1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 #include <net/netdev_lock.h> 6 7 #include "iavf.h" 8 #include "iavf_ptp.h" 9 #include "iavf_prototype.h" 10 /* All iavf tracepoints are defined by the include below, which must 11 * be included exactly once across the whole kernel with 12 * CREATE_TRACE_POINTS defined 13 */ 14 #define CREATE_TRACE_POINTS 15 #include "iavf_trace.h" 16 17 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 18 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 19 static int iavf_close(struct net_device *netdev); 20 static void iavf_init_get_resources(struct iavf_adapter *adapter); 21 static int iavf_check_reset_complete(struct iavf_hw *hw); 22 23 char iavf_driver_name[] = "iavf"; 24 static const char iavf_driver_string[] = 25 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 26 27 static const char iavf_copyright[] = 28 "Copyright (c) 2013 - 2018 Intel Corporation."; 29 30 /* iavf_pci_tbl - PCI Device ID Table 31 * 32 * Wildcard entries (PCI_ANY_ID) should come last 33 * Last entry must be all 0s 34 * 35 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 36 * Class, Class Mask, private data (not used) } 37 */ 38 static const struct pci_device_id iavf_pci_tbl[] = { 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 41 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 42 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 43 /* required last entry */ 44 {0, } 45 }; 46 47 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 48 49 MODULE_ALIAS("i40evf"); 50 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 51 MODULE_IMPORT_NS("LIBETH"); 52 MODULE_IMPORT_NS("LIBIE"); 53 MODULE_LICENSE("GPL v2"); 54 55 static const struct net_device_ops iavf_netdev_ops; 56 57 int iavf_status_to_errno(enum iavf_status status) 58 { 59 switch (status) { 60 case IAVF_SUCCESS: 61 return 0; 62 case IAVF_ERR_PARAM: 63 case IAVF_ERR_MAC_TYPE: 64 case IAVF_ERR_INVALID_MAC_ADDR: 65 case IAVF_ERR_INVALID_LINK_SETTINGS: 66 case IAVF_ERR_INVALID_PD_ID: 67 case IAVF_ERR_INVALID_QP_ID: 68 case IAVF_ERR_INVALID_CQ_ID: 69 case IAVF_ERR_INVALID_CEQ_ID: 70 case IAVF_ERR_INVALID_AEQ_ID: 71 case IAVF_ERR_INVALID_SIZE: 72 case IAVF_ERR_INVALID_ARP_INDEX: 73 case IAVF_ERR_INVALID_FPM_FUNC_ID: 74 case IAVF_ERR_QP_INVALID_MSG_SIZE: 75 case IAVF_ERR_INVALID_FRAG_COUNT: 76 case IAVF_ERR_INVALID_ALIGNMENT: 77 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 78 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 79 case IAVF_ERR_INVALID_VF_ID: 80 case IAVF_ERR_INVALID_HMCFN_ID: 81 case IAVF_ERR_INVALID_PBLE_INDEX: 82 case IAVF_ERR_INVALID_SD_INDEX: 83 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 84 case IAVF_ERR_INVALID_SD_TYPE: 85 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 86 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 87 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 88 return -EINVAL; 89 case IAVF_ERR_NVM: 90 case IAVF_ERR_NVM_CHECKSUM: 91 case IAVF_ERR_PHY: 92 case IAVF_ERR_CONFIG: 93 case IAVF_ERR_UNKNOWN_PHY: 94 case IAVF_ERR_LINK_SETUP: 95 case IAVF_ERR_ADAPTER_STOPPED: 96 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 97 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 98 case IAVF_ERR_RESET_FAILED: 99 case IAVF_ERR_BAD_PTR: 100 case IAVF_ERR_SWFW_SYNC: 101 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 102 case IAVF_ERR_QUEUE_EMPTY: 103 case IAVF_ERR_FLUSHED_QUEUE: 104 case IAVF_ERR_OPCODE_MISMATCH: 105 case IAVF_ERR_CQP_COMPL_ERROR: 106 case IAVF_ERR_BACKING_PAGE_ERROR: 107 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 108 case IAVF_ERR_MEMCPY_FAILED: 109 case IAVF_ERR_SRQ_ENABLED: 110 case IAVF_ERR_ADMIN_QUEUE_ERROR: 111 case IAVF_ERR_ADMIN_QUEUE_FULL: 112 case IAVF_ERR_BAD_RDMA_CQE: 113 case IAVF_ERR_NVM_BLANK_MODE: 114 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 115 case IAVF_ERR_DIAG_TEST_FAILED: 116 case IAVF_ERR_FIRMWARE_API_VERSION: 117 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 118 return -EIO; 119 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 120 return -ENODEV; 121 case IAVF_ERR_NO_AVAILABLE_VSI: 122 case IAVF_ERR_RING_FULL: 123 return -ENOSPC; 124 case IAVF_ERR_NO_MEMORY: 125 return -ENOMEM; 126 case IAVF_ERR_TIMEOUT: 127 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 128 return -ETIMEDOUT; 129 case IAVF_ERR_NOT_IMPLEMENTED: 130 case IAVF_NOT_SUPPORTED: 131 return -EOPNOTSUPP; 132 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 133 return -EALREADY; 134 case IAVF_ERR_NOT_READY: 135 return -EBUSY; 136 case IAVF_ERR_BUF_TOO_SHORT: 137 return -EMSGSIZE; 138 } 139 140 return -EIO; 141 } 142 143 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 144 { 145 switch (v_status) { 146 case VIRTCHNL_STATUS_SUCCESS: 147 return 0; 148 case VIRTCHNL_STATUS_ERR_PARAM: 149 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 150 return -EINVAL; 151 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 152 return -ENOMEM; 153 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 154 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 155 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 156 return -EIO; 157 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 158 return -EOPNOTSUPP; 159 } 160 161 return -EIO; 162 } 163 164 /** 165 * iavf_pdev_to_adapter - go from pci_dev to adapter 166 * @pdev: pci_dev pointer 167 */ 168 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 169 { 170 return netdev_priv(pci_get_drvdata(pdev)); 171 } 172 173 /** 174 * iavf_is_reset_in_progress - Check if a reset is in progress 175 * @adapter: board private structure 176 */ 177 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 178 { 179 if (adapter->state == __IAVF_RESETTING || 180 adapter->flags & (IAVF_FLAG_RESET_PENDING | 181 IAVF_FLAG_RESET_NEEDED)) 182 return true; 183 184 return false; 185 } 186 187 /** 188 * iavf_wait_for_reset - Wait for reset to finish. 189 * @adapter: board private structure 190 * 191 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 192 */ 193 int iavf_wait_for_reset(struct iavf_adapter *adapter) 194 { 195 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 196 !iavf_is_reset_in_progress(adapter), 197 msecs_to_jiffies(5000)); 198 199 /* If ret < 0 then it means wait was interrupted. 200 * If ret == 0 then it means we got a timeout while waiting 201 * for reset to finish. 202 * If ret > 0 it means reset has finished. 203 */ 204 if (ret > 0) 205 return 0; 206 else if (ret < 0) 207 return -EINTR; 208 else 209 return -EBUSY; 210 } 211 212 /** 213 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 * @alignment: what to align the allocation to 218 **/ 219 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 220 struct iavf_dma_mem *mem, 221 u64 size, u32 alignment) 222 { 223 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 224 225 if (!mem) 226 return IAVF_ERR_PARAM; 227 228 mem->size = ALIGN(size, alignment); 229 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 230 (dma_addr_t *)&mem->pa, GFP_KERNEL); 231 if (mem->va) 232 return 0; 233 else 234 return IAVF_ERR_NO_MEMORY; 235 } 236 237 /** 238 * iavf_free_dma_mem - wrapper for DMA memory freeing 239 * @hw: pointer to the HW structure 240 * @mem: ptr to mem struct to free 241 **/ 242 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 243 { 244 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 245 246 if (!mem || !mem->va) 247 return IAVF_ERR_PARAM; 248 dma_free_coherent(&adapter->pdev->dev, mem->size, 249 mem->va, (dma_addr_t)mem->pa); 250 return 0; 251 } 252 253 /** 254 * iavf_allocate_virt_mem - virt memory alloc wrapper 255 * @hw: pointer to the HW structure 256 * @mem: ptr to mem struct to fill out 257 * @size: size of memory requested 258 **/ 259 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 260 struct iavf_virt_mem *mem, u32 size) 261 { 262 if (!mem) 263 return IAVF_ERR_PARAM; 264 265 mem->size = size; 266 mem->va = kzalloc(size, GFP_KERNEL); 267 268 if (mem->va) 269 return 0; 270 else 271 return IAVF_ERR_NO_MEMORY; 272 } 273 274 /** 275 * iavf_free_virt_mem - virt memory free wrapper 276 * @hw: pointer to the HW structure 277 * @mem: ptr to mem struct to free 278 **/ 279 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 280 { 281 kfree(mem->va); 282 } 283 284 /** 285 * iavf_schedule_reset - Set the flags and schedule a reset event 286 * @adapter: board private structure 287 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 288 **/ 289 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 290 { 291 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 292 !(adapter->flags & 293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 294 adapter->flags |= flags; 295 queue_work(adapter->wq, &adapter->reset_task); 296 } 297 } 298 299 /** 300 * iavf_schedule_aq_request - Set the flags and schedule aq request 301 * @adapter: board private structure 302 * @flags: requested aq flags 303 **/ 304 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 305 { 306 adapter->aq_required |= flags; 307 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 308 } 309 310 /** 311 * iavf_tx_timeout - Respond to a Tx Hang 312 * @netdev: network interface device structure 313 * @txqueue: queue number that is timing out 314 **/ 315 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 316 { 317 struct iavf_adapter *adapter = netdev_priv(netdev); 318 319 adapter->tx_timeout_count++; 320 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 321 } 322 323 /** 324 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 325 * @adapter: board private structure 326 **/ 327 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 328 { 329 struct iavf_hw *hw = &adapter->hw; 330 331 if (!adapter->msix_entries) 332 return; 333 334 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 335 336 iavf_flush(hw); 337 338 synchronize_irq(adapter->msix_entries[0].vector); 339 } 340 341 /** 342 * iavf_misc_irq_enable - Enable default interrupt generation settings 343 * @adapter: board private structure 344 **/ 345 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 346 { 347 struct iavf_hw *hw = &adapter->hw; 348 349 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 350 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 351 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 352 353 iavf_flush(hw); 354 } 355 356 /** 357 * iavf_irq_disable - Mask off interrupt generation on the NIC 358 * @adapter: board private structure 359 **/ 360 static void iavf_irq_disable(struct iavf_adapter *adapter) 361 { 362 int i; 363 struct iavf_hw *hw = &adapter->hw; 364 365 if (!adapter->msix_entries) 366 return; 367 368 for (i = 1; i < adapter->num_msix_vectors; i++) { 369 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 370 synchronize_irq(adapter->msix_entries[i].vector); 371 } 372 iavf_flush(hw); 373 } 374 375 /** 376 * iavf_irq_enable_queues - Enable interrupt for all queues 377 * @adapter: board private structure 378 **/ 379 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 380 { 381 struct iavf_hw *hw = &adapter->hw; 382 int i; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 386 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 387 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 388 } 389 } 390 391 /** 392 * iavf_irq_enable - Enable default interrupt generation settings 393 * @adapter: board private structure 394 * @flush: boolean value whether to run rd32() 395 **/ 396 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 397 { 398 struct iavf_hw *hw = &adapter->hw; 399 400 iavf_misc_irq_enable(adapter); 401 iavf_irq_enable_queues(adapter); 402 403 if (flush) 404 iavf_flush(hw); 405 } 406 407 /** 408 * iavf_msix_aq - Interrupt handler for vector 0 409 * @irq: interrupt number 410 * @data: pointer to netdev 411 **/ 412 static irqreturn_t iavf_msix_aq(int irq, void *data) 413 { 414 struct net_device *netdev = data; 415 struct iavf_adapter *adapter = netdev_priv(netdev); 416 struct iavf_hw *hw = &adapter->hw; 417 418 /* handle non-queue interrupts, these reads clear the registers */ 419 rd32(hw, IAVF_VFINT_ICR01); 420 rd32(hw, IAVF_VFINT_ICR0_ENA1); 421 422 if (adapter->state != __IAVF_REMOVE) 423 /* schedule work on the private workqueue */ 424 queue_work(adapter->wq, &adapter->adminq_task); 425 426 return IRQ_HANDLED; 427 } 428 429 /** 430 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 431 * @irq: interrupt number 432 * @data: pointer to a q_vector 433 **/ 434 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 435 { 436 struct iavf_q_vector *q_vector = data; 437 438 if (!q_vector->tx.ring && !q_vector->rx.ring) 439 return IRQ_HANDLED; 440 441 napi_schedule_irqoff(&q_vector->napi); 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * iavf_map_vector_to_rxq - associate irqs with rx queues 448 * @adapter: board private structure 449 * @v_idx: interrupt number 450 * @r_idx: queue number 451 **/ 452 static void 453 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 454 { 455 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 456 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 457 struct iavf_hw *hw = &adapter->hw; 458 459 rx_ring->q_vector = q_vector; 460 rx_ring->next = q_vector->rx.ring; 461 rx_ring->vsi = &adapter->vsi; 462 q_vector->rx.ring = rx_ring; 463 q_vector->rx.count++; 464 q_vector->rx.next_update = jiffies + 1; 465 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 466 q_vector->ring_mask |= BIT(r_idx); 467 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 468 q_vector->rx.current_itr >> 1); 469 q_vector->rx.current_itr = q_vector->rx.target_itr; 470 } 471 472 /** 473 * iavf_map_vector_to_txq - associate irqs with tx queues 474 * @adapter: board private structure 475 * @v_idx: interrupt number 476 * @t_idx: queue number 477 **/ 478 static void 479 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 480 { 481 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 482 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 483 struct iavf_hw *hw = &adapter->hw; 484 485 tx_ring->q_vector = q_vector; 486 tx_ring->next = q_vector->tx.ring; 487 tx_ring->vsi = &adapter->vsi; 488 q_vector->tx.ring = tx_ring; 489 q_vector->tx.count++; 490 q_vector->tx.next_update = jiffies + 1; 491 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 492 q_vector->num_ringpairs++; 493 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 494 q_vector->tx.target_itr >> 1); 495 q_vector->tx.current_itr = q_vector->tx.target_itr; 496 } 497 498 /** 499 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 500 * @adapter: board private structure to initialize 501 * 502 * This function maps descriptor rings to the queue-specific vectors 503 * we were allotted through the MSI-X enabling code. Ideally, we'd have 504 * one vector per ring/queue, but on a constrained vector budget, we 505 * group the rings as "efficiently" as possible. You would add new 506 * mapping configurations in here. 507 **/ 508 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 509 { 510 int rings_remaining = adapter->num_active_queues; 511 int ridx = 0, vidx = 0; 512 int q_vectors; 513 514 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 515 516 for (; ridx < rings_remaining; ridx++) { 517 iavf_map_vector_to_rxq(adapter, vidx, ridx); 518 iavf_map_vector_to_txq(adapter, vidx, ridx); 519 520 /* In the case where we have more queues than vectors, continue 521 * round-robin on vectors until all queues are mapped. 522 */ 523 if (++vidx >= q_vectors) 524 vidx = 0; 525 } 526 527 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 528 } 529 530 /** 531 * iavf_irq_affinity_notify - Callback for affinity changes 532 * @notify: context as to what irq was changed 533 * @mask: the new affinity mask 534 * 535 * This is a callback function used by the irq_set_affinity_notifier function 536 * so that we may register to receive changes to the irq affinity masks. 537 **/ 538 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 539 const cpumask_t *mask) 540 { 541 struct iavf_q_vector *q_vector = 542 container_of(notify, struct iavf_q_vector, affinity_notify); 543 544 cpumask_copy(&q_vector->affinity_mask, mask); 545 } 546 547 /** 548 * iavf_irq_affinity_release - Callback for affinity notifier release 549 * @ref: internal core kernel usage 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * to inform the current notification subscriber that they will no longer 553 * receive notifications. 554 **/ 555 static void iavf_irq_affinity_release(struct kref *ref) {} 556 557 /** 558 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 559 * @adapter: board private structure 560 * @basename: device basename 561 * 562 * Allocates MSI-X vectors for tx and rx handling, and requests 563 * interrupts from the kernel. 564 **/ 565 static int 566 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 567 { 568 unsigned int vector, q_vectors; 569 unsigned int rx_int_idx = 0, tx_int_idx = 0; 570 int irq_num, err; 571 int cpu; 572 573 iavf_irq_disable(adapter); 574 /* Decrement for Other and TCP Timer vectors */ 575 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 576 577 for (vector = 0; vector < q_vectors; vector++) { 578 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 579 580 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 581 582 if (q_vector->tx.ring && q_vector->rx.ring) { 583 snprintf(q_vector->name, sizeof(q_vector->name), 584 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 585 tx_int_idx++; 586 } else if (q_vector->rx.ring) { 587 snprintf(q_vector->name, sizeof(q_vector->name), 588 "iavf-%s-rx-%u", basename, rx_int_idx++); 589 } else if (q_vector->tx.ring) { 590 snprintf(q_vector->name, sizeof(q_vector->name), 591 "iavf-%s-tx-%u", basename, tx_int_idx++); 592 } else { 593 /* skip this unused q_vector */ 594 continue; 595 } 596 err = request_irq(irq_num, 597 iavf_msix_clean_rings, 598 0, 599 q_vector->name, 600 q_vector); 601 if (err) { 602 dev_info(&adapter->pdev->dev, 603 "Request_irq failed, error: %d\n", err); 604 goto free_queue_irqs; 605 } 606 /* register for affinity change notifications */ 607 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 608 q_vector->affinity_notify.release = 609 iavf_irq_affinity_release; 610 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 611 /* Spread the IRQ affinity hints across online CPUs. Note that 612 * get_cpu_mask returns a mask with a permanent lifetime so 613 * it's safe to use as a hint for irq_update_affinity_hint. 614 */ 615 cpu = cpumask_local_spread(q_vector->v_idx, -1); 616 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 617 } 618 619 return 0; 620 621 free_queue_irqs: 622 while (vector) { 623 vector--; 624 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 625 irq_set_affinity_notifier(irq_num, NULL); 626 irq_update_affinity_hint(irq_num, NULL); 627 free_irq(irq_num, &adapter->q_vectors[vector]); 628 } 629 return err; 630 } 631 632 /** 633 * iavf_request_misc_irq - Initialize MSI-X interrupts 634 * @adapter: board private structure 635 * 636 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 637 * vector is only for the admin queue, and stays active even when the netdev 638 * is closed. 639 **/ 640 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 641 { 642 struct net_device *netdev = adapter->netdev; 643 int err; 644 645 snprintf(adapter->misc_vector_name, 646 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 647 dev_name(&adapter->pdev->dev)); 648 err = request_irq(adapter->msix_entries[0].vector, 649 &iavf_msix_aq, 0, 650 adapter->misc_vector_name, netdev); 651 if (err) { 652 dev_err(&adapter->pdev->dev, 653 "request_irq for %s failed: %d\n", 654 adapter->misc_vector_name, err); 655 free_irq(adapter->msix_entries[0].vector, netdev); 656 } 657 return err; 658 } 659 660 /** 661 * iavf_free_traffic_irqs - Free MSI-X interrupts 662 * @adapter: board private structure 663 * 664 * Frees all MSI-X vectors other than 0. 665 **/ 666 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 667 { 668 int vector, irq_num, q_vectors; 669 670 if (!adapter->msix_entries) 671 return; 672 673 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 674 675 for (vector = 0; vector < q_vectors; vector++) { 676 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 677 irq_set_affinity_notifier(irq_num, NULL); 678 irq_update_affinity_hint(irq_num, NULL); 679 free_irq(irq_num, &adapter->q_vectors[vector]); 680 } 681 } 682 683 /** 684 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 685 * @adapter: board private structure 686 * 687 * Frees MSI-X vector 0. 