1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_lock_timeout - try to lock mutex but give up after timeout 281 * @lock: mutex that should be locked 282 * @msecs: timeout in msecs 283 * 284 * Returns 0 on success, negative on failure 285 **/ 286 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 287 { 288 unsigned int wait, delay = 10; 289 290 for (wait = 0; wait < msecs; wait += delay) { 291 if (mutex_trylock(lock)) 292 return 0; 293 294 msleep(delay); 295 } 296 297 return -1; 298 } 299 300 /** 301 * iavf_schedule_reset - Set the flags and schedule a reset event 302 * @adapter: board private structure 303 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 304 **/ 305 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 306 { 307 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 308 !(adapter->flags & 309 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 310 adapter->flags |= flags; 311 queue_work(adapter->wq, &adapter->reset_task); 312 } 313 } 314 315 /** 316 * iavf_schedule_aq_request - Set the flags and schedule aq request 317 * @adapter: board private structure 318 * @flags: requested aq flags 319 **/ 320 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 321 { 322 adapter->aq_required |= flags; 323 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 324 } 325 326 /** 327 * iavf_tx_timeout - Respond to a Tx Hang 328 * @netdev: network interface device structure 329 * @txqueue: queue number that is timing out 330 **/ 331 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 332 { 333 struct iavf_adapter *adapter = netdev_priv(netdev); 334 335 adapter->tx_timeout_count++; 336 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 337 } 338 339 /** 340 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 if (!adapter->msix_entries) 348 return; 349 350 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 351 352 iavf_flush(hw); 353 354 synchronize_irq(adapter->msix_entries[0].vector); 355 } 356 357 /** 358 * iavf_misc_irq_enable - Enable default interrupt generation settings 359 * @adapter: board private structure 360 **/ 361 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 362 { 363 struct iavf_hw *hw = &adapter->hw; 364 365 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 366 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 367 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 368 369 iavf_flush(hw); 370 } 371 372 /** 373 * iavf_irq_disable - Mask off interrupt generation on the NIC 374 * @adapter: board private structure 375 **/ 376 static void iavf_irq_disable(struct iavf_adapter *adapter) 377 { 378 int i; 379 struct iavf_hw *hw = &adapter->hw; 380 381 if (!adapter->msix_entries) 382 return; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 386 synchronize_irq(adapter->msix_entries[i].vector); 387 } 388 iavf_flush(hw); 389 } 390 391 /** 392 * iavf_irq_enable_queues - Enable interrupt for all queues 393 * @adapter: board private structure 394 **/ 395 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 396 { 397 struct iavf_hw *hw = &adapter->hw; 398 int i; 399 400 for (i = 1; i < adapter->num_msix_vectors; i++) { 401 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 402 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 403 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 404 } 405 } 406 407 /** 408 * iavf_irq_enable - Enable default interrupt generation settings 409 * @adapter: board private structure 410 * @flush: boolean value whether to run rd32() 411 **/ 412 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 413 { 414 struct iavf_hw *hw = &adapter->hw; 415 416 iavf_misc_irq_enable(adapter); 417 iavf_irq_enable_queues(adapter); 418 419 if (flush) 420 iavf_flush(hw); 421 } 422 423 /** 424 * iavf_msix_aq - Interrupt handler for vector 0 425 * @irq: interrupt number 426 * @data: pointer to netdev 427 **/ 428 static irqreturn_t iavf_msix_aq(int irq, void *data) 429 { 430 struct net_device *netdev = data; 431 struct iavf_adapter *adapter = netdev_priv(netdev); 432 struct iavf_hw *hw = &adapter->hw; 433 434 /* handle non-queue interrupts, these reads clear the registers */ 435 rd32(hw, IAVF_VFINT_ICR01); 436 rd32(hw, IAVF_VFINT_ICR0_ENA1); 437 438 if (adapter->state != __IAVF_REMOVE) 439 /* schedule work on the private workqueue */ 440 queue_work(adapter->wq, &adapter->adminq_task); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 447 * @irq: interrupt number 448 * @data: pointer to a q_vector 449 **/ 450 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 451 { 452 struct iavf_q_vector *q_vector = data; 453 454 if (!q_vector->tx.ring && !q_vector->rx.ring) 455 return IRQ_HANDLED; 456 457 napi_schedule_irqoff(&q_vector->napi); 458 459 return IRQ_HANDLED; 460 } 461 462 /** 463 * iavf_map_vector_to_rxq - associate irqs with rx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @r_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 rx_ring->q_vector = q_vector; 476 rx_ring->next = q_vector->rx.ring; 477 rx_ring->vsi = &adapter->vsi; 478 q_vector->rx.ring = rx_ring; 479 q_vector->rx.count++; 480 q_vector->rx.next_update = jiffies + 1; 481 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 482 q_vector->ring_mask |= BIT(r_idx); 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 484 q_vector->rx.current_itr >> 1); 485 q_vector->rx.current_itr = q_vector->rx.target_itr; 486 } 487 488 /** 489 * iavf_map_vector_to_txq - associate irqs with tx queues 490 * @adapter: board private structure 491 * @v_idx: interrupt number 492 * @t_idx: queue number 493 **/ 494 static void 495 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 496 { 497 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 498 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 499 struct iavf_hw *hw = &adapter->hw; 500 501 tx_ring->q_vector = q_vector; 502 tx_ring->next = q_vector->tx.ring; 503 tx_ring->vsi = &adapter->vsi; 504 q_vector->tx.ring = tx_ring; 505 q_vector->tx.count++; 506 q_vector->tx.next_update = jiffies + 1; 507 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 508 q_vector->num_ringpairs++; 509 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 510 q_vector->tx.target_itr >> 1); 511 q_vector->tx.current_itr = q_vector->tx.target_itr; 512 } 513 514 /** 515 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 516 * @adapter: board private structure to initialize 517 * 518 * This function maps descriptor rings to the queue-specific vectors 519 * we were allotted through the MSI-X enabling code. Ideally, we'd have 520 * one vector per ring/queue, but on a constrained vector budget, we 521 * group the rings as "efficiently" as possible. You would add new 522 * mapping configurations in here. 523 **/ 524 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 525 { 526 int rings_remaining = adapter->num_active_queues; 527 int ridx = 0, vidx = 0; 528 int q_vectors; 529 530 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 531 532 for (; ridx < rings_remaining; ridx++) { 533 iavf_map_vector_to_rxq(adapter, vidx, ridx); 534 iavf_map_vector_to_txq(adapter, vidx, ridx); 535 536 /* In the case where we have more queues than vectors, continue 537 * round-robin on vectors until all queues are mapped. 538 */ 539 if (++vidx >= q_vectors) 540 vidx = 0; 541 } 542 543 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 544 } 545 546 /** 547 * iavf_irq_affinity_notify - Callback for affinity changes 548 * @notify: context as to what irq was changed 549 * @mask: the new affinity mask 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * so that we may register to receive changes to the irq affinity masks. 553 **/ 554 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 555 const cpumask_t *mask) 556 { 557 struct iavf_q_vector *q_vector = 558 container_of(notify, struct iavf_q_vector, affinity_notify); 559 560 cpumask_copy(&q_vector->affinity_mask, mask); 561 } 562 563 /** 564 * iavf_irq_affinity_release - Callback for affinity notifier release 565 * @ref: internal core kernel usage 566 * 567 * This is a callback function used by the irq_set_affinity_notifier function 568 * to inform the current notification subscriber that they will no longer 569 * receive notifications. 570 **/ 571 static void iavf_irq_affinity_release(struct kref *ref) {} 572 573 /** 574 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 575 * @adapter: board private structure 576 * @basename: device basename 577 * 578 * Allocates MSI-X vectors for tx and rx handling, and requests 579 * interrupts from the kernel. 580 **/ 581 static int 582 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 583 { 584 unsigned int vector, q_vectors; 585 unsigned int rx_int_idx = 0, tx_int_idx = 0; 586 int irq_num, err; 587 int cpu; 588 589 iavf_irq_disable(adapter); 590 /* Decrement for Other and TCP Timer vectors */ 591 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 592 593 for (vector = 0; vector < q_vectors; vector++) { 594 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 595 596 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 597 598 if (q_vector->tx.ring && q_vector->rx.ring) { 599 snprintf(q_vector->name, sizeof(q_vector->name), 600 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 601 tx_int_idx++; 602 } else if (q_vector->rx.ring) { 603 snprintf(q_vector->name, sizeof(q_vector->name), 604 "iavf-%s-rx-%u", basename, rx_int_idx++); 605 } else if (q_vector->tx.ring) { 606 snprintf(q_vector->name, sizeof(q_vector->name), 607 "iavf-%s-tx-%u", basename, tx_int_idx++); 608 } else { 609 /* skip this unused q_vector */ 610 continue; 611 } 612 err = request_irq(irq_num, 613 iavf_msix_clean_rings, 614 0, 615 q_vector->name, 616 q_vector); 617 if (err) { 618 dev_info(&adapter->pdev->dev, 619 "Request_irq failed, error: %d\n", err); 620 goto free_queue_irqs; 621 } 622 /* register for affinity change notifications */ 623 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 624 q_vector->affinity_notify.release = 625 iavf_irq_affinity_release; 626 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 627 /* Spread the IRQ affinity hints across online CPUs. Note that 628 * get_cpu_mask returns a mask with a permanent lifetime so 629 * it's safe to use as a hint for irq_update_affinity_hint. 630 */ 631 cpu = cpumask_local_spread(q_vector->v_idx, -1); 632 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 633 } 634 635 return 0; 636 637 free_queue_irqs: 638 while (vector) { 639 vector--; 640 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 641 irq_set_affinity_notifier(irq_num, NULL); 642 irq_update_affinity_hint(irq_num, NULL); 643 free_irq(irq_num, &adapter->q_vectors[vector]); 644 } 645 return err; 646 } 647 648 /** 649 * iavf_request_misc_irq - Initialize MSI-X interrupts 650 * @adapter: board private structure 651 * 652 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 653 * vector is only for the admin queue, and stays active even when the netdev 654 * is closed. 655 **/ 656 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 657 { 658 struct net_device *netdev = adapter->netdev; 659 int err; 660 661 snprintf(adapter->misc_vector_name, 662 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 663 dev_name(&adapter->pdev->dev)); 664 err = request_irq(adapter->msix_entries[0].vector, 665 &iavf_msix_aq, 0, 666 adapter->misc_vector_name, netdev); 667 if (err) { 668 dev_err(&adapter->pdev->dev, 669 "request_irq for %s failed: %d\n", 670 adapter->misc_vector_name, err); 671 free_irq(adapter->msix_entries[0].vector, netdev); 672 } 673 return err; 674 } 675 676 /** 677 * iavf_free_traffic_irqs - Free MSI-X interrupts 678 * @adapter: board private structure 679 * 680 * Frees all MSI-X vectors other than 0. 681 **/ 682 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 683 { 684 int vector, irq_num, q_vectors; 685 686 if (!adapter->msix_entries) 687 return; 688 689 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 690 691 for (vector = 0; vector < q_vectors; vector++) { 692 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 693 irq_set_affinity_notifier(irq_num, NULL); 694 irq_update_affinity_hint(irq_num, NULL); 695 free_irq(irq_num, &adapter->q_vectors[vector]); 696 } 697 } 698 699 /** 700 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 701 * @adapter: board private structure 702 * 703 * Frees MSI-X vector 0. 704 **/ 705 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 706 { 707 struct net_device *netdev = adapter->netdev; 708 709 if (!adapter->msix_entries) 710 return; 711 712 free_irq(adapter->msix_entries[0].vector, netdev); 713 } 714 715 /** 716 * iavf_configure_tx - Configure Transmit Unit after Reset 717 * @adapter: board private structure 718 * 719 * Configure the Tx unit of the MAC after a reset. 720 **/ 721 static void iavf_configure_tx(struct iavf_adapter *adapter) 722 { 723 struct iavf_hw *hw = &adapter->hw; 724 int i; 725 726 for (i = 0; i < adapter->num_active_queues; i++) 727 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 728 } 729 730 /** 731 * iavf_configure_rx - Configure Receive Unit after Reset 732 * @adapter: board private structure 733 * 734 * Configure the Rx unit of the MAC after a reset. 735 **/ 736 static void iavf_configure_rx(struct iavf_adapter *adapter) 737 { 738 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 739 struct iavf_hw *hw = &adapter->hw; 740 int i; 741 742 /* Legacy Rx will always default to a 2048 buffer size. */ 743 #if (PAGE_SIZE < 8192) 744 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 745 struct net_device *netdev = adapter->netdev; 746 747 /* For jumbo frames on systems with 4K pages we have to use 748 * an order 1 page, so we might as well increase the size 749 * of our Rx buffer to make better use of the available space 750 */ 751 rx_buf_len = IAVF_RXBUFFER_3072; 752 753 /* We use a 1536 buffer size for configurations with 754 * standard Ethernet mtu. On x86 this gives us enough room 755 * for shared info and 192 bytes of padding. 756 */ 757 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 758 (netdev->mtu <= ETH_DATA_LEN)) 759 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 760 } 761 #endif 762 763 for (i = 0; i < adapter->num_active_queues; i++) { 764 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 765 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 766 767 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 768 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 769 else 770 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 771 } 772 } 773 774 /** 775 * iavf_find_vlan - Search filter list for specific vlan filter 776 * @adapter: board private structure 777 * @vlan: vlan tag 778 * 779 * Returns ptr to the filter object or NULL. Must be called while holding the 780 * mac_vlan_list_lock. 781 **/ 782 static struct 783 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 784 struct iavf_vlan vlan) 785 { 786 struct iavf_vlan_filter *f; 787 788 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 789 if (f->vlan.vid == vlan.vid && 790 f->vlan.tpid == vlan.tpid) 791 return f; 792 } 793 794 return NULL; 795 } 796 797 /** 798 * iavf_add_vlan - Add a vlan filter to the list 799 * @adapter: board private structure 800 * @vlan: VLAN tag 801 * 802 * Returns ptr to the filter object or NULL when no memory available. 803 **/ 804 static struct 805 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 806 struct iavf_vlan vlan) 807 { 808 struct iavf_vlan_filter *f = NULL; 809 810 spin_lock_bh(&adapter->mac_vlan_list_lock); 811 812 f = iavf_find_vlan(adapter, vlan); 813 if (!f) { 814 f = kzalloc(sizeof(*f), GFP_ATOMIC); 815 if (!f) 816 goto clearout; 817 818 f->vlan = vlan; 819 820 list_add_tail(&f->list, &adapter->vlan_filter_list); 821 f->state = IAVF_VLAN_ADD; 822 adapter->num_vlan_filters++; 823 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 824 } 825 826 clearout: 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 return f; 829 } 830 831 /** 832 * iavf_del_vlan - Remove a vlan filter from the list 833 * @adapter: board private structure 834 * @vlan: VLAN tag 835 **/ 836 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 837 { 838 struct iavf_vlan_filter *f; 839 840 spin_lock_bh(&adapter->mac_vlan_list_lock); 841 842 f = iavf_find_vlan(adapter, vlan); 843 if (f) { 844 f->state = IAVF_VLAN_REMOVE; 845 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 } 850 851 /** 852 * iavf_restore_filters 853 * @adapter: board private structure 854 * 855 * Restore existing non MAC filters when VF netdev comes back up 856 **/ 857 static void iavf_restore_filters(struct iavf_adapter *adapter) 858 { 859 struct iavf_vlan_filter *f; 860 861 /* re-add all VLAN filters */ 862 spin_lock_bh(&adapter->mac_vlan_list_lock); 863 864 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 865 if (f->state == IAVF_VLAN_INACTIVE) 866 f->state = IAVF_VLAN_ADD; 867 } 868 869 spin_unlock_bh(&adapter->mac_vlan_list_lock); 870 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 871 } 872 873 /** 874 * iavf_get_num_vlans_added - get number of VLANs added 875 * @adapter: board private structure 876 */ 877 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 878 { 879 return adapter->num_vlan_filters; 880 } 881 882 /** 883 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 884 * @adapter: board private structure 885 * 886 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 887 * do not impose a limit as that maintains current behavior and for 888 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 889 **/ 890 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 891 { 892 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 893 * never been a limit on the VF driver side 894 */ 895 if (VLAN_ALLOWED(adapter)) 896 return VLAN_N_VID; 897 else if (VLAN_V2_ALLOWED(adapter)) 898 return adapter->vlan_v2_caps.filtering.max_filters; 899 900 return 0; 901 } 902 903 /** 904 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 905 * @adapter: board private structure 906 **/ 907 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 908 { 909 if (iavf_get_num_vlans_added(adapter) < 910 iavf_get_max_vlans_allowed(adapter)) 911 return false; 912 913 return true; 914 } 915 916 /** 917 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 918 * @netdev: network device struct 919 * @proto: unused protocol data 920 * @vid: VLAN tag 921 **/ 922 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 923 __always_unused __be16 proto, u16 vid) 924 { 925 struct iavf_adapter *adapter = netdev_priv(netdev); 926 927 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 928 if (!vid) 929 return 0; 930 931 if (!VLAN_FILTERING_ALLOWED(adapter)) 932 return -EIO; 933 934 if (iavf_max_vlans_added(adapter)) { 935 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 936 iavf_get_max_vlans_allowed(adapter)); 937 return -EIO; 938 } 939 940 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 941 return -ENOMEM; 942 943 return 0; 944 } 945 946 /** 947 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 948 * @netdev: network device struct 949 * @proto: unused protocol data 950 * @vid: VLAN tag 951 **/ 952 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 953 __always_unused __be16 proto, u16 vid) 954 { 955 struct iavf_adapter *adapter = netdev_priv(netdev); 956 957 /* We do not track VLAN 0 filter */ 958 if (!vid) 959 return 0; 960 961 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 962 return 0; 963 } 964 965 /** 966 * iavf_find_filter - Search filter list for specific mac filter 967 * @adapter: board private structure 968 * @macaddr: the MAC address 969 * 970 * Returns ptr to the filter object or NULL. Must be called while holding the 971 * mac_vlan_list_lock. 972 **/ 973 static struct 974 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 975 const u8 *macaddr) 976 { 977 struct iavf_mac_filter *f; 978 979 if (!macaddr) 980 return NULL; 981 982 list_for_each_entry(f, &adapter->mac_filter_list, list) { 983 if (ether_addr_equal(macaddr, f->macaddr)) 984 return f; 985 } 986 return NULL; 987 } 988 989 /** 990 * iavf_add_filter - Add a mac filter to the filter list 991 * @adapter: board private structure 992 * @macaddr: the MAC address 993 * 994 * Returns ptr to the filter object or NULL when no memory available. 