capability bits in the hot path, cache the location the ring specific
1464  * flags.
1465  */
1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1467 {
1468 	int i;
1469 
1470 	for (i = 0; i < adapter->num_active_queues; i++) {
1471 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1472 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1473 
1474 		/* prevent multiple L2TAG bits being set after VFR */
1475 		tx_ring->flags &=
1476 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1477 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1478 		rx_ring->flags &=
1479 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1480 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1481 
1482 		if (VLAN_ALLOWED(adapter)) {
1483 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1484 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1485 		} else if (VLAN_V2_ALLOWED(adapter)) {
1486 			struct virtchnl_vlan_supported_caps *stripping_support;
1487 			struct virtchnl_vlan_supported_caps *insertion_support;
1488 
1489 			stripping_support =
1490 				&adapter->vlan_v2_caps.offloads.stripping_support;
1491 			insertion_support =
1492 				&adapter->vlan_v2_caps.offloads.insertion_support;
1493 
1494 			if (stripping_support->outer) {
1495 				if (stripping_support->outer &
1496 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1497 					rx_ring->flags |=
1498 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 				else if (stripping_support->outer &
1500 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1501 					rx_ring->flags |=
1502 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1503 			} else if (stripping_support->inner) {
1504 				if (stripping_support->inner &
1505 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1506 					rx_ring->flags |=
1507 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1508 				else if (stripping_support->inner &
1509 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1510 					rx_ring->flags |=
1511 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1512 			}
1513 
1514 			if (insertion_support->outer) {
1515 				if (insertion_support->outer &
1516 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1517 					tx_ring->flags |=
1518 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1519 				else if (insertion_support->outer &
1520 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1521 					tx_ring->flags |=
1522 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1523 			} else if (insertion_support->inner) {
1524 				if (insertion_support->inner &
1525 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1526 					tx_ring->flags |=
1527 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1528 				else if (insertion_support->inner &
1529 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1530 					tx_ring->flags |=
1531 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1532 			}
1533 		}
1534 	}
1535 }
1536 
1537 /**
1538  * iavf_alloc_queues - Allocate memory for all rings
1539  * @adapter: board private structure to initialize
1540  *
1541  * We allocate one ring per queue at run-time since we don't know the
1542  * number of queues at compile-time.  The polling_netdev array is
1543  * intended for Multiqueue, but should work fine with a single queue.
1544  **/
1545 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1546 {
1547 	int i, num_active_queues;
1548 
1549 	/* If we're in reset reallocating queues we don't actually know yet for
1550 	 * certain the PF gave us the number of queues we asked for but we'll
1551 	 * assume it did.  Once basic reset is finished we'll confirm once we
1552 	 * start negotiating config with PF.
1553 	 */
1554 	if (adapter->num_req_queues)
1555 		num_active_queues = adapter->num_req_queues;
1556 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1557 		 adapter->num_tc)
1558 		num_active_queues = adapter->ch_config.total_qps;
1559 	else
1560 		num_active_queues = min_t(int,
1561 					  adapter->vsi_res->num_queue_pairs,
1562 					  (int)(num_online_cpus()));
1563 
1564 
1565 	adapter->tx_rings = kcalloc(num_active_queues,
1566 				    sizeof(struct iavf_ring), GFP_KERNEL);
1567 	if (!adapter->tx_rings)
1568 		goto err_out;
1569 	adapter->rx_rings = kcalloc(num_active_queues,
1570 				    sizeof(struct iavf_ring), GFP_KERNEL);
1571 	if (!adapter->rx_rings)
1572 		goto err_out;
1573 
1574 	for (i = 0; i < num_active_queues; i++) {
1575 		struct iavf_ring *tx_ring;
1576 		struct iavf_ring *rx_ring;
1577 
1578 		tx_ring = &adapter->tx_rings[i];
1579 
1580 		tx_ring->queue_index = i;
1581 		tx_ring->netdev = adapter->netdev;
1582 		tx_ring->dev = &adapter->pdev->dev;
1583 		tx_ring->count = adapter->tx_desc_count;
1584 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1585 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1586 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1587 
1588 		rx_ring = &adapter->rx_rings[i];
1589 		rx_ring->queue_index = i;
1590 		rx_ring->netdev = adapter->netdev;
1591 		rx_ring->count = adapter->rx_desc_count;
1592 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1593 	}
1594 
1595 	adapter->num_active_queues = num_active_queues;
1596 
1597 	iavf_set_queue_vlan_tag_loc(adapter);
1598 
1599 	return 0;
1600 
1601 err_out:
1602 	iavf_free_queues(adapter);
1603 	return -ENOMEM;
1604 }
1605 
1606 /**
1607  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1608  * @adapter: board private structure to initialize
1609  *
1610  * Attempt to configure the interrupts using the best available
1611  * capabilities of the hardware and the kernel.
1612  **/
1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1614 {
1615 	int vector, v_budget;
1616 	int pairs = 0;
1617 	int err = 0;
1618 
1619 	if (!adapter->vsi_res) {
1620 		err = -EIO;
1621 		goto out;
1622 	}
1623 	pairs = adapter->num_active_queues;
1624 
1625 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1626 	 * us much good if we have more vectors than CPUs. However, we already
1627 	 * limit the total number of queues by the number of CPUs so we do not
1628 	 * need any further limiting here.
1629 	 */
1630 	v_budget = min_t(int, pairs + NONQ_VECS,
1631 			 (int)adapter->vf_res->max_vectors);
1632 
1633 	adapter->msix_entries = kcalloc(v_budget,
1634 					sizeof(struct msix_entry), GFP_KERNEL);
1635 	if (!adapter->msix_entries) {
1636 		err = -ENOMEM;
1637 		goto out;
1638 	}
1639 
1640 	for (vector = 0; vector < v_budget; vector++)
1641 		adapter->msix_entries[vector].entry = vector;
1642 
1643 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1644 	if (!err)
1645 		iavf_schedule_finish_config(adapter);
1646 
1647 out:
1648 	return err;
1649 }
1650 
1651 /**
1652  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1653  * @adapter: board private structure
1654  *
1655  * Return 0 on success, negative on failure
1656  **/
1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1658 {
1659 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1660 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1661 	struct iavf_hw *hw = &adapter->hw;
1662 	enum iavf_status status;
1663 
1664 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1665 		/* bail because we already have a command pending */
1666 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1667 			adapter->current_op);
1668 		return -EBUSY;
1669 	}
1670 
1671 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1672 	if (status) {
1673 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1674 			iavf_stat_str(hw, status),
1675 			iavf_aq_str(hw, hw->aq.asq_last_status));
1676 		return iavf_status_to_errno(status);
1677 
1678 	}
1679 
1680 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1681 				     adapter->rss_lut, adapter->rss_lut_size);
1682 	if (status) {
1683 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1684 			iavf_stat_str(hw, status),
1685 			iavf_aq_str(hw, hw->aq.asq_last_status));
1686 		return iavf_status_to_errno(status);
1687 	}
1688 
1689 	return 0;
1690 
1691 }
1692 
1693 /**
1694  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1695  * @adapter: board private structure
1696  *
1697  * Returns 0 on success, negative on failure
1698  **/
1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1700 {
1701 	struct iavf_hw *hw = &adapter->hw;
1702 	u32 *dw;
1703 	u16 i;
1704 
1705 	dw = (u32 *)adapter->rss_key;
1706 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1707 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1708 
1709 	dw = (u32 *)adapter->rss_lut;
1710 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1711 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1712 
1713 	iavf_flush(hw);
1714 
1715 	return 0;
1716 }
1717 
1718 /**
1719  * iavf_config_rss - Configure RSS keys and lut
1720  * @adapter: board private structure
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724 int iavf_config_rss(struct iavf_adapter *adapter)
1725 {
1726 
1727 	if (RSS_PF(adapter)) {
1728 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1729 					IAVF_FLAG_AQ_SET_RSS_KEY;
1730 		return 0;
1731 	} else if (RSS_AQ(adapter)) {
1732 		return iavf_config_rss_aq(adapter);
1733 	} else {
1734 		return iavf_config_rss_reg(adapter);
1735 	}
1736 }
1737 
1738 /**
1739  * iavf_fill_rss_lut - Fill the lut with default values
1740  * @adapter: board private structure
1741  **/
1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1743 {
1744 	u16 i;
1745 
1746 	for (i = 0; i < adapter->rss_lut_size; i++)
1747 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1748 }
1749 
1750 /**
1751  * iavf_init_rss - Prepare for RSS
1752  * @adapter: board private structure
1753  *
1754  * Return 0 on success, negative on failure
1755  **/
1756 static int iavf_init_rss(struct iavf_adapter *adapter)
1757 {
1758 	struct iavf_hw *hw = &adapter->hw;
1759 
1760 	if (!RSS_PF(adapter)) {
1761 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1762 		if (adapter->vf_res->vf_cap_flags &
1763 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1764 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1765 		else
1766 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1767 
1768 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1769 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1770 	}
1771 
1772 	iavf_fill_rss_lut(adapter);
1773 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1774 
1775 	return iavf_config_rss(adapter);
1776 }
1777 
1778 /**
1779  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1780  * @adapter: board private structure to initialize
1781  *
1782  * We allocate one q_vector per queue interrupt.  If allocation fails we
1783  * return -ENOMEM.
1784  **/
1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1786 {
1787 	int q_idx = 0, num_q_vectors;
1788 	struct iavf_q_vector *q_vector;
1789 
1790 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1791 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1792 				     GFP_KERNEL);
1793 	if (!adapter->q_vectors)
1794 		return -ENOMEM;
1795 
1796 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1797 		q_vector = &adapter->q_vectors[q_idx];
1798 		q_vector->adapter = adapter;
1799 		q_vector->vsi = &adapter->vsi;
1800 		q_vector->v_idx = q_idx;
1801 		q_vector->reg_idx = q_idx;
1802 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1803 		netif_napi_add(adapter->netdev, &q_vector->napi,
1804 			       iavf_napi_poll);
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1812  * @adapter: board private structure to initialize
1813  *
1814  * This function frees the memory allocated to the q_vectors.  In addition if
1815  * NAPI is enabled it will delete any references to the NAPI struct prior
1816  * to freeing the q_vector.
1817  **/
1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1819 {
1820 	int q_idx, num_q_vectors;
1821 
1822 	if (!adapter->q_vectors)
1823 		return;
1824 
1825 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1826 
1827 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1828 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1829 
1830 		netif_napi_del(&q_vector->napi);
1831 	}
1832 	kfree(adapter->q_vectors);
1833 	adapter->q_vectors = NULL;
1834 }
1835 
1836 /**
1837  * iavf_reset_interrupt_capability - Reset MSIX setup
1838  * @adapter: board private structure
1839  *
1840  **/
1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1842 {
1843 	if (!adapter->msix_entries)
1844 		return;
1845 
1846 	pci_disable_msix(adapter->pdev);
1847 	kfree(adapter->msix_entries);
1848 	adapter->msix_entries = NULL;
1849 }
1850 
1851 /**
1852  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1853  * @adapter: board private structure to initialize
1854  *
1855  **/
1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1857 {
1858 	int err;
1859 
1860 	err = iavf_alloc_queues(adapter);
1861 	if (err) {
1862 		dev_err(&adapter->pdev->dev,
1863 			"Unable to allocate memory for queues\n");
1864 		goto err_alloc_queues;
1865 	}
1866 
1867 	err = iavf_set_interrupt_capability(adapter);
1868 	if (err) {
1869 		dev_err(&adapter->pdev->dev,
1870 			"Unable to setup interrupt capabilities\n");
1871 		goto err_set_interrupt;
1872 	}
1873 
1874 	err = iavf_alloc_q_vectors(adapter);
1875 	if (err) {
1876 		dev_err(&adapter->pdev->dev,
1877 			"Unable to allocate memory for queue vectors\n");
1878 		goto err_alloc_q_vectors;
1879 	}
1880 
1881 	/* If we've made it so far while ADq flag being ON, then we haven't
1882 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1883 	 * resources have been allocated in the reset path.
1884 	 * Now we can truly claim that ADq is enabled.
1885 	 */
1886 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1887 	    adapter->num_tc)
1888 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1889 			 adapter->num_tc);
1890 
1891 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1892 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1893 		 adapter->num_active_queues);
1894 
1895 	return 0;
1896 err_alloc_q_vectors:
1897 	iavf_reset_interrupt_capability(adapter);
1898 err_set_interrupt:
1899 	iavf_free_queues(adapter);
1900 err_alloc_queues:
1901 	return err;
1902 }
1903 
1904 /**
1905  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1906  * @adapter: board private structure
1907  **/
1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1909 {
1910 	iavf_free_q_vectors(adapter);
1911 	iavf_reset_interrupt_capability(adapter);
1912 	iavf_free_queues(adapter);
1913 }
1914 
1915 /**
1916  * iavf_free_rss - Free memory used by RSS structs
1917  * @adapter: board private structure
1918  **/
1919 static void iavf_free_rss(struct iavf_adapter *adapter)
1920 {
1921 	kfree(adapter->rss_key);
1922 	adapter->rss_key = NULL;
1923 
1924 	kfree(adapter->rss_lut);
1925 	adapter->rss_lut = NULL;
1926 }
1927 
1928 /**
1929  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1930  * @adapter: board private structure
1931  * @running: true if adapter->state == __IAVF_RUNNING
1932  *
1933  * Returns 0 on success, negative on failure
1934  **/
1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1936 {
1937 	struct net_device *netdev = adapter->netdev;
1938 	int err;
1939 
1940 	if (running)
1941 		iavf_free_traffic_irqs(adapter);
1942 	iavf_free_misc_irq(adapter);
1943 	iavf_free_interrupt_scheme(adapter);
1944 
1945 	err = iavf_init_interrupt_scheme(adapter);
1946 	if (err)
1947 		goto err;
1948 
1949 	netif_tx_stop_all_queues(netdev);
1950 
1951 	err = iavf_request_misc_irq(adapter);
1952 	if (err)
1953 		goto err;
1954 
1955 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1956 
1957 	iavf_map_rings_to_vectors(adapter);
1958 err:
1959 	return err;
1960 }
1961 
1962 /**
1963  * iavf_finish_config - do all netdev work that needs RTNL
1964  * @work: our work_struct
1965  *
1966  * Do work that needs both RTNL and crit_lock.