688 **/ 689 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 690 { 691 struct net_device *netdev = adapter->netdev; 692 693 if (!adapter->msix_entries) 694 return; 695 696 free_irq(adapter->msix_entries[0].vector, netdev); 697 } 698 699 /** 700 * iavf_configure_tx - Configure Transmit Unit after Reset 701 * @adapter: board private structure 702 * 703 * Configure the Tx unit of the MAC after a reset. 704 **/ 705 static void iavf_configure_tx(struct iavf_adapter *adapter) 706 { 707 struct iavf_hw *hw = &adapter->hw; 708 int i; 709 710 for (i = 0; i < adapter->num_active_queues; i++) 711 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 712 } 713 714 /** 715 * iavf_select_rx_desc_format - Select Rx descriptor format 716 * @adapter: adapter private structure 717 * 718 * Select what Rx descriptor format based on availability and enabled 719 * features. 720 * 721 * Return: the desired RXDID to select for a given Rx queue, as defined by 722 * enum virtchnl_rxdid_format. 723 */ 724 static u8 iavf_select_rx_desc_format(const struct iavf_adapter *adapter) 725 { 726 u64 rxdids = adapter->supp_rxdids; 727 728 /* If we did not negotiate VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC, we must 729 * stick with the default value of the legacy 32 byte format. 730 */ 731 if (!IAVF_RXDID_ALLOWED(adapter)) 732 return VIRTCHNL_RXDID_1_32B_BASE; 733 734 /* Rx timestamping requires the use of flexible NIC descriptors */ 735 if (iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) { 736 if (rxdids & BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC)) 737 return VIRTCHNL_RXDID_2_FLEX_SQ_NIC; 738 739 pci_warn(adapter->pdev, 740 "Unable to negotiate flexible descriptor format\n"); 741 } 742 743 /* Warn if the PF does not list support for the default legacy 744 * descriptor format. This shouldn't happen, as this is the format 745 * used if VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is not supported. It is 746 * likely caused by a bug in the PF implementation failing to indicate 747 * support for the format. 748 */ 749 if (!(rxdids & VIRTCHNL_RXDID_1_32B_BASE_M)) 750 netdev_warn(adapter->netdev, "PF does not list support for default Rx descriptor format\n"); 751 752 return VIRTCHNL_RXDID_1_32B_BASE; 753 } 754 755 /** 756 * iavf_configure_rx - Configure Receive Unit after Reset 757 * @adapter: board private structure 758 * 759 * Configure the Rx unit of the MAC after a reset. 760 **/ 761 static void iavf_configure_rx(struct iavf_adapter *adapter) 762 { 763 struct iavf_hw *hw = &adapter->hw; 764 765 adapter->rxdid = iavf_select_rx_desc_format(adapter); 766 767 for (u32 i = 0; i < adapter->num_active_queues; i++) { 768 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 769 adapter->rx_rings[i].rxdid = adapter->rxdid; 770 } 771 } 772 773 /** 774 * iavf_find_vlan - Search filter list for specific vlan filter 775 * @adapter: board private structure 776 * @vlan: vlan tag 777 * 778 * Returns ptr to the filter object or NULL. Must be called while holding the 779 * mac_vlan_list_lock. 780 **/ 781 static struct 782 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 783 struct iavf_vlan vlan) 784 { 785 struct iavf_vlan_filter *f; 786 787 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 788 if (f->vlan.vid == vlan.vid && 789 f->vlan.tpid == vlan.tpid) 790 return f; 791 } 792 793 return NULL; 794 } 795 796 /** 797 * iavf_add_vlan - Add a vlan filter to the list 798 * @adapter: board private structure 799 * @vlan: VLAN tag 800 * 801 * Returns ptr to the filter object or NULL when no memory available. 802 **/ 803 static struct 804 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 805 struct iavf_vlan vlan) 806 { 807 struct iavf_vlan_filter *f = NULL; 808 809 spin_lock_bh(&adapter->mac_vlan_list_lock); 810 811 f = iavf_find_vlan(adapter, vlan); 812 if (!f) { 813 f = kzalloc(sizeof(*f), GFP_ATOMIC); 814 if (!f) 815 goto clearout; 816 817 f->vlan = vlan; 818 819 list_add_tail(&f->list, &adapter->vlan_filter_list); 820 f->state = IAVF_VLAN_ADD; 821 adapter->num_vlan_filters++; 822 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 823 } else if (f->state == IAVF_VLAN_REMOVE) { 824 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 825 * We can safely only change the state here. 826 */ 827 f->state = IAVF_VLAN_ACTIVE; 828 } 829 830 clearout: 831 spin_unlock_bh(&adapter->mac_vlan_list_lock); 832 return f; 833 } 834 835 /** 836 * iavf_del_vlan - Remove a vlan filter from the list 837 * @adapter: board private structure 838 * @vlan: VLAN tag 839 **/ 840 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 841 { 842 struct iavf_vlan_filter *f; 843 844 spin_lock_bh(&adapter->mac_vlan_list_lock); 845 846 f = iavf_find_vlan(adapter, vlan); 847 if (f) { 848 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 849 * Remove it from the list. 850 */ 851 if (f->state == IAVF_VLAN_ADD) { 852 list_del(&f->list); 853 kfree(f); 854 adapter->num_vlan_filters--; 855 } else { 856 f->state = IAVF_VLAN_REMOVE; 857 iavf_schedule_aq_request(adapter, 858 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 859 } 860 } 861 862 spin_unlock_bh(&adapter->mac_vlan_list_lock); 863 } 864 865 /** 866 * iavf_restore_filters 867 * @adapter: board private structure 868 * 869 * Restore existing non MAC filters when VF netdev comes back up 870 **/ 871 static void iavf_restore_filters(struct iavf_adapter *adapter) 872 { 873 struct iavf_vlan_filter *f; 874 875 /* re-add all VLAN filters */ 876 spin_lock_bh(&adapter->mac_vlan_list_lock); 877 878 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 879 if (f->state == IAVF_VLAN_INACTIVE) 880 f->state = IAVF_VLAN_ADD; 881 } 882 883 spin_unlock_bh(&adapter->mac_vlan_list_lock); 884 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 885 } 886 887 /** 888 * iavf_get_num_vlans_added - get number of VLANs added 889 * @adapter: board private structure 890 */ 891 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 892 { 893 return adapter->num_vlan_filters; 894 } 895 896 /** 897 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 898 * @adapter: board private structure 899 * 900 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 901 * do not impose a limit as that maintains current behavior and for 902 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 903 **/ 904 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 905 { 906 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 907 * never been a limit on the VF driver side 908 */ 909 if (VLAN_ALLOWED(adapter)) 910 return VLAN_N_VID; 911 else if (VLAN_V2_ALLOWED(adapter)) 912 return adapter->vlan_v2_caps.filtering.max_filters; 913 914 return 0; 915 } 916 917 /** 918 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 919 * @adapter: board private structure 920 **/ 921 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 922 { 923 if (iavf_get_num_vlans_added(adapter) < 924 iavf_get_max_vlans_allowed(adapter)) 925 return false; 926 927 return true; 928 } 929 930 /** 931 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 932 * @netdev: network device struct 933 * @proto: unused protocol data 934 * @vid: VLAN tag 935 **/ 936 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 937 __always_unused __be16 proto, u16 vid) 938 { 939 struct iavf_adapter *adapter = netdev_priv(netdev); 940 941 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 942 if (!vid) 943 return 0; 944 945 if (!VLAN_FILTERING_ALLOWED(adapter)) 946 return -EIO; 947 948 if (iavf_max_vlans_added(adapter)) { 949 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 950 iavf_get_max_vlans_allowed(adapter)); 951 return -EIO; 952 } 953 954 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 955 return -ENOMEM; 956 957 return 0; 958 } 959 960 /** 961 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 962 * @netdev: network device struct 963 * @proto: unused protocol data 964 * @vid: VLAN tag 965 **/ 966 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 967 __always_unused __be16 proto, u16 vid) 968 { 969 struct iavf_adapter *adapter = netdev_priv(netdev); 970 971 /* We do not track VLAN 0 filter */ 972 if (!vid) 973 return 0; 974 975 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 976 return 0; 977 } 978 979 /** 980 * iavf_find_filter - Search filter list for specific mac filter 981 * @adapter: board private structure 982 * @macaddr: the MAC address 983 * 984 * Returns ptr to the filter object or NULL. Must be called while holding the 985 * mac_vlan_list_lock. 986 **/ 987 static struct 988 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 989 const u8 *macaddr) 990 { 991 struct iavf_mac_filter *f; 992 993 if (!macaddr) 994 return NULL; 995 996 list_for_each_entry(f, &adapter->mac_filter_list, list) { 997 if (ether_addr_equal(macaddr, f->macaddr)) 998 return f; 999 } 1000 return NULL; 1001 } 1002 1003 /** 1004 * iavf_add_filter - Add a mac filter to the filter list 1005 * @adapter: board private structure 1006 * @macaddr: the MAC address 1007 * 1008 * Returns ptr to the filter object or NULL when no memory available. 1009 **/ 1010 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1011 const u8 *macaddr) 1012 { 1013 struct iavf_mac_filter *f; 1014 1015 if (!macaddr) 1016 return NULL; 1017 1018 f = iavf_find_filter(adapter, macaddr); 1019 if (!f) { 1020 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1021 if (!f) 1022 return f; 1023 1024 ether_addr_copy(f->macaddr, macaddr); 1025 1026 list_add_tail(&f->list, &adapter->mac_filter_list); 1027 f->add = true; 1028 f->add_handled = false; 1029 f->is_new_mac = true; 1030 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1031 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1032 } else { 1033 f->remove = false; 1034 } 1035 1036 return f; 1037 } 1038 1039 /** 1040 * iavf_replace_primary_mac - Replace current primary address 1041 * @adapter: board private structure 1042 * @new_mac: new MAC address to be applied 1043 * 1044 * Replace current dev_addr and send request to PF for removal of previous 1045 * primary MAC address filter and addition of new primary MAC filter. 1046 * Return 0 for success, -ENOMEM for failure. 1047 * 1048 * Do not call this with mac_vlan_list_lock! 1049 **/ 1050 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1051 const u8 *new_mac) 1052 { 1053 struct iavf_hw *hw = &adapter->hw; 1054 struct iavf_mac_filter *new_f; 1055 struct iavf_mac_filter *old_f; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 new_f = iavf_add_filter(adapter, new_mac); 1060 if (!new_f) { 1061 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1062 return -ENOMEM; 1063 } 1064 1065 old_f = iavf_find_filter(adapter, hw->mac.addr); 1066 if (old_f) { 1067 old_f->is_primary = false; 1068 old_f->remove = true; 1069 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1070 } 1071 /* Always send the request to add if changing primary MAC, 1072 * even if filter is already present on the list 1073 */ 1074 new_f->is_primary = true; 1075 new_f->add = true; 1076 ether_addr_copy(hw->mac.addr, new_mac); 1077 1078 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1079 1080 /* schedule the watchdog task to immediately process the request */ 1081 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1082 return 0; 1083 } 1084 1085 /** 1086 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1087 * @netdev: network interface device structure 1088 * @macaddr: MAC address to set 1089 * 1090 * Returns true on success, false on failure 1091 */ 1092 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1093 const u8 *macaddr) 1094 { 1095 struct iavf_adapter *adapter = netdev_priv(netdev); 1096 struct iavf_mac_filter *f; 1097 bool ret = false; 1098 1099 spin_lock_bh(&adapter->mac_vlan_list_lock); 1100 1101 f = iavf_find_filter(adapter, macaddr); 1102 1103 if (!f || (!f->add && f->add_handled)) 1104 ret = true; 1105 1106 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * iavf_set_mac - NDO callback to set port MAC address 1113 * @netdev: network interface device structure 1114 * @p: pointer to an address structure 1115 * 1116 * Returns 0 on success, negative on failure 1117 */ 1118 static int iavf_set_mac(struct net_device *netdev, void *p) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct sockaddr *addr = p; 1122 int ret; 1123 1124 if (!is_valid_ether_addr(addr->sa_data)) 1125 return -EADDRNOTAVAIL; 1126 1127 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1128 1129 if (ret) 1130 return ret; 1131 1132 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1133 iavf_is_mac_set_handled(netdev, addr->sa_data), 1134 msecs_to_jiffies(2500)); 1135 1136 /* If ret < 0 then it means wait was interrupted. 1137 * If ret == 0 then it means we got a timeout. 1138 * else it means we got response for set MAC from PF, 1139 * check if netdev MAC was updated to requested MAC, 1140 * if yes then set MAC succeeded otherwise it failed return -EACCES 1141 */ 1142 if (ret < 0) 1143 return ret; 1144 1145 if (!ret) 1146 return -EAGAIN; 1147 1148 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1149 return -EACCES; 1150 1151 return 0; 1152 } 1153 1154 /** 1155 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1156 * @netdev: the netdevice 1157 * @addr: address to add 1158 * 1159 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1160 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1161 */ 1162 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1163 { 1164 struct iavf_adapter *adapter = netdev_priv(netdev); 1165 1166 if (iavf_add_filter(adapter, addr)) 1167 return 0; 1168 else 1169 return -ENOMEM; 1170 } 1171 1172 /** 1173 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1174 * @netdev: the netdevice 1175 * @addr: address to add 1176 * 1177 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1178 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1179 */ 1180 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1181 { 1182 struct iavf_adapter *adapter = netdev_priv(netdev); 1183 struct iavf_mac_filter *f; 1184 1185 /* Under some circumstances, we might receive a request to delete 1186 * our own device address from our uc list. Because we store the 1187 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1188 * such requests and not delete our device address from this list. 1189 */ 1190 if (ether_addr_equal(addr, netdev->dev_addr)) 1191 return 0; 1192 1193 f = iavf_find_filter(adapter, addr); 1194 if (f) { 1195 f->remove = true; 1196 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1197 } 1198 return 0; 1199 } 1200 1201 /** 1202 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1203 * @adapter: device specific adapter 1204 */ 1205 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1206 { 1207 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1208 (IFF_PROMISC | IFF_ALLMULTI); 1209 } 1210 1211 /** 1212 * iavf_set_rx_mode - NDO callback to set the netdev filters 1213 * @netdev: network interface device structure 1214 **/ 1215 static void iavf_set_rx_mode(struct net_device *netdev) 1216 { 1217 struct iavf_adapter *adapter = netdev_priv(netdev); 1218 1219 spin_lock_bh(&adapter->mac_vlan_list_lock); 1220 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1221 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1222 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1223 1224 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1225 if (iavf_promiscuous_mode_changed(adapter)) 1226 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1227 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1228 } 1229 1230 /** 1231 * iavf_napi_enable_all - enable NAPI on all queue vectors 1232 * @adapter: board private structure 1233 **/ 1234 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1235 { 1236 int q_idx; 1237 struct iavf_q_vector *q_vector; 1238 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1239 1240 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1241 struct napi_struct *napi; 1242 1243 q_vector = &adapter->q_vectors[q_idx]; 1244 napi = &q_vector->napi; 1245 napi_enable_locked(napi); 1246 } 1247 } 1248 1249 /** 1250 * iavf_napi_disable_all - disable NAPI on all queue vectors 1251 * @adapter: board private structure 1252 **/ 1253 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1254 { 1255 int q_idx; 1256 struct iavf_q_vector *q_vector; 1257 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1258 1259 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1260 q_vector = &adapter->q_vectors[q_idx]; 1261 napi_disable_locked(&q_vector->napi); 1262 } 1263 } 1264 1265 /** 1266 * iavf_configure - set up transmit and receive data structures 1267 * @adapter: board private structure 1268 **/ 1269 static void iavf_configure(struct iavf_adapter *adapter) 1270 { 1271 struct net_device *netdev = adapter->netdev; 1272 int i; 1273 1274 iavf_set_rx_mode(netdev); 1275 1276 iavf_configure_tx(adapter); 1277 iavf_configure_rx(adapter); 1278 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1279 1280 for (i = 0; i < adapter->num_active_queues; i++) { 1281 struct iavf_ring *ring = &adapter->rx_rings[i]; 1282 1283 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1284 } 1285 } 1286 1287 /** 1288 * iavf_up_complete - Finish the last steps of bringing up a connection 1289 * @adapter: board private structure 1290 */ 1291 static void iavf_up_complete(struct iavf_adapter *adapter) 1292 { 1293 netdev_assert_locked(adapter->netdev); 1294 1295 iavf_change_state(adapter, __IAVF_RUNNING); 1296 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1297 1298 iavf_napi_enable_all(adapter); 1299 1300 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1301 } 1302 1303 /** 1304 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1305 * yet and mark other to be removed. 1306 * @adapter: board private structure 1307 **/ 1308 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1309 { 1310 struct iavf_vlan_filter *vlf, *vlftmp; 1311 struct iavf_mac_filter *f, *ftmp; 1312 1313 spin_lock_bh(&adapter->mac_vlan_list_lock); 1314 /* clear the sync flag on all filters */ 1315 __dev_uc_unsync(adapter->netdev, NULL); 1316 __dev_mc_unsync(adapter->netdev, NULL); 1317 1318 /* remove all MAC filters */ 1319 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1320 list) { 1321 if (f->add) { 1322 list_del(&f->list); 1323 kfree(f); 1324 } else { 1325 f->remove = true; 1326 } 1327 } 1328 1329 /* disable all VLAN filters */ 1330 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1331 list) 1332 vlf->state = IAVF_VLAN_DISABLE; 1333 1334 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1335 } 1336 1337 /** 1338 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1339 * mark other to be removed. 1340 * @adapter: board private structure 1341 **/ 1342 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1343 { 1344 struct iavf_cloud_filter *cf, *cftmp; 1345 1346 /* remove all cloud filters */ 1347 spin_lock_bh(&adapter->cloud_filter_list_lock); 1348 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1349 list) { 1350 if (cf->add) { 1351 list_del(&cf->list); 1352 kfree(cf); 1353 adapter->num_cloud_filters--; 1354 } else { 1355 cf->del = true; 1356 } 1357 } 1358 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1359 } 1360 1361 /** 1362 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1363 * other to be removed. 1364 * @adapter: board private structure 1365 **/ 1366 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1367 { 1368 struct iavf_fdir_fltr *fdir; 1369 1370 /* remove all Flow Director filters */ 1371 spin_lock_bh(&adapter->fdir_fltr_lock); 1372 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1373 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1374 /* Cancel a request, keep filter as inactive */ 1375 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1376 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1377 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1378 /* Disable filters which are active or have a pending 1379 * request to PF to be added 1380 */ 1381 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1382 } 1383 } 1384 spin_unlock_bh(&adapter->fdir_fltr_lock); 1385 } 1386 1387 /** 1388 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1389 * other to be removed. 