995 **/ 996 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 997 const u8 *macaddr) 998 { 999 struct iavf_mac_filter *f; 1000 1001 if (!macaddr) 1002 return NULL; 1003 1004 f = iavf_find_filter(adapter, macaddr); 1005 if (!f) { 1006 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1007 if (!f) 1008 return f; 1009 1010 ether_addr_copy(f->macaddr, macaddr); 1011 1012 list_add_tail(&f->list, &adapter->mac_filter_list); 1013 f->add = true; 1014 f->add_handled = false; 1015 f->is_new_mac = true; 1016 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1017 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1018 } else { 1019 f->remove = false; 1020 } 1021 1022 return f; 1023 } 1024 1025 /** 1026 * iavf_replace_primary_mac - Replace current primary address 1027 * @adapter: board private structure 1028 * @new_mac: new MAC address to be applied 1029 * 1030 * Replace current dev_addr and send request to PF for removal of previous 1031 * primary MAC address filter and addition of new primary MAC filter. 1032 * Return 0 for success, -ENOMEM for failure. 1033 * 1034 * Do not call this with mac_vlan_list_lock! 1035 **/ 1036 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1037 const u8 *new_mac) 1038 { 1039 struct iavf_hw *hw = &adapter->hw; 1040 struct iavf_mac_filter *new_f; 1041 struct iavf_mac_filter *old_f; 1042 1043 spin_lock_bh(&adapter->mac_vlan_list_lock); 1044 1045 new_f = iavf_add_filter(adapter, new_mac); 1046 if (!new_f) { 1047 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1048 return -ENOMEM; 1049 } 1050 1051 old_f = iavf_find_filter(adapter, hw->mac.addr); 1052 if (old_f) { 1053 old_f->is_primary = false; 1054 old_f->remove = true; 1055 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1056 } 1057 /* Always send the request to add if changing primary MAC, 1058 * even if filter is already present on the list 1059 */ 1060 new_f->is_primary = true; 1061 new_f->add = true; 1062 ether_addr_copy(hw->mac.addr, new_mac); 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 /* schedule the watchdog task to immediately process the request */ 1067 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1068 return 0; 1069 } 1070 1071 /** 1072 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1073 * @netdev: network interface device structure 1074 * @macaddr: MAC address to set 1075 * 1076 * Returns true on success, false on failure 1077 */ 1078 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1079 const u8 *macaddr) 1080 { 1081 struct iavf_adapter *adapter = netdev_priv(netdev); 1082 struct iavf_mac_filter *f; 1083 bool ret = false; 1084 1085 spin_lock_bh(&adapter->mac_vlan_list_lock); 1086 1087 f = iavf_find_filter(adapter, macaddr); 1088 1089 if (!f || (!f->add && f->add_handled)) 1090 ret = true; 1091 1092 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1093 1094 return ret; 1095 } 1096 1097 /** 1098 * iavf_set_mac - NDO callback to set port MAC address 1099 * @netdev: network interface device structure 1100 * @p: pointer to an address structure 1101 * 1102 * Returns 0 on success, negative on failure 1103 */ 1104 static int iavf_set_mac(struct net_device *netdev, void *p) 1105 { 1106 struct iavf_adapter *adapter = netdev_priv(netdev); 1107 struct sockaddr *addr = p; 1108 int ret; 1109 1110 if (!is_valid_ether_addr(addr->sa_data)) 1111 return -EADDRNOTAVAIL; 1112 1113 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1114 1115 if (ret) 1116 return ret; 1117 1118 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1119 iavf_is_mac_set_handled(netdev, addr->sa_data), 1120 msecs_to_jiffies(2500)); 1121 1122 /* If ret < 0 then it means wait was interrupted. 1123 * If ret == 0 then it means we got a timeout. 1124 * else it means we got response for set MAC from PF, 1125 * check if netdev MAC was updated to requested MAC, 1126 * if yes then set MAC succeeded otherwise it failed return -EACCES 1127 */ 1128 if (ret < 0) 1129 return ret; 1130 1131 if (!ret) 1132 return -EAGAIN; 1133 1134 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1135 return -EACCES; 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1142 * @netdev: the netdevice 1143 * @addr: address to add 1144 * 1145 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1146 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1147 */ 1148 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1149 { 1150 struct iavf_adapter *adapter = netdev_priv(netdev); 1151 1152 if (iavf_add_filter(adapter, addr)) 1153 return 0; 1154 else 1155 return -ENOMEM; 1156 } 1157 1158 /** 1159 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1160 * @netdev: the netdevice 1161 * @addr: address to add 1162 * 1163 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1164 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1165 */ 1166 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1167 { 1168 struct iavf_adapter *adapter = netdev_priv(netdev); 1169 struct iavf_mac_filter *f; 1170 1171 /* Under some circumstances, we might receive a request to delete 1172 * our own device address from our uc list. Because we store the 1173 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1174 * such requests and not delete our device address from this list. 1175 */ 1176 if (ether_addr_equal(addr, netdev->dev_addr)) 1177 return 0; 1178 1179 f = iavf_find_filter(adapter, addr); 1180 if (f) { 1181 f->remove = true; 1182 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1183 } 1184 return 0; 1185 } 1186 1187 /** 1188 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1189 * @adapter: device specific adapter 1190 */ 1191 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1192 { 1193 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1194 (IFF_PROMISC | IFF_ALLMULTI); 1195 } 1196 1197 /** 1198 * iavf_set_rx_mode - NDO callback to set the netdev filters 1199 * @netdev: network interface device structure 1200 **/ 1201 static void iavf_set_rx_mode(struct net_device *netdev) 1202 { 1203 struct iavf_adapter *adapter = netdev_priv(netdev); 1204 1205 spin_lock_bh(&adapter->mac_vlan_list_lock); 1206 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1207 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1208 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1209 1210 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1211 if (iavf_promiscuous_mode_changed(adapter)) 1212 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1213 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1214 } 1215 1216 /** 1217 * iavf_napi_enable_all - enable NAPI on all queue vectors 1218 * @adapter: board private structure 1219 **/ 1220 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1221 { 1222 int q_idx; 1223 struct iavf_q_vector *q_vector; 1224 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1225 1226 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1227 struct napi_struct *napi; 1228 1229 q_vector = &adapter->q_vectors[q_idx]; 1230 napi = &q_vector->napi; 1231 napi_enable(napi); 1232 } 1233 } 1234 1235 /** 1236 * iavf_napi_disable_all - disable NAPI on all queue vectors 1237 * @adapter: board private structure 1238 **/ 1239 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1240 { 1241 int q_idx; 1242 struct iavf_q_vector *q_vector; 1243 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1244 1245 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1246 q_vector = &adapter->q_vectors[q_idx]; 1247 napi_disable(&q_vector->napi); 1248 } 1249 } 1250 1251 /** 1252 * iavf_configure - set up transmit and receive data structures 1253 * @adapter: board private structure 1254 **/ 1255 static void iavf_configure(struct iavf_adapter *adapter) 1256 { 1257 struct net_device *netdev = adapter->netdev; 1258 int i; 1259 1260 iavf_set_rx_mode(netdev); 1261 1262 iavf_configure_tx(adapter); 1263 iavf_configure_rx(adapter); 1264 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1265 1266 for (i = 0; i < adapter->num_active_queues; i++) { 1267 struct iavf_ring *ring = &adapter->rx_rings[i]; 1268 1269 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1270 } 1271 } 1272 1273 /** 1274 * iavf_up_complete - Finish the last steps of bringing up a connection 1275 * @adapter: board private structure 1276 * 1277 * Expects to be called while holding crit_lock. 1278 **/ 1279 static void iavf_up_complete(struct iavf_adapter *adapter) 1280 { 1281 iavf_change_state(adapter, __IAVF_RUNNING); 1282 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1283 1284 iavf_napi_enable_all(adapter); 1285 1286 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1287 } 1288 1289 /** 1290 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1291 * yet and mark other to be removed. 1292 * @adapter: board private structure 1293 **/ 1294 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1295 { 1296 struct iavf_vlan_filter *vlf, *vlftmp; 1297 struct iavf_mac_filter *f, *ftmp; 1298 1299 spin_lock_bh(&adapter->mac_vlan_list_lock); 1300 /* clear the sync flag on all filters */ 1301 __dev_uc_unsync(adapter->netdev, NULL); 1302 __dev_mc_unsync(adapter->netdev, NULL); 1303 1304 /* remove all MAC filters */ 1305 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1306 list) { 1307 if (f->add) { 1308 list_del(&f->list); 1309 kfree(f); 1310 } else { 1311 f->remove = true; 1312 } 1313 } 1314 1315 /* disable all VLAN filters */ 1316 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1317 list) 1318 vlf->state = IAVF_VLAN_DISABLE; 1319 1320 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1321 } 1322 1323 /** 1324 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1325 * mark other to be removed. 1326 * @adapter: board private structure 1327 **/ 1328 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1329 { 1330 struct iavf_cloud_filter *cf, *cftmp; 1331 1332 /* remove all cloud filters */ 1333 spin_lock_bh(&adapter->cloud_filter_list_lock); 1334 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1335 list) { 1336 if (cf->add) { 1337 list_del(&cf->list); 1338 kfree(cf); 1339 adapter->num_cloud_filters--; 1340 } else { 1341 cf->del = true; 1342 } 1343 } 1344 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1345 } 1346 1347 /** 1348 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1349 * other to be removed. 1350 * @adapter: board private structure 1351 **/ 1352 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1353 { 1354 struct iavf_fdir_fltr *fdir, *fdirtmp; 1355 1356 /* remove all Flow Director filters */ 1357 spin_lock_bh(&adapter->fdir_fltr_lock); 1358 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1359 list) { 1360 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1361 list_del(&fdir->list); 1362 kfree(fdir); 1363 adapter->fdir_active_fltr--; 1364 } else { 1365 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1366 } 1367 } 1368 spin_unlock_bh(&adapter->fdir_fltr_lock); 1369 } 1370 1371 /** 1372 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1373 * other to be removed. 1374 * @adapter: board private structure 1375 **/ 1376 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1377 { 1378 struct iavf_adv_rss *rss, *rsstmp; 1379 1380 /* remove all advance RSS configuration */ 1381 spin_lock_bh(&adapter->adv_rss_lock); 1382 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1383 list) { 1384 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1385 list_del(&rss->list); 1386 kfree(rss); 1387 } else { 1388 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1389 } 1390 } 1391 spin_unlock_bh(&adapter->adv_rss_lock); 1392 } 1393 1394 /** 1395 * iavf_down - Shutdown the connection processing 1396 * @adapter: board private structure 1397 * 1398 * Expects to be called while holding crit_lock. 1399 **/ 1400 void iavf_down(struct iavf_adapter *adapter) 1401 { 1402 struct net_device *netdev = adapter->netdev; 1403 1404 if (adapter->state <= __IAVF_DOWN_PENDING) 1405 return; 1406 1407 netif_carrier_off(netdev); 1408 netif_tx_disable(netdev); 1409 adapter->link_up = false; 1410 iavf_napi_disable_all(adapter); 1411 iavf_irq_disable(adapter); 1412 1413 iavf_clear_mac_vlan_filters(adapter); 1414 iavf_clear_cloud_filters(adapter); 1415 iavf_clear_fdir_filters(adapter); 1416 iavf_clear_adv_rss_conf(adapter); 1417 1418 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1419 return; 1420 1421 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1422 /* cancel any current operation */ 1423 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1424 /* Schedule operations to close down the HW. Don't wait 1425 * here for this to complete. The watchdog is still running 1426 * and it will take care of this. 1427 */ 1428 if (!list_empty(&adapter->mac_filter_list)) 1429 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1430 if (!list_empty(&adapter->vlan_filter_list)) 1431 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1432 if (!list_empty(&adapter->cloud_filter_list)) 1433 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1434 if (!list_empty(&adapter->fdir_list_head)) 1435 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1436 if (!list_empty(&adapter->adv_rss_list_head)) 1437 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1438 } 1439 1440 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1441 } 1442 1443 /** 1444 * iavf_acquire_msix_vectors - Setup the MSIX capability 1445 * @adapter: board private structure 1446 * @vectors: number of vectors to request 1447 * 1448 * Work with the OS to set up the MSIX vectors needed. 1449 * 1450 * Returns 0 on success, negative on failure 1451 **/ 1452 static int 1453 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1454 { 1455 int err, vector_threshold; 1456 1457 /* We'll want at least 3 (vector_threshold): 1458 * 0) Other (Admin Queue and link, mostly) 1459 * 1) TxQ[0] Cleanup 1460 * 2) RxQ[0] Cleanup 1461 */ 1462 vector_threshold = MIN_MSIX_COUNT; 1463 1464 /* The more we get, the more we will assign to Tx/Rx Cleanup 1465 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1466 * Right now, we simply care about how many we'll get; we'll 1467 * set them up later while requesting irq's. 1468 */ 1469 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1470 vector_threshold, vectors); 1471 if (err < 0) { 1472 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1473 kfree(adapter->msix_entries); 1474 adapter->msix_entries = NULL; 1475 return err; 1476 } 1477 1478 /* Adjust for only the vectors we'll use, which is minimum 1479 * of max_msix_q_vectors + NONQ_VECS, or the number of 1480 * vectors we were allocated. 1481 */ 1482 adapter->num_msix_vectors = err; 1483 return 0; 1484 } 1485 1486 /** 1487 * iavf_free_queues - Free memory for all rings 1488 * @adapter: board private structure to initialize 1489 * 1490 * Free all of the memory associated with queue pairs. 1491 **/ 1492 static void iavf_free_queues(struct iavf_adapter *adapter) 1493 { 1494 if (!adapter->vsi_res) 1495 return; 1496 adapter->num_active_queues = 0; 1497 kfree(adapter->tx_rings); 1498 adapter->tx_rings = NULL; 1499 kfree(adapter->rx_rings); 1500 adapter->rx_rings = NULL; 1501 } 1502 1503 /** 1504 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1505 * @adapter: board private structure 1506 * 1507 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1508 * stripped in certain descriptor fields. Instead of checking the offload 1509 * capability bits in the hot path, cache the location the ring specific 1510 * flags. 1511 */ 1512 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1513 { 1514 int i; 1515 1516 for (i = 0; i < adapter->num_active_queues; i++) { 1517 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1518 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1519 1520 /* prevent multiple L2TAG bits being set after VFR */ 1521 tx_ring->flags &= 1522 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1523 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1524 rx_ring->flags &= 1525 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1527 1528 if (VLAN_ALLOWED(adapter)) { 1529 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1530 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1531 } else if (VLAN_V2_ALLOWED(adapter)) { 1532 struct virtchnl_vlan_supported_caps *stripping_support; 1533 struct virtchnl_vlan_supported_caps *insertion_support; 1534 1535 stripping_support = 1536 &adapter->vlan_v2_caps.offloads.stripping_support; 1537 insertion_support = 1538 &adapter->vlan_v2_caps.offloads.insertion_support; 1539 1540 if (stripping_support->outer) { 1541 if (stripping_support->outer & 1542 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1543 rx_ring->flags |= 1544 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1545 else if (stripping_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1547 rx_ring->flags |= 1548 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1549 } else if (stripping_support->inner) { 1550 if (stripping_support->inner & 1551 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1552 rx_ring->flags |= 1553 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1554 else if (stripping_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1556 rx_ring->flags |= 1557 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1558 } 1559 1560 if (insertion_support->outer) { 1561 if (insertion_support->outer & 1562 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1563 tx_ring->flags |= 1564 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1565 else if (insertion_support->outer & 1566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1567 tx_ring->flags |= 1568 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1569 } else if (insertion_support->inner) { 1570 if (insertion_support->inner & 1571 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1572 tx_ring->flags |= 1573 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1574 else if (insertion_support->inner & 1575 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1576 tx_ring->flags |= 1577 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1578 } 1579 } 1580 } 1581 } 1582 1583 /** 1584 * iavf_alloc_queues - Allocate memory for all rings 1585 * @adapter: board private structure to initialize 1586 * 1587 * We allocate one ring per queue at run-time since we don't know the 1588 * number of queues at compile-time. The polling_netdev array is 1589 * intended for Multiqueue, but should work fine with a single queue. 