1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 18 char iavf_driver_name[] = "iavf"; 19 static const char iavf_driver_string[] = 20 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 21 22 #define DRV_KERN "-k" 23 24 #define DRV_VERSION_MAJOR 3 25 #define DRV_VERSION_MINOR 2 26 #define DRV_VERSION_BUILD 3 27 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 28 __stringify(DRV_VERSION_MINOR) "." \ 29 __stringify(DRV_VERSION_BUILD) \ 30 DRV_KERN 31 const char iavf_driver_version[] = DRV_VERSION; 32 static const char iavf_copyright[] = 33 "Copyright (c) 2013 - 2018 Intel Corporation."; 34 35 /* iavf_pci_tbl - PCI Device ID Table 36 * 37 * Wildcard entries (PCI_ANY_ID) should come last 38 * Last entry must be all 0s 39 * 40 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 41 * Class, Class Mask, private data (not used) } 42 */ 43 static const struct pci_device_id iavf_pci_tbl[] = { 44 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 45 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 46 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 47 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 48 /* required last entry */ 49 {0, } 50 }; 51 52 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 53 54 MODULE_ALIAS("i40evf"); 55 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 56 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 57 MODULE_LICENSE("GPL v2"); 58 MODULE_VERSION(DRV_VERSION); 59 60 static struct workqueue_struct *iavf_wq; 61 62 /** 63 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 64 * @hw: pointer to the HW structure 65 * @mem: ptr to mem struct to fill out 66 * @size: size of memory requested 67 * @alignment: what to align the allocation to 68 **/ 69 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 70 struct iavf_dma_mem *mem, 71 u64 size, u32 alignment) 72 { 73 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 74 75 if (!mem) 76 return IAVF_ERR_PARAM; 77 78 mem->size = ALIGN(size, alignment); 79 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 80 (dma_addr_t *)&mem->pa, GFP_KERNEL); 81 if (mem->va) 82 return 0; 83 else 84 return IAVF_ERR_NO_MEMORY; 85 } 86 87 /** 88 * iavf_free_dma_mem_d - OS specific memory free for shared code 89 * @hw: pointer to the HW structure 90 * @mem: ptr to mem struct to free 91 **/ 92 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 93 struct iavf_dma_mem *mem) 94 { 95 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 96 97 if (!mem || !mem->va) 98 return IAVF_ERR_PARAM; 99 dma_free_coherent(&adapter->pdev->dev, mem->size, 100 mem->va, (dma_addr_t)mem->pa); 101 return 0; 102 } 103 104 /** 105 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 106 * @hw: pointer to the HW structure 107 * @mem: ptr to mem struct to fill out 108 * @size: size of memory requested 109 **/ 110 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 111 struct iavf_virt_mem *mem, u32 size) 112 { 113 if (!mem) 114 return IAVF_ERR_PARAM; 115 116 mem->size = size; 117 mem->va = kzalloc(size, GFP_KERNEL); 118 119 if (mem->va) 120 return 0; 121 else 122 return IAVF_ERR_NO_MEMORY; 123 } 124 125 /** 126 * iavf_free_virt_mem_d - OS specific memory free for shared code 127 * @hw: pointer to the HW structure 128 * @mem: ptr to mem struct to free 129 **/ 130 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 131 struct iavf_virt_mem *mem) 132 { 133 if (!mem) 134 return IAVF_ERR_PARAM; 135 136 /* it's ok to kfree a NULL pointer */ 137 kfree(mem->va); 138 139 return 0; 140 } 141 142 /** 143 * iavf_debug_d - OS dependent version of debug printing 144 * @hw: pointer to the HW structure 145 * @mask: debug level mask 146 * @fmt_str: printf-type format description 147 **/ 148 void iavf_debug_d(void *hw, u32 mask, char *fmt_str, ...) 149 { 150 char buf[512]; 151 va_list argptr; 152 153 if (!(mask & ((struct iavf_hw *)hw)->debug_mask)) 154 return; 155 156 va_start(argptr, fmt_str); 157 vsnprintf(buf, sizeof(buf), fmt_str, argptr); 158 va_end(argptr); 159 160 /* the debug string is already formatted with a newline */ 161 pr_info("%s", buf); 162 } 163 164 /** 165 * iavf_schedule_reset - Set the flags and schedule a reset event 166 * @adapter: board private structure 167 **/ 168 void iavf_schedule_reset(struct iavf_adapter *adapter) 169 { 170 if (!(adapter->flags & 171 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 172 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 173 schedule_work(&adapter->reset_task); 174 } 175 } 176 177 /** 178 * iavf_tx_timeout - Respond to a Tx Hang 179 * @netdev: network interface device structure 180 **/ 181 static void iavf_tx_timeout(struct net_device *netdev) 182 { 183 struct iavf_adapter *adapter = netdev_priv(netdev); 184 185 adapter->tx_timeout_count++; 186 iavf_schedule_reset(adapter); 187 } 188 189 /** 190 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 191 * @adapter: board private structure 192 **/ 193 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 194 { 195 struct iavf_hw *hw = &adapter->hw; 196 197 if (!adapter->msix_entries) 198 return; 199 200 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 201 202 iavf_flush(hw); 203 204 synchronize_irq(adapter->msix_entries[0].vector); 205 } 206 207 /** 208 * iavf_misc_irq_enable - Enable default interrupt generation settings 209 * @adapter: board private structure 210 **/ 211 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 212 { 213 struct iavf_hw *hw = &adapter->hw; 214 215 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 216 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 217 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 218 219 iavf_flush(hw); 220 } 221 222 /** 223 * iavf_irq_disable - Mask off interrupt generation on the NIC 224 * @adapter: board private structure 225 **/ 226 static void iavf_irq_disable(struct iavf_adapter *adapter) 227 { 228 int i; 229 struct iavf_hw *hw = &adapter->hw; 230 231 if (!adapter->msix_entries) 232 return; 233 234 for (i = 1; i < adapter->num_msix_vectors; i++) { 235 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 236 synchronize_irq(adapter->msix_entries[i].vector); 237 } 238 iavf_flush(hw); 239 } 240 241 /** 242 * iavf_irq_enable_queues - Enable interrupt for specified queues 243 * @adapter: board private structure 244 * @mask: bitmap of queues to enable 245 **/ 246 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 247 { 248 struct iavf_hw *hw = &adapter->hw; 249 int i; 250 251 for (i = 1; i < adapter->num_msix_vectors; i++) { 252 if (mask & BIT(i - 1)) { 253 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 254 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 255 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 256 } 257 } 258 } 259 260 /** 261 * iavf_irq_enable - Enable default interrupt generation settings 262 * @adapter: board private structure 263 * @flush: boolean value whether to run rd32() 264 **/ 265 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 266 { 267 struct iavf_hw *hw = &adapter->hw; 268 269 iavf_misc_irq_enable(adapter); 270 iavf_irq_enable_queues(adapter, ~0); 271 272 if (flush) 273 iavf_flush(hw); 274 } 275 276 /** 277 * iavf_msix_aq - Interrupt handler for vector 0 278 * @irq: interrupt number 279 * @data: pointer to netdev 280 **/ 281 static irqreturn_t iavf_msix_aq(int irq, void *data) 282 { 283 struct net_device *netdev = data; 284 struct iavf_adapter *adapter = netdev_priv(netdev); 285 struct iavf_hw *hw = &adapter->hw; 286 287 /* handle non-queue interrupts, these reads clear the registers */ 288 rd32(hw, IAVF_VFINT_ICR01); 289 rd32(hw, IAVF_VFINT_ICR0_ENA1); 290 291 /* schedule work on the private workqueue */ 292 schedule_work(&adapter->adminq_task); 293 294 return IRQ_HANDLED; 295 } 296 297 /** 298 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 299 * @irq: interrupt number 300 * @data: pointer to a q_vector 301 **/ 302 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 303 { 304 struct iavf_q_vector *q_vector = data; 305 306 if (!q_vector->tx.ring && !q_vector->rx.ring) 307 return IRQ_HANDLED; 308 309 napi_schedule_irqoff(&q_vector->napi); 310 311 return IRQ_HANDLED; 312 } 313 314 /** 315 * iavf_map_vector_to_rxq - associate irqs with rx queues 316 * @adapter: board private structure 317 * @v_idx: interrupt number 318 * @r_idx: queue number 319 **/ 320 static void 321 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 322 { 323 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 324 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 325 struct iavf_hw *hw = &adapter->hw; 326 327 rx_ring->q_vector = q_vector; 328 rx_ring->next = q_vector->rx.ring; 329 rx_ring->vsi = &adapter->vsi; 330 q_vector->rx.ring = rx_ring; 331 q_vector->rx.count++; 332 q_vector->rx.next_update = jiffies + 1; 333 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 334 q_vector->ring_mask |= BIT(r_idx); 335 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 336 q_vector->rx.current_itr); 337 q_vector->rx.current_itr = q_vector->rx.target_itr; 338 } 339 340 /** 341 * iavf_map_vector_to_txq - associate irqs with tx queues 342 * @adapter: board private structure 343 * @v_idx: interrupt number 344 * @t_idx: queue number 345 **/ 346 static void 347 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 348 { 349 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 350 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 351 struct iavf_hw *hw = &adapter->hw; 352 353 tx_ring->q_vector = q_vector; 354 tx_ring->next = q_vector->tx.ring; 355 tx_ring->vsi = &adapter->vsi; 356 q_vector->tx.ring = tx_ring; 357 q_vector->tx.count++; 358 q_vector->tx.next_update = jiffies + 1; 359 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 360 q_vector->num_ringpairs++; 361 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 362 q_vector->tx.target_itr); 363 q_vector->tx.current_itr = q_vector->tx.target_itr; 364 } 365 366 /** 367 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 368 * @adapter: board private structure to initialize 369 * 370 * This function maps descriptor rings to the queue-specific vectors 371 * we were allotted through the MSI-X enabling code. Ideally, we'd have 372 * one vector per ring/queue, but on a constrained vector budget, we 373 * group the rings as "efficiently" as possible. You would add new 374 * mapping configurations in here. 375 **/ 376 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 377 { 378 int rings_remaining = adapter->num_active_queues; 379 int ridx = 0, vidx = 0; 380 int q_vectors; 381 382 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 383 384 for (; ridx < rings_remaining; ridx++) { 385 iavf_map_vector_to_rxq(adapter, vidx, ridx); 386 iavf_map_vector_to_txq(adapter, vidx, ridx); 387 388 /* In the case where we have more queues than vectors, continue 389 * round-robin on vectors until all queues are mapped. 390 */ 391 if (++vidx >= q_vectors) 392 vidx = 0; 393 } 394 395 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 396 } 397 398 /** 399 * iavf_irq_affinity_notify - Callback for affinity changes 400 * @notify: context as to what irq was changed 401 * @mask: the new affinity mask 402 * 403 * This is a callback function used by the irq_set_affinity_notifier function 404 * so that we may register to receive changes to the irq affinity masks. 405 **/ 406 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 407 const cpumask_t *mask) 408 { 409 struct iavf_q_vector *q_vector = 410 container_of(notify, struct iavf_q_vector, affinity_notify); 411 412 cpumask_copy(&q_vector->affinity_mask, mask); 413 } 414 415 /** 416 * iavf_irq_affinity_release - Callback for affinity notifier release 417 * @ref: internal core kernel usage 418 * 419 * This is a callback function used by the irq_set_affinity_notifier function 420 * to inform the current notification subscriber that they will no longer 421 * receive notifications. 422 **/ 423 static void iavf_irq_affinity_release(struct kref *ref) {} 424 425 /** 426 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 427 * @adapter: board private structure 428 * @basename: device basename 429 * 430 * Allocates MSI-X vectors for tx and rx handling, and requests 431 * interrupts from the kernel. 432 **/ 433 static int 434 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 435 { 436 unsigned int vector, q_vectors; 437 unsigned int rx_int_idx = 0, tx_int_idx = 0; 438 int irq_num, err; 439 int cpu; 440 441 iavf_irq_disable(adapter); 442 /* Decrement for Other and TCP Timer vectors */ 443 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 444 445 for (vector = 0; vector < q_vectors; vector++) { 446 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 447 448 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 449 450 if (q_vector->tx.ring && q_vector->rx.ring) { 451 snprintf(q_vector->name, sizeof(q_vector->name), 452 "iavf-%s-TxRx-%d", basename, rx_int_idx++); 453 tx_int_idx++; 454 } else if (q_vector->rx.ring) { 455 snprintf(q_vector->name, sizeof(q_vector->name), 456 "iavf-%s-rx-%d", basename, rx_int_idx++); 457 } else if (q_vector->tx.ring) { 458 snprintf(q_vector->name, sizeof(q_vector->name), 459 "iavf-%s-tx-%d", basename, tx_int_idx++); 460 } else { 461 /* skip this unused q_vector */ 462 continue; 463 } 464 err = request_irq(irq_num, 465 iavf_msix_clean_rings, 466 0, 467 q_vector->name, 468 q_vector); 469 if (err) { 470 dev_info(&adapter->pdev->dev, 471 "Request_irq failed, error: %d\n", err); 472 goto free_queue_irqs; 473 } 474 /* register for affinity change notifications */ 475 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 476 q_vector->affinity_notify.release = 477 iavf_irq_affinity_release; 478 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 479 /* Spread the IRQ affinity hints across online CPUs. Note that 480 * get_cpu_mask returns a mask with a permanent lifetime so 481 * it's safe to use as a hint for irq_set_affinity_hint. 482 */ 483 cpu = cpumask_local_spread(q_vector->v_idx, -1); 484 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 485 } 486 487 return 0; 488 489 free_queue_irqs: 490 while (vector) { 491 vector--; 492 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 493 irq_set_affinity_notifier(irq_num, NULL); 494 irq_set_affinity_hint(irq_num, NULL); 495 free_irq(irq_num, &adapter->q_vectors[vector]); 496 } 497 return err; 498 } 499 500 /** 501 * iavf_request_misc_irq - Initialize MSI-X interrupts 502 * @adapter: board private structure 503 * 504 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 505 * vector is only for the admin queue, and stays active even when the netdev 506 * is closed. 507 **/ 508 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 509 { 510 struct net_device *netdev = adapter->netdev; 511 int err; 512 513 snprintf(adapter->misc_vector_name, 514 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 515 dev_name(&adapter->pdev->dev)); 516 err = request_irq(adapter->msix_entries[0].vector, 517 &iavf_msix_aq, 0, 518 adapter->misc_vector_name, netdev); 519 if (err) { 520 dev_err(&adapter->pdev->dev, 521 "request_irq for %s failed: %d\n", 522 adapter->misc_vector_name, err); 523 free_irq(adapter->msix_entries[0].vector, netdev); 524 } 525 return err; 526 } 527 528 /** 529 * iavf_free_traffic_irqs - Free MSI-X interrupts 530 * @adapter: board private structure 531 * 532 * Frees all MSI-X vectors other than 0. 