1390 * @adapter: board private structure 1391 **/ 1392 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1393 { 1394 struct iavf_adv_rss *rss, *rsstmp; 1395 1396 /* remove all advance RSS configuration */ 1397 spin_lock_bh(&adapter->adv_rss_lock); 1398 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1399 list) { 1400 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1401 list_del(&rss->list); 1402 kfree(rss); 1403 } else { 1404 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1405 } 1406 } 1407 spin_unlock_bh(&adapter->adv_rss_lock); 1408 } 1409 1410 /** 1411 * iavf_down - Shutdown the connection processing 1412 * @adapter: board private structure 1413 */ 1414 void iavf_down(struct iavf_adapter *adapter) 1415 { 1416 struct net_device *netdev = adapter->netdev; 1417 1418 netdev_assert_locked(netdev); 1419 1420 if (adapter->state <= __IAVF_DOWN_PENDING) 1421 return; 1422 1423 netif_carrier_off(netdev); 1424 netif_tx_disable(netdev); 1425 adapter->link_up = false; 1426 iavf_napi_disable_all(adapter); 1427 iavf_irq_disable(adapter); 1428 1429 iavf_clear_mac_vlan_filters(adapter); 1430 iavf_clear_cloud_filters(adapter); 1431 iavf_clear_fdir_filters(adapter); 1432 iavf_clear_adv_rss_conf(adapter); 1433 1434 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1435 return; 1436 1437 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1438 /* cancel any current operation */ 1439 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1440 /* Schedule operations to close down the HW. Don't wait 1441 * here for this to complete. The watchdog is still running 1442 * and it will take care of this. 1443 */ 1444 if (!list_empty(&adapter->mac_filter_list)) 1445 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1446 if (!list_empty(&adapter->vlan_filter_list)) 1447 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1448 if (!list_empty(&adapter->cloud_filter_list)) 1449 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1450 if (!list_empty(&adapter->fdir_list_head)) 1451 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1452 if (!list_empty(&adapter->adv_rss_list_head)) 1453 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1454 } 1455 1456 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1457 } 1458 1459 /** 1460 * iavf_acquire_msix_vectors - Setup the MSIX capability 1461 * @adapter: board private structure 1462 * @vectors: number of vectors to request 1463 * 1464 * Work with the OS to set up the MSIX vectors needed. 1465 * 1466 * Returns 0 on success, negative on failure 1467 **/ 1468 static int 1469 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1470 { 1471 int err, vector_threshold; 1472 1473 /* We'll want at least 3 (vector_threshold): 1474 * 0) Other (Admin Queue and link, mostly) 1475 * 1) TxQ[0] Cleanup 1476 * 2) RxQ[0] Cleanup 1477 */ 1478 vector_threshold = MIN_MSIX_COUNT; 1479 1480 /* The more we get, the more we will assign to Tx/Rx Cleanup 1481 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1482 * Right now, we simply care about how many we'll get; we'll 1483 * set them up later while requesting irq's. 1484 */ 1485 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1486 vector_threshold, vectors); 1487 if (err < 0) { 1488 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1489 kfree(adapter->msix_entries); 1490 adapter->msix_entries = NULL; 1491 return err; 1492 } 1493 1494 /* Adjust for only the vectors we'll use, which is minimum 1495 * of max_msix_q_vectors + NONQ_VECS, or the number of 1496 * vectors we were allocated. 1497 */ 1498 adapter->num_msix_vectors = err; 1499 return 0; 1500 } 1501 1502 /** 1503 * iavf_free_queues - Free memory for all rings 1504 * @adapter: board private structure to initialize 1505 * 1506 * Free all of the memory associated with queue pairs. 1507 **/ 1508 static void iavf_free_queues(struct iavf_adapter *adapter) 1509 { 1510 if (!adapter->vsi_res) 1511 return; 1512 adapter->num_active_queues = 0; 1513 kfree(adapter->tx_rings); 1514 adapter->tx_rings = NULL; 1515 kfree(adapter->rx_rings); 1516 adapter->rx_rings = NULL; 1517 } 1518 1519 /** 1520 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1521 * @adapter: board private structure 1522 * 1523 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1524 * stripped in certain descriptor fields. Instead of checking the offload 1525 * capability bits in the hot path, cache the location the ring specific 1526 * flags. 1527 */ 1528 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1529 { 1530 int i; 1531 1532 for (i = 0; i < adapter->num_active_queues; i++) { 1533 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1534 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1535 1536 /* prevent multiple L2TAG bits being set after VFR */ 1537 tx_ring->flags &= 1538 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1539 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1540 rx_ring->flags &= 1541 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1542 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1543 1544 if (VLAN_ALLOWED(adapter)) { 1545 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1547 } else if (VLAN_V2_ALLOWED(adapter)) { 1548 struct virtchnl_vlan_supported_caps *stripping_support; 1549 struct virtchnl_vlan_supported_caps *insertion_support; 1550 1551 stripping_support = 1552 &adapter->vlan_v2_caps.offloads.stripping_support; 1553 insertion_support = 1554 &adapter->vlan_v2_caps.offloads.insertion_support; 1555 1556 if (stripping_support->outer) { 1557 if (stripping_support->outer & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1559 rx_ring->flags |= 1560 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1561 else if (stripping_support->outer & 1562 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1563 rx_ring->flags |= 1564 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1565 } else if (stripping_support->inner) { 1566 if (stripping_support->inner & 1567 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1568 rx_ring->flags |= 1569 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1570 else if (stripping_support->inner & 1571 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1572 rx_ring->flags |= 1573 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1574 } 1575 1576 if (insertion_support->outer) { 1577 if (insertion_support->outer & 1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1579 tx_ring->flags |= 1580 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1581 else if (insertion_support->outer & 1582 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1583 tx_ring->flags |= 1584 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1585 } else if (insertion_support->inner) { 1586 if (insertion_support->inner & 1587 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1588 tx_ring->flags |= 1589 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1590 else if (insertion_support->inner & 1591 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1592 tx_ring->flags |= 1593 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1594 } 1595 } 1596 } 1597 } 1598 1599 /** 1600 * iavf_alloc_queues - Allocate memory for all rings 1601 * @adapter: board private structure to initialize 1602 * 1603 * We allocate one ring per queue at run-time since we don't know the 1604 * number of queues at compile-time. The polling_netdev array is 1605 * intended for Multiqueue, but should work fine with a single queue. 1606 **/ 1607 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1608 { 1609 int i, num_active_queues; 1610 1611 /* If we're in reset reallocating queues we don't actually know yet for 1612 * certain the PF gave us the number of queues we asked for but we'll 1613 * assume it did. Once basic reset is finished we'll confirm once we 1614 * start negotiating config with PF. 1615 */ 1616 if (adapter->num_req_queues) 1617 num_active_queues = adapter->num_req_queues; 1618 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1619 adapter->num_tc) 1620 num_active_queues = adapter->ch_config.total_qps; 1621 else 1622 num_active_queues = min_t(int, 1623 adapter->vsi_res->num_queue_pairs, 1624 (int)(num_online_cpus())); 1625 1626 1627 adapter->tx_rings = kcalloc(num_active_queues, 1628 sizeof(struct iavf_ring), GFP_KERNEL); 1629 if (!adapter->tx_rings) 1630 goto err_out; 1631 adapter->rx_rings = kcalloc(num_active_queues, 1632 sizeof(struct iavf_ring), GFP_KERNEL); 1633 if (!adapter->rx_rings) 1634 goto err_out; 1635 1636 for (i = 0; i < num_active_queues; i++) { 1637 struct iavf_ring *tx_ring; 1638 struct iavf_ring *rx_ring; 1639 1640 tx_ring = &adapter->tx_rings[i]; 1641 1642 tx_ring->queue_index = i; 1643 tx_ring->netdev = adapter->netdev; 1644 tx_ring->dev = &adapter->pdev->dev; 1645 tx_ring->count = adapter->tx_desc_count; 1646 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1647 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1648 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1649 1650 rx_ring = &adapter->rx_rings[i]; 1651 rx_ring->queue_index = i; 1652 rx_ring->netdev = adapter->netdev; 1653 rx_ring->count = adapter->rx_desc_count; 1654 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1655 } 1656 1657 adapter->num_active_queues = num_active_queues; 1658 1659 iavf_set_queue_vlan_tag_loc(adapter); 1660 1661 return 0; 1662 1663 err_out: 1664 iavf_free_queues(adapter); 1665 return -ENOMEM; 1666 } 1667 1668 /** 1669 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1670 * @adapter: board private structure to initialize 1671 * 1672 * Attempt to configure the interrupts using the best available 1673 * capabilities of the hardware and the kernel. 1674 **/ 1675 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1676 { 1677 int vector, v_budget; 1678 int pairs = 0; 1679 int err = 0; 1680 1681 if (!adapter->vsi_res) { 1682 err = -EIO; 1683 goto out; 1684 } 1685 pairs = adapter->num_active_queues; 1686 1687 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1688 * us much good if we have more vectors than CPUs. However, we already 1689 * limit the total number of queues by the number of CPUs so we do not 1690 * need any further limiting here. 1691 */ 1692 v_budget = min_t(int, pairs + NONQ_VECS, 1693 (int)adapter->vf_res->max_vectors); 1694 1695 adapter->msix_entries = kcalloc(v_budget, 1696 sizeof(struct msix_entry), GFP_KERNEL); 1697 if (!adapter->msix_entries) { 1698 err = -ENOMEM; 1699 goto out; 1700 } 1701 1702 for (vector = 0; vector < v_budget; vector++) 1703 adapter->msix_entries[vector].entry = vector; 1704 1705 err = iavf_acquire_msix_vectors(adapter, v_budget); 1706 if (!err) 1707 iavf_schedule_finish_config(adapter); 1708 1709 out: 1710 return err; 1711 } 1712 1713 /** 1714 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1715 * @adapter: board private structure 1716 * 1717 * Return 0 on success, negative on failure 1718 **/ 1719 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1720 { 1721 struct iavf_aqc_get_set_rss_key_data *rss_key = 1722 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1723 struct iavf_hw *hw = &adapter->hw; 1724 enum iavf_status status; 1725 1726 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1727 /* bail because we already have a command pending */ 1728 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1729 adapter->current_op); 1730 return -EBUSY; 1731 } 1732 1733 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1734 if (status) { 1735 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1736 iavf_stat_str(hw, status), 1737 iavf_aq_str(hw, hw->aq.asq_last_status)); 1738 return iavf_status_to_errno(status); 1739 1740 } 1741 1742 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1743 adapter->rss_lut, adapter->rss_lut_size); 1744 if (status) { 1745 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1746 iavf_stat_str(hw, status), 1747 iavf_aq_str(hw, hw->aq.asq_last_status)); 1748 return iavf_status_to_errno(status); 1749 } 1750 1751 return 0; 1752 1753 } 1754 1755 /** 1756 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1757 * @adapter: board private structure 1758 * 1759 * Returns 0 on success, negative on failure 1760 **/ 1761 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1762 { 1763 struct iavf_hw *hw = &adapter->hw; 1764 u32 *dw; 1765 u16 i; 1766 1767 dw = (u32 *)adapter->rss_key; 1768 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1769 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1770 1771 dw = (u32 *)adapter->rss_lut; 1772 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1773 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1774 1775 iavf_flush(hw); 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * iavf_config_rss - Configure RSS keys and lut 1782 * @adapter: board private structure 1783 * 1784 * Returns 0 on success, negative on failure 1785 **/ 1786 int iavf_config_rss(struct iavf_adapter *adapter) 1787 { 1788 1789 if (RSS_PF(adapter)) { 1790 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1791 IAVF_FLAG_AQ_SET_RSS_KEY; 1792 return 0; 1793 } else if (RSS_AQ(adapter)) { 1794 return iavf_config_rss_aq(adapter); 1795 } else { 1796 return iavf_config_rss_reg(adapter); 1797 } 1798 } 1799 1800 /** 1801 * iavf_fill_rss_lut - Fill the lut with default values 1802 * @adapter: board private structure 1803 **/ 1804 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1805 { 1806 u16 i; 1807 1808 for (i = 0; i < adapter->rss_lut_size; i++) 1809 adapter->rss_lut[i] = i % adapter->num_active_queues; 1810 } 1811 1812 /** 1813 * iavf_init_rss - Prepare for RSS 1814 * @adapter: board private structure 1815 * 1816 * Return 0 on success, negative on failure 1817 **/ 1818 static int iavf_init_rss(struct iavf_adapter *adapter) 1819 { 1820 struct iavf_hw *hw = &adapter->hw; 1821 1822 if (!RSS_PF(adapter)) { 1823 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1824 if (adapter->vf_res->vf_cap_flags & 1825 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1826 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1827 else 1828 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1829 1830 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1831 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1832 } 1833 1834 iavf_fill_rss_lut(adapter); 1835 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1836 1837 return iavf_config_rss(adapter); 1838 } 1839 1840 /** 1841 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1842 * @adapter: board private structure to initialize 1843 * 1844 * We allocate one q_vector per queue interrupt. If allocation fails we 1845 * return -ENOMEM. 1846 **/ 1847 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1848 { 1849 int q_idx = 0, num_q_vectors; 1850 struct iavf_q_vector *q_vector; 1851 1852 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1853 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1854 GFP_KERNEL); 1855 if (!adapter->q_vectors) 1856 return -ENOMEM; 1857 1858 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1859 q_vector = &adapter->q_vectors[q_idx]; 1860 q_vector->adapter = adapter; 1861 q_vector->vsi = &adapter->vsi; 1862 q_vector->v_idx = q_idx; 1863 q_vector->reg_idx = q_idx; 1864 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1865 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1866 iavf_napi_poll); 1867 } 1868 1869 return 0; 1870 } 1871 1872 /** 1873 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1874 * @adapter: board private structure to initialize 1875 * 1876 * This function frees the memory allocated to the q_vectors. In addition if 1877 * NAPI is enabled it will delete any references to the NAPI struct prior 1878 * to freeing the q_vector. 1879 **/ 1880 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1881 { 1882 int q_idx, num_q_vectors; 1883 1884 if (!adapter->q_vectors) 1885 return; 1886 1887 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1888 1889 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1890 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1891 1892 netif_napi_del_locked(&q_vector->napi); 1893 } 1894 kfree(adapter->q_vectors); 1895 adapter->q_vectors = NULL; 1896 } 1897 1898 /** 1899 * iavf_reset_interrupt_capability - Reset MSIX setup 1900 * @adapter: board private structure 1901 * 1902 **/ 1903 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1904 { 1905 if (!adapter->msix_entries) 1906 return; 1907 1908 pci_disable_msix(adapter->pdev); 1909 kfree(adapter->msix_entries); 1910 adapter->msix_entries = NULL; 1911 } 1912 1913 /** 1914 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1915 * @adapter: board private structure to initialize 1916 * 1917 **/ 1918 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1919 { 1920 int err; 1921 1922 err = iavf_alloc_queues(adapter); 1923 if (err) { 1924 dev_err(&adapter->pdev->dev, 1925 "Unable to allocate memory for queues\n"); 1926 goto err_alloc_queues; 1927 } 1928 1929 err = iavf_set_interrupt_capability(adapter); 1930 if (err) { 1931 dev_err(&adapter->pdev->dev, 1932 "Unable to setup interrupt capabilities\n"); 1933 goto err_set_interrupt; 1934 } 1935 1936 err = iavf_alloc_q_vectors(adapter); 1937 if (err) { 1938 dev_err(&adapter->pdev->dev, 1939 "Unable to allocate memory for queue vectors\n"); 1940 goto err_alloc_q_vectors; 1941 } 1942 1943 /* If we've made it so far while ADq flag being ON, then we haven't 1944 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1945 * resources have been allocated in the reset path. 1946 * Now we can truly claim that ADq is enabled. 1947 */ 1948 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1949 adapter->num_tc) 1950 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1951 adapter->num_tc); 1952 1953 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1954 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1955 adapter->num_active_queues); 1956 1957 return 0; 1958 err_alloc_q_vectors: 1959 iavf_reset_interrupt_capability(adapter); 1960 err_set_interrupt: 1961 iavf_free_queues(adapter); 1962 err_alloc_queues: 1963 return err; 1964 } 1965 1966 /** 1967 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1968 * @adapter: board private structure 1969 **/ 1970 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1971 { 1972 iavf_free_q_vectors(adapter); 1973 iavf_reset_interrupt_capability(adapter); 1974 iavf_free_queues(adapter); 1975 } 1976 1977 /** 1978 * iavf_free_rss - Free memory used by RSS structs 1979 * @adapter: board private structure 1980 **/ 1981 static void iavf_free_rss(struct iavf_adapter *adapter) 1982 { 1983 kfree(adapter->rss_key); 1984 adapter->rss_key = NULL; 1985 1986 kfree(adapter->rss_lut); 1987 adapter->rss_lut = NULL; 1988 } 1989 1990 /** 1991 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1992 * @adapter: board private structure 1993 * @running: true if adapter->state == __IAVF_RUNNING 1994 * 1995 * Returns 0 on success, negative on failure 1996 **/ 1997 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1998 { 1999 struct net_device *netdev = adapter->netdev; 2000 int err; 2001 2002 if (running) 2003 iavf_free_traffic_irqs(adapter); 2004 iavf_free_misc_irq(adapter); 2005 iavf_free_interrupt_scheme(adapter); 2006 2007 err = iavf_init_interrupt_scheme(adapter); 2008 if (err) 2009 goto err; 2010 2011 netif_tx_stop_all_queues(netdev); 2012 2013 err = iavf_request_misc_irq(adapter); 2014 if (err) 2015 goto err; 2016 2017 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2018 2019 iavf_map_rings_to_vectors(adapter); 2020 err: 2021 return err; 2022 } 2023 2024 /** 2025 * iavf_finish_config - do all netdev work that needs RTNL 2026 * @work: our work_struct 2027 * 2028 * Do work that needs RTNL. 2029 */ 2030 static void iavf_finish_config(struct work_struct *work) 2031 { 2032 struct iavf_adapter *adapter; 2033 bool netdev_released = false; 2034 int pairs, err; 2035 2036 adapter = container_of(work, struct iavf_adapter, finish_config); 2037 2038 /* Always take RTNL first to prevent circular lock dependency; 2039 * the dev->lock (== netdev lock) is needed to update the queue number. 2040 */ 2041 rtnl_lock(); 2042 netdev_lock(adapter->netdev); 2043 2044 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2045 adapter->netdev->reg_state == NETREG_REGISTERED && 2046 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2047 netdev_update_features(adapter->netdev); 2048 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2049 } 2050 2051 switch (adapter->state) { 2052 case __IAVF_DOWN: 2053 /* Set the real number of queues when reset occurs while 2054 * state == __IAVF_DOWN 2055 */ 2056 pairs = adapter->num_active_queues; 2057 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2058 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2059 2060 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2061 netdev_unlock(adapter->netdev); 2062 netdev_released = true; 2063 err = register_netdevice(adapter->netdev); 2064 if (err) { 2065 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2066 err); 2067 2068 /* go back and try again.