1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 /** 913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 914 * @netdev: network device struct 915 * @proto: unused protocol data 916 * @vid: VLAN tag 917 **/ 918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 919 __always_unused __be16 proto, u16 vid) 920 { 921 struct iavf_adapter *adapter = netdev_priv(netdev); 922 923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 924 if (proto == cpu_to_be16(ETH_P_8021Q)) 925 clear_bit(vid, adapter->vsi.active_cvlans); 926 else 927 clear_bit(vid, adapter->vsi.active_svlans); 928 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1012 f->is_primary = false; 1013 } 1014 1015 f = iavf_find_filter(adapter, hw->mac.addr); 1016 if (f) { 1017 f->remove = true; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1019 } 1020 1021 f = iavf_add_filter(adapter, new_mac); 1022 1023 if (f) { 1024 /* Always send the request to add if changing primary MAC 1025 * even if filter is already present on the list 1026 */ 1027 f->is_primary = true; 1028 f->add = true; 1029 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1030 ether_addr_copy(hw->mac.addr, new_mac); 1031 } 1032 1033 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1034 1035 /* schedule the watchdog task to immediately process the request */ 1036 if (f) { 1037 queue_work(iavf_wq, &adapter->watchdog_task.work); 1038 return 0; 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 /** 1044 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1045 * @netdev: network interface device structure 1046 * @macaddr: MAC address to set 1047 * 1048 * Returns true on success, false on failure 1049 */ 1050 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1051 const u8 *macaddr) 1052 { 1053 struct iavf_adapter *adapter = netdev_priv(netdev); 1054 struct iavf_mac_filter *f; 1055 bool ret = false; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 f = iavf_find_filter(adapter, macaddr); 1060 1061 if (!f || (!f->add && f->add_handled)) 1062 ret = true; 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * iavf_set_mac - NDO callback to set port MAC address 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 */ 1076 static int iavf_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct iavf_adapter *adapter = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 bool handle_mac = iavf_is_mac_set_handled(netdev, addr->sa_data); 1081 int ret; 1082 1083 if (!is_valid_ether_addr(addr->sa_data)) 1084 return -EADDRNOTAVAIL; 1085 1086 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1087 1088 if (ret) 1089 return ret; 1090 1091 /* If this is an initial set MAC during VF spawn do not wait */ 1092 if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) { 1093 adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET; 1094 return 0; 1095 } 1096 1097 if (handle_mac) 1098 goto done; 1099 1100 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, false, msecs_to_jiffies(2500)); 1101 1102 /* If ret < 0 then it means wait was interrupted. 1103 * If ret == 0 then it means we got a timeout. 1104 * else it means we got response for set MAC from PF, 1105 * check if netdev MAC was updated to requested MAC, 1106 * if yes then set MAC succeeded otherwise it failed return -EACCES 1107 */ 1108 if (ret < 0) 1109 return ret; 1110 1111 if (!ret) 1112 return -EAGAIN; 1113 1114 done: 1115 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1116 return -EACCES; 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1123 * @netdev: the netdevice 1124 * @addr: address to add 1125 * 1126 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1127 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1128 */ 1129 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1130 { 1131 struct iavf_adapter *adapter = netdev_priv(netdev); 1132 1133 if (iavf_add_filter(adapter, addr)) 1134 return 0; 1135 else 1136 return -ENOMEM; 1137 } 1138 1139 /** 1140 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1141 * @netdev: the netdevice 1142 * @addr: address to add 1143 * 1144 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1145 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1146 */ 1147 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1148 { 1149 struct iavf_adapter *adapter = netdev_priv(netdev); 1150 struct iavf_mac_filter *f; 1151 1152 /* Under some circumstances, we might receive a request to delete 1153 * our own device address from our uc list. Because we store the 1154 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1155 * such requests and not delete our device address from this list. 1156 */ 1157 if (ether_addr_equal(addr, netdev->dev_addr)) 1158 return 0; 1159 1160 f = iavf_find_filter(adapter, addr); 1161 if (f) { 1162 f->remove = true; 1163 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * iavf_set_rx_mode - NDO callback to set the netdev filters 1170 * @netdev: network interface device structure 1171 **/ 1172 static void iavf_set_rx_mode(struct net_device *netdev) 1173 { 1174 struct iavf_adapter *adapter = netdev_priv(netdev); 1175 1176 spin_lock_bh(&adapter->mac_vlan_list_lock); 1177 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1178 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1179 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1180 1181 if (netdev->flags & IFF_PROMISC && 1182 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1183 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1184 else if (!(netdev->flags & IFF_PROMISC) && 1185 adapter->flags & IAVF_FLAG_PROMISC_ON) 1186 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1187 1188 if (netdev->flags & IFF_ALLMULTI && 1189 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1190 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1191 else if (!(netdev->flags & IFF_ALLMULTI) && 1192 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1193 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1194 } 1195 1196 /** 1197 * iavf_napi_enable_all - enable NAPI on all queue vectors 1198 * @adapter: board private structure 1199 **/ 1200 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1201 { 1202 int q_idx; 1203 struct iavf_q_vector *q_vector; 1204 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1205 1206 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1207 struct napi_struct *napi; 1208 1209 q_vector = &adapter->q_vectors[q_idx]; 1210 napi = &q_vector->napi; 1211 napi_enable(napi); 1212 } 1213 } 1214 1215 /** 1216 * iavf_napi_disable_all - disable NAPI on all queue vectors 1217 * @adapter: board private structure 1218 **/ 1219 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1220 { 1221 int q_idx; 1222 struct iavf_q_vector *q_vector; 1223 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1224 1225 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1226 q_vector = &adapter->q_vectors[q_idx]; 1227 napi_disable(&q_vector->napi); 1228 } 1229 } 1230 1231 /** 1232 * iavf_configure - set up transmit and receive data structures 1233 * @adapter: board private structure 1234 **/ 1235 static void iavf_configure(struct iavf_adapter *adapter) 1236 { 1237 struct net_device *netdev = adapter->netdev; 1238 int i; 1239 1240 iavf_set_rx_mode(netdev); 1241 1242 iavf_configure_tx(adapter); 1243 iavf_configure_rx(adapter); 1244 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1245 1246 for (i = 0; i < adapter->num_active_queues; i++) { 1247 struct iavf_ring *ring = &adapter->rx_rings[i]; 1248 1249 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1250 } 1251 } 1252 1253 /** 1254 * iavf_up_complete - Finish the last steps of bringing up a connection 1255 * @adapter: board private structure 1256 * 1257 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1258 **/ 1259 static void iavf_up_complete(struct iavf_adapter *adapter) 1260 { 1261 iavf_change_state(adapter, __IAVF_RUNNING); 1262 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1263 1264 iavf_napi_enable_all(adapter); 1265 1266 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1267 if (CLIENT_ENABLED(adapter)) 1268 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1269 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1270 } 1271 1272 /** 1273 * iavf_down - Shutdown the connection processing 1274 * @adapter: board private structure 1275 * 1276 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1277 **/ 1278 void iavf_down(struct iavf_adapter *adapter) 1279 { 1280 struct net_device *netdev = adapter->netdev; 1281 struct iavf_vlan_filter *vlf; 1282 struct iavf_cloud_filter *cf; 1283 struct iavf_fdir_fltr *fdir; 1284 struct iavf_mac_filter *f; 1285 struct iavf_adv_rss *rss; 1286 1287 if (adapter->state <= __IAVF_DOWN_PENDING) 1288 return; 1289 1290 netif_carrier_off(netdev); 1291 netif_tx_disable(netdev); 1292 adapter->link_up = false; 1293 iavf_napi_disable_all(adapter); 1294 iavf_irq_disable(adapter); 1295 1296 spin_lock_bh(&adapter->mac_vlan_list_lock); 1297 1298 /* clear the sync flag on all filters */ 1299 __dev_uc_unsync(adapter->netdev, NULL); 1300 __dev_mc_unsync(adapter->netdev, NULL); 1301 1302 /* remove all MAC filters */ 1303 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1304 f->remove = true; 1305 } 1306 1307 /* remove all VLAN filters */ 1308 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1309 vlf->remove = true; 1310 } 1311 1312 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1313 1314 /* remove all cloud filters */ 1315 spin_lock_bh(&adapter->cloud_filter_list_lock); 1316 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1317 cf->del = true; 1318 } 1319 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1320 1321 /* remove all Flow Director filters */ 1322 spin_lock_bh(&adapter->fdir_fltr_lock); 1323 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1324 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1325 } 1326 spin_unlock_bh(&adapter->fdir_fltr_lock); 1327 1328 /* remove all advance RSS configuration */ 1329 spin_lock_bh(&adapter->adv_rss_lock); 1330 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1331 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1332 spin_unlock_bh(&adapter->adv_rss_lock); 1333 1334 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1335 /* cancel any current operation */ 1336 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1337 /* Schedule operations to close down the HW. Don't wait 1338 * here for this to complete. The watchdog is still running 1339 * and it will take care of this. 1340 */ 1341 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1342 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1343 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1344 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1345 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1346 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1347 } 1348 1349 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1350 } 1351 1352 /** 1353 * iavf_acquire_msix_vectors - Setup the MSIX capability 1354 * @adapter: board private structure 1355 * @vectors: number of vectors to request 1356 * 1357 * Work with the OS to set up the MSIX vectors needed. 1358 * 1359 * Returns 0 on success, negative on failure 1360 **/ 1361 static int 1362 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1363 { 1364 int err, vector_threshold; 1365 1366 /* We'll want at least 3 (vector_threshold): 1367 * 0) Other (Admin Queue and link, mostly) 1368 * 1) TxQ[0] Cleanup 1369 * 2) RxQ[0] Cleanup 1370 */ 1371 vector_threshold = MIN_MSIX_COUNT; 1372 1373 /* The more we get, the more we will assign to Tx/Rx Cleanup 1374 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1375 * Right now, we simply care about how many we'll get; we'll 1376 * set them up later while requesting irq's. 1377 */ 1378 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1379 vector_threshold, vectors); 1380 if (err < 0) { 1381 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1382 kfree(adapter->msix_entries); 1383 adapter->msix_entries = NULL; 1384 return err; 1385 } 1386 1387 /* Adjust for only the vectors we'll use, which is minimum 1388 * of max_msix_q_vectors + NONQ_VECS, or the number of 1389 * vectors we were allocated. 1390 */ 1391 adapter->num_msix_vectors = err; 1392 return 0; 1393 } 1394 1395 /** 1396 * iavf_free_queues - Free memory for all rings 1397 * @adapter: board private structure to initialize 1398 * 1399 * Free all of the memory associated with queue pairs. 1400 **/ 1401 static void iavf_free_queues(struct iavf_adapter *adapter) 1402 { 1403 if (!adapter->vsi_res) 1404 return; 1405 adapter->num_active_queues = 0; 1406 kfree(adapter->tx_rings); 1407 adapter->tx_rings = NULL; 1408 kfree(adapter->rx_rings); 1409 adapter->rx_rings = NULL; 1410 } 1411 1412 /** 1413 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1414 * @adapter: board private structure 1415 * 1416 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1417 * stripped in certain descriptor fields. Instead of checking the offload 1418 * capability bits in the hot path, cache the location the ring specific 1419 * flags. 1420 */ 1421 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1422 { 1423 int i; 1424 1425 for (i = 0; i < adapter->num_active_queues; i++) { 1426 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1427 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1428 1429 /* prevent multiple L2TAG bits being set after VFR */ 1430 tx_ring->flags &= 1431 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1432 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1433 rx_ring->flags &= 1434 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1435 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1436 1437 if (VLAN_ALLOWED(adapter)) { 1438 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1439 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1440 } else if (VLAN_V2_ALLOWED(adapter)) { 1441 struct virtchnl_vlan_supported_caps *stripping_support; 1442 struct virtchnl_vlan_supported_caps *insertion_support; 1443 1444 stripping_support = 1445 &adapter->vlan_v2_caps.offloads.stripping_support; 1446 insertion_support = 1447 &adapter->vlan_v2_caps.offloads.insertion_support; 1448 1449 if (stripping_support->outer) { 1450 if (stripping_support->outer & 1451 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1452 rx_ring->flags |= 1453 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1454 else if (stripping_support->outer & 1455 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1456 rx_ring->flags |= 1457 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1458 } else if (stripping_support->inner) { 1459 if (stripping_support->inner & 1460 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1461 rx_ring->flags |= 1462 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1463 else if (stripping_support->inner & 1464 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1465 rx_ring->flags |= 1466 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1467 } 1468 1469 if (insertion_support->outer) { 1470 if (insertion_support->outer & 1471 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1472 tx_ring->flags |= 1473 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1474 else if (insertion_support->outer & 1475 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1476 tx_ring->flags |= 1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1478 } else if (insertion_support->inner) { 1479 if (insertion_support->inner & 1480 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1481 tx_ring->flags |= 1482 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1483 else if (insertion_support->inner & 1484 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1485 tx_ring->flags |= 1486 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1487 } 1488 } 1489 } 1490 } 1491 1492 /** 1493 * iavf_alloc_queues - Allocate memory for all rings 1494 * @adapter: board private structure to initialize 1495 * 1496 * We allocate one ring per queue at run-time since we don't know the 1497 * number of queues at compile-time. The polling_netdev array is 1498 * intended for Multiqueue, but should work fine with a single queue. 