533 **/ 534 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 535 { 536 int vector, irq_num, q_vectors; 537 538 if (!adapter->msix_entries) 539 return; 540 541 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 542 543 for (vector = 0; vector < q_vectors; vector++) { 544 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 545 irq_set_affinity_notifier(irq_num, NULL); 546 irq_set_affinity_hint(irq_num, NULL); 547 free_irq(irq_num, &adapter->q_vectors[vector]); 548 } 549 } 550 551 /** 552 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 553 * @adapter: board private structure 554 * 555 * Frees MSI-X vector 0. 556 **/ 557 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 558 { 559 struct net_device *netdev = adapter->netdev; 560 561 if (!adapter->msix_entries) 562 return; 563 564 free_irq(adapter->msix_entries[0].vector, netdev); 565 } 566 567 /** 568 * iavf_configure_tx - Configure Transmit Unit after Reset 569 * @adapter: board private structure 570 * 571 * Configure the Tx unit of the MAC after a reset. 572 **/ 573 static void iavf_configure_tx(struct iavf_adapter *adapter) 574 { 575 struct iavf_hw *hw = &adapter->hw; 576 int i; 577 578 for (i = 0; i < adapter->num_active_queues; i++) 579 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 580 } 581 582 /** 583 * iavf_configure_rx - Configure Receive Unit after Reset 584 * @adapter: board private structure 585 * 586 * Configure the Rx unit of the MAC after a reset. 587 **/ 588 static void iavf_configure_rx(struct iavf_adapter *adapter) 589 { 590 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 591 struct iavf_hw *hw = &adapter->hw; 592 int i; 593 594 /* Legacy Rx will always default to a 2048 buffer size. */ 595 #if (PAGE_SIZE < 8192) 596 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 597 struct net_device *netdev = adapter->netdev; 598 599 /* For jumbo frames on systems with 4K pages we have to use 600 * an order 1 page, so we might as well increase the size 601 * of our Rx buffer to make better use of the available space 602 */ 603 rx_buf_len = IAVF_RXBUFFER_3072; 604 605 /* We use a 1536 buffer size for configurations with 606 * standard Ethernet mtu. On x86 this gives us enough room 607 * for shared info and 192 bytes of padding. 608 */ 609 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 610 (netdev->mtu <= ETH_DATA_LEN)) 611 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 612 } 613 #endif 614 615 for (i = 0; i < adapter->num_active_queues; i++) { 616 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 617 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 618 619 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 620 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 621 else 622 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 623 } 624 } 625 626 /** 627 * iavf_find_vlan - Search filter list for specific vlan filter 628 * @adapter: board private structure 629 * @vlan: vlan tag 630 * 631 * Returns ptr to the filter object or NULL. Must be called while holding the 632 * mac_vlan_list_lock. 633 **/ 634 static struct 635 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) 636 { 637 struct iavf_vlan_filter *f; 638 639 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 640 if (vlan == f->vlan) 641 return f; 642 } 643 return NULL; 644 } 645 646 /** 647 * iavf_add_vlan - Add a vlan filter to the list 648 * @adapter: board private structure 649 * @vlan: VLAN tag 650 * 651 * Returns ptr to the filter object or NULL when no memory available. 652 **/ 653 static struct 654 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) 655 { 656 struct iavf_vlan_filter *f = NULL; 657 658 spin_lock_bh(&adapter->mac_vlan_list_lock); 659 660 f = iavf_find_vlan(adapter, vlan); 661 if (!f) { 662 f = kzalloc(sizeof(*f), GFP_KERNEL); 663 if (!f) 664 goto clearout; 665 666 f->vlan = vlan; 667 668 INIT_LIST_HEAD(&f->list); 669 list_add(&f->list, &adapter->vlan_filter_list); 670 f->add = true; 671 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 672 } 673 674 clearout: 675 spin_unlock_bh(&adapter->mac_vlan_list_lock); 676 return f; 677 } 678 679 /** 680 * iavf_del_vlan - Remove a vlan filter from the list 681 * @adapter: board private structure 682 * @vlan: VLAN tag 683 **/ 684 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) 685 { 686 struct iavf_vlan_filter *f; 687 688 spin_lock_bh(&adapter->mac_vlan_list_lock); 689 690 f = iavf_find_vlan(adapter, vlan); 691 if (f) { 692 f->remove = true; 693 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 694 } 695 696 spin_unlock_bh(&adapter->mac_vlan_list_lock); 697 } 698 699 /** 700 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 701 * @netdev: network device struct 702 * @proto: unused protocol data 703 * @vid: VLAN tag 704 **/ 705 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 706 __always_unused __be16 proto, u16 vid) 707 { 708 struct iavf_adapter *adapter = netdev_priv(netdev); 709 710 if (!VLAN_ALLOWED(adapter)) 711 return -EIO; 712 if (iavf_add_vlan(adapter, vid) == NULL) 713 return -ENOMEM; 714 return 0; 715 } 716 717 /** 718 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 719 * @netdev: network device struct 720 * @proto: unused protocol data 721 * @vid: VLAN tag 722 **/ 723 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 724 __always_unused __be16 proto, u16 vid) 725 { 726 struct iavf_adapter *adapter = netdev_priv(netdev); 727 728 if (VLAN_ALLOWED(adapter)) { 729 iavf_del_vlan(adapter, vid); 730 return 0; 731 } 732 return -EIO; 733 } 734 735 /** 736 * iavf_find_filter - Search filter list for specific mac filter 737 * @adapter: board private structure 738 * @macaddr: the MAC address 739 * 740 * Returns ptr to the filter object or NULL. Must be called while holding the 741 * mac_vlan_list_lock. 742 **/ 743 static struct 744 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 745 const u8 *macaddr) 746 { 747 struct iavf_mac_filter *f; 748 749 if (!macaddr) 750 return NULL; 751 752 list_for_each_entry(f, &adapter->mac_filter_list, list) { 753 if (ether_addr_equal(macaddr, f->macaddr)) 754 return f; 755 } 756 return NULL; 757 } 758 759 /** 760 * iavf_add_filter - Add a mac filter to the filter list 761 * @adapter: board private structure 762 * @macaddr: the MAC address 763 * 764 * Returns ptr to the filter object or NULL when no memory available. 765 **/ 766 static struct 767 iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 768 const u8 *macaddr) 769 { 770 struct iavf_mac_filter *f; 771 772 if (!macaddr) 773 return NULL; 774 775 f = iavf_find_filter(adapter, macaddr); 776 if (!f) { 777 f = kzalloc(sizeof(*f), GFP_ATOMIC); 778 if (!f) 779 return f; 780 781 ether_addr_copy(f->macaddr, macaddr); 782 783 list_add_tail(&f->list, &adapter->mac_filter_list); 784 f->add = true; 785 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 786 } else { 787 f->remove = false; 788 } 789 790 return f; 791 } 792 793 /** 794 * iavf_set_mac - NDO callback to set port mac address 795 * @netdev: network interface device structure 796 * @p: pointer to an address structure 797 * 798 * Returns 0 on success, negative on failure 799 **/ 800 static int iavf_set_mac(struct net_device *netdev, void *p) 801 { 802 struct iavf_adapter *adapter = netdev_priv(netdev); 803 struct iavf_hw *hw = &adapter->hw; 804 struct iavf_mac_filter *f; 805 struct sockaddr *addr = p; 806 807 if (!is_valid_ether_addr(addr->sa_data)) 808 return -EADDRNOTAVAIL; 809 810 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 811 return 0; 812 813 if (adapter->flags & IAVF_FLAG_ADDR_SET_BY_PF) 814 return -EPERM; 815 816 spin_lock_bh(&adapter->mac_vlan_list_lock); 817 818 f = iavf_find_filter(adapter, hw->mac.addr); 819 if (f) { 820 f->remove = true; 821 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 822 } 823 824 f = iavf_add_filter(adapter, addr->sa_data); 825 826 spin_unlock_bh(&adapter->mac_vlan_list_lock); 827 828 if (f) { 829 ether_addr_copy(hw->mac.addr, addr->sa_data); 830 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 831 } 832 833 return (f == NULL) ? -ENOMEM : 0; 834 } 835 836 /** 837 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 838 * @netdev: the netdevice 839 * @addr: address to add 840 * 841 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 842 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 843 */ 844 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 845 { 846 struct iavf_adapter *adapter = netdev_priv(netdev); 847 848 if (iavf_add_filter(adapter, addr)) 849 return 0; 850 else 851 return -ENOMEM; 852 } 853 854 /** 855 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 856 * @netdev: the netdevice 857 * @addr: address to add 858 * 859 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 860 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 861 */ 862 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 863 { 864 struct iavf_adapter *adapter = netdev_priv(netdev); 865 struct iavf_mac_filter *f; 866 867 /* Under some circumstances, we might receive a request to delete 868 * our own device address from our uc list. Because we store the 869 * device address in the VSI's MAC/VLAN filter list, we need to ignore 870 * such requests and not delete our device address from this list. 871 */ 872 if (ether_addr_equal(addr, netdev->dev_addr)) 873 return 0; 874 875 f = iavf_find_filter(adapter, addr); 876 if (f) { 877 f->remove = true; 878 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 879 } 880 return 0; 881 } 882 883 /** 884 * iavf_set_rx_mode - NDO callback to set the netdev filters 885 * @netdev: network interface device structure 886 **/ 887 static void iavf_set_rx_mode(struct net_device *netdev) 888 { 889 struct iavf_adapter *adapter = netdev_priv(netdev); 890 891 spin_lock_bh(&adapter->mac_vlan_list_lock); 892 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 893 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 894 spin_unlock_bh(&adapter->mac_vlan_list_lock); 895 896 if (netdev->flags & IFF_PROMISC && 897 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 898 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 899 else if (!(netdev->flags & IFF_PROMISC) && 900 adapter->flags & IAVF_FLAG_PROMISC_ON) 901 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 902 903 if (netdev->flags & IFF_ALLMULTI && 904 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 905 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 906 else if (!(netdev->flags & IFF_ALLMULTI) && 907 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 908 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 909 } 910 911 /** 912 * iavf_napi_enable_all - enable NAPI on all queue vectors 913 * @adapter: board private structure 914 **/ 915 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 916 { 917 int q_idx; 918 struct iavf_q_vector *q_vector; 919 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 920 921 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 922 struct napi_struct *napi; 923 924 q_vector = &adapter->q_vectors[q_idx]; 925 napi = &q_vector->napi; 926 napi_enable(napi); 927 } 928 } 929 930 /** 931 * iavf_napi_disable_all - disable NAPI on all queue vectors 932 * @adapter: board private structure 933 **/ 934 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 935 { 936 int q_idx; 937 struct iavf_q_vector *q_vector; 938 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 939 940 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 941 q_vector = &adapter->q_vectors[q_idx]; 942 napi_disable(&q_vector->napi); 943 } 944 } 945 946 /** 947 * iavf_configure - set up transmit and receive data structures 948 * @adapter: board private structure 949 **/ 950 static void iavf_configure(struct iavf_adapter *adapter) 951 { 952 struct net_device *netdev = adapter->netdev; 953 int i; 954 955 iavf_set_rx_mode(netdev); 956 957 iavf_configure_tx(adapter); 958 iavf_configure_rx(adapter); 959 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 960 961 for (i = 0; i < adapter->num_active_queues; i++) { 962 struct iavf_ring *ring = &adapter->rx_rings[i]; 963 964 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 965 } 966 } 967 968 /** 969 * iavf_up_complete - Finish the last steps of bringing up a connection 970 * @adapter: board private structure 971 * 972 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 973 **/ 974 static void iavf_up_complete(struct iavf_adapter *adapter) 975 { 976 adapter->state = __IAVF_RUNNING; 977 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 978 979 iavf_napi_enable_all(adapter); 980 981 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 982 if (CLIENT_ENABLED(adapter)) 983 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 984 mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); 985 } 986 987 /** 988 * iavf_down - Shutdown the connection processing 989 * @adapter: board private structure 990 * 991 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 992 **/ 993 void iavf_down(struct iavf_adapter *adapter) 994 { 995 struct net_device *netdev = adapter->netdev; 996 struct iavf_vlan_filter *vlf; 997 struct iavf_mac_filter *f; 998 struct iavf_cloud_filter *cf; 999 1000 if (adapter->state <= __IAVF_DOWN_PENDING) 1001 return; 1002 1003 netif_carrier_off(netdev); 1004 netif_tx_disable(netdev); 1005 adapter->link_up = false; 1006 iavf_napi_disable_all(adapter); 1007 iavf_irq_disable(adapter); 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 /* clear the sync flag on all filters */ 1012 __dev_uc_unsync(adapter->netdev, NULL); 1013 __dev_mc_unsync(adapter->netdev, NULL); 1014 1015 /* remove all MAC filters */ 1016 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1017 f->remove = true; 1018 } 1019 1020 /* remove all VLAN filters */ 1021 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1022 vlf->remove = true; 1023 } 1024 1025 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1026 1027 /* remove all cloud filters */ 1028 spin_lock_bh(&adapter->cloud_filter_list_lock); 1029 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1030 cf->del = true; 1031 } 1032 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1033 1034 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && 1035 adapter->state != __IAVF_RESETTING) { 1036 /* cancel any current operation */ 1037 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1038 /* Schedule operations to close down the HW. Don't wait 1039 * here for this to complete. The watchdog is still running 1040 * and it will take care of this. 1041 */ 1042 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1043 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1044 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1045 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1046 } 1047 1048 mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); 1049 } 1050 1051 /** 1052 * iavf_acquire_msix_vectors - Setup the MSIX capability 1053 * @adapter: board private structure 1054 * @vectors: number of vectors to request 1055 * 1056 * Work with the OS to set up the MSIX vectors needed. 