1967  **/
1968 static void iavf_finish_config(struct work_struct *work)
1969 {
1970 	struct iavf_adapter *adapter;
1971 	int pairs, err;
1972 
1973 	adapter = container_of(work, struct iavf_adapter, finish_config);
1974 
1975 	/* Always take RTNL first to prevent circular lock dependency */
1976 	rtnl_lock();
1977 	mutex_lock(&adapter->crit_lock);
1978 
1979 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1980 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
1981 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1982 		netdev_update_features(adapter->netdev);
1983 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1984 	}
1985 
1986 	switch (adapter->state) {
1987 	case __IAVF_DOWN:
1988 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
1989 			err = register_netdevice(adapter->netdev);
1990 			if (err) {
1991 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
1992 					err);
1993 
1994 				/* go back and try again.*/
1995 				iavf_free_rss(adapter);
1996 				iavf_free_misc_irq(adapter);
1997 				iavf_reset_interrupt_capability(adapter);
1998 				iavf_change_state(adapter,
1999 						  __IAVF_INIT_CONFIG_ADAPTER);
2000 				goto out;
2001 			}
2002 		}
2003 
2004 		/* Set the real number of queues when reset occurs while
2005 		 * state == __IAVF_DOWN
2006 		 */
2007 		fallthrough;
2008 	case __IAVF_RUNNING:
2009 		pairs = adapter->num_active_queues;
2010 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2011 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2012 		break;
2013 
2014 	default:
2015 		break;
2016 	}
2017 
2018 out:
2019 	mutex_unlock(&adapter->crit_lock);
2020 	rtnl_unlock();
2021 }
2022 
2023 /**
2024  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2025  * @adapter: board private structure
2026  **/
2027 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2028 {
2029 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2030 		queue_work(adapter->wq, &adapter->finish_config);
2031 }
2032 
2033 /**
2034  * iavf_process_aq_command - process aq_required flags
2035  * and sends aq command
2036  * @adapter: pointer to iavf adapter structure
2037  *
2038  * Returns 0 on success
2039  * Returns error code if no command was sent
2040  * or error code if the command failed.
2041  **/
2042 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2043 {
2044 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2045 		return iavf_send_vf_config_msg(adapter);
2046 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2047 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2048 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2049 		iavf_disable_queues(adapter);
2050 		return 0;
2051 	}
2052 
2053 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2054 		iavf_map_queues(adapter);
2055 		return 0;
2056 	}
2057 
2058 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2059 		iavf_add_ether_addrs(adapter);
2060 		return 0;
2061 	}
2062 
2063 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2064 		iavf_add_vlans(adapter);
2065 		return 0;
2066 	}
2067 
2068 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2069 		iavf_del_ether_addrs(adapter);
2070 		return 0;
2071 	}
2072 
2073 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2074 		iavf_del_vlans(adapter);
2075 		return 0;
2076 	}
2077 
2078 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2079 		iavf_enable_vlan_stripping(adapter);
2080 		return 0;
2081 	}
2082 
2083 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2084 		iavf_disable_vlan_stripping(adapter);
2085 		return 0;
2086 	}
2087 
2088 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2089 		iavf_configure_queues(adapter);
2090 		return 0;
2091 	}
2092 
2093 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2094 		iavf_enable_queues(adapter);
2095 		return 0;
2096 	}
2097 
2098 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2099 		/* This message goes straight to the firmware, not the
2100 		 * PF, so we don't have to set current_op as we will
2101 		 * not get a response through the ARQ.
2102 		 */
2103 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2104 		return 0;
2105 	}
2106 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2107 		iavf_get_hena(adapter);
2108 		return 0;
2109 	}
2110 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2111 		iavf_set_hena(adapter);
2112 		return 0;
2113 	}
2114 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2115 		iavf_set_rss_key(adapter);
2116 		return 0;
2117 	}
2118 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2119 		iavf_set_rss_lut(adapter);
2120 		return 0;
2121 	}
2122 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2123 		iavf_set_rss_hfunc(adapter);
2124 		return 0;
2125 	}
2126 
2127 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2128 		iavf_set_promiscuous(adapter);
2129 		return 0;
2130 	}
2131 
2132 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2133 		iavf_enable_channels(adapter);
2134 		return 0;
2135 	}
2136 
2137 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2138 		iavf_disable_channels(adapter);
2139 		return 0;
2140 	}
2141 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2142 		iavf_add_cloud_filter(adapter);
2143 		return 0;
2144 	}
2145 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2146 		iavf_del_cloud_filter(adapter);
2147 		return 0;
2148 	}
2149 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2150 		iavf_add_fdir_filter(adapter);
2151 		return IAVF_SUCCESS;
2152 	}
2153 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2154 		iavf_del_fdir_filter(adapter);
2155 		return IAVF_SUCCESS;
2156 	}
2157 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2158 		iavf_add_adv_rss_cfg(adapter);
2159 		return 0;
2160 	}
2161 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2162 		iavf_del_adv_rss_cfg(adapter);
2163 		return 0;
2164 	}
2165 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2166 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2167 		return 0;
2168 	}
2169 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2170 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2171 		return 0;
2172 	}
2173 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2174 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2175 		return 0;
2176 	}
2177 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2178 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2179 		return 0;
2180 	}
2181 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2182 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2183 		return 0;
2184 	}
2185 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2186 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2187 		return 0;
2188 	}
2189 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2190 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2191 		return 0;
2192 	}
2193 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2194 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2195 		return 0;
2196 	}
2197 
2198 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2199 		iavf_request_stats(adapter);
2200 		return 0;
2201 	}
2202 
2203 	return -EAGAIN;
2204 }
2205 
2206 /**
2207  * iavf_set_vlan_offload_features - set VLAN offload configuration
2208  * @adapter: board private structure
2209  * @prev_features: previous features used for comparison
2210  * @features: updated features used for configuration
2211  *
2212  * Set the aq_required bit(s) based on the requested features passed in to
2213  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2214  * the watchdog if any changes are requested to expedite the request via
2215  * virtchnl.
2216  **/
2217 static void
2218 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2219 			       netdev_features_t prev_features,
2220 			       netdev_features_t features)
2221 {
2222 	bool enable_stripping = true, enable_insertion = true;
2223 	u16 vlan_ethertype = 0;
2224 	u64 aq_required = 0;
2225 
2226 	/* keep cases separate because one ethertype for offloads can be
2227 	 * disabled at the same time as another is disabled, so check for an
2228 	 * enabled ethertype first, then check for disabled. Default to
2229 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2230 	 * stripping.
2231 	 */
2232 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2233 		vlan_ethertype = ETH_P_8021AD;
2234 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2235 		vlan_ethertype = ETH_P_8021Q;
2236 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2237 		vlan_ethertype = ETH_P_8021AD;
2238 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2239 		vlan_ethertype = ETH_P_8021Q;
2240 	else
2241 		vlan_ethertype = ETH_P_8021Q;
2242 
2243 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2244 		enable_stripping = false;
2245 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2246 		enable_insertion = false;
2247 
2248 	if (VLAN_ALLOWED(adapter)) {
2249 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2250 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2251 		 * netdev, but it doesn't require a virtchnl message
2252 		 */
2253 		if (enable_stripping)
2254 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2255 		else
2256 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2257 
2258 	} else if (VLAN_V2_ALLOWED(adapter)) {
2259 		switch (vlan_ethertype) {
2260 		case ETH_P_8021Q:
2261 			if (enable_stripping)
2262 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2263 			else
2264 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2265 
2266 			if (enable_insertion)
2267 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2268 			else
2269 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2270 			break;
2271 		case ETH_P_8021AD:
2272 			if (enable_stripping)
2273 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2274 			else
2275 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2276 
2277 			if (enable_insertion)
2278 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2279 			else
2280 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2281 			break;
2282 		}
2283 	}
2284 
2285 	if (aq_required)
2286 		iavf_schedule_aq_request(adapter, aq_required);
2287 }
2288 
2289 /**
2290  * iavf_startup - first step of driver startup
2291  * @adapter: board private structure
2292  *
2293  * Function process __IAVF_STARTUP driver state.
2294  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2295  * when fails the state is changed to __IAVF_INIT_FAILED
2296  **/
2297 static void iavf_startup(struct iavf_adapter *adapter)
2298 {
2299 	struct pci_dev *pdev = adapter->pdev;
2300 	struct iavf_hw *hw = &adapter->hw;
2301 	enum iavf_status status;
2302 	int ret;
2303 
2304 	WARN_ON(adapter->state != __IAVF_STARTUP);
2305 
2306 	/* driver loaded, probe complete */
2307 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2308 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2309 
2310 	ret = iavf_check_reset_complete(hw);
2311 	if (ret) {
2312 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2313 			 ret);
2314 		goto err;
2315 	}
2316 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2317 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2318 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2319 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2320 
2321 	status = iavf_init_adminq(hw);
2322 	if (status) {
2323 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2324 			status);
2325 		goto err;
2326 	}
2327 	ret = iavf_send_api_ver(adapter);
2328 	if (ret) {
2329 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2330 		iavf_shutdown_adminq(hw);
2331 		goto err;
2332 	}
2333 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2334 	return;
2335 err:
2336 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2337 }
2338 
2339 /**
2340  * iavf_init_version_check - second step of driver startup
2341  * @adapter: board private structure
2342  *
2343  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2344  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2345  * when fails the state is changed to __IAVF_INIT_FAILED
2346  **/
2347 static void iavf_init_version_check(struct iavf_adapter *adapter)
2348 {
2349 	struct pci_dev *pdev = adapter->pdev;
2350 	struct iavf_hw *hw = &adapter->hw;
2351 	int err = -EAGAIN;
2352 
2353 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2354 
2355 	if (!iavf_asq_done(hw)) {
2356 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2357 		iavf_shutdown_adminq(hw);
2358 		iavf_change_state(adapter, __IAVF_STARTUP);
2359 		goto err;
2360 	}
2361 
2362 	/* aq msg sent, awaiting reply */
2363 	err = iavf_verify_api_ver(adapter);
2364 	if (err) {
2365 		if (err == -EALREADY)
2366 			err = iavf_send_api_ver(adapter);
2367 		else
2368 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2369 				adapter->pf_version.major,
2370 				adapter->pf_version.minor,
2371 				VIRTCHNL_VERSION_MAJOR,
2372 				VIRTCHNL_VERSION_MINOR);
2373 		goto err;
2374 	}
2375 	err = iavf_send_vf_config_msg(adapter);
2376 	if (err) {
2377 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2378 			err);
2379 		goto err;
2380 	}
2381 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2382 	return;
2383 err:
2384 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2385 }
2386 
2387 /**
2388  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2389  * @adapter: board private structure
2390  */
2391 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2392 {
2393 	int i, num_req_queues = adapter->num_req_queues;
2394 	struct iavf_vsi *vsi = &adapter->vsi;
2395 
2396 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2397 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2398 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2399 	}
2400 	if (!adapter->vsi_res) {
2401 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2402 		return -ENODEV;
2403 	}
2404 
2405 	if (num_req_queues &&
2406 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2407 		/* Problem.  The PF gave us fewer queues than what we had
2408 		 * negotiated in our request.  Need a reset to see if we can't
2409 		 * get back to a working state.
2410 		 */
2411 		dev_err(&adapter->pdev->dev,
2412 			"Requested %d queues, but PF only gave us %d.\n",
2413 			num_req_queues,
2414 			adapter->vsi_res->num_queue_pairs);
2415 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2416 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2417 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2418 
2419 		return -EAGAIN;
2420 	}
2421 	adapter->num_req_queues = 0;
2422 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2423 
2424 	adapter->vsi.back = adapter;
2425 	adapter->vsi.base_vector = 1;
2426 	vsi->netdev = adapter->netdev;
2427 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2428 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2429 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2430 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2431 	} else {
2432 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2433 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 /**
2440  * iavf_init_get_resources - third step of driver startup
2441  * @adapter: board private structure
2442  *
2443  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2444  * finishes driver initialization procedure.
2445  * When success the state is changed to __IAVF_DOWN
2446  * when fails the state is changed to __IAVF_INIT_FAILED
2447  **/
2448 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2449 {
2450 	struct pci_dev *pdev = adapter->pdev;
2451 	struct iavf_hw *hw = &adapter->hw;
2452 	int err;
2453 
2454 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2455 	/* aq msg sent, awaiting reply */
2456 	if (!adapter->vf_res) {
2457 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2458 					  GFP_KERNEL);
2459 		if (!adapter->vf_res) {
2460 			err = -ENOMEM;
2461 			goto err;
2462 		}
2463 	}
2464 	err = iavf_get_vf_config(adapter);
2465 	if (err == -EALREADY) {
2466 		err = iavf_send_vf_config_msg(adapter);
2467 		goto err;
2468 	} else if (err == -EINVAL) {
2469 		/* We only get -EINVAL if the device is in a very bad
2470 		 * state or if we've been disabled for previous bad
2471 		 * behavior. Either way, we're done now.
2472 		 */
2473 		iavf_shutdown_adminq(hw);
2474 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2475 		return;
2476 	}
2477 	if (err) {
2478 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2479 		goto err_alloc;
2480 	}
2481 
2482 	err = iavf_parse_vf_resource_msg(adapter);
2483 	if (err) {
2484 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2485 			err);
2486 		goto err_alloc;
2487 	}
2488 	/* Some features require additional messages to negotiate extended
2489 	 * capabilities. These are processed in sequence by the
2490 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2491 	 */
2492 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2493 
2494 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2495 	return;
2496 
2497 err_alloc:
2498 	kfree(adapter->vf_res);
2499 	adapter->vf_res = NULL;
2500 err:
2501 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2502 }
2503 
2504 /**
2505  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2506  * @adapter: board private structure
2507  *
2508  * Function processes send of the extended VLAN V2 capability message to the
2509  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2510  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2511  */
2512 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2513 {
2514 	int ret;
2515 
2516 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2517 
2518 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2519 	if (ret && ret == -EOPNOTSUPP) {
2520 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2521 		 * we did not send the capability exchange message and do not
2522 		 * expect a response.
2523 		 */
2524 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2525 	}
2526 
2527 	/* We sent the message, so move on to the next step */
2528 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2529 }
2530 
2531 /**
2532  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2533  * @adapter: board private structure
2534  *
2535  * Function processes receipt of the extended VLAN V2 capability message from
2536  * the PF.
2537  **/
2538 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2539 {
2540 	int ret;
2541 
2542 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2543 
2544 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2545 
2546 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2547 	if (ret)
2548 		goto err;
2549 
2550 	/* We've processed receipt of the VLAN V2 caps message */
2551 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2552 	return;
2553 err:
2554 	/* We didn't receive a reply. Make sure we try sending again when
2555 	 * __IAVF_INIT_FAILED attempts to recover.