1590 **/ 1591 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1592 { 1593 int i, num_active_queues; 1594 1595 /* If we're in reset reallocating queues we don't actually know yet for 1596 * certain the PF gave us the number of queues we asked for but we'll 1597 * assume it did. Once basic reset is finished we'll confirm once we 1598 * start negotiating config with PF. 1599 */ 1600 if (adapter->num_req_queues) 1601 num_active_queues = adapter->num_req_queues; 1602 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1603 adapter->num_tc) 1604 num_active_queues = adapter->ch_config.total_qps; 1605 else 1606 num_active_queues = min_t(int, 1607 adapter->vsi_res->num_queue_pairs, 1608 (int)(num_online_cpus())); 1609 1610 1611 adapter->tx_rings = kcalloc(num_active_queues, 1612 sizeof(struct iavf_ring), GFP_KERNEL); 1613 if (!adapter->tx_rings) 1614 goto err_out; 1615 adapter->rx_rings = kcalloc(num_active_queues, 1616 sizeof(struct iavf_ring), GFP_KERNEL); 1617 if (!adapter->rx_rings) 1618 goto err_out; 1619 1620 for (i = 0; i < num_active_queues; i++) { 1621 struct iavf_ring *tx_ring; 1622 struct iavf_ring *rx_ring; 1623 1624 tx_ring = &adapter->tx_rings[i]; 1625 1626 tx_ring->queue_index = i; 1627 tx_ring->netdev = adapter->netdev; 1628 tx_ring->dev = &adapter->pdev->dev; 1629 tx_ring->count = adapter->tx_desc_count; 1630 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1631 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1632 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1633 1634 rx_ring = &adapter->rx_rings[i]; 1635 rx_ring->queue_index = i; 1636 rx_ring->netdev = adapter->netdev; 1637 rx_ring->dev = &adapter->pdev->dev; 1638 rx_ring->count = adapter->rx_desc_count; 1639 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1640 } 1641 1642 adapter->num_active_queues = num_active_queues; 1643 1644 iavf_set_queue_vlan_tag_loc(adapter); 1645 1646 return 0; 1647 1648 err_out: 1649 iavf_free_queues(adapter); 1650 return -ENOMEM; 1651 } 1652 1653 /** 1654 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1655 * @adapter: board private structure to initialize 1656 * 1657 * Attempt to configure the interrupts using the best available 1658 * capabilities of the hardware and the kernel. 1659 **/ 1660 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1661 { 1662 int vector, v_budget; 1663 int pairs = 0; 1664 int err = 0; 1665 1666 if (!adapter->vsi_res) { 1667 err = -EIO; 1668 goto out; 1669 } 1670 pairs = adapter->num_active_queues; 1671 1672 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1673 * us much good if we have more vectors than CPUs. However, we already 1674 * limit the total number of queues by the number of CPUs so we do not 1675 * need any further limiting here. 1676 */ 1677 v_budget = min_t(int, pairs + NONQ_VECS, 1678 (int)adapter->vf_res->max_vectors); 1679 1680 adapter->msix_entries = kcalloc(v_budget, 1681 sizeof(struct msix_entry), GFP_KERNEL); 1682 if (!adapter->msix_entries) { 1683 err = -ENOMEM; 1684 goto out; 1685 } 1686 1687 for (vector = 0; vector < v_budget; vector++) 1688 adapter->msix_entries[vector].entry = vector; 1689 1690 err = iavf_acquire_msix_vectors(adapter, v_budget); 1691 if (!err) 1692 iavf_schedule_finish_config(adapter); 1693 1694 out: 1695 return err; 1696 } 1697 1698 /** 1699 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1700 * @adapter: board private structure 1701 * 1702 * Return 0 on success, negative on failure 1703 **/ 1704 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1705 { 1706 struct iavf_aqc_get_set_rss_key_data *rss_key = 1707 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1708 struct iavf_hw *hw = &adapter->hw; 1709 enum iavf_status status; 1710 1711 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1712 /* bail because we already have a command pending */ 1713 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1714 adapter->current_op); 1715 return -EBUSY; 1716 } 1717 1718 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1719 if (status) { 1720 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1721 iavf_stat_str(hw, status), 1722 iavf_aq_str(hw, hw->aq.asq_last_status)); 1723 return iavf_status_to_errno(status); 1724 1725 } 1726 1727 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1728 adapter->rss_lut, adapter->rss_lut_size); 1729 if (status) { 1730 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1731 iavf_stat_str(hw, status), 1732 iavf_aq_str(hw, hw->aq.asq_last_status)); 1733 return iavf_status_to_errno(status); 1734 } 1735 1736 return 0; 1737 1738 } 1739 1740 /** 1741 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1742 * @adapter: board private structure 1743 * 1744 * Returns 0 on success, negative on failure 1745 **/ 1746 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1747 { 1748 struct iavf_hw *hw = &adapter->hw; 1749 u32 *dw; 1750 u16 i; 1751 1752 dw = (u32 *)adapter->rss_key; 1753 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1754 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1755 1756 dw = (u32 *)adapter->rss_lut; 1757 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1758 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1759 1760 iavf_flush(hw); 1761 1762 return 0; 1763 } 1764 1765 /** 1766 * iavf_config_rss - Configure RSS keys and lut 1767 * @adapter: board private structure 1768 * 1769 * Returns 0 on success, negative on failure 1770 **/ 1771 int iavf_config_rss(struct iavf_adapter *adapter) 1772 { 1773 1774 if (RSS_PF(adapter)) { 1775 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1776 IAVF_FLAG_AQ_SET_RSS_KEY; 1777 return 0; 1778 } else if (RSS_AQ(adapter)) { 1779 return iavf_config_rss_aq(adapter); 1780 } else { 1781 return iavf_config_rss_reg(adapter); 1782 } 1783 } 1784 1785 /** 1786 * iavf_fill_rss_lut - Fill the lut with default values 1787 * @adapter: board private structure 1788 **/ 1789 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1790 { 1791 u16 i; 1792 1793 for (i = 0; i < adapter->rss_lut_size; i++) 1794 adapter->rss_lut[i] = i % adapter->num_active_queues; 1795 } 1796 1797 /** 1798 * iavf_init_rss - Prepare for RSS 1799 * @adapter: board private structure 1800 * 1801 * Return 0 on success, negative on failure 1802 **/ 1803 static int iavf_init_rss(struct iavf_adapter *adapter) 1804 { 1805 struct iavf_hw *hw = &adapter->hw; 1806 1807 if (!RSS_PF(adapter)) { 1808 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1809 if (adapter->vf_res->vf_cap_flags & 1810 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1811 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1812 else 1813 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1814 1815 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1816 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1817 } 1818 1819 iavf_fill_rss_lut(adapter); 1820 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1821 1822 return iavf_config_rss(adapter); 1823 } 1824 1825 /** 1826 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1827 * @adapter: board private structure to initialize 1828 * 1829 * We allocate one q_vector per queue interrupt. If allocation fails we 1830 * return -ENOMEM. 1831 **/ 1832 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1833 { 1834 int q_idx = 0, num_q_vectors; 1835 struct iavf_q_vector *q_vector; 1836 1837 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1838 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1839 GFP_KERNEL); 1840 if (!adapter->q_vectors) 1841 return -ENOMEM; 1842 1843 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1844 q_vector = &adapter->q_vectors[q_idx]; 1845 q_vector->adapter = adapter; 1846 q_vector->vsi = &adapter->vsi; 1847 q_vector->v_idx = q_idx; 1848 q_vector->reg_idx = q_idx; 1849 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1850 netif_napi_add(adapter->netdev, &q_vector->napi, 1851 iavf_napi_poll); 1852 } 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1859 * @adapter: board private structure to initialize 1860 * 1861 * This function frees the memory allocated to the q_vectors. In addition if 1862 * NAPI is enabled it will delete any references to the NAPI struct prior 1863 * to freeing the q_vector. 1864 **/ 1865 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1866 { 1867 int q_idx, num_q_vectors; 1868 1869 if (!adapter->q_vectors) 1870 return; 1871 1872 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1873 1874 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1875 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1876 1877 netif_napi_del(&q_vector->napi); 1878 } 1879 kfree(adapter->q_vectors); 1880 adapter->q_vectors = NULL; 1881 } 1882 1883 /** 1884 * iavf_reset_interrupt_capability - Reset MSIX setup 1885 * @adapter: board private structure 1886 * 1887 **/ 1888 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1889 { 1890 if (!adapter->msix_entries) 1891 return; 1892 1893 pci_disable_msix(adapter->pdev); 1894 kfree(adapter->msix_entries); 1895 adapter->msix_entries = NULL; 1896 } 1897 1898 /** 1899 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1900 * @adapter: board private structure to initialize 1901 * 1902 **/ 1903 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1904 { 1905 int err; 1906 1907 err = iavf_alloc_queues(adapter); 1908 if (err) { 1909 dev_err(&adapter->pdev->dev, 1910 "Unable to allocate memory for queues\n"); 1911 goto err_alloc_queues; 1912 } 1913 1914 err = iavf_set_interrupt_capability(adapter); 1915 if (err) { 1916 dev_err(&adapter->pdev->dev, 1917 "Unable to setup interrupt capabilities\n"); 1918 goto err_set_interrupt; 1919 } 1920 1921 err = iavf_alloc_q_vectors(adapter); 1922 if (err) { 1923 dev_err(&adapter->pdev->dev, 1924 "Unable to allocate memory for queue vectors\n"); 1925 goto err_alloc_q_vectors; 1926 } 1927 1928 /* If we've made it so far while ADq flag being ON, then we haven't 1929 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1930 * resources have been allocated in the reset path. 1931 * Now we can truly claim that ADq is enabled. 1932 */ 1933 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1934 adapter->num_tc) 1935 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1936 adapter->num_tc); 1937 1938 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1939 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1940 adapter->num_active_queues); 1941 1942 return 0; 1943 err_alloc_q_vectors: 1944 iavf_reset_interrupt_capability(adapter); 1945 err_set_interrupt: 1946 iavf_free_queues(adapter); 1947 err_alloc_queues: 1948 return err; 1949 } 1950 1951 /** 1952 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1953 * @adapter: board private structure 1954 **/ 1955 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1956 { 1957 iavf_free_q_vectors(adapter); 1958 iavf_reset_interrupt_capability(adapter); 1959 iavf_free_queues(adapter); 1960 } 1961 1962 /** 1963 * iavf_free_rss - Free memory used by RSS structs 1964 * @adapter: board private structure 1965 **/ 1966 static void iavf_free_rss(struct iavf_adapter *adapter) 1967 { 1968 kfree(adapter->rss_key); 1969 adapter->rss_key = NULL; 1970 1971 kfree(adapter->rss_lut); 1972 adapter->rss_lut = NULL; 1973 } 1974 1975 /** 1976 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1977 * @adapter: board private structure 1978 * @running: true if adapter->state == __IAVF_RUNNING 1979 * 1980 * Returns 0 on success, negative on failure 1981 **/ 1982 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1983 { 1984 struct net_device *netdev = adapter->netdev; 1985 int err; 1986 1987 if (running) 1988 iavf_free_traffic_irqs(adapter); 1989 iavf_free_misc_irq(adapter); 1990 iavf_free_interrupt_scheme(adapter); 1991 1992 err = iavf_init_interrupt_scheme(adapter); 1993 if (err) 1994 goto err; 1995 1996 netif_tx_stop_all_queues(netdev); 1997 1998 err = iavf_request_misc_irq(adapter); 1999 if (err) 2000 goto err; 2001 2002 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2003 2004 iavf_map_rings_to_vectors(adapter); 2005 err: 2006 return err; 2007 } 2008 2009 /** 2010 * iavf_finish_config - do all netdev work that needs RTNL 2011 * @work: our work_struct 2012 * 2013 * Do work that needs both RTNL and crit_lock. 2014 **/ 2015 static void iavf_finish_config(struct work_struct *work) 2016 { 2017 struct iavf_adapter *adapter; 2018 int pairs, err; 2019 2020 adapter = container_of(work, struct iavf_adapter, finish_config); 2021 2022 /* Always take RTNL first to prevent circular lock dependency */ 2023 rtnl_lock(); 2024 mutex_lock(&adapter->crit_lock); 2025 2026 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2027 adapter->netdev->reg_state == NETREG_REGISTERED && 2028 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2029 netdev_update_features(adapter->netdev); 2030 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2031 } 2032 2033 switch (adapter->state) { 2034 case __IAVF_DOWN: 2035 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2036 err = register_netdevice(adapter->netdev); 2037 if (err) { 2038 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2039 err); 2040 2041 /* go back and try again.*/ 2042 iavf_free_rss(adapter); 2043 iavf_free_misc_irq(adapter); 2044 iavf_reset_interrupt_capability(adapter); 2045 iavf_change_state(adapter, 2046 __IAVF_INIT_CONFIG_ADAPTER); 2047 goto out; 2048 } 2049 } 2050 2051 /* Set the real number of queues when reset occurs while 2052 * state == __IAVF_DOWN 2053 */ 2054 fallthrough; 2055 case __IAVF_RUNNING: 2056 pairs = adapter->num_active_queues; 2057 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2058 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2059 break; 2060 2061 default: 2062 break; 2063 } 2064 2065 out: 2066 mutex_unlock(&adapter->crit_lock); 2067 rtnl_unlock(); 2068 } 2069 2070 /** 2071 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2072 * @adapter: board private structure 2073 **/ 2074 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2075 { 2076 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2077 queue_work(adapter->wq, &adapter->finish_config); 2078 } 2079 2080 /** 2081 * iavf_process_aq_command - process aq_required flags 2082 * and sends aq command 2083 * @adapter: pointer to iavf adapter structure 2084 * 2085 * Returns 0 on success 2086 * Returns error code if no command was sent 2087 * or error code if the command failed. 2088 **/ 2089 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2090 { 2091 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2092 return iavf_send_vf_config_msg(adapter); 2093 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2094 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2095 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2096 iavf_disable_queues(adapter); 2097 return 0; 2098 } 2099 2100 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2101 iavf_map_queues(adapter); 2102 return 0; 2103 } 2104 2105 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2106 iavf_add_ether_addrs(adapter); 2107 return 0; 2108 } 2109 2110 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2111 iavf_add_vlans(adapter); 2112 return 0; 2113 } 2114 2115 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2116 iavf_del_ether_addrs(adapter); 2117 return 0; 2118 } 2119 2120 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2121 iavf_del_vlans(adapter); 2122 return 0; 2123 } 2124 2125 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2126 iavf_enable_vlan_stripping(adapter); 2127 return 0; 2128 } 2129 2130 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2131 iavf_disable_vlan_stripping(adapter); 2132 return 0; 2133 } 2134 2135 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2136 iavf_configure_queues(adapter); 2137 return 0; 2138 } 2139 2140 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2141 iavf_enable_queues(adapter); 2142 return 0; 2143 } 2144 2145 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2146 /* This message goes straight to the firmware, not the 2147 * PF, so we don't have to set current_op as we will 2148 * not get a response through the ARQ. 2149 */ 2150 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2151 return 0; 2152 } 2153 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2154 iavf_get_hena(adapter); 2155 return 0; 2156 } 2157 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2158 iavf_set_hena(adapter); 2159 return 0; 2160 } 2161 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2162 iavf_set_rss_key(adapter); 2163 return 0; 2164 } 2165 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2166 iavf_set_rss_lut(adapter); 2167 return 0; 2168 } 2169 2170 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2171 iavf_set_promiscuous(adapter); 2172 return 0; 2173 } 2174 2175 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2176 iavf_enable_channels(adapter); 2177 return 0; 2178 } 2179 2180 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2181 iavf_disable_channels(adapter); 2182 return 0; 2183 } 2184 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2185 iavf_add_cloud_filter(adapter); 2186 return 0; 2187 } 2188 2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2190 iavf_del_cloud_filter(adapter); 2191 return 0; 2192 } 2193 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2194 iavf_del_cloud_filter(adapter); 2195 return 0; 2196 } 2197 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2198 iavf_add_cloud_filter(adapter); 2199 return 0; 2200 } 2201 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2202 iavf_add_fdir_filter(adapter); 2203 return IAVF_SUCCESS; 2204 } 2205 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2206 iavf_del_fdir_filter(adapter); 2207 return IAVF_SUCCESS; 2208 } 2209 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2210 iavf_add_adv_rss_cfg(adapter); 2211 return 0; 2212 } 2213 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2214 iavf_del_adv_rss_cfg(adapter); 2215 return 0; 2216 } 2217 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2218 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2219 return 0; 2220 } 2221 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2222 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2223 return 0; 2224 } 2225 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2226 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2227 return 0; 2228 } 2229 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2230 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2231 return 0; 2232 } 2233 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2234 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2235 return 0; 2236 } 2237 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2238 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2239 return 0; 2240 } 2241 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2242 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2243 return 0; 2244 } 2245 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2246 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2247 return 0; 2248 } 2249 2250 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2251 iavf_request_stats(adapter); 2252 return 0; 2253 } 2254 2255 return -EAGAIN; 2256 } 2257 2258 /** 2259 * iavf_set_vlan_offload_features - set VLAN offload configuration 2260 * @adapter: board private structure 2261 * @prev_features: previous features used for comparison 2262 * @features: updated features used for configuration 2263 * 2264 * Set the aq_required bit(s) based on the requested features passed in to 2265 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2266 * the watchdog if any changes are requested to expedite the request via 2267 * virtchnl. 