1057 * 1058 * Returns 0 on success, negative on failure 1059 **/ 1060 static int 1061 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1062 { 1063 int err, vector_threshold; 1064 1065 /* We'll want at least 3 (vector_threshold): 1066 * 0) Other (Admin Queue and link, mostly) 1067 * 1) TxQ[0] Cleanup 1068 * 2) RxQ[0] Cleanup 1069 */ 1070 vector_threshold = MIN_MSIX_COUNT; 1071 1072 /* The more we get, the more we will assign to Tx/Rx Cleanup 1073 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1074 * Right now, we simply care about how many we'll get; we'll 1075 * set them up later while requesting irq's. 1076 */ 1077 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1078 vector_threshold, vectors); 1079 if (err < 0) { 1080 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1081 kfree(adapter->msix_entries); 1082 adapter->msix_entries = NULL; 1083 return err; 1084 } 1085 1086 /* Adjust for only the vectors we'll use, which is minimum 1087 * of max_msix_q_vectors + NONQ_VECS, or the number of 1088 * vectors we were allocated. 1089 */ 1090 adapter->num_msix_vectors = err; 1091 return 0; 1092 } 1093 1094 /** 1095 * iavf_free_queues - Free memory for all rings 1096 * @adapter: board private structure to initialize 1097 * 1098 * Free all of the memory associated with queue pairs. 1099 **/ 1100 static void iavf_free_queues(struct iavf_adapter *adapter) 1101 { 1102 if (!adapter->vsi_res) 1103 return; 1104 adapter->num_active_queues = 0; 1105 kfree(adapter->tx_rings); 1106 adapter->tx_rings = NULL; 1107 kfree(adapter->rx_rings); 1108 adapter->rx_rings = NULL; 1109 } 1110 1111 /** 1112 * iavf_alloc_queues - Allocate memory for all rings 1113 * @adapter: board private structure to initialize 1114 * 1115 * We allocate one ring per queue at run-time since we don't know the 1116 * number of queues at compile-time. The polling_netdev array is 1117 * intended for Multiqueue, but should work fine with a single queue. 1118 **/ 1119 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1120 { 1121 int i, num_active_queues; 1122 1123 /* If we're in reset reallocating queues we don't actually know yet for 1124 * certain the PF gave us the number of queues we asked for but we'll 1125 * assume it did. Once basic reset is finished we'll confirm once we 1126 * start negotiating config with PF. 1127 */ 1128 if (adapter->num_req_queues) 1129 num_active_queues = adapter->num_req_queues; 1130 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1131 adapter->num_tc) 1132 num_active_queues = adapter->ch_config.total_qps; 1133 else 1134 num_active_queues = min_t(int, 1135 adapter->vsi_res->num_queue_pairs, 1136 (int)(num_online_cpus())); 1137 1138 1139 adapter->tx_rings = kcalloc(num_active_queues, 1140 sizeof(struct iavf_ring), GFP_KERNEL); 1141 if (!adapter->tx_rings) 1142 goto err_out; 1143 adapter->rx_rings = kcalloc(num_active_queues, 1144 sizeof(struct iavf_ring), GFP_KERNEL); 1145 if (!adapter->rx_rings) 1146 goto err_out; 1147 1148 for (i = 0; i < num_active_queues; i++) { 1149 struct iavf_ring *tx_ring; 1150 struct iavf_ring *rx_ring; 1151 1152 tx_ring = &adapter->tx_rings[i]; 1153 1154 tx_ring->queue_index = i; 1155 tx_ring->netdev = adapter->netdev; 1156 tx_ring->dev = &adapter->pdev->dev; 1157 tx_ring->count = adapter->tx_desc_count; 1158 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1159 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1160 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1161 1162 rx_ring = &adapter->rx_rings[i]; 1163 rx_ring->queue_index = i; 1164 rx_ring->netdev = adapter->netdev; 1165 rx_ring->dev = &adapter->pdev->dev; 1166 rx_ring->count = adapter->rx_desc_count; 1167 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1168 } 1169 1170 adapter->num_active_queues = num_active_queues; 1171 1172 return 0; 1173 1174 err_out: 1175 iavf_free_queues(adapter); 1176 return -ENOMEM; 1177 } 1178 1179 /** 1180 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1181 * @adapter: board private structure to initialize 1182 * 1183 * Attempt to configure the interrupts using the best available 1184 * capabilities of the hardware and the kernel. 1185 **/ 1186 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1187 { 1188 int vector, v_budget; 1189 int pairs = 0; 1190 int err = 0; 1191 1192 if (!adapter->vsi_res) { 1193 err = -EIO; 1194 goto out; 1195 } 1196 pairs = adapter->num_active_queues; 1197 1198 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1199 * us much good if we have more vectors than CPUs. However, we already 1200 * limit the total number of queues by the number of CPUs so we do not 1201 * need any further limiting here. 1202 */ 1203 v_budget = min_t(int, pairs + NONQ_VECS, 1204 (int)adapter->vf_res->max_vectors); 1205 1206 adapter->msix_entries = kcalloc(v_budget, 1207 sizeof(struct msix_entry), GFP_KERNEL); 1208 if (!adapter->msix_entries) { 1209 err = -ENOMEM; 1210 goto out; 1211 } 1212 1213 for (vector = 0; vector < v_budget; vector++) 1214 adapter->msix_entries[vector].entry = vector; 1215 1216 err = iavf_acquire_msix_vectors(adapter, v_budget); 1217 1218 out: 1219 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1220 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1221 return err; 1222 } 1223 1224 /** 1225 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1226 * @adapter: board private structure 1227 * 1228 * Return 0 on success, negative on failure 1229 **/ 1230 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1231 { 1232 struct iavf_aqc_get_set_rss_key_data *rss_key = 1233 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1234 struct iavf_hw *hw = &adapter->hw; 1235 int ret = 0; 1236 1237 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1238 /* bail because we already have a command pending */ 1239 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1240 adapter->current_op); 1241 return -EBUSY; 1242 } 1243 1244 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1245 if (ret) { 1246 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1247 iavf_stat_str(hw, ret), 1248 iavf_aq_str(hw, hw->aq.asq_last_status)); 1249 return ret; 1250 1251 } 1252 1253 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1254 adapter->rss_lut, adapter->rss_lut_size); 1255 if (ret) { 1256 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1257 iavf_stat_str(hw, ret), 1258 iavf_aq_str(hw, hw->aq.asq_last_status)); 1259 } 1260 1261 return ret; 1262 1263 } 1264 1265 /** 1266 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1267 * @adapter: board private structure 1268 * 1269 * Returns 0 on success, negative on failure 1270 **/ 1271 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1272 { 1273 struct iavf_hw *hw = &adapter->hw; 1274 u32 *dw; 1275 u16 i; 1276 1277 dw = (u32 *)adapter->rss_key; 1278 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1279 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1280 1281 dw = (u32 *)adapter->rss_lut; 1282 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1283 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1284 1285 iavf_flush(hw); 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * iavf_config_rss - Configure RSS keys and lut 1292 * @adapter: board private structure 1293 * 1294 * Returns 0 on success, negative on failure 1295 **/ 1296 int iavf_config_rss(struct iavf_adapter *adapter) 1297 { 1298 1299 if (RSS_PF(adapter)) { 1300 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1301 IAVF_FLAG_AQ_SET_RSS_KEY; 1302 return 0; 1303 } else if (RSS_AQ(adapter)) { 1304 return iavf_config_rss_aq(adapter); 1305 } else { 1306 return iavf_config_rss_reg(adapter); 1307 } 1308 } 1309 1310 /** 1311 * iavf_fill_rss_lut - Fill the lut with default values 1312 * @adapter: board private structure 1313 **/ 1314 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1315 { 1316 u16 i; 1317 1318 for (i = 0; i < adapter->rss_lut_size; i++) 1319 adapter->rss_lut[i] = i % adapter->num_active_queues; 1320 } 1321 1322 /** 1323 * iavf_init_rss - Prepare for RSS 1324 * @adapter: board private structure 1325 * 1326 * Return 0 on success, negative on failure 1327 **/ 1328 static int iavf_init_rss(struct iavf_adapter *adapter) 1329 { 1330 struct iavf_hw *hw = &adapter->hw; 1331 int ret; 1332 1333 if (!RSS_PF(adapter)) { 1334 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1335 if (adapter->vf_res->vf_cap_flags & 1336 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1337 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1338 else 1339 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1340 1341 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1342 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1343 } 1344 1345 iavf_fill_rss_lut(adapter); 1346 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1347 ret = iavf_config_rss(adapter); 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1354 * @adapter: board private structure to initialize 1355 * 1356 * We allocate one q_vector per queue interrupt. If allocation fails we 1357 * return -ENOMEM. 1358 **/ 1359 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1360 { 1361 int q_idx = 0, num_q_vectors; 1362 struct iavf_q_vector *q_vector; 1363 1364 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1365 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1366 GFP_KERNEL); 1367 if (!adapter->q_vectors) 1368 return -ENOMEM; 1369 1370 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1371 q_vector = &adapter->q_vectors[q_idx]; 1372 q_vector->adapter = adapter; 1373 q_vector->vsi = &adapter->vsi; 1374 q_vector->v_idx = q_idx; 1375 q_vector->reg_idx = q_idx; 1376 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1377 netif_napi_add(adapter->netdev, &q_vector->napi, 1378 iavf_napi_poll, NAPI_POLL_WEIGHT); 1379 } 1380 1381 return 0; 1382 } 1383 1384 /** 1385 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1386 * @adapter: board private structure to initialize 1387 * 1388 * This function frees the memory allocated to the q_vectors. In addition if 1389 * NAPI is enabled it will delete any references to the NAPI struct prior 1390 * to freeing the q_vector. 1391 **/ 1392 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1393 { 1394 int q_idx, num_q_vectors; 1395 int napi_vectors; 1396 1397 if (!adapter->q_vectors) 1398 return; 1399 1400 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1401 napi_vectors = adapter->num_active_queues; 1402 1403 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1404 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1405 1406 if (q_idx < napi_vectors) 1407 netif_napi_del(&q_vector->napi); 1408 } 1409 kfree(adapter->q_vectors); 1410 adapter->q_vectors = NULL; 1411 } 1412 1413 /** 1414 * iavf_reset_interrupt_capability - Reset MSIX setup 1415 * @adapter: board private structure 1416 * 1417 **/ 1418 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1419 { 1420 if (!adapter->msix_entries) 1421 return; 1422 1423 pci_disable_msix(adapter->pdev); 1424 kfree(adapter->msix_entries); 1425 adapter->msix_entries = NULL; 1426 } 1427 1428 /** 1429 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1430 * @adapter: board private structure to initialize 1431 * 1432 **/ 1433 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1434 { 1435 int err; 1436 1437 err = iavf_alloc_queues(adapter); 1438 if (err) { 1439 dev_err(&adapter->pdev->dev, 1440 "Unable to allocate memory for queues\n"); 1441 goto err_alloc_queues; 1442 } 1443 1444 rtnl_lock(); 1445 err = iavf_set_interrupt_capability(adapter); 1446 rtnl_unlock(); 1447 if (err) { 1448 dev_err(&adapter->pdev->dev, 1449 "Unable to setup interrupt capabilities\n"); 1450 goto err_set_interrupt; 1451 } 1452 1453 err = iavf_alloc_q_vectors(adapter); 1454 if (err) { 1455 dev_err(&adapter->pdev->dev, 1456 "Unable to allocate memory for queue vectors\n"); 1457 goto err_alloc_q_vectors; 1458 } 1459 1460 /* If we've made it so far while ADq flag being ON, then we haven't 1461 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1462 * resources have been allocated in the reset path. 1463 * Now we can truly claim that ADq is enabled. 1464 */ 1465 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1466 adapter->num_tc) 1467 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1468 adapter->num_tc); 1469 1470 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1471 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1472 adapter->num_active_queues); 1473 1474 return 0; 1475 err_alloc_q_vectors: 1476 iavf_reset_interrupt_capability(adapter); 1477 err_set_interrupt: 1478 iavf_free_queues(adapter); 1479 err_alloc_queues: 1480 return err; 1481 } 1482 1483 /** 1484 * iavf_free_rss - Free memory used by RSS structs 1485 * @adapter: board private structure 1486 **/ 1487 static void iavf_free_rss(struct iavf_adapter *adapter) 1488 { 1489 kfree(adapter->rss_key); 1490 adapter->rss_key = NULL; 1491 1492 kfree(adapter->rss_lut); 1493 adapter->rss_lut = NULL; 1494 } 1495 1496 /** 1497 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1498 * @adapter: board private structure 1499 * 1500 * Returns 0 on success, negative on failure 1501 **/ 1502 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1503 { 1504 struct net_device *netdev = adapter->netdev; 1505 int err; 1506 1507 if (netif_running(netdev)) 1508 iavf_free_traffic_irqs(adapter); 1509 iavf_free_misc_irq(adapter); 1510 iavf_reset_interrupt_capability(adapter); 1511 iavf_free_q_vectors(adapter); 1512 iavf_free_queues(adapter); 1513 1514 err = iavf_init_interrupt_scheme(adapter); 1515 if (err) 1516 goto err; 1517 1518 netif_tx_stop_all_queues(netdev); 1519 1520 err = iavf_request_misc_irq(adapter); 1521 if (err) 1522 goto err; 1523 1524 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1525 1526 iavf_map_rings_to_vectors(adapter); 1527 1528 if (RSS_AQ(adapter)) 1529 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 1530 else 1531 err = iavf_init_rss(adapter); 1532 err: 1533 return err; 1534 } 1535 1536 /** 1537 * iavf_watchdog_timer - Periodic call-back timer 1538 * @data: pointer to adapter disguised as unsigned long 1539 **/ 1540 static void iavf_watchdog_timer(struct timer_list *t) 1541 { 1542 struct iavf_adapter *adapter = from_timer(adapter, t, 1543 watchdog_timer); 1544 1545 schedule_work(&adapter->watchdog_task); 1546 /* timer will be rescheduled in watchdog task */ 1547 } 1548 1549 /** 1550 * iavf_watchdog_task - Periodic call-back task 1551 * @work: pointer to work_struct 1552 **/ 1553 static void iavf_watchdog_task(struct work_struct *work) 1554 { 1555 struct iavf_adapter *adapter = container_of(work, 1556 struct iavf_adapter, 1557 watchdog_task); 1558 struct iavf_hw *hw = &adapter->hw; 1559 u32 reg_val; 1560 1561 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) 1562 goto restart_watchdog; 1563 1564 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 1565 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1566 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1567 if ((reg_val == VIRTCHNL_VFR_VFACTIVE) || 1568 (reg_val == VIRTCHNL_VFR_COMPLETED)) { 1569 /* A chance for redemption! */ 1570 dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n"); 1571 adapter->state = __IAVF_STARTUP; 1572 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 1573 schedule_delayed_work(&adapter->init_task, 10); 1574 clear_bit(__IAVF_IN_CRITICAL_TASK, 1575 &adapter->crit_section); 1576 /* Don't reschedule the watchdog, since we've restarted 1577 * the init task. When init_task contacts the PF and 1578 * gets everything set up again, it'll restart the 1579 * watchdog for us. Down, boy. Sit. Stay. Woof. 1580 */ 1581 return; 1582 } 1583 adapter->aq_required = 0; 1584 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1585 goto watchdog_done; 1586 } 1587 1588 if ((adapter->state < __IAVF_DOWN) || 1589 (adapter->flags & IAVF_FLAG_RESET_PENDING)) 1590 goto watchdog_done; 1591 1592 /* check for reset */ 1593 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1594 if (!