1499 **/ 1500 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1501 { 1502 int i, num_active_queues; 1503 1504 /* If we're in reset reallocating queues we don't actually know yet for 1505 * certain the PF gave us the number of queues we asked for but we'll 1506 * assume it did. Once basic reset is finished we'll confirm once we 1507 * start negotiating config with PF. 1508 */ 1509 if (adapter->num_req_queues) 1510 num_active_queues = adapter->num_req_queues; 1511 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1512 adapter->num_tc) 1513 num_active_queues = adapter->ch_config.total_qps; 1514 else 1515 num_active_queues = min_t(int, 1516 adapter->vsi_res->num_queue_pairs, 1517 (int)(num_online_cpus())); 1518 1519 1520 adapter->tx_rings = kcalloc(num_active_queues, 1521 sizeof(struct iavf_ring), GFP_KERNEL); 1522 if (!adapter->tx_rings) 1523 goto err_out; 1524 adapter->rx_rings = kcalloc(num_active_queues, 1525 sizeof(struct iavf_ring), GFP_KERNEL); 1526 if (!adapter->rx_rings) 1527 goto err_out; 1528 1529 for (i = 0; i < num_active_queues; i++) { 1530 struct iavf_ring *tx_ring; 1531 struct iavf_ring *rx_ring; 1532 1533 tx_ring = &adapter->tx_rings[i]; 1534 1535 tx_ring->queue_index = i; 1536 tx_ring->netdev = adapter->netdev; 1537 tx_ring->dev = &adapter->pdev->dev; 1538 tx_ring->count = adapter->tx_desc_count; 1539 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1540 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1541 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1542 1543 rx_ring = &adapter->rx_rings[i]; 1544 rx_ring->queue_index = i; 1545 rx_ring->netdev = adapter->netdev; 1546 rx_ring->dev = &adapter->pdev->dev; 1547 rx_ring->count = adapter->rx_desc_count; 1548 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1549 } 1550 1551 adapter->num_active_queues = num_active_queues; 1552 1553 iavf_set_queue_vlan_tag_loc(adapter); 1554 1555 return 0; 1556 1557 err_out: 1558 iavf_free_queues(adapter); 1559 return -ENOMEM; 1560 } 1561 1562 /** 1563 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1564 * @adapter: board private structure to initialize 1565 * 1566 * Attempt to configure the interrupts using the best available 1567 * capabilities of the hardware and the kernel. 1568 **/ 1569 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1570 { 1571 int vector, v_budget; 1572 int pairs = 0; 1573 int err = 0; 1574 1575 if (!adapter->vsi_res) { 1576 err = -EIO; 1577 goto out; 1578 } 1579 pairs = adapter->num_active_queues; 1580 1581 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1582 * us much good if we have more vectors than CPUs. However, we already 1583 * limit the total number of queues by the number of CPUs so we do not 1584 * need any further limiting here. 1585 */ 1586 v_budget = min_t(int, pairs + NONQ_VECS, 1587 (int)adapter->vf_res->max_vectors); 1588 1589 adapter->msix_entries = kcalloc(v_budget, 1590 sizeof(struct msix_entry), GFP_KERNEL); 1591 if (!adapter->msix_entries) { 1592 err = -ENOMEM; 1593 goto out; 1594 } 1595 1596 for (vector = 0; vector < v_budget; vector++) 1597 adapter->msix_entries[vector].entry = vector; 1598 1599 err = iavf_acquire_msix_vectors(adapter, v_budget); 1600 1601 out: 1602 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1603 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1604 return err; 1605 } 1606 1607 /** 1608 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1609 * @adapter: board private structure 1610 * 1611 * Return 0 on success, negative on failure 1612 **/ 1613 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1614 { 1615 struct iavf_aqc_get_set_rss_key_data *rss_key = 1616 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1617 struct iavf_hw *hw = &adapter->hw; 1618 enum iavf_status status; 1619 1620 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1621 /* bail because we already have a command pending */ 1622 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1623 adapter->current_op); 1624 return -EBUSY; 1625 } 1626 1627 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1628 if (status) { 1629 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1630 iavf_stat_str(hw, status), 1631 iavf_aq_str(hw, hw->aq.asq_last_status)); 1632 return iavf_status_to_errno(status); 1633 1634 } 1635 1636 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1637 adapter->rss_lut, adapter->rss_lut_size); 1638 if (status) { 1639 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1640 iavf_stat_str(hw, status), 1641 iavf_aq_str(hw, hw->aq.asq_last_status)); 1642 return iavf_status_to_errno(status); 1643 } 1644 1645 return 0; 1646 1647 } 1648 1649 /** 1650 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1651 * @adapter: board private structure 1652 * 1653 * Returns 0 on success, negative on failure 1654 **/ 1655 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1656 { 1657 struct iavf_hw *hw = &adapter->hw; 1658 u32 *dw; 1659 u16 i; 1660 1661 dw = (u32 *)adapter->rss_key; 1662 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1663 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1664 1665 dw = (u32 *)adapter->rss_lut; 1666 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1667 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1668 1669 iavf_flush(hw); 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * iavf_config_rss - Configure RSS keys and lut 1676 * @adapter: board private structure 1677 * 1678 * Returns 0 on success, negative on failure 1679 **/ 1680 int iavf_config_rss(struct iavf_adapter *adapter) 1681 { 1682 1683 if (RSS_PF(adapter)) { 1684 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1685 IAVF_FLAG_AQ_SET_RSS_KEY; 1686 return 0; 1687 } else if (RSS_AQ(adapter)) { 1688 return iavf_config_rss_aq(adapter); 1689 } else { 1690 return iavf_config_rss_reg(adapter); 1691 } 1692 } 1693 1694 /** 1695 * iavf_fill_rss_lut - Fill the lut with default values 1696 * @adapter: board private structure 1697 **/ 1698 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1699 { 1700 u16 i; 1701 1702 for (i = 0; i < adapter->rss_lut_size; i++) 1703 adapter->rss_lut[i] = i % adapter->num_active_queues; 1704 } 1705 1706 /** 1707 * iavf_init_rss - Prepare for RSS 1708 * @adapter: board private structure 1709 * 1710 * Return 0 on success, negative on failure 1711 **/ 1712 static int iavf_init_rss(struct iavf_adapter *adapter) 1713 { 1714 struct iavf_hw *hw = &adapter->hw; 1715 1716 if (!RSS_PF(adapter)) { 1717 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1718 if (adapter->vf_res->vf_cap_flags & 1719 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1720 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1721 else 1722 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1723 1724 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1725 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1726 } 1727 1728 iavf_fill_rss_lut(adapter); 1729 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1730 1731 return iavf_config_rss(adapter); 1732 } 1733 1734 /** 1735 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1736 * @adapter: board private structure to initialize 1737 * 1738 * We allocate one q_vector per queue interrupt. If allocation fails we 1739 * return -ENOMEM. 1740 **/ 1741 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1742 { 1743 int q_idx = 0, num_q_vectors; 1744 struct iavf_q_vector *q_vector; 1745 1746 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1747 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1748 GFP_KERNEL); 1749 if (!adapter->q_vectors) 1750 return -ENOMEM; 1751 1752 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1753 q_vector = &adapter->q_vectors[q_idx]; 1754 q_vector->adapter = adapter; 1755 q_vector->vsi = &adapter->vsi; 1756 q_vector->v_idx = q_idx; 1757 q_vector->reg_idx = q_idx; 1758 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1759 netif_napi_add(adapter->netdev, &q_vector->napi, 1760 iavf_napi_poll, NAPI_POLL_WEIGHT); 1761 } 1762 1763 return 0; 1764 } 1765 1766 /** 1767 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1768 * @adapter: board private structure to initialize 1769 * 1770 * This function frees the memory allocated to the q_vectors. In addition if 1771 * NAPI is enabled it will delete any references to the NAPI struct prior 1772 * to freeing the q_vector. 1773 **/ 1774 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1775 { 1776 int q_idx, num_q_vectors; 1777 int napi_vectors; 1778 1779 if (!adapter->q_vectors) 1780 return; 1781 1782 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1783 napi_vectors = adapter->num_active_queues; 1784 1785 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1786 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1787 1788 if (q_idx < napi_vectors) 1789 netif_napi_del(&q_vector->napi); 1790 } 1791 kfree(adapter->q_vectors); 1792 adapter->q_vectors = NULL; 1793 } 1794 1795 /** 1796 * iavf_reset_interrupt_capability - Reset MSIX setup 1797 * @adapter: board private structure 1798 * 1799 **/ 1800 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1801 { 1802 if (!adapter->msix_entries) 1803 return; 1804 1805 pci_disable_msix(adapter->pdev); 1806 kfree(adapter->msix_entries); 1807 adapter->msix_entries = NULL; 1808 } 1809 1810 /** 1811 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1812 * @adapter: board private structure to initialize 1813 * 1814 **/ 1815 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1816 { 1817 int err; 1818 1819 err = iavf_alloc_queues(adapter); 1820 if (err) { 1821 dev_err(&adapter->pdev->dev, 1822 "Unable to allocate memory for queues\n"); 1823 goto err_alloc_queues; 1824 } 1825 1826 rtnl_lock(); 1827 err = iavf_set_interrupt_capability(adapter); 1828 rtnl_unlock(); 1829 if (err) { 1830 dev_err(&adapter->pdev->dev, 1831 "Unable to setup interrupt capabilities\n"); 1832 goto err_set_interrupt; 1833 } 1834 1835 err = iavf_alloc_q_vectors(adapter); 1836 if (err) { 1837 dev_err(&adapter->pdev->dev, 1838 "Unable to allocate memory for queue vectors\n"); 1839 goto err_alloc_q_vectors; 1840 } 1841 1842 /* If we've made it so far while ADq flag being ON, then we haven't 1843 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1844 * resources have been allocated in the reset path. 1845 * Now we can truly claim that ADq is enabled. 1846 */ 1847 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1848 adapter->num_tc) 1849 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1850 adapter->num_tc); 1851 1852 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1853 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1854 adapter->num_active_queues); 1855 1856 return 0; 1857 err_alloc_q_vectors: 1858 iavf_reset_interrupt_capability(adapter); 1859 err_set_interrupt: 1860 iavf_free_queues(adapter); 1861 err_alloc_queues: 1862 return err; 1863 } 1864 1865 /** 1866 * iavf_free_rss - Free memory used by RSS structs 1867 * @adapter: board private structure 1868 **/ 1869 static void iavf_free_rss(struct iavf_adapter *adapter) 1870 { 1871 kfree(adapter->rss_key); 1872 adapter->rss_key = NULL; 1873 1874 kfree(adapter->rss_lut); 1875 adapter->rss_lut = NULL; 1876 } 1877 1878 /** 1879 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1880 * @adapter: board private structure 1881 * 1882 * Returns 0 on success, negative on failure 1883 **/ 1884 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1885 { 1886 struct net_device *netdev = adapter->netdev; 1887 int err; 1888 1889 if (netif_running(netdev)) 1890 iavf_free_traffic_irqs(adapter); 1891 iavf_free_misc_irq(adapter); 1892 iavf_reset_interrupt_capability(adapter); 1893 iavf_free_q_vectors(adapter); 1894 iavf_free_queues(adapter); 1895 1896 err = iavf_init_interrupt_scheme(adapter); 1897 if (err) 1898 goto err; 1899 1900 netif_tx_stop_all_queues(netdev); 1901 1902 err = iavf_request_misc_irq(adapter); 1903 if (err) 1904 goto err; 1905 1906 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1907 1908 iavf_map_rings_to_vectors(adapter); 1909 err: 1910 return err; 1911 } 1912 1913 /** 1914 * iavf_process_aq_command - process aq_required flags 1915 * and sends aq command 1916 * @adapter: pointer to iavf adapter structure 1917 * 1918 * Returns 0 on success 1919 * Returns error code if no command was sent 1920 * or error code if the command failed. 1921 **/ 1922 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1923 { 1924 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1925 return iavf_send_vf_config_msg(adapter); 1926 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1927 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1928 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1929 iavf_disable_queues(adapter); 1930 return 0; 1931 } 1932 1933 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1934 iavf_map_queues(adapter); 1935 return 0; 1936 } 1937 1938 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1939 iavf_add_ether_addrs(adapter); 1940 return 0; 1941 } 1942 1943 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1944 iavf_add_vlans(adapter); 1945 return 0; 1946 } 1947 1948 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1949 iavf_del_ether_addrs(adapter); 1950 return 0; 1951 } 1952 1953 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1954 iavf_del_vlans(adapter); 1955 return 0; 1956 } 1957 1958 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1959 iavf_enable_vlan_stripping(adapter); 1960 return 0; 1961 } 1962 1963 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1964 iavf_disable_vlan_stripping(adapter); 1965 return 0; 1966 } 1967 1968 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1969 iavf_configure_queues(adapter); 1970 return 0; 1971 } 1972 1973 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1974 iavf_enable_queues(adapter); 1975 return 0; 1976 } 1977 1978 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1979 /* This message goes straight to the firmware, not the 1980 * PF, so we don't have to set current_op as we will 1981 * not get a response through the ARQ. 1982 */ 1983 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1984 return 0; 1985 } 1986 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1987 iavf_get_hena(adapter); 1988 return 0; 1989 } 1990 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1991 iavf_set_hena(adapter); 1992 return 0; 1993 } 1994 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1995 iavf_set_rss_key(adapter); 1996 return 0; 1997 } 1998 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1999 iavf_set_rss_lut(adapter); 2000 return 0; 2001 } 2002 2003 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2004 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2005 FLAG_VF_MULTICAST_PROMISC); 2006 return 0; 2007 } 2008 2009 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2010 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2011 return 0; 2012 } 2013 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2014 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2015 iavf_set_promiscuous(adapter, 0); 2016 return 0; 2017 } 2018 2019 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2020 iavf_enable_channels(adapter); 2021 return 0; 2022 } 2023 2024 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2025 iavf_disable_channels(adapter); 2026 return 0; 2027 } 2028 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2029 iavf_add_cloud_filter(adapter); 2030 return 0; 2031 } 2032 2033 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2034 iavf_del_cloud_filter(adapter); 2035 return 0; 2036 } 2037 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2038 iavf_del_cloud_filter(adapter); 2039 return 0; 2040 } 2041 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2042 iavf_add_cloud_filter(adapter); 2043 return 0; 2044 } 2045 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2046 iavf_add_fdir_filter(adapter); 2047 return IAVF_SUCCESS; 2048 } 2049 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2050 iavf_del_fdir_filter(adapter); 2051 return IAVF_SUCCESS; 2052 } 2053 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2054 iavf_add_adv_rss_cfg(adapter); 2055 return 0; 2056 } 2057 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2058 iavf_del_adv_rss_cfg(adapter); 2059 return 0; 2060 } 2061 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2062 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2063 return 0; 2064 } 2065 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2066 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2067 return 0; 2068 } 2069 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2070 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2071 return 0; 2072 } 2073 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2074 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2075 return 0; 2076 } 2077 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2078 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2079 return 0; 2080 } 2081 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2082 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2083 return 0; 2084 } 2085 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2086 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2087 return 0; 2088 } 2089 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2090 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2091 return 0; 2092 } 2093 2094 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2095 iavf_request_stats(adapter); 2096 return 0; 2097 } 2098 2099 return -EAGAIN; 2100 } 2101 2102 /** 2103 * iavf_set_vlan_offload_features - set VLAN offload configuration 2104 * @adapter: board private structure 2105 * @prev_features: previous features used for comparison 2106 * @features: updated features used for configuration 2107 * 2108 * Set the aq_required bit(s) based on the requested features passed in to 2109 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2110 * the watchdog if any changes are requested to expedite the request via 2111 * virtchnl. 