2268 **/ 2269 static void 2270 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2271 netdev_features_t prev_features, 2272 netdev_features_t features) 2273 { 2274 bool enable_stripping = true, enable_insertion = true; 2275 u16 vlan_ethertype = 0; 2276 u64 aq_required = 0; 2277 2278 /* keep cases separate because one ethertype for offloads can be 2279 * disabled at the same time as another is disabled, so check for an 2280 * enabled ethertype first, then check for disabled. Default to 2281 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2282 * stripping. 2283 */ 2284 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2285 vlan_ethertype = ETH_P_8021AD; 2286 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2287 vlan_ethertype = ETH_P_8021Q; 2288 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2289 vlan_ethertype = ETH_P_8021AD; 2290 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2291 vlan_ethertype = ETH_P_8021Q; 2292 else 2293 vlan_ethertype = ETH_P_8021Q; 2294 2295 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2296 enable_stripping = false; 2297 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2298 enable_insertion = false; 2299 2300 if (VLAN_ALLOWED(adapter)) { 2301 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2302 * stripping via virtchnl. VLAN insertion can be toggled on the 2303 * netdev, but it doesn't require a virtchnl message 2304 */ 2305 if (enable_stripping) 2306 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2307 else 2308 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2309 2310 } else if (VLAN_V2_ALLOWED(adapter)) { 2311 switch (vlan_ethertype) { 2312 case ETH_P_8021Q: 2313 if (enable_stripping) 2314 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2315 else 2316 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2317 2318 if (enable_insertion) 2319 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2320 else 2321 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2322 break; 2323 case ETH_P_8021AD: 2324 if (enable_stripping) 2325 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2326 else 2327 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2328 2329 if (enable_insertion) 2330 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2331 else 2332 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2333 break; 2334 } 2335 } 2336 2337 if (aq_required) 2338 iavf_schedule_aq_request(adapter, aq_required); 2339 } 2340 2341 /** 2342 * iavf_startup - first step of driver startup 2343 * @adapter: board private structure 2344 * 2345 * Function process __IAVF_STARTUP driver state. 2346 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2347 * when fails the state is changed to __IAVF_INIT_FAILED 2348 **/ 2349 static void iavf_startup(struct iavf_adapter *adapter) 2350 { 2351 struct pci_dev *pdev = adapter->pdev; 2352 struct iavf_hw *hw = &adapter->hw; 2353 enum iavf_status status; 2354 int ret; 2355 2356 WARN_ON(adapter->state != __IAVF_STARTUP); 2357 2358 /* driver loaded, probe complete */ 2359 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2360 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2361 2362 ret = iavf_check_reset_complete(hw); 2363 if (ret) { 2364 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2365 ret); 2366 goto err; 2367 } 2368 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2369 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2370 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2371 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2372 2373 status = iavf_init_adminq(hw); 2374 if (status) { 2375 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2376 status); 2377 goto err; 2378 } 2379 ret = iavf_send_api_ver(adapter); 2380 if (ret) { 2381 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2382 iavf_shutdown_adminq(hw); 2383 goto err; 2384 } 2385 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2386 return; 2387 err: 2388 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2389 } 2390 2391 /** 2392 * iavf_init_version_check - second step of driver startup 2393 * @adapter: board private structure 2394 * 2395 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2396 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2397 * when fails the state is changed to __IAVF_INIT_FAILED 2398 **/ 2399 static void iavf_init_version_check(struct iavf_adapter *adapter) 2400 { 2401 struct pci_dev *pdev = adapter->pdev; 2402 struct iavf_hw *hw = &adapter->hw; 2403 int err = -EAGAIN; 2404 2405 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2406 2407 if (!iavf_asq_done(hw)) { 2408 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2409 iavf_shutdown_adminq(hw); 2410 iavf_change_state(adapter, __IAVF_STARTUP); 2411 goto err; 2412 } 2413 2414 /* aq msg sent, awaiting reply */ 2415 err = iavf_verify_api_ver(adapter); 2416 if (err) { 2417 if (err == -EALREADY) 2418 err = iavf_send_api_ver(adapter); 2419 else 2420 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2421 adapter->pf_version.major, 2422 adapter->pf_version.minor, 2423 VIRTCHNL_VERSION_MAJOR, 2424 VIRTCHNL_VERSION_MINOR); 2425 goto err; 2426 } 2427 err = iavf_send_vf_config_msg(adapter); 2428 if (err) { 2429 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2430 err); 2431 goto err; 2432 } 2433 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2434 return; 2435 err: 2436 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2437 } 2438 2439 /** 2440 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2441 * @adapter: board private structure 2442 */ 2443 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2444 { 2445 int i, num_req_queues = adapter->num_req_queues; 2446 struct iavf_vsi *vsi = &adapter->vsi; 2447 2448 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2449 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2450 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2451 } 2452 if (!adapter->vsi_res) { 2453 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2454 return -ENODEV; 2455 } 2456 2457 if (num_req_queues && 2458 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2459 /* Problem. The PF gave us fewer queues than what we had 2460 * negotiated in our request. Need a reset to see if we can't 2461 * get back to a working state. 2462 */ 2463 dev_err(&adapter->pdev->dev, 2464 "Requested %d queues, but PF only gave us %d.\n", 2465 num_req_queues, 2466 adapter->vsi_res->num_queue_pairs); 2467 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2468 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2469 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2470 2471 return -EAGAIN; 2472 } 2473 adapter->num_req_queues = 0; 2474 adapter->vsi.id = adapter->vsi_res->vsi_id; 2475 2476 adapter->vsi.back = adapter; 2477 adapter->vsi.base_vector = 1; 2478 vsi->netdev = adapter->netdev; 2479 vsi->qs_handle = adapter->vsi_res->qset_handle; 2480 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2481 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2482 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2483 } else { 2484 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2485 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2486 } 2487 2488 return 0; 2489 } 2490 2491 /** 2492 * iavf_init_get_resources - third step of driver startup 2493 * @adapter: board private structure 2494 * 2495 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2496 * finishes driver initialization procedure. 2497 * When success the state is changed to __IAVF_DOWN 2498 * when fails the state is changed to __IAVF_INIT_FAILED 2499 **/ 2500 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2501 { 2502 struct pci_dev *pdev = adapter->pdev; 2503 struct iavf_hw *hw = &adapter->hw; 2504 int err; 2505 2506 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2507 /* aq msg sent, awaiting reply */ 2508 if (!adapter->vf_res) { 2509 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2510 GFP_KERNEL); 2511 if (!adapter->vf_res) { 2512 err = -ENOMEM; 2513 goto err; 2514 } 2515 } 2516 err = iavf_get_vf_config(adapter); 2517 if (err == -EALREADY) { 2518 err = iavf_send_vf_config_msg(adapter); 2519 goto err; 2520 } else if (err == -EINVAL) { 2521 /* We only get -EINVAL if the device is in a very bad 2522 * state or if we've been disabled for previous bad 2523 * behavior. Either way, we're done now. 2524 */ 2525 iavf_shutdown_adminq(hw); 2526 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2527 return; 2528 } 2529 if (err) { 2530 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2531 goto err_alloc; 2532 } 2533 2534 err = iavf_parse_vf_resource_msg(adapter); 2535 if (err) { 2536 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2537 err); 2538 goto err_alloc; 2539 } 2540 /* Some features require additional messages to negotiate extended 2541 * capabilities. These are processed in sequence by the 2542 * __IAVF_INIT_EXTENDED_CAPS driver state. 2543 */ 2544 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2545 2546 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2547 return; 2548 2549 err_alloc: 2550 kfree(adapter->vf_res); 2551 adapter->vf_res = NULL; 2552 err: 2553 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2554 } 2555 2556 /** 2557 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2558 * @adapter: board private structure 2559 * 2560 * Function processes send of the extended VLAN V2 capability message to the 2561 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2562 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2563 */ 2564 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2565 { 2566 int ret; 2567 2568 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2569 2570 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2571 if (ret && ret == -EOPNOTSUPP) { 2572 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2573 * we did not send the capability exchange message and do not 2574 * expect a response. 2575 */ 2576 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2577 } 2578 2579 /* We sent the message, so move on to the next step */ 2580 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2581 } 2582 2583 /** 2584 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2585 * @adapter: board private structure 2586 * 2587 * Function processes receipt of the extended VLAN V2 capability message from 2588 * the PF. 2589 **/ 2590 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2591 { 2592 int ret; 2593 2594 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2595 2596 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2597 2598 ret = iavf_get_vf_vlan_v2_caps(adapter); 2599 if (ret) 2600 goto err; 2601 2602 /* We've processed receipt of the VLAN V2 caps message */ 2603 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2604 return; 2605 err: 2606 /* We didn't receive a reply. Make sure we try sending again when 2607 * __IAVF_INIT_FAILED attempts to recover. 2608 */ 2609 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2610 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2611 } 2612 2613 /** 2614 * iavf_init_process_extended_caps - Part of driver startup 2615 * @adapter: board private structure 2616 * 2617 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2618 * handles negotiating capabilities for features which require an additional 2619 * message. 2620 * 2621 * Once all extended capabilities exchanges are finished, the driver will 2622 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2623 */ 2624 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2625 { 2626 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2627 2628 /* Process capability exchange for VLAN V2 */ 2629 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2630 iavf_init_send_offload_vlan_v2_caps(adapter); 2631 return; 2632 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2633 iavf_init_recv_offload_vlan_v2_caps(adapter); 2634 return; 2635 } 2636 2637 /* When we reach here, no further extended capabilities exchanges are 2638 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2639 */ 2640 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2641 } 2642 2643 /** 2644 * iavf_init_config_adapter - last part of driver startup 2645 * @adapter: board private structure 2646 * 2647 * After all the supported capabilities are negotiated, then the 2648 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2649 */ 2650 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2651 { 2652 struct net_device *netdev = adapter->netdev; 2653 struct pci_dev *pdev = adapter->pdev; 2654 int err; 2655 2656 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2657 2658 if (iavf_process_config(adapter)) 2659 goto err; 2660 2661 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2662 2663 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2664 2665 netdev->netdev_ops = &iavf_netdev_ops; 2666 iavf_set_ethtool_ops(netdev); 2667 netdev->watchdog_timeo = 5 * HZ; 2668 2669 /* MTU range: 68 - 9710 */ 2670 netdev->min_mtu = ETH_MIN_MTU; 2671 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2672 2673 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2674 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2675 adapter->hw.mac.addr); 2676 eth_hw_addr_random(netdev); 2677 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2678 } else { 2679 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2680 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2681 } 2682 2683 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2684 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2685 err = iavf_init_interrupt_scheme(adapter); 2686 if (err) 2687 goto err_sw_init; 2688 iavf_map_rings_to_vectors(adapter); 2689 if (adapter->vf_res->vf_cap_flags & 2690 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2691 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2692 2693 err = iavf_request_misc_irq(adapter); 2694 if (err) 2695 goto err_sw_init; 2696 2697 netif_carrier_off(netdev); 2698 adapter->link_up = false; 2699 netif_tx_stop_all_queues(netdev); 2700 2701 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2702 if (netdev->features & NETIF_F_GRO) 2703 dev_info(&pdev->dev, "GRO is enabled\n"); 2704 2705 iavf_change_state(adapter, __IAVF_DOWN); 2706 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2707 2708 iavf_misc_irq_enable(adapter); 2709 wake_up(&adapter->down_waitqueue); 2710 2711 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2712 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2713 if (!adapter->rss_key || !adapter->rss_lut) { 2714 err = -ENOMEM; 2715 goto err_mem; 2716 } 2717 if (RSS_AQ(adapter)) 2718 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2719 else 2720 iavf_init_rss(adapter); 2721 2722 if (VLAN_V2_ALLOWED(adapter)) 2723 /* request initial VLAN offload settings */ 2724 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2725 2726 iavf_schedule_finish_config(adapter); 2727 return; 2728 2729 err_mem: 2730 iavf_free_rss(adapter); 2731 iavf_free_misc_irq(adapter); 2732 err_sw_init: 2733 iavf_reset_interrupt_capability(adapter); 2734 err: 2735 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2736 } 2737 2738 /** 2739 * iavf_watchdog_task - Periodic call-back task 2740 * @work: pointer to work_struct 2741 **/ 2742 static void iavf_watchdog_task(struct work_struct *work) 2743 { 2744 struct iavf_adapter *adapter = container_of(work, 2745 struct iavf_adapter, 2746 watchdog_task.work); 2747 struct iavf_hw *hw = &adapter->hw; 2748 u32 reg_val; 2749 2750 if (!mutex_trylock(&adapter->crit_lock)) { 2751 if (adapter->state == __IAVF_REMOVE) 2752 return; 2753 2754 goto restart_watchdog; 2755 } 2756 2757 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2758 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2759 2760 switch (adapter->state) { 2761 case __IAVF_STARTUP: 2762 iavf_startup(adapter); 2763 mutex_unlock(&adapter->crit_lock); 2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2765 msecs_to_jiffies(30)); 2766 return; 2767 case __IAVF_INIT_VERSION_CHECK: 2768 iavf_init_version_check(adapter); 2769 mutex_unlock(&adapter->crit_lock); 2770 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2771 msecs_to_jiffies(30)); 2772 return; 2773 case __IAVF_INIT_GET_RESOURCES: 2774 iavf_init_get_resources(adapter); 2775 mutex_unlock(&adapter->crit_lock); 2776 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2777 msecs_to_jiffies(1)); 2778 return; 2779 case __IAVF_INIT_EXTENDED_CAPS: 2780 iavf_init_process_extended_caps(adapter); 2781 mutex_unlock(&adapter->crit_lock); 2782 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2783 msecs_to_jiffies(1)); 2784 return; 2785 case __IAVF_INIT_CONFIG_ADAPTER: 2786 iavf_init_config_adapter(adapter); 2787 mutex_unlock(&adapter->crit_lock); 2788 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2789 msecs_to_jiffies(1)); 2790 return; 2791 case __IAVF_INIT_FAILED: 2792 if (test_bit(__IAVF_IN_REMOVE_TASK, 2793 &adapter->crit_section)) { 2794 /* Do not update the state and do not reschedule 2795 * watchdog task, iavf_remove should handle this state 2796 * as it can loop forever 2797 */ 2798 mutex_unlock(&adapter->crit_lock); 2799 return; 2800 } 2801 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2802 dev_err(&adapter->pdev->dev, 2803 "Failed to communicate with PF; waiting before retry\n"); 2804 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2805 iavf_shutdown_adminq(hw); 2806 mutex_unlock(&adapter->crit_lock); 2807 queue_delayed_work(adapter->wq, 2808 &adapter->watchdog_task, (5 * HZ)); 2809 return; 2810 } 2811 /* Try again from failed step*/ 2812 iavf_change_state(adapter, adapter->last_state); 2813 mutex_unlock(&adapter->crit_lock); 2814 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2815 return; 2816 case __IAVF_COMM_FAILED: 2817 if (test_bit(__IAVF_IN_REMOVE_TASK, 2818 &adapter->crit_section)) { 2819 /* Set state to __IAVF_INIT_FAILED and perform remove 2820 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2821 * doesn't bring the state back to __IAVF_COMM_FAILED. 2822 */ 2823 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2824 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2825 mutex_unlock(&adapter->crit_lock); 2826 return; 2827 } 2828 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2829 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2830 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2831 reg_val == VIRTCHNL_VFR_COMPLETED) { 2832 /* A chance for redemption! */ 2833 dev_err(&adapter->pdev->dev, 2834 "Hardware came out of reset. Attempting reinit.