(adapter->flags & IAVF_FLAG_RESET_PENDING) && !reg_val) { 1595 adapter->state = __IAVF_RESETTING; 1596 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1597 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 1598 schedule_work(&adapter->reset_task); 1599 adapter->aq_required = 0; 1600 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1601 goto watchdog_done; 1602 } 1603 1604 /* Process admin queue tasks. After init, everything gets done 1605 * here so we don't race on the admin queue. 1606 */ 1607 if (adapter->current_op) { 1608 if (!iavf_asq_done(hw)) { 1609 dev_dbg(&adapter->pdev->dev, "Admin queue timeout\n"); 1610 iavf_send_api_ver(adapter); 1611 } 1612 goto watchdog_done; 1613 } 1614 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) { 1615 iavf_send_vf_config_msg(adapter); 1616 goto watchdog_done; 1617 } 1618 1619 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1620 iavf_disable_queues(adapter); 1621 goto watchdog_done; 1622 } 1623 1624 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1625 iavf_map_queues(adapter); 1626 goto watchdog_done; 1627 } 1628 1629 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1630 iavf_add_ether_addrs(adapter); 1631 goto watchdog_done; 1632 } 1633 1634 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1635 iavf_add_vlans(adapter); 1636 goto watchdog_done; 1637 } 1638 1639 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1640 iavf_del_ether_addrs(adapter); 1641 goto watchdog_done; 1642 } 1643 1644 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1645 iavf_del_vlans(adapter); 1646 goto watchdog_done; 1647 } 1648 1649 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1650 iavf_enable_vlan_stripping(adapter); 1651 goto watchdog_done; 1652 } 1653 1654 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1655 iavf_disable_vlan_stripping(adapter); 1656 goto watchdog_done; 1657 } 1658 1659 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1660 iavf_configure_queues(adapter); 1661 goto watchdog_done; 1662 } 1663 1664 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1665 iavf_enable_queues(adapter); 1666 goto watchdog_done; 1667 } 1668 1669 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1670 /* This message goes straight to the firmware, not the 1671 * PF, so we don't have to set current_op as we will 1672 * not get a response through the ARQ. 1673 */ 1674 iavf_init_rss(adapter); 1675 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1676 goto watchdog_done; 1677 } 1678 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1679 iavf_get_hena(adapter); 1680 goto watchdog_done; 1681 } 1682 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1683 iavf_set_hena(adapter); 1684 goto watchdog_done; 1685 } 1686 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1687 iavf_set_rss_key(adapter); 1688 goto watchdog_done; 1689 } 1690 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1691 iavf_set_rss_lut(adapter); 1692 goto watchdog_done; 1693 } 1694 1695 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1696 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1697 FLAG_VF_MULTICAST_PROMISC); 1698 goto watchdog_done; 1699 } 1700 1701 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1702 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1703 goto watchdog_done; 1704 } 1705 1706 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && 1707 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1708 iavf_set_promiscuous(adapter, 0); 1709 goto watchdog_done; 1710 } 1711 1712 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1713 iavf_enable_channels(adapter); 1714 goto watchdog_done; 1715 } 1716 1717 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1718 iavf_disable_channels(adapter); 1719 goto watchdog_done; 1720 } 1721 1722 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1723 iavf_add_cloud_filter(adapter); 1724 goto watchdog_done; 1725 } 1726 1727 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1728 iavf_del_cloud_filter(adapter); 1729 goto watchdog_done; 1730 } 1731 1732 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 1733 1734 if (adapter->state == __IAVF_RUNNING) 1735 iavf_request_stats(adapter); 1736 watchdog_done: 1737 if (adapter->state == __IAVF_RUNNING) 1738 iavf_detect_recover_hung(&adapter->vsi); 1739 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1740 restart_watchdog: 1741 if (adapter->state == __IAVF_REMOVE) 1742 return; 1743 if (adapter->aq_required) 1744 mod_timer(&adapter->watchdog_timer, 1745 jiffies + msecs_to_jiffies(20)); 1746 else 1747 mod_timer(&adapter->watchdog_timer, jiffies + (HZ * 2)); 1748 schedule_work(&adapter->adminq_task); 1749 } 1750 1751 static void iavf_disable_vf(struct iavf_adapter *adapter) 1752 { 1753 struct iavf_mac_filter *f, *ftmp; 1754 struct iavf_vlan_filter *fv, *fvtmp; 1755 struct iavf_cloud_filter *cf, *cftmp; 1756 1757 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 1758 1759 /* We don't use netif_running() because it may be true prior to 1760 * ndo_open() returning, so we can't assume it means all our open 1761 * tasks have finished, since we're not holding the rtnl_lock here. 1762 */ 1763 if (adapter->state == __IAVF_RUNNING) { 1764 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1765 netif_carrier_off(adapter->netdev); 1766 netif_tx_disable(adapter->netdev); 1767 adapter->link_up = false; 1768 iavf_napi_disable_all(adapter); 1769 iavf_irq_disable(adapter); 1770 iavf_free_traffic_irqs(adapter); 1771 iavf_free_all_tx_resources(adapter); 1772 iavf_free_all_rx_resources(adapter); 1773 } 1774 1775 spin_lock_bh(&adapter->mac_vlan_list_lock); 1776 1777 /* Delete all of the filters */ 1778 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 1779 list_del(&f->list); 1780 kfree(f); 1781 } 1782 1783 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 1784 list_del(&fv->list); 1785 kfree(fv); 1786 } 1787 1788 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1789 1790 spin_lock_bh(&adapter->cloud_filter_list_lock); 1791 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 1792 list_del(&cf->list); 1793 kfree(cf); 1794 adapter->num_cloud_filters--; 1795 } 1796 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1797 1798 iavf_free_misc_irq(adapter); 1799 iavf_reset_interrupt_capability(adapter); 1800 iavf_free_queues(adapter); 1801 iavf_free_q_vectors(adapter); 1802 kfree(adapter->vf_res); 1803 iavf_shutdown_adminq(&adapter->hw); 1804 adapter->netdev->flags &= ~IFF_UP; 1805 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 1806 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1807 adapter->state = __IAVF_DOWN; 1808 wake_up(&adapter->down_waitqueue); 1809 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 1810 } 1811 1812 #define IAVF_RESET_WAIT_MS 10 1813 #define IAVF_RESET_WAIT_COUNT 500 1814 /** 1815 * iavf_reset_task - Call-back task to handle hardware reset 1816 * @work: pointer to work_struct 1817 * 1818 * During reset we need to shut down and reinitialize the admin queue 1819 * before we can use it to communicate with the PF again. We also clear 1820 * and reinit the rings because that context is lost as well. 1821 **/ 1822 static void iavf_reset_task(struct work_struct *work) 1823 { 1824 struct iavf_adapter *adapter = container_of(work, 1825 struct iavf_adapter, 1826 reset_task); 1827 struct virtchnl_vf_resource *vfres = adapter->vf_res; 1828 struct net_device *netdev = adapter->netdev; 1829 struct iavf_hw *hw = &adapter->hw; 1830 struct iavf_vlan_filter *vlf; 1831 struct iavf_cloud_filter *cf; 1832 struct iavf_mac_filter *f; 1833 u32 reg_val; 1834 int i = 0, err; 1835 bool running; 1836 1837 /* When device is being removed it doesn't make sense to run the reset 1838 * task, just return in such a case. 1839 */ 1840 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 1841 return; 1842 1843 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, 1844 &adapter->crit_section)) 1845 usleep_range(500, 1000); 1846 if (CLIENT_ENABLED(adapter)) { 1847 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 1848 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 1849 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 1850 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 1851 cancel_delayed_work_sync(&adapter->client_task); 1852 iavf_notify_client_close(&adapter->vsi, true); 1853 } 1854 iavf_misc_irq_disable(adapter); 1855 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 1856 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 1857 /* Restart the AQ here. If we have been reset but didn't 1858 * detect it, or if the PF had to reinit, our AQ will be hosed. 1859 */ 1860 iavf_shutdown_adminq(hw); 1861 iavf_init_adminq(hw); 1862 iavf_request_reset(adapter); 1863 } 1864 adapter->flags |= IAVF_FLAG_RESET_PENDING; 1865 1866 /* poll until we see the reset actually happen */ 1867 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { 1868 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 1869 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 1870 if (!reg_val) 1871 break; 1872 usleep_range(5000, 10000); 1873 } 1874 if (i == IAVF_RESET_WAIT_COUNT) { 1875 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 1876 goto continue_reset; /* act like the reset happened */ 1877 } 1878 1879 /* wait until the reset is complete and the PF is responding to us */ 1880 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { 1881 /* sleep first to make sure a minimum wait time is met */ 1882 msleep(IAVF_RESET_WAIT_MS); 1883 1884 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 1885 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 1886 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 1887 break; 1888 } 1889 1890 pci_set_master(adapter->pdev); 1891 1892 if (i == IAVF_RESET_WAIT_COUNT) { 1893 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 1894 reg_val); 1895 iavf_disable_vf(adapter); 1896 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 1897 return; /* Do not attempt to reinit. It's dead, Jim. */ 1898 } 1899 1900 continue_reset: 1901 /* We don't use netif_running() because it may be true prior to 1902 * ndo_open() returning, so we can't assume it means all our open 1903 * tasks have finished, since we're not holding the rtnl_lock here. 1904 */ 1905 running = ((adapter->state == __IAVF_RUNNING) || 1906 (adapter->state == __IAVF_RESETTING)); 1907 1908 if (running) { 1909 netif_carrier_off(netdev); 1910 netif_tx_stop_all_queues(netdev); 1911 adapter->link_up = false; 1912 iavf_napi_disable_all(adapter); 1913 } 1914 iavf_irq_disable(adapter); 1915 1916 adapter->state = __IAVF_RESETTING; 1917 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 1918 1919 /* free the Tx/Rx rings and descriptors, might be better to just 1920 * re-use them sometime in the future 1921 */ 1922 iavf_free_all_rx_resources(adapter); 1923 iavf_free_all_tx_resources(adapter); 1924 1925 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 1926 /* kill and reinit the admin queue */ 1927 iavf_shutdown_adminq(hw); 1928 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1929 err = iavf_init_adminq(hw); 1930 if (err) 1931 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 1932 err); 1933 adapter->aq_required = 0; 1934 1935 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 1936 err = iavf_reinit_interrupt_scheme(adapter); 1937 if (err) 1938 goto reset_err; 1939 } 1940 1941 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 1942 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 1943 1944 spin_lock_bh(&adapter->mac_vlan_list_lock); 1945 1946 /* re-add all MAC filters */ 1947 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1948 f->add = true; 1949 } 1950 /* re-add all VLAN filters */ 1951 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1952 vlf->add = true; 1953 } 1954 1955 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1956 1957 /* check if TCs are running and re-add all cloud filters */ 1958 spin_lock_bh(&adapter->cloud_filter_list_lock); 1959 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1960 adapter->num_tc) { 1961 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1962 cf->add = true; 1963 } 1964 } 1965 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1966 1967 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1968 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 1969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 1970 iavf_misc_irq_enable(adapter); 1971 1972 mod_timer(&adapter->watchdog_timer, jiffies + 2); 1973 1974 /* We were running when the reset started, so we need to restore some 1975 * state here. 1976 */ 1977 if (running) { 1978 /* allocate transmit descriptors */ 1979 err = iavf_setup_all_tx_resources(adapter); 1980 if (err) 1981 goto reset_err; 1982 1983 /* allocate receive descriptors */ 1984 err = iavf_setup_all_rx_resources(adapter); 1985 if (err) 1986 goto reset_err; 1987 1988 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 1989 err = iavf_request_traffic_irqs(adapter, netdev->name); 1990 if (err) 1991 goto reset_err; 1992 1993 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 1994 } 1995 1996 iavf_configure(adapter); 1997 1998 iavf_up_complete(adapter); 1999 2000 iavf_irq_enable(adapter, true); 2001 } else { 2002 adapter->state = __IAVF_DOWN; 2003 wake_up(&adapter->down_waitqueue); 2004 } 2005 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2006 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2007 2008 return; 2009 reset_err: 2010 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2011 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2012 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 