2556 	 */
2557 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2558 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2559 }
2560 
2561 /**
2562  * iavf_init_process_extended_caps - Part of driver startup
2563  * @adapter: board private structure
2564  *
2565  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2566  * handles negotiating capabilities for features which require an additional
2567  * message.
2568  *
2569  * Once all extended capabilities exchanges are finished, the driver will
2570  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2571  */
2572 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2573 {
2574 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2575 
2576 	/* Process capability exchange for VLAN V2 */
2577 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2578 		iavf_init_send_offload_vlan_v2_caps(adapter);
2579 		return;
2580 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2581 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2582 		return;
2583 	}
2584 
2585 	/* When we reach here, no further extended capabilities exchanges are
2586 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2587 	 */
2588 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2589 }
2590 
2591 /**
2592  * iavf_init_config_adapter - last part of driver startup
2593  * @adapter: board private structure
2594  *
2595  * After all the supported capabilities are negotiated, then the
2596  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2597  */
2598 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2599 {
2600 	struct net_device *netdev = adapter->netdev;
2601 	struct pci_dev *pdev = adapter->pdev;
2602 	int err;
2603 
2604 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2605 
2606 	if (iavf_process_config(adapter))
2607 		goto err;
2608 
2609 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2610 
2611 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2612 
2613 	netdev->netdev_ops = &iavf_netdev_ops;
2614 	iavf_set_ethtool_ops(netdev);
2615 	netdev->watchdog_timeo = 5 * HZ;
2616 
2617 	netdev->min_mtu = ETH_MIN_MTU;
2618 	netdev->max_mtu = LIBIE_MAX_MTU;
2619 
2620 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2621 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2622 			 adapter->hw.mac.addr);
2623 		eth_hw_addr_random(netdev);
2624 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2625 	} else {
2626 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2627 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2628 	}
2629 
2630 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2631 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2632 	err = iavf_init_interrupt_scheme(adapter);
2633 	if (err)
2634 		goto err_sw_init;
2635 	iavf_map_rings_to_vectors(adapter);
2636 	if (adapter->vf_res->vf_cap_flags &
2637 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2638 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2639 
2640 	err = iavf_request_misc_irq(adapter);
2641 	if (err)
2642 		goto err_sw_init;
2643 
2644 	netif_carrier_off(netdev);
2645 	adapter->link_up = false;
2646 	netif_tx_stop_all_queues(netdev);
2647 
2648 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2649 	if (netdev->features & NETIF_F_GRO)
2650 		dev_info(&pdev->dev, "GRO is enabled\n");
2651 
2652 	iavf_change_state(adapter, __IAVF_DOWN);
2653 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2654 
2655 	iavf_misc_irq_enable(adapter);
2656 	wake_up(&adapter->down_waitqueue);
2657 
2658 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2659 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2660 	if (!adapter->rss_key || !adapter->rss_lut) {
2661 		err = -ENOMEM;
2662 		goto err_mem;
2663 	}
2664 	if (RSS_AQ(adapter))
2665 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2666 	else
2667 		iavf_init_rss(adapter);
2668 
2669 	if (VLAN_V2_ALLOWED(adapter))
2670 		/* request initial VLAN offload settings */
2671 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2672 
2673 	iavf_schedule_finish_config(adapter);
2674 	return;
2675 
2676 err_mem:
2677 	iavf_free_rss(adapter);
2678 	iavf_free_misc_irq(adapter);
2679 err_sw_init:
2680 	iavf_reset_interrupt_capability(adapter);
2681 err:
2682 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2683 }
2684 
2685 /**
2686  * iavf_watchdog_task - Periodic call-back task
2687  * @work: pointer to work_struct
2688  **/
2689 static void iavf_watchdog_task(struct work_struct *work)
2690 {
2691 	struct iavf_adapter *adapter = container_of(work,
2692 						    struct iavf_adapter,
2693 						    watchdog_task.work);
2694 	struct iavf_hw *hw = &adapter->hw;
2695 	u32 reg_val;
2696 
2697 	if (!mutex_trylock(&adapter->crit_lock)) {
2698 		if (adapter->state == __IAVF_REMOVE)
2699 			return;
2700 
2701 		goto restart_watchdog;
2702 	}
2703 
2704 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2705 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2706 
2707 	switch (adapter->state) {
2708 	case __IAVF_STARTUP:
2709 		iavf_startup(adapter);
2710 		mutex_unlock(&adapter->crit_lock);
2711 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2712 				   msecs_to_jiffies(30));
2713 		return;
2714 	case __IAVF_INIT_VERSION_CHECK:
2715 		iavf_init_version_check(adapter);
2716 		mutex_unlock(&adapter->crit_lock);
2717 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2718 				   msecs_to_jiffies(30));
2719 		return;
2720 	case __IAVF_INIT_GET_RESOURCES:
2721 		iavf_init_get_resources(adapter);
2722 		mutex_unlock(&adapter->crit_lock);
2723 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2724 				   msecs_to_jiffies(1));
2725 		return;
2726 	case __IAVF_INIT_EXTENDED_CAPS:
2727 		iavf_init_process_extended_caps(adapter);
2728 		mutex_unlock(&adapter->crit_lock);
2729 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2730 				   msecs_to_jiffies(1));
2731 		return;
2732 	case __IAVF_INIT_CONFIG_ADAPTER:
2733 		iavf_init_config_adapter(adapter);
2734 		mutex_unlock(&adapter->crit_lock);
2735 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2736 				   msecs_to_jiffies(1));
2737 		return;
2738 	case __IAVF_INIT_FAILED:
2739 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2740 			     &adapter->crit_section)) {
2741 			/* Do not update the state and do not reschedule
2742 			 * watchdog task, iavf_remove should handle this state
2743 			 * as it can loop forever
2744 			 */
2745 			mutex_unlock(&adapter->crit_lock);
2746 			return;
2747 		}
2748 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2749 			dev_err(&adapter->pdev->dev,
2750 				"Failed to communicate with PF; waiting before retry\n");
2751 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2752 			iavf_shutdown_adminq(hw);
2753 			mutex_unlock(&adapter->crit_lock);
2754 			queue_delayed_work(adapter->wq,
2755 					   &adapter->watchdog_task, (5 * HZ));
2756 			return;
2757 		}
2758 		/* Try again from failed step*/
2759 		iavf_change_state(adapter, adapter->last_state);
2760 		mutex_unlock(&adapter->crit_lock);
2761 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2762 		return;
2763 	case __IAVF_COMM_FAILED:
2764 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2765 			     &adapter->crit_section)) {
2766 			/* Set state to __IAVF_INIT_FAILED and perform remove
2767 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2768 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2769 			 */
2770 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2771 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2772 			mutex_unlock(&adapter->crit_lock);
2773 			return;
2774 		}
2775 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2776 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2777 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2778 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2779 			/* A chance for redemption! */
2780 			dev_err(&adapter->pdev->dev,
2781 				"Hardware came out of reset. Attempting reinit.\n");
2782 			/* When init task contacts the PF and
2783 			 * gets everything set up again, it'll restart the
2784 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2785 			 */
2786 			iavf_change_state(adapter, __IAVF_STARTUP);
2787 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2788 		}
2789 		adapter->aq_required = 0;
2790 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2791 		mutex_unlock(&adapter->crit_lock);
2792 		queue_delayed_work(adapter->wq,
2793 				   &adapter->watchdog_task,
2794 				   msecs_to_jiffies(10));
2795 		return;
2796 	case __IAVF_RESETTING:
2797 		mutex_unlock(&adapter->crit_lock);
2798 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2799 				   HZ * 2);
2800 		return;
2801 	case __IAVF_DOWN:
2802 	case __IAVF_DOWN_PENDING:
2803 	case __IAVF_TESTING:
2804 	case __IAVF_RUNNING:
2805 		if (adapter->current_op) {
2806 			if (!iavf_asq_done(hw)) {
2807 				dev_dbg(&adapter->pdev->dev,
2808 					"Admin queue timeout\n");
2809 				iavf_send_api_ver(adapter);
2810 			}
2811 		} else {
2812 			int ret = iavf_process_aq_command(adapter);
2813 
2814 			/* An error will be returned if no commands were
2815 			 * processed; use this opportunity to update stats
2816 			 * if the error isn't -ENOTSUPP
2817 			 */
2818 			if (ret && ret != -EOPNOTSUPP &&
2819 			    adapter->state == __IAVF_RUNNING)
2820 				iavf_request_stats(adapter);
2821 		}
2822 		if (adapter->state == __IAVF_RUNNING)
2823 			iavf_detect_recover_hung(&adapter->vsi);
2824 		break;
2825 	case __IAVF_REMOVE:
2826 	default:
2827 		mutex_unlock(&adapter->crit_lock);
2828 		return;
2829 	}
2830 
2831 	/* check for hw reset */
2832 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2833 	if (!reg_val) {
2834 		adapter->aq_required = 0;
2835 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2836 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2837 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2838 		mutex_unlock(&adapter->crit_lock);
2839 		queue_delayed_work(adapter->wq,
2840 				   &adapter->watchdog_task, HZ * 2);
2841 		return;
2842 	}
2843 
2844 	mutex_unlock(&adapter->crit_lock);
2845 restart_watchdog:
2846 	if (adapter->state >= __IAVF_DOWN)
2847 		queue_work(adapter->wq, &adapter->adminq_task);
2848 	if (adapter->aq_required)
2849 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2850 				   msecs_to_jiffies(20));
2851 	else
2852 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2853 				   HZ * 2);
2854 }
2855 
2856 /**
2857  * iavf_disable_vf - disable VF
2858  * @adapter: board private structure
2859  *
2860  * Set communication failed flag and free all resources.
2861  * NOTE: This function is expected to be called with crit_lock being held.
2862  **/
2863 static void iavf_disable_vf(struct iavf_adapter *adapter)
2864 {
2865 	struct iavf_mac_filter *f, *ftmp;
2866 	struct iavf_vlan_filter *fv, *fvtmp;
2867 	struct iavf_cloud_filter *cf, *cftmp;
2868 
2869 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2870 
2871 	/* We don't use netif_running() because it may be true prior to
2872 	 * ndo_open() returning, so we can't assume it means all our open
2873 	 * tasks have finished, since we're not holding the rtnl_lock here.
2874 	 */
2875 	if (adapter->state == __IAVF_RUNNING) {
2876 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2877 		netif_carrier_off(adapter->netdev);
2878 		netif_tx_disable(adapter->netdev);
2879 		adapter->link_up = false;
2880 		iavf_napi_disable_all(adapter);
2881 		iavf_irq_disable(adapter);
2882 		iavf_free_traffic_irqs(adapter);
2883 		iavf_free_all_tx_resources(adapter);
2884 		iavf_free_all_rx_resources(adapter);
2885 	}
2886 
2887 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2888 
2889 	/* Delete all of the filters */
2890 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2891 		list_del(&f->list);
2892 		kfree(f);
2893 	}
2894 
2895 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2896 		list_del(&fv->list);
2897 		kfree(fv);
2898 	}
2899 	adapter->num_vlan_filters = 0;
2900 
2901 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2902 
2903 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2904 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2905 		list_del(&cf->list);
2906 		kfree(cf);
2907 		adapter->num_cloud_filters--;
2908 	}
2909 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2910 
2911 	iavf_free_misc_irq(adapter);
2912 	iavf_free_interrupt_scheme(adapter);
2913 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2914 	iavf_shutdown_adminq(&adapter->hw);
2915 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2916 	iavf_change_state(adapter, __IAVF_DOWN);
2917 	wake_up(&adapter->down_waitqueue);
2918 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2919 }
2920 
2921 /**
2922  * iavf_reset_task - Call-back task to handle hardware reset
2923  * @work: pointer to work_struct
2924  *
2925  * During reset we need to shut down and reinitialize the admin queue
2926  * before we can use it to communicate with the PF again. We also clear
2927  * and reinit the rings because that context is lost as well.
2928  **/
2929 static void iavf_reset_task(struct work_struct *work)
2930 {
2931 	struct iavf_adapter *adapter = container_of(work,
2932 						      struct iavf_adapter,
2933 						      reset_task);
2934 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2935 	struct net_device *netdev = adapter->netdev;
2936 	struct iavf_hw *hw = &adapter->hw;
2937 	struct iavf_mac_filter *f, *ftmp;
2938 	struct iavf_cloud_filter *cf;
2939 	enum iavf_status status;
2940 	u32 reg_val;
2941 	int i = 0, err;
2942 	bool running;
2943 
2944 	/* When device is being removed it doesn't make sense to run the reset
2945 	 * task, just return in such a case.
2946 	 */
2947 	if (!mutex_trylock(&adapter->crit_lock)) {
2948 		if (adapter->state != __IAVF_REMOVE)
2949 			queue_work(adapter->wq, &adapter->reset_task);
2950 
2951 		return;
2952 	}
2953 
2954 	iavf_misc_irq_disable(adapter);
2955 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2956 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2957 		/* Restart the AQ here. If we have been reset but didn't
2958 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2959 		 */
2960 		iavf_shutdown_adminq(hw);
2961 		iavf_init_adminq(hw);
2962 		iavf_request_reset(adapter);
2963 	}
2964 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2965 
2966 	/* poll until we see the reset actually happen */
2967 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2968 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2969 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2970 		if (!reg_val)
2971 			break;
2972 		usleep_range(5000, 10000);
2973 	}
2974 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2975 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2976 		goto continue_reset; /* act like the reset happened */
2977 	}
2978 
2979 	/* wait until the reset is complete and the PF is responding to us */
2980 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2981 		/* sleep first to make sure a minimum wait time is met */
2982 		msleep(IAVF_RESET_WAIT_MS);
2983 
2984 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2985 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2986 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2987 			break;
2988 	}
2989 
2990 	pci_set_master(adapter->pdev);
2991 	pci_restore_msi_state(adapter->pdev);
2992 
2993 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2994 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2995 			reg_val);
2996 		iavf_disable_vf(adapter);
2997 		mutex_unlock(&adapter->crit_lock);
2998 		return; /* Do not attempt to reinit. It's dead, Jim. */
2999 	}
3000 
3001 continue_reset:
3002 	/* We don't use netif_running() because it may be true prior to
3003 	 * ndo_open() returning, so we can't assume it means all our open
3004 	 * tasks have finished, since we're not holding the rtnl_lock here.