2112 **/ 2113 void 2114 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2115 netdev_features_t prev_features, 2116 netdev_features_t features) 2117 { 2118 bool enable_stripping = true, enable_insertion = true; 2119 u16 vlan_ethertype = 0; 2120 u64 aq_required = 0; 2121 2122 /* keep cases separate because one ethertype for offloads can be 2123 * disabled at the same time as another is disabled, so check for an 2124 * enabled ethertype first, then check for disabled. Default to 2125 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2126 * stripping. 2127 */ 2128 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2129 vlan_ethertype = ETH_P_8021AD; 2130 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2131 vlan_ethertype = ETH_P_8021Q; 2132 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2133 vlan_ethertype = ETH_P_8021AD; 2134 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2135 vlan_ethertype = ETH_P_8021Q; 2136 else 2137 vlan_ethertype = ETH_P_8021Q; 2138 2139 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2140 enable_stripping = false; 2141 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2142 enable_insertion = false; 2143 2144 if (VLAN_ALLOWED(adapter)) { 2145 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2146 * stripping via virtchnl. VLAN insertion can be toggled on the 2147 * netdev, but it doesn't require a virtchnl message 2148 */ 2149 if (enable_stripping) 2150 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2151 else 2152 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2153 2154 } else if (VLAN_V2_ALLOWED(adapter)) { 2155 switch (vlan_ethertype) { 2156 case ETH_P_8021Q: 2157 if (enable_stripping) 2158 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2159 else 2160 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2161 2162 if (enable_insertion) 2163 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2164 else 2165 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2166 break; 2167 case ETH_P_8021AD: 2168 if (enable_stripping) 2169 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2170 else 2171 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2172 2173 if (enable_insertion) 2174 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2175 else 2176 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2177 break; 2178 } 2179 } 2180 2181 if (aq_required) { 2182 adapter->aq_required |= aq_required; 2183 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2184 } 2185 } 2186 2187 /** 2188 * iavf_startup - first step of driver startup 2189 * @adapter: board private structure 2190 * 2191 * Function process __IAVF_STARTUP driver state. 2192 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2193 * when fails the state is changed to __IAVF_INIT_FAILED 2194 **/ 2195 static void iavf_startup(struct iavf_adapter *adapter) 2196 { 2197 struct pci_dev *pdev = adapter->pdev; 2198 struct iavf_hw *hw = &adapter->hw; 2199 enum iavf_status status; 2200 int ret; 2201 2202 WARN_ON(adapter->state != __IAVF_STARTUP); 2203 2204 /* driver loaded, probe complete */ 2205 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2206 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2207 status = iavf_set_mac_type(hw); 2208 if (status) { 2209 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2210 goto err; 2211 } 2212 2213 ret = iavf_check_reset_complete(hw); 2214 if (ret) { 2215 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2216 ret); 2217 goto err; 2218 } 2219 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2220 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2221 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2222 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2223 2224 status = iavf_init_adminq(hw); 2225 if (status) { 2226 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2227 status); 2228 goto err; 2229 } 2230 ret = iavf_send_api_ver(adapter); 2231 if (ret) { 2232 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2233 iavf_shutdown_adminq(hw); 2234 goto err; 2235 } 2236 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2237 return; 2238 err: 2239 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2240 } 2241 2242 /** 2243 * iavf_init_version_check - second step of driver startup 2244 * @adapter: board private structure 2245 * 2246 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2247 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2248 * when fails the state is changed to __IAVF_INIT_FAILED 2249 **/ 2250 static void iavf_init_version_check(struct iavf_adapter *adapter) 2251 { 2252 struct pci_dev *pdev = adapter->pdev; 2253 struct iavf_hw *hw = &adapter->hw; 2254 int err = -EAGAIN; 2255 2256 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2257 2258 if (!iavf_asq_done(hw)) { 2259 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2260 iavf_shutdown_adminq(hw); 2261 iavf_change_state(adapter, __IAVF_STARTUP); 2262 goto err; 2263 } 2264 2265 /* aq msg sent, awaiting reply */ 2266 err = iavf_verify_api_ver(adapter); 2267 if (err) { 2268 if (err == -EALREADY) 2269 err = iavf_send_api_ver(adapter); 2270 else 2271 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2272 adapter->pf_version.major, 2273 adapter->pf_version.minor, 2274 VIRTCHNL_VERSION_MAJOR, 2275 VIRTCHNL_VERSION_MINOR); 2276 goto err; 2277 } 2278 err = iavf_send_vf_config_msg(adapter); 2279 if (err) { 2280 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2281 err); 2282 goto err; 2283 } 2284 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2285 return; 2286 err: 2287 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2288 } 2289 2290 /** 2291 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2292 * @adapter: board private structure 2293 */ 2294 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2295 { 2296 int i, num_req_queues = adapter->num_req_queues; 2297 struct iavf_vsi *vsi = &adapter->vsi; 2298 2299 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2300 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2301 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2302 } 2303 if (!adapter->vsi_res) { 2304 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2305 return -ENODEV; 2306 } 2307 2308 if (num_req_queues && 2309 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2310 /* Problem. The PF gave us fewer queues than what we had 2311 * negotiated in our request. Need a reset to see if we can't 2312 * get back to a working state. 2313 */ 2314 dev_err(&adapter->pdev->dev, 2315 "Requested %d queues, but PF only gave us %d.\n", 2316 num_req_queues, 2317 adapter->vsi_res->num_queue_pairs); 2318 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2319 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2320 iavf_schedule_reset(adapter); 2321 2322 return -EAGAIN; 2323 } 2324 adapter->num_req_queues = 0; 2325 adapter->vsi.id = adapter->vsi_res->vsi_id; 2326 2327 adapter->vsi.back = adapter; 2328 adapter->vsi.base_vector = 1; 2329 vsi->netdev = adapter->netdev; 2330 vsi->qs_handle = adapter->vsi_res->qset_handle; 2331 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2332 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2333 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2334 } else { 2335 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2336 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2337 } 2338 2339 return 0; 2340 } 2341 2342 /** 2343 * iavf_init_get_resources - third step of driver startup 2344 * @adapter: board private structure 2345 * 2346 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2347 * finishes driver initialization procedure. 2348 * When success the state is changed to __IAVF_DOWN 2349 * when fails the state is changed to __IAVF_INIT_FAILED 2350 **/ 2351 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2352 { 2353 struct pci_dev *pdev = adapter->pdev; 2354 struct iavf_hw *hw = &adapter->hw; 2355 int err; 2356 2357 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2358 /* aq msg sent, awaiting reply */ 2359 if (!adapter->vf_res) { 2360 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2361 GFP_KERNEL); 2362 if (!adapter->vf_res) { 2363 err = -ENOMEM; 2364 goto err; 2365 } 2366 } 2367 err = iavf_get_vf_config(adapter); 2368 if (err == -EALREADY) { 2369 err = iavf_send_vf_config_msg(adapter); 2370 goto err; 2371 } else if (err == -EINVAL) { 2372 /* We only get -EINVAL if the device is in a very bad 2373 * state or if we've been disabled for previous bad 2374 * behavior. Either way, we're done now. 2375 */ 2376 iavf_shutdown_adminq(hw); 2377 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2378 return; 2379 } 2380 if (err) { 2381 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2382 goto err_alloc; 2383 } 2384 2385 err = iavf_parse_vf_resource_msg(adapter); 2386 if (err) { 2387 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2388 err); 2389 goto err_alloc; 2390 } 2391 /* Some features require additional messages to negotiate extended 2392 * capabilities. These are processed in sequence by the 2393 * __IAVF_INIT_EXTENDED_CAPS driver state. 2394 */ 2395 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2396 2397 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2398 return; 2399 2400 err_alloc: 2401 kfree(adapter->vf_res); 2402 adapter->vf_res = NULL; 2403 err: 2404 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2405 } 2406 2407 /** 2408 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2409 * @adapter: board private structure 2410 * 2411 * Function processes send of the extended VLAN V2 capability message to the 2412 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2413 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2414 */ 2415 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2416 { 2417 int ret; 2418 2419 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2420 2421 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2422 if (ret && ret == -EOPNOTSUPP) { 2423 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2424 * we did not send the capability exchange message and do not 2425 * expect a response. 2426 */ 2427 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2428 } 2429 2430 /* We sent the message, so move on to the next step */ 2431 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2432 } 2433 2434 /** 2435 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2436 * @adapter: board private structure 2437 * 2438 * Function processes receipt of the extended VLAN V2 capability message from 2439 * the PF. 2440 **/ 2441 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2442 { 2443 int ret; 2444 2445 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2446 2447 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2448 2449 ret = iavf_get_vf_vlan_v2_caps(adapter); 2450 if (ret) 2451 goto err; 2452 2453 /* We've processed receipt of the VLAN V2 caps message */ 2454 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2455 return; 2456 err: 2457 /* We didn't receive a reply. Make sure we try sending again when 2458 * __IAVF_INIT_FAILED attempts to recover. 2459 */ 2460 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2461 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2462 } 2463 2464 /** 2465 * iavf_init_process_extended_caps - Part of driver startup 2466 * @adapter: board private structure 2467 * 2468 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2469 * handles negotiating capabilities for features which require an additional 2470 * message. 2471 * 2472 * Once all extended capabilities exchanges are finished, the driver will 2473 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2474 */ 2475 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2476 { 2477 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2478 2479 /* Process capability exchange for VLAN V2 */ 2480 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2481 iavf_init_send_offload_vlan_v2_caps(adapter); 2482 return; 2483 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2484 iavf_init_recv_offload_vlan_v2_caps(adapter); 2485 return; 2486 } 2487 2488 /* When we reach here, no further extended capabilities exchanges are 2489 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2490 */ 2491 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2492 } 2493 2494 /** 2495 * iavf_init_config_adapter - last part of driver startup 2496 * @adapter: board private structure 2497 * 2498 * After all the supported capabilities are negotiated, then the 2499 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2500 */ 2501 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2502 { 2503 struct net_device *netdev = adapter->netdev; 2504 struct pci_dev *pdev = adapter->pdev; 2505 int err; 2506 2507 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2508 2509 if (iavf_process_config(adapter)) 2510 goto err; 2511 2512 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2513 2514 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2515 2516 netdev->netdev_ops = &iavf_netdev_ops; 2517 iavf_set_ethtool_ops(netdev); 2518 netdev->watchdog_timeo = 5 * HZ; 2519 2520 /* MTU range: 68 - 9710 */ 2521 netdev->min_mtu = ETH_MIN_MTU; 2522 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2523 2524 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2525 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2526 adapter->hw.mac.addr); 2527 eth_hw_addr_random(netdev); 2528 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2529 } else { 2530 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2531 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2532 } 2533 2534 adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET; 2535 2536 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2537 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2538 err = iavf_init_interrupt_scheme(adapter); 2539 if (err) 2540 goto err_sw_init; 2541 iavf_map_rings_to_vectors(adapter); 2542 if (adapter->vf_res->vf_cap_flags & 2543 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2544 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2545 2546 err = iavf_request_misc_irq(adapter); 2547 if (err) 2548 goto err_sw_init; 2549 2550 netif_carrier_off(netdev); 2551 adapter->link_up = false; 2552 2553 /* set the semaphore to prevent any callbacks after device registration 2554 * up to time when state of driver will be set to __IAVF_DOWN 2555 */ 2556 rtnl_lock(); 2557 if (!adapter->netdev_registered) { 2558 err = register_netdevice(netdev); 2559 if (err) { 2560 rtnl_unlock(); 2561 goto err_register; 2562 } 2563 } 2564 2565 adapter->netdev_registered = true; 2566 2567 netif_tx_stop_all_queues(netdev); 2568 if (CLIENT_ALLOWED(adapter)) { 2569 err = iavf_lan_add_device(adapter); 