2013 iavf_close(netdev); 2014 } 2015 2016 /** 2017 * iavf_adminq_task - worker thread to clean the admin queue 2018 * @work: pointer to work_struct containing our data 2019 **/ 2020 static void iavf_adminq_task(struct work_struct *work) 2021 { 2022 struct iavf_adapter *adapter = 2023 container_of(work, struct iavf_adapter, adminq_task); 2024 struct iavf_hw *hw = &adapter->hw; 2025 struct iavf_arq_event_info event; 2026 enum virtchnl_ops v_op; 2027 enum iavf_status ret, v_ret; 2028 u32 val, oldval; 2029 u16 pending; 2030 2031 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2032 goto out; 2033 2034 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 2035 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 2036 if (!event.msg_buf) 2037 goto out; 2038 2039 do { 2040 ret = iavf_clean_arq_element(hw, &event, &pending); 2041 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 2042 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 2043 2044 if (ret || !v_op) 2045 break; /* No event to process or error cleaning ARQ */ 2046 2047 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 2048 event.msg_len); 2049 if (pending != 0) 2050 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 2051 } while (pending); 2052 2053 if ((adapter->flags & 2054 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 2055 adapter->state == __IAVF_RESETTING) 2056 goto freedom; 2057 2058 /* check for error indications */ 2059 val = rd32(hw, hw->aq.arq.len); 2060 if (val == 0xdeadbeef) /* indicates device in reset */ 2061 goto freedom; 2062 oldval = val; 2063 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 2064 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 2065 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 2066 } 2067 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 2068 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 2069 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 2070 } 2071 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 2072 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 2073 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 2074 } 2075 if (oldval != val) 2076 wr32(hw, hw->aq.arq.len, val); 2077 2078 val = rd32(hw, hw->aq.asq.len); 2079 oldval = val; 2080 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 2081 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 2082 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 2083 } 2084 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 2085 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 2086 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 2087 } 2088 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 2089 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 2090 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 2091 } 2092 if (oldval != val) 2093 wr32(hw, hw->aq.asq.len, val); 2094 2095 freedom: 2096 kfree(event.msg_buf); 2097 out: 2098 /* re-enable Admin queue interrupt cause */ 2099 iavf_misc_irq_enable(adapter); 2100 } 2101 2102 /** 2103 * iavf_client_task - worker thread to perform client work 2104 * @work: pointer to work_struct containing our data 2105 * 2106 * This task handles client interactions. Because client calls can be 2107 * reentrant, we can't handle them in the watchdog. 2108 **/ 2109 static void iavf_client_task(struct work_struct *work) 2110 { 2111 struct iavf_adapter *adapter = 2112 container_of(work, struct iavf_adapter, client_task.work); 2113 2114 /* If we can't get the client bit, just give up. We'll be rescheduled 2115 * later. 2116 */ 2117 2118 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) 2119 return; 2120 2121 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 2122 iavf_client_subtask(adapter); 2123 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 2124 goto out; 2125 } 2126 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 2127 iavf_notify_client_l2_params(&adapter->vsi); 2128 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 2129 goto out; 2130 } 2131 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 2132 iavf_notify_client_close(&adapter->vsi, false); 2133 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 2134 goto out; 2135 } 2136 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 2137 iavf_notify_client_open(&adapter->vsi); 2138 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 2139 } 2140 out: 2141 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); 2142 } 2143 2144 /** 2145 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 2146 * @adapter: board private structure 2147 * 2148 * Free all transmit software resources 2149 **/ 2150 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 2151 { 2152 int i; 2153 2154 if (!adapter->tx_rings) 2155 return; 2156 2157 for (i = 0; i < adapter->num_active_queues; i++) 2158 if (adapter->tx_rings[i].desc) 2159 iavf_free_tx_resources(&adapter->tx_rings[i]); 2160 } 2161 2162 /** 2163 * iavf_setup_all_tx_resources - allocate all queues Tx resources 2164 * @adapter: board private structure 2165 * 2166 * If this function returns with an error, then it's possible one or 2167 * more of the rings is populated (while the rest are not). It is the 2168 * callers duty to clean those orphaned rings. 2169 * 2170 * Return 0 on success, negative on failure 2171 **/ 2172 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 2173 { 2174 int i, err = 0; 2175 2176 for (i = 0; i < adapter->num_active_queues; i++) { 2177 adapter->tx_rings[i].count = adapter->tx_desc_count; 2178 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 2179 if (!err) 2180 continue; 2181 dev_err(&adapter->pdev->dev, 2182 "Allocation for Tx Queue %u failed\n", i); 2183 break; 2184 } 2185 2186 return err; 2187 } 2188 2189 /** 2190 * iavf_setup_all_rx_resources - allocate all queues Rx resources 2191 * @adapter: board private structure 2192 * 2193 * If this function returns with an error, then it's possible one or 2194 * more of the rings is populated (while the rest are not). It is the 2195 * callers duty to clean those orphaned rings. 2196 * 2197 * Return 0 on success, negative on failure 2198 **/ 2199 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 2200 { 2201 int i, err = 0; 2202 2203 for (i = 0; i < adapter->num_active_queues; i++) { 2204 adapter->rx_rings[i].count = adapter->rx_desc_count; 2205 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 2206 if (!err) 2207 continue; 2208 dev_err(&adapter->pdev->dev, 2209 "Allocation for Rx Queue %u failed\n", i); 2210 break; 2211 } 2212 return err; 2213 } 2214 2215 /** 2216 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 2217 * @adapter: board private structure 2218 * 2219 * Free all receive software resources 2220 **/ 2221 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 2222 { 2223 int i; 2224 2225 if (!adapter->rx_rings) 2226 return; 2227 2228 for (i = 0; i < adapter->num_active_queues; i++) 2229 if (adapter->rx_rings[i].desc) 2230 iavf_free_rx_resources(&adapter->rx_rings[i]); 2231 } 2232 2233 /** 2234 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 2235 * @adapter: board private structure 2236 * @max_tx_rate: max Tx bw for a tc 2237 **/ 2238 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 2239 u64 max_tx_rate) 2240 { 2241 int speed = 0, ret = 0; 2242 2243 switch (adapter->link_speed) { 2244 case IAVF_LINK_SPEED_40GB: 2245 speed = 40000; 2246 break; 2247 case IAVF_LINK_SPEED_25GB: 2248 speed = 25000; 2249 break; 2250 case IAVF_LINK_SPEED_20GB: 2251 speed = 20000; 2252 break; 2253 case IAVF_LINK_SPEED_10GB: 2254 speed = 10000; 2255 break; 2256 case IAVF_LINK_SPEED_1GB: 2257 speed = 1000; 2258 break; 2259 case IAVF_LINK_SPEED_100MB: 2260 speed = 100; 2261 break; 2262 default: 2263 break; 2264 } 2265 2266 if (max_tx_rate > speed) { 2267 dev_err(&adapter->pdev->dev, 2268 "Invalid tx rate specified\n"); 2269 ret = -EINVAL; 2270 } 2271 2272 return ret; 2273 } 2274 2275 /** 2276 * iavf_validate_channel_config - validate queue mapping info 2277 * @adapter: board private structure 2278 * @mqprio_qopt: queue parameters 2279 * 2280 * This function validates if the config provided by the user to 2281 * configure queue channels is valid or not. Returns 0 on a valid 2282 * config. 2283 **/ 2284 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 2285 struct tc_mqprio_qopt_offload *mqprio_qopt) 2286 { 2287 u64 total_max_rate = 0; 2288 int i, num_qps = 0; 2289 u64 tx_rate = 0; 2290 int ret = 0; 2291 2292 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 2293 mqprio_qopt->qopt.num_tc < 1) 2294 return -EINVAL; 2295 2296 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 2297 if (!mqprio_qopt->qopt.count[i] || 2298 mqprio_qopt->qopt.offset[i] != num_qps) 2299 return -EINVAL; 2300 if (mqprio_qopt->min_rate[i]) { 2301 dev_err(&adapter->pdev->dev, 2302 "Invalid min tx rate (greater than 0) specified\n"); 2303 return -EINVAL; 2304 } 2305 /*convert to Mbps */ 2306 tx_rate = div_u64(mqprio_qopt->max_rate[i], 2307 IAVF_MBPS_DIVISOR); 2308 total_max_rate += tx_rate; 2309 num_qps += mqprio_qopt->qopt.count[i]; 2310 } 2311 if (num_qps > IAVF_MAX_REQ_QUEUES) 2312 return -EINVAL; 2313 2314 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 2315 return ret; 2316 } 2317 2318 /** 2319 * iavf_del_all_cloud_filters - delete all cloud filters 2320 * on the traffic classes 2321 **/ 2322 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 2323 { 2324 struct iavf_cloud_filter *cf, *cftmp; 2325 2326 spin_lock_bh(&adapter->cloud_filter_list_lock); 2327 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 2328 list) { 2329 list_del(&cf->list); 2330 kfree(cf); 2331 adapter->num_cloud_filters--; 2332 } 2333 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2334 } 2335 2336 /** 2337 * __iavf_setup_tc - configure multiple traffic classes 2338 * @netdev: network interface device structure 2339 * @type_date: tc offload data 2340 * 2341 * This function processes the config information provided by the 2342 * user to configure traffic classes/queue channels and packages the 2343 * information to request the PF to setup traffic classes. 2344 * 2345 * Returns 0 on success. 2346 **/ 2347 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 2348 { 2349 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2350 struct iavf_adapter *adapter = netdev_priv(netdev); 2351 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2352 u8 num_tc = 0, total_qps = 0; 2353 int ret = 0, netdev_tc = 0; 2354 u64 max_tx_rate; 2355 u16 mode; 2356 int i; 2357 2358 num_tc = mqprio_qopt->qopt.num_tc; 2359 mode = mqprio_qopt->mode; 2360 2361 /* delete queue_channel */ 2362 if (!mqprio_qopt->qopt.hw) { 2363 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 2364 /* reset the tc configuration */ 2365 netdev_reset_tc(netdev); 2366 adapter->num_tc = 0; 2367 netif_tx_stop_all_queues(netdev); 2368 netif_tx_disable(netdev); 2369 iavf_del_all_cloud_filters(adapter); 2370 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 2371 goto exit; 2372 } else { 2373 return -EINVAL; 2374 } 2375 } 2376 2377 /* add queue channel */ 2378 if (mode == TC_MQPRIO_MODE_CHANNEL) { 2379 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 2380 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 2381 return -EOPNOTSUPP; 2382 } 2383 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 2384 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 2385 return -EINVAL; 2386 } 2387 2388 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 2389 if (ret) 2390 return ret; 2391 /* Return if same TC config is requested */ 2392 if (adapter->num_tc == num_tc) 2393 return 0; 2394 adapter->num_tc = num_tc; 2395 2396 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2397 if (i < num_tc) { 2398 adapter->ch_config.ch_info[i].count = 2399 mqprio_qopt->qopt.count[i]; 2400 adapter->ch_config.ch_info[i].offset = 2401 mqprio_qopt->qopt.offset[i]; 2402 total_qps += mqprio_qopt->qopt.count[i]; 2403 max_tx_rate = mqprio_qopt->max_rate[i]; 2404 /* convert to Mbps */ 2405 max_tx_rate = div_u64(max_tx_rate, 2406 IAVF_MBPS_DIVISOR); 2407 adapter->ch_config.ch_info[i].max_tx_rate = 2408 max_tx_rate; 2409 } else { 2410 adapter->ch_config.ch_info[i].count = 1; 2411 adapter->ch_config.ch_info[i].offset = 0; 2412 } 2413 } 2414 adapter->ch_config.total_qps = total_qps; 2415 netif_tx_stop_all_queues(netdev); 2416 netif_tx_disable(netdev); 2417 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 2418 netdev_reset_tc(netdev); 2419 /* Report the tc mapping up the stack */ 2420 netdev_set_num_tc(adapter->netdev, num_tc); 2421 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 2422 u16 qcount = mqprio_qopt->qopt.count[i]; 2423 u16 qoffset = mqprio_qopt->qopt.offset[i]; 2424 2425 if (i < num_tc) 2426 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 2427 qoffset); 2428 } 2429 } 2430 exit: 2431 return ret; 2432 } 2433 2434 /** 2435 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 2436 * @adapter: board private structure 2437 * @cls_flower: pointer to struct tc_cls_flower_offload 2438 * @filter: pointer to cloud filter structure 2439 */ 2440 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 2441 struct tc_cls_flower_offload *f, 2442 struct iavf_cloud_filter *filter) 2443 { 2444 struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f); 2445 struct flow_dissector *dissector = rule->match.dissector; 2446 u16 n_proto_mask = 0; 2447 u16 n_proto_key = 0; 2448 u8 field_flags = 0; 2449 u16 addr_type = 0; 2450 u16 n_proto = 0; 2451 int i = 0; 2452 struct virtchnl_filter *vf = &filter->f; 2453 2454 if (dissector->used_keys & 2455 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2456 BIT(FLOW_DISSECTOR_KEY_BASIC) | 2457 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2458 BIT(FLOW_DISSECTOR_KEY_VLAN) | 2459 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 2460 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 2461 BIT(FLOW_DISSECTOR_KEY_PORTS) | 2462 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 2463 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 2464 dissector->used_keys); 2465 return -EOPNOTSUPP; 2466 } 2467 2468 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 2469 struct flow_match_enc_keyid match; 2470 2471 flow_rule_match_enc_keyid(rule, &match); 2472 if (match.mask->keyid != 0) 2473 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 2474 } 2475 2476 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2477 struct flow_match_basic match; 2478 2479 flow_rule_match_basic(rule, &match); 2480 n_proto_key = ntohs(match.key->n_proto); 2481 n_proto_mask = ntohs(match.mask->n_proto); 2482 2483 if (n_proto_key == ETH_P_ALL) { 2484 n_proto_key = 0; 2485 n_proto_mask = 0; 2486 } 2487 n_proto = n_proto_key & n_proto_mask; 2488 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 2489 return -EINVAL; 2490 if (n_proto == ETH_P_IPV6) { 2491 /* specify flow type as TCP IPv6 */ 2492 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 2493 } 2494 2495 if (match.key->ip_proto != IPPROTO_TCP) { 2496 