*/ 2069 netdev_lock(adapter->netdev); 2070 iavf_free_rss(adapter); 2071 iavf_free_misc_irq(adapter); 2072 iavf_reset_interrupt_capability(adapter); 2073 iavf_change_state(adapter, 2074 __IAVF_INIT_CONFIG_ADAPTER); 2075 netdev_unlock(adapter->netdev); 2076 goto out; 2077 } 2078 } 2079 break; 2080 case __IAVF_RUNNING: 2081 pairs = adapter->num_active_queues; 2082 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2083 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2084 break; 2085 2086 default: 2087 break; 2088 } 2089 2090 out: 2091 if (!netdev_released) 2092 netdev_unlock(adapter->netdev); 2093 rtnl_unlock(); 2094 } 2095 2096 /** 2097 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2098 * @adapter: board private structure 2099 **/ 2100 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2101 { 2102 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2103 queue_work(adapter->wq, &adapter->finish_config); 2104 } 2105 2106 /** 2107 * iavf_process_aq_command - process aq_required flags 2108 * and sends aq command 2109 * @adapter: pointer to iavf adapter structure 2110 * 2111 * Returns 0 on success 2112 * Returns error code if no command was sent 2113 * or error code if the command failed. 2114 **/ 2115 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2116 { 2117 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2118 return iavf_send_vf_config_msg(adapter); 2119 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2120 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2121 if (adapter->aq_required & IAVF_FLAG_AQ_GET_SUPPORTED_RXDIDS) 2122 return iavf_send_vf_supported_rxdids_msg(adapter); 2123 if (adapter->aq_required & IAVF_FLAG_AQ_GET_PTP_CAPS) 2124 return iavf_send_vf_ptp_caps_msg(adapter); 2125 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2126 iavf_disable_queues(adapter); 2127 return 0; 2128 } 2129 2130 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2131 iavf_map_queues(adapter); 2132 return 0; 2133 } 2134 2135 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2136 iavf_add_ether_addrs(adapter); 2137 return 0; 2138 } 2139 2140 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2141 iavf_add_vlans(adapter); 2142 return 0; 2143 } 2144 2145 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2146 iavf_del_ether_addrs(adapter); 2147 return 0; 2148 } 2149 2150 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2151 iavf_del_vlans(adapter); 2152 return 0; 2153 } 2154 2155 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2156 iavf_enable_vlan_stripping(adapter); 2157 return 0; 2158 } 2159 2160 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2161 iavf_disable_vlan_stripping(adapter); 2162 return 0; 2163 } 2164 2165 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2166 iavf_cfg_queues_bw(adapter); 2167 return 0; 2168 } 2169 2170 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2171 iavf_get_qos_caps(adapter); 2172 return 0; 2173 } 2174 2175 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2176 iavf_cfg_queues_quanta_size(adapter); 2177 return 0; 2178 } 2179 2180 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2181 iavf_configure_queues(adapter); 2182 return 0; 2183 } 2184 2185 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2186 iavf_enable_queues(adapter); 2187 return 0; 2188 } 2189 2190 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2191 /* This message goes straight to the firmware, not the 2192 * PF, so we don't have to set current_op as we will 2193 * not get a response through the ARQ. 2194 */ 2195 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2196 return 0; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2199 iavf_get_hena(adapter); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2203 iavf_set_hena(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2207 iavf_set_rss_key(adapter); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2211 iavf_set_rss_lut(adapter); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2215 iavf_set_rss_hfunc(adapter); 2216 return 0; 2217 } 2218 2219 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2220 iavf_set_promiscuous(adapter); 2221 return 0; 2222 } 2223 2224 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2225 iavf_enable_channels(adapter); 2226 return 0; 2227 } 2228 2229 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2230 iavf_disable_channels(adapter); 2231 return 0; 2232 } 2233 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2234 iavf_add_cloud_filter(adapter); 2235 return 0; 2236 } 2237 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2238 iavf_del_cloud_filter(adapter); 2239 return 0; 2240 } 2241 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2242 iavf_add_fdir_filter(adapter); 2243 return IAVF_SUCCESS; 2244 } 2245 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2246 iavf_del_fdir_filter(adapter); 2247 return IAVF_SUCCESS; 2248 } 2249 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2250 iavf_add_adv_rss_cfg(adapter); 2251 return 0; 2252 } 2253 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2254 iavf_del_adv_rss_cfg(adapter); 2255 return 0; 2256 } 2257 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2258 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2259 return 0; 2260 } 2261 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2262 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2263 return 0; 2264 } 2265 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2266 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2267 return 0; 2268 } 2269 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2270 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2271 return 0; 2272 } 2273 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2274 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2275 return 0; 2276 } 2277 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2278 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2279 return 0; 2280 } 2281 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2282 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2283 return 0; 2284 } 2285 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2286 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2287 return 0; 2288 } 2289 if (adapter->aq_required & IAVF_FLAG_AQ_SEND_PTP_CMD) { 2290 iavf_virtchnl_send_ptp_cmd(adapter); 2291 return IAVF_SUCCESS; 2292 } 2293 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2294 iavf_request_stats(adapter); 2295 return 0; 2296 } 2297 2298 return -EAGAIN; 2299 } 2300 2301 /** 2302 * iavf_set_vlan_offload_features - set VLAN offload configuration 2303 * @adapter: board private structure 2304 * @prev_features: previous features used for comparison 2305 * @features: updated features used for configuration 2306 * 2307 * Set the aq_required bit(s) based on the requested features passed in to 2308 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2309 * the watchdog if any changes are requested to expedite the request via 2310 * virtchnl. 2311 **/ 2312 static void 2313 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2314 netdev_features_t prev_features, 2315 netdev_features_t features) 2316 { 2317 bool enable_stripping = true, enable_insertion = true; 2318 u16 vlan_ethertype = 0; 2319 u64 aq_required = 0; 2320 2321 /* keep cases separate because one ethertype for offloads can be 2322 * disabled at the same time as another is disabled, so check for an 2323 * enabled ethertype first, then check for disabled. Default to 2324 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2325 * stripping. 2326 */ 2327 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2328 vlan_ethertype = ETH_P_8021AD; 2329 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2330 vlan_ethertype = ETH_P_8021Q; 2331 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2332 vlan_ethertype = ETH_P_8021AD; 2333 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2334 vlan_ethertype = ETH_P_8021Q; 2335 else 2336 vlan_ethertype = ETH_P_8021Q; 2337 2338 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2339 enable_stripping = false; 2340 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2341 enable_insertion = false; 2342 2343 if (VLAN_ALLOWED(adapter)) { 2344 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2345 * stripping via virtchnl. VLAN insertion can be toggled on the 2346 * netdev, but it doesn't require a virtchnl message 2347 */ 2348 if (enable_stripping) 2349 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2350 else 2351 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2352 2353 } else if (VLAN_V2_ALLOWED(adapter)) { 2354 switch (vlan_ethertype) { 2355 case ETH_P_8021Q: 2356 if (enable_stripping) 2357 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2358 else 2359 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2360 2361 if (enable_insertion) 2362 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2363 else 2364 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2365 break; 2366 case ETH_P_8021AD: 2367 if (enable_stripping) 2368 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2369 else 2370 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2371 2372 if (enable_insertion) 2373 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2374 else 2375 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2376 break; 2377 } 2378 } 2379 2380 if (aq_required) 2381 iavf_schedule_aq_request(adapter, aq_required); 2382 } 2383 2384 /** 2385 * iavf_startup - first step of driver startup 2386 * @adapter: board private structure 2387 * 2388 * Function process __IAVF_STARTUP driver state. 2389 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2390 * when fails the state is changed to __IAVF_INIT_FAILED 2391 **/ 2392 static void iavf_startup(struct iavf_adapter *adapter) 2393 { 2394 struct pci_dev *pdev = adapter->pdev; 2395 struct iavf_hw *hw = &adapter->hw; 2396 enum iavf_status status; 2397 int ret; 2398 2399 WARN_ON(adapter->state != __IAVF_STARTUP); 2400 2401 /* driver loaded, probe complete */ 2402 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2403 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2404 2405 ret = iavf_check_reset_complete(hw); 2406 if (ret) { 2407 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2408 ret); 2409 goto err; 2410 } 2411 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2412 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2413 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2414 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2415 2416 status = iavf_init_adminq(hw); 2417 if (status) { 2418 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2419 status); 2420 goto err; 2421 } 2422 ret = iavf_send_api_ver(adapter); 2423 if (ret) { 2424 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2425 iavf_shutdown_adminq(hw); 2426 goto err; 2427 } 2428 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2429 return; 2430 err: 2431 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2432 } 2433 2434 /** 2435 * iavf_init_version_check - second step of driver startup 2436 * @adapter: board private structure 2437 * 2438 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2439 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2440 * when fails the state is changed to __IAVF_INIT_FAILED 2441 **/ 2442 static void iavf_init_version_check(struct iavf_adapter *adapter) 2443 { 2444 struct pci_dev *pdev = adapter->pdev; 2445 struct iavf_hw *hw = &adapter->hw; 2446 int err = -EAGAIN; 2447 2448 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2449 2450 if (!iavf_asq_done(hw)) { 2451 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2452 iavf_shutdown_adminq(hw); 2453 iavf_change_state(adapter, __IAVF_STARTUP); 2454 goto err; 2455 } 2456 2457 /* aq msg sent, awaiting reply */ 2458 err = iavf_verify_api_ver(adapter); 2459 if (err) { 2460 if (err == -EALREADY) 2461 err = iavf_send_api_ver(adapter); 2462 else 2463 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2464 adapter->pf_version.major, 2465 adapter->pf_version.minor, 2466 VIRTCHNL_VERSION_MAJOR, 2467 VIRTCHNL_VERSION_MINOR); 2468 goto err; 2469 } 2470 err = iavf_send_vf_config_msg(adapter); 2471 if (err) { 2472 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2473 err); 2474 goto err; 2475 } 2476 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2477 return; 2478 err: 2479 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2480 } 2481 2482 /** 2483 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2484 * @adapter: board private structure 2485 */ 2486 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2487 { 2488 int i, num_req_queues = adapter->num_req_queues; 2489 struct iavf_vsi *vsi = &adapter->vsi; 2490 2491 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2492 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2493 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2494 } 2495 if (!adapter->vsi_res) { 2496 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2497 return -ENODEV; 2498 } 2499 2500 if (num_req_queues && 2501 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2502 /* Problem. The PF gave us fewer queues than what we had 2503 * negotiated in our request. Need a reset to see if we can't 2504 * get back to a working state. 2505 */ 2506 dev_err(&adapter->pdev->dev, 2507 "Requested %d queues, but PF only gave us %d.\n", 2508 num_req_queues, 2509 adapter->vsi_res->num_queue_pairs); 2510 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2511 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2512 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2513 2514 return -EAGAIN; 2515 } 2516 adapter->num_req_queues = 0; 2517 adapter->vsi.id = adapter->vsi_res->vsi_id; 2518 2519 adapter->vsi.back = adapter; 2520 adapter->vsi.base_vector = 1; 2521 vsi->netdev = adapter->netdev; 2522 vsi->qs_handle = adapter->vsi_res->qset_handle; 2523 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2524 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2525 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2526 } else { 2527 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2528 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2529 } 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * iavf_init_get_resources - third step of driver startup 2536 * @adapter: board private structure 2537 * 2538 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2539 * finishes driver initialization procedure. 2540 * When success the state is changed to __IAVF_DOWN 2541 * when fails the state is changed to __IAVF_INIT_FAILED 2542 **/ 2543 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2544 { 2545 struct pci_dev *pdev = adapter->pdev; 2546 struct iavf_hw *hw = &adapter->hw; 2547 int err; 2548 2549 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2550 /* aq msg sent, awaiting reply */ 2551 if (!adapter->vf_res) { 2552 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2553 GFP_KERNEL); 2554 if (!adapter->vf_res) { 2555 err = -ENOMEM; 2556 goto err; 2557 } 2558 } 2559 err = iavf_get_vf_config(adapter); 2560 if (err == -EALREADY) { 2561 err = iavf_send_vf_config_msg(adapter); 2562 goto err; 2563 } else if (err == -EINVAL) { 2564 /* We only get -EINVAL if the device is in a very bad 2565 * state or if we've been disabled for previous bad 2566 * behavior. Either way, we're done now. 2567 */ 2568 iavf_shutdown_adminq(hw); 2569 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2570 return; 2571 } 2572 if (err) { 2573 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2574 goto err_alloc; 2575 } 2576 2577 err = iavf_parse_vf_resource_msg(adapter); 2578 if (err) { 2579 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2580 err); 2581 goto err_alloc; 2582 } 2583 /* Some features require additional messages to negotiate extended 2584 * capabilities. These are processed in sequence by the 2585 * __IAVF_INIT_EXTENDED_CAPS driver state. 2586 */ 2587 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2588 2589 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2590 return; 2591 2592 err_alloc: 2593 kfree(adapter->vf_res); 2594 adapter->vf_res = NULL; 2595 err: 2596 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2597 } 2598 2599 /** 2600 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2601 * @adapter: board private structure 2602 * 2603 * Function processes send of the extended VLAN V2 capability message to the 2604 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2605 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2606 */ 2607 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2608 { 2609 int ret; 2610 2611 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2612 2613 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2614 if (ret && ret == -EOPNOTSUPP) { 2615 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2616 * we did not send the capability exchange message and do not 2617 * expect a response. 2618 */ 2619 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2620 } 2621 2622 /* We sent the message, so move on to the next step */ 2623 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2624 } 2625 2626 /** 2627 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2628 * @adapter: board private structure 2629 * 2630 * Function processes receipt of the extended VLAN V2 capability message from 2631 * the PF. 2632 **/ 2633 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2634 { 2635 int ret; 2636 2637 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2638 2639 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2640 2641 ret = iavf_get_vf_vlan_v2_caps(adapter); 2642 if (ret) 2643 goto err; 2644 2645 /* We've processed receipt of the VLAN V2 caps message */ 2646 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2647 return; 2648 err: 2649 /* We didn't receive a reply. Make sure we try sending again when 2650 * __IAVF_INIT_FAILED attempts to recover. 2651 */ 2652 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2653 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2654 } 2655 2656 /** 2657 * iavf_init_send_supported_rxdids - part of querying for supported RXDID 2658 * formats 2659 * @adapter: board private structure 2660 * 2661 * Function processes send of the request for supported RXDIDs to the PF. 2662 * Must clear IAVF_EXTENDED_CAP_RECV_RXDID if the message is not sent, e.g. 2663 * due to the PF not negotiating VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. 2664 */ 2665 static void iavf_init_send_supported_rxdids(struct iavf_adapter *adapter) 2666 { 2667 int ret; 2668 2669 ret = iavf_send_vf_supported_rxdids_msg(adapter); 2670 if (ret == -EOPNOTSUPP) { 2671 /* PF does not support VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. In this 2672 * case, we did not send the capability exchange message and 2673 * do not expect a response. 2674 */ 2675 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2676 } 2677 2678 /* We sent the message, so move on to the next step */ 2679 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_RXDID; 2680 } 2681 2682 /** 2683 * iavf_init_recv_supported_rxdids - part of querying for supported RXDID 2684 * formats 2685 * @adapter: board private structure 2686 * 2687 * Function processes receipt of the supported RXDIDs message from the PF. 2688 **/ 2689 static void iavf_init_recv_supported_rxdids(struct iavf_adapter *adapter) 2690 { 2691 int ret; 2692 2693 memset(&adapter->supp_rxdids, 0, sizeof(adapter->supp_rxdids)); 2694 2695 ret = iavf_get_vf_supported_rxdids(adapter); 2696 if (ret) 2697 goto err; 2698 2699 /* We've processed the PF response to the 2700 * VIRTCHNL_OP_GET_SUPPORTED_RXDIDS message we sent previously. 2701 */ 2702 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2703 return; 2704 2705 err: 2706 /* We didn't receive a reply. Make sure we try sending again when 2707 * __IAVF_INIT_FAILED attempts to recover. 2708 */ 2709 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_RXDID; 2710 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2711 } 2712 2713 /** 2714 * iavf_init_send_ptp_caps - part of querying for extended PTP capabilities 2715 * @adapter: board private structure 2716 * 2717 * Function processes send of the request for 1588 PTP capabilities to the PF. 2718 * Must clear IAVF_EXTENDED_CAP_SEND_PTP if the message is not sent, e.g. 2719 * due to the PF not negotiating VIRTCHNL_VF_PTP_CAP 2720 */ 2721 static void iavf_init_send_ptp_caps(struct iavf_adapter *adapter) 2722 { 2723 if (iavf_send_vf_ptp_caps_msg(adapter) == -EOPNOTSUPP) { 2724 /* PF does not support VIRTCHNL_VF_PTP_CAP. In this case, we 2725 * did not send the capability exchange message and do not 2726 * expect a response. 