2570 if (err) 2571 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2572 err); 2573 } 2574 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2575 if (netdev->features & NETIF_F_GRO) 2576 dev_info(&pdev->dev, "GRO is enabled\n"); 2577 2578 iavf_change_state(adapter, __IAVF_DOWN); 2579 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2580 rtnl_unlock(); 2581 2582 iavf_misc_irq_enable(adapter); 2583 wake_up(&adapter->down_waitqueue); 2584 2585 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2586 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2587 if (!adapter->rss_key || !adapter->rss_lut) { 2588 err = -ENOMEM; 2589 goto err_mem; 2590 } 2591 if (RSS_AQ(adapter)) 2592 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2593 else 2594 iavf_init_rss(adapter); 2595 2596 if (VLAN_V2_ALLOWED(adapter)) 2597 /* request initial VLAN offload settings */ 2598 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2599 2600 return; 2601 err_mem: 2602 iavf_free_rss(adapter); 2603 err_register: 2604 iavf_free_misc_irq(adapter); 2605 err_sw_init: 2606 iavf_reset_interrupt_capability(adapter); 2607 err: 2608 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2609 } 2610 2611 /** 2612 * iavf_watchdog_task - Periodic call-back task 2613 * @work: pointer to work_struct 2614 **/ 2615 static void iavf_watchdog_task(struct work_struct *work) 2616 { 2617 struct iavf_adapter *adapter = container_of(work, 2618 struct iavf_adapter, 2619 watchdog_task.work); 2620 struct iavf_hw *hw = &adapter->hw; 2621 u32 reg_val; 2622 2623 if (!mutex_trylock(&adapter->crit_lock)) { 2624 if (adapter->state == __IAVF_REMOVE) 2625 return; 2626 2627 goto restart_watchdog; 2628 } 2629 2630 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2631 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2632 2633 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2634 adapter->aq_required = 0; 2635 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2636 mutex_unlock(&adapter->crit_lock); 2637 queue_work(iavf_wq, &adapter->reset_task); 2638 return; 2639 } 2640 2641 switch (adapter->state) { 2642 case __IAVF_STARTUP: 2643 iavf_startup(adapter); 2644 mutex_unlock(&adapter->crit_lock); 2645 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2646 msecs_to_jiffies(30)); 2647 return; 2648 case __IAVF_INIT_VERSION_CHECK: 2649 iavf_init_version_check(adapter); 2650 mutex_unlock(&adapter->crit_lock); 2651 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2652 msecs_to_jiffies(30)); 2653 return; 2654 case __IAVF_INIT_GET_RESOURCES: 2655 iavf_init_get_resources(adapter); 2656 mutex_unlock(&adapter->crit_lock); 2657 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2658 msecs_to_jiffies(1)); 2659 return; 2660 case __IAVF_INIT_EXTENDED_CAPS: 2661 iavf_init_process_extended_caps(adapter); 2662 mutex_unlock(&adapter->crit_lock); 2663 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2664 msecs_to_jiffies(1)); 2665 return; 2666 case __IAVF_INIT_CONFIG_ADAPTER: 2667 iavf_init_config_adapter(adapter); 2668 mutex_unlock(&adapter->crit_lock); 2669 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2670 msecs_to_jiffies(1)); 2671 return; 2672 case __IAVF_INIT_FAILED: 2673 if (test_bit(__IAVF_IN_REMOVE_TASK, 2674 &adapter->crit_section)) { 2675 /* Do not update the state and do not reschedule 2676 * watchdog task, iavf_remove should handle this state 2677 * as it can loop forever 2678 */ 2679 mutex_unlock(&adapter->crit_lock); 2680 return; 2681 } 2682 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2683 dev_err(&adapter->pdev->dev, 2684 "Failed to communicate with PF; waiting before retry\n"); 2685 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2686 iavf_shutdown_adminq(hw); 2687 mutex_unlock(&adapter->crit_lock); 2688 queue_delayed_work(iavf_wq, 2689 &adapter->watchdog_task, (5 * HZ)); 2690 return; 2691 } 2692 /* Try again from failed step*/ 2693 iavf_change_state(adapter, adapter->last_state); 2694 mutex_unlock(&adapter->crit_lock); 2695 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2696 return; 2697 case __IAVF_COMM_FAILED: 2698 if (test_bit(__IAVF_IN_REMOVE_TASK, 2699 &adapter->crit_section)) { 2700 /* Set state to __IAVF_INIT_FAILED and perform remove 2701 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2702 * doesn't bring the state back to __IAVF_COMM_FAILED. 2703 */ 2704 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2705 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2706 mutex_unlock(&adapter->crit_lock); 2707 return; 2708 } 2709 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2710 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2711 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2712 reg_val == VIRTCHNL_VFR_COMPLETED) { 2713 /* A chance for redemption! */ 2714 dev_err(&adapter->pdev->dev, 2715 "Hardware came out of reset. Attempting reinit.\n"); 2716 /* When init task contacts the PF and 2717 * gets everything set up again, it'll restart the 2718 * watchdog for us. Down, boy. Sit. Stay. Woof. 2719 */ 2720 iavf_change_state(adapter, __IAVF_STARTUP); 2721 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2722 } 2723 adapter->aq_required = 0; 2724 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2725 mutex_unlock(&adapter->crit_lock); 2726 queue_delayed_work(iavf_wq, 2727 &adapter->watchdog_task, 2728 msecs_to_jiffies(10)); 2729 return; 2730 case __IAVF_RESETTING: 2731 mutex_unlock(&adapter->crit_lock); 2732 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2733 return; 2734 case __IAVF_DOWN: 2735 case __IAVF_DOWN_PENDING: 2736 case __IAVF_TESTING: 2737 case __IAVF_RUNNING: 2738 if (adapter->current_op) { 2739 if (!iavf_asq_done(hw)) { 2740 dev_dbg(&adapter->pdev->dev, 2741 "Admin queue timeout\n"); 2742 iavf_send_api_ver(adapter); 2743 } 2744 } else { 2745 int ret = iavf_process_aq_command(adapter); 2746 2747 /* An error will be returned if no commands were 2748 * processed; use this opportunity to update stats 2749 * if the error isn't -ENOTSUPP 2750 */ 2751 if (ret && ret != -EOPNOTSUPP && 2752 adapter->state == __IAVF_RUNNING) 2753 iavf_request_stats(adapter); 2754 } 2755 if (adapter->state == __IAVF_RUNNING) 2756 iavf_detect_recover_hung(&adapter->vsi); 2757 break; 2758 case __IAVF_REMOVE: 2759 default: 2760 mutex_unlock(&adapter->crit_lock); 2761 return; 2762 } 2763 2764 /* check for hw reset */ 2765 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2766 if (!reg_val) { 2767 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2768 adapter->aq_required = 0; 2769 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2770 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2771 queue_work(iavf_wq, &adapter->reset_task); 2772 mutex_unlock(&adapter->crit_lock); 2773 queue_delayed_work(iavf_wq, 2774 &adapter->watchdog_task, HZ * 2); 2775 return; 2776 } 2777 2778 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2779 mutex_unlock(&adapter->crit_lock); 2780 restart_watchdog: 2781 if (adapter->state >= __IAVF_DOWN) 2782 queue_work(iavf_wq, &adapter->adminq_task); 2783 if (adapter->aq_required) 2784 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2785 msecs_to_jiffies(20)); 2786 else 2787 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2788 } 2789 2790 /** 2791 * iavf_disable_vf - disable VF 2792 * @adapter: board private structure 2793 * 2794 * Set communication failed flag and free all resources. 2795 * NOTE: This function is expected to be called with crit_lock being held. 2796 **/ 2797 static void iavf_disable_vf(struct iavf_adapter *adapter) 2798 { 2799 struct iavf_mac_filter *f, *ftmp; 2800 struct iavf_vlan_filter *fv, *fvtmp; 2801 struct iavf_cloud_filter *cf, *cftmp; 2802 2803 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2804 2805 /* We don't use netif_running() because it may be true prior to 2806 * ndo_open() returning, so we can't assume it means all our open 2807 * tasks have finished, since we're not holding the rtnl_lock here. 2808 */ 2809 if (adapter->state == __IAVF_RUNNING) { 2810 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2811 netif_carrier_off(adapter->netdev); 2812 netif_tx_disable(adapter->netdev); 2813 adapter->link_up = false; 2814 iavf_napi_disable_all(adapter); 2815 iavf_irq_disable(adapter); 2816 iavf_free_traffic_irqs(adapter); 2817 iavf_free_all_tx_resources(adapter); 2818 iavf_free_all_rx_resources(adapter); 2819 } 2820 2821 spin_lock_bh(&adapter->mac_vlan_list_lock); 2822 2823 /* Delete all of the filters */ 2824 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2825 list_del(&f->list); 2826 kfree(f); 2827 } 2828 2829 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2830 list_del(&fv->list); 2831 kfree(fv); 2832 } 2833 2834 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2835 2836 spin_lock_bh(&adapter->cloud_filter_list_lock); 2837 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2838 list_del(&cf->list); 2839 kfree(cf); 2840 adapter->num_cloud_filters--; 2841 } 2842 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2843 2844 iavf_free_misc_irq(adapter); 2845 iavf_reset_interrupt_capability(adapter); 2846 iavf_free_q_vectors(adapter); 2847 iavf_free_queues(adapter); 2848 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2849 iavf_shutdown_adminq(&adapter->hw); 2850 adapter->netdev->flags &= ~IFF_UP; 2851 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2852 iavf_change_state(adapter, __IAVF_DOWN); 2853 wake_up(&adapter->down_waitqueue); 2854 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2855 } 2856 2857 /** 2858 * iavf_reset_task - Call-back task to handle hardware reset 2859 * @work: pointer to work_struct 2860 * 2861 * During reset we need to shut down and reinitialize the admin queue 2862 * before we can use it to communicate with the PF again. We also clear 2863 * and reinit the rings because that context is lost as well. 2864 **/ 2865 static void iavf_reset_task(struct work_struct *work) 2866 { 2867 struct iavf_adapter *adapter = container_of(work, 2868 struct iavf_adapter, 2869 reset_task); 2870 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2871 struct net_device *netdev = adapter->netdev; 2872 struct iavf_hw *hw = &adapter->hw; 2873 struct iavf_mac_filter *f, *ftmp; 2874 struct iavf_cloud_filter *cf; 2875 enum iavf_status status; 2876 u32 reg_val; 2877 int i = 0, err; 2878 bool running; 2879 2880 /* Detach interface to avoid subsequent NDO callbacks */ 2881 rtnl_lock(); 2882 netif_device_detach(netdev); 2883 rtnl_unlock(); 2884 2885 /* When device is being removed it doesn't make sense to run the reset 2886 * task, just return in such a case. 2887 */ 2888 if (!mutex_trylock(&adapter->crit_lock)) { 2889 if (adapter->state != __IAVF_REMOVE) 2890 queue_work(iavf_wq, &adapter->reset_task); 2891 2892 goto reset_finish; 2893 } 2894 2895 while (!mutex_trylock(&adapter->client_lock)) 2896 usleep_range(500, 1000); 2897 if (CLIENT_ENABLED(adapter)) { 2898 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2899 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2900 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2901 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2902 cancel_delayed_work_sync(&adapter->client_task); 2903 iavf_notify_client_close(&adapter->vsi, true); 2904 } 2905 iavf_misc_irq_disable(adapter); 2906 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2907 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2908 /* Restart the AQ here. If we have been reset but didn't 2909 * detect it, or if the PF had to reinit, our AQ will be hosed. 2910 */ 2911 iavf_shutdown_adminq(hw); 2912 iavf_init_adminq(hw); 2913 iavf_request_reset(adapter); 2914 } 2915 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2916 2917 /* poll until we see the reset actually happen */ 2918 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2919 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2920 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2921 if (!reg_val) 2922 break; 2923 usleep_range(5000, 10000); 2924 } 2925 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2926 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2927 goto continue_reset; /* act like the reset happened */ 2928 } 2929 2930 /* wait until the reset is complete and the PF is responding to us */ 2931 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2932 /* sleep first to make sure a minimum wait time is met */ 2933 msleep(IAVF_RESET_WAIT_MS); 2934 2935 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2936 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2937 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2938 break; 2939 } 2940 2941 pci_set_master(adapter->pdev); 2942 pci_restore_msi_state(adapter->pdev); 2943 2944 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2945 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2946 reg_val); 2947 iavf_disable_vf(adapter); 2948 mutex_unlock(&adapter->client_lock); 2949 mutex_unlock(&adapter->crit_lock); 2950 return; /* Do not attempt to reinit. It's dead, Jim. */ 2951 } 2952 2953 continue_reset: 2954 /* We don't use netif_running() because it may be true prior to 2955 * ndo_open() returning, so we can't assume it means all our open 2956 * tasks have finished, since we're not holding the rtnl_lock here. 2957 */ 2958 running = adapter->state == __IAVF_RUNNING; 2959 2960 if (running) { 2961 netif_carrier_off(netdev); 2962 adapter->link_up = false; 2963 iavf_napi_disable_all(adapter); 2964 } 2965 iavf_irq_disable(adapter); 2966 2967 iavf_change_state(adapter, __IAVF_RESETTING); 2968 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2969 2970 /* free the Tx/Rx rings and descriptors, might be better to just 2971 * re-use them sometime in the future 2972 */ 2973 iavf_free_all_rx_resources(adapter); 2974 iavf_free_all_tx_resources(adapter); 2975 2976 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2977 /* kill and reinit the admin queue */ 2978 iavf_shutdown_adminq(hw); 2979 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2980 status = iavf_init_adminq(hw); 2981 if (status) { 2982 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2983 status); 2984 goto reset_err; 2985 } 2986 adapter->aq_required = 0; 2987 2988 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2989 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2990 err = iavf_reinit_interrupt_scheme(adapter); 2991 if (err) 2992 goto reset_err; 2993 } 2994 2995 if (RSS_AQ(adapter)) { 2996 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2997 } else { 2998 err = iavf_init_rss(adapter); 2999 if (err) 3000 goto reset_err; 3001 } 3002 3003 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3004 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3005 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3006 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3007 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3008 * been successfully sent and negotiated 3009 */ 3010 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3011 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3012 3013 spin_lock_bh(&adapter->mac_vlan_list_lock); 3014 3015 /* Delete filter for the current MAC address, it could have 3016 * been changed by the PF via administratively set MAC. 3017 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3018 */ 3019 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3020 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3021 list_del(&f->list); 3022 kfree(f); 3023 } 3024 } 3025 /* re-add all MAC filters */ 3026 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3027 f->add = true; 3028 } 3029 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3030 3031 /* check if TCs are running and re-add all cloud filters */ 3032 spin_lock_bh(&adapter->cloud_filter_list_lock); 3033 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3034 adapter->num_tc) { 3035 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3036 cf->add = true; 3037 } 3038 } 3039 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3040 3041 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3042 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3043 iavf_misc_irq_enable(adapter); 3044 3045 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3046 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3047 3048 