\n"); 2835 /* When init task contacts the PF and 2836 * gets everything set up again, it'll restart the 2837 * watchdog for us. Down, boy. Sit. Stay. Woof. 2838 */ 2839 iavf_change_state(adapter, __IAVF_STARTUP); 2840 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2841 } 2842 adapter->aq_required = 0; 2843 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2844 mutex_unlock(&adapter->crit_lock); 2845 queue_delayed_work(adapter->wq, 2846 &adapter->watchdog_task, 2847 msecs_to_jiffies(10)); 2848 return; 2849 case __IAVF_RESETTING: 2850 mutex_unlock(&adapter->crit_lock); 2851 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2852 HZ * 2); 2853 return; 2854 case __IAVF_DOWN: 2855 case __IAVF_DOWN_PENDING: 2856 case __IAVF_TESTING: 2857 case __IAVF_RUNNING: 2858 if (adapter->current_op) { 2859 if (!iavf_asq_done(hw)) { 2860 dev_dbg(&adapter->pdev->dev, 2861 "Admin queue timeout\n"); 2862 iavf_send_api_ver(adapter); 2863 } 2864 } else { 2865 int ret = iavf_process_aq_command(adapter); 2866 2867 /* An error will be returned if no commands were 2868 * processed; use this opportunity to update stats 2869 * if the error isn't -ENOTSUPP 2870 */ 2871 if (ret && ret != -EOPNOTSUPP && 2872 adapter->state == __IAVF_RUNNING) 2873 iavf_request_stats(adapter); 2874 } 2875 if (adapter->state == __IAVF_RUNNING) 2876 iavf_detect_recover_hung(&adapter->vsi); 2877 break; 2878 case __IAVF_REMOVE: 2879 default: 2880 mutex_unlock(&adapter->crit_lock); 2881 return; 2882 } 2883 2884 /* check for hw reset */ 2885 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2886 if (!reg_val) { 2887 adapter->aq_required = 0; 2888 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2889 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2890 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2891 mutex_unlock(&adapter->crit_lock); 2892 queue_delayed_work(adapter->wq, 2893 &adapter->watchdog_task, HZ * 2); 2894 return; 2895 } 2896 2897 mutex_unlock(&adapter->crit_lock); 2898 restart_watchdog: 2899 if (adapter->state >= __IAVF_DOWN) 2900 queue_work(adapter->wq, &adapter->adminq_task); 2901 if (adapter->aq_required) 2902 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2903 msecs_to_jiffies(20)); 2904 else 2905 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2906 HZ * 2); 2907 } 2908 2909 /** 2910 * iavf_disable_vf - disable VF 2911 * @adapter: board private structure 2912 * 2913 * Set communication failed flag and free all resources. 2914 * NOTE: This function is expected to be called with crit_lock being held. 2915 **/ 2916 static void iavf_disable_vf(struct iavf_adapter *adapter) 2917 { 2918 struct iavf_mac_filter *f, *ftmp; 2919 struct iavf_vlan_filter *fv, *fvtmp; 2920 struct iavf_cloud_filter *cf, *cftmp; 2921 2922 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2923 2924 /* We don't use netif_running() because it may be true prior to 2925 * ndo_open() returning, so we can't assume it means all our open 2926 * tasks have finished, since we're not holding the rtnl_lock here. 2927 */ 2928 if (adapter->state == __IAVF_RUNNING) { 2929 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2930 netif_carrier_off(adapter->netdev); 2931 netif_tx_disable(adapter->netdev); 2932 adapter->link_up = false; 2933 iavf_napi_disable_all(adapter); 2934 iavf_irq_disable(adapter); 2935 iavf_free_traffic_irqs(adapter); 2936 iavf_free_all_tx_resources(adapter); 2937 iavf_free_all_rx_resources(adapter); 2938 } 2939 2940 spin_lock_bh(&adapter->mac_vlan_list_lock); 2941 2942 /* Delete all of the filters */ 2943 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2944 list_del(&f->list); 2945 kfree(f); 2946 } 2947 2948 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2949 list_del(&fv->list); 2950 kfree(fv); 2951 } 2952 adapter->num_vlan_filters = 0; 2953 2954 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2955 2956 spin_lock_bh(&adapter->cloud_filter_list_lock); 2957 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2958 list_del(&cf->list); 2959 kfree(cf); 2960 adapter->num_cloud_filters--; 2961 } 2962 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2963 2964 iavf_free_misc_irq(adapter); 2965 iavf_free_interrupt_scheme(adapter); 2966 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2967 iavf_shutdown_adminq(&adapter->hw); 2968 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2969 iavf_change_state(adapter, __IAVF_DOWN); 2970 wake_up(&adapter->down_waitqueue); 2971 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2972 } 2973 2974 /** 2975 * iavf_reset_task - Call-back task to handle hardware reset 2976 * @work: pointer to work_struct 2977 * 2978 * During reset we need to shut down and reinitialize the admin queue 2979 * before we can use it to communicate with the PF again. We also clear 2980 * and reinit the rings because that context is lost as well. 2981 **/ 2982 static void iavf_reset_task(struct work_struct *work) 2983 { 2984 struct iavf_adapter *adapter = container_of(work, 2985 struct iavf_adapter, 2986 reset_task); 2987 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2988 struct net_device *netdev = adapter->netdev; 2989 struct iavf_hw *hw = &adapter->hw; 2990 struct iavf_mac_filter *f, *ftmp; 2991 struct iavf_cloud_filter *cf; 2992 enum iavf_status status; 2993 u32 reg_val; 2994 int i = 0, err; 2995 bool running; 2996 2997 /* When device is being removed it doesn't make sense to run the reset 2998 * task, just return in such a case. 2999 */ 3000 if (!mutex_trylock(&adapter->crit_lock)) { 3001 if (adapter->state != __IAVF_REMOVE) 3002 queue_work(adapter->wq, &adapter->reset_task); 3003 3004 return; 3005 } 3006 3007 iavf_misc_irq_disable(adapter); 3008 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3009 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3010 /* Restart the AQ here. If we have been reset but didn't 3011 * detect it, or if the PF had to reinit, our AQ will be hosed. 3012 */ 3013 iavf_shutdown_adminq(hw); 3014 iavf_init_adminq(hw); 3015 iavf_request_reset(adapter); 3016 } 3017 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3018 3019 /* poll until we see the reset actually happen */ 3020 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3021 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3022 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3023 if (!reg_val) 3024 break; 3025 usleep_range(5000, 10000); 3026 } 3027 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3028 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3029 goto continue_reset; /* act like the reset happened */ 3030 } 3031 3032 /* wait until the reset is complete and the PF is responding to us */ 3033 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3034 /* sleep first to make sure a minimum wait time is met */ 3035 msleep(IAVF_RESET_WAIT_MS); 3036 3037 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3038 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3039 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3040 break; 3041 } 3042 3043 pci_set_master(adapter->pdev); 3044 pci_restore_msi_state(adapter->pdev); 3045 3046 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3047 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3048 reg_val); 3049 iavf_disable_vf(adapter); 3050 mutex_unlock(&adapter->crit_lock); 3051 return; /* Do not attempt to reinit. It's dead, Jim. */ 3052 } 3053 3054 continue_reset: 3055 /* We don't use netif_running() because it may be true prior to 3056 * ndo_open() returning, so we can't assume it means all our open 3057 * tasks have finished, since we're not holding the rtnl_lock here. 3058 */ 3059 running = adapter->state == __IAVF_RUNNING; 3060 3061 if (running) { 3062 netif_carrier_off(netdev); 3063 netif_tx_stop_all_queues(netdev); 3064 adapter->link_up = false; 3065 iavf_napi_disable_all(adapter); 3066 } 3067 iavf_irq_disable(adapter); 3068 3069 iavf_change_state(adapter, __IAVF_RESETTING); 3070 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3071 3072 /* free the Tx/Rx rings and descriptors, might be better to just 3073 * re-use them sometime in the future 3074 */ 3075 iavf_free_all_rx_resources(adapter); 3076 iavf_free_all_tx_resources(adapter); 3077 3078 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3079 /* kill and reinit the admin queue */ 3080 iavf_shutdown_adminq(hw); 3081 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3082 status = iavf_init_adminq(hw); 3083 if (status) { 3084 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3085 status); 3086 goto reset_err; 3087 } 3088 adapter->aq_required = 0; 3089 3090 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3091 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3092 err = iavf_reinit_interrupt_scheme(adapter, running); 3093 if (err) 3094 goto reset_err; 3095 } 3096 3097 if (RSS_AQ(adapter)) { 3098 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3099 } else { 3100 err = iavf_init_rss(adapter); 3101 if (err) 3102 goto reset_err; 3103 } 3104 3105 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3106 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3107 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3108 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3109 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3110 * been successfully sent and negotiated 3111 */ 3112 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3113 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3114 3115 spin_lock_bh(&adapter->mac_vlan_list_lock); 3116 3117 /* Delete filter for the current MAC address, it could have 3118 * been changed by the PF via administratively set MAC. 3119 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3120 */ 3121 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3122 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3123 list_del(&f->list); 3124 kfree(f); 3125 } 3126 } 3127 /* re-add all MAC filters */ 3128 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3129 f->add = true; 3130 } 3131 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3132 3133 /* check if TCs are running and re-add all cloud filters */ 3134 spin_lock_bh(&adapter->cloud_filter_list_lock); 3135 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3136 adapter->num_tc) { 3137 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3138 cf->add = true; 3139 } 3140 } 3141 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3142 3143 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3144 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3145 iavf_misc_irq_enable(adapter); 3146 3147 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3148 3149 /* We were running when the reset started, so we need to restore some 3150 * state here. 3151 */ 3152 if (running) { 3153 /* allocate transmit descriptors */ 3154 err = iavf_setup_all_tx_resources(adapter); 3155 if (err) 3156 goto reset_err; 3157 3158 /* allocate receive descriptors */ 3159 err = iavf_setup_all_rx_resources(adapter); 3160 if (err) 3161 goto reset_err; 3162 3163 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3164 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3165 err = iavf_request_traffic_irqs(adapter, netdev->name); 3166 if (err) 3167 goto reset_err; 3168 3169 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3170 } 3171 3172 iavf_configure(adapter); 3173 3174 /* iavf_up_complete() will switch device back 3175 * to __IAVF_RUNNING 3176 */ 3177 iavf_up_complete(adapter); 3178 3179 iavf_irq_enable(adapter, true); 3180 } else { 3181 iavf_change_state(adapter, __IAVF_DOWN); 3182 wake_up(&adapter->down_waitqueue); 3183 } 3184 3185 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3186 3187 wake_up(&adapter->reset_waitqueue); 3188 mutex_unlock(&adapter->crit_lock); 3189 3190 return; 3191 reset_err: 3192 if (running) { 3193 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3194 iavf_free_traffic_irqs(adapter); 3195 } 3196 iavf_disable_vf(adapter); 3197 3198 mutex_unlock(&adapter->crit_lock); 3199 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3200 } 3201 3202 /** 3203 * iavf_adminq_task - worker thread to clean the admin queue 3204 * @work: pointer to work_struct containing our data 3205 **/ 3206 static void iavf_adminq_task(struct work_struct *work) 3207 { 3208 struct iavf_adapter *adapter = 3209 container_of(work, struct iavf_adapter, adminq_task); 3210 struct iavf_hw *hw = &adapter->hw; 3211 struct iavf_arq_event_info event; 3212 enum virtchnl_ops v_op; 3213 enum iavf_status ret, v_ret; 3214 u32 val, oldval; 3215 u16 pending; 3216 3217 if (!mutex_trylock(&adapter->crit_lock)) { 3218 if (adapter->state == __IAVF_REMOVE) 3219 return; 3220 3221 queue_work(adapter->wq, &adapter->adminq_task); 3222 goto out; 3223 } 3224 3225 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3226 goto unlock; 3227 3228 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3229 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3230 if (!event.msg_buf) 3231 goto unlock; 3232 3233 do { 3234 ret = iavf_clean_arq_element(hw, &event, &pending); 3235 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3236 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3237 3238 if (ret || !v_op) 3239 break; /* No event to process or error cleaning ARQ */ 3240 3241 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3242 event.msg_len); 3243 if (pending != 0) 3244 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3245 } while (pending); 3246 3247 if (iavf_is_reset_in_progress(adapter)) 3248 goto freedom; 3249 3250 /* check for error indications */ 3251 val = rd32(hw, IAVF_VF_ARQLEN1); 3252 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3253 goto freedom; 3254 oldval = val; 3255 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3256 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3257 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3258 } 3259 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3260 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3261 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3262 } 3263 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3264 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3265 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3266 } 3267 if (oldval != val) 3268 wr32(hw, IAVF_VF_ARQLEN1, val); 3269 3270 val = rd32(hw, IAVF_VF_ATQLEN1); 3271 oldval = val; 3272 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3273 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3274 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3275 } 3276 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3277 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3278 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3279 } 3280 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3281 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3282 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3283 } 3284 if (oldval != val) 3285 wr32(hw, IAVF_VF_ATQLEN1, val); 3286 3287 freedom: 3288 kfree(event.msg_buf); 3289 unlock: 3290 mutex_unlock(&adapter->crit_lock); 3291 out: 3292 /* re-enable Admin queue interrupt cause */ 3293 iavf_misc_irq_enable(adapter); 3294 } 3295 3296 /** 3297 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3298 * @adapter: board private structure 3299 * 3300 * Free all transmit software resources 3301 **/ 3302 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3303 { 3304 int i; 3305 3306 if (!adapter->tx_rings) 3307 return; 3308 3309 for (i = 0; i < adapter->num_active_queues; i++) 3310 if (adapter->tx_rings[i].desc) 3311 iavf_free_tx_resources(&adapter->tx_rings[i]); 3312 } 3313 3314 /** 3315 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3316 * @adapter: board private structure 3317 * 3318 * If this function returns with an error, then it's possible one or 3319 * more of the rings is populated (while the rest are not). It is the 3320 * callers duty to clean those orphaned rings. 3321 * 3322 * Return 0 on success, negative on failure 3323 **/ 3324 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3325 { 3326 int i, err = 0; 3327 3328 for (i = 0; i < adapter->num_active_queues; i++) { 3329 adapter->tx_rings[i].count = adapter->tx_desc_count; 3330 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3331 if (!err) 3332 continue; 3333 dev_err(&adapter->pdev->dev, 3334 "Allocation for Tx Queue %u failed\n", i); 3335 break; 3336 } 3337 3338 return err; 3339 } 3340 3341 /** 3342 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3343 * @adapter: board private structure 3344 * 3345 * If this function returns with an error, then it's possible one or 3346 * more of the rings is populated (while the rest are not). It is the 3347 * callers duty to clean those orphaned rings. 3348 * 3349 * Return 0 on success, negative on failure 3350 **/ 3351 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3352 { 3353 int i, err = 0; 3354 3355 for (i = 0; i < adapter->num_active_queues; i++) { 3356 adapter->rx_rings[i].count = adapter->rx_desc_count; 3357 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3358 if (!err) 3359 continue; 3360 dev_err(&adapter->pdev->dev, 3361 "Allocation for Rx Queue %u failed\n", i); 3362 break; 3363 } 3364 return err; 3365 } 3366 3367 /** 3368 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3369 * @adapter: board private structure 3370 * 3371 * Free all receive software resources 3372 **/ 3373 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3374 { 3375 int i; 3376 3377 if (!adapter->rx_rings) 3378 return; 3379 3380 for (i = 0; i < adapter->num_active_queues; i++) 3381 if (adapter->rx_rings[i].desc) 3382 iavf_free_rx_resources(&adapter->rx_rings[i]); 3383 } 3384 3385 /** 3386 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3387 * @adapter: board private structure 3388 * @max_tx_rate: max Tx bw for a tc 3389 **/ 3390 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3391 u64 max_tx_rate) 3392 { 3393 int speed = 0, ret = 0; 3394 3395 if (ADV_LINK_SUPPORT(adapter)) { 3396 if (adapter->link_speed_mbps < U32_MAX) { 3397 speed = adapter->link_speed_mbps; 3398 goto validate_bw; 3399 } else { 3400 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3401 return -EINVAL; 3402 } 3403 } 3404 3405 switch (adapter->link_speed) { 3406 case VIRTCHNL_LINK_SPEED_40GB: 3407 speed = SPEED_40000; 3408 break; 3409 case VIRTCHNL_LINK_SPEED_25GB: 3410 speed = SPEED_25000; 3411 break; 3412 case VIRTCHNL_LINK_SPEED_20GB: 3413 speed = SPEED_20000; 3414 break; 3415 case VIRTCHNL_LINK_SPEED_10GB: 3416 speed = SPEED_10000; 3417 break; 3418 case VIRTCHNL_LINK_SPEED_5GB: 3419 speed = SPEED_5000; 3420 break; 3421 case VIRTCHNL_LINK_SPEED_2_5GB: 3422 speed = SPEED_2500; 3423 break; 3424 case VIRTCHNL_LINK_SPEED_1GB: 3425 speed = SPEED_1000; 3426 break; 3427 case VIRTCHNL_LINK_SPEED_100MB: 3428 speed = SPEED_100; 3429 break; 3430 default: 3431 break; 3432 } 3433 3434 validate_bw: 3435 if (max_tx_rate > speed) { 3436 dev_err(&adapter->pdev->dev, 3437 "Invalid tx rate specified\n"); 3438 ret = -EINVAL; 3439 } 3440 3441 return ret; 3442 } 3443 3444 /** 3445 * iavf_validate_ch_config - validate queue mapping info 3446 * @adapter: board private structure 3447 * @mqprio_qopt: queue parameters 3448 * 3449 * This function validates if the config provided by the user to 3450 * configure queue channels is valid or not. Returns 0 on a valid 3451 * config. 