2727 */ 2728 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2729 } 2730 2731 /* We sent the message, so move on to the next step */ 2732 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_PTP; 2733 } 2734 2735 /** 2736 * iavf_init_recv_ptp_caps - part of querying for supported PTP capabilities 2737 * @adapter: board private structure 2738 * 2739 * Function processes receipt of the PTP capabilities supported on this VF. 2740 **/ 2741 static void iavf_init_recv_ptp_caps(struct iavf_adapter *adapter) 2742 { 2743 memset(&adapter->ptp.hw_caps, 0, sizeof(adapter->ptp.hw_caps)); 2744 2745 if (iavf_get_vf_ptp_caps(adapter)) 2746 goto err; 2747 2748 /* We've processed the PF response to the VIRTCHNL_OP_1588_PTP_GET_CAPS 2749 * message we sent previously. 2750 */ 2751 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2752 return; 2753 2754 err: 2755 /* We didn't receive a reply. Make sure we try sending again when 2756 * __IAVF_INIT_FAILED attempts to recover. 2757 */ 2758 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_PTP; 2759 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2760 } 2761 2762 /** 2763 * iavf_init_process_extended_caps - Part of driver startup 2764 * @adapter: board private structure 2765 * 2766 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2767 * handles negotiating capabilities for features which require an additional 2768 * message. 2769 * 2770 * Once all extended capabilities exchanges are finished, the driver will 2771 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2772 */ 2773 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2774 { 2775 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2776 2777 /* Process capability exchange for VLAN V2 */ 2778 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2779 iavf_init_send_offload_vlan_v2_caps(adapter); 2780 return; 2781 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2782 iavf_init_recv_offload_vlan_v2_caps(adapter); 2783 return; 2784 } 2785 2786 /* Process capability exchange for RXDID formats */ 2787 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID) { 2788 iavf_init_send_supported_rxdids(adapter); 2789 return; 2790 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID) { 2791 iavf_init_recv_supported_rxdids(adapter); 2792 return; 2793 } 2794 2795 /* Process capability exchange for PTP features */ 2796 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP) { 2797 iavf_init_send_ptp_caps(adapter); 2798 return; 2799 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP) { 2800 iavf_init_recv_ptp_caps(adapter); 2801 return; 2802 } 2803 2804 /* When we reach here, no further extended capabilities exchanges are 2805 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2806 */ 2807 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2808 } 2809 2810 /** 2811 * iavf_init_config_adapter - last part of driver startup 2812 * @adapter: board private structure 2813 * 2814 * After all the supported capabilities are negotiated, then the 2815 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2816 */ 2817 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2818 { 2819 struct net_device *netdev = adapter->netdev; 2820 struct pci_dev *pdev = adapter->pdev; 2821 int err; 2822 2823 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2824 2825 if (iavf_process_config(adapter)) 2826 goto err; 2827 2828 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2829 2830 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2831 2832 netdev->netdev_ops = &iavf_netdev_ops; 2833 iavf_set_ethtool_ops(netdev); 2834 netdev->watchdog_timeo = 5 * HZ; 2835 2836 netdev->min_mtu = ETH_MIN_MTU; 2837 netdev->max_mtu = LIBIE_MAX_MTU; 2838 2839 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2840 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2841 adapter->hw.mac.addr); 2842 eth_hw_addr_random(netdev); 2843 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2844 } else { 2845 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2846 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2847 } 2848 2849 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2850 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2851 err = iavf_init_interrupt_scheme(adapter); 2852 if (err) 2853 goto err_sw_init; 2854 iavf_map_rings_to_vectors(adapter); 2855 if (adapter->vf_res->vf_cap_flags & 2856 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2857 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2858 2859 err = iavf_request_misc_irq(adapter); 2860 if (err) 2861 goto err_sw_init; 2862 2863 netif_carrier_off(netdev); 2864 adapter->link_up = false; 2865 netif_tx_stop_all_queues(netdev); 2866 2867 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2868 if (netdev->features & NETIF_F_GRO) 2869 dev_info(&pdev->dev, "GRO is enabled\n"); 2870 2871 iavf_change_state(adapter, __IAVF_DOWN); 2872 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2873 2874 iavf_misc_irq_enable(adapter); 2875 wake_up(&adapter->down_waitqueue); 2876 2877 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2878 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2879 if (!adapter->rss_key || !adapter->rss_lut) { 2880 err = -ENOMEM; 2881 goto err_mem; 2882 } 2883 if (RSS_AQ(adapter)) 2884 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2885 else 2886 iavf_init_rss(adapter); 2887 2888 if (VLAN_V2_ALLOWED(adapter)) 2889 /* request initial VLAN offload settings */ 2890 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2891 2892 if (QOS_ALLOWED(adapter)) 2893 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2894 2895 /* Setup initial PTP configuration */ 2896 iavf_ptp_init(adapter); 2897 2898 iavf_schedule_finish_config(adapter); 2899 return; 2900 2901 err_mem: 2902 iavf_free_rss(adapter); 2903 iavf_free_misc_irq(adapter); 2904 err_sw_init: 2905 iavf_reset_interrupt_capability(adapter); 2906 err: 2907 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2908 } 2909 2910 static const int IAVF_NO_RESCHED = -1; 2911 2912 /* return: msec delay for requeueing itself */ 2913 static int iavf_watchdog_step(struct iavf_adapter *adapter) 2914 { 2915 struct iavf_hw *hw = &adapter->hw; 2916 u32 reg_val; 2917 2918 netdev_assert_locked(adapter->netdev); 2919 2920 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2921 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2922 2923 switch (adapter->state) { 2924 case __IAVF_STARTUP: 2925 iavf_startup(adapter); 2926 return 30; 2927 case __IAVF_INIT_VERSION_CHECK: 2928 iavf_init_version_check(adapter); 2929 return 30; 2930 case __IAVF_INIT_GET_RESOURCES: 2931 iavf_init_get_resources(adapter); 2932 return 1; 2933 case __IAVF_INIT_EXTENDED_CAPS: 2934 iavf_init_process_extended_caps(adapter); 2935 return 1; 2936 case __IAVF_INIT_CONFIG_ADAPTER: 2937 iavf_init_config_adapter(adapter); 2938 return 1; 2939 case __IAVF_INIT_FAILED: 2940 if (test_bit(__IAVF_IN_REMOVE_TASK, 2941 &adapter->crit_section)) { 2942 /* Do not update the state and do not reschedule 2943 * watchdog task, iavf_remove should handle this state 2944 * as it can loop forever 2945 */ 2946 return IAVF_NO_RESCHED; 2947 } 2948 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2949 dev_err(&adapter->pdev->dev, 2950 "Failed to communicate with PF; waiting before retry\n"); 2951 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2952 iavf_shutdown_adminq(hw); 2953 return 5000; 2954 } 2955 /* Try again from failed step*/ 2956 iavf_change_state(adapter, adapter->last_state); 2957 return 1000; 2958 case __IAVF_COMM_FAILED: 2959 if (test_bit(__IAVF_IN_REMOVE_TASK, 2960 &adapter->crit_section)) { 2961 /* Set state to __IAVF_INIT_FAILED and perform remove 2962 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2963 * doesn't bring the state back to __IAVF_COMM_FAILED. 2964 */ 2965 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2966 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2967 return IAVF_NO_RESCHED; 2968 } 2969 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2970 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2971 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2972 reg_val == VIRTCHNL_VFR_COMPLETED) { 2973 /* A chance for redemption! */ 2974 dev_err(&adapter->pdev->dev, 2975 "Hardware came out of reset. Attempting reinit.\n"); 2976 /* When init task contacts the PF and 2977 * gets everything set up again, it'll restart the 2978 * watchdog for us. Down, boy. Sit. Stay. Woof. 2979 */ 2980 iavf_change_state(adapter, __IAVF_STARTUP); 2981 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2982 } 2983 adapter->aq_required = 0; 2984 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2985 return 10; 2986 case __IAVF_RESETTING: 2987 return 2000; 2988 case __IAVF_DOWN: 2989 case __IAVF_DOWN_PENDING: 2990 case __IAVF_TESTING: 2991 case __IAVF_RUNNING: 2992 if (adapter->current_op) { 2993 if (!iavf_asq_done(hw)) { 2994 dev_dbg(&adapter->pdev->dev, 2995 "Admin queue timeout\n"); 2996 iavf_send_api_ver(adapter); 2997 } 2998 } else { 2999 int ret = iavf_process_aq_command(adapter); 3000 3001 /* An error will be returned if no commands were 3002 * processed; use this opportunity to update stats 3003 * if the error isn't -ENOTSUPP 3004 */ 3005 if (ret && ret != -EOPNOTSUPP && 3006 adapter->state == __IAVF_RUNNING) 3007 iavf_request_stats(adapter); 3008 } 3009 if (adapter->state == __IAVF_RUNNING) 3010 iavf_detect_recover_hung(&adapter->vsi); 3011 break; 3012 case __IAVF_REMOVE: 3013 default: 3014 return IAVF_NO_RESCHED; 3015 } 3016 3017 /* check for hw reset */ 3018 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3019 if (!reg_val) { 3020 adapter->aq_required = 0; 3021 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3022 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 3023 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 3024 } 3025 3026 return adapter->aq_required ? 20 : 2000; 3027 } 3028 3029 static void iavf_watchdog_task(struct work_struct *work) 3030 { 3031 struct iavf_adapter *adapter = container_of(work, 3032 struct iavf_adapter, 3033 watchdog_task.work); 3034 struct net_device *netdev = adapter->netdev; 3035 int msec_delay; 3036 3037 netdev_lock(netdev); 3038 msec_delay = iavf_watchdog_step(adapter); 3039 /* note that we schedule a different task */ 3040 if (adapter->state >= __IAVF_DOWN) 3041 queue_work(adapter->wq, &adapter->adminq_task); 3042 3043 if (msec_delay != IAVF_NO_RESCHED) 3044 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3045 msecs_to_jiffies(msec_delay)); 3046 netdev_unlock(netdev); 3047 } 3048 3049 /** 3050 * iavf_disable_vf - disable VF 3051 * @adapter: board private structure 3052 * 3053 * Set communication failed flag and free all resources. 3054 */ 3055 static void iavf_disable_vf(struct iavf_adapter *adapter) 3056 { 3057 struct iavf_mac_filter *f, *ftmp; 3058 struct iavf_vlan_filter *fv, *fvtmp; 3059 struct iavf_cloud_filter *cf, *cftmp; 3060 3061 netdev_assert_locked(adapter->netdev); 3062 3063 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3064 3065 /* We don't use netif_running() because it may be true prior to 3066 * ndo_open() returning, so we can't assume it means all our open 3067 * tasks have finished, since we're not holding the rtnl_lock here. 3068 */ 3069 if (adapter->state == __IAVF_RUNNING) { 3070 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3071 netif_carrier_off(adapter->netdev); 3072 netif_tx_disable(adapter->netdev); 3073 adapter->link_up = false; 3074 iavf_napi_disable_all(adapter); 3075 iavf_irq_disable(adapter); 3076 iavf_free_traffic_irqs(adapter); 3077 iavf_free_all_tx_resources(adapter); 3078 iavf_free_all_rx_resources(adapter); 3079 } 3080 3081 spin_lock_bh(&adapter->mac_vlan_list_lock); 3082 3083 /* Delete all of the filters */ 3084 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3085 list_del(&f->list); 3086 kfree(f); 3087 } 3088 3089 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 3090 list_del(&fv->list); 3091 kfree(fv); 3092 } 3093 adapter->num_vlan_filters = 0; 3094 3095 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3096 3097 spin_lock_bh(&adapter->cloud_filter_list_lock); 3098 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3099 list_del(&cf->list); 3100 kfree(cf); 3101 adapter->num_cloud_filters--; 3102 } 3103 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3104 3105 iavf_free_misc_irq(adapter); 3106 iavf_free_interrupt_scheme(adapter); 3107 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 3108 iavf_shutdown_adminq(&adapter->hw); 3109 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3110 iavf_change_state(adapter, __IAVF_DOWN); 3111 wake_up(&adapter->down_waitqueue); 3112 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 3113 } 3114 3115 /** 3116 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 3117 * @adapter: board private structure 3118 * 3119 * After a reset, the shaper parameters of queues need to be replayed again. 3120 * Since the net_shaper object inside TX rings persists across reset, 3121 * set the update flag for all queues so that the virtchnl message is triggered 3122 * for all queues. 3123 **/ 3124 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 3125 { 3126 int i, num = 0; 3127 3128 for (i = 0; i < adapter->num_active_queues; i++) 3129 if (adapter->tx_rings[i].q_shaper.bw_min || 3130 adapter->tx_rings[i].q_shaper.bw_max) { 3131 adapter->tx_rings[i].q_shaper_update = true; 3132 num++; 3133 } 3134 3135 if (num) 3136 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3137 } 3138 3139 /** 3140 * iavf_reset_task - Call-back task to handle hardware reset 3141 * @work: pointer to work_struct 3142 * 3143 * During reset we need to shut down and reinitialize the admin queue 3144 * before we can use it to communicate with the PF again. We also clear 3145 * and reinit the rings because that context is lost as well. 3146 **/ 3147 static void iavf_reset_task(struct work_struct *work) 3148 { 3149 struct iavf_adapter *adapter = container_of(work, 3150 struct iavf_adapter, 3151 reset_task); 3152 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3153 struct net_device *netdev = adapter->netdev; 3154 struct iavf_hw *hw = &adapter->hw; 3155 struct iavf_mac_filter *f, *ftmp; 3156 struct iavf_cloud_filter *cf; 3157 enum iavf_status status; 3158 u32 reg_val; 3159 int i = 0, err; 3160 bool running; 3161 3162 netdev_lock(netdev); 3163 3164 iavf_misc_irq_disable(adapter); 3165 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3166 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3167 /* Restart the AQ here. If we have been reset but didn't 3168 * detect it, or if the PF had to reinit, our AQ will be hosed. 3169 */ 3170 iavf_shutdown_adminq(hw); 3171 iavf_init_adminq(hw); 3172 iavf_request_reset(adapter); 3173 } 3174 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3175 3176 /* poll until we see the reset actually happen */ 3177 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3178 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3179 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3180 if (!reg_val) 3181 break; 3182 usleep_range(5000, 10000); 3183 } 3184 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3185 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3186 goto continue_reset; /* act like the reset happened */ 3187 } 3188 3189 /* wait until the reset is complete and the PF is responding to us */ 3190 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3191 /* sleep first to make sure a minimum wait time is met */ 3192 msleep(IAVF_RESET_WAIT_MS); 3193 3194 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3195 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3196 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3197 break; 3198 } 3199 3200 pci_set_master(adapter->pdev); 3201 pci_restore_msi_state(adapter->pdev); 3202 3203 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3204 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3205 reg_val); 3206 iavf_disable_vf(adapter); 3207 netdev_unlock(netdev); 3208 return; /* Do not attempt to reinit. It's dead, Jim. */ 3209 } 3210 3211 continue_reset: 3212 /* If we are still early in the state machine, just restart. */ 3213 if (adapter->state <= __IAVF_INIT_FAILED) { 3214 iavf_shutdown_adminq(hw); 3215 iavf_change_state(adapter, __IAVF_STARTUP); 3216 iavf_startup(adapter); 3217 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3218 msecs_to_jiffies(30)); 3219 netdev_unlock(netdev); 3220 return; 3221 } 3222 3223 /* We don't use netif_running() because it may be true prior to 3224 * ndo_open() returning, so we can't assume it means all our open 3225 * tasks have finished, since we're not holding the rtnl_lock here. 3226 */ 3227 running = adapter->state == __IAVF_RUNNING; 3228 3229 if (running) { 3230 netif_carrier_off(netdev); 3231 netif_tx_stop_all_queues(netdev); 3232 adapter->link_up = false; 3233 iavf_napi_disable_all(adapter); 3234 } 3235 iavf_irq_disable(adapter); 3236 3237 iavf_change_state(adapter, __IAVF_RESETTING); 3238 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3239 3240 /* free the Tx/Rx rings and descriptors, might be better to just 3241 * re-use them sometime in the future 3242 */ 3243 iavf_free_all_rx_resources(adapter); 3244 iavf_free_all_tx_resources(adapter); 3245 3246 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3247 /* kill and reinit the admin queue */ 3248 iavf_shutdown_adminq(hw); 3249 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3250 status = iavf_init_adminq(hw); 3251 if (status) { 3252 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3253 status); 3254 goto reset_err; 3255 } 3256 adapter->aq_required = 0; 3257 3258 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3259 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3260 err = iavf_reinit_interrupt_scheme(adapter, running); 3261 if (err) 3262 goto reset_err; 3263 } 3264 3265 if (RSS_AQ(adapter)) { 3266 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3267 } else { 3268 err = iavf_init_rss(adapter); 3269 if (err) 3270 goto reset_err; 3271 } 3272 3273 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3274 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3275 3276 /* Certain capabilities require an extended negotiation process using 3277 * extra messages that must be processed after getting the VF 3278 * configuration. The related checks such as VLAN_V2_ALLOWED() are not 3279 * reliable here, since the configuration has not yet been negotiated. 3280 * 3281 * Always set these flags, since them related VIRTCHNL messages won't 3282 * be sent until after VIRTCHNL_OP_GET_VF_RESOURCES. 