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 2497 return -EINVAL; 2498 } 2499 } 2500 2501 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2502 struct flow_match_eth_addrs match; 2503 2504 flow_rule_match_eth_addrs(rule, &match); 2505 2506 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 2507 if (!is_zero_ether_addr(match.mask->dst)) { 2508 if (is_broadcast_ether_addr(match.mask->dst)) { 2509 field_flags |= IAVF_CLOUD_FIELD_OMAC; 2510 } else { 2511 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 2512 match.mask->dst); 2513 return IAVF_ERR_CONFIG; 2514 } 2515 } 2516 2517 if (!is_zero_ether_addr(match.mask->src)) { 2518 if (is_broadcast_ether_addr(match.mask->src)) { 2519 field_flags |= IAVF_CLOUD_FIELD_IMAC; 2520 } else { 2521 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 2522 match.mask->src); 2523 return IAVF_ERR_CONFIG; 2524 } 2525 } 2526 2527 if (!is_zero_ether_addr(match.key->dst)) 2528 if (is_valid_ether_addr(match.key->dst) || 2529 is_multicast_ether_addr(match.key->dst)) { 2530 /* set the mask if a valid dst_mac address */ 2531 for (i = 0; i < ETH_ALEN; i++) 2532 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 2533 ether_addr_copy(vf->data.tcp_spec.dst_mac, 2534 match.key->dst); 2535 } 2536 2537 if (!is_zero_ether_addr(match.key->src)) 2538 if (is_valid_ether_addr(match.key->src) || 2539 is_multicast_ether_addr(match.key->src)) { 2540 /* set the mask if a valid dst_mac address */ 2541 for (i = 0; i < ETH_ALEN; i++) 2542 vf->mask.tcp_spec.src_mac[i] |= 0xff; 2543 ether_addr_copy(vf->data.tcp_spec.src_mac, 2544 match.key->src); 2545 } 2546 } 2547 2548 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2549 struct flow_match_vlan match; 2550 2551 flow_rule_match_vlan(rule, &match); 2552 if (match.mask->vlan_id) { 2553 if (match.mask->vlan_id == VLAN_VID_MASK) { 2554 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 2555 } else { 2556 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 2557 match.mask->vlan_id); 2558 return IAVF_ERR_CONFIG; 2559 } 2560 } 2561 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 2562 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 2563 } 2564 2565 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 2566 struct flow_match_control match; 2567 2568 flow_rule_match_control(rule, &match); 2569 addr_type = match.key->addr_type; 2570 } 2571 2572 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2573 struct flow_match_ipv4_addrs match; 2574 2575 flow_rule_match_ipv4_addrs(rule, &match); 2576 if (match.mask->dst) { 2577 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 2578 field_flags |= IAVF_CLOUD_FIELD_IIP; 2579 } else { 2580 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 2581 be32_to_cpu(match.mask->dst)); 2582 return IAVF_ERR_CONFIG; 2583 } 2584 } 2585 2586 if (match.mask->src) { 2587 if (match.mask->src == cpu_to_be32(0xffffffff)) { 2588 field_flags |= IAVF_CLOUD_FIELD_IIP; 2589 } else { 2590 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 2591 be32_to_cpu(match.mask->dst)); 2592 return IAVF_ERR_CONFIG; 2593 } 2594 } 2595 2596 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 2597 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 2598 return IAVF_ERR_CONFIG; 2599 } 2600 if (match.key->dst) { 2601 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 2602 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 2603 } 2604 if (match.key->src) { 2605 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 2606 vf->data.tcp_spec.src_ip[0] = match.key->src; 2607 } 2608 } 2609 2610 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2611 struct flow_match_ipv6_addrs match; 2612 2613 flow_rule_match_ipv6_addrs(rule, &match); 2614 2615 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 2616 if (ipv6_addr_any(&match.mask->dst)) { 2617 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 2618 IPV6_ADDR_ANY); 2619 return IAVF_ERR_CONFIG; 2620 } 2621 2622 /* src and dest IPv6 address should not be LOOPBACK 2623 * (0:0:0:0:0:0:0:1) which can be represented as ::1 2624 */ 2625 if (ipv6_addr_loopback(&match.key->dst) || 2626 ipv6_addr_loopback(&match.key->src)) { 2627 dev_err(&adapter->pdev->dev, 2628 "ipv6 addr should not be loopback\n"); 2629 return IAVF_ERR_CONFIG; 2630 } 2631 if (!ipv6_addr_any(&match.mask->dst) || 2632 !ipv6_addr_any(&match.mask->src)) 2633 field_flags |= IAVF_CLOUD_FIELD_IIP; 2634 2635 for (i = 0; i < 4; i++) 2636 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 2637 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 2638 sizeof(vf->data.tcp_spec.dst_ip)); 2639 for (i = 0; i < 4; i++) 2640 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 2641 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 2642 sizeof(vf->data.tcp_spec.src_ip)); 2643 } 2644 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 2645 struct flow_match_ports match; 2646 2647 flow_rule_match_ports(rule, &match); 2648 if (match.mask->src) { 2649 if (match.mask->src == cpu_to_be16(0xffff)) { 2650 field_flags |= IAVF_CLOUD_FIELD_IIP; 2651 } else { 2652 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 2653 be16_to_cpu(match.mask->src)); 2654 return IAVF_ERR_CONFIG; 2655 } 2656 } 2657 2658 if (match.mask->dst) { 2659 if (match.mask->dst == cpu_to_be16(0xffff)) { 2660 field_flags |= IAVF_CLOUD_FIELD_IIP; 2661 } else { 2662 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 2663 be16_to_cpu(match.mask->dst)); 2664 return IAVF_ERR_CONFIG; 2665 } 2666 } 2667 if (match.key->dst) { 2668 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 2669 vf->data.tcp_spec.dst_port = match.key->dst; 2670 } 2671 2672 if (match.key->src) { 2673 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 2674 vf->data.tcp_spec.src_port = match.key->src; 2675 } 2676 } 2677 vf->field_flags = field_flags; 2678 2679 return 0; 2680 } 2681 2682 /** 2683 * iavf_handle_tclass - Forward to a traffic class on the device 2684 * @adapter: board private structure 2685 * @tc: traffic class index on the device 2686 * @filter: pointer to cloud filter structure 2687 */ 2688 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 2689 struct iavf_cloud_filter *filter) 2690 { 2691 if (tc == 0) 2692 return 0; 2693 if (tc < adapter->num_tc) { 2694 if (!filter->f.data.tcp_spec.dst_port) { 2695 dev_err(&adapter->pdev->dev, 2696 "Specify destination port to redirect to traffic class other than TC0\n"); 2697 return -EINVAL; 2698 } 2699 } 2700 /* redirect to a traffic class on the same device */ 2701 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 2702 filter->f.action_meta = tc; 2703 return 0; 2704 } 2705 2706 /** 2707 * iavf_configure_clsflower - Add tc flower filters 2708 * @adapter: board private structure 2709 * @cls_flower: Pointer to struct tc_cls_flower_offload 2710 */ 2711 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 2712 struct tc_cls_flower_offload *cls_flower) 2713 { 2714 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2715 struct iavf_cloud_filter *filter = NULL; 2716 int err = -EINVAL, count = 50; 2717 2718 if (tc < 0) { 2719 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 2720 return -EINVAL; 2721 } 2722 2723 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2724 if (!filter) 2725 return -ENOMEM; 2726 2727 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 2728 &adapter->crit_section)) { 2729 if (--count == 0) 2730 goto err; 2731 udelay(1); 2732 } 2733 2734 filter->cookie = cls_flower->cookie; 2735 2736 /* set the mask to all zeroes to begin with */ 2737 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 2738 /* start out with flow type and eth type IPv4 to begin with */ 2739 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 2740 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 2741 if (err < 0) 2742 goto err; 2743 2744 err = iavf_handle_tclass(adapter, tc, filter); 2745 if (err < 0) 2746 goto err; 2747 2748 /* add filter to the list */ 2749 spin_lock_bh(&adapter->cloud_filter_list_lock); 2750 list_add_tail(&filter->list, &adapter->cloud_filter_list); 2751 adapter->num_cloud_filters++; 2752 filter->add = true; 2753 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2754 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2755 err: 2756 if (err) 2757 kfree(filter); 2758 2759 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2760 return err; 2761 } 2762 2763 /* iavf_find_cf - Find the cloud filter in the list 2764 * @adapter: Board private structure 2765 * @cookie: filter specific cookie 2766 * 2767 * Returns ptr to the filter object or NULL. Must be called while holding the 2768 * cloud_filter_list_lock. 2769 */ 2770 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 2771 unsigned long *cookie) 2772 { 2773 struct iavf_cloud_filter *filter = NULL; 2774 2775 if (!cookie) 2776 return NULL; 2777 2778 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 2779 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 2780 return filter; 2781 } 2782 return NULL; 2783 } 2784 2785 /** 2786 * iavf_delete_clsflower - Remove tc flower filters 2787 * @adapter: board private structure 2788 * @cls_flower: Pointer to struct tc_cls_flower_offload 2789 */ 2790 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 2791 struct tc_cls_flower_offload *cls_flower) 2792 { 2793 struct iavf_cloud_filter *filter = NULL; 2794 int err = 0; 2795 2796 spin_lock_bh(&adapter->cloud_filter_list_lock); 2797 filter = iavf_find_cf(adapter, &cls_flower->cookie); 2798 if (filter) { 2799 filter->del = true; 2800 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 2801 } else { 2802 err = -EINVAL; 2803 } 2804 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2805 2806 return err; 2807 } 2808 2809 /** 2810 * iavf_setup_tc_cls_flower - flower classifier offloads 2811 * @netdev: net device to configure 2812 * @type_data: offload data 2813 */ 2814 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 2815 struct tc_cls_flower_offload *cls_flower) 2816 { 2817 if (cls_flower->common.chain_index) 2818 return -EOPNOTSUPP; 2819 2820 switch (cls_flower->command) { 2821 case TC_CLSFLOWER_REPLACE: 2822 return iavf_configure_clsflower(adapter, cls_flower); 2823 case TC_CLSFLOWER_DESTROY: 2824 return iavf_delete_clsflower(adapter, cls_flower); 2825 case TC_CLSFLOWER_STATS: 2826 return -EOPNOTSUPP; 2827 default: 2828 return -EOPNOTSUPP; 2829 } 2830 } 2831 2832 /** 2833 * iavf_setup_tc_block_cb - block callback for tc 2834 * @type: type of offload 2835 * @type_data: offload data 2836 * @cb_priv: 2837 * 2838 * This function is the block callback for traffic classes 2839 **/ 2840 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2841 void *cb_priv) 2842 { 2843 switch (type) { 2844 case TC_SETUP_CLSFLOWER: 2845 return iavf_setup_tc_cls_flower(cb_priv, type_data); 2846 default: 2847 return -EOPNOTSUPP; 2848 } 2849 } 2850 2851 /** 2852 * iavf_setup_tc_block - register callbacks for tc 2853 * @netdev: network interface device structure 2854 * @f: tc offload data 2855 * 2856 * This function registers block callbacks for tc 2857 * offloads 2858 **/ 2859 static int iavf_setup_tc_block(struct net_device *dev, 2860 struct tc_block_offload *f) 2861 { 2862 struct iavf_adapter *adapter = netdev_priv(dev); 2863 2864 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 2865 return -EOPNOTSUPP; 2866 2867 switch (f->command) { 2868 case TC_BLOCK_BIND: 2869 return tcf_block_cb_register(f->block, iavf_setup_tc_block_cb, 2870 adapter, adapter, f->extack); 2871 case TC_BLOCK_UNBIND: 2872 tcf_block_cb_unregister(f->block, iavf_setup_tc_block_cb, 2873 adapter); 2874 return 0; 2875 default: 2876 return -EOPNOTSUPP; 2877 } 2878 } 2879 2880 /** 2881 * iavf_setup_tc - configure multiple traffic classes 2882 * @netdev: network interface device structure 2883 * @type: type of offload 2884 * @type_date: tc offload data 2885 * 2886 * This function is the callback to ndo_setup_tc in the 2887 * netdev_ops. 2888 * 2889 * Returns 0 on success 2890 **/ 2891 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 2892 void *type_data) 2893 { 2894 switch (type) { 2895 case TC_SETUP_QDISC_MQPRIO: 2896 return __iavf_setup_tc(netdev, type_data); 2897 case TC_SETUP_BLOCK: 2898 return iavf_setup_tc_block(netdev, type_data); 2899 default: 2900 return -EOPNOTSUPP; 2901 } 2902 } 2903 2904 /** 2905 * iavf_open - Called when a network interface is made active 2906 * @netdev: network interface device structure 2907 * 2908 * Returns 0 on success, negative value on failure 2909 * 2910 * The open entry point is called when a network interface is made 2911 * active by the system (IFF_UP). At this point all resources needed 2912 * for transmit and receive operations are allocated, the interrupt 2913 * handler is registered with the OS, the watchdog timer is started, 2914 * and the stack is notified that the interface is ready. 2915 **/ 2916 static int iavf_open(struct net_device *netdev) 2917 { 2918 struct iavf_adapter *adapter = netdev_priv(netdev); 2919 int err; 2920 2921 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 2922 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 2923 return -EIO; 2924 } 2925 2926 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 2927 &adapter->crit_section)) 2928 usleep_range(500, 1000); 2929 2930 if (adapter->state != __IAVF_DOWN) { 2931 err = -EBUSY; 2932 goto err_unlock; 2933 } 2934 2935 /* allocate transmit descriptors */ 2936 err = iavf_setup_all_tx_resources(adapter); 2937 if (err) 2938 goto err_setup_tx; 2939 2940 /* allocate receive descriptors */ 2941 err = iavf_setup_all_rx_resources(adapter); 2942 if (err) 2943 goto err_setup_rx; 2944 2945 /* clear any pending interrupts, may auto mask */ 2946 err = iavf_request_traffic_irqs(adapter, netdev->name); 2947 if (err) 2948 goto err_req_irq; 2949 2950 spin_lock_bh(&adapter->mac_vlan_list_lock); 2951 2952 iavf_add_filter(adapter, adapter->hw.mac.addr); 2953 2954 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2955 2956 iavf_configure(adapter); 2957 2958 iavf_up_complete(adapter); 2959 2960 iavf_irq_enable(adapter, true); 2961 2962 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2963 2964 return 0; 2965 2966 err_req_irq: 2967 iavf_down(adapter); 2968 iavf_free_traffic_irqs(adapter); 2969 err_setup_rx: 2970 iavf_free_all_rx_resources(adapter); 2971 err_setup_tx: 2972 iavf_free_all_tx_resources(adapter); 2973 err_unlock: 2974 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 2975 2976 return err; 2977 } 2978 2979 /** 2980 * iavf_close - Disables a network interface 2981 * @netdev: network interface device structure 2982 * 2983 * Returns 0, this is not allowed to fail 2984 * 2985 * The close entry point is called when an interface is de-activated 2986 * by the OS. The hardware is still under the drivers control, but 2987 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 2988 * are freed, along with all transmit and receive resources. 