3452 **/ 3453 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3454 struct tc_mqprio_qopt_offload *mqprio_qopt) 3455 { 3456 u64 total_max_rate = 0; 3457 u32 tx_rate_rem = 0; 3458 int i, num_qps = 0; 3459 u64 tx_rate = 0; 3460 int ret = 0; 3461 3462 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3463 mqprio_qopt->qopt.num_tc < 1) 3464 return -EINVAL; 3465 3466 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3467 if (!mqprio_qopt->qopt.count[i] || 3468 mqprio_qopt->qopt.offset[i] != num_qps) 3469 return -EINVAL; 3470 if (mqprio_qopt->min_rate[i]) { 3471 dev_err(&adapter->pdev->dev, 3472 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3473 i); 3474 return -EINVAL; 3475 } 3476 3477 /* convert to Mbps */ 3478 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3479 IAVF_MBPS_DIVISOR); 3480 3481 if (mqprio_qopt->max_rate[i] && 3482 tx_rate < IAVF_MBPS_QUANTA) { 3483 dev_err(&adapter->pdev->dev, 3484 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3485 i, IAVF_MBPS_QUANTA); 3486 return -EINVAL; 3487 } 3488 3489 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3490 3491 if (tx_rate_rem != 0) { 3492 dev_err(&adapter->pdev->dev, 3493 "Invalid max tx rate for TC%d, not divisible by %d\n", 3494 i, IAVF_MBPS_QUANTA); 3495 return -EINVAL; 3496 } 3497 3498 total_max_rate += tx_rate; 3499 num_qps += mqprio_qopt->qopt.count[i]; 3500 } 3501 if (num_qps > adapter->num_active_queues) { 3502 dev_err(&adapter->pdev->dev, 3503 "Cannot support requested number of queues\n"); 3504 return -EINVAL; 3505 } 3506 3507 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3508 return ret; 3509 } 3510 3511 /** 3512 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3513 * @adapter: board private structure 3514 **/ 3515 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3516 { 3517 struct iavf_cloud_filter *cf, *cftmp; 3518 3519 spin_lock_bh(&adapter->cloud_filter_list_lock); 3520 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3521 list) { 3522 list_del(&cf->list); 3523 kfree(cf); 3524 adapter->num_cloud_filters--; 3525 } 3526 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3527 } 3528 3529 /** 3530 * __iavf_setup_tc - configure multiple traffic classes 3531 * @netdev: network interface device structure 3532 * @type_data: tc offload data 3533 * 3534 * This function processes the config information provided by the 3535 * user to configure traffic classes/queue channels and packages the 3536 * information to request the PF to setup traffic classes. 3537 * 3538 * Returns 0 on success. 3539 **/ 3540 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3541 { 3542 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3543 struct iavf_adapter *adapter = netdev_priv(netdev); 3544 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3545 u8 num_tc = 0, total_qps = 0; 3546 int ret = 0, netdev_tc = 0; 3547 u64 max_tx_rate; 3548 u16 mode; 3549 int i; 3550 3551 num_tc = mqprio_qopt->qopt.num_tc; 3552 mode = mqprio_qopt->mode; 3553 3554 /* delete queue_channel */ 3555 if (!mqprio_qopt->qopt.hw) { 3556 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3557 /* reset the tc configuration */ 3558 netdev_reset_tc(netdev); 3559 adapter->num_tc = 0; 3560 netif_tx_stop_all_queues(netdev); 3561 netif_tx_disable(netdev); 3562 iavf_del_all_cloud_filters(adapter); 3563 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3564 total_qps = adapter->orig_num_active_queues; 3565 goto exit; 3566 } else { 3567 return -EINVAL; 3568 } 3569 } 3570 3571 /* add queue channel */ 3572 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3573 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3574 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3575 return -EOPNOTSUPP; 3576 } 3577 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3578 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3579 return -EINVAL; 3580 } 3581 3582 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3583 if (ret) 3584 return ret; 3585 /* Return if same TC config is requested */ 3586 if (adapter->num_tc == num_tc) 3587 return 0; 3588 adapter->num_tc = num_tc; 3589 3590 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3591 if (i < num_tc) { 3592 adapter->ch_config.ch_info[i].count = 3593 mqprio_qopt->qopt.count[i]; 3594 adapter->ch_config.ch_info[i].offset = 3595 mqprio_qopt->qopt.offset[i]; 3596 total_qps += mqprio_qopt->qopt.count[i]; 3597 max_tx_rate = mqprio_qopt->max_rate[i]; 3598 /* convert to Mbps */ 3599 max_tx_rate = div_u64(max_tx_rate, 3600 IAVF_MBPS_DIVISOR); 3601 adapter->ch_config.ch_info[i].max_tx_rate = 3602 max_tx_rate; 3603 } else { 3604 adapter->ch_config.ch_info[i].count = 1; 3605 adapter->ch_config.ch_info[i].offset = 0; 3606 } 3607 } 3608 3609 /* Take snapshot of original config such as "num_active_queues" 3610 * It is used later when delete ADQ flow is exercised, so that 3611 * once delete ADQ flow completes, VF shall go back to its 3612 * original queue configuration 3613 */ 3614 3615 adapter->orig_num_active_queues = adapter->num_active_queues; 3616 3617 /* Store queue info based on TC so that VF gets configured 3618 * with correct number of queues when VF completes ADQ config 3619 * flow 3620 */ 3621 adapter->ch_config.total_qps = total_qps; 3622 3623 netif_tx_stop_all_queues(netdev); 3624 netif_tx_disable(netdev); 3625 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3626 netdev_reset_tc(netdev); 3627 /* Report the tc mapping up the stack */ 3628 netdev_set_num_tc(adapter->netdev, num_tc); 3629 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3630 u16 qcount = mqprio_qopt->qopt.count[i]; 3631 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3632 3633 if (i < num_tc) 3634 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3635 qoffset); 3636 } 3637 } 3638 exit: 3639 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3640 return 0; 3641 3642 netif_set_real_num_rx_queues(netdev, total_qps); 3643 netif_set_real_num_tx_queues(netdev, total_qps); 3644 3645 return ret; 3646 } 3647 3648 /** 3649 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3650 * @adapter: board private structure 3651 * @f: pointer to struct flow_cls_offload 3652 * @filter: pointer to cloud filter structure 3653 */ 3654 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3655 struct flow_cls_offload *f, 3656 struct iavf_cloud_filter *filter) 3657 { 3658 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3659 struct flow_dissector *dissector = rule->match.dissector; 3660 u16 n_proto_mask = 0; 3661 u16 n_proto_key = 0; 3662 u8 field_flags = 0; 3663 u16 addr_type = 0; 3664 u16 n_proto = 0; 3665 int i = 0; 3666 struct virtchnl_filter *vf = &filter->f; 3667 3668 if (dissector->used_keys & 3669 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3670 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3671 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3672 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3673 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3674 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3675 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3676 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3677 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3678 dissector->used_keys); 3679 return -EOPNOTSUPP; 3680 } 3681 3682 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3683 struct flow_match_enc_keyid match; 3684 3685 flow_rule_match_enc_keyid(rule, &match); 3686 if (match.mask->keyid != 0) 3687 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3688 } 3689 3690 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3691 struct flow_match_basic match; 3692 3693 flow_rule_match_basic(rule, &match); 3694 n_proto_key = ntohs(match.key->n_proto); 3695 n_proto_mask = ntohs(match.mask->n_proto); 3696 3697 if (n_proto_key == ETH_P_ALL) { 3698 n_proto_key = 0; 3699 n_proto_mask = 0; 3700 } 3701 n_proto = n_proto_key & n_proto_mask; 3702 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3703 return -EINVAL; 3704 if (n_proto == ETH_P_IPV6) { 3705 /* specify flow type as TCP IPv6 */ 3706 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3707 } 3708 3709 if (match.key->ip_proto != IPPROTO_TCP) { 3710 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3711 return -EINVAL; 3712 } 3713 } 3714 3715 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3716 struct flow_match_eth_addrs match; 3717 3718 flow_rule_match_eth_addrs(rule, &match); 3719 3720 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3721 if (!is_zero_ether_addr(match.mask->dst)) { 3722 if (is_broadcast_ether_addr(match.mask->dst)) { 3723 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3724 } else { 3725 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3726 match.mask->dst); 3727 return -EINVAL; 3728 } 3729 } 3730 3731 if (!is_zero_ether_addr(match.mask->src)) { 3732 if (is_broadcast_ether_addr(match.mask->src)) { 3733 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3734 } else { 3735 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3736 match.mask->src); 3737 return -EINVAL; 3738 } 3739 } 3740 3741 if (!is_zero_ether_addr(match.key->dst)) 3742 if (is_valid_ether_addr(match.key->dst) || 3743 is_multicast_ether_addr(match.key->dst)) { 3744 /* set the mask if a valid dst_mac address */ 3745 for (i = 0; i < ETH_ALEN; i++) 3746 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3747 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3748 match.key->dst); 3749 } 3750 3751 if (!is_zero_ether_addr(match.key->src)) 3752 if (is_valid_ether_addr(match.key->src) || 3753 is_multicast_ether_addr(match.key->src)) { 3754 /* set the mask if a valid dst_mac address */ 3755 for (i = 0; i < ETH_ALEN; i++) 3756 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3757 ether_addr_copy(vf->data.tcp_spec.src_mac, 3758 match.key->src); 3759 } 3760 } 3761 3762 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3763 struct flow_match_vlan match; 3764 3765 flow_rule_match_vlan(rule, &match); 3766 if (match.mask->vlan_id) { 3767 if (match.mask->vlan_id == VLAN_VID_MASK) { 3768 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3769 } else { 3770 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3771 match.mask->vlan_id); 3772 return -EINVAL; 3773 } 3774 } 3775 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3776 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3777 } 3778 3779 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3780 struct flow_match_control match; 3781 3782 flow_rule_match_control(rule, &match); 3783 addr_type = match.key->addr_type; 3784 } 3785 3786 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3787 struct flow_match_ipv4_addrs match; 3788 3789 flow_rule_match_ipv4_addrs(rule, &match); 3790 if (match.mask->dst) { 3791 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3792 field_flags |= IAVF_CLOUD_FIELD_IIP; 3793 } else { 3794 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3795 be32_to_cpu(match.mask->dst)); 3796 return -EINVAL; 3797 } 3798 } 3799 3800 if (match.mask->src) { 3801 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3802 field_flags |= IAVF_CLOUD_FIELD_IIP; 3803 } else { 3804 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3805 be32_to_cpu(match.mask->src)); 3806 return -EINVAL; 3807 } 3808 } 3809 3810 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3811 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3812 return -EINVAL; 3813 } 3814 if (match.key->dst) { 3815 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3816 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3817 } 3818 if (match.key->src) { 3819 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3820 vf->data.tcp_spec.src_ip[0] = match.key->src; 3821 } 3822 } 3823 3824 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3825 struct flow_match_ipv6_addrs match; 3826 3827 flow_rule_match_ipv6_addrs(rule, &match); 3828 3829 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3830 if (ipv6_addr_any(&match.mask->dst)) { 3831 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3832 IPV6_ADDR_ANY); 3833 return -EINVAL; 3834 } 3835 3836 /* src and dest IPv6 address should not be LOOPBACK 3837 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3838 */ 3839 if (ipv6_addr_loopback(&match.key->dst) || 3840 ipv6_addr_loopback(&match.key->src)) { 3841 dev_err(&adapter->pdev->dev, 3842 "ipv6 addr should not be loopback\n"); 3843 return -EINVAL; 3844 } 3845 if (!ipv6_addr_any(&match.mask->dst) || 3846 !ipv6_addr_any(&match.mask->src)) 3847 field_flags |= IAVF_CLOUD_FIELD_IIP; 3848 3849 for (i = 0; i < 4; i++) 3850 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3851 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3852 sizeof(vf->data.tcp_spec.dst_ip)); 3853 for (i = 0; i < 4; i++) 3854 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3855 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3856 sizeof(vf->data.tcp_spec.src_ip)); 3857 } 3858 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3859 struct flow_match_ports match; 3860 3861 flow_rule_match_ports(rule, &match); 3862 if (match.mask->src) { 3863 if (match.mask->src == cpu_to_be16(0xffff)) { 3864 field_flags |= IAVF_CLOUD_FIELD_IIP; 3865 } else { 3866 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3867 be16_to_cpu(match.mask->src)); 3868 return -EINVAL; 3869 } 3870 } 3871 3872 if (match.mask->dst) { 3873 if (match.mask->dst == cpu_to_be16(0xffff)) { 3874 field_flags |= IAVF_CLOUD_FIELD_IIP; 3875 } else { 3876 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3877 be16_to_cpu(match.mask->dst)); 3878 return -EINVAL; 3879 } 3880 } 3881 if (match.key->dst) { 3882 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3883 vf->data.tcp_spec.dst_port = match.key->dst; 3884 } 3885 3886 if (match.key->src) { 3887 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3888 vf->data.tcp_spec.src_port = match.key->src; 3889 } 3890 } 3891 vf->field_flags = field_flags; 3892 3893 return 0; 3894 } 3895 3896 /** 3897 * iavf_handle_tclass - Forward to a traffic class on the device 3898 * @adapter: board private structure 3899 * @tc: traffic class index on the device 3900 * @filter: pointer to cloud filter structure 3901 */ 3902 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3903 struct iavf_cloud_filter *filter) 3904 { 3905 if (tc == 0) 3906 return 0; 3907 if (tc < adapter->num_tc) { 3908 if (!filter->f.data.tcp_spec.dst_port) { 3909 dev_err(&adapter->pdev->dev, 3910 "Specify destination port to redirect to traffic class other than TC0\n"); 3911 return -EINVAL; 3912 } 3913 } 3914 /* redirect to a traffic class on the same device */ 3915 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3916 filter->f.action_meta = tc; 3917 return 0; 3918 } 3919 3920 /** 3921 * iavf_find_cf - Find the cloud filter in the list 3922 * @adapter: Board private structure 3923 * @cookie: filter specific cookie 3924 * 3925 * Returns ptr to the filter object or NULL. Must be called while holding the 3926 * cloud_filter_list_lock. 3927 */ 3928 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3929 unsigned long *cookie) 3930 { 3931 struct iavf_cloud_filter *filter = NULL; 3932 3933 if (!cookie) 3934 return NULL; 3935 3936 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3937 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3938 return filter; 3939 } 3940 return NULL; 3941 } 3942 3943 /** 3944 * iavf_configure_clsflower - Add tc flower filters 3945 * @adapter: board private structure 3946 * @cls_flower: Pointer to struct flow_cls_offload 3947 */ 3948 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3949 struct flow_cls_offload *cls_flower) 3950 { 3951 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3952 struct iavf_cloud_filter *filter = NULL; 3953 int err = -EINVAL, count = 50; 3954 3955 if (tc < 0) { 3956 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3957 return -EINVAL; 3958 } 3959 3960 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3961 if (!filter) 3962 return -ENOMEM; 3963 3964 while (!mutex_trylock(&adapter->crit_lock)) { 3965 if (--count == 0) { 3966 kfree(filter); 3967 return err; 3968 } 3969 udelay(1); 3970 } 3971 3972 filter->cookie = cls_flower->cookie; 3973 3974 /* bail out here if filter already exists */ 3975 spin_lock_bh(&adapter->cloud_filter_list_lock); 3976 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3977 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3978 err = -EEXIST; 3979 goto spin_unlock; 3980 } 3981 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3982 3983 /* set the mask to all zeroes to begin with */ 3984 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3985 /* start out with flow type and eth type IPv4 to begin with */ 3986 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3987 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3988 if (err) 3989 goto err; 3990 3991 err = iavf_handle_tclass(adapter, tc, filter); 3992 if (err) 3993 goto err; 3994 3995 /* add filter to the list */ 3996 spin_lock_bh(&adapter->cloud_filter_list_lock); 3997 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3998 adapter->num_cloud_filters++; 3999 filter->add = true; 4000 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4001 spin_unlock: 4002 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4003 err: 4004 if (err) 4005 kfree(filter); 4006 4007 mutex_unlock(&adapter->crit_lock); 4008 return err; 4009 } 4010 4011 /** 4012 * iavf_delete_clsflower - Remove tc flower filters 4013 * @adapter: board private structure 4014 * @cls_flower: Pointer to struct flow_cls_offload 4015 */ 4016 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4017 struct flow_cls_offload *cls_flower) 4018 { 4019 struct iavf_cloud_filter *filter = NULL; 4020 int err = 0; 4021 4022 spin_lock_bh(&adapter->cloud_filter_list_lock); 4023 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4024 if (filter) { 4025 filter->del = true; 4026 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4027 } else { 4028 err = -EINVAL; 4029 } 4030 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4031 4032 return err; 4033 } 4034 4035 /** 4036 * iavf_setup_tc_cls_flower - flower classifier offloads 4037 * @adapter: board private structure 4038 * @cls_flower: pointer to flow_cls_offload struct with flow info 4039 */ 4040 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4041 struct flow_cls_offload *cls_flower) 4042 { 4043 switch (cls_flower->command) { 4044 case FLOW_CLS_REPLACE: 4045 return iavf_configure_clsflower(adapter, cls_flower); 4046 case FLOW_CLS_DESTROY: 4047 return iavf_delete_clsflower(adapter, cls_flower); 4048 case FLOW_CLS_STATS: 4049 return -EOPNOTSUPP; 4050 default: 4051 return -EOPNOTSUPP; 4052 } 4053 } 4054 4055 /** 4056 * iavf_setup_tc_block_cb - block callback for tc 4057 * @type: type of offload 4058 * @type_data: offload data 4059 * @cb_priv: 4060 * 4061 * This function is the block callback for traffic classes 4062 **/ 4063 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4064 void *cb_priv) 4065 { 4066 struct iavf_adapter *adapter = cb_priv; 4067 4068 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4069 return -EOPNOTSUPP; 4070 4071 switch (type) { 4072 case TC_SETUP_CLSFLOWER: 4073 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4074 default: 4075 return -EOPNOTSUPP; 4076 } 4077 } 4078 4079 static LIST_HEAD(iavf_block_cb_list); 4080 4081 /** 4082 * iavf_setup_tc - configure multiple traffic classes 4083 * @netdev: network interface device structure 4084 * @type: type of offload 4085 * @type_data: tc offload data 4086 * 4087 * This function is the callback to ndo_setup_tc in the 4088 * netdev_ops. 4089 * 4090 * Returns 0 on success 4091 **/ 4092 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4093 void *type_data) 4094 { 4095 struct iavf_adapter *adapter = netdev_priv(netdev); 4096 4097 switch (type) { 4098 case TC_SETUP_QDISC_MQPRIO: 4099 return __iavf_setup_tc(netdev, type_data); 4100 case TC_SETUP_BLOCK: 4101 return flow_block_cb_setup_simple(type_data, 4102 &iavf_block_cb_list, 4103 iavf_setup_tc_block_cb, 4104 adapter, adapter, true); 4105 default: 4106 return -EOPNOTSUPP; 4107 } 4108 } 4109 4110 /** 4111 * iavf_open - Called when a network interface is made active 4112 * @netdev: network interface device structure 4113 * 4114 * Returns 0 on success, negative value on failure 4115 * 4116 * The open entry point is called when a network interface is made 4117 * active by the system (IFF_UP). At this point all resources needed 4118 * for transmit and receive operations are allocated, the interrupt 4119 * handler is registered with the OS, the watchdog is started, 4120 * and the stack is notified that the interface is ready. 