3283 */ 3284 adapter->aq_required |= IAVF_FLAG_AQ_EXTENDED_CAPS; 3285 3286 spin_lock_bh(&adapter->mac_vlan_list_lock); 3287 3288 /* Delete filter for the current MAC address, it could have 3289 * been changed by the PF via administratively set MAC. 3290 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3291 */ 3292 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3293 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3294 list_del(&f->list); 3295 kfree(f); 3296 } 3297 } 3298 /* re-add all MAC filters */ 3299 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3300 f->add = true; 3301 } 3302 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3303 3304 /* check if TCs are running and re-add all cloud filters */ 3305 spin_lock_bh(&adapter->cloud_filter_list_lock); 3306 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3307 adapter->num_tc) { 3308 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3309 cf->add = true; 3310 } 3311 } 3312 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3313 3314 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3315 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3316 iavf_misc_irq_enable(adapter); 3317 3318 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3319 3320 /* We were running when the reset started, so we need to restore some 3321 * state here. 3322 */ 3323 if (running) { 3324 /* allocate transmit descriptors */ 3325 err = iavf_setup_all_tx_resources(adapter); 3326 if (err) 3327 goto reset_err; 3328 3329 /* allocate receive descriptors */ 3330 err = iavf_setup_all_rx_resources(adapter); 3331 if (err) 3332 goto reset_err; 3333 3334 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3335 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3336 err = iavf_request_traffic_irqs(adapter, netdev->name); 3337 if (err) 3338 goto reset_err; 3339 3340 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3341 } 3342 3343 iavf_configure(adapter); 3344 3345 /* iavf_up_complete() will switch device back 3346 * to __IAVF_RUNNING 3347 */ 3348 iavf_up_complete(adapter); 3349 3350 iavf_irq_enable(adapter, true); 3351 3352 iavf_reconfig_qs_bw(adapter); 3353 } else { 3354 iavf_change_state(adapter, __IAVF_DOWN); 3355 wake_up(&adapter->down_waitqueue); 3356 } 3357 3358 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3359 3360 wake_up(&adapter->reset_waitqueue); 3361 netdev_unlock(netdev); 3362 3363 return; 3364 reset_err: 3365 if (running) { 3366 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3367 iavf_free_traffic_irqs(adapter); 3368 } 3369 iavf_disable_vf(adapter); 3370 3371 netdev_unlock(netdev); 3372 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3373 } 3374 3375 /** 3376 * iavf_adminq_task - worker thread to clean the admin queue 3377 * @work: pointer to work_struct containing our data 3378 **/ 3379 static void iavf_adminq_task(struct work_struct *work) 3380 { 3381 struct iavf_adapter *adapter = 3382 container_of(work, struct iavf_adapter, adminq_task); 3383 struct net_device *netdev = adapter->netdev; 3384 struct iavf_hw *hw = &adapter->hw; 3385 struct iavf_arq_event_info event; 3386 enum virtchnl_ops v_op; 3387 enum iavf_status ret, v_ret; 3388 u32 val, oldval; 3389 u16 pending; 3390 3391 netdev_lock(netdev); 3392 3393 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3394 goto unlock; 3395 3396 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3397 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3398 if (!event.msg_buf) 3399 goto unlock; 3400 3401 do { 3402 ret = iavf_clean_arq_element(hw, &event, &pending); 3403 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3404 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3405 3406 if (ret || !v_op) 3407 break; /* No event to process or error cleaning ARQ */ 3408 3409 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3410 event.msg_len); 3411 if (pending != 0) 3412 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3413 } while (pending); 3414 3415 if (iavf_is_reset_in_progress(adapter)) 3416 goto freedom; 3417 3418 /* check for error indications */ 3419 val = rd32(hw, IAVF_VF_ARQLEN1); 3420 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3421 goto freedom; 3422 oldval = val; 3423 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3424 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3425 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3426 } 3427 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3428 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3429 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3430 } 3431 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3432 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3433 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3434 } 3435 if (oldval != val) 3436 wr32(hw, IAVF_VF_ARQLEN1, val); 3437 3438 val = rd32(hw, IAVF_VF_ATQLEN1); 3439 oldval = val; 3440 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3441 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3442 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3443 } 3444 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3445 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3446 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3447 } 3448 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3449 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3450 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3451 } 3452 if (oldval != val) 3453 wr32(hw, IAVF_VF_ATQLEN1, val); 3454 3455 freedom: 3456 kfree(event.msg_buf); 3457 unlock: 3458 netdev_unlock(netdev); 3459 /* re-enable Admin queue interrupt cause */ 3460 iavf_misc_irq_enable(adapter); 3461 } 3462 3463 /** 3464 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3465 * @adapter: board private structure 3466 * 3467 * Free all transmit software resources 3468 **/ 3469 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3470 { 3471 int i; 3472 3473 if (!adapter->tx_rings) 3474 return; 3475 3476 for (i = 0; i < adapter->num_active_queues; i++) 3477 if (adapter->tx_rings[i].desc) 3478 iavf_free_tx_resources(&adapter->tx_rings[i]); 3479 } 3480 3481 /** 3482 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3483 * @adapter: board private structure 3484 * 3485 * If this function returns with an error, then it's possible one or 3486 * more of the rings is populated (while the rest are not). It is the 3487 * callers duty to clean those orphaned rings. 3488 * 3489 * Return 0 on success, negative on failure 3490 **/ 3491 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3492 { 3493 int i, err = 0; 3494 3495 for (i = 0; i < adapter->num_active_queues; i++) { 3496 adapter->tx_rings[i].count = adapter->tx_desc_count; 3497 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3498 if (!err) 3499 continue; 3500 dev_err(&adapter->pdev->dev, 3501 "Allocation for Tx Queue %u failed\n", i); 3502 break; 3503 } 3504 3505 return err; 3506 } 3507 3508 /** 3509 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3510 * @adapter: board private structure 3511 * 3512 * If this function returns with an error, then it's possible one or 3513 * more of the rings is populated (while the rest are not). It is the 3514 * callers duty to clean those orphaned rings. 3515 * 3516 * Return 0 on success, negative on failure 3517 **/ 3518 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3519 { 3520 int i, err = 0; 3521 3522 for (i = 0; i < adapter->num_active_queues; i++) { 3523 adapter->rx_rings[i].count = adapter->rx_desc_count; 3524 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3525 if (!err) 3526 continue; 3527 dev_err(&adapter->pdev->dev, 3528 "Allocation for Rx Queue %u failed\n", i); 3529 break; 3530 } 3531 return err; 3532 } 3533 3534 /** 3535 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3536 * @adapter: board private structure 3537 * 3538 * Free all receive software resources 3539 **/ 3540 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3541 { 3542 int i; 3543 3544 if (!adapter->rx_rings) 3545 return; 3546 3547 for (i = 0; i < adapter->num_active_queues; i++) 3548 if (adapter->rx_rings[i].desc) 3549 iavf_free_rx_resources(&adapter->rx_rings[i]); 3550 } 3551 3552 /** 3553 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3554 * @adapter: board private structure 3555 * @max_tx_rate: max Tx bw for a tc 3556 **/ 3557 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3558 u64 max_tx_rate) 3559 { 3560 int speed = 0, ret = 0; 3561 3562 if (ADV_LINK_SUPPORT(adapter)) { 3563 if (adapter->link_speed_mbps < U32_MAX) { 3564 speed = adapter->link_speed_mbps; 3565 goto validate_bw; 3566 } else { 3567 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3568 return -EINVAL; 3569 } 3570 } 3571 3572 switch (adapter->link_speed) { 3573 case VIRTCHNL_LINK_SPEED_40GB: 3574 speed = SPEED_40000; 3575 break; 3576 case VIRTCHNL_LINK_SPEED_25GB: 3577 speed = SPEED_25000; 3578 break; 3579 case VIRTCHNL_LINK_SPEED_20GB: 3580 speed = SPEED_20000; 3581 break; 3582 case VIRTCHNL_LINK_SPEED_10GB: 3583 speed = SPEED_10000; 3584 break; 3585 case VIRTCHNL_LINK_SPEED_5GB: 3586 speed = SPEED_5000; 3587 break; 3588 case VIRTCHNL_LINK_SPEED_2_5GB: 3589 speed = SPEED_2500; 3590 break; 3591 case VIRTCHNL_LINK_SPEED_1GB: 3592 speed = SPEED_1000; 3593 break; 3594 case VIRTCHNL_LINK_SPEED_100MB: 3595 speed = SPEED_100; 3596 break; 3597 default: 3598 break; 3599 } 3600 3601 validate_bw: 3602 if (max_tx_rate > speed) { 3603 dev_err(&adapter->pdev->dev, 3604 "Invalid tx rate specified\n"); 3605 ret = -EINVAL; 3606 } 3607 3608 return ret; 3609 } 3610 3611 /** 3612 * iavf_validate_ch_config - validate queue mapping info 3613 * @adapter: board private structure 3614 * @mqprio_qopt: queue parameters 3615 * 3616 * This function validates if the config provided by the user to 3617 * configure queue channels is valid or not. Returns 0 on a valid 3618 * config. 3619 **/ 3620 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3621 struct tc_mqprio_qopt_offload *mqprio_qopt) 3622 { 3623 u64 total_max_rate = 0; 3624 u32 tx_rate_rem = 0; 3625 int i, num_qps = 0; 3626 u64 tx_rate = 0; 3627 int ret = 0; 3628 3629 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3630 mqprio_qopt->qopt.num_tc < 1) 3631 return -EINVAL; 3632 3633 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3634 if (!mqprio_qopt->qopt.count[i] || 3635 mqprio_qopt->qopt.offset[i] != num_qps) 3636 return -EINVAL; 3637 if (mqprio_qopt->min_rate[i]) { 3638 dev_err(&adapter->pdev->dev, 3639 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3640 i); 3641 return -EINVAL; 3642 } 3643 3644 /* convert to Mbps */ 3645 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3646 IAVF_MBPS_DIVISOR); 3647 3648 if (mqprio_qopt->max_rate[i] && 3649 tx_rate < IAVF_MBPS_QUANTA) { 3650 dev_err(&adapter->pdev->dev, 3651 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3652 i, IAVF_MBPS_QUANTA); 3653 return -EINVAL; 3654 } 3655 3656 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3657 3658 if (tx_rate_rem != 0) { 3659 dev_err(&adapter->pdev->dev, 3660 "Invalid max tx rate for TC%d, not divisible by %d\n", 3661 i, IAVF_MBPS_QUANTA); 3662 return -EINVAL; 3663 } 3664 3665 total_max_rate += tx_rate; 3666 num_qps += mqprio_qopt->qopt.count[i]; 3667 } 3668 if (num_qps > adapter->num_active_queues) { 3669 dev_err(&adapter->pdev->dev, 3670 "Cannot support requested number of queues\n"); 3671 return -EINVAL; 3672 } 3673 3674 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3675 return ret; 3676 } 3677 3678 /** 3679 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3680 * @adapter: board private structure 3681 **/ 3682 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3683 { 3684 struct iavf_cloud_filter *cf, *cftmp; 3685 3686 spin_lock_bh(&adapter->cloud_filter_list_lock); 3687 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3688 list) { 3689 list_del(&cf->list); 3690 kfree(cf); 3691 adapter->num_cloud_filters--; 3692 } 3693 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3694 } 3695 3696 /** 3697 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3698 * TC config already configured on this adapter. 3699 * @adapter: board private structure 3700 * @mqprio_qopt: TC config received from kernel. 3701 * 3702 * This function compares the TC config received from the kernel 3703 * with the config already configured on the adapter. 3704 * 3705 * Return: True if configuration is same, false otherwise. 3706 **/ 3707 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3708 struct tc_mqprio_qopt *mqprio_qopt) 3709 { 3710 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3711 int i; 3712 3713 if (adapter->num_tc != mqprio_qopt->num_tc) 3714 return false; 3715 3716 for (i = 0; i < adapter->num_tc; i++) { 3717 if (ch[i].count != mqprio_qopt->count[i] || 3718 ch[i].offset != mqprio_qopt->offset[i]) 3719 return false; 3720 } 3721 return true; 3722 } 3723 3724 /** 3725 * __iavf_setup_tc - configure multiple traffic classes 3726 * @netdev: network interface device structure 3727 * @type_data: tc offload data 3728 * 3729 * This function processes the config information provided by the 3730 * user to configure traffic classes/queue channels and packages the 3731 * information to request the PF to setup traffic classes. 3732 * 3733 * Returns 0 on success. 3734 **/ 3735 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3736 { 3737 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3738 struct iavf_adapter *adapter = netdev_priv(netdev); 3739 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3740 u8 num_tc = 0, total_qps = 0; 3741 int ret = 0, netdev_tc = 0; 3742 u64 max_tx_rate; 3743 u16 mode; 3744 int i; 3745 3746 num_tc = mqprio_qopt->qopt.num_tc; 3747 mode = mqprio_qopt->mode; 3748 3749 /* delete queue_channel */ 3750 if (!mqprio_qopt->qopt.hw) { 3751 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3752 /* reset the tc configuration */ 3753 netdev_reset_tc(netdev); 3754 adapter->num_tc = 0; 3755 netif_tx_stop_all_queues(netdev); 3756 netif_tx_disable(netdev); 3757 iavf_del_all_cloud_filters(adapter); 3758 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3759 total_qps = adapter->orig_num_active_queues; 3760 goto exit; 3761 } else { 3762 return -EINVAL; 3763 } 3764 } 3765 3766 /* add queue channel */ 3767 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3768 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3769 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3770 return -EOPNOTSUPP; 3771 } 3772 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3773 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3774 return -EINVAL; 3775 } 3776 3777 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3778 if (ret) 3779 return ret; 3780 /* Return if same TC config is requested */ 3781 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3782 return 0; 3783 adapter->num_tc = num_tc; 3784 3785 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3786 if (i < num_tc) { 3787 adapter->ch_config.ch_info[i].count = 3788 mqprio_qopt->qopt.count[i]; 3789 adapter->ch_config.ch_info[i].offset = 3790 mqprio_qopt->qopt.offset[i]; 3791 total_qps += mqprio_qopt->qopt.count[i]; 3792 max_tx_rate = mqprio_qopt->max_rate[i]; 3793 /* convert to Mbps */ 3794 max_tx_rate = div_u64(max_tx_rate, 3795 IAVF_MBPS_DIVISOR); 3796 adapter->ch_config.ch_info[i].max_tx_rate = 3797 max_tx_rate; 3798 } else { 3799 adapter->ch_config.ch_info[i].count = 1; 3800 adapter->ch_config.ch_info[i].offset = 0; 3801 } 3802 } 3803 3804 /* Take snapshot of original config such as "num_active_queues" 3805 * It is used later when delete ADQ flow is exercised, so that 3806 * once delete ADQ flow completes, VF shall go back to its 3807 * original queue configuration 3808 */ 3809 3810 adapter->orig_num_active_queues = adapter->num_active_queues; 3811 3812 /* Store queue info based on TC so that VF gets configured 3813 * with correct number of queues when VF completes ADQ config 3814 * flow 3815 */ 3816 adapter->ch_config.total_qps = total_qps; 3817 3818 netif_tx_stop_all_queues(netdev); 3819 netif_tx_disable(netdev); 3820 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3821 netdev_reset_tc(netdev); 3822 /* Report the tc mapping up the stack */ 3823 netdev_set_num_tc(adapter->netdev, num_tc); 3824 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3825 u16 qcount = mqprio_qopt->qopt.count[i]; 3826 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3827 3828 if (i < num_tc) 3829 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3830 qoffset); 3831 } 3832 } 3833 exit: 3834 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3835 return 0; 3836 3837 netif_set_real_num_rx_queues(netdev, total_qps); 3838 netif_set_real_num_tx_queues(netdev, total_qps); 3839 3840 return ret; 3841 } 3842 3843 /** 3844 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3845 * @adapter: board private structure 3846 * @f: pointer to struct flow_cls_offload 3847 * @filter: pointer to cloud filter structure 3848 */ 3849 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3850 struct flow_cls_offload *f, 3851 struct iavf_cloud_filter *filter) 3852 { 3853 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3854 struct flow_dissector *dissector = rule->match.dissector; 3855 u16 n_proto_mask = 0; 3856 u16 n_proto_key = 0; 3857 u8 field_flags = 0; 3858 u16 addr_type = 0; 3859 u16 n_proto = 0; 3860 int i = 0; 3861 struct virtchnl_filter *vf = &filter->f; 3862 3863 if (dissector->used_keys & 3864 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3865 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3866 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3867 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3868 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3869 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3870 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3871 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3872 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3873 dissector->used_keys); 3874 return -EOPNOTSUPP; 3875 } 3876 3877 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3878 struct flow_match_enc_keyid match; 3879 3880 flow_rule_match_enc_keyid(rule, &match); 3881 if (match.mask->keyid != 0) 3882 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3883 } 3884 3885 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3886 struct flow_match_basic match; 3887 3888 flow_rule_match_basic(rule, &match); 3889 n_proto_key = ntohs(match.key->n_proto); 3890 n_proto_mask = ntohs(match.mask->n_proto); 3891 3892 if (n_proto_key == ETH_P_ALL) { 3893 n_proto_key = 0; 3894 n_proto_mask = 0; 3895 } 3896 n_proto = n_proto_key & n_proto_mask; 3897 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3898 return -EINVAL; 3899 if (n_proto == ETH_P_IPV6) { 3900 /* specify flow type as TCP IPv6 */ 3901 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3902 } 3903 3904 if (match.key->ip_proto != IPPROTO_TCP) { 3905 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3906 return -EINVAL; 3907 } 3908 } 3909 3910 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3911 struct flow_match_eth_addrs match; 3912 3913 flow_rule_match_eth_addrs(rule, &match); 3914 3915 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3916 if (!is_zero_ether_addr(match.mask->dst)) { 3917 if (is_broadcast_ether_addr(match.mask->dst)) { 3918 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3919 } else { 3920 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3921 match.mask->dst); 3922 return -EINVAL; 3923 } 3924 } 3925 3926 if (!is_zero_ether_addr(match.mask->src)) { 3927 if (is_broadcast_ether_addr(match.mask->src)) { 3928 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3929 } else { 3930 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3931 match.mask->src); 3932 return -EINVAL; 3933 } 3934 } 3935 3936 if (!is_zero_ether_addr(match.key->dst)) 3937 if (is_valid_ether_addr(match.key->dst) || 3938 is_multicast_ether_addr(match.key->dst)) { 3939 /* set the mask if a valid dst_mac address */ 3940 for (i = 0; i < ETH_ALEN; i++) 3941 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3942 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3943 match.key->dst); 3944 } 3945 3946 if (!is_zero_ether_addr(match.key->src)) 3947 if (is_valid_ether_addr(match.key->src) || 3948 is_multicast_ether_addr(match.key->src)) { 3949 /* set the mask if a valid dst_mac address */ 3950 for (i = 0; i < ETH_ALEN; i++) 3951 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3952 ether_addr_copy(vf->data.tcp_spec.src_mac, 3953 match.key->src); 3954 } 3955 } 3956 3957 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3958 struct flow_match_vlan match; 3959 3960 flow_rule_match_vlan(rule, &match); 3961 if (match.mask->vlan_id) { 3962 if (match.mask->vlan_id == VLAN_VID_MASK) { 3963 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3964 } else { 3965 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3966 match.mask->vlan_id); 3967 return -EINVAL; 3968 } 3969 } 3970 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3971 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3972 } 3973 3974 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3975 struct flow_match_control match; 3976 3977 flow_rule_match_control(rule, &match); 3978 addr_type = match.key->addr_type; 3979 3980 if (flow_rule_has_control_flags(match.mask->flags, 3981 f->common.extack)) 3982 return -EOPNOTSUPP; 3983 } 3984 3985 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3986 struct flow_match_ipv4_addrs match; 3987 3988 flow_rule_match_ipv4_addrs(rule, &match); 3989 if (match.mask->dst) { 3990 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3991 field_flags |= IAVF_CLOUD_FIELD_IIP; 3992 } else { 3993 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3994 be32_to_cpu(match.mask->dst)); 3995 return -EINVAL; 3996 } 3997 } 3998 3999 if (match.mask->src) { 4000 if (match.mask->src == cpu_to_be32(0xffffffff)) { 4001 field_flags |= IAVF_CLOUD_FIELD_IIP; 4002 } else { 4003 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 4004 be32_to_cpu(match.mask->src)); 4005 return -EINVAL; 4006 } 4007 } 4008 4009 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 4010 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 4011 return -EINVAL; 4012 } 4013 if (match.key->dst) { 4014 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 4015 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 4016 } 4017 if (match.key->src) { 4018 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 4019 vf->data.tcp_spec.src_ip[0] = match.key->src; 4020 } 4021 } 4022 4023 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 4024 struct flow_match_ipv6_addrs match; 4025 4026 flow_rule_match_ipv6_addrs(rule, &match); 4027 4028 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 4029 if (ipv6_addr_any(&match.mask->dst)) { 4030 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 4031 IPV6_ADDR_ANY); 4032 return -EINVAL; 4033 } 4034 4035 /* src and dest IPv6 address should not be LOOPBACK 4036 * (0:0:0:0:0:0:0:1) which can be represented as ::1 4037 */ 4038 if (ipv6_addr_loopback(&match.key->dst) || 4039 ipv6_addr_loopback(&match.key->src)) { 4040 dev_err(&adapter->pdev->dev, 4041 "ipv6 addr should not be loopback\n"); 4042 return -EINVAL; 4043 } 4044 if (!ipv6_addr_any(&match.mask->dst) || 4045 !ipv6_addr_any(&match.mask->src)) 4046 field_flags |= IAVF_CLOUD_FIELD_IIP; 4047 4048 for (i = 0; i < 4; i++) 4049 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 4050 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 4051 sizeof(vf->data.tcp_spec.dst_ip)); 4052 for (i = 0; i < 4; i++) 4053 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 4054 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 4055 sizeof(vf->data.tcp_spec.src_ip)); 4056 } 4057 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 4058 struct flow_match_ports match; 4059 4060 flow_rule_match_ports(rule, &match); 4061 if (match.mask->src) { 4062 if (match.mask->src == cpu_to_be16(0xffff)) { 4063 field_flags |= IAVF_CLOUD_FIELD_IIP; 4064 } else { 4065 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 4066 be16_to_cpu(match.mask->src)); 4067 return -EINVAL; 4068 } 4069 } 4070 4071 if (match.mask->dst) { 4072 if (match.mask->dst == cpu_to_be16(0xffff)) { 4073 field_flags |= IAVF_CLOUD_FIELD_IIP; 4074 } else { 4075 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 4076 be16_to_cpu(match.mask->dst)); 4077 return -EINVAL; 4078 } 4079 } 4080 if (match.key->dst) { 4081 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 4082 vf->data.tcp_spec.dst_port = match.key->dst; 4083 } 4084 4085 if (match.key->src) { 4086 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 4087 vf->data.tcp_spec.src_port = match.key->src; 4088 } 4089 } 4090 vf->field_flags = field_flags; 4091 4092 return 0; 4093 } 4094 4095 /** 4096 * iavf_handle_tclass - Forward to a traffic class on the device 4097 * @adapter: board private structure 4098 * @tc: traffic class index on the device 4099 * @filter: pointer to cloud filter structure 4100 */ 4101 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 4102 struct iavf_cloud_filter *filter) 4103 { 4104 if (tc == 0) 4105 return 0; 4106 if (tc < adapter->num_tc) { 4107 if (!filter->f.data.tcp_spec.dst_port) { 4108 dev_err(&adapter->pdev->dev, 4109 "Specify destination port to redirect to traffic class other than TC0\n"); 4110 return -EINVAL; 4111 } 4112 } 4113 /* redirect to a traffic class on the same device */ 4114 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 4115 filter->f.action_meta = tc; 4116 return 0; 4117 } 4118 4119 /** 4120 * iavf_find_cf - Find the cloud filter in the list 4121 * @adapter: Board private structure 4122 * @cookie: filter specific cookie 4123 * 4124 * Returns ptr to the filter object or NULL. Must be called while holding the 4125 * cloud_filter_list_lock. 4126 */ 4127 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4128 unsigned long *cookie) 4129 { 4130 struct iavf_cloud_filter *filter = NULL; 4131 4132 if (!cookie) 4133 return NULL; 4134 4135 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4136 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4137 return filter; 4138 } 4139 return NULL; 4140 } 4141 4142 /** 4143 * iavf_configure_clsflower - Add tc flower filters 4144 * @adapter: board private structure 4145 * @cls_flower: Pointer to struct flow_cls_offload 4146 */ 4147 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4148 struct flow_cls_offload *cls_flower) 4149 { 4150 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4151 struct iavf_cloud_filter *filter; 4152 int err; 4153 4154 if (tc < 0) { 4155 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4156 return -EINVAL; 4157 } 4158 4159 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4160 if (!filter) 4161 return -ENOMEM; 4162 filter->cookie = cls_flower->cookie; 4163 4164 netdev_lock(adapter->netdev); 4165 4166 /* bail out here if filter already exists */ 4167 spin_lock_bh(&adapter->cloud_filter_list_lock); 4168 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4169 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4170 err = -EEXIST; 4171 goto spin_unlock; 4172 } 4173 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4174 4175 /* set the mask to all zeroes to begin with */ 4176 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4177 /* start out with flow type and eth type IPv4 to begin with */ 4178 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4179 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4180 if (err) 4181 goto err; 4182 4183 err = iavf_handle_tclass(adapter, tc, filter); 4184 if (err) 4185 goto err; 4186 4187 /* add filter to the list */ 4188 spin_lock_bh(&adapter->cloud_filter_list_lock); 4189 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4190 adapter->num_cloud_filters++; 4191 filter->add = true; 4192 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4193 spin_unlock: 4194 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4195 err: 4196 if (err) 4197 kfree(filter); 4198 4199 netdev_unlock(adapter->netdev); 4200 return err; 4201 } 4202 4203 /** 4204 * iavf_delete_clsflower - Remove tc flower filters 4205 * @adapter: board private structure 4206 * @cls_flower: Pointer to struct flow_cls_offload 4207 */ 4208 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4209 struct flow_cls_offload *cls_flower) 4210 { 4211 struct iavf_cloud_filter *filter = NULL; 4212 int err = 0; 4213 4214 spin_lock_bh(&adapter->cloud_filter_list_lock); 4215 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4216 if (filter) { 4217 filter->del = true; 4218 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4219 } else { 4220 err = -EINVAL; 4221 } 4222 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4223 4224 return err; 4225 } 4226 4227 /** 4228 * iavf_setup_tc_cls_flower - flower classifier offloads 4229 * @adapter: pointer to iavf adapter structure 4230 * @cls_flower: pointer to flow_cls_offload struct with flow info 4231 */ 4232 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4233 struct flow_cls_offload *cls_flower) 4234 { 4235 switch (cls_flower->command) { 4236 case FLOW_CLS_REPLACE: 4237 return iavf_configure_clsflower(adapter, cls_flower); 4238 case FLOW_CLS_DESTROY: 4239 return iavf_delete_clsflower(adapter, cls_flower); 4240 case FLOW_CLS_STATS: 4241 return -EOPNOTSUPP; 4242 default: 4243 return -EOPNOTSUPP; 4244 } 4245 } 4246 4247 /** 4248 * iavf_add_cls_u32 - Add U32 classifier offloads 4249 * @adapter: pointer to iavf adapter structure 4250 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4251 * 4252 * Return: 0 on success or negative errno on failure. 4253 */ 4254 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4255 struct tc_cls_u32_offload *cls_u32) 4256 { 4257 struct netlink_ext_ack *extack = cls_u32->common.extack; 4258 struct virtchnl_fdir_rule *rule_cfg; 4259 struct virtchnl_filter_action *vact; 4260 struct virtchnl_proto_hdrs *hdrs; 4261 struct ethhdr *spec_h, *mask_h; 4262 const struct tc_action *act; 4263 struct iavf_fdir_fltr *fltr; 4264 struct tcf_exts *exts; 4265 unsigned int q_index; 4266 int i, status = 0; 4267 int off_base = 0; 4268 4269 if (cls_u32->knode.link_handle) { 4270 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4271 return -EOPNOTSUPP; 4272 } 4273 4274 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4275 if (!fltr) 4276 return -ENOMEM; 4277 4278 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4279 hdrs = &rule_cfg->proto_hdrs; 4280 hdrs->count = 0; 4281 4282 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4283 switch (ntohs(cls_u32->common.protocol)) { 4284 case ETH_P_802_3: 4285 break; 4286 case ETH_P_IP: 4287 spec_h = (struct ethhdr *)hdrs->raw.spec; 4288 mask_h = (struct ethhdr *)hdrs->raw.mask; 4289 spec_h->h_proto = htons(ETH_P_IP); 4290 mask_h->h_proto = htons(0xFFFF); 4291 off_base += ETH_HLEN; 4292 break; 4293 default: 4294 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4295 status = -EOPNOTSUPP; 4296 goto free_alloc; 4297 } 4298 4299 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4300 __be32 val, mask; 4301 int off; 4302 4303 off = off_base + cls_u32->knode.sel->keys[i].off; 4304 val = cls_u32->knode.sel->keys[i].val; 4305 mask = cls_u32->knode.sel->keys[i].mask; 4306 4307 if (off >= sizeof(hdrs->raw.spec)) { 4308 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4309 status = -EINVAL; 4310 goto free_alloc; 4311 } 4312 4313 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4314 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4315 hdrs->raw.pkt_len = off + sizeof(val); 4316 } 4317 4318 /* Only one action is allowed */ 4319 rule_cfg->action_set.count = 1; 4320 vact = &rule_cfg->action_set.actions[0]; 4321 exts = cls_u32->knode.exts; 4322 4323 tcf_exts_for_each_action(i, act, exts) { 4324 /* FDIR queue */ 4325 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4326 q_index = tcf_skbedit_rx_queue_mapping(act); 4327 if (q_index >= adapter->num_active_queues) { 4328 status = -EINVAL; 4329 goto free_alloc; 4330 } 4331 4332 vact->type = VIRTCHNL_ACTION_QUEUE; 4333 vact->act_conf.queue.index = q_index; 4334 break; 4335 } 4336 4337 /* Drop */ 4338 if (is_tcf_gact_shot(act)) { 4339 vact->type = VIRTCHNL_ACTION_DROP; 4340 break; 4341 } 4342 4343 /* Unsupported action */ 4344 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4345 status = -EOPNOTSUPP; 4346 goto free_alloc; 4347 } 4348 4349 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4350 fltr->cls_u32_handle = cls_u32->knode.handle; 4351 return iavf_fdir_add_fltr(adapter, fltr); 4352 4353 free_alloc: 4354 kfree(fltr); 4355 return status; 4356 } 4357 4358 /** 4359 * iavf_del_cls_u32 - Delete U32 classifier offloads 4360 * @adapter: pointer to iavf adapter structure 4361 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4362 * 4363 * Return: 0 on success or negative errno on failure. 4364 */ 4365 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4366 struct tc_cls_u32_offload *cls_u32) 4367 { 4368 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4369 } 4370 4371 /** 4372 * iavf_setup_tc_cls_u32 - U32 filter offloads 4373 * @adapter: pointer to iavf adapter structure 4374 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4375 * 4376 * Return: 0 on success or negative errno on failure. 4377 */ 4378 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4379 struct tc_cls_u32_offload *cls_u32) 4380 { 4381 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4382 return -EOPNOTSUPP; 4383 4384 switch (cls_u32->command) { 4385 case TC_CLSU32_NEW_KNODE: 4386 case TC_CLSU32_REPLACE_KNODE: 4387 return iavf_add_cls_u32(adapter, cls_u32); 4388 case TC_CLSU32_DELETE_KNODE: 4389 return iavf_del_cls_u32(adapter, cls_u32); 4390 default: 4391 return -EOPNOTSUPP; 4392 } 4393 } 4394 4395 /** 4396 * iavf_setup_tc_block_cb - block callback for tc 4397 * @type: type of offload 4398 * @type_data: offload data 4399 * @cb_priv: 4400 * 4401 * This function is the block callback for traffic classes 4402 **/ 4403 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4404 void *cb_priv) 4405 { 4406 struct iavf_adapter *adapter = cb_priv; 4407 4408 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4409 return -EOPNOTSUPP; 4410 4411 switch (type) { 4412 case TC_SETUP_CLSFLOWER: 4413 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4414 case TC_SETUP_CLSU32: 4415 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4416 default: 4417 return -EOPNOTSUPP; 4418 } 4419 } 4420 4421 static LIST_HEAD(iavf_block_cb_list); 4422 4423 /** 4424 * iavf_setup_tc - configure multiple traffic classes 4425 * @netdev: network interface device structure 4426 * @type: type of offload 4427 * @type_data: tc offload data 4428 * 4429 * This function is the callback to ndo_setup_tc in the 4430 * netdev_ops. 4431 * 4432 * Returns 0 on success 4433 **/ 4434 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4435 void *type_data) 4436 { 4437 struct iavf_adapter *adapter = netdev_priv(netdev); 4438 4439 switch (type) { 4440 case TC_SETUP_QDISC_MQPRIO: 4441 return __iavf_setup_tc(netdev, type_data); 4442 case TC_SETUP_BLOCK: 4443 return flow_block_cb_setup_simple(type_data, 4444 &iavf_block_cb_list, 4445 iavf_setup_tc_block_cb, 4446 adapter, adapter, true); 4447 default: 4448 return -EOPNOTSUPP; 4449 } 4450 } 4451 4452 /** 4453 * iavf_restore_fdir_filters 4454 * @adapter: board private structure 4455 * 4456 * Restore existing FDIR filters when VF netdev comes back up. 4457 **/ 4458 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4459 { 4460 struct iavf_fdir_fltr *f; 4461 4462 spin_lock_bh(&adapter->fdir_fltr_lock); 4463 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4464 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4465 /* Cancel a request, keep filter as active */ 4466 f->state = IAVF_FDIR_FLTR_ACTIVE; 4467 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4468 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4469 /* Add filters which are inactive or have a pending 4470 * request to PF to be deleted 4471 */ 4472 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4473 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4474 } 4475 } 4476 spin_unlock_bh(&adapter->fdir_fltr_lock); 4477 } 4478 4479 /** 4480 * iavf_open - Called when a network interface is made active 4481 * @netdev: network interface device structure 4482 * 4483 * Returns 0 on success, negative value on failure 4484 * 4485 * The open entry point is called when a network interface is made 4486 * active by the system (IFF_UP). At this point all resources needed 4487 * for transmit and receive operations are allocated, the interrupt 4488 * handler is registered with the OS, the watchdog is started, 4489 * and the stack is notified that the interface is ready. 4490 **/ 4491 static int iavf_open(struct net_device *netdev) 4492 { 4493 struct iavf_adapter *adapter = netdev_priv(netdev); 4494 int err; 4495 4496 netdev_assert_locked(netdev); 4497 4498 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4499 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4500 return -EIO; 4501 } 4502 4503 if (adapter->state != __IAVF_DOWN) 4504 return -EBUSY; 4505 4506 if (adapter->state == __IAVF_RUNNING && 4507 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4508 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4509 return 0; 4510 } 4511 4512 /* allocate transmit descriptors */ 4513 err = iavf_setup_all_tx_resources(adapter); 4514 if (err) 4515 goto err_setup_tx; 4516 4517 /* allocate receive descriptors */ 4518 err = iavf_setup_all_rx_resources(adapter); 4519 if (err) 4520 goto err_setup_rx; 4521 4522 /* clear any pending interrupts, may auto mask */ 4523 err = iavf_request_traffic_irqs(adapter, netdev->name); 4524 if (err) 4525 goto err_req_irq; 4526 4527 spin_lock_bh(&adapter->mac_vlan_list_lock); 4528 iavf_add_filter(adapter, adapter->hw.mac.addr); 4529 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4530 4531 /* Restore filters that were removed with IFF_DOWN */ 4532 iavf_restore_filters(adapter); 4533 iavf_restore_fdir_filters(adapter); 4534 4535 iavf_configure(adapter); 4536 4537 iavf_up_complete(adapter); 4538 4539 iavf_irq_enable(adapter, true); 4540 4541 return 0; 4542 4543 err_req_irq: 4544 iavf_down(adapter); 4545 iavf_free_traffic_irqs(adapter); 4546 err_setup_rx: 4547 iavf_free_all_rx_resources(adapter); 4548 err_setup_tx: 4549 iavf_free_all_tx_resources(adapter); 4550 4551 return err; 4552 } 4553 4554 /** 4555 * iavf_close - Disables a network interface 4556 * @netdev: network interface device structure 4557 * 4558 * Returns 0, this is not allowed to fail 4559 * 4560 * The close entry point is called when an interface is de-activated 4561 * by the OS. The hardware is still under the drivers control, but 4562 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4563 * are freed, along with all transmit and receive resources. 4564 **/ 4565 static int iavf_close(struct net_device *netdev) 4566 { 4567 struct iavf_adapter *adapter = netdev_priv(netdev); 4568 u64 aq_to_restore; 4569 int status; 4570 4571 netdev_assert_locked(netdev); 4572 4573 if (adapter->state <= __IAVF_DOWN_PENDING) 4574 return 0; 4575 4576 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4577 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4578 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4579 * deadlock with adminq_task() until iavf_close timeouts. We must send 4580 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4581 * disable queues possible for vf. Give only necessary flags to 4582 * iavf_down and save other to set them right before iavf_close() 4583 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4584 * iavf will be in DOWN state. 4585 */ 4586 aq_to_restore = adapter->aq_required; 4587 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4588 4589 /* Remove flags which we do not want to send after close or we want to 4590 * send before disable queues. 4591 */ 4592 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4593 IAVF_FLAG_AQ_ENABLE_QUEUES | 4594 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4595 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4596 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4597 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4598 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4599 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4600 4601 iavf_down(adapter); 4602 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4603 iavf_free_traffic_irqs(adapter); 4604 4605 netdev_unlock(netdev); 4606 4607 /* We explicitly don't free resources here because the hardware is 4608 * still active and can DMA into memory. Resources are cleared in 4609 * iavf_virtchnl_completion() after we get confirmation from the PF 4610 * driver that the rings have been stopped. 4611 * 4612 * Also, we wait for state to transition to __IAVF_DOWN before 4613 * returning. State change occurs in iavf_virtchnl_completion() after 4614 * VF resources are released (which occurs after PF driver processes and 4615 * responds to admin queue commands). 