3005 	 */
3006 	running = adapter->state == __IAVF_RUNNING;
3007 
3008 	if (running) {
3009 		netif_carrier_off(netdev);
3010 		netif_tx_stop_all_queues(netdev);
3011 		adapter->link_up = false;
3012 		iavf_napi_disable_all(adapter);
3013 	}
3014 	iavf_irq_disable(adapter);
3015 
3016 	iavf_change_state(adapter, __IAVF_RESETTING);
3017 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3018 
3019 	/* free the Tx/Rx rings and descriptors, might be better to just
3020 	 * re-use them sometime in the future
3021 	 */
3022 	iavf_free_all_rx_resources(adapter);
3023 	iavf_free_all_tx_resources(adapter);
3024 
3025 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3026 	/* kill and reinit the admin queue */
3027 	iavf_shutdown_adminq(hw);
3028 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3029 	status = iavf_init_adminq(hw);
3030 	if (status) {
3031 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3032 			 status);
3033 		goto reset_err;
3034 	}
3035 	adapter->aq_required = 0;
3036 
3037 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3038 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3039 		err = iavf_reinit_interrupt_scheme(adapter, running);
3040 		if (err)
3041 			goto reset_err;
3042 	}
3043 
3044 	if (RSS_AQ(adapter)) {
3045 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3046 	} else {
3047 		err = iavf_init_rss(adapter);
3048 		if (err)
3049 			goto reset_err;
3050 	}
3051 
3052 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3053 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3054 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3055 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3056 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3057 	 * been successfully sent and negotiated
3058 	 */
3059 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3060 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3061 
3062 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3063 
3064 	/* Delete filter for the current MAC address, it could have
3065 	 * been changed by the PF via administratively set MAC.
3066 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3067 	 */
3068 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3069 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3070 			list_del(&f->list);
3071 			kfree(f);
3072 		}
3073 	}
3074 	/* re-add all MAC filters */
3075 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3076 		f->add = true;
3077 	}
3078 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3079 
3080 	/* check if TCs are running and re-add all cloud filters */
3081 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3082 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3083 	    adapter->num_tc) {
3084 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3085 			cf->add = true;
3086 		}
3087 	}
3088 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3089 
3090 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3091 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3092 	iavf_misc_irq_enable(adapter);
3093 
3094 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3095 
3096 	/* We were running when the reset started, so we need to restore some
3097 	 * state here.
3098 	 */
3099 	if (running) {
3100 		/* allocate transmit descriptors */
3101 		err = iavf_setup_all_tx_resources(adapter);
3102 		if (err)
3103 			goto reset_err;
3104 
3105 		/* allocate receive descriptors */
3106 		err = iavf_setup_all_rx_resources(adapter);
3107 		if (err)
3108 			goto reset_err;
3109 
3110 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3111 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3112 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3113 			if (err)
3114 				goto reset_err;
3115 
3116 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3117 		}
3118 
3119 		iavf_configure(adapter);
3120 
3121 		/* iavf_up_complete() will switch device back
3122 		 * to __IAVF_RUNNING
3123 		 */
3124 		iavf_up_complete(adapter);
3125 
3126 		iavf_irq_enable(adapter, true);
3127 	} else {
3128 		iavf_change_state(adapter, __IAVF_DOWN);
3129 		wake_up(&adapter->down_waitqueue);
3130 	}
3131 
3132 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3133 
3134 	wake_up(&adapter->reset_waitqueue);
3135 	mutex_unlock(&adapter->crit_lock);
3136 
3137 	return;
3138 reset_err:
3139 	if (running) {
3140 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3141 		iavf_free_traffic_irqs(adapter);
3142 	}
3143 	iavf_disable_vf(adapter);
3144 
3145 	mutex_unlock(&adapter->crit_lock);
3146 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3147 }
3148 
3149 /**
3150  * iavf_adminq_task - worker thread to clean the admin queue
3151  * @work: pointer to work_struct containing our data
3152  **/
3153 static void iavf_adminq_task(struct work_struct *work)
3154 {
3155 	struct iavf_adapter *adapter =
3156 		container_of(work, struct iavf_adapter, adminq_task);
3157 	struct iavf_hw *hw = &adapter->hw;
3158 	struct iavf_arq_event_info event;
3159 	enum virtchnl_ops v_op;
3160 	enum iavf_status ret, v_ret;
3161 	u32 val, oldval;
3162 	u16 pending;
3163 
3164 	if (!mutex_trylock(&adapter->crit_lock)) {
3165 		if (adapter->state == __IAVF_REMOVE)
3166 			return;
3167 
3168 		queue_work(adapter->wq, &adapter->adminq_task);
3169 		goto out;
3170 	}
3171 
3172 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3173 		goto unlock;
3174 
3175 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3176 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3177 	if (!event.msg_buf)
3178 		goto unlock;
3179 
3180 	do {
3181 		ret = iavf_clean_arq_element(hw, &event, &pending);
3182 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3183 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3184 
3185 		if (ret || !v_op)
3186 			break; /* No event to process or error cleaning ARQ */
3187 
3188 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3189 					 event.msg_len);
3190 		if (pending != 0)
3191 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3192 	} while (pending);
3193 
3194 	if (iavf_is_reset_in_progress(adapter))
3195 		goto freedom;
3196 
3197 	/* check for error indications */
3198 	val = rd32(hw, IAVF_VF_ARQLEN1);
3199 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3200 		goto freedom;
3201 	oldval = val;
3202 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3203 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3204 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3205 	}
3206 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3207 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3208 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3209 	}
3210 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3211 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3212 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3213 	}
3214 	if (oldval != val)
3215 		wr32(hw, IAVF_VF_ARQLEN1, val);
3216 
3217 	val = rd32(hw, IAVF_VF_ATQLEN1);
3218 	oldval = val;
3219 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3220 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3221 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3222 	}
3223 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3224 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3225 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3226 	}
3227 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3228 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3229 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3230 	}
3231 	if (oldval != val)
3232 		wr32(hw, IAVF_VF_ATQLEN1, val);
3233 
3234 freedom:
3235 	kfree(event.msg_buf);
3236 unlock:
3237 	mutex_unlock(&adapter->crit_lock);
3238 out:
3239 	/* re-enable Admin queue interrupt cause */
3240 	iavf_misc_irq_enable(adapter);
3241 }
3242 
3243 /**
3244  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3245  * @adapter: board private structure
3246  *
3247  * Free all transmit software resources
3248  **/
3249 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3250 {
3251 	int i;
3252 
3253 	if (!adapter->tx_rings)
3254 		return;
3255 
3256 	for (i = 0; i < adapter->num_active_queues; i++)
3257 		if (adapter->tx_rings[i].desc)
3258 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3259 }
3260 
3261 /**
3262  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3263  * @adapter: board private structure
3264  *
3265  * If this function returns with an error, then it's possible one or
3266  * more of the rings is populated (while the rest are not).  It is the
3267  * callers duty to clean those orphaned rings.
3268  *
3269  * Return 0 on success, negative on failure
3270  **/
3271 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3272 {
3273 	int i, err = 0;
3274 
3275 	for (i = 0; i < adapter->num_active_queues; i++) {
3276 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3277 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3278 		if (!err)
3279 			continue;
3280 		dev_err(&adapter->pdev->dev,
3281 			"Allocation for Tx Queue %u failed\n", i);
3282 		break;
3283 	}
3284 
3285 	return err;
3286 }
3287 
3288 /**
3289  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3290  * @adapter: board private structure
3291  *
3292  * If this function returns with an error, then it's possible one or
3293  * more of the rings is populated (while the rest are not).  It is the
3294  * callers duty to clean those orphaned rings.
3295  *
3296  * Return 0 on success, negative on failure
3297  **/
3298 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3299 {
3300 	int i, err = 0;
3301 
3302 	for (i = 0; i < adapter->num_active_queues; i++) {
3303 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3304 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3305 		if (!err)
3306 			continue;
3307 		dev_err(&adapter->pdev->dev,
3308 			"Allocation for Rx Queue %u failed\n", i);
3309 		break;
3310 	}
3311 	return err;
3312 }
3313 
3314 /**
3315  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3316  * @adapter: board private structure
3317  *
3318  * Free all receive software resources
3319  **/
3320 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3321 {
3322 	int i;
3323 
3324 	if (!adapter->rx_rings)
3325 		return;
3326 
3327 	for (i = 0; i < adapter->num_active_queues; i++)
3328 		if (adapter->rx_rings[i].desc)
3329 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3330 }
3331 
3332 /**
3333  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3334  * @adapter: board private structure
3335  * @max_tx_rate: max Tx bw for a tc
3336  **/
3337 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3338 				      u64 max_tx_rate)
3339 {
3340 	int speed = 0, ret = 0;
3341 
3342 	if (ADV_LINK_SUPPORT(adapter)) {
3343 		if (adapter->link_speed_mbps < U32_MAX) {
3344 			speed = adapter->link_speed_mbps;
3345 			goto validate_bw;
3346 		} else {
3347 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3348 			return -EINVAL;
3349 		}
3350 	}
3351 
3352 	switch (adapter->link_speed) {
3353 	case VIRTCHNL_LINK_SPEED_40GB:
3354 		speed = SPEED_40000;
3355 		break;
3356 	case VIRTCHNL_LINK_SPEED_25GB:
3357 		speed = SPEED_25000;
3358 		break;
3359 	case VIRTCHNL_LINK_SPEED_20GB:
3360 		speed = SPEED_20000;
3361 		break;
3362 	case VIRTCHNL_LINK_SPEED_10GB:
3363 		speed = SPEED_10000;
3364 		break;
3365 	case VIRTCHNL_LINK_SPEED_5GB:
3366 		speed = SPEED_5000;
3367 		break;
3368 	case VIRTCHNL_LINK_SPEED_2_5GB:
3369 		speed = SPEED_2500;
3370 		break;
3371 	case VIRTCHNL_LINK_SPEED_1GB:
3372 		speed = SPEED_1000;
3373 		break;
3374 	case VIRTCHNL_LINK_SPEED_100MB:
3375 		speed = SPEED_100;
3376 		break;
3377 	default:
3378 		break;
3379 	}
3380 
3381 validate_bw:
3382 	if (max_tx_rate > speed) {
3383 		dev_err(&adapter->pdev->dev,
3384 			"Invalid tx rate specified\n");
3385 		ret = -EINVAL;
3386 	}
3387 
3388 	return ret;
3389 }
3390 
3391 /**
3392  * iavf_validate_ch_config - validate queue mapping info
3393  * @adapter: board private structure
3394  * @mqprio_qopt: queue parameters
3395  *
3396  * This function validates if the config provided by the user to
3397  * configure queue channels is valid or not. Returns 0 on a valid
3398  * config.
3399  **/
3400 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3401 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3402 {
3403 	u64 total_max_rate = 0;
3404 	u32 tx_rate_rem = 0;
3405 	int i, num_qps = 0;
3406 	u64 tx_rate = 0;
3407 	int ret = 0;
3408 
3409 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3410 	    mqprio_qopt->qopt.num_tc < 1)
3411 		return -EINVAL;
3412 
3413 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3414 		if (!mqprio_qopt->qopt.count[i] ||
3415 		    mqprio_qopt->qopt.offset[i] != num_qps)
3416 			return -EINVAL;
3417 		if (mqprio_qopt->min_rate[i]) {
3418 			dev_err(&adapter->pdev->dev,
3419 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3420 				i);
3421 			return -EINVAL;
3422 		}
3423 
3424 		/* convert to Mbps */
3425 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3426 				  IAVF_MBPS_DIVISOR);
3427 
3428 		if (mqprio_qopt->max_rate[i] &&
3429 		    tx_rate < IAVF_MBPS_QUANTA) {
3430 			dev_err(&adapter->pdev->dev,
3431 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3432 				i, IAVF_MBPS_QUANTA);
3433 			return -EINVAL;
3434 		}
3435 
3436 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3437 
3438 		if (tx_rate_rem != 0) {
3439 			dev_err(&adapter->pdev->dev,
3440 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3441 				i, IAVF_MBPS_QUANTA);
3442 			return -EINVAL;
3443 		}
3444 
3445 		total_max_rate += tx_rate;
3446 		num_qps += mqprio_qopt->qopt.count[i];
3447 	}
3448 	if (num_qps > adapter->num_active_queues) {
3449 		dev_err(&adapter->pdev->dev,
3450 			"Cannot support requested number of queues\n");
3451 		return -EINVAL;
3452 	}
3453 
3454 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3455 	return ret;
3456 }
3457 
3458 /**
3459  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3460  * @adapter: board private structure
3461  **/
3462 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3463 {
3464 	struct iavf_cloud_filter *cf, *cftmp;
3465 
3466 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3467 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3468 				 list) {
3469 		list_del(&cf->list);
3470 		kfree(cf);
3471 		adapter->num_cloud_filters--;
3472 	}
3473 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3474 }
3475 
3476 /**
3477  * iavf_is_tc_config_same - Compare the mqprio TC config with the
3478  * TC config already configured on this adapter.
3479  * @adapter: board private structure
3480  * @mqprio_qopt: TC config received from kernel.
3481  *
3482  * This function compares the TC config received from the kernel
3483  * with the config already configured on the adapter.
3484  *
3485  * Return: True if configuration is same, false otherwise.
3486  **/
3487 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3488 				   struct tc_mqprio_qopt *mqprio_qopt)
3489 {
3490 	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3491 	int i;
3492 
3493 	if (adapter->num_tc != mqprio_qopt->num_tc)
3494 		return false;
3495 
3496 	for (i = 0; i < adapter->num_tc; i++) {
3497 		if (ch[i].count != mqprio_qopt->count[i] ||
3498 		    ch[i].offset != mqprio_qopt->offset[i])
3499 			return false;
3500 	}
3501 	return true;
3502 }
3503 
3504 /**
3505  * __iavf_setup_tc - configure multiple traffic classes
3506  * @netdev: network interface device structure
3507  * @type_data: tc offload data
3508  *
3509  * This function processes the config information provided by the
3510  * user to configure traffic classes/queue channels and packages the
3511  * information to request the PF to setup traffic classes.
3512  *
3513  * Returns 0 on success.