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 3049 3050 /* We were running when the reset started, so we need to restore some 3051 * state here. 3052 */ 3053 if (running) { 3054 /* allocate transmit descriptors */ 3055 err = iavf_setup_all_tx_resources(adapter); 3056 if (err) 3057 goto reset_err; 3058 3059 /* allocate receive descriptors */ 3060 err = iavf_setup_all_rx_resources(adapter); 3061 if (err) 3062 goto reset_err; 3063 3064 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3065 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3066 err = iavf_request_traffic_irqs(adapter, netdev->name); 3067 if (err) 3068 goto reset_err; 3069 3070 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3071 } 3072 3073 iavf_configure(adapter); 3074 3075 /* iavf_up_complete() will switch device back 3076 * to __IAVF_RUNNING 3077 */ 3078 iavf_up_complete(adapter); 3079 3080 iavf_irq_enable(adapter, true); 3081 } else { 3082 iavf_change_state(adapter, __IAVF_DOWN); 3083 wake_up(&adapter->down_waitqueue); 3084 } 3085 3086 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3087 3088 mutex_unlock(&adapter->client_lock); 3089 mutex_unlock(&adapter->crit_lock); 3090 3091 goto reset_finish; 3092 reset_err: 3093 if (running) { 3094 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3095 iavf_free_traffic_irqs(adapter); 3096 } 3097 iavf_disable_vf(adapter); 3098 3099 mutex_unlock(&adapter->client_lock); 3100 mutex_unlock(&adapter->crit_lock); 3101 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3102 reset_finish: 3103 rtnl_lock(); 3104 netif_device_attach(netdev); 3105 rtnl_unlock(); 3106 } 3107 3108 /** 3109 * iavf_adminq_task - worker thread to clean the admin queue 3110 * @work: pointer to work_struct containing our data 3111 **/ 3112 static void iavf_adminq_task(struct work_struct *work) 3113 { 3114 struct iavf_adapter *adapter = 3115 container_of(work, struct iavf_adapter, adminq_task); 3116 struct iavf_hw *hw = &adapter->hw; 3117 struct iavf_arq_event_info event; 3118 enum virtchnl_ops v_op; 3119 enum iavf_status ret, v_ret; 3120 u32 val, oldval; 3121 u16 pending; 3122 3123 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3124 goto out; 3125 3126 if (!mutex_trylock(&adapter->crit_lock)) { 3127 if (adapter->state == __IAVF_REMOVE) 3128 return; 3129 3130 queue_work(iavf_wq, &adapter->adminq_task); 3131 goto out; 3132 } 3133 3134 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3135 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3136 if (!event.msg_buf) 3137 goto out; 3138 3139 do { 3140 ret = iavf_clean_arq_element(hw, &event, &pending); 3141 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3142 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3143 3144 if (ret || !v_op) 3145 break; /* No event to process or error cleaning ARQ */ 3146 3147 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3148 event.msg_len); 3149 if (pending != 0) 3150 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3151 } while (pending); 3152 mutex_unlock(&adapter->crit_lock); 3153 3154 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3155 if (adapter->netdev_registered || 3156 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3157 struct net_device *netdev = adapter->netdev; 3158 3159 rtnl_lock(); 3160 netdev_update_features(netdev); 3161 rtnl_unlock(); 3162 /* Request VLAN offload settings */ 3163 if (VLAN_V2_ALLOWED(adapter)) 3164 iavf_set_vlan_offload_features 3165 (adapter, 0, netdev->features); 3166 3167 iavf_set_queue_vlan_tag_loc(adapter); 3168 } 3169 3170 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3171 } 3172 if ((adapter->flags & 3173 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3174 adapter->state == __IAVF_RESETTING) 3175 goto freedom; 3176 3177 /* check for error indications */ 3178 val = rd32(hw, hw->aq.arq.len); 3179 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3180 goto freedom; 3181 oldval = val; 3182 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3183 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3184 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3185 } 3186 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3187 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3188 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3189 } 3190 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3191 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3192 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3193 } 3194 if (oldval != val) 3195 wr32(hw, hw->aq.arq.len, val); 3196 3197 val = rd32(hw, hw->aq.asq.len); 3198 oldval = val; 3199 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3200 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3201 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3202 } 3203 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3204 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3205 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3206 } 3207 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3208 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3209 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3210 } 3211 if (oldval != val) 3212 wr32(hw, hw->aq.asq.len, val); 3213 3214 freedom: 3215 kfree(event.msg_buf); 3216 out: 3217 /* re-enable Admin queue interrupt cause */ 3218 iavf_misc_irq_enable(adapter); 3219 } 3220 3221 /** 3222 * iavf_client_task - worker thread to perform client work 3223 * @work: pointer to work_struct containing our data 3224 * 3225 * This task handles client interactions. Because client calls can be 3226 * reentrant, we can't handle them in the watchdog. 3227 **/ 3228 static void iavf_client_task(struct work_struct *work) 3229 { 3230 struct iavf_adapter *adapter = 3231 container_of(work, struct iavf_adapter, client_task.work); 3232 3233 /* If we can't get the client bit, just give up. We'll be rescheduled 3234 * later. 3235 */ 3236 3237 if (!mutex_trylock(&adapter->client_lock)) 3238 return; 3239 3240 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3241 iavf_client_subtask(adapter); 3242 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3243 goto out; 3244 } 3245 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3246 iavf_notify_client_l2_params(&adapter->vsi); 3247 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3248 goto out; 3249 } 3250 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3251 iavf_notify_client_close(&adapter->vsi, false); 3252 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3253 goto out; 3254 } 3255 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3256 iavf_notify_client_open(&adapter->vsi); 3257 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3258 } 3259 out: 3260 mutex_unlock(&adapter->client_lock); 3261 } 3262 3263 /** 3264 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3265 * @adapter: board private structure 3266 * 3267 * Free all transmit software resources 3268 **/ 3269 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3270 { 3271 int i; 3272 3273 if (!adapter->tx_rings) 3274 return; 3275 3276 for (i = 0; i < adapter->num_active_queues; i++) 3277 if (adapter->tx_rings[i].desc) 3278 iavf_free_tx_resources(&adapter->tx_rings[i]); 3279 } 3280 3281 /** 3282 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3283 * @adapter: board private structure 3284 * 3285 * If this function returns with an error, then it's possible one or 3286 * more of the rings is populated (while the rest are not). It is the 3287 * callers duty to clean those orphaned rings. 3288 * 3289 * Return 0 on success, negative on failure 3290 **/ 3291 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3292 { 3293 int i, err = 0; 3294 3295 for (i = 0; i < adapter->num_active_queues; i++) { 3296 adapter->tx_rings[i].count = adapter->tx_desc_count; 3297 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3298 if (!err) 3299 continue; 3300 dev_err(&adapter->pdev->dev, 3301 "Allocation for Tx Queue %u failed\n", i); 3302 break; 3303 } 3304 3305 return err; 3306 } 3307 3308 /** 3309 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3310 * @adapter: board private structure 3311 * 3312 * If this function returns with an error, then it's possible one or 3313 * more of the rings is populated (while the rest are not). It is the 3314 * callers duty to clean those orphaned rings. 3315 * 3316 * Return 0 on success, negative on failure 3317 **/ 3318 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3319 { 3320 int i, err = 0; 3321 3322 for (i = 0; i < adapter->num_active_queues; i++) { 3323 adapter->rx_rings[i].count = adapter->rx_desc_count; 3324 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3325 if (!err) 3326 continue; 3327 dev_err(&adapter->pdev->dev, 3328 "Allocation for Rx Queue %u failed\n", i); 3329 break; 3330 } 3331 return err; 3332 } 3333 3334 /** 3335 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3336 * @adapter: board private structure 3337 * 3338 * Free all receive software resources 3339 **/ 3340 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3341 { 3342 int i; 3343 3344 if (!adapter->rx_rings) 3345 return; 3346 3347 for (i = 0; i < adapter->num_active_queues; i++) 3348 if (adapter->rx_rings[i].desc) 3349 iavf_free_rx_resources(&adapter->rx_rings[i]); 3350 } 3351 3352 /** 3353 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3354 * @adapter: board private structure 3355 * @max_tx_rate: max Tx bw for a tc 3356 **/ 3357 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3358 u64 max_tx_rate) 3359 { 3360 int speed = 0, ret = 0; 3361 3362 if (ADV_LINK_SUPPORT(adapter)) { 3363 if (adapter->link_speed_mbps < U32_MAX) { 3364 speed = adapter->link_speed_mbps; 3365 goto validate_bw; 3366 } else { 3367 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3368 return -EINVAL; 3369 } 3370 } 3371 3372 switch (adapter->link_speed) { 3373 case VIRTCHNL_LINK_SPEED_40GB: 3374 speed = SPEED_40000; 3375 break; 3376 case VIRTCHNL_LINK_SPEED_25GB: 3377 speed = SPEED_25000; 3378 break; 3379 case VIRTCHNL_LINK_SPEED_20GB: 3380 speed = SPEED_20000; 3381 break; 3382 case VIRTCHNL_LINK_SPEED_10GB: 3383 speed = SPEED_10000; 3384 break; 3385 case VIRTCHNL_LINK_SPEED_5GB: 3386 speed = SPEED_5000; 3387 break; 3388 case VIRTCHNL_LINK_SPEED_2_5GB: 3389 speed = SPEED_2500; 3390 break; 3391 case VIRTCHNL_LINK_SPEED_1GB: 3392 speed = SPEED_1000; 3393 break; 3394 case VIRTCHNL_LINK_SPEED_100MB: 3395 speed = SPEED_100; 3396 break; 3397 default: 3398 break; 3399 } 3400 3401 validate_bw: 3402 if (max_tx_rate > speed) { 3403 dev_err(&adapter->pdev->dev, 3404 "Invalid tx rate specified\n"); 3405 ret = -EINVAL; 3406 } 3407 3408 return ret; 3409 } 3410 3411 /** 3412 * iavf_validate_ch_config - validate queue mapping info 3413 * @adapter: board private structure 3414 * @mqprio_qopt: queue parameters 3415 * 3416 * This function validates if the config provided by the user to 3417 * configure queue channels is valid or not. Returns 0 on a valid 3418 * config. 3419 **/ 3420 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3421 struct tc_mqprio_qopt_offload *mqprio_qopt) 3422 { 3423 u64 total_max_rate = 0; 3424 u32 tx_rate_rem = 0; 3425 int i, num_qps = 0; 3426 u64 tx_rate = 0; 3427 int ret = 0; 3428 3429 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3430 mqprio_qopt->qopt.num_tc < 1) 3431 return -EINVAL; 3432 3433 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3434 if (!mqprio_qopt->qopt.count[i] || 3435 mqprio_qopt->qopt.offset[i] != num_qps) 3436 return -EINVAL; 3437 if (mqprio_qopt->min_rate[i]) { 3438 dev_err(&adapter->pdev->dev, 3439 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3440 i); 3441 return -EINVAL; 3442 } 3443 3444 /* convert to Mbps */ 3445 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3446 IAVF_MBPS_DIVISOR); 3447 3448 if (mqprio_qopt->max_rate[i] && 3449 tx_rate < IAVF_MBPS_QUANTA) { 3450 dev_err(&adapter->pdev->dev, 3451 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3452 i, IAVF_MBPS_QUANTA); 3453 return -EINVAL; 3454 } 3455 3456 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3457 3458 if (tx_rate_rem != 0) { 3459 dev_err(&adapter->pdev->dev, 3460 "Invalid max tx rate for TC%d, not divisible by %d\n", 3461 i, IAVF_MBPS_QUANTA); 3462 return -EINVAL; 3463 } 3464 3465 total_max_rate += tx_rate; 3466 num_qps += mqprio_qopt->qopt.count[i]; 3467 } 3468 if (num_qps > adapter->num_active_queues) { 3469 dev_err(&adapter->pdev->dev, 3470 "Cannot support requested number of queues\n"); 3471 return -EINVAL; 3472 } 3473 3474 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3475 return ret; 3476 } 3477 3478 /** 3479 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3480 * @adapter: board private structure 3481 **/ 3482 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3483 { 3484 struct iavf_cloud_filter *cf, *cftmp; 3485 3486 spin_lock_bh(&adapter->cloud_filter_list_lock); 3487 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3488 list) { 3489 list_del(&cf->list); 3490 kfree(cf); 3491 adapter->num_cloud_filters--; 3492 } 3493 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3494 } 3495 3496 /** 3497 * __iavf_setup_tc - configure multiple traffic classes 3498 * @netdev: network interface device structure 3499 * @type_data: tc offload data 3500 * 3501 * This function processes the config information provided by the 3502 * user to configure traffic classes/queue channels and packages the 3503 * information to request the PF to setup traffic classes. 3504 * 3505 * Returns 0 on success. 3506 **/ 3507 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3508 { 3509 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3510 struct iavf_adapter *adapter = netdev_priv(netdev); 3511 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3512 u8 num_tc = 0, total_qps = 0; 3513 int ret = 0, netdev_tc = 0; 3514 u64 max_tx_rate; 3515 u16 mode; 3516 int i; 3517 3518 num_tc = mqprio_qopt->qopt.num_tc; 3519 mode = mqprio_qopt->mode; 3520 3521 /* delete queue_channel */ 3522 if (!mqprio_qopt->qopt.hw) { 3523 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3524 /* reset the tc configuration */ 3525 netdev_reset_tc(netdev); 3526 adapter->num_tc = 0; 3527 netif_tx_stop_all_queues(netdev); 3528 netif_tx_disable(netdev); 3529 iavf_del_all_cloud_filters(adapter); 3530 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3531 total_qps = adapter->orig_num_active_queues; 3532 goto exit; 3533 } else { 3534 return -EINVAL; 3535 } 3536 } 3537 3538 /* add queue channel */ 3539 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3540 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3541 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3542 return -EOPNOTSUPP; 3543 } 3544 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3545 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3546 return -EINVAL; 3547 } 3548 3549 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3550 if (ret) 3551 return ret; 3552 /* Return if same TC config is requested */ 3553 if (adapter->num_tc == num_tc) 3554 return 0; 3555 adapter->num_tc = num_tc; 3556 3557 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3558 if (i < num_tc) { 3559 adapter->ch_config.ch_info[i].count = 3560 mqprio_qopt->qopt.count[i]; 3561 adapter->ch_config.ch_info[i].offset = 3562 mqprio_qopt->qopt.offset[i]; 3563 total_qps += mqprio_qopt->qopt.count[i]; 3564 max_tx_rate = mqprio_qopt->max_rate[i]; 3565 /* convert to Mbps */ 3566 max_tx_rate = div_u64(max_tx_rate, 3567 IAVF_MBPS_DIVISOR); 3568 adapter->ch_config.ch_info[i].max_tx_rate = 3569 max_tx_rate; 3570 } else { 3571 adapter->ch_config.ch_info[i].count = 1; 3572 adapter->ch_config.ch_info[i].offset = 0; 3573 } 3574 } 3575 3576 /* Take snapshot of original config such as "num_active_queues" 3577 * It is used later when delete ADQ flow is exercised, so that 3578 * once delete ADQ flow completes, VF shall go back to its 3579 * original queue configuration 3580 */ 3581 3582 adapter->orig_num_active_queues = adapter->num_active_queues; 3583 3584 /* Store queue info based on TC so that VF gets configured 3585 * with correct number of queues when VF completes ADQ config 3586 * flow 3587 */ 3588 adapter->ch_config.total_qps = total_qps; 3589 3590 netif_tx_stop_all_queues(netdev); 3591 netif_tx_disable(netdev); 3592 