2989 **/ 2990 static int iavf_close(struct net_device *netdev) 2991 { 2992 struct iavf_adapter *adapter = netdev_priv(netdev); 2993 int status; 2994 2995 if (adapter->state <= __IAVF_DOWN_PENDING) 2996 return 0; 2997 2998 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 2999 &adapter->crit_section)) 3000 usleep_range(500, 1000); 3001 3002 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3003 if (CLIENT_ENABLED(adapter)) 3004 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3005 3006 iavf_down(adapter); 3007 adapter->state = __IAVF_DOWN_PENDING; 3008 iavf_free_traffic_irqs(adapter); 3009 3010 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3011 3012 /* We explicitly don't free resources here because the hardware is 3013 * still active and can DMA into memory. Resources are cleared in 3014 * iavf_virtchnl_completion() after we get confirmation from the PF 3015 * driver that the rings have been stopped. 3016 * 3017 * Also, we wait for state to transition to __IAVF_DOWN before 3018 * returning. State change occurs in iavf_virtchnl_completion() after 3019 * VF resources are released (which occurs after PF driver processes and 3020 * responds to admin queue commands). 3021 */ 3022 3023 status = wait_event_timeout(adapter->down_waitqueue, 3024 adapter->state == __IAVF_DOWN, 3025 msecs_to_jiffies(200)); 3026 if (!status) 3027 netdev_warn(netdev, "Device resources not yet released\n"); 3028 return 0; 3029 } 3030 3031 /** 3032 * iavf_change_mtu - Change the Maximum Transfer Unit 3033 * @netdev: network interface device structure 3034 * @new_mtu: new value for maximum frame size 3035 * 3036 * Returns 0 on success, negative on failure 3037 **/ 3038 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 3039 { 3040 struct iavf_adapter *adapter = netdev_priv(netdev); 3041 3042 netdev->mtu = new_mtu; 3043 if (CLIENT_ENABLED(adapter)) { 3044 iavf_notify_client_l2_params(&adapter->vsi); 3045 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3046 } 3047 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 3048 schedule_work(&adapter->reset_task); 3049 3050 return 0; 3051 } 3052 3053 /** 3054 * iavf_set_features - set the netdev feature flags 3055 * @netdev: ptr to the netdev being adjusted 3056 * @features: the feature set that the stack is suggesting 3057 * Note: expects to be called while under rtnl_lock() 3058 **/ 3059 static int iavf_set_features(struct net_device *netdev, 3060 netdev_features_t features) 3061 { 3062 struct iavf_adapter *adapter = netdev_priv(netdev); 3063 3064 /* Don't allow changing VLAN_RX flag when adapter is not capable 3065 * of VLAN offload 3066 */ 3067 if (!VLAN_ALLOWED(adapter)) { 3068 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) 3069 return -EINVAL; 3070 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { 3071 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3072 adapter->aq_required |= 3073 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 3074 else 3075 adapter->aq_required |= 3076 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 3077 } 3078 3079 return 0; 3080 } 3081 3082 /** 3083 * iavf_features_check - Validate encapsulated packet conforms to limits 3084 * @skb: skb buff 3085 * @dev: This physical port's netdev 3086 * @features: Offload features that the stack believes apply 3087 **/ 3088 static netdev_features_t iavf_features_check(struct sk_buff *skb, 3089 struct net_device *dev, 3090 netdev_features_t features) 3091 { 3092 size_t len; 3093 3094 /* No point in doing any of this if neither checksum nor GSO are 3095 * being requested for this frame. We can rule out both by just 3096 * checking for CHECKSUM_PARTIAL 3097 */ 3098 if (skb->ip_summed != CHECKSUM_PARTIAL) 3099 return features; 3100 3101 /* We cannot support GSO if the MSS is going to be less than 3102 * 64 bytes. If it is then we need to drop support for GSO. 3103 */ 3104 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3105 features &= ~NETIF_F_GSO_MASK; 3106 3107 /* MACLEN can support at most 63 words */ 3108 len = skb_network_header(skb) - skb->data; 3109 if (len & ~(63 * 2)) 3110 goto out_err; 3111 3112 /* IPLEN and EIPLEN can support at most 127 dwords */ 3113 len = skb_transport_header(skb) - skb_network_header(skb); 3114 if (len & ~(127 * 4)) 3115 goto out_err; 3116 3117 if (skb->encapsulation) { 3118 /* L4TUNLEN can support 127 words */ 3119 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3120 if (len & ~(127 * 2)) 3121 goto out_err; 3122 3123 /* IPLEN can support at most 127 dwords */ 3124 len = skb_inner_transport_header(skb) - 3125 skb_inner_network_header(skb); 3126 if (len & ~(127 * 4)) 3127 goto out_err; 3128 } 3129 3130 /* No need to validate L4LEN as TCP is the only protocol with a 3131 * a flexible value and we support all possible values supported 3132 * by TCP, which is at most 15 dwords 3133 */ 3134 3135 return features; 3136 out_err: 3137 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3138 } 3139 3140 /** 3141 * iavf_fix_features - fix up the netdev feature bits 3142 * @netdev: our net device 3143 * @features: desired feature bits 3144 * 3145 * Returns fixed-up features bits 3146 **/ 3147 static netdev_features_t iavf_fix_features(struct net_device *netdev, 3148 netdev_features_t features) 3149 { 3150 struct iavf_adapter *adapter = netdev_priv(netdev); 3151 3152 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) 3153 features &= ~(NETIF_F_HW_VLAN_CTAG_TX | 3154 NETIF_F_HW_VLAN_CTAG_RX | 3155 NETIF_F_HW_VLAN_CTAG_FILTER); 3156 3157 return features; 3158 } 3159 3160 static const struct net_device_ops iavf_netdev_ops = { 3161 .ndo_open = iavf_open, 3162 .ndo_stop = iavf_close, 3163 .ndo_start_xmit = iavf_xmit_frame, 3164 .ndo_set_rx_mode = iavf_set_rx_mode, 3165 .ndo_validate_addr = eth_validate_addr, 3166 .ndo_set_mac_address = iavf_set_mac, 3167 .ndo_change_mtu = iavf_change_mtu, 3168 .ndo_tx_timeout = iavf_tx_timeout, 3169 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 3170 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 3171 .ndo_features_check = iavf_features_check, 3172 .ndo_fix_features = iavf_fix_features, 3173 .ndo_set_features = iavf_set_features, 3174 .ndo_setup_tc = iavf_setup_tc, 3175 }; 3176 3177 /** 3178 * iavf_check_reset_complete - check that VF reset is complete 3179 * @hw: pointer to hw struct 3180 * 3181 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 3182 **/ 3183 static int iavf_check_reset_complete(struct iavf_hw *hw) 3184 { 3185 u32 rstat; 3186 int i; 3187 3188 for (i = 0; i < 100; i++) { 3189 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 3190 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3191 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 3192 (rstat == VIRTCHNL_VFR_COMPLETED)) 3193 return 0; 3194 usleep_range(10, 20); 3195 } 3196 return -EBUSY; 3197 } 3198 3199 /** 3200 * iavf_process_config - Process the config information we got from the PF 3201 * @adapter: board private structure 3202 * 3203 * Verify that we have a valid config struct, and set up our netdev features 3204 * and our VSI struct. 3205 **/ 3206 int iavf_process_config(struct iavf_adapter *adapter) 3207 { 3208 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3209 int i, num_req_queues = adapter->num_req_queues; 3210 struct net_device *netdev = adapter->netdev; 3211 struct iavf_vsi *vsi = &adapter->vsi; 3212 netdev_features_t hw_enc_features; 3213 netdev_features_t hw_features; 3214 3215 /* got VF config message back from PF, now we can parse it */ 3216 for (i = 0; i < vfres->num_vsis; i++) { 3217 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 3218 adapter->vsi_res = &vfres->vsi_res[i]; 3219 } 3220 if (!adapter->vsi_res) { 3221 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 3222 return -ENODEV; 3223 } 3224 3225 if (num_req_queues && 3226 num_req_queues != adapter->vsi_res->num_queue_pairs) { 3227 /* Problem. The PF gave us fewer queues than what we had 3228 * negotiated in our request. Need a reset to see if we can't 3229 * get back to a working state. 3230 */ 3231 dev_err(&adapter->pdev->dev, 3232 "Requested %d queues, but PF only gave us %d.\n", 3233 num_req_queues, 3234 adapter->vsi_res->num_queue_pairs); 3235 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 3236 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 3237 iavf_schedule_reset(adapter); 3238 return -ENODEV; 3239 } 3240 adapter->num_req_queues = 0; 3241 3242 hw_enc_features = NETIF_F_SG | 3243 NETIF_F_IP_CSUM | 3244 NETIF_F_IPV6_CSUM | 3245 NETIF_F_HIGHDMA | 3246 NETIF_F_SOFT_FEATURES | 3247 NETIF_F_TSO | 3248 NETIF_F_TSO_ECN | 3249 NETIF_F_TSO6 | 3250 NETIF_F_SCTP_CRC | 3251 NETIF_F_RXHASH | 3252 NETIF_F_RXCSUM | 3253 0; 3254 3255 /* advertise to stack only if offloads for encapsulated packets is 3256 * supported 3257 */ 3258 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 3259 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 3260 NETIF_F_GSO_GRE | 3261 NETIF_F_GSO_GRE_CSUM | 3262 NETIF_F_GSO_IPXIP4 | 3263 NETIF_F_GSO_IPXIP6 | 3264 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3265 NETIF_F_GSO_PARTIAL | 3266 0; 3267 3268 if (!(vfres->vf_cap_flags & 3269 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 3270 netdev->gso_partial_features |= 3271 NETIF_F_GSO_UDP_TUNNEL_CSUM; 3272 3273 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3274 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 3275 netdev->hw_enc_features |= hw_enc_features; 3276 } 3277 /* record features VLANs can make use of */ 3278 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 3279 3280 /* Write features and hw_features separately to avoid polluting 3281 * with, or dropping, features that are set when we registered. 3282 */ 3283 hw_features = hw_enc_features; 3284 3285 /* Enable VLAN features if supported */ 3286 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3287 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 3288 NETIF_F_HW_VLAN_CTAG_RX); 3289 /* Enable cloud filter if ADQ is supported */ 3290 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 3291 hw_features |= NETIF_F_HW_TC; 3292 3293 netdev->hw_features |= hw_features; 3294 3295 netdev->features |= hw_features; 3296 3297 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 3298 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3299 3300 netdev->priv_flags |= IFF_UNICAST_FLT; 3301 3302 /* Do not turn on offloads when they are requested to be turned off. 3303 * TSO needs minimum 576 bytes to work correctly. 3304 */ 3305 if (netdev->wanted_features) { 3306 if (!(netdev->wanted_features & NETIF_F_TSO) || 3307 netdev->mtu < 576) 3308 netdev->features &= ~NETIF_F_TSO; 3309 if (!(netdev->wanted_features & NETIF_F_TSO6) || 3310 netdev->mtu < 576) 3311 netdev->features &= ~NETIF_F_TSO6; 3312 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 3313 netdev->features &= ~NETIF_F_TSO_ECN; 3314 if (!(netdev->wanted_features & NETIF_F_GRO)) 3315 netdev->features &= ~NETIF_F_GRO; 3316 if (!(netdev->wanted_features & NETIF_F_GSO)) 3317 netdev->features &= ~NETIF_F_GSO; 3318 } 3319 3320 adapter->vsi.id = adapter->vsi_res->vsi_id; 3321 3322 adapter->vsi.back = adapter; 3323 adapter->vsi.base_vector = 1; 3324 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 3325 vsi->netdev = adapter->netdev; 3326 vsi->qs_handle = adapter->vsi_res->qset_handle; 3327 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 3328 adapter->rss_key_size = vfres->rss_key_size; 3329 adapter->rss_lut_size = vfres->rss_lut_size; 3330 } else { 3331 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 3332 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 3333 } 3334 3335 return 0; 3336 } 3337 3338 /** 3339 * iavf_init_task - worker thread to perform delayed initialization 3340 * @work: pointer to work_struct containing our data 3341 * 3342 * This task completes the work that was begun in probe. Due to the nature 3343 * of VF-PF communications, we may need to wait tens of milliseconds to get 3344 * responses back from the PF. Rather than busy-wait in probe and bog down the 3345 * whole system, we'll do it in a task so we can sleep. 3346 * This task only runs during driver init. Once we've established 3347 * communications with the PF driver and set up our netdev, the watchdog 3348 * takes over. 3349 **/ 3350 static void iavf_init_task(struct work_struct *work) 3351 { 3352 struct iavf_adapter *adapter = container_of(work, 3353 struct iavf_adapter, 3354 init_task.work); 3355 struct net_device *netdev = adapter->netdev; 3356 struct iavf_hw *hw = &adapter->hw; 3357 struct pci_dev *pdev = adapter->pdev; 3358 int err; 3359 3360 switch (adapter->state) { 3361 case __IAVF_STARTUP: 3362 /* driver loaded, probe complete */ 3363 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 3364 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3365 err = iavf_set_mac_type(hw); 3366 if (err) { 3367 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", 3368 err); 3369 goto err; 3370 } 3371 err = iavf_check_reset_complete(hw); 3372 if (err) { 3373 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 3374 err); 3375 goto err; 3376 } 3377 hw->aq.num_arq_entries = IAVF_AQ_LEN; 3378 hw->aq.num_asq_entries = IAVF_AQ_LEN; 3379 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 3380 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 3381 3382 err = iavf_init_adminq(hw); 3383 if (err) { 3384 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 3385 err); 3386 goto err; 3387 } 3388 err = iavf_send_api_ver(adapter); 3389 if (err) { 3390 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); 3391 iavf_shutdown_adminq(hw); 3392 goto err; 3393 } 3394 adapter->state = __IAVF_INIT_VERSION_CHECK; 3395 goto restart; 3396 case __IAVF_INIT_VERSION_CHECK: 3397 if (!iavf_asq_done(hw)) { 3398 dev_err(&pdev->dev, "Admin queue command never completed\n"); 3399 iavf_shutdown_adminq(hw); 3400 adapter->state = __IAVF_STARTUP; 3401 goto err; 3402 } 3403 3404 /* aq msg sent, awaiting reply */ 3405 err = iavf_verify_api_ver(adapter); 3406 if (err) { 3407 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) 3408 err = iavf_send_api_ver(adapter); 3409 else 3410 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 3411 adapter->pf_version.major, 3412 adapter->pf_version.minor, 3413 VIRTCHNL_VERSION_MAJOR, 3414 VIRTCHNL_VERSION_MINOR); 3415 goto err; 3416 } 3417 err = iavf_send_vf_config_msg(adapter); 3418 if (err) { 3419 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 3420 err); 3421 goto err; 3422 } 3423 adapter->state = __IAVF_INIT_GET_RESOURCES; 3424 goto restart; 3425 case __IAVF_INIT_GET_RESOURCES: 3426 /* aq msg sent, awaiting reply */ 3427 if (!adapter->vf_res) { 3428 adapter->vf_res = kzalloc(struct_size(adapter->vf_res, 3429 vsi_res, IAVF_MAX_VF_VSI), 3430 GFP_KERNEL); 3431 if (!adapter->vf_res) 3432 goto err; 3433 } 3434 err = iavf_get_vf_config(adapter); 3435 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) { 3436 err = iavf_send_vf_config_msg(adapter); 3437 goto err; 3438 } else if (err == IAVF_ERR_PARAM) { 3439 /* We only get ERR_PARAM if the device is in a very bad 3440 * state or if we've been disabled for previous bad 3441 * behavior. Either way, we're done now. 3442 */ 3443 iavf_shutdown_adminq(hw); 3444 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 3445 return; 3446 } 3447 if (err) { 3448 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", 3449 err); 3450 goto err_alloc; 3451 } 3452 adapter->state = __IAVF_INIT_SW; 3453 break; 3454 default: 3455 goto err_alloc; 3456 } 3457 3458 if (iavf_process_config(adapter)) 3459 goto err_alloc; 3460 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3461 3462 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 3463 3464 netdev->netdev_ops = &iavf_netdev_ops; 3465 iavf_set_ethtool_ops(netdev); 3466 netdev->watchdog_timeo = 5 * HZ; 3467 3468 /* MTU range: 68 - 9710 */ 3469 netdev->min_mtu = ETH_MIN_MTU; 3470 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 3471 3472 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 3473 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 3474 adapter->hw.mac.addr); 3475 eth_hw_addr_random(netdev); 3476 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 3477 } else { 3478 adapter->flags |= IAVF_FLAG_ADDR_SET_BY_PF; 3479 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 3480 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 3481 } 3482 3483 timer_setup(&adapter->watchdog_timer, iavf_watchdog_timer, 0); 3484 mod_timer(&adapter->watchdog_timer, jiffies + 1); 3485 3486 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 3487 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 3488 err = iavf_init_interrupt_scheme(adapter); 3489 if (err) 3490 goto err_sw_init; 3491 iavf_map_rings_to_vectors(adapter); 3492 if (adapter->vf_res->vf_cap_flags & 3493 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 3494 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 3495 3496 err = iavf_request_misc_irq(adapter); 3497 if (err) 3498 goto err_sw_init; 3499 3500 netif_carrier_off(netdev); 3501 adapter->link_up = false; 3502 3503 if (!adapter->netdev_registered) { 3504 err = register_netdev(netdev); 3505 if (err) 3506 goto err_register; 3507 } 3508 3509 adapter->netdev_registered = true; 3510 3511 netif_tx_stop_all_queues(netdev); 3512 if (CLIENT_ALLOWED(adapter)) { 3513 err = iavf_lan_add_device(adapter); 3514 if (err) 3515 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 3516 err); 3517 } 3518 3519 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 3520 if (netdev->features & NETIF_F_GRO) 3521 dev_info(&pdev->dev, "GRO is enabled\n"); 3522 3523 adapter->state = __IAVF_DOWN; 3524 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3525 iavf_misc_irq_enable(adapter); 3526 wake_up(&adapter->down_waitqueue); 3527 3528 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 3529 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 3530 if (!adapter->rss_key || !adapter->rss_lut) 3531 goto err_mem; 3532 3533 if (RSS_AQ(adapter)) { 3534 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3535 mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); 3536 } else { 3537 iavf_init_rss(adapter); 3538 } 3539 return; 3540 restart: 3541 schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(30)); 3542 return; 3543 err_mem: 3544 iavf_free_rss(adapter); 3545 err_register: 3546 iavf_free_misc_irq(adapter); 3547 err_sw_init: 3548 iavf_reset_interrupt_capability(adapter); 3549 err_alloc: 3550 kfree(adapter->vf_res); 3551 adapter->vf_res = NULL; 3552 err: 3553 /* Things went into the weeds, so try again later */ 3554 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 3555 dev_err(&pdev->dev, "Failed to communicate with PF; waiting before retry\n"); 3556 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3557 iavf_shutdown_adminq(hw); 3558 adapter->state = __IAVF_STARTUP; 3559 schedule_delayed_work(&adapter->init_task, HZ * 5); 3560 return; 3561 } 3562 schedule_delayed_work(&adapter->init_task, HZ); 3563 } 3564 3565 /** 3566 * iavf_shutdown - Shutdown the device in preparation for a reboot 3567 * @pdev: pci device structure 3568 **/ 3569 static void iavf_shutdown(struct pci_dev *pdev) 3570 { 3571 struct net_device *netdev = pci_get_drvdata(pdev); 3572 struct iavf_adapter *adapter = netdev_priv(netdev); 3573 3574 netif_device_detach(netdev); 3575 3576 if (netif_running(netdev)) 3577 iavf_close(netdev); 3578 3579 /* Prevent the watchdog from running. */ 3580 adapter->state = __IAVF_REMOVE; 3581 adapter->aq_required = 0; 3582 3583 #ifdef CONFIG_PM 3584 pci_save_state(pdev); 3585 3586 #endif 3587 pci_disable_device(pdev); 3588 } 3589 3590 /** 3591 * iavf_probe - Device Initialization Routine 3592 * @pdev: PCI device information struct 3593 * @ent: entry in iavf_pci_tbl 3594 * 3595 * Returns 0 on success, negative on failure 3596 * 3597 * iavf_probe initializes an adapter identified by a pci_dev structure. 3598 * The OS initialization, configuring of the adapter private structure, 3599 * and a hardware reset occur. 3600 **/ 3601 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3602 { 3603 struct net_device *netdev; 3604 struct iavf_adapter *adapter = NULL; 3605 struct iavf_hw *hw = NULL; 3606 int err; 3607 3608 err = pci_enable_device(pdev); 3609 if (err) 3610 return err; 3611 3612 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3613 if (err) { 3614 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3615 if (err) { 3616 dev_err(&pdev->dev, 3617 "DMA configuration failed: 0x%x\n", err); 3618 goto err_dma; 3619 } 3620 } 3621 3622 err = pci_request_regions(pdev, iavf_driver_name); 3623 if (err) { 3624 dev_err(&pdev->dev, 3625 "pci_request_regions failed 0x%x\n", err); 3626 goto err_pci_reg; 3627 } 3628 3629 pci_enable_pcie_error_reporting(pdev); 3630 3631 pci_set_master(pdev); 3632 3633 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 3634 IAVF_MAX_REQ_QUEUES); 3635 if (!netdev) { 3636 err = -ENOMEM; 3637 goto err_alloc_etherdev; 3638 } 3639 3640 SET_NETDEV_DEV(netdev, &pdev->dev); 3641 3642 pci_set_drvdata(pdev, netdev); 3643 adapter = netdev_priv(netdev); 3644 3645 adapter->netdev = netdev; 3646 adapter->pdev = pdev; 3647 3648 hw = &adapter->hw; 3649 hw->back = adapter; 3650 3651 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 3652 adapter->state = __IAVF_STARTUP; 3653 3654 /* Call save state here because it relies on the adapter struct. */ 3655 pci_save_state(pdev); 3656 3657 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3658 pci_resource_len(pdev, 0)); 3659 if (!hw->hw_addr) { 3660 err = -EIO; 3661 goto err_ioremap; 3662 } 3663 hw->vendor_id = pdev->vendor; 3664 hw->device_id = pdev->device; 3665 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3666 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3667 hw->subsystem_device_id = pdev->subsystem_device; 3668 hw->bus.device = PCI_SLOT(pdev->devfn); 3669 hw->bus.func = PCI_FUNC(pdev->devfn); 3670 hw->bus.bus_id = pdev->bus->number; 3671 3672 /* set up the locks for the AQ, do this only once in probe 3673 * and destroy them only once in remove 3674 */ 3675 mutex_init(&hw->aq.asq_mutex); 3676 mutex_init(&hw->aq.arq_mutex); 3677 3678 spin_lock_init(&adapter->mac_vlan_list_lock); 3679 spin_lock_init(&adapter->cloud_filter_list_lock); 3680 3681 INIT_LIST_HEAD(&adapter->mac_filter_list); 3682 INIT_LIST_HEAD(&adapter->vlan_filter_list); 3683 INIT_LIST_HEAD(&adapter->cloud_filter_list); 3684 3685 INIT_WORK(&adapter->reset_task, iavf_reset_task); 3686 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 3687 INIT_WORK(&adapter->watchdog_task, iavf_watchdog_task); 3688 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 3689 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); 3690 schedule_delayed_work(&adapter->init_task, 3691 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 3692 3693 /* Setup the wait queue for indicating transition to down status */ 3694 init_waitqueue_head(&adapter->down_waitqueue); 3695 3696 return 0; 3697 3698 err_ioremap: 3699 free_netdev(netdev); 3700 err_alloc_etherdev: 3701 pci_release_regions(pdev); 3702 err_pci_reg: 3703 err_dma: 3704 pci_disable_device(pdev); 3705 return err; 3706 } 3707 3708 #ifdef CONFIG_PM 3709 /** 3710 * iavf_suspend - Power management suspend routine 3711 * @pdev: PCI device information struct 3712 * @state: unused 3713 * 3714 * Called when the system (VM) is entering sleep/suspend. 3715 **/ 3716 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state) 3717 { 3718 struct net_device *netdev = pci_get_drvdata(pdev); 3719 struct iavf_adapter *adapter = netdev_priv(netdev); 3720 int retval = 0; 3721 3722 netif_device_detach(netdev); 3723 3724 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, 3725 &adapter->crit_section)) 3726 usleep_range(500, 1000); 3727 3728 if (netif_running(netdev)) { 3729 rtnl_lock(); 3730 iavf_down(adapter); 3731 rtnl_unlock(); 3732 } 3733 iavf_free_misc_irq(adapter); 3734 iavf_reset_interrupt_capability(adapter); 3735 3736 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); 3737 3738 retval = pci_save_state(pdev); 3739 if (retval) 3740 return retval; 3741 3742 pci_disable_device(pdev); 3743 3744 return 0; 3745 } 3746 3747 /** 3748 * iavf_resume - Power management resume routine 3749 * @pdev: PCI device information struct 3750 * 3751 * Called when the system (VM) is resumed from sleep/suspend. 3752 **/ 3753 static int iavf_resume(struct pci_dev *pdev) 3754 { 3755 struct iavf_adapter *adapter = pci_get_drvdata(pdev); 3756 struct net_device *netdev = adapter->netdev; 3757 u32 err; 3758 3759 pci_set_power_state(pdev, PCI_D0); 3760 pci_restore_state(pdev); 3761 /* pci_restore_state clears dev->state_saved so call 3762 * pci_save_state to restore it. 3763 */ 3764 pci_save_state(pdev); 3765 3766 err = pci_enable_device_mem(pdev); 3767 if (err) { 3768 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n"); 3769 return err; 3770 } 3771 pci_set_master(pdev); 3772 3773 rtnl_lock(); 3774 err = iavf_set_interrupt_capability(adapter); 3775 if (err) { 3776 rtnl_unlock(); 3777 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 3778 return err; 3779 } 3780 err = iavf_request_misc_irq(adapter); 3781 rtnl_unlock(); 3782 if (err) { 3783 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 3784 return err; 3785 } 3786 3787 schedule_work(&adapter->reset_task); 3788 3789 netif_device_attach(netdev); 3790 3791 return err; 3792 } 3793 3794 #endif /* CONFIG_PM */ 3795 /** 3796 * iavf_remove - Device Removal Routine 3797 * @pdev: PCI device information struct 3798 * 3799 * iavf_remove is called by the PCI subsystem to alert the driver 3800 * that it should release a PCI device. The could be caused by a 3801 * Hot-Plug event, or because the driver is going to be removed from 3802 * memory. 3803 **/ 3804 static void iavf_remove(struct pci_dev *pdev) 3805 { 3806 struct net_device *netdev = pci_get_drvdata(pdev); 3807 struct iavf_adapter *adapter = netdev_priv(netdev); 3808 struct iavf_vlan_filter *vlf, *vlftmp; 3809 struct iavf_mac_filter *f, *ftmp; 3810 struct iavf_cloud_filter *cf, *cftmp; 3811 struct iavf_hw *hw = &adapter->hw; 3812 int err; 3813 /* Indicate we are in remove and not to run reset_task */ 3814 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 3815 cancel_delayed_work_sync(&adapter->init_task); 3816 cancel_work_sync(&adapter->reset_task); 3817 cancel_delayed_work_sync(&adapter->client_task); 3818 if (adapter->netdev_registered) { 3819 unregister_netdev(netdev); 3820 adapter->netdev_registered = false; 3821 } 3822 if (CLIENT_ALLOWED(adapter)) { 3823 err = iavf_lan_del_device(adapter); 3824 if (err) 3825 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 3826 err); 3827 } 3828 3829 /* Shut down all the garbage mashers on the detention level */ 3830 adapter->state = __IAVF_REMOVE; 3831 adapter->aq_required = 0; 3832 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3833 iavf_request_reset(adapter); 3834 msleep(50); 3835 /* If the FW isn't responding, kick it once, but only once. */ 3836 if (!iavf_asq_done(hw)) { 3837 iavf_request_reset(adapter); 3838 msleep(50); 3839 } 3840 iavf_free_all_tx_resources(adapter); 3841 iavf_free_all_rx_resources(adapter); 3842 iavf_misc_irq_disable(adapter); 3843 iavf_free_misc_irq(adapter); 3844 iavf_reset_interrupt_capability(adapter); 3845 iavf_free_q_vectors(adapter); 3846 3847 if (adapter->watchdog_timer.function) 3848 del_timer_sync(&adapter->watchdog_timer); 3849 3850 cancel_work_sync(&adapter->adminq_task); 3851 3852 iavf_free_rss(adapter); 3853 3854 if (hw->aq.asq.count) 3855 iavf_shutdown_adminq(hw); 3856 3857 /* destroy the locks only once, here */ 3858 mutex_destroy(&hw->aq.arq_mutex); 3859 mutex_destroy(&hw->aq.asq_mutex); 3860 3861 iounmap(hw->hw_addr); 3862 pci_release_regions(pdev); 3863 iavf_free_all_tx_resources(adapter); 3864 iavf_free_all_rx_resources(adapter); 3865 iavf_free_queues(adapter); 3866 kfree(adapter->vf_res); 3867 spin_lock_bh(&adapter->mac_vlan_list_lock); 3868 /* If we got removed before an up/down sequence, we've got a filter 3869 * hanging out there that we need to get rid of. 3870 */ 3871 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3872 list_del(&f->list); 3873 kfree(f); 3874 } 3875 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 3876 list) { 3877 list_del(&vlf->list); 3878 kfree(vlf); 3879 } 3880 3881 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3882 3883 spin_lock_bh(&adapter->cloud_filter_list_lock); 3884 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3885 list_del(&cf->list); 3886 kfree(cf); 3887 } 3888 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3889 3890 free_netdev(netdev); 3891 3892 pci_disable_pcie_error_reporting(pdev); 3893 3894 pci_disable_device(pdev); 3895 } 3896 3897 static struct pci_driver iavf_driver = { 3898 .name = iavf_driver_name, 3899 .id_table = iavf_pci_tbl, 3900 .probe = iavf_probe, 3901 .remove = iavf_remove, 3902 #ifdef CONFIG_PM 3903 .suspend = iavf_suspend, 3904 .resume = iavf_resume, 3905 #endif 3906 .shutdown = iavf_shutdown, 3907 }; 3908 3909 /** 3910 * iavf_init_module - Driver Registration Routine 3911 * 3912 * iavf_init_module is the first routine called when the driver is 3913 * loaded. All it does is register with the PCI subsystem. 3914 **/ 3915 static int __init iavf_init_module(void) 3916 { 3917 int ret; 3918 3919 pr_info("iavf: %s - version %s\n", iavf_driver_string, 3920 iavf_driver_version); 3921 3922 pr_info("%s\n", iavf_copyright); 3923 3924 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 3925 iavf_driver_name); 3926 if (!iavf_wq) { 3927 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 3928 return -ENOMEM; 3929 } 3930 ret = pci_register_driver(&iavf_driver); 3931 return ret; 3932 } 3933 3934 module_init(iavf_init_module); 3935 3936 /** 3937 * iavf_exit_module - Driver Exit Cleanup Routine 3938 * 3939 * iavf_exit_module is called just before the driver is removed 3940 * from memory. 3941 **/ 3942 static void __exit iavf_exit_module(void) 3943 { 3944 pci_unregister_driver(&iavf_driver); 3945 destroy_workqueue(iavf_wq); 3946 } 3947 3948 module_exit(iavf_exit_module); 3949 3950 /* iavf_main.c */ 3951