3514  **/
3515 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3516 {
3517 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3518 	struct iavf_adapter *adapter = netdev_priv(netdev);
3519 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3520 	u8 num_tc = 0, total_qps = 0;
3521 	int ret = 0, netdev_tc = 0;
3522 	u64 max_tx_rate;
3523 	u16 mode;
3524 	int i;
3525 
3526 	num_tc = mqprio_qopt->qopt.num_tc;
3527 	mode = mqprio_qopt->mode;
3528 
3529 	/* delete queue_channel */
3530 	if (!mqprio_qopt->qopt.hw) {
3531 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3532 			/* reset the tc configuration */
3533 			netdev_reset_tc(netdev);
3534 			adapter->num_tc = 0;
3535 			netif_tx_stop_all_queues(netdev);
3536 			netif_tx_disable(netdev);
3537 			iavf_del_all_cloud_filters(adapter);
3538 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3539 			total_qps = adapter->orig_num_active_queues;
3540 			goto exit;
3541 		} else {
3542 			return -EINVAL;
3543 		}
3544 	}
3545 
3546 	/* add queue channel */
3547 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3548 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3549 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3550 			return -EOPNOTSUPP;
3551 		}
3552 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3553 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3554 			return -EINVAL;
3555 		}
3556 
3557 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3558 		if (ret)
3559 			return ret;
3560 		/* Return if same TC config is requested */
3561 		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3562 			return 0;
3563 		adapter->num_tc = num_tc;
3564 
3565 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3566 			if (i < num_tc) {
3567 				adapter->ch_config.ch_info[i].count =
3568 					mqprio_qopt->qopt.count[i];
3569 				adapter->ch_config.ch_info[i].offset =
3570 					mqprio_qopt->qopt.offset[i];
3571 				total_qps += mqprio_qopt->qopt.count[i];
3572 				max_tx_rate = mqprio_qopt->max_rate[i];
3573 				/* convert to Mbps */
3574 				max_tx_rate = div_u64(max_tx_rate,
3575 						      IAVF_MBPS_DIVISOR);
3576 				adapter->ch_config.ch_info[i].max_tx_rate =
3577 					max_tx_rate;
3578 			} else {
3579 				adapter->ch_config.ch_info[i].count = 1;
3580 				adapter->ch_config.ch_info[i].offset = 0;
3581 			}
3582 		}
3583 
3584 		/* Take snapshot of original config such as "num_active_queues"
3585 		 * It is used later when delete ADQ flow is exercised, so that
3586 		 * once delete ADQ flow completes, VF shall go back to its
3587 		 * original queue configuration
3588 		 */
3589 
3590 		adapter->orig_num_active_queues = adapter->num_active_queues;
3591 
3592 		/* Store queue info based on TC so that VF gets configured
3593 		 * with correct number of queues when VF completes ADQ config
3594 		 * flow
3595 		 */
3596 		adapter->ch_config.total_qps = total_qps;
3597 
3598 		netif_tx_stop_all_queues(netdev);
3599 		netif_tx_disable(netdev);
3600 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3601 		netdev_reset_tc(netdev);
3602 		/* Report the tc mapping up the stack */
3603 		netdev_set_num_tc(adapter->netdev, num_tc);
3604 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3605 			u16 qcount = mqprio_qopt->qopt.count[i];
3606 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3607 
3608 			if (i < num_tc)
3609 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3610 						    qoffset);
3611 		}
3612 	}
3613 exit:
3614 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3615 		return 0;
3616 
3617 	netif_set_real_num_rx_queues(netdev, total_qps);
3618 	netif_set_real_num_tx_queues(netdev, total_qps);
3619 
3620 	return ret;
3621 }
3622 
3623 /**
3624  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3625  * @adapter: board private structure
3626  * @f: pointer to struct flow_cls_offload
3627  * @filter: pointer to cloud filter structure
3628  */
3629 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3630 				 struct flow_cls_offload *f,
3631 				 struct iavf_cloud_filter *filter)
3632 {
3633 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3634 	struct flow_dissector *dissector = rule->match.dissector;
3635 	u16 n_proto_mask = 0;
3636 	u16 n_proto_key = 0;
3637 	u8 field_flags = 0;
3638 	u16 addr_type = 0;
3639 	u16 n_proto = 0;
3640 	int i = 0;
3641 	struct virtchnl_filter *vf = &filter->f;
3642 
3643 	if (dissector->used_keys &
3644 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3645 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3646 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3647 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3648 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3649 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3650 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3651 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3652 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3653 			dissector->used_keys);
3654 		return -EOPNOTSUPP;
3655 	}
3656 
3657 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3658 		struct flow_match_enc_keyid match;
3659 
3660 		flow_rule_match_enc_keyid(rule, &match);
3661 		if (match.mask->keyid != 0)
3662 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3663 	}
3664 
3665 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3666 		struct flow_match_basic match;
3667 
3668 		flow_rule_match_basic(rule, &match);
3669 		n_proto_key = ntohs(match.key->n_proto);
3670 		n_proto_mask = ntohs(match.mask->n_proto);
3671 
3672 		if (n_proto_key == ETH_P_ALL) {
3673 			n_proto_key = 0;
3674 			n_proto_mask = 0;
3675 		}
3676 		n_proto = n_proto_key & n_proto_mask;
3677 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3678 			return -EINVAL;
3679 		if (n_proto == ETH_P_IPV6) {
3680 			/* specify flow type as TCP IPv6 */
3681 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3682 		}
3683 
3684 		if (match.key->ip_proto != IPPROTO_TCP) {
3685 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3686 			return -EINVAL;
3687 		}
3688 	}
3689 
3690 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3691 		struct flow_match_eth_addrs match;
3692 
3693 		flow_rule_match_eth_addrs(rule, &match);
3694 
3695 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3696 		if (!is_zero_ether_addr(match.mask->dst)) {
3697 			if (is_broadcast_ether_addr(match.mask->dst)) {
3698 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3699 			} else {
3700 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3701 					match.mask->dst);
3702 				return -EINVAL;
3703 			}
3704 		}
3705 
3706 		if (!is_zero_ether_addr(match.mask->src)) {
3707 			if (is_broadcast_ether_addr(match.mask->src)) {
3708 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3709 			} else {
3710 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3711 					match.mask->src);
3712 				return -EINVAL;
3713 			}
3714 		}
3715 
3716 		if (!is_zero_ether_addr(match.key->dst))
3717 			if (is_valid_ether_addr(match.key->dst) ||
3718 			    is_multicast_ether_addr(match.key->dst)) {
3719 				/* set the mask if a valid dst_mac address */
3720 				for (i = 0; i < ETH_ALEN; i++)
3721 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3722 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3723 						match.key->dst);
3724 			}
3725 
3726 		if (!is_zero_ether_addr(match.key->src))
3727 			if (is_valid_ether_addr(match.key->src) ||
3728 			    is_multicast_ether_addr(match.key->src)) {
3729 				/* set the mask if a valid dst_mac address */
3730 				for (i = 0; i < ETH_ALEN; i++)
3731 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3732 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3733 						match.key->src);
3734 		}
3735 	}
3736 
3737 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3738 		struct flow_match_vlan match;
3739 
3740 		flow_rule_match_vlan(rule, &match);
3741 		if (match.mask->vlan_id) {
3742 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3743 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3744 			} else {
3745 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3746 					match.mask->vlan_id);
3747 				return -EINVAL;
3748 			}
3749 		}
3750 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3751 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3752 	}
3753 
3754 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3755 		struct flow_match_control match;
3756 
3757 		flow_rule_match_control(rule, &match);
3758 		addr_type = match.key->addr_type;
3759 
3760 		if (flow_rule_has_control_flags(match.mask->flags,
3761 						f->common.extack))
3762 			return -EOPNOTSUPP;
3763 	}
3764 
3765 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3766 		struct flow_match_ipv4_addrs match;
3767 
3768 		flow_rule_match_ipv4_addrs(rule, &match);
3769 		if (match.mask->dst) {
3770 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3771 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3772 			} else {
3773 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3774 					be32_to_cpu(match.mask->dst));
3775 				return -EINVAL;
3776 			}
3777 		}
3778 
3779 		if (match.mask->src) {
3780 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3781 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3782 			} else {
3783 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3784 					be32_to_cpu(match.mask->src));
3785 				return -EINVAL;
3786 			}
3787 		}
3788 
3789 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3790 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3791 			return -EINVAL;
3792 		}
3793 		if (match.key->dst) {
3794 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3795 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3796 		}
3797 		if (match.key->src) {
3798 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3799 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3800 		}
3801 	}
3802 
3803 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3804 		struct flow_match_ipv6_addrs match;
3805 
3806 		flow_rule_match_ipv6_addrs(rule, &match);
3807 
3808 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3809 		if (ipv6_addr_any(&match.mask->dst)) {
3810 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3811 				IPV6_ADDR_ANY);
3812 			return -EINVAL;
3813 		}
3814 
3815 		/* src and dest IPv6 address should not be LOOPBACK
3816 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3817 		 */
3818 		if (ipv6_addr_loopback(&match.key->dst) ||
3819 		    ipv6_addr_loopback(&match.key->src)) {
3820 			dev_err(&adapter->pdev->dev,
3821 				"ipv6 addr should not be loopback\n");
3822 			return -EINVAL;
3823 		}
3824 		if (!ipv6_addr_any(&match.mask->dst) ||
3825 		    !ipv6_addr_any(&match.mask->src))
3826 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3827 
3828 		for (i = 0; i < 4; i++)
3829 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3830 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3831 		       sizeof(vf->data.tcp_spec.dst_ip));
3832 		for (i = 0; i < 4; i++)
3833 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3834 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3835 		       sizeof(vf->data.tcp_spec.src_ip));
3836 	}
3837 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3838 		struct flow_match_ports match;
3839 
3840 		flow_rule_match_ports(rule, &match);
3841 		if (match.mask->src) {
3842 			if (match.mask->src == cpu_to_be16(0xffff)) {
3843 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3844 			} else {
3845 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3846 					be16_to_cpu(match.mask->src));
3847 				return -EINVAL;
3848 			}
3849 		}
3850 
3851 		if (match.mask->dst) {
3852 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3853 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3854 			} else {
3855 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3856 					be16_to_cpu(match.mask->dst));
3857 				return -EINVAL;
3858 			}
3859 		}
3860 		if (match.key->dst) {
3861 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3862 			vf->data.tcp_spec.dst_port = match.key->dst;
3863 		}
3864 
3865 		if (match.key->src) {
3866 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3867 			vf->data.tcp_spec.src_port = match.key->src;
3868 		}
3869 	}
3870 	vf->field_flags = field_flags;
3871 
3872 	return 0;
3873 }
3874 
3875 /**
3876  * iavf_handle_tclass - Forward to a traffic class on the device
3877  * @adapter: board private structure
3878  * @tc: traffic class index on the device
3879  * @filter: pointer to cloud filter structure
3880  */
3881 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3882 			      struct iavf_cloud_filter *filter)
3883 {
3884 	if (tc == 0)
3885 		return 0;
3886 	if (tc < adapter->num_tc) {
3887 		if (!filter->f.data.tcp_spec.dst_port) {
3888 			dev_err(&adapter->pdev->dev,
3889 				"Specify destination port to redirect to traffic class other than TC0\n");
3890 			return -EINVAL;
3891 		}
3892 	}
3893 	/* redirect to a traffic class on the same device */
3894 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3895 	filter->f.action_meta = tc;
3896 	return 0;
3897 }
3898 
3899 /**
3900  * iavf_find_cf - Find the cloud filter in the list
3901  * @adapter: Board private structure
3902  * @cookie: filter specific cookie
3903  *
3904  * Returns ptr to the filter object or NULL. Must be called while holding the
3905  * cloud_filter_list_lock.
3906  */
3907 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3908 					      unsigned long *cookie)
3909 {
3910 	struct iavf_cloud_filter *filter = NULL;
3911 
3912 	if (!cookie)
3913 		return NULL;
3914 
3915 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3916 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3917 			return filter;
3918 	}
3919 	return NULL;
3920 }
3921 
3922 /**
3923  * iavf_configure_clsflower - Add tc flower filters
3924  * @adapter: board private structure
3925  * @cls_flower: Pointer to struct flow_cls_offload
3926  */
3927 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3928 				    struct flow_cls_offload *cls_flower)
3929 {
3930 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3931 	struct iavf_cloud_filter *filter = NULL;
3932 	int err = -EINVAL, count = 50;
3933 
3934 	if (tc < 0) {
3935 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3936 		return -EINVAL;
3937 	}
3938 
3939 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3940 	if (!filter)
3941 		return -ENOMEM;
3942 
3943 	while (!mutex_trylock(&adapter->crit_lock)) {
3944 		if (--count == 0) {
3945 			kfree(filter);
3946 			return err;
3947 		}
3948 		udelay(1);
3949 	}
3950 
3951 	filter->cookie = cls_flower->cookie;
3952 
3953 	/* bail out here if filter already exists */
3954 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3955 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3956 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3957 		err = -EEXIST;
3958 		goto spin_unlock;
3959 	}
3960 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3961 
3962 	/* set the mask to all zeroes to begin with */
3963 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3964 	/* start out with flow type and eth type IPv4 to begin with */
3965 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3966 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3967 	if (err)
3968 		goto err;
3969 
3970 	err = iavf_handle_tclass(adapter, tc, filter);
3971 	if (err)
3972 		goto err;
3973 
3974 	/* add filter to the list */
3975 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3976 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3977 	adapter->num_cloud_filters++;
3978 	filter->add = true;
3979 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3980 spin_unlock:
3981 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3982 err:
3983 	if (err)
3984 		kfree(filter);
3985 
3986 	mutex_unlock(&adapter->crit_lock);
3987 	return err;
3988 }
3989 
3990 /**
3991  * iavf_delete_clsflower - Remove tc flower filters
3992  * @adapter: board private structure
3993  * @cls_flower: Pointer to struct flow_cls_offload
3994  */
3995 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3996 				 struct flow_cls_offload *cls_flower)
3997 {
3998 	struct iavf_cloud_filter *filter = NULL;
3999 	int err = 0;
4000 
4001 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4002 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4003 	if (filter) {
4004 		filter->del = true;
4005 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4006 	} else {
4007 		err = -EINVAL;
4008 	}
4009 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4010 
4011 	return err;
4012 }
4013 
4014 /**
4015  * iavf_setup_tc_cls_flower - flower classifier offloads
4016  * @adapter: pointer to iavf adapter structure
4017  * @cls_flower: pointer to flow_cls_offload struct with flow info
4018  */
4019 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4020 				    struct flow_cls_offload *cls_flower)
4021 {
4022 	switch (cls_flower->command) {
4023 	case FLOW_CLS_REPLACE:
4024 		return iavf_configure_clsflower(adapter, cls_flower);
4025 	case FLOW_CLS_DESTROY:
4026 		return iavf_delete_clsflower(adapter, cls_flower);
4027 	case FLOW_CLS_STATS:
4028 		return -EOPNOTSUPP;
4029 	default:
4030 		return -EOPNOTSUPP;
4031 	}
4032 }
4033 
4034 /**
4035  * iavf_add_cls_u32 - Add U32 classifier offloads
4036  * @adapter: pointer to iavf adapter structure
4037  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4038  *
4039  * Return: 0 on success or negative errno on failure.