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3593 netdev_reset_tc(netdev); 3594 /* Report the tc mapping up the stack */ 3595 netdev_set_num_tc(adapter->netdev, num_tc); 3596 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3597 u16 qcount = mqprio_qopt->qopt.count[i]; 3598 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3599 3600 if (i < num_tc) 3601 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3602 qoffset); 3603 } 3604 } 3605 exit: 3606 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3607 return 0; 3608 3609 netif_set_real_num_rx_queues(netdev, total_qps); 3610 netif_set_real_num_tx_queues(netdev, total_qps); 3611 3612 return ret; 3613 } 3614 3615 /** 3616 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3617 * @adapter: board private structure 3618 * @f: pointer to struct flow_cls_offload 3619 * @filter: pointer to cloud filter structure 3620 */ 3621 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3622 struct flow_cls_offload *f, 3623 struct iavf_cloud_filter *filter) 3624 { 3625 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3626 struct flow_dissector *dissector = rule->match.dissector; 3627 u16 n_proto_mask = 0; 3628 u16 n_proto_key = 0; 3629 u8 field_flags = 0; 3630 u16 addr_type = 0; 3631 u16 n_proto = 0; 3632 int i = 0; 3633 struct virtchnl_filter *vf = &filter->f; 3634 3635 if (dissector->used_keys & 3636 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3637 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3638 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3639 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3640 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3641 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3642 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3643 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3644 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3645 dissector->used_keys); 3646 return -EOPNOTSUPP; 3647 } 3648 3649 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3650 struct flow_match_enc_keyid match; 3651 3652 flow_rule_match_enc_keyid(rule, &match); 3653 if (match.mask->keyid != 0) 3654 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3655 } 3656 3657 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3658 struct flow_match_basic match; 3659 3660 flow_rule_match_basic(rule, &match); 3661 n_proto_key = ntohs(match.key->n_proto); 3662 n_proto_mask = ntohs(match.mask->n_proto); 3663 3664 if (n_proto_key == ETH_P_ALL) { 3665 n_proto_key = 0; 3666 n_proto_mask = 0; 3667 } 3668 n_proto = n_proto_key & n_proto_mask; 3669 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3670 return -EINVAL; 3671 if (n_proto == ETH_P_IPV6) { 3672 /* specify flow type as TCP IPv6 */ 3673 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3674 } 3675 3676 if (match.key->ip_proto != IPPROTO_TCP) { 3677 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3678 return -EINVAL; 3679 } 3680 } 3681 3682 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3683 struct flow_match_eth_addrs match; 3684 3685 flow_rule_match_eth_addrs(rule, &match); 3686 3687 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3688 if (!is_zero_ether_addr(match.mask->dst)) { 3689 if (is_broadcast_ether_addr(match.mask->dst)) { 3690 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3691 } else { 3692 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3693 match.mask->dst); 3694 return -EINVAL; 3695 } 3696 } 3697 3698 if (!is_zero_ether_addr(match.mask->src)) { 3699 if (is_broadcast_ether_addr(match.mask->src)) { 3700 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3701 } else { 3702 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3703 match.mask->src); 3704 return -EINVAL; 3705 } 3706 } 3707 3708 if (!is_zero_ether_addr(match.key->dst)) 3709 if (is_valid_ether_addr(match.key->dst) || 3710 is_multicast_ether_addr(match.key->dst)) { 3711 /* set the mask if a valid dst_mac address */ 3712 for (i = 0; i < ETH_ALEN; i++) 3713 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3714 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3715 match.key->dst); 3716 } 3717 3718 if (!is_zero_ether_addr(match.key->src)) 3719 if (is_valid_ether_addr(match.key->src) || 3720 is_multicast_ether_addr(match.key->src)) { 3721 /* set the mask if a valid dst_mac address */ 3722 for (i = 0; i < ETH_ALEN; i++) 3723 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3724 ether_addr_copy(vf->data.tcp_spec.src_mac, 3725 match.key->src); 3726 } 3727 } 3728 3729 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3730 struct flow_match_vlan match; 3731 3732 flow_rule_match_vlan(rule, &match); 3733 if (match.mask->vlan_id) { 3734 if (match.mask->vlan_id == VLAN_VID_MASK) { 3735 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3736 } else { 3737 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3738 match.mask->vlan_id); 3739 return -EINVAL; 3740 } 3741 } 3742 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3743 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3744 } 3745 3746 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3747 struct flow_match_control match; 3748 3749 flow_rule_match_control(rule, &match); 3750 addr_type = match.key->addr_type; 3751 } 3752 3753 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3754 struct flow_match_ipv4_addrs match; 3755 3756 flow_rule_match_ipv4_addrs(rule, &match); 3757 if (match.mask->dst) { 3758 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3759 field_flags |= IAVF_CLOUD_FIELD_IIP; 3760 } else { 3761 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3762 be32_to_cpu(match.mask->dst)); 3763 return -EINVAL; 3764 } 3765 } 3766 3767 if (match.mask->src) { 3768 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3769 field_flags |= IAVF_CLOUD_FIELD_IIP; 3770 } else { 3771 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3772 be32_to_cpu(match.mask->dst)); 3773 return -EINVAL; 3774 } 3775 } 3776 3777 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3778 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3779 return -EINVAL; 3780 } 3781 if (match.key->dst) { 3782 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3783 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3784 } 3785 if (match.key->src) { 3786 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3787 vf->data.tcp_spec.src_ip[0] = match.key->src; 3788 } 3789 } 3790 3791 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3792 struct flow_match_ipv6_addrs match; 3793 3794 flow_rule_match_ipv6_addrs(rule, &match); 3795 3796 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3797 if (ipv6_addr_any(&match.mask->dst)) { 3798 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3799 IPV6_ADDR_ANY); 3800 return -EINVAL; 3801 } 3802 3803 /* src and dest IPv6 address should not be LOOPBACK 3804 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3805 */ 3806 if (ipv6_addr_loopback(&match.key->dst) || 3807 ipv6_addr_loopback(&match.key->src)) { 3808 dev_err(&adapter->pdev->dev, 3809 "ipv6 addr should not be loopback\n"); 3810 return -EINVAL; 3811 } 3812 if (!ipv6_addr_any(&match.mask->dst) || 3813 !ipv6_addr_any(&match.mask->src)) 3814 field_flags |= IAVF_CLOUD_FIELD_IIP; 3815 3816 for (i = 0; i < 4; i++) 3817 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3818 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3819 sizeof(vf->data.tcp_spec.dst_ip)); 3820 for (i = 0; i < 4; i++) 3821 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3822 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3823 sizeof(vf->data.tcp_spec.src_ip)); 3824 } 3825 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3826 struct flow_match_ports match; 3827 3828 flow_rule_match_ports(rule, &match); 3829 if (match.mask->src) { 3830 if (match.mask->src == cpu_to_be16(0xffff)) { 3831 field_flags |= IAVF_CLOUD_FIELD_IIP; 3832 } else { 3833 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3834 be16_to_cpu(match.mask->src)); 3835 return -EINVAL; 3836 } 3837 } 3838 3839 if (match.mask->dst) { 3840 if (match.mask->dst == cpu_to_be16(0xffff)) { 3841 field_flags |= IAVF_CLOUD_FIELD_IIP; 3842 } else { 3843 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3844 be16_to_cpu(match.mask->dst)); 3845 return -EINVAL; 3846 } 3847 } 3848 if (match.key->dst) { 3849 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3850 vf->data.tcp_spec.dst_port = match.key->dst; 3851 } 3852 3853 if (match.key->src) { 3854 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3855 vf->data.tcp_spec.src_port = match.key->src; 3856 } 3857 } 3858 vf->field_flags = field_flags; 3859 3860 return 0; 3861 } 3862 3863 /** 3864 * iavf_handle_tclass - Forward to a traffic class on the device 3865 * @adapter: board private structure 3866 * @tc: traffic class index on the device 3867 * @filter: pointer to cloud filter structure 3868 */ 3869 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3870 struct iavf_cloud_filter *filter) 3871 { 3872 if (tc == 0) 3873 return 0; 3874 if (tc < adapter->num_tc) { 3875 if (!filter->f.data.tcp_spec.dst_port) { 3876 dev_err(&adapter->pdev->dev, 3877 "Specify destination port to redirect to traffic class other than TC0\n"); 3878 return -EINVAL; 3879 } 3880 } 3881 /* redirect to a traffic class on the same device */ 3882 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3883 filter->f.action_meta = tc; 3884 return 0; 3885 } 3886 3887 /** 3888 * iavf_find_cf - Find the cloud filter in the list 3889 * @adapter: Board private structure 3890 * @cookie: filter specific cookie 3891 * 3892 * Returns ptr to the filter object or NULL. Must be called while holding the 3893 * cloud_filter_list_lock. 3894 */ 3895 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3896 unsigned long *cookie) 3897 { 3898 struct iavf_cloud_filter *filter = NULL; 3899 3900 if (!cookie) 3901 return NULL; 3902 3903 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3904 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3905 return filter; 3906 } 3907 return NULL; 3908 } 3909 3910 /** 3911 * iavf_configure_clsflower - Add tc flower filters 3912 * @adapter: board private structure 3913 * @cls_flower: Pointer to struct flow_cls_offload 3914 */ 3915 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3916 struct flow_cls_offload *cls_flower) 3917 { 3918 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3919 struct iavf_cloud_filter *filter = NULL; 3920 int err = -EINVAL, count = 50; 3921 3922 if (tc < 0) { 3923 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3924 return -EINVAL; 3925 } 3926 3927 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3928 if (!filter) 3929 return -ENOMEM; 3930 3931 while (!mutex_trylock(&adapter->crit_lock)) { 3932 if (--count == 0) { 3933 kfree(filter); 3934 return err; 3935 } 3936 udelay(1); 3937 } 3938 3939 filter->cookie = cls_flower->cookie; 3940 3941 /* bail out here if filter already exists */ 3942 spin_lock_bh(&adapter->cloud_filter_list_lock); 3943 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3944 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3945 err = -EEXIST; 3946 goto spin_unlock; 3947 } 3948 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3949 3950 /* set the mask to all zeroes to begin with */ 3951 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3952 /* start out with flow type and eth type IPv4 to begin with */ 3953 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3954 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3955 if (err) 3956 goto err; 3957 3958 err = iavf_handle_tclass(adapter, tc, filter); 3959 if (err) 3960 goto err; 3961 3962 /* add filter to the list */ 3963 spin_lock_bh(&adapter->cloud_filter_list_lock); 3964 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3965 adapter->num_cloud_filters++; 3966 filter->add = true; 3967 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3968 spin_unlock: 3969 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3970 err: 3971 if (err) 3972 kfree(filter); 3973 3974 mutex_unlock(&adapter->crit_lock); 3975 return err; 3976 } 3977 3978 /** 3979 * iavf_delete_clsflower - Remove tc flower filters 3980 * @adapter: board private structure 3981 * @cls_flower: Pointer to struct flow_cls_offload 3982 */ 3983 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3984 struct flow_cls_offload *cls_flower) 3985 { 3986 struct iavf_cloud_filter *filter = NULL; 3987 int err = 0; 3988 3989 spin_lock_bh(&adapter->cloud_filter_list_lock); 3990 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3991 if (filter) { 3992 filter->del = true; 3993 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3994 } else { 3995 err = -EINVAL; 3996 } 3997 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3998 3999 return err; 4000 } 4001 4002 /** 4003 * iavf_setup_tc_cls_flower - flower classifier offloads 4004 * @adapter: board private structure 4005 * @cls_flower: pointer to flow_cls_offload struct with flow info 4006 */ 4007 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4008 struct flow_cls_offload *cls_flower) 4009 { 4010 switch (cls_flower->command) { 4011 case FLOW_CLS_REPLACE: 4012 return iavf_configure_clsflower(adapter, cls_flower); 4013 case FLOW_CLS_DESTROY: 4014 return iavf_delete_clsflower(adapter, cls_flower); 4015 case FLOW_CLS_STATS: 4016 return -EOPNOTSUPP; 4017 default: 4018 return -EOPNOTSUPP; 4019 } 4020 } 4021 4022 /** 4023 * iavf_setup_tc_block_cb - block callback for tc 4024 * @type: type of offload 4025 * @type_data: offload data 4026 * @cb_priv: 4027 * 4028 * This function is the block callback for traffic classes 4029 **/ 4030 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4031 void *cb_priv) 4032 { 4033 struct iavf_adapter *adapter = cb_priv; 4034 4035 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4036 return -EOPNOTSUPP; 4037 4038 switch (type) { 4039 case TC_SETUP_CLSFLOWER: 4040 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4041 default: 4042 return -EOPNOTSUPP; 4043 } 4044 } 4045 4046 static LIST_HEAD(iavf_block_cb_list); 4047 4048 /** 4049 * iavf_setup_tc - configure multiple traffic classes 4050 * @netdev: network interface device structure 4051 * @type: type of offload 4052 * @type_data: tc offload data 4053 * 4054 * This function is the callback to ndo_setup_tc in the 4055 * netdev_ops. 4056 * 4057 * Returns 0 on success 4058 **/ 4059 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4060 void *type_data) 4061 { 4062 struct iavf_adapter *adapter = netdev_priv(netdev); 4063 4064 switch (type) { 4065 case TC_SETUP_QDISC_MQPRIO: 4066 return __iavf_setup_tc(netdev, type_data); 4067 case TC_SETUP_BLOCK: 4068 return flow_block_cb_setup_simple(type_data, 4069 &iavf_block_cb_list, 4070 iavf_setup_tc_block_cb, 4071 adapter, adapter, true); 4072 default: 4073 return -EOPNOTSUPP; 4074 } 4075 } 4076 4077 /** 4078 * iavf_open - Called when a network interface is made active 4079 * @netdev: network interface device structure 4080 * 4081 * Returns 0 on success, negative value on failure 4082 * 4083 * The open entry point is called when a network interface is made 4084 * active by the system (IFF_UP). At this point all resources needed 4085 * for transmit and receive operations are allocated, the interrupt 4086 * handler is registered with the OS, the watchdog is started, 4087 * and the stack is notified that the interface is ready. 4088 **/ 4089 static int iavf_open(struct net_device *netdev) 4090 { 4091 struct iavf_adapter *adapter = netdev_priv(netdev); 4092 int err; 4093 4094 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4095 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4096 return -EIO; 4097 } 4098 4099 while (!mutex_trylock(&adapter->crit_lock)) { 4100 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4101 * is already taken and iavf_open is called from an upper 4102 * device's notifier reacting on NETDEV_REGISTER event. 