4121 **/ 4122 static int iavf_open(struct net_device *netdev) 4123 { 4124 struct iavf_adapter *adapter = netdev_priv(netdev); 4125 int err; 4126 4127 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4128 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4129 return -EIO; 4130 } 4131 4132 while (!mutex_trylock(&adapter->crit_lock)) { 4133 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4134 * is already taken and iavf_open is called from an upper 4135 * device's notifier reacting on NETDEV_REGISTER event. 4136 * We have to leave here to avoid dead lock. 4137 */ 4138 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4139 return -EBUSY; 4140 4141 usleep_range(500, 1000); 4142 } 4143 4144 if (adapter->state != __IAVF_DOWN) { 4145 err = -EBUSY; 4146 goto err_unlock; 4147 } 4148 4149 if (adapter->state == __IAVF_RUNNING && 4150 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4151 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4152 err = 0; 4153 goto err_unlock; 4154 } 4155 4156 /* allocate transmit descriptors */ 4157 err = iavf_setup_all_tx_resources(adapter); 4158 if (err) 4159 goto err_setup_tx; 4160 4161 /* allocate receive descriptors */ 4162 err = iavf_setup_all_rx_resources(adapter); 4163 if (err) 4164 goto err_setup_rx; 4165 4166 /* clear any pending interrupts, may auto mask */ 4167 err = iavf_request_traffic_irqs(adapter, netdev->name); 4168 if (err) 4169 goto err_req_irq; 4170 4171 spin_lock_bh(&adapter->mac_vlan_list_lock); 4172 4173 iavf_add_filter(adapter, adapter->hw.mac.addr); 4174 4175 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4176 4177 /* Restore VLAN filters that were removed with IFF_DOWN */ 4178 iavf_restore_filters(adapter); 4179 4180 iavf_configure(adapter); 4181 4182 iavf_up_complete(adapter); 4183 4184 iavf_irq_enable(adapter, true); 4185 4186 mutex_unlock(&adapter->crit_lock); 4187 4188 return 0; 4189 4190 err_req_irq: 4191 iavf_down(adapter); 4192 iavf_free_traffic_irqs(adapter); 4193 err_setup_rx: 4194 iavf_free_all_rx_resources(adapter); 4195 err_setup_tx: 4196 iavf_free_all_tx_resources(adapter); 4197 err_unlock: 4198 mutex_unlock(&adapter->crit_lock); 4199 4200 return err; 4201 } 4202 4203 /** 4204 * iavf_close - Disables a network interface 4205 * @netdev: network interface device structure 4206 * 4207 * Returns 0, this is not allowed to fail 4208 * 4209 * The close entry point is called when an interface is de-activated 4210 * by the OS. The hardware is still under the drivers control, but 4211 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4212 * are freed, along with all transmit and receive resources. 4213 **/ 4214 static int iavf_close(struct net_device *netdev) 4215 { 4216 struct iavf_adapter *adapter = netdev_priv(netdev); 4217 u64 aq_to_restore; 4218 int status; 4219 4220 mutex_lock(&adapter->crit_lock); 4221 4222 if (adapter->state <= __IAVF_DOWN_PENDING) { 4223 mutex_unlock(&adapter->crit_lock); 4224 return 0; 4225 } 4226 4227 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4228 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4229 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4230 * deadlock with adminq_task() until iavf_close timeouts. We must send 4231 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4232 * disable queues possible for vf. Give only necessary flags to 4233 * iavf_down and save other to set them right before iavf_close() 4234 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4235 * iavf will be in DOWN state. 4236 */ 4237 aq_to_restore = adapter->aq_required; 4238 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4239 4240 /* Remove flags which we do not want to send after close or we want to 4241 * send before disable queues. 4242 */ 4243 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4244 IAVF_FLAG_AQ_ENABLE_QUEUES | 4245 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4246 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4247 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4248 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4249 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4250 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4251 4252 iavf_down(adapter); 4253 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4254 iavf_free_traffic_irqs(adapter); 4255 4256 mutex_unlock(&adapter->crit_lock); 4257 4258 /* We explicitly don't free resources here because the hardware is 4259 * still active and can DMA into memory. Resources are cleared in 4260 * iavf_virtchnl_completion() after we get confirmation from the PF 4261 * driver that the rings have been stopped. 4262 * 4263 * Also, we wait for state to transition to __IAVF_DOWN before 4264 * returning. State change occurs in iavf_virtchnl_completion() after 4265 * VF resources are released (which occurs after PF driver processes and 4266 * responds to admin queue commands). 4267 */ 4268 4269 status = wait_event_timeout(adapter->down_waitqueue, 4270 adapter->state == __IAVF_DOWN, 4271 msecs_to_jiffies(500)); 4272 if (!status) 4273 netdev_warn(netdev, "Device resources not yet released\n"); 4274 4275 mutex_lock(&adapter->crit_lock); 4276 adapter->aq_required |= aq_to_restore; 4277 mutex_unlock(&adapter->crit_lock); 4278 return 0; 4279 } 4280 4281 /** 4282 * iavf_change_mtu - Change the Maximum Transfer Unit 4283 * @netdev: network interface device structure 4284 * @new_mtu: new value for maximum frame size 4285 * 4286 * Returns 0 on success, negative on failure 4287 **/ 4288 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4289 { 4290 struct iavf_adapter *adapter = netdev_priv(netdev); 4291 int ret = 0; 4292 4293 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4294 netdev->mtu, new_mtu); 4295 netdev->mtu = new_mtu; 4296 4297 if (netif_running(netdev)) { 4298 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4299 ret = iavf_wait_for_reset(adapter); 4300 if (ret < 0) 4301 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4302 else if (ret) 4303 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4304 } 4305 4306 return ret; 4307 } 4308 4309 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4310 NETIF_F_HW_VLAN_CTAG_TX | \ 4311 NETIF_F_HW_VLAN_STAG_RX | \ 4312 NETIF_F_HW_VLAN_STAG_TX) 4313 4314 /** 4315 * iavf_set_features - set the netdev feature flags 4316 * @netdev: ptr to the netdev being adjusted 4317 * @features: the feature set that the stack is suggesting 4318 * Note: expects to be called while under rtnl_lock() 4319 **/ 4320 static int iavf_set_features(struct net_device *netdev, 4321 netdev_features_t features) 4322 { 4323 struct iavf_adapter *adapter = netdev_priv(netdev); 4324 4325 /* trigger update on any VLAN feature change */ 4326 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4327 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4328 iavf_set_vlan_offload_features(adapter, netdev->features, 4329 features); 4330 if (CRC_OFFLOAD_ALLOWED(adapter) && 4331 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4332 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4333 4334 return 0; 4335 } 4336 4337 /** 4338 * iavf_features_check - Validate encapsulated packet conforms to limits 4339 * @skb: skb buff 4340 * @dev: This physical port's netdev 4341 * @features: Offload features that the stack believes apply 4342 **/ 4343 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4344 struct net_device *dev, 4345 netdev_features_t features) 4346 { 4347 size_t len; 4348 4349 /* No point in doing any of this if neither checksum nor GSO are 4350 * being requested for this frame. We can rule out both by just 4351 * checking for CHECKSUM_PARTIAL 4352 */ 4353 if (skb->ip_summed != CHECKSUM_PARTIAL) 4354 return features; 4355 4356 /* We cannot support GSO if the MSS is going to be less than 4357 * 64 bytes. If it is then we need to drop support for GSO. 4358 */ 4359 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4360 features &= ~NETIF_F_GSO_MASK; 4361 4362 /* MACLEN can support at most 63 words */ 4363 len = skb_network_header(skb) - skb->data; 4364 if (len & ~(63 * 2)) 4365 goto out_err; 4366 4367 /* IPLEN and EIPLEN can support at most 127 dwords */ 4368 len = skb_transport_header(skb) - skb_network_header(skb); 4369 if (len & ~(127 * 4)) 4370 goto out_err; 4371 4372 if (skb->encapsulation) { 4373 /* L4TUNLEN can support 127 words */ 4374 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4375 if (len & ~(127 * 2)) 4376 goto out_err; 4377 4378 /* IPLEN can support at most 127 dwords */ 4379 len = skb_inner_transport_header(skb) - 4380 skb_inner_network_header(skb); 4381 if (len & ~(127 * 4)) 4382 goto out_err; 4383 } 4384 4385 /* No need to validate L4LEN as TCP is the only protocol with a 4386 * flexible value and we support all possible values supported 4387 * by TCP, which is at most 15 dwords 4388 */ 4389 4390 return features; 4391 out_err: 4392 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4393 } 4394 4395 /** 4396 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4397 * @adapter: board private structure 4398 * 4399 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4400 * were negotiated determine the VLAN features that can be toggled on and off. 4401 **/ 4402 static netdev_features_t 4403 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4404 { 4405 netdev_features_t hw_features = 0; 4406 4407 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4408 return hw_features; 4409 4410 /* Enable VLAN features if supported */ 4411 if (VLAN_ALLOWED(adapter)) { 4412 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4413 NETIF_F_HW_VLAN_CTAG_RX); 4414 } else if (VLAN_V2_ALLOWED(adapter)) { 4415 struct virtchnl_vlan_caps *vlan_v2_caps = 4416 &adapter->vlan_v2_caps; 4417 struct virtchnl_vlan_supported_caps *stripping_support = 4418 &vlan_v2_caps->offloads.stripping_support; 4419 struct virtchnl_vlan_supported_caps *insertion_support = 4420 &vlan_v2_caps->offloads.insertion_support; 4421 4422 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4423 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4424 if (stripping_support->outer & 4425 VIRTCHNL_VLAN_ETHERTYPE_8100) 4426 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4427 if (stripping_support->outer & 4428 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4429 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4430 } else if (stripping_support->inner != 4431 VIRTCHNL_VLAN_UNSUPPORTED && 4432 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4433 if (stripping_support->inner & 4434 VIRTCHNL_VLAN_ETHERTYPE_8100) 4435 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4436 } 4437 4438 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4439 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4440 if (insertion_support->outer & 4441 VIRTCHNL_VLAN_ETHERTYPE_8100) 4442 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4443 if (insertion_support->outer & 4444 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4445 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4446 } else if (insertion_support->inner && 4447 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4448 if (insertion_support->inner & 4449 VIRTCHNL_VLAN_ETHERTYPE_8100) 4450 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4451 } 4452 } 4453 4454 if (CRC_OFFLOAD_ALLOWED(adapter)) 4455 hw_features |= NETIF_F_RXFCS; 4456 4457 return hw_features; 4458 } 4459 4460 /** 4461 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4462 * @adapter: board private structure 4463 * 4464 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4465 * were negotiated determine the VLAN features that are enabled by default. 4466 **/ 4467 static netdev_features_t 4468 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4469 { 4470 netdev_features_t features = 0; 4471 4472 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4473 return features; 4474 4475 if (VLAN_ALLOWED(adapter)) { 4476 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4477 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4478 } else if (VLAN_V2_ALLOWED(adapter)) { 4479 struct virtchnl_vlan_caps *vlan_v2_caps = 4480 &adapter->vlan_v2_caps; 4481 struct virtchnl_vlan_supported_caps *filtering_support = 4482 &vlan_v2_caps->filtering.filtering_support; 4483 struct virtchnl_vlan_supported_caps *stripping_support = 4484 &vlan_v2_caps->offloads.stripping_support; 4485 struct virtchnl_vlan_supported_caps *insertion_support = 4486 &vlan_v2_caps->offloads.insertion_support; 4487 u32 ethertype_init; 4488 4489 /* give priority to outer stripping and don't support both outer 4490 * and inner stripping 4491 */ 4492 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4493 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4494 if (stripping_support->outer & 4495 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4496 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4497 features |= NETIF_F_HW_VLAN_CTAG_RX; 4498 else if (stripping_support->outer & 4499 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4500 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4501 features |= NETIF_F_HW_VLAN_STAG_RX; 4502 } else if (stripping_support->inner != 4503 VIRTCHNL_VLAN_UNSUPPORTED) { 4504 if (stripping_support->inner & 4505 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4506 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4507 features |= NETIF_F_HW_VLAN_CTAG_RX; 4508 } 4509 4510 /* give priority to outer insertion and don't support both outer 4511 * and inner insertion 4512 */ 4513 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4514 if (insertion_support->outer & 4515 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4516 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4517 features |= NETIF_F_HW_VLAN_CTAG_TX; 4518 else if (insertion_support->outer & 4519 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4520 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4521 features |= NETIF_F_HW_VLAN_STAG_TX; 4522 } else if (insertion_support->inner != 4523 VIRTCHNL_VLAN_UNSUPPORTED) { 4524 if (insertion_support->inner & 4525 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4526 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4527 features |= NETIF_F_HW_VLAN_CTAG_TX; 4528 } 4529 4530 /* give priority to outer filtering and don't bother if both 4531 * outer and inner filtering are enabled 4532 */ 4533 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4534 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4535 if (filtering_support->outer & 4536 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4537 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4538 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4539 if (filtering_support->outer & 4540 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4541 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4542 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4543 } else if (filtering_support->inner != 4544 VIRTCHNL_VLAN_UNSUPPORTED) { 4545 if (filtering_support->inner & 4546 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4547 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4548 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4549 if (filtering_support->inner & 4550 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4551 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4552 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4553 } 4554 } 4555 4556 return features; 4557 } 4558 4559 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4560 (!(((requested) & (feature_bit)) && \ 4561 !((allowed) & (feature_bit)))) 4562 4563 /** 4564 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4565 * @adapter: board private structure 4566 * @requested_features: stack requested NETDEV features 4567 **/ 4568 static netdev_features_t 4569 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4570 netdev_features_t requested_features) 4571 { 4572 netdev_features_t allowed_features; 4573 4574 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4575 iavf_get_netdev_vlan_features(adapter); 4576 4577 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4578 allowed_features, 4579 NETIF_F_HW_VLAN_CTAG_TX)) 4580 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4581 4582 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4583 allowed_features, 4584 NETIF_F_HW_VLAN_CTAG_RX)) 4585 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4586 4587 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4588 allowed_features, 4589 NETIF_F_HW_VLAN_STAG_TX)) 4590 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4591 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4592 allowed_features, 4593 NETIF_F_HW_VLAN_STAG_RX)) 4594 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4595 4596 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4597 allowed_features, 4598 NETIF_F_HW_VLAN_CTAG_FILTER)) 4599 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4600 4601 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4602 allowed_features, 4603 NETIF_F_HW_VLAN_STAG_FILTER)) 4604 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4605 4606 if ((requested_features & 4607 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4608 (requested_features & 4609 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4610 adapter->vlan_v2_caps.offloads.ethertype_match == 4611 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4612 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4613 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4614 NETIF_F_HW_VLAN_STAG_TX); 4615 } 4616 4617 return requested_features; 4618 } 4619 4620 /** 4621 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4622 * @adapter: board private structure 4623 * @requested_features: stack requested NETDEV features 4624 * 4625 * Returns fixed-up features bits 4626 **/ 4627 static netdev_features_t 4628 iavf_fix_strip_features(struct iavf_adapter *adapter, 4629 netdev_features_t requested_features) 4630 { 4631 struct net_device *netdev = adapter->netdev; 4632 bool crc_offload_req, is_vlan_strip; 4633 netdev_features_t vlan_strip; 4634 int num_non_zero_vlan; 4635 4636 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4637 (requested_features & NETIF_F_RXFCS); 4638 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4639 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4640 is_vlan_strip = requested_features & vlan_strip; 4641 4642 if (!crc_offload_req) 4643 return requested_features; 4644 4645 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4646 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4647 requested_features &= ~vlan_strip; 4648 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4649 return requested_features; 4650 } 4651 4652 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4653 requested_features &= ~vlan_strip; 4654 if (!