4040  */
4041 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4042 			    struct tc_cls_u32_offload *cls_u32)
4043 {
4044 	struct netlink_ext_ack *extack = cls_u32->common.extack;
4045 	struct virtchnl_fdir_rule *rule_cfg;
4046 	struct virtchnl_filter_action *vact;
4047 	struct virtchnl_proto_hdrs *hdrs;
4048 	struct ethhdr *spec_h, *mask_h;
4049 	const struct tc_action *act;
4050 	struct iavf_fdir_fltr *fltr;
4051 	struct tcf_exts *exts;
4052 	unsigned int q_index;
4053 	int i, status = 0;
4054 	int off_base = 0;
4055 
4056 	if (cls_u32->knode.link_handle) {
4057 		NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4058 		return -EOPNOTSUPP;
4059 	}
4060 
4061 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4062 	if (!fltr)
4063 		return -ENOMEM;
4064 
4065 	rule_cfg = &fltr->vc_add_msg.rule_cfg;
4066 	hdrs = &rule_cfg->proto_hdrs;
4067 	hdrs->count = 0;
4068 
4069 	/* The parser lib at the PF expects the packet starting with MAC hdr */
4070 	switch (ntohs(cls_u32->common.protocol)) {
4071 	case ETH_P_802_3:
4072 		break;
4073 	case ETH_P_IP:
4074 		spec_h = (struct ethhdr *)hdrs->raw.spec;
4075 		mask_h = (struct ethhdr *)hdrs->raw.mask;
4076 		spec_h->h_proto = htons(ETH_P_IP);
4077 		mask_h->h_proto = htons(0xFFFF);
4078 		off_base += ETH_HLEN;
4079 		break;
4080 	default:
4081 		NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4082 		status = -EOPNOTSUPP;
4083 		goto free_alloc;
4084 	}
4085 
4086 	for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4087 		__be32 val, mask;
4088 		int off;
4089 
4090 		off = off_base + cls_u32->knode.sel->keys[i].off;
4091 		val = cls_u32->knode.sel->keys[i].val;
4092 		mask = cls_u32->knode.sel->keys[i].mask;
4093 
4094 		if (off >= sizeof(hdrs->raw.spec)) {
4095 			NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4096 			status = -EINVAL;
4097 			goto free_alloc;
4098 		}
4099 
4100 		memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4101 		memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4102 		hdrs->raw.pkt_len = off + sizeof(val);
4103 	}
4104 
4105 	/* Only one action is allowed */
4106 	rule_cfg->action_set.count = 1;
4107 	vact = &rule_cfg->action_set.actions[0];
4108 	exts = cls_u32->knode.exts;
4109 
4110 	tcf_exts_for_each_action(i, act, exts) {
4111 		/* FDIR queue */
4112 		if (is_tcf_skbedit_rx_queue_mapping(act)) {
4113 			q_index = tcf_skbedit_rx_queue_mapping(act);
4114 			if (q_index >= adapter->num_active_queues) {
4115 				status = -EINVAL;
4116 				goto free_alloc;
4117 			}
4118 
4119 			vact->type = VIRTCHNL_ACTION_QUEUE;
4120 			vact->act_conf.queue.index = q_index;
4121 			break;
4122 		}
4123 
4124 		/* Drop */
4125 		if (is_tcf_gact_shot(act)) {
4126 			vact->type = VIRTCHNL_ACTION_DROP;
4127 			break;
4128 		}
4129 
4130 		/* Unsupported action */
4131 		NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4132 		status = -EOPNOTSUPP;
4133 		goto free_alloc;
4134 	}
4135 
4136 	fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4137 	fltr->cls_u32_handle = cls_u32->knode.handle;
4138 	return iavf_fdir_add_fltr(adapter, fltr);
4139 
4140 free_alloc:
4141 	kfree(fltr);
4142 	return status;
4143 }
4144 
4145 /**
4146  * iavf_del_cls_u32 - Delete U32 classifier offloads
4147  * @adapter: pointer to iavf adapter structure
4148  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4149  *
4150  * Return: 0 on success or negative errno on failure.
4151  */
4152 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4153 			    struct tc_cls_u32_offload *cls_u32)
4154 {
4155 	return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4156 }
4157 
4158 /**
4159  * iavf_setup_tc_cls_u32 - U32 filter offloads
4160  * @adapter: pointer to iavf adapter structure
4161  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4162  *
4163  * Return: 0 on success or negative errno on failure.
4164  */
4165 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4166 				 struct tc_cls_u32_offload *cls_u32)
4167 {
4168 	if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4169 		return -EOPNOTSUPP;
4170 
4171 	switch (cls_u32->command) {
4172 	case TC_CLSU32_NEW_KNODE:
4173 	case TC_CLSU32_REPLACE_KNODE:
4174 		return iavf_add_cls_u32(adapter, cls_u32);
4175 	case TC_CLSU32_DELETE_KNODE:
4176 		return iavf_del_cls_u32(adapter, cls_u32);
4177 	default:
4178 		return -EOPNOTSUPP;
4179 	}
4180 }
4181 
4182 /**
4183  * iavf_setup_tc_block_cb - block callback for tc
4184  * @type: type of offload
4185  * @type_data: offload data
4186  * @cb_priv:
4187  *
4188  * This function is the block callback for traffic classes
4189  **/
4190 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4191 				  void *cb_priv)
4192 {
4193 	struct iavf_adapter *adapter = cb_priv;
4194 
4195 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4196 		return -EOPNOTSUPP;
4197 
4198 	switch (type) {
4199 	case TC_SETUP_CLSFLOWER:
4200 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4201 	case TC_SETUP_CLSU32:
4202 		return iavf_setup_tc_cls_u32(cb_priv, type_data);
4203 	default:
4204 		return -EOPNOTSUPP;
4205 	}
4206 }
4207 
4208 static LIST_HEAD(iavf_block_cb_list);
4209 
4210 /**
4211  * iavf_setup_tc - configure multiple traffic classes
4212  * @netdev: network interface device structure
4213  * @type: type of offload
4214  * @type_data: tc offload data
4215  *
4216  * This function is the callback to ndo_setup_tc in the
4217  * netdev_ops.
4218  *
4219  * Returns 0 on success
4220  **/
4221 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4222 			 void *type_data)
4223 {
4224 	struct iavf_adapter *adapter = netdev_priv(netdev);
4225 
4226 	switch (type) {
4227 	case TC_SETUP_QDISC_MQPRIO:
4228 		return __iavf_setup_tc(netdev, type_data);
4229 	case TC_SETUP_BLOCK:
4230 		return flow_block_cb_setup_simple(type_data,
4231 						  &iavf_block_cb_list,
4232 						  iavf_setup_tc_block_cb,
4233 						  adapter, adapter, true);
4234 	default:
4235 		return -EOPNOTSUPP;
4236 	}
4237 }
4238 
4239 /**
4240  * iavf_restore_fdir_filters
4241  * @adapter: board private structure
4242  *
4243  * Restore existing FDIR filters when VF netdev comes back up.
4244  **/
4245 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4246 {
4247 	struct iavf_fdir_fltr *f;
4248 
4249 	spin_lock_bh(&adapter->fdir_fltr_lock);
4250 	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4251 		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4252 			/* Cancel a request, keep filter as active */
4253 			f->state = IAVF_FDIR_FLTR_ACTIVE;
4254 		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4255 			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4256 			/* Add filters which are inactive or have a pending
4257 			 * request to PF to be deleted
4258 			 */
4259 			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4260 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4261 		}
4262 	}
4263 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4264 }
4265 
4266 /**
4267  * iavf_open - Called when a network interface is made active
4268  * @netdev: network interface device structure
4269  *
4270  * Returns 0 on success, negative value on failure
4271  *
4272  * The open entry point is called when a network interface is made
4273  * active by the system (IFF_UP).  At this point all resources needed
4274  * for transmit and receive operations are allocated, the interrupt
4275  * handler is registered with the OS, the watchdog is started,
4276  * and the stack is notified that the interface is ready.
4277  **/
4278 static int iavf_open(struct net_device *netdev)
4279 {
4280 	struct iavf_adapter *adapter = netdev_priv(netdev);
4281 	int err;
4282 
4283 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4284 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4285 		return -EIO;
4286 	}
4287 
4288 	while (!mutex_trylock(&adapter->crit_lock)) {
4289 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4290 		 * is already taken and iavf_open is called from an upper
4291 		 * device's notifier reacting on NETDEV_REGISTER event.
4292 		 * We have to leave here to avoid dead lock.
4293 		 */
4294 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4295 			return -EBUSY;
4296 
4297 		usleep_range(500, 1000);
4298 	}
4299 
4300 	if (adapter->state != __IAVF_DOWN) {
4301 		err = -EBUSY;
4302 		goto err_unlock;
4303 	}
4304 
4305 	if (adapter->state == __IAVF_RUNNING &&
4306 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4307 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4308 		err = 0;
4309 		goto err_unlock;
4310 	}
4311 
4312 	/* allocate transmit descriptors */
4313 	err = iavf_setup_all_tx_resources(adapter);
4314 	if (err)
4315 		goto err_setup_tx;
4316 
4317 	/* allocate receive descriptors */
4318 	err = iavf_setup_all_rx_resources(adapter);
4319 	if (err)
4320 		goto err_setup_rx;
4321 
4322 	/* clear any pending interrupts, may auto mask */
4323 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4324 	if (err)
4325 		goto err_req_irq;
4326 
4327 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4328 
4329 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4330 
4331 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4332 
4333 	/* Restore filters that were removed with IFF_DOWN */
4334 	iavf_restore_filters(adapter);
4335 	iavf_restore_fdir_filters(adapter);
4336 
4337 	iavf_configure(adapter);
4338 
4339 	iavf_up_complete(adapter);
4340 
4341 	iavf_irq_enable(adapter, true);
4342 
4343 	mutex_unlock(&adapter->crit_lock);
4344 
4345 	return 0;
4346 
4347 err_req_irq:
4348 	iavf_down(adapter);
4349 	iavf_free_traffic_irqs(adapter);
4350 err_setup_rx:
4351 	iavf_free_all_rx_resources(adapter);
4352 err_setup_tx:
4353 	iavf_free_all_tx_resources(adapter);
4354 err_unlock:
4355 	mutex_unlock(&adapter->crit_lock);
4356 
4357 	return err;
4358 }
4359 
4360 /**
4361  * iavf_close - Disables a network interface
4362  * @netdev: network interface device structure
4363  *
4364  * Returns 0, this is not allowed to fail
4365  *
4366  * The close entry point is called when an interface is de-activated
4367  * by the OS.  The hardware is still under the drivers control, but
4368  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4369  * are freed, along with all transmit and receive resources.
4370  **/
4371 static int iavf_close(struct net_device *netdev)
4372 {
4373 	struct iavf_adapter *adapter = netdev_priv(netdev);
4374 	u64 aq_to_restore;
4375 	int status;
4376 
4377 	mutex_lock(&adapter->crit_lock);
4378 
4379 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4380 		mutex_unlock(&adapter->crit_lock);
4381 		return 0;
4382 	}
4383 
4384 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4385 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4386 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4387 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4388 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4389 	 * disable queues possible for vf. Give only necessary flags to
4390 	 * iavf_down and save other to set them right before iavf_close()
4391 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4392 	 * iavf will be in DOWN state.
4393 	 */
4394 	aq_to_restore = adapter->aq_required;
4395 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4396 
4397 	/* Remove flags which we do not want to send after close or we want to
4398 	 * send before disable queues.
4399 	 */
4400 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4401 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4402 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4403 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4404 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4405 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4406 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4407 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4408 
4409 	iavf_down(adapter);
4410 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4411 	iavf_free_traffic_irqs(adapter);
4412 
4413 	mutex_unlock(&adapter->crit_lock);
4414 
4415 	/* We explicitly don't free resources here because the hardware is
4416 	 * still active and can DMA into memory. Resources are cleared in
4417 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4418 	 * driver that the rings have been stopped.
4419 	 *
4420 	 * Also, we wait for state to transition to __IAVF_DOWN before
4421 	 * returning. State change occurs in iavf_virtchnl_completion() after
4422 	 * VF resources are released (which occurs after PF driver processes and
4423 	 * responds to admin queue commands).
4424 	 */
4425 
4426 	status = wait_event_timeout(adapter->down_waitqueue,
4427 				    adapter->state == __IAVF_DOWN,
4428 				    msecs_to_jiffies(500));
4429 	if (!status)
4430 		netdev_warn(netdev, "Device resources not yet released\n");
4431 
4432 	mutex_lock(&adapter->crit_lock);
4433 	adapter->aq_required |= aq_to_restore;
4434 	mutex_unlock(&adapter->crit_lock);
4435 	return 0;
4436 }
4437 
4438 /**
4439  * iavf_change_mtu - Change the Maximum Transfer Unit
4440  * @netdev: network interface device structure
4441  * @new_mtu: new value for maximum frame size
4442  *
4443  * Returns 0 on success, negative on failure
4444  **/
4445 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4446 {
4447 	struct iavf_adapter *adapter = netdev_priv(netdev);
4448 	int ret = 0;
4449 
4450 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4451 		   netdev->mtu, new_mtu);
4452 	WRITE_ONCE(netdev->mtu, new_mtu);
4453 
4454 	if (netif_running(netdev)) {
4455 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4456 		ret = iavf_wait_for_reset(adapter);
4457 		if (ret < 0)
4458 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4459 		else if (ret)
4460 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4461 	}
4462 
4463 	return ret;
4464 }
4465 
4466 /**
4467  * iavf_disable_fdir - disable Flow Director and clear existing filters
4468  * @adapter: board private structure
4469  **/
4470 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4471 {
4472 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4473 	bool del_filters = false;
4474 
4475 	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4476 
4477 	/* remove all Flow Director filters */
4478 	spin_lock_bh(&adapter->fdir_fltr_lock);
4479 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4480 				 list) {
4481 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4482 		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4483 			/* Delete filters not registered in PF */
4484 			list_del(&fdir->list);
4485 			iavf_dec_fdir_active_fltr(adapter, fdir);
4486 			kfree(fdir);
4487 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4488 			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4489 			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4490 			/* Filters registered in PF, schedule their deletion */
4491 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4492 			del_filters = true;
4493 		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4494 			/* Request to delete filter already sent to PF, change
4495 			 * state to DEL_PENDING to delete filter after PF's
4496 			 * response, not set as INACTIVE
4497 			 */
4498 			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4499 		}
4500 	}
4501 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4502 
4503 	if (del_filters) {
4504 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4505 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4506 	}
4507 }
4508 
4509 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4510 					 NETIF_F_HW_VLAN_CTAG_TX | \
4511 					 NETIF_F_HW_VLAN_STAG_RX | \
4512 					 NETIF_F_HW_VLAN_STAG_TX)
4513 
4514 /**
4515  * iavf_set_features - set the netdev feature flags
4516  * @netdev: ptr to the netdev being adjusted
4517  * @features: the feature set that the stack is suggesting
4518  * Note: expects to be called while under rtnl_lock()
4519  **/
4520 static int iavf_set_features(struct net_device *netdev,
4521 			     netdev_features_t features)
4522 {
4523 	struct iavf_adapter *adapter = netdev_priv(netdev);
4524 
4525 	/* trigger update on any VLAN feature change */
4526 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4527 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4528 		iavf_set_vlan_offload_features(adapter, netdev->features,
4529 					       features);
4530 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4531 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4532 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4533 
4534 	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4535 		if (features & NETIF_F_NTUPLE)
4536 			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4537 		else
4538 			iavf_disable_fdir(adapter);
4539 	}
4540 
4541 	return 0;
4542 }
4543 
4544 /**
4545  * iavf_features_check - Validate encapsulated packet conforms to limits
4546  * @skb: skb buff
4547  * @dev: This physical port's netdev
4548  * @features: Offload features that the stack believes apply
4549  **/
4550 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4551 					     struct net_device *dev,
4552 					     netdev_features_t features)
4553 {
4554 	size_t len;
4555 
4556 	/* No point in doing any of this if neither checksum nor GSO are
4557 	 * being requested for this frame.  We can rule out both by just
4558 	 * checking for CHECKSUM_PARTIAL
4559 	 */
4560 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4561 		return features;
4562 
4563 	/* We cannot support GSO if the MSS is going to be less than
4564 	 * 64 bytes.  If it is then we need to drop support for GSO.