4103 * We have to leave here to avoid dead lock. 4104 */ 4105 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4106 return -EBUSY; 4107 4108 usleep_range(500, 1000); 4109 } 4110 4111 if (adapter->state != __IAVF_DOWN) { 4112 err = -EBUSY; 4113 goto err_unlock; 4114 } 4115 4116 if (adapter->state == __IAVF_RUNNING && 4117 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4118 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4119 err = 0; 4120 goto err_unlock; 4121 } 4122 4123 /* allocate transmit descriptors */ 4124 err = iavf_setup_all_tx_resources(adapter); 4125 if (err) 4126 goto err_setup_tx; 4127 4128 /* allocate receive descriptors */ 4129 err = iavf_setup_all_rx_resources(adapter); 4130 if (err) 4131 goto err_setup_rx; 4132 4133 /* clear any pending interrupts, may auto mask */ 4134 err = iavf_request_traffic_irqs(adapter, netdev->name); 4135 if (err) 4136 goto err_req_irq; 4137 4138 spin_lock_bh(&adapter->mac_vlan_list_lock); 4139 4140 iavf_add_filter(adapter, adapter->hw.mac.addr); 4141 4142 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4143 4144 /* Restore VLAN filters that were removed with IFF_DOWN */ 4145 iavf_restore_filters(adapter); 4146 4147 iavf_configure(adapter); 4148 4149 iavf_up_complete(adapter); 4150 4151 iavf_irq_enable(adapter, true); 4152 4153 mutex_unlock(&adapter->crit_lock); 4154 4155 return 0; 4156 4157 err_req_irq: 4158 iavf_down(adapter); 4159 iavf_free_traffic_irqs(adapter); 4160 err_setup_rx: 4161 iavf_free_all_rx_resources(adapter); 4162 err_setup_tx: 4163 iavf_free_all_tx_resources(adapter); 4164 err_unlock: 4165 mutex_unlock(&adapter->crit_lock); 4166 4167 return err; 4168 } 4169 4170 /** 4171 * iavf_close - Disables a network interface 4172 * @netdev: network interface device structure 4173 * 4174 * Returns 0, this is not allowed to fail 4175 * 4176 * The close entry point is called when an interface is de-activated 4177 * by the OS. The hardware is still under the drivers control, but 4178 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4179 * are freed, along with all transmit and receive resources. 4180 **/ 4181 static int iavf_close(struct net_device *netdev) 4182 { 4183 struct iavf_adapter *adapter = netdev_priv(netdev); 4184 int status; 4185 4186 mutex_lock(&adapter->crit_lock); 4187 4188 if (adapter->state <= __IAVF_DOWN_PENDING) { 4189 mutex_unlock(&adapter->crit_lock); 4190 return 0; 4191 } 4192 4193 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4194 if (CLIENT_ENABLED(adapter)) 4195 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4196 4197 iavf_down(adapter); 4198 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4199 iavf_free_traffic_irqs(adapter); 4200 4201 mutex_unlock(&adapter->crit_lock); 4202 4203 /* We explicitly don't free resources here because the hardware is 4204 * still active and can DMA into memory. Resources are cleared in 4205 * iavf_virtchnl_completion() after we get confirmation from the PF 4206 * driver that the rings have been stopped. 4207 * 4208 * Also, we wait for state to transition to __IAVF_DOWN before 4209 * returning. State change occurs in iavf_virtchnl_completion() after 4210 * VF resources are released (which occurs after PF driver processes and 4211 * responds to admin queue commands). 4212 */ 4213 4214 status = wait_event_timeout(adapter->down_waitqueue, 4215 adapter->state == __IAVF_DOWN, 4216 msecs_to_jiffies(500)); 4217 if (!status) 4218 netdev_warn(netdev, "Device resources not yet released\n"); 4219 return 0; 4220 } 4221 4222 /** 4223 * iavf_change_mtu - Change the Maximum Transfer Unit 4224 * @netdev: network interface device structure 4225 * @new_mtu: new value for maximum frame size 4226 * 4227 * Returns 0 on success, negative on failure 4228 **/ 4229 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4230 { 4231 struct iavf_adapter *adapter = netdev_priv(netdev); 4232 4233 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4234 netdev->mtu, new_mtu); 4235 netdev->mtu = new_mtu; 4236 if (CLIENT_ENABLED(adapter)) { 4237 iavf_notify_client_l2_params(&adapter->vsi); 4238 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4239 } 4240 4241 if (netif_running(netdev)) { 4242 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4243 queue_work(iavf_wq, &adapter->reset_task); 4244 } 4245 4246 return 0; 4247 } 4248 4249 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4250 NETIF_F_HW_VLAN_CTAG_TX | \ 4251 NETIF_F_HW_VLAN_STAG_RX | \ 4252 NETIF_F_HW_VLAN_STAG_TX) 4253 4254 /** 4255 * iavf_set_features - set the netdev feature flags 4256 * @netdev: ptr to the netdev being adjusted 4257 * @features: the feature set that the stack is suggesting 4258 * Note: expects to be called while under rtnl_lock() 4259 **/ 4260 static int iavf_set_features(struct net_device *netdev, 4261 netdev_features_t features) 4262 { 4263 struct iavf_adapter *adapter = netdev_priv(netdev); 4264 4265 /* trigger update on any VLAN feature change */ 4266 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4267 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4268 iavf_set_vlan_offload_features(adapter, netdev->features, 4269 features); 4270 4271 return 0; 4272 } 4273 4274 /** 4275 * iavf_features_check - Validate encapsulated packet conforms to limits 4276 * @skb: skb buff 4277 * @dev: This physical port's netdev 4278 * @features: Offload features that the stack believes apply 4279 **/ 4280 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4281 struct net_device *dev, 4282 netdev_features_t features) 4283 { 4284 size_t len; 4285 4286 /* No point in doing any of this if neither checksum nor GSO are 4287 * being requested for this frame. We can rule out both by just 4288 * checking for CHECKSUM_PARTIAL 4289 */ 4290 if (skb->ip_summed != CHECKSUM_PARTIAL) 4291 return features; 4292 4293 /* We cannot support GSO if the MSS is going to be less than 4294 * 64 bytes. If it is then we need to drop support for GSO. 4295 */ 4296 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4297 features &= ~NETIF_F_GSO_MASK; 4298 4299 /* MACLEN can support at most 63 words */ 4300 len = skb_network_header(skb) - skb->data; 4301 if (len & ~(63 * 2)) 4302 goto out_err; 4303 4304 /* IPLEN and EIPLEN can support at most 127 dwords */ 4305 len = skb_transport_header(skb) - skb_network_header(skb); 4306 if (len & ~(127 * 4)) 4307 goto out_err; 4308 4309 if (skb->encapsulation) { 4310 /* L4TUNLEN can support 127 words */ 4311 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4312 if (len & ~(127 * 2)) 4313 goto out_err; 4314 4315 /* IPLEN can support at most 127 dwords */ 4316 len = skb_inner_transport_header(skb) - 4317 skb_inner_network_header(skb); 4318 if (len & ~(127 * 4)) 4319 goto out_err; 4320 } 4321 4322 /* No need to validate L4LEN as TCP is the only protocol with a 4323 * flexible value and we support all possible values supported 4324 * by TCP, which is at most 15 dwords 4325 */ 4326 4327 return features; 4328 out_err: 4329 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4330 } 4331 4332 /** 4333 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4334 * @adapter: board private structure 4335 * 4336 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4337 * were negotiated determine the VLAN features that can be toggled on and off. 4338 **/ 4339 static netdev_features_t 4340 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4341 { 4342 netdev_features_t hw_features = 0; 4343 4344 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4345 return hw_features; 4346 4347 /* Enable VLAN features if supported */ 4348 if (VLAN_ALLOWED(adapter)) { 4349 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4350 NETIF_F_HW_VLAN_CTAG_RX); 4351 } else if (VLAN_V2_ALLOWED(adapter)) { 4352 struct virtchnl_vlan_caps *vlan_v2_caps = 4353 &adapter->vlan_v2_caps; 4354 struct virtchnl_vlan_supported_caps *stripping_support = 4355 &vlan_v2_caps->offloads.stripping_support; 4356 struct virtchnl_vlan_supported_caps *insertion_support = 4357 &vlan_v2_caps->offloads.insertion_support; 4358 4359 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4360 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4361 if (stripping_support->outer & 4362 VIRTCHNL_VLAN_ETHERTYPE_8100) 4363 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4364 if (stripping_support->outer & 4365 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4366 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4367 } else if (stripping_support->inner != 4368 VIRTCHNL_VLAN_UNSUPPORTED && 4369 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4370 if (stripping_support->inner & 4371 VIRTCHNL_VLAN_ETHERTYPE_8100) 4372 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4373 } 4374 4375 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4376 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4377 if (insertion_support->outer & 4378 VIRTCHNL_VLAN_ETHERTYPE_8100) 4379 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4380 if (insertion_support->outer & 4381 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4382 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4383 } else if (insertion_support->inner && 4384 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4385 if (insertion_support->inner & 4386 VIRTCHNL_VLAN_ETHERTYPE_8100) 4387 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4388 } 4389 } 4390 4391 return hw_features; 4392 } 4393 4394 /** 4395 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4396 * @adapter: board private structure 4397 * 4398 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4399 * were negotiated determine the VLAN features that are enabled by default. 4400 **/ 4401 static netdev_features_t 4402 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4403 { 4404 netdev_features_t features = 0; 4405 4406 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4407 return features; 4408 4409 if (VLAN_ALLOWED(adapter)) { 4410 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4411 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4412 } else if (VLAN_V2_ALLOWED(adapter)) { 4413 struct virtchnl_vlan_caps *vlan_v2_caps = 4414 &adapter->vlan_v2_caps; 4415 struct virtchnl_vlan_supported_caps *filtering_support = 4416 &vlan_v2_caps->filtering.filtering_support; 4417 struct virtchnl_vlan_supported_caps *stripping_support = 4418 &vlan_v2_caps->offloads.stripping_support; 4419 struct virtchnl_vlan_supported_caps *insertion_support = 4420 &vlan_v2_caps->offloads.insertion_support; 4421 u32 ethertype_init; 4422 4423 /* give priority to outer stripping and don't support both outer 4424 * and inner stripping 4425 */ 4426 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4427 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4428 if (stripping_support->outer & 4429 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4430 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4431 features |= NETIF_F_HW_VLAN_CTAG_RX; 4432 else if (stripping_support->outer & 4433 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4434 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4435 features |= NETIF_F_HW_VLAN_STAG_RX; 4436 } else if (stripping_support->inner != 4437 VIRTCHNL_VLAN_UNSUPPORTED) { 4438 if (stripping_support->inner & 4439 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4440 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4441 features |= NETIF_F_HW_VLAN_CTAG_RX; 4442 } 4443 4444 /* give priority to outer insertion and don't support both outer 4445 * and inner insertion 4446 */ 4447 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4448 if (insertion_support->outer & 4449 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4450 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4451 features |= NETIF_F_HW_VLAN_CTAG_TX; 4452 else if (insertion_support->outer & 4453 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4454 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4455 features |= NETIF_F_HW_VLAN_STAG_TX; 4456 } else if (insertion_support->inner != 4457 VIRTCHNL_VLAN_UNSUPPORTED) { 4458 if (insertion_support->inner & 4459 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4460 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4461 features |= NETIF_F_HW_VLAN_CTAG_TX; 4462 } 4463 4464 /* give priority to outer filtering and don't bother if both 4465 * outer and inner filtering are enabled 4466 */ 4467 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4468 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4469 if (filtering_support->outer & 4470 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4471 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4472 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4473 if (filtering_support->outer & 4474 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4475 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4476 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4477 } else if (filtering_support->inner != 4478 VIRTCHNL_VLAN_UNSUPPORTED) { 4479 if (filtering_support->inner & 4480 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4481 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4482 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4483 if (filtering_support->inner & 4484 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4485 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4486 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4487 } 4488 } 4489 4490 return features; 4491 } 4492 4493 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4494 (!(((requested) & (feature_bit)) && \ 4495 !((allowed) & (feature_bit)))) 4496 4497 /** 4498 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4499 * @adapter: board private structure 4500 * @requested_features: stack requested NETDEV features 4501 **/ 4502 static netdev_features_t 4503 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4504 netdev_features_t requested_features) 4505 { 4506 netdev_features_t allowed_features; 4507 4508 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4509 iavf_get_netdev_vlan_features(adapter); 4510 4511 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4512 allowed_features, 4513 NETIF_F_HW_VLAN_CTAG_TX)) 4514 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4515 4516 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4517 allowed_features, 4518 NETIF_F_HW_VLAN_CTAG_RX)) 4519 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4520 4521 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4522 allowed_features, 4523 NETIF_F_HW_VLAN_STAG_TX)) 4524 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4525 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4526 allowed_features, 4527 NETIF_F_HW_VLAN_STAG_RX)) 4528 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4529 4530 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4531 allowed_features, 4532 NETIF_F_HW_VLAN_CTAG_FILTER)) 4533 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4534 4535 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4536 allowed_features, 4537 NETIF_F_HW_VLAN_STAG_FILTER)) 4538 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4539 4540 if ((requested_features & 4541 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4542 (requested_features & 4543 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4544 adapter->vlan_v2_caps.offloads.ethertype_match == 4545 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4546 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4547 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4548 NETIF_F_HW_VLAN_STAG_TX); 4549 } 4550 4551 return requested_features; 4552 } 4553 4554 /** 4555 * iavf_fix_features - fix up the netdev feature bits 4556 * @netdev: our net device 4557 * @features: desired feature bits 4558 * 4559 * Returns fixed-up features bits 4560 **/ 4561 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4562 netdev_features_t features) 4563 { 4564 struct iavf_adapter *adapter = netdev_priv(netdev); 4565 4566 return iavf_fix_netdev_vlan_features(adapter, features); 4567 } 4568 4569 static const struct net_device_ops iavf_netdev_ops = { 4570 .ndo_open = iavf_open, 4571 .ndo_stop = iavf_close, 4572 .ndo_start_xmit = iavf_xmit_frame, 4573 .ndo_set_rx_mode = iavf_set_rx_mode, 4574 .ndo_validate_addr = eth_validate_addr, 4575 .ndo_set_mac_address = iavf_set_mac, 4576 .ndo_change_mtu = iavf_change_mtu, 4577 .ndo_tx_timeout = iavf_tx_timeout, 4578 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4579 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4580 .ndo_features_check = iavf_features_check, 4581 .ndo_fix_features = iavf_fix_features, 4582 .ndo_set_features = iavf_set_features, 4583 .ndo_setup_tc = iavf_setup_tc, 4584 }; 4585 4586 /** 4587 * iavf_check_reset_complete - check that VF reset is complete 4588 * @hw: pointer to hw struct 4589 * 4590 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4591 **/ 4592 static int iavf_check_reset_complete(struct iavf_hw *hw) 4593 { 4594 u32 rstat; 4595 int i; 4596 4597 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4598 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4599 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4600 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4601 (rstat == VIRTCHNL_VFR_COMPLETED)) 4602 return 0; 4603 usleep_range(10, 20); 4604 } 4605 return -EBUSY; 4606 } 4607 4608 /** 4609 * iavf_process_config - Process the config information we got from the PF 4610 * @adapter: board private structure 4611 * 4612 * Verify that we have a valid config struct, and set up our netdev features 4613 * and our VSI struct. 