(netdev->features & vlan_strip)) 4655 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4656 4657 return requested_features; 4658 } 4659 4660 if (num_non_zero_vlan && is_vlan_strip && 4661 !(netdev->features & NETIF_F_RXFCS)) { 4662 requested_features &= ~NETIF_F_RXFCS; 4663 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4664 } 4665 4666 return requested_features; 4667 } 4668 4669 /** 4670 * iavf_fix_features - fix up the netdev feature bits 4671 * @netdev: our net device 4672 * @features: desired feature bits 4673 * 4674 * Returns fixed-up features bits 4675 **/ 4676 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4677 netdev_features_t features) 4678 { 4679 struct iavf_adapter *adapter = netdev_priv(netdev); 4680 4681 features = iavf_fix_netdev_vlan_features(adapter, features); 4682 4683 return iavf_fix_strip_features(adapter, features); 4684 } 4685 4686 static const struct net_device_ops iavf_netdev_ops = { 4687 .ndo_open = iavf_open, 4688 .ndo_stop = iavf_close, 4689 .ndo_start_xmit = iavf_xmit_frame, 4690 .ndo_set_rx_mode = iavf_set_rx_mode, 4691 .ndo_validate_addr = eth_validate_addr, 4692 .ndo_set_mac_address = iavf_set_mac, 4693 .ndo_change_mtu = iavf_change_mtu, 4694 .ndo_tx_timeout = iavf_tx_timeout, 4695 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4696 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4697 .ndo_features_check = iavf_features_check, 4698 .ndo_fix_features = iavf_fix_features, 4699 .ndo_set_features = iavf_set_features, 4700 .ndo_setup_tc = iavf_setup_tc, 4701 }; 4702 4703 /** 4704 * iavf_check_reset_complete - check that VF reset is complete 4705 * @hw: pointer to hw struct 4706 * 4707 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4708 **/ 4709 static int iavf_check_reset_complete(struct iavf_hw *hw) 4710 { 4711 u32 rstat; 4712 int i; 4713 4714 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4715 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4716 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4717 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4718 (rstat == VIRTCHNL_VFR_COMPLETED)) 4719 return 0; 4720 msleep(IAVF_RESET_WAIT_MS); 4721 } 4722 return -EBUSY; 4723 } 4724 4725 /** 4726 * iavf_process_config - Process the config information we got from the PF 4727 * @adapter: board private structure 4728 * 4729 * Verify that we have a valid config struct, and set up our netdev features 4730 * and our VSI struct. 4731 **/ 4732 int iavf_process_config(struct iavf_adapter *adapter) 4733 { 4734 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4735 netdev_features_t hw_vlan_features, vlan_features; 4736 struct net_device *netdev = adapter->netdev; 4737 netdev_features_t hw_enc_features; 4738 netdev_features_t hw_features; 4739 4740 hw_enc_features = NETIF_F_SG | 4741 NETIF_F_IP_CSUM | 4742 NETIF_F_IPV6_CSUM | 4743 NETIF_F_HIGHDMA | 4744 NETIF_F_SOFT_FEATURES | 4745 NETIF_F_TSO | 4746 NETIF_F_TSO_ECN | 4747 NETIF_F_TSO6 | 4748 NETIF_F_SCTP_CRC | 4749 NETIF_F_RXHASH | 4750 NETIF_F_RXCSUM | 4751 0; 4752 4753 /* advertise to stack only if offloads for encapsulated packets is 4754 * supported 4755 */ 4756 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4757 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4758 NETIF_F_GSO_GRE | 4759 NETIF_F_GSO_GRE_CSUM | 4760 NETIF_F_GSO_IPXIP4 | 4761 NETIF_F_GSO_IPXIP6 | 4762 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4763 NETIF_F_GSO_PARTIAL | 4764 0; 4765 4766 if (!(vfres->vf_cap_flags & 4767 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4768 netdev->gso_partial_features |= 4769 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4770 4771 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4772 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4773 netdev->hw_enc_features |= hw_enc_features; 4774 } 4775 /* record features VLANs can make use of */ 4776 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4777 4778 /* Write features and hw_features separately to avoid polluting 4779 * with, or dropping, features that are set when we registered. 4780 */ 4781 hw_features = hw_enc_features; 4782 4783 /* get HW VLAN features that can be toggled */ 4784 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4785 4786 /* Enable cloud filter if ADQ is supported */ 4787 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4788 hw_features |= NETIF_F_HW_TC; 4789 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4790 hw_features |= NETIF_F_GSO_UDP_L4; 4791 4792 netdev->hw_features |= hw_features | hw_vlan_features; 4793 vlan_features = iavf_get_netdev_vlan_features(adapter); 4794 4795 netdev->features |= hw_features | vlan_features; 4796 4797 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4798 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4799 4800 netdev->priv_flags |= IFF_UNICAST_FLT; 4801 4802 /* Do not turn on offloads when they are requested to be turned off. 4803 * TSO needs minimum 576 bytes to work correctly. 4804 */ 4805 if (netdev->wanted_features) { 4806 if (!(netdev->wanted_features & NETIF_F_TSO) || 4807 netdev->mtu < 576) 4808 netdev->features &= ~NETIF_F_TSO; 4809 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4810 netdev->mtu < 576) 4811 netdev->features &= ~NETIF_F_TSO6; 4812 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4813 netdev->features &= ~NETIF_F_TSO_ECN; 4814 if (!(netdev->wanted_features & NETIF_F_GRO)) 4815 netdev->features &= ~NETIF_F_GRO; 4816 if (!(netdev->wanted_features & NETIF_F_GSO)) 4817 netdev->features &= ~NETIF_F_GSO; 4818 } 4819 4820 return 0; 4821 } 4822 4823 /** 4824 * iavf_shutdown - Shutdown the device in preparation for a reboot 4825 * @pdev: pci device structure 4826 **/ 4827 static void iavf_shutdown(struct pci_dev *pdev) 4828 { 4829 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4830 struct net_device *netdev = adapter->netdev; 4831 4832 netif_device_detach(netdev); 4833 4834 if (netif_running(netdev)) 4835 iavf_close(netdev); 4836 4837 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4838 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4839 /* Prevent the watchdog from running. */ 4840 iavf_change_state(adapter, __IAVF_REMOVE); 4841 adapter->aq_required = 0; 4842 mutex_unlock(&adapter->crit_lock); 4843 4844 #ifdef CONFIG_PM 4845 pci_save_state(pdev); 4846 4847 #endif 4848 pci_disable_device(pdev); 4849 } 4850 4851 /** 4852 * iavf_probe - Device Initialization Routine 4853 * @pdev: PCI device information struct 4854 * @ent: entry in iavf_pci_tbl 4855 * 4856 * Returns 0 on success, negative on failure 4857 * 4858 * iavf_probe initializes an adapter identified by a pci_dev structure. 4859 * The OS initialization, configuring of the adapter private structure, 4860 * and a hardware reset occur. 4861 **/ 4862 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4863 { 4864 struct net_device *netdev; 4865 struct iavf_adapter *adapter = NULL; 4866 struct iavf_hw *hw = NULL; 4867 int err; 4868 4869 err = pci_enable_device(pdev); 4870 if (err) 4871 return err; 4872 4873 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4874 if (err) { 4875 dev_err(&pdev->dev, 4876 "DMA configuration failed: 0x%x\n", err); 4877 goto err_dma; 4878 } 4879 4880 err = pci_request_regions(pdev, iavf_driver_name); 4881 if (err) { 4882 dev_err(&pdev->dev, 4883 "pci_request_regions failed 0x%x\n", err); 4884 goto err_pci_reg; 4885 } 4886 4887 pci_set_master(pdev); 4888 4889 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4890 IAVF_MAX_REQ_QUEUES); 4891 if (!netdev) { 4892 err = -ENOMEM; 4893 goto err_alloc_etherdev; 4894 } 4895 4896 SET_NETDEV_DEV(netdev, &pdev->dev); 4897 4898 pci_set_drvdata(pdev, netdev); 4899 adapter = netdev_priv(netdev); 4900 4901 adapter->netdev = netdev; 4902 adapter->pdev = pdev; 4903 4904 hw = &adapter->hw; 4905 hw->back = adapter; 4906 4907 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4908 iavf_driver_name); 4909 if (!adapter->wq) { 4910 err = -ENOMEM; 4911 goto err_alloc_wq; 4912 } 4913 4914 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4915 iavf_change_state(adapter, __IAVF_STARTUP); 4916 4917 /* Call save state here because it relies on the adapter struct. */ 4918 pci_save_state(pdev); 4919 4920 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4921 pci_resource_len(pdev, 0)); 4922 if (!hw->hw_addr) { 4923 err = -EIO; 4924 goto err_ioremap; 4925 } 4926 hw->vendor_id = pdev->vendor; 4927 hw->device_id = pdev->device; 4928 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4929 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4930 hw->subsystem_device_id = pdev->subsystem_device; 4931 hw->bus.device = PCI_SLOT(pdev->devfn); 4932 hw->bus.func = PCI_FUNC(pdev->devfn); 4933 hw->bus.bus_id = pdev->bus->number; 4934 4935 /* set up the locks for the AQ, do this only once in probe 4936 * and destroy them only once in remove 4937 */ 4938 mutex_init(&adapter->crit_lock); 4939 mutex_init(&hw->aq.asq_mutex); 4940 mutex_init(&hw->aq.arq_mutex); 4941 4942 spin_lock_init(&adapter->mac_vlan_list_lock); 4943 spin_lock_init(&adapter->cloud_filter_list_lock); 4944 spin_lock_init(&adapter->fdir_fltr_lock); 4945 spin_lock_init(&adapter->adv_rss_lock); 4946 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4947 4948 INIT_LIST_HEAD(&adapter->mac_filter_list); 4949 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4950 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4951 INIT_LIST_HEAD(&adapter->fdir_list_head); 4952 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4953 4954 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4955 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4956 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4957 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4958 4959 /* Setup the wait queue for indicating transition to down status */ 4960 init_waitqueue_head(&adapter->down_waitqueue); 4961 4962 /* Setup the wait queue for indicating transition to running state */ 4963 init_waitqueue_head(&adapter->reset_waitqueue); 4964 4965 /* Setup the wait queue for indicating virtchannel events */ 4966 init_waitqueue_head(&adapter->vc_waitqueue); 4967 4968 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4969 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4970 /* Initialization goes on in the work. Do not add more of it below. */ 4971 return 0; 4972 4973 err_ioremap: 4974 destroy_workqueue(adapter->wq); 4975 err_alloc_wq: 4976 free_netdev(netdev); 4977 err_alloc_etherdev: 4978 pci_release_regions(pdev); 4979 err_pci_reg: 4980 err_dma: 4981 pci_disable_device(pdev); 4982 return err; 4983 } 4984 4985 /** 4986 * iavf_suspend - Power management suspend routine 4987 * @dev_d: device info pointer 4988 * 4989 * Called when the system (VM) is entering sleep/suspend. 4990 **/ 4991 static int __maybe_unused iavf_suspend(struct device *dev_d) 4992 { 4993 struct net_device *netdev = dev_get_drvdata(dev_d); 4994 struct iavf_adapter *adapter = netdev_priv(netdev); 4995 4996 netif_device_detach(netdev); 4997 4998 mutex_lock(&adapter->crit_lock); 4999 5000 if (netif_running(netdev)) { 5001 rtnl_lock(); 5002 iavf_down(adapter); 5003 rtnl_unlock(); 5004 } 5005 iavf_free_misc_irq(adapter); 5006 iavf_reset_interrupt_capability(adapter); 5007 5008 mutex_unlock(&adapter->crit_lock); 5009 5010 return 0; 5011 } 5012 5013 /** 5014 * iavf_resume - Power management resume routine 5015 * @dev_d: device info pointer 5016 * 5017 * Called when the system (VM) is resumed from sleep/suspend. 5018 **/ 5019 static int __maybe_unused iavf_resume(struct device *dev_d) 5020 { 5021 struct pci_dev *pdev = to_pci_dev(dev_d); 5022 struct iavf_adapter *adapter; 5023 u32 err; 5024 5025 adapter = iavf_pdev_to_adapter(pdev); 5026 5027 pci_set_master(pdev); 5028 5029 rtnl_lock(); 5030 err = iavf_set_interrupt_capability(adapter); 5031 if (err) { 5032 rtnl_unlock(); 5033 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5034 return err; 5035 } 5036 err = iavf_request_misc_irq(adapter); 5037 rtnl_unlock(); 5038 if (err) { 5039 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5040 return err; 5041 } 5042 5043 queue_work(adapter->wq, &adapter->reset_task); 5044 5045 netif_device_attach(adapter->netdev); 5046 5047 return err; 5048 } 5049 5050 /** 5051 * iavf_remove - Device Removal Routine 5052 * @pdev: PCI device information struct 5053 * 5054 * iavf_remove is called by the PCI subsystem to alert the driver 5055 * that it should release a PCI device. The could be caused by a 5056 * Hot-Plug event, or because the driver is going to be removed from 5057 * memory. 5058 **/ 5059 static void iavf_remove(struct pci_dev *pdev) 5060 { 5061 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5062 struct iavf_fdir_fltr *fdir, *fdirtmp; 5063 struct iavf_vlan_filter *vlf, *vlftmp; 5064 struct iavf_cloud_filter *cf, *cftmp; 5065 struct iavf_adv_rss *rss, *rsstmp; 5066 struct iavf_mac_filter *f, *ftmp; 5067 struct net_device *netdev; 5068 struct iavf_hw *hw; 5069 5070 netdev = adapter->netdev; 5071 hw = &adapter->hw; 5072 5073 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5074 return; 5075 5076 /* Wait until port initialization is complete. 5077 * There are flows where register/unregister netdev may race. 5078 */ 5079 while (1) { 5080 mutex_lock(&adapter->crit_lock); 5081 if (adapter->state == __IAVF_RUNNING || 5082 adapter->state == __IAVF_DOWN || 5083 adapter->state == __IAVF_INIT_FAILED) { 5084 mutex_unlock(&adapter->crit_lock); 5085 break; 5086 } 5087 /* Simply return if we already went through iavf_shutdown */ 5088 if (adapter->state == __IAVF_REMOVE) { 5089 mutex_unlock(&adapter->crit_lock); 5090 return; 5091 } 5092 5093 mutex_unlock(&adapter->crit_lock); 5094 usleep_range(500, 1000); 5095 } 5096 cancel_delayed_work_sync(&adapter->watchdog_task); 5097 cancel_work_sync(&adapter->finish_config); 5098 5099 if (netdev->reg_state == NETREG_REGISTERED) 5100 unregister_netdev(netdev); 5101 5102 mutex_lock(&adapter->crit_lock); 5103 dev_info(&adapter->pdev->dev, "Removing device\n"); 5104 iavf_change_state(adapter, __IAVF_REMOVE); 5105 5106 iavf_request_reset(adapter); 5107 msleep(50); 5108 /* If the FW isn't responding, kick it once, but only once. */ 5109 if (!iavf_asq_done(hw)) { 5110 iavf_request_reset(adapter); 5111 msleep(50); 5112 } 5113 5114 iavf_misc_irq_disable(adapter); 5115 /* Shut down all the garbage mashers on the detention level */ 5116 cancel_work_sync(&adapter->reset_task); 5117 cancel_delayed_work_sync(&adapter->watchdog_task); 5118 cancel_work_sync(&adapter->adminq_task); 5119 5120 adapter->aq_required = 0; 5121 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5122 5123 iavf_free_all_tx_resources(adapter); 5124 iavf_free_all_rx_resources(adapter); 5125 iavf_free_misc_irq(adapter); 5126 iavf_free_interrupt_scheme(adapter); 5127 5128 iavf_free_rss(adapter); 5129 5130 if (hw->aq.asq.count) 5131 iavf_shutdown_adminq(hw); 5132 5133 /* destroy the locks only once, here */ 5134 mutex_destroy(&hw->aq.arq_mutex); 5135 mutex_destroy(&hw->aq.asq_mutex); 5136 mutex_unlock(&adapter->crit_lock); 5137 mutex_destroy(&adapter->crit_lock); 5138 5139 iounmap(hw->hw_addr); 5140 pci_release_regions(pdev); 5141 kfree(adapter->vf_res); 5142 spin_lock_bh(&adapter->mac_vlan_list_lock); 5143 /* If we got removed before an up/down sequence, we've got a filter 5144 * hanging out there that we need to get rid of. 5145 */ 5146 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5147 list_del(&f->list); 5148 kfree(f); 5149 } 5150 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5151 list) { 5152 list_del(&vlf->list); 5153 kfree(vlf); 5154 } 5155 5156 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5157 5158 spin_lock_bh(&adapter->cloud_filter_list_lock); 5159 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5160 list_del(&cf->list); 5161 kfree(cf); 5162 } 5163 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5164 5165 spin_lock_bh(&adapter->fdir_fltr_lock); 5166 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5167 list_del(&fdir->list); 5168 kfree(fdir); 5169 } 5170 spin_unlock_bh(&adapter->fdir_fltr_lock); 5171 5172 spin_lock_bh(&adapter->adv_rss_lock); 5173 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5174 list) { 5175 list_del(&rss->list); 5176 kfree(rss); 5177 } 5178 spin_unlock_bh(&adapter->adv_rss_lock); 5179 5180 destroy_workqueue(adapter->wq); 5181 5182 free_netdev(netdev); 5183 5184 pci_disable_device(pdev); 5185 } 5186 5187 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5188 5189 static struct pci_driver iavf_driver = { 5190 .name = iavf_driver_name, 5191 .id_table = iavf_pci_tbl, 5192 .probe = iavf_probe, 5193 .remove = iavf_remove, 5194 .driver.pm = &iavf_pm_ops, 5195 .shutdown = iavf_shutdown, 5196 }; 5197 5198 /** 5199 * iavf_init_module - Driver Registration Routine 5200 * 5201 * iavf_init_module is the first routine called when the driver is 5202 * loaded. All it does is register with the PCI subsystem. 5203 **/ 5204 static int __init iavf_init_module(void) 5205 { 5206 pr_info("iavf: %s\n", iavf_driver_string); 5207 5208 pr_info("%s\n", iavf_copyright); 5209 5210 return pci_register_driver(&iavf_driver); 5211 } 5212 5213 module_init(iavf_init_module); 5214 5215 /** 5216 * iavf_exit_module - Driver Exit Cleanup Routine 5217 * 5218 * iavf_exit_module is called just before the driver is removed 5219 * from memory. 5220 **/ 5221 static void __exit iavf_exit_module(void) 5222 { 5223 pci_unregister_driver(&iavf_driver); 5224 } 5225 5226 module_exit(iavf_exit_module); 5227 5228 /* iavf_main.c */ 5229