4565 	 */
4566 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4567 		features &= ~NETIF_F_GSO_MASK;
4568 
4569 	/* MACLEN can support at most 63 words */
4570 	len = skb_network_offset(skb);
4571 	if (len & ~(63 * 2))
4572 		goto out_err;
4573 
4574 	/* IPLEN and EIPLEN can support at most 127 dwords */
4575 	len = skb_network_header_len(skb);
4576 	if (len & ~(127 * 4))
4577 		goto out_err;
4578 
4579 	if (skb->encapsulation) {
4580 		/* L4TUNLEN can support 127 words */
4581 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4582 		if (len & ~(127 * 2))
4583 			goto out_err;
4584 
4585 		/* IPLEN can support at most 127 dwords */
4586 		len = skb_inner_transport_header(skb) -
4587 		      skb_inner_network_header(skb);
4588 		if (len & ~(127 * 4))
4589 			goto out_err;
4590 	}
4591 
4592 	/* No need to validate L4LEN as TCP is the only protocol with a
4593 	 * flexible value and we support all possible values supported
4594 	 * by TCP, which is at most 15 dwords
4595 	 */
4596 
4597 	return features;
4598 out_err:
4599 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4600 }
4601 
4602 /**
4603  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4604  * @adapter: board private structure
4605  *
4606  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4607  * were negotiated determine the VLAN features that can be toggled on and off.
4608  **/
4609 static netdev_features_t
4610 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4611 {
4612 	netdev_features_t hw_features = 0;
4613 
4614 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4615 		return hw_features;
4616 
4617 	/* Enable VLAN features if supported */
4618 	if (VLAN_ALLOWED(adapter)) {
4619 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4620 				NETIF_F_HW_VLAN_CTAG_RX);
4621 	} else if (VLAN_V2_ALLOWED(adapter)) {
4622 		struct virtchnl_vlan_caps *vlan_v2_caps =
4623 			&adapter->vlan_v2_caps;
4624 		struct virtchnl_vlan_supported_caps *stripping_support =
4625 			&vlan_v2_caps->offloads.stripping_support;
4626 		struct virtchnl_vlan_supported_caps *insertion_support =
4627 			&vlan_v2_caps->offloads.insertion_support;
4628 
4629 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4630 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4631 			if (stripping_support->outer &
4632 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4633 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4634 			if (stripping_support->outer &
4635 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4636 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4637 		} else if (stripping_support->inner !=
4638 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4639 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4640 			if (stripping_support->inner &
4641 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4642 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4643 		}
4644 
4645 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4646 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4647 			if (insertion_support->outer &
4648 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4649 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4650 			if (insertion_support->outer &
4651 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4652 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4653 		} else if (insertion_support->inner &&
4654 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4655 			if (insertion_support->inner &
4656 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4657 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4658 		}
4659 	}
4660 
4661 	if (CRC_OFFLOAD_ALLOWED(adapter))
4662 		hw_features |= NETIF_F_RXFCS;
4663 
4664 	return hw_features;
4665 }
4666 
4667 /**
4668  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4669  * @adapter: board private structure
4670  *
4671  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4672  * were negotiated determine the VLAN features that are enabled by default.
4673  **/
4674 static netdev_features_t
4675 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4676 {
4677 	netdev_features_t features = 0;
4678 
4679 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4680 		return features;
4681 
4682 	if (VLAN_ALLOWED(adapter)) {
4683 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4684 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4685 	} else if (VLAN_V2_ALLOWED(adapter)) {
4686 		struct virtchnl_vlan_caps *vlan_v2_caps =
4687 			&adapter->vlan_v2_caps;
4688 		struct virtchnl_vlan_supported_caps *filtering_support =
4689 			&vlan_v2_caps->filtering.filtering_support;
4690 		struct virtchnl_vlan_supported_caps *stripping_support =
4691 			&vlan_v2_caps->offloads.stripping_support;
4692 		struct virtchnl_vlan_supported_caps *insertion_support =
4693 			&vlan_v2_caps->offloads.insertion_support;
4694 		u32 ethertype_init;
4695 
4696 		/* give priority to outer stripping and don't support both outer
4697 		 * and inner stripping
4698 		 */
4699 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4700 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4701 			if (stripping_support->outer &
4702 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4703 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4704 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4705 			else if (stripping_support->outer &
4706 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4707 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4708 				features |= NETIF_F_HW_VLAN_STAG_RX;
4709 		} else if (stripping_support->inner !=
4710 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4711 			if (stripping_support->inner &
4712 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4713 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4714 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4715 		}
4716 
4717 		/* give priority to outer insertion and don't support both outer
4718 		 * and inner insertion
4719 		 */
4720 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4721 			if (insertion_support->outer &
4722 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4723 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4724 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4725 			else if (insertion_support->outer &
4726 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4727 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4728 				features |= NETIF_F_HW_VLAN_STAG_TX;
4729 		} else if (insertion_support->inner !=
4730 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4731 			if (insertion_support->inner &
4732 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4733 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4734 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4735 		}
4736 
4737 		/* give priority to outer filtering and don't bother if both
4738 		 * outer and inner filtering are enabled
4739 		 */
4740 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4741 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4742 			if (filtering_support->outer &
4743 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4744 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4745 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4746 			if (filtering_support->outer &
4747 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4748 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4749 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4750 		} else if (filtering_support->inner !=
4751 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4752 			if (filtering_support->inner &
4753 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4754 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4755 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4756 			if (filtering_support->inner &
4757 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4758 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4759 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4760 		}
4761 	}
4762 
4763 	return features;
4764 }
4765 
4766 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4767 	(!(((requested) & (feature_bit)) && \
4768 	   !((allowed) & (feature_bit))))
4769 
4770 /**
4771  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4772  * @adapter: board private structure
4773  * @requested_features: stack requested NETDEV features
4774  **/
4775 static netdev_features_t
4776 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4777 			      netdev_features_t requested_features)
4778 {
4779 	netdev_features_t allowed_features;
4780 
4781 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4782 		iavf_get_netdev_vlan_features(adapter);
4783 
4784 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4785 					      allowed_features,
4786 					      NETIF_F_HW_VLAN_CTAG_TX))
4787 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4788 
4789 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4790 					      allowed_features,
4791 					      NETIF_F_HW_VLAN_CTAG_RX))
4792 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4793 
4794 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4795 					      allowed_features,
4796 					      NETIF_F_HW_VLAN_STAG_TX))
4797 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4798 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4799 					      allowed_features,
4800 					      NETIF_F_HW_VLAN_STAG_RX))
4801 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4802 
4803 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4804 					      allowed_features,
4805 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4806 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4807 
4808 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4809 					      allowed_features,
4810 					      NETIF_F_HW_VLAN_STAG_FILTER))
4811 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4812 
4813 	if ((requested_features &
4814 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4815 	    (requested_features &
4816 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4817 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4818 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4819 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4820 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4821 					NETIF_F_HW_VLAN_STAG_TX);
4822 	}
4823 
4824 	return requested_features;
4825 }
4826 
4827 /**
4828  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4829  * @adapter: board private structure
4830  * @requested_features: stack requested NETDEV features
4831  *
4832  * Returns fixed-up features bits
4833  **/
4834 static netdev_features_t
4835 iavf_fix_strip_features(struct iavf_adapter *adapter,
4836 			netdev_features_t requested_features)
4837 {
4838 	struct net_device *netdev = adapter->netdev;
4839 	bool crc_offload_req, is_vlan_strip;
4840 	netdev_features_t vlan_strip;
4841 	int num_non_zero_vlan;
4842 
4843 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4844 			  (requested_features & NETIF_F_RXFCS);
4845 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4846 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4847 	is_vlan_strip = requested_features & vlan_strip;
4848 
4849 	if (!crc_offload_req)
4850 		return requested_features;
4851 
4852 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4853 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4854 		requested_features &= ~vlan_strip;
4855 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4856 		return requested_features;
4857 	}
4858 
4859 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4860 		requested_features &= ~vlan_strip;
4861 		if (!(netdev->features & vlan_strip))
4862 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4863 
4864 		return requested_features;
4865 	}
4866 
4867 	if (num_non_zero_vlan && is_vlan_strip &&
4868 	    !(netdev->features & NETIF_F_RXFCS)) {
4869 		requested_features &= ~NETIF_F_RXFCS;
4870 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4871 	}
4872 
4873 	return requested_features;
4874 }
4875 
4876 /**
4877  * iavf_fix_features - fix up the netdev feature bits
4878  * @netdev: our net device
4879  * @features: desired feature bits
4880  *
4881  * Returns fixed-up features bits
4882  **/
4883 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4884 					   netdev_features_t features)
4885 {
4886 	struct iavf_adapter *adapter = netdev_priv(netdev);
4887 
4888 	features = iavf_fix_netdev_vlan_features(adapter, features);
4889 
4890 	if (!FDIR_FLTR_SUPPORT(adapter))
4891 		features &= ~NETIF_F_NTUPLE;
4892 
4893 	return iavf_fix_strip_features(adapter, features);
4894 }
4895 
4896 static const struct net_device_ops iavf_netdev_ops = {
4897 	.ndo_open		= iavf_open,
4898 	.ndo_stop		= iavf_close,
4899 	.ndo_start_xmit		= iavf_xmit_frame,
4900 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4901 	.ndo_validate_addr	= eth_validate_addr,
4902 	.ndo_set_mac_address	= iavf_set_mac,
4903 	.ndo_change_mtu		= iavf_change_mtu,
4904 	.ndo_tx_timeout		= iavf_tx_timeout,
4905 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4906 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4907 	.ndo_features_check	= iavf_features_check,
4908 	.ndo_fix_features	= iavf_fix_features,
4909 	.ndo_set_features	= iavf_set_features,
4910 	.ndo_setup_tc		= iavf_setup_tc,
4911 };
4912 
4913 /**
4914  * iavf_check_reset_complete - check that VF reset is complete
4915  * @hw: pointer to hw struct
4916  *
4917  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4918  **/
4919 static int iavf_check_reset_complete(struct iavf_hw *hw)
4920 {
4921 	u32 rstat;
4922 	int i;
4923 
4924 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4925 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4926 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4927 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4928 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4929 			return 0;
4930 		msleep(IAVF_RESET_WAIT_MS);
4931 	}
4932 	return -EBUSY;
4933 }
4934 
4935 /**
4936  * iavf_process_config - Process the config information we got from the PF
4937  * @adapter: board private structure
4938  *
4939  * Verify that we have a valid config struct, and set up our netdev features
4940  * and our VSI struct.
4941  **/
4942 int iavf_process_config(struct iavf_adapter *adapter)
4943 {
4944 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4945 	netdev_features_t hw_vlan_features, vlan_features;
4946 	struct net_device *netdev = adapter->netdev;
4947 	netdev_features_t hw_enc_features;
4948 	netdev_features_t hw_features;
4949 
4950 	hw_enc_features = NETIF_F_SG			|
4951 			  NETIF_F_IP_CSUM		|
4952 			  NETIF_F_IPV6_CSUM		|
4953 			  NETIF_F_HIGHDMA		|
4954 			  NETIF_F_SOFT_FEATURES	|
4955 			  NETIF_F_TSO			|
4956 			  NETIF_F_TSO_ECN		|
4957 			  NETIF_F_TSO6			|
4958 			  NETIF_F_SCTP_CRC		|
4959 			  NETIF_F_RXHASH		|
4960 			  NETIF_F_RXCSUM		|
4961 			  0;
4962 
4963 	/* advertise to stack only if offloads for encapsulated packets is
4964 	 * supported
4965 	 */
4966 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4967 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4968 				   NETIF_F_GSO_GRE		|
4969 				   NETIF_F_GSO_GRE_CSUM		|
4970 				   NETIF_F_GSO_IPXIP4		|
4971 				   NETIF_F_GSO_IPXIP6		|
4972 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4973 				   NETIF_F_GSO_PARTIAL		|
4974 				   0;
4975 
4976 		if (!(vfres->vf_cap_flags &
4977 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4978 			netdev->gso_partial_features |=
4979 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4980 
4981 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4982 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4983 		netdev->hw_enc_features |= hw_enc_features;
4984 	}
4985 	/* record features VLANs can make use of */
4986 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4987 
4988 	/* Write features and hw_features separately to avoid polluting
4989 	 * with, or dropping, features that are set when we registered.
4990 	 */
4991 	hw_features = hw_enc_features;
4992 
4993 	/* get HW VLAN features that can be toggled */
4994 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4995 
4996 	/* Enable HW TC offload if ADQ or tc U32 is supported */
4997 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
4998 	    TC_U32_SUPPORT(adapter))
4999 		hw_features |= NETIF_F_HW_TC;
5000 
5001 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5002 		hw_features |= NETIF_F_GSO_UDP_L4;
5003 
5004 	netdev->hw_features |= hw_features | hw_vlan_features;
5005 	vlan_features = iavf_get_netdev_vlan_features(adapter);
5006 
5007 	netdev->features |= hw_features | vlan_features;
5008 
5009 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5010 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5011 
5012 	if (FDIR_FLTR_SUPPORT(adapter)) {
5013 		netdev->hw_features |= NETIF_F_NTUPLE;
5014 		netdev->features |= NETIF_F_NTUPLE;
5015 		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5016 	}
5017 
5018 	netdev->priv_flags |= IFF_UNICAST_FLT;
5019 
5020 	/* Do not turn on offloads when they are requested to be turned off.