4614 **/ 4615 int iavf_process_config(struct iavf_adapter *adapter) 4616 { 4617 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4618 netdev_features_t hw_vlan_features, vlan_features; 4619 struct net_device *netdev = adapter->netdev; 4620 netdev_features_t hw_enc_features; 4621 netdev_features_t hw_features; 4622 4623 hw_enc_features = NETIF_F_SG | 4624 NETIF_F_IP_CSUM | 4625 NETIF_F_IPV6_CSUM | 4626 NETIF_F_HIGHDMA | 4627 NETIF_F_SOFT_FEATURES | 4628 NETIF_F_TSO | 4629 NETIF_F_TSO_ECN | 4630 NETIF_F_TSO6 | 4631 NETIF_F_SCTP_CRC | 4632 NETIF_F_RXHASH | 4633 NETIF_F_RXCSUM | 4634 0; 4635 4636 /* advertise to stack only if offloads for encapsulated packets is 4637 * supported 4638 */ 4639 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4640 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4641 NETIF_F_GSO_GRE | 4642 NETIF_F_GSO_GRE_CSUM | 4643 NETIF_F_GSO_IPXIP4 | 4644 NETIF_F_GSO_IPXIP6 | 4645 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4646 NETIF_F_GSO_PARTIAL | 4647 0; 4648 4649 if (!(vfres->vf_cap_flags & 4650 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4651 netdev->gso_partial_features |= 4652 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4653 4654 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4655 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4656 netdev->hw_enc_features |= hw_enc_features; 4657 } 4658 /* record features VLANs can make use of */ 4659 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4660 4661 /* Write features and hw_features separately to avoid polluting 4662 * with, or dropping, features that are set when we registered. 4663 */ 4664 hw_features = hw_enc_features; 4665 4666 /* get HW VLAN features that can be toggled */ 4667 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4668 4669 /* Enable cloud filter if ADQ is supported */ 4670 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4671 hw_features |= NETIF_F_HW_TC; 4672 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4673 hw_features |= NETIF_F_GSO_UDP_L4; 4674 4675 netdev->hw_features |= hw_features | hw_vlan_features; 4676 vlan_features = iavf_get_netdev_vlan_features(adapter); 4677 4678 netdev->features |= hw_features | vlan_features; 4679 4680 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4681 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4682 4683 netdev->priv_flags |= IFF_UNICAST_FLT; 4684 4685 /* Do not turn on offloads when they are requested to be turned off. 4686 * TSO needs minimum 576 bytes to work correctly. 4687 */ 4688 if (netdev->wanted_features) { 4689 if (!(netdev->wanted_features & NETIF_F_TSO) || 4690 netdev->mtu < 576) 4691 netdev->features &= ~NETIF_F_TSO; 4692 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4693 netdev->mtu < 576) 4694 netdev->features &= ~NETIF_F_TSO6; 4695 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4696 netdev->features &= ~NETIF_F_TSO_ECN; 4697 if (!(netdev->wanted_features & NETIF_F_GRO)) 4698 netdev->features &= ~NETIF_F_GRO; 4699 if (!(netdev->wanted_features & NETIF_F_GSO)) 4700 netdev->features &= ~NETIF_F_GSO; 4701 } 4702 4703 return 0; 4704 } 4705 4706 /** 4707 * iavf_shutdown - Shutdown the device in preparation for a reboot 4708 * @pdev: pci device structure 4709 **/ 4710 static void iavf_shutdown(struct pci_dev *pdev) 4711 { 4712 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4713 struct net_device *netdev = adapter->netdev; 4714 4715 netif_device_detach(netdev); 4716 4717 if (netif_running(netdev)) 4718 iavf_close(netdev); 4719 4720 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4721 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4722 /* Prevent the watchdog from running. */ 4723 iavf_change_state(adapter, __IAVF_REMOVE); 4724 adapter->aq_required = 0; 4725 mutex_unlock(&adapter->crit_lock); 4726 4727 #ifdef CONFIG_PM 4728 pci_save_state(pdev); 4729 4730 #endif 4731 pci_disable_device(pdev); 4732 } 4733 4734 /** 4735 * iavf_probe - Device Initialization Routine 4736 * @pdev: PCI device information struct 4737 * @ent: entry in iavf_pci_tbl 4738 * 4739 * Returns 0 on success, negative on failure 4740 * 4741 * iavf_probe initializes an adapter identified by a pci_dev structure. 4742 * The OS initialization, configuring of the adapter private structure, 4743 * and a hardware reset occur. 4744 **/ 4745 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4746 { 4747 struct net_device *netdev; 4748 struct iavf_adapter *adapter = NULL; 4749 struct iavf_hw *hw = NULL; 4750 int err; 4751 4752 err = pci_enable_device(pdev); 4753 if (err) 4754 return err; 4755 4756 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4757 if (err) { 4758 dev_err(&pdev->dev, 4759 "DMA configuration failed: 0x%x\n", err); 4760 goto err_dma; 4761 } 4762 4763 err = pci_request_regions(pdev, iavf_driver_name); 4764 if (err) { 4765 dev_err(&pdev->dev, 4766 "pci_request_regions failed 0x%x\n", err); 4767 goto err_pci_reg; 4768 } 4769 4770 pci_enable_pcie_error_reporting(pdev); 4771 4772 pci_set_master(pdev); 4773 4774 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4775 IAVF_MAX_REQ_QUEUES); 4776 if (!netdev) { 4777 err = -ENOMEM; 4778 goto err_alloc_etherdev; 4779 } 4780 4781 SET_NETDEV_DEV(netdev, &pdev->dev); 4782 4783 pci_set_drvdata(pdev, netdev); 4784 adapter = netdev_priv(netdev); 4785 4786 adapter->netdev = netdev; 4787 adapter->pdev = pdev; 4788 4789 hw = &adapter->hw; 4790 hw->back = adapter; 4791 4792 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4793 iavf_change_state(adapter, __IAVF_STARTUP); 4794 4795 /* Call save state here because it relies on the adapter struct. */ 4796 pci_save_state(pdev); 4797 4798 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4799 pci_resource_len(pdev, 0)); 4800 if (!hw->hw_addr) { 4801 err = -EIO; 4802 goto err_ioremap; 4803 } 4804 hw->vendor_id = pdev->vendor; 4805 hw->device_id = pdev->device; 4806 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4807 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4808 hw->subsystem_device_id = pdev->subsystem_device; 4809 hw->bus.device = PCI_SLOT(pdev->devfn); 4810 hw->bus.func = PCI_FUNC(pdev->devfn); 4811 hw->bus.bus_id = pdev->bus->number; 4812 4813 /* set up the locks for the AQ, do this only once in probe 4814 * and destroy them only once in remove 4815 */ 4816 mutex_init(&adapter->crit_lock); 4817 mutex_init(&adapter->client_lock); 4818 mutex_init(&hw->aq.asq_mutex); 4819 mutex_init(&hw->aq.arq_mutex); 4820 4821 spin_lock_init(&adapter->mac_vlan_list_lock); 4822 spin_lock_init(&adapter->cloud_filter_list_lock); 4823 spin_lock_init(&adapter->fdir_fltr_lock); 4824 spin_lock_init(&adapter->adv_rss_lock); 4825 4826 INIT_LIST_HEAD(&adapter->mac_filter_list); 4827 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4828 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4829 INIT_LIST_HEAD(&adapter->fdir_list_head); 4830 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4831 4832 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4833 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4834 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4835 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4836 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4837 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4838 4839 /* Setup the wait queue for indicating transition to down status */ 4840 init_waitqueue_head(&adapter->down_waitqueue); 4841 4842 /* Setup the wait queue for indicating virtchannel events */ 4843 init_waitqueue_head(&adapter->vc_waitqueue); 4844 4845 return 0; 4846 4847 err_ioremap: 4848 free_netdev(netdev); 4849 err_alloc_etherdev: 4850 pci_disable_pcie_error_reporting(pdev); 4851 pci_release_regions(pdev); 4852 err_pci_reg: 4853 err_dma: 4854 pci_disable_device(pdev); 4855 return err; 4856 } 4857 4858 /** 4859 * iavf_suspend - Power management suspend routine 4860 * @dev_d: device info pointer 4861 * 4862 * Called when the system (VM) is entering sleep/suspend. 4863 **/ 4864 static int __maybe_unused iavf_suspend(struct device *dev_d) 4865 { 4866 struct net_device *netdev = dev_get_drvdata(dev_d); 4867 struct iavf_adapter *adapter = netdev_priv(netdev); 4868 4869 netif_device_detach(netdev); 4870 4871 while (!mutex_trylock(&adapter->crit_lock)) 4872 usleep_range(500, 1000); 4873 4874 if (netif_running(netdev)) { 4875 rtnl_lock(); 4876 iavf_down(adapter); 4877 rtnl_unlock(); 4878 } 4879 iavf_free_misc_irq(adapter); 4880 iavf_reset_interrupt_capability(adapter); 4881 4882 mutex_unlock(&adapter->crit_lock); 4883 4884 return 0; 4885 } 4886 4887 /** 4888 * iavf_resume - Power management resume routine 4889 * @dev_d: device info pointer 4890 * 4891 * Called when the system (VM) is resumed from sleep/suspend. 4892 **/ 4893 static int __maybe_unused iavf_resume(struct device *dev_d) 4894 { 4895 struct pci_dev *pdev = to_pci_dev(dev_d); 4896 struct iavf_adapter *adapter; 4897 u32 err; 4898 4899 adapter = iavf_pdev_to_adapter(pdev); 4900 4901 pci_set_master(pdev); 4902 4903 rtnl_lock(); 4904 err = iavf_set_interrupt_capability(adapter); 4905 if (err) { 4906 rtnl_unlock(); 4907 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 4908 return err; 4909 } 4910 err = iavf_request_misc_irq(adapter); 4911 rtnl_unlock(); 4912 if (err) { 4913 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 4914 return err; 4915 } 4916 4917 queue_work(iavf_wq, &adapter->reset_task); 4918 4919 netif_device_attach(adapter->netdev); 4920 4921 return err; 4922 } 4923 4924 /** 4925 * iavf_remove - Device Removal Routine 4926 * @pdev: PCI device information struct 4927 * 4928 * iavf_remove is called by the PCI subsystem to alert the driver 4929 * that it should release a PCI device. The could be caused by a 4930 * Hot-Plug event, or because the driver is going to be removed from 4931 * memory. 4932 **/ 4933 static void iavf_remove(struct pci_dev *pdev) 4934 { 4935 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4936 struct net_device *netdev = adapter->netdev; 4937 struct iavf_fdir_fltr *fdir, *fdirtmp; 4938 struct iavf_vlan_filter *vlf, *vlftmp; 4939 struct iavf_adv_rss *rss, *rsstmp; 4940 struct iavf_mac_filter *f, *ftmp; 4941 struct iavf_cloud_filter *cf, *cftmp; 4942 struct iavf_hw *hw = &adapter->hw; 4943 int err; 4944 4945 /* When reboot/shutdown is in progress no need to do anything 4946 * as the adapter is already REMOVE state that was set during 4947 * iavf_shutdown() callback. 4948 */ 4949 if (adapter->state == __IAVF_REMOVE) 4950 return; 4951 4952 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 4953 /* Wait until port initialization is complete. 4954 * There are flows where register/unregister netdev may race. 4955 */ 4956 while (1) { 4957 mutex_lock(&adapter->crit_lock); 4958 if (adapter->state == __IAVF_RUNNING || 4959 adapter->state == __IAVF_DOWN || 4960 adapter->state == __IAVF_INIT_FAILED) { 4961 mutex_unlock(&adapter->crit_lock); 4962 break; 4963 } 4964 4965 mutex_unlock(&adapter->crit_lock); 4966 usleep_range(500, 1000); 4967 } 4968 cancel_delayed_work_sync(&adapter->watchdog_task); 4969 4970 if (adapter->netdev_registered) { 4971 rtnl_lock(); 4972 unregister_netdevice(netdev); 4973 adapter->netdev_registered = false; 4974 rtnl_unlock(); 4975 } 4976 if (CLIENT_ALLOWED(adapter)) { 4977 err = iavf_lan_del_device(adapter); 4978 if (err) 4979 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 4980 err); 4981 } 4982 4983 mutex_lock(&adapter->crit_lock); 4984 dev_info(&adapter->pdev->dev, "Remove device\n"); 4985 iavf_change_state(adapter, __IAVF_REMOVE); 4986 4987 iavf_request_reset(adapter); 4988 msleep(50); 4989 /* If the FW isn't responding, kick it once, but only once. */ 4990 if (!iavf_asq_done(hw)) { 4991 iavf_request_reset(adapter); 4992 msleep(50); 4993 } 4994 4995 iavf_misc_irq_disable(adapter); 4996 /* Shut down all the garbage mashers on the detention level */ 4997 cancel_work_sync(&adapter->reset_task); 4998 cancel_delayed_work_sync(&adapter->watchdog_task); 4999 cancel_work_sync(&adapter->adminq_task); 5000 cancel_delayed_work_sync(&adapter->client_task); 5001 5002 adapter->aq_required = 0; 5003 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5004 5005 iavf_free_all_tx_resources(adapter); 5006 iavf_free_all_rx_resources(adapter); 5007 iavf_free_misc_irq(adapter); 5008 5009 iavf_reset_interrupt_capability(adapter); 5010 iavf_free_q_vectors(adapter); 5011 5012 iavf_free_rss(adapter); 5013 5014 if (hw->aq.asq.count) 5015 iavf_shutdown_adminq(hw); 5016 5017 /* destroy the locks only once, here */ 5018 mutex_destroy(&hw->aq.arq_mutex); 5019 mutex_destroy(&hw->aq.asq_mutex); 5020 mutex_destroy(&adapter->client_lock); 5021 mutex_unlock(&adapter->crit_lock); 5022 mutex_destroy(&adapter->crit_lock); 5023 5024 iounmap(hw->hw_addr); 5025 pci_release_regions(pdev); 5026 iavf_free_queues(adapter); 5027 kfree(adapter->vf_res); 5028 spin_lock_bh(&adapter->mac_vlan_list_lock); 5029 /* If we got removed before an up/down sequence, we've got a filter 5030 * hanging out there that we need to get rid of. 5031 */ 5032 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5033 list_del(&f->list); 5034 kfree(f); 5035 } 5036 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5037 list) { 5038 list_del(&vlf->list); 5039 kfree(vlf); 5040 } 5041 5042 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5043 5044 spin_lock_bh(&adapter->cloud_filter_list_lock); 5045 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5046 list_del(&cf->list); 5047 kfree(cf); 5048 } 5049 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5050 5051 spin_lock_bh(&adapter->fdir_fltr_lock); 5052 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5053 list_del(&fdir->list); 5054 kfree(fdir); 5055 } 5056 spin_unlock_bh(&adapter->fdir_fltr_lock); 5057 5058 spin_lock_bh(&adapter->adv_rss_lock); 5059 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5060 list) { 5061 list_del(&rss->list); 5062 kfree(rss); 5063 } 5064 spin_unlock_bh(&adapter->adv_rss_lock); 5065 5066 free_netdev(netdev); 5067 5068 pci_disable_pcie_error_reporting(pdev); 5069 5070 pci_disable_device(pdev); 5071 } 5072 5073 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5074 5075 static struct pci_driver iavf_driver = { 5076 .name = iavf_driver_name, 5077 .id_table = iavf_pci_tbl, 5078 .probe = iavf_probe, 5079 .remove = iavf_remove, 5080 .driver.pm = &iavf_pm_ops, 5081 .shutdown = iavf_shutdown, 5082 }; 5083 5084 /** 5085 * iavf_init_module - Driver Registration Routine 5086 * 5087 * iavf_init_module is the first routine called when the driver is 5088 * loaded. All it does is register with the PCI subsystem. 5089 **/ 5090 static int __init iavf_init_module(void) 5091 { 5092 pr_info("iavf: %s\n", iavf_driver_string); 5093 5094 pr_info("%s\n", iavf_copyright); 5095 5096 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 5097 iavf_driver_name); 5098 if (!iavf_wq) { 5099 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 5100 return -ENOMEM; 5101 } 5102 return pci_register_driver(&iavf_driver); 5103 } 5104 5105 module_init(iavf_init_module); 5106 5107 /** 5108 * iavf_exit_module - Driver Exit Cleanup Routine 5109 * 5110 * iavf_exit_module is called just before the driver is removed 5111 * from memory. 5112 **/ 5113 static void __exit iavf_exit_module(void) 5114 { 5115 pci_unregister_driver(&iavf_driver); 5116 destroy_workqueue(iavf_wq); 5117 } 5118 5119 module_exit(iavf_exit_module); 5120 5121 /* iavf_main.c */ 5122