5021 	 * TSO needs minimum 576 bytes to work correctly.
5022 	 */
5023 	if (netdev->wanted_features) {
5024 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
5025 		    netdev->mtu < 576)
5026 			netdev->features &= ~NETIF_F_TSO;
5027 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5028 		    netdev->mtu < 576)
5029 			netdev->features &= ~NETIF_F_TSO6;
5030 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5031 			netdev->features &= ~NETIF_F_TSO_ECN;
5032 		if (!(netdev->wanted_features & NETIF_F_GRO))
5033 			netdev->features &= ~NETIF_F_GRO;
5034 		if (!(netdev->wanted_features & NETIF_F_GSO))
5035 			netdev->features &= ~NETIF_F_GSO;
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 /**
5042  * iavf_probe - Device Initialization Routine
5043  * @pdev: PCI device information struct
5044  * @ent: entry in iavf_pci_tbl
5045  *
5046  * Returns 0 on success, negative on failure
5047  *
5048  * iavf_probe initializes an adapter identified by a pci_dev structure.
5049  * The OS initialization, configuring of the adapter private structure,
5050  * and a hardware reset occur.
5051  **/
5052 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5053 {
5054 	struct net_device *netdev;
5055 	struct iavf_adapter *adapter = NULL;
5056 	struct iavf_hw *hw = NULL;
5057 	int err;
5058 
5059 	err = pci_enable_device(pdev);
5060 	if (err)
5061 		return err;
5062 
5063 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5064 	if (err) {
5065 		dev_err(&pdev->dev,
5066 			"DMA configuration failed: 0x%x\n", err);
5067 		goto err_dma;
5068 	}
5069 
5070 	err = pci_request_regions(pdev, iavf_driver_name);
5071 	if (err) {
5072 		dev_err(&pdev->dev,
5073 			"pci_request_regions failed 0x%x\n", err);
5074 		goto err_pci_reg;
5075 	}
5076 
5077 	pci_set_master(pdev);
5078 
5079 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5080 				   IAVF_MAX_REQ_QUEUES);
5081 	if (!netdev) {
5082 		err = -ENOMEM;
5083 		goto err_alloc_etherdev;
5084 	}
5085 
5086 	SET_NETDEV_DEV(netdev, &pdev->dev);
5087 
5088 	pci_set_drvdata(pdev, netdev);
5089 	adapter = netdev_priv(netdev);
5090 
5091 	adapter->netdev = netdev;
5092 	adapter->pdev = pdev;
5093 
5094 	hw = &adapter->hw;
5095 	hw->back = adapter;
5096 
5097 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5098 					      iavf_driver_name);
5099 	if (!adapter->wq) {
5100 		err = -ENOMEM;
5101 		goto err_alloc_wq;
5102 	}
5103 
5104 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5105 	iavf_change_state(adapter, __IAVF_STARTUP);
5106 
5107 	/* Call save state here because it relies on the adapter struct. */
5108 	pci_save_state(pdev);
5109 
5110 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5111 			      pci_resource_len(pdev, 0));
5112 	if (!hw->hw_addr) {
5113 		err = -EIO;
5114 		goto err_ioremap;
5115 	}
5116 	hw->vendor_id = pdev->vendor;
5117 	hw->device_id = pdev->device;
5118 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5119 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5120 	hw->subsystem_device_id = pdev->subsystem_device;
5121 	hw->bus.device = PCI_SLOT(pdev->devfn);
5122 	hw->bus.func = PCI_FUNC(pdev->devfn);
5123 	hw->bus.bus_id = pdev->bus->number;
5124 
5125 	/* set up the locks for the AQ, do this only once in probe
5126 	 * and destroy them only once in remove
5127 	 */
5128 	mutex_init(&adapter->crit_lock);
5129 	mutex_init(&hw->aq.asq_mutex);
5130 	mutex_init(&hw->aq.arq_mutex);
5131 
5132 	spin_lock_init(&adapter->mac_vlan_list_lock);
5133 	spin_lock_init(&adapter->cloud_filter_list_lock);
5134 	spin_lock_init(&adapter->fdir_fltr_lock);
5135 	spin_lock_init(&adapter->adv_rss_lock);
5136 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5137 
5138 	INIT_LIST_HEAD(&adapter->mac_filter_list);
5139 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5140 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5141 	INIT_LIST_HEAD(&adapter->fdir_list_head);
5142 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5143 
5144 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5145 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5146 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5147 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5148 
5149 	/* Setup the wait queue for indicating transition to down status */
5150 	init_waitqueue_head(&adapter->down_waitqueue);
5151 
5152 	/* Setup the wait queue for indicating transition to running state */
5153 	init_waitqueue_head(&adapter->reset_waitqueue);
5154 
5155 	/* Setup the wait queue for indicating virtchannel events */
5156 	init_waitqueue_head(&adapter->vc_waitqueue);
5157 
5158 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5159 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5160 	/* Initialization goes on in the work. Do not add more of it below. */
5161 	return 0;
5162 
5163 err_ioremap:
5164 	destroy_workqueue(adapter->wq);
5165 err_alloc_wq:
5166 	free_netdev(netdev);
5167 err_alloc_etherdev:
5168 	pci_release_regions(pdev);
5169 err_pci_reg:
5170 err_dma:
5171 	pci_disable_device(pdev);
5172 	return err;
5173 }
5174 
5175 /**
5176  * iavf_suspend - Power management suspend routine
5177  * @dev_d: device info pointer
5178  *
5179  * Called when the system (VM) is entering sleep/suspend.
5180  **/
5181 static int iavf_suspend(struct device *dev_d)
5182 {
5183 	struct net_device *netdev = dev_get_drvdata(dev_d);
5184 	struct iavf_adapter *adapter = netdev_priv(netdev);
5185 
5186 	netif_device_detach(netdev);
5187 
5188 	mutex_lock(&adapter->crit_lock);
5189 
5190 	if (netif_running(netdev)) {
5191 		rtnl_lock();
5192 		iavf_down(adapter);
5193 		rtnl_unlock();
5194 	}
5195 	iavf_free_misc_irq(adapter);
5196 	iavf_reset_interrupt_capability(adapter);
5197 
5198 	mutex_unlock(&adapter->crit_lock);
5199 
5200 	return 0;
5201 }
5202 
5203 /**
5204  * iavf_resume - Power management resume routine
5205  * @dev_d: device info pointer
5206  *
5207  * Called when the system (VM) is resumed from sleep/suspend.
5208  **/
5209 static int iavf_resume(struct device *dev_d)
5210 {
5211 	struct pci_dev *pdev = to_pci_dev(dev_d);
5212 	struct iavf_adapter *adapter;
5213 	u32 err;
5214 
5215 	adapter = iavf_pdev_to_adapter(pdev);
5216 
5217 	pci_set_master(pdev);
5218 
5219 	rtnl_lock();
5220 	err = iavf_set_interrupt_capability(adapter);
5221 	if (err) {
5222 		rtnl_unlock();
5223 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5224 		return err;
5225 	}
5226 	err = iavf_request_misc_irq(adapter);
5227 	rtnl_unlock();
5228 	if (err) {
5229 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5230 		return err;
5231 	}
5232 
5233 	queue_work(adapter->wq, &adapter->reset_task);
5234 
5235 	netif_device_attach(adapter->netdev);
5236 
5237 	return err;
5238 }
5239 
5240 /**
5241  * iavf_remove - Device Removal Routine
5242  * @pdev: PCI device information struct
5243  *
5244  * iavf_remove is called by the PCI subsystem to alert the driver
5245  * that it should release a PCI device.  The could be caused by a
5246  * Hot-Plug event, or because the driver is going to be removed from
5247  * memory.
5248  **/
5249 static void iavf_remove(struct pci_dev *pdev)
5250 {
5251 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5252 	struct iavf_vlan_filter *vlf, *vlftmp;
5253 	struct iavf_cloud_filter *cf, *cftmp;
5254 	struct iavf_adv_rss *rss, *rsstmp;
5255 	struct iavf_mac_filter *f, *ftmp;
5256 	struct iavf_adapter *adapter;
5257 	struct net_device *netdev;
5258 	struct iavf_hw *hw;
5259 
5260 	/* Don't proceed with remove if netdev is already freed */
5261 	netdev = pci_get_drvdata(pdev);
5262 	if (!netdev)
5263 		return;
5264 
5265 	adapter = iavf_pdev_to_adapter(pdev);
5266 	hw = &adapter->hw;
5267 
5268 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5269 		return;
5270 
5271 	/* Wait until port initialization is complete.
5272 	 * There are flows where register/unregister netdev may race.
5273 	 */
5274 	while (1) {
5275 		mutex_lock(&adapter->crit_lock);
5276 		if (adapter->state == __IAVF_RUNNING ||
5277 		    adapter->state == __IAVF_DOWN ||
5278 		    adapter->state == __IAVF_INIT_FAILED) {
5279 			mutex_unlock(&adapter->crit_lock);
5280 			break;
5281 		}
5282 		/* Simply return if we already went through iavf_shutdown */
5283 		if (adapter->state == __IAVF_REMOVE) {
5284 			mutex_unlock(&adapter->crit_lock);
5285 			return;
5286 		}
5287 
5288 		mutex_unlock(&adapter->crit_lock);
5289 		usleep_range(500, 1000);
5290 	}
5291 	cancel_delayed_work_sync(&adapter->watchdog_task);
5292 	cancel_work_sync(&adapter->finish_config);
5293 
5294 	if (netdev->reg_state == NETREG_REGISTERED)
5295 		unregister_netdev(netdev);
5296 
5297 	mutex_lock(&adapter->crit_lock);
5298 	dev_info(&adapter->pdev->dev, "Removing device\n");
5299 	iavf_change_state(adapter, __IAVF_REMOVE);
5300 
5301 	iavf_request_reset(adapter);
5302 	msleep(50);
5303 	/* If the FW isn't responding, kick it once, but only once. */
5304 	if (!iavf_asq_done(hw)) {
5305 		iavf_request_reset(adapter);
5306 		msleep(50);
5307 	}
5308 
5309 	iavf_misc_irq_disable(adapter);
5310 	/* Shut down all the garbage mashers on the detention level */
5311 	cancel_work_sync(&adapter->reset_task);
5312 	cancel_delayed_work_sync(&adapter->watchdog_task);
5313 	cancel_work_sync(&adapter->adminq_task);
5314 
5315 	adapter->aq_required = 0;
5316 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5317 
5318 	iavf_free_all_tx_resources(adapter);
5319 	iavf_free_all_rx_resources(adapter);
5320 	iavf_free_misc_irq(adapter);
5321 	iavf_free_interrupt_scheme(adapter);
5322 
5323 	iavf_free_rss(adapter);
5324 
5325 	if (hw->aq.asq.count)
5326 		iavf_shutdown_adminq(hw);
5327 
5328 	/* destroy the locks only once, here */
5329 	mutex_destroy(&hw->aq.arq_mutex);
5330 	mutex_destroy(&hw->aq.asq_mutex);
5331 	mutex_unlock(&adapter->crit_lock);
5332 	mutex_destroy(&adapter->crit_lock);
5333 
5334 	iounmap(hw->hw_addr);
5335 	pci_release_regions(pdev);
5336 	kfree(adapter->vf_res);
5337 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5338 	/* If we got removed before an up/down sequence, we've got a filter
5339 	 * hanging out there that we need to get rid of.
5340 	 */
5341 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5342 		list_del(&f->list);
5343 		kfree(f);
5344 	}
5345 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5346 				 list) {
5347 		list_del(&vlf->list);
5348 		kfree(vlf);
5349 	}
5350 
5351 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5352 
5353 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5354 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5355 		list_del(&cf->list);
5356 		kfree(cf);
5357 	}
5358 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5359 
5360 	spin_lock_bh(&adapter->fdir_fltr_lock);
5361 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5362 		list_del(&fdir->list);
5363 		kfree(fdir);
5364 	}
5365 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5366 
5367 	spin_lock_bh(&adapter->adv_rss_lock);
5368 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5369 				 list) {
5370 		list_del(&rss->list);
5371 		kfree(rss);
5372 	}
5373 	spin_unlock_bh(&adapter->adv_rss_lock);
5374 
5375 	destroy_workqueue(adapter->wq);
5376 
5377 	pci_set_drvdata(pdev, NULL);
5378 
5379 	free_netdev(netdev);
5380 
5381 	pci_disable_device(pdev);
5382 }
5383 
5384 /**
5385  * iavf_shutdown - Shutdown the device in preparation for a reboot
5386  * @pdev: pci device structure
5387  **/
5388 static void iavf_shutdown(struct pci_dev *pdev)
5389 {
5390 	iavf_remove(pdev);
5391 
5392 	if (system_state == SYSTEM_POWER_OFF)
5393 		pci_set_power_state(pdev, PCI_D3hot);
5394 }
5395 
5396 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5397 
5398 static struct pci_driver iavf_driver = {
5399 	.name      = iavf_driver_name,
5400 	.id_table  = iavf_pci_tbl,
5401 	.probe     = iavf_probe,
5402 	.remove    = iavf_remove,
5403 	.driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5404 	.shutdown  = iavf_shutdown,
5405 };
5406 
5407 /**
5408  * iavf_init_module - Driver Registration Routine
5409  *
5410  * iavf_init_module is the first routine called when the driver is
5411  * loaded. All it does is register with the PCI subsystem.
5412  **/
5413 static int __init iavf_init_module(void)
5414 {
5415 	pr_info("iavf: %s\n", iavf_driver_string);
5416 
5417 	pr_info("%s\n", iavf_copyright);
5418 
5419 	return pci_register_driver(&iavf_driver);
5420 }
5421 
5422 module_init(iavf_init_module);
5423 
5424 /**
5425  * iavf_exit_module - Driver Exit Cleanup Routine
5426  *
5427  * iavf_exit_module is called just before the driver is removed
5428  * from memory.
5429  **/
5430 static void __exit iavf_exit_module(void)
5431 {
5432 	pci_unregister_driver(&iavf_driver);
5433 }
5434 
5435 module_exit(iavf_exit_module);
5436 
5437 /* iavf_main.c */
5438