4616 */ 4617 4618 status = wait_event_timeout(adapter->down_waitqueue, 4619 adapter->state == __IAVF_DOWN, 4620 msecs_to_jiffies(500)); 4621 if (!status) 4622 netdev_warn(netdev, "Device resources not yet released\n"); 4623 netdev_lock(netdev); 4624 4625 adapter->aq_required |= aq_to_restore; 4626 4627 return 0; 4628 } 4629 4630 /** 4631 * iavf_change_mtu - Change the Maximum Transfer Unit 4632 * @netdev: network interface device structure 4633 * @new_mtu: new value for maximum frame size 4634 * 4635 * Returns 0 on success, negative on failure 4636 **/ 4637 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4638 { 4639 struct iavf_adapter *adapter = netdev_priv(netdev); 4640 int ret = 0; 4641 4642 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4643 netdev->mtu, new_mtu); 4644 WRITE_ONCE(netdev->mtu, new_mtu); 4645 4646 if (netif_running(netdev)) { 4647 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4648 ret = iavf_wait_for_reset(adapter); 4649 if (ret < 0) 4650 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4651 else if (ret) 4652 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4653 } 4654 4655 return ret; 4656 } 4657 4658 /** 4659 * iavf_disable_fdir - disable Flow Director and clear existing filters 4660 * @adapter: board private structure 4661 **/ 4662 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4663 { 4664 struct iavf_fdir_fltr *fdir, *fdirtmp; 4665 bool del_filters = false; 4666 4667 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4668 4669 /* remove all Flow Director filters */ 4670 spin_lock_bh(&adapter->fdir_fltr_lock); 4671 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4672 list) { 4673 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4674 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4675 /* Delete filters not registered in PF */ 4676 list_del(&fdir->list); 4677 iavf_dec_fdir_active_fltr(adapter, fdir); 4678 kfree(fdir); 4679 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4680 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4681 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4682 /* Filters registered in PF, schedule their deletion */ 4683 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4684 del_filters = true; 4685 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4686 /* Request to delete filter already sent to PF, change 4687 * state to DEL_PENDING to delete filter after PF's 4688 * response, not set as INACTIVE 4689 */ 4690 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4691 } 4692 } 4693 spin_unlock_bh(&adapter->fdir_fltr_lock); 4694 4695 if (del_filters) { 4696 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4697 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4698 } 4699 } 4700 4701 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4702 NETIF_F_HW_VLAN_CTAG_TX | \ 4703 NETIF_F_HW_VLAN_STAG_RX | \ 4704 NETIF_F_HW_VLAN_STAG_TX) 4705 4706 /** 4707 * iavf_set_features - set the netdev feature flags 4708 * @netdev: ptr to the netdev being adjusted 4709 * @features: the feature set that the stack is suggesting 4710 * Note: expects to be called while under rtnl_lock() 4711 **/ 4712 static int iavf_set_features(struct net_device *netdev, 4713 netdev_features_t features) 4714 { 4715 struct iavf_adapter *adapter = netdev_priv(netdev); 4716 4717 /* trigger update on any VLAN feature change */ 4718 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4719 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4720 iavf_set_vlan_offload_features(adapter, netdev->features, 4721 features); 4722 if (CRC_OFFLOAD_ALLOWED(adapter) && 4723 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4724 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4725 4726 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4727 if (features & NETIF_F_NTUPLE) 4728 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4729 else 4730 iavf_disable_fdir(adapter); 4731 } 4732 4733 return 0; 4734 } 4735 4736 /** 4737 * iavf_features_check - Validate encapsulated packet conforms to limits 4738 * @skb: skb buff 4739 * @dev: This physical port's netdev 4740 * @features: Offload features that the stack believes apply 4741 **/ 4742 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4743 struct net_device *dev, 4744 netdev_features_t features) 4745 { 4746 size_t len; 4747 4748 /* No point in doing any of this if neither checksum nor GSO are 4749 * being requested for this frame. We can rule out both by just 4750 * checking for CHECKSUM_PARTIAL 4751 */ 4752 if (skb->ip_summed != CHECKSUM_PARTIAL) 4753 return features; 4754 4755 /* We cannot support GSO if the MSS is going to be less than 4756 * 64 bytes. If it is then we need to drop support for GSO. 4757 */ 4758 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4759 features &= ~NETIF_F_GSO_MASK; 4760 4761 /* MACLEN can support at most 63 words */ 4762 len = skb_network_offset(skb); 4763 if (len & ~(63 * 2)) 4764 goto out_err; 4765 4766 /* IPLEN and EIPLEN can support at most 127 dwords */ 4767 len = skb_network_header_len(skb); 4768 if (len & ~(127 * 4)) 4769 goto out_err; 4770 4771 if (skb->encapsulation) { 4772 /* L4TUNLEN can support 127 words */ 4773 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4774 if (len & ~(127 * 2)) 4775 goto out_err; 4776 4777 /* IPLEN can support at most 127 dwords */ 4778 len = skb_inner_transport_header(skb) - 4779 skb_inner_network_header(skb); 4780 if (len & ~(127 * 4)) 4781 goto out_err; 4782 } 4783 4784 /* No need to validate L4LEN as TCP is the only protocol with a 4785 * flexible value and we support all possible values supported 4786 * by TCP, which is at most 15 dwords 4787 */ 4788 4789 return features; 4790 out_err: 4791 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4792 } 4793 4794 /** 4795 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4796 * @adapter: board private structure 4797 * 4798 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4799 * were negotiated determine the VLAN features that can be toggled on and off. 4800 **/ 4801 static netdev_features_t 4802 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4803 { 4804 netdev_features_t hw_features = 0; 4805 4806 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4807 return hw_features; 4808 4809 /* Enable VLAN features if supported */ 4810 if (VLAN_ALLOWED(adapter)) { 4811 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4812 NETIF_F_HW_VLAN_CTAG_RX); 4813 } else if (VLAN_V2_ALLOWED(adapter)) { 4814 struct virtchnl_vlan_caps *vlan_v2_caps = 4815 &adapter->vlan_v2_caps; 4816 struct virtchnl_vlan_supported_caps *stripping_support = 4817 &vlan_v2_caps->offloads.stripping_support; 4818 struct virtchnl_vlan_supported_caps *insertion_support = 4819 &vlan_v2_caps->offloads.insertion_support; 4820 4821 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4822 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4823 if (stripping_support->outer & 4824 VIRTCHNL_VLAN_ETHERTYPE_8100) 4825 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4826 if (stripping_support->outer & 4827 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4828 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4829 } else if (stripping_support->inner != 4830 VIRTCHNL_VLAN_UNSUPPORTED && 4831 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4832 if (stripping_support->inner & 4833 VIRTCHNL_VLAN_ETHERTYPE_8100) 4834 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4835 } 4836 4837 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4838 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4839 if (insertion_support->outer & 4840 VIRTCHNL_VLAN_ETHERTYPE_8100) 4841 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4842 if (insertion_support->outer & 4843 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4844 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4845 } else if (insertion_support->inner && 4846 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4847 if (insertion_support->inner & 4848 VIRTCHNL_VLAN_ETHERTYPE_8100) 4849 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4850 } 4851 } 4852 4853 if (CRC_OFFLOAD_ALLOWED(adapter)) 4854 hw_features |= NETIF_F_RXFCS; 4855 4856 return hw_features; 4857 } 4858 4859 /** 4860 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4861 * @adapter: board private structure 4862 * 4863 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4864 * were negotiated determine the VLAN features that are enabled by default. 4865 **/ 4866 static netdev_features_t 4867 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4868 { 4869 netdev_features_t features = 0; 4870 4871 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4872 return features; 4873 4874 if (VLAN_ALLOWED(adapter)) { 4875 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4876 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4877 } else if (VLAN_V2_ALLOWED(adapter)) { 4878 struct virtchnl_vlan_caps *vlan_v2_caps = 4879 &adapter->vlan_v2_caps; 4880 struct virtchnl_vlan_supported_caps *filtering_support = 4881 &vlan_v2_caps->filtering.filtering_support; 4882 struct virtchnl_vlan_supported_caps *stripping_support = 4883 &vlan_v2_caps->offloads.stripping_support; 4884 struct virtchnl_vlan_supported_caps *insertion_support = 4885 &vlan_v2_caps->offloads.insertion_support; 4886 u32 ethertype_init; 4887 4888 /* give priority to outer stripping and don't support both outer 4889 * and inner stripping 4890 */ 4891 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4892 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4893 if (stripping_support->outer & 4894 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4895 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4896 features |= NETIF_F_HW_VLAN_CTAG_RX; 4897 else if (stripping_support->outer & 4898 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4899 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4900 features |= NETIF_F_HW_VLAN_STAG_RX; 4901 } else if (stripping_support->inner != 4902 VIRTCHNL_VLAN_UNSUPPORTED) { 4903 if (stripping_support->inner & 4904 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4905 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4906 features |= NETIF_F_HW_VLAN_CTAG_RX; 4907 } 4908 4909 /* give priority to outer insertion and don't support both outer 4910 * and inner insertion 4911 */ 4912 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4913 if (insertion_support->outer & 4914 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4915 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4916 features |= NETIF_F_HW_VLAN_CTAG_TX; 4917 else if (insertion_support->outer & 4918 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4919 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4920 features |= NETIF_F_HW_VLAN_STAG_TX; 4921 } else if (insertion_support->inner != 4922 VIRTCHNL_VLAN_UNSUPPORTED) { 4923 if (insertion_support->inner & 4924 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4925 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4926 features |= NETIF_F_HW_VLAN_CTAG_TX; 4927 } 4928 4929 /* give priority to outer filtering and don't bother if both 4930 * outer and inner filtering are enabled 4931 */ 4932 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4933 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4934 if (filtering_support->outer & 4935 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4936 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4937 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4938 if (filtering_support->outer & 4939 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4940 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4941 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4942 } else if (filtering_support->inner != 4943 VIRTCHNL_VLAN_UNSUPPORTED) { 4944 if (filtering_support->inner & 4945 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4946 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4947 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4948 if (filtering_support->inner & 4949 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4950 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4951 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4952 } 4953 } 4954 4955 return features; 4956 } 4957 4958 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4959 (!(((requested) & (feature_bit)) && \ 4960 !((allowed) & (feature_bit)))) 4961 4962 /** 4963 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4964 * @adapter: board private structure 4965 * @requested_features: stack requested NETDEV features 4966 **/ 4967 static netdev_features_t 4968 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4969 netdev_features_t requested_features) 4970 { 4971 netdev_features_t allowed_features; 4972 4973 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4974 iavf_get_netdev_vlan_features(adapter); 4975 4976 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4977 allowed_features, 4978 NETIF_F_HW_VLAN_CTAG_TX)) 4979 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4980 4981 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4982 allowed_features, 4983 NETIF_F_HW_VLAN_CTAG_RX)) 4984 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4985 4986 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4987 allowed_features, 4988 NETIF_F_HW_VLAN_STAG_TX)) 4989 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4990 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4991 allowed_features, 4992 NETIF_F_HW_VLAN_STAG_RX)) 4993 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4994 4995 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4996 allowed_features, 4997 NETIF_F_HW_VLAN_CTAG_FILTER)) 4998 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4999 5000 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5001 allowed_features, 5002 NETIF_F_HW_VLAN_STAG_FILTER)) 5003 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 5004 5005 if ((requested_features & 5006 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5007 (requested_features & 5008 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 5009 adapter->vlan_v2_caps.offloads.ethertype_match == 5010 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 5011 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5012 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5013 NETIF_F_HW_VLAN_STAG_TX); 5014 } 5015 5016 return requested_features; 5017 } 5018 5019 /** 5020 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 5021 * @adapter: board private structure 5022 * @requested_features: stack requested NETDEV features 5023 * 5024 * Returns fixed-up features bits 5025 **/ 5026 static netdev_features_t 5027 iavf_fix_strip_features(struct iavf_adapter *adapter, 5028 netdev_features_t requested_features) 5029 { 5030 struct net_device *netdev = adapter->netdev; 5031 bool crc_offload_req, is_vlan_strip; 5032 netdev_features_t vlan_strip; 5033 int num_non_zero_vlan; 5034 5035 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 5036 (requested_features & NETIF_F_RXFCS); 5037 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 5038 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 5039 is_vlan_strip = requested_features & vlan_strip; 5040 5041 if (!crc_offload_req) 5042 return requested_features; 5043 5044 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 5045 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5046 requested_features &= ~vlan_strip; 5047 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5048 return requested_features; 5049 } 5050 5051 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5052 requested_features &= ~vlan_strip; 5053 if (!(netdev->features & vlan_strip)) 5054 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 5055 5056 return requested_features; 5057 } 5058 5059 if (num_non_zero_vlan && is_vlan_strip && 5060 !(netdev->features & NETIF_F_RXFCS)) { 5061 requested_features &= ~NETIF_F_RXFCS; 5062 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 5063 } 5064 5065 return requested_features; 5066 } 5067 5068 /** 5069 * iavf_fix_features - fix up the netdev feature bits 5070 * @netdev: our net device 5071 * @features: desired feature bits 5072 * 5073 * Returns fixed-up features bits 5074 **/ 5075 static netdev_features_t iavf_fix_features(struct net_device *netdev, 5076 netdev_features_t features) 5077 { 5078 struct iavf_adapter *adapter = netdev_priv(netdev); 5079 5080 features = iavf_fix_netdev_vlan_features(adapter, features); 5081 5082 if (!FDIR_FLTR_SUPPORT(adapter)) 5083 features &= ~NETIF_F_NTUPLE; 5084 5085 return iavf_fix_strip_features(adapter, features); 5086 } 5087 5088 static int iavf_hwstamp_get(struct net_device *netdev, 5089 struct kernel_hwtstamp_config *config) 5090 { 5091 struct iavf_adapter *adapter = netdev_priv(netdev); 5092 5093 *config = adapter->ptp.hwtstamp_config; 5094 5095 return 0; 5096 } 5097 5098 static int iavf_hwstamp_set(struct net_device *netdev, 5099 struct kernel_hwtstamp_config *config, 5100 struct netlink_ext_ack *extack) 5101 { 5102 struct iavf_adapter *adapter = netdev_priv(netdev); 5103 5104 return iavf_ptp_set_ts_config(adapter, config, extack); 5105 } 5106 5107 static int 5108 iavf_verify_shaper(struct net_shaper_binding *binding, 5109 const struct net_shaper *shaper, 5110 struct netlink_ext_ack *extack) 5111 { 5112 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5113 u64 vf_max; 5114 5115 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5116 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5117 if (vf_max && shaper->bw_max > vf_max) { 5118 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5119 shaper->bw_max, shaper->handle.id, 5120 vf_max); 5121 return -EINVAL; 5122 } 5123 } 5124 return 0; 5125 } 5126 5127 static int 5128 iavf_shaper_set(struct net_shaper_binding *binding, 5129 const struct net_shaper *shaper, 5130 struct netlink_ext_ack *extack) 5131 { 5132 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5133 const struct net_shaper_handle *handle = &shaper->handle; 5134 struct iavf_ring *tx_ring; 5135 int ret; 5136 5137 netdev_assert_locked(adapter->netdev); 5138 5139 if (handle->id >= adapter->num_active_queues) 5140 return 0; 5141 5142 ret = iavf_verify_shaper(binding, shaper, extack); 5143 if (ret) 5144 return ret; 5145 5146 tx_ring = &adapter->tx_rings[handle->id]; 5147 5148 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5149 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5150 tx_ring->q_shaper_update = true; 5151 5152 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5153 5154 return 0; 5155 } 5156 5157 static int iavf_shaper_del(struct net_shaper_binding *binding, 5158 const struct net_shaper_handle *handle, 5159 struct netlink_ext_ack *extack) 5160 { 5161 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5162 struct iavf_ring *tx_ring; 5163 5164 netdev_assert_locked(adapter->netdev); 5165 5166 if (handle->id >= adapter->num_active_queues) 5167 return 0; 5168 5169 tx_ring = &adapter->tx_rings[handle->id]; 5170 tx_ring->q_shaper.bw_min = 0; 5171 tx_ring->q_shaper.bw_max = 0; 5172 tx_ring->q_shaper_update = true; 5173 5174 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5175 5176 return 0; 5177 } 5178 5179 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5180 enum net_shaper_scope scope, 5181 unsigned long *flags) 5182 { 5183 if (scope != NET_SHAPER_SCOPE_QUEUE) 5184 return; 5185 5186 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5187 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5188 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5189 } 5190 5191 static const struct net_shaper_ops iavf_shaper_ops = { 5192 .set = iavf_shaper_set, 5193 .delete = iavf_shaper_del, 5194 .capabilities = iavf_shaper_cap, 5195 }; 5196 5197 static const struct net_device_ops iavf_netdev_ops = { 5198 .ndo_open = iavf_open, 5199 .ndo_stop = iavf_close, 5200 .ndo_start_xmit = iavf_xmit_frame, 5201 .ndo_set_rx_mode = iavf_set_rx_mode, 5202 .ndo_validate_addr = eth_validate_addr, 5203 .ndo_set_mac_address = iavf_set_mac, 5204 .ndo_change_mtu = iavf_change_mtu, 5205 .ndo_tx_timeout = iavf_tx_timeout, 5206 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5207 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5208 .ndo_features_check = iavf_features_check, 5209 .ndo_fix_features = iavf_fix_features, 5210 .ndo_set_features = iavf_set_features, 5211 .ndo_setup_tc = iavf_setup_tc, 5212 .net_shaper_ops = &iavf_shaper_ops, 5213 .ndo_hwtstamp_get = iavf_hwstamp_get, 5214 .ndo_hwtstamp_set = iavf_hwstamp_set, 5215 }; 5216 5217 /** 5218 * iavf_check_reset_complete - check that VF reset is complete 5219 * @hw: pointer to hw struct 5220 * 5221 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5222 **/ 5223 static int iavf_check_reset_complete(struct iavf_hw *hw) 5224 { 5225 u32 rstat; 5226 int i; 5227 5228 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5229 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5230 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5231 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5232 (rstat == VIRTCHNL_VFR_COMPLETED)) 5233 return 0; 5234 msleep(IAVF_RESET_WAIT_MS); 5235 } 5236 return -EBUSY; 5237 } 5238 5239 /** 5240 * iavf_process_config - Process the config information we got from the PF 5241 * @adapter: board private structure 5242 * 5243 * Verify that we have a valid config struct, and set up our netdev features 5244 * and our VSI struct. 5245 **/ 5246 int iavf_process_config(struct iavf_adapter *adapter) 5247 { 5248 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5249 netdev_features_t hw_vlan_features, vlan_features; 5250 struct net_device *netdev = adapter->netdev; 5251 netdev_features_t hw_enc_features; 5252 netdev_features_t hw_features; 5253 5254 hw_enc_features = NETIF_F_SG | 5255 NETIF_F_IP_CSUM | 5256 NETIF_F_IPV6_CSUM | 5257 NETIF_F_HIGHDMA | 5258 NETIF_F_SOFT_FEATURES | 5259 NETIF_F_TSO | 5260 NETIF_F_TSO_ECN | 5261 NETIF_F_TSO6 | 5262 NETIF_F_SCTP_CRC | 5263 NETIF_F_RXHASH | 5264 NETIF_F_RXCSUM | 5265 0; 5266 5267 /* advertise to stack only if offloads for encapsulated packets is 5268 * supported 5269 */ 5270 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5271 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5272 NETIF_F_GSO_GRE | 5273 NETIF_F_GSO_GRE_CSUM | 5274 NETIF_F_GSO_IPXIP4 | 5275 NETIF_F_GSO_IPXIP6 | 5276 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5277 NETIF_F_GSO_PARTIAL | 5278 0; 5279 5280 if (!(vfres->vf_cap_flags & 5281 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5282 netdev->gso_partial_features |= 5283 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5284 5285 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5286 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5287 netdev->hw_enc_features |= hw_enc_features; 5288 } 5289 /* record features VLANs can make use of */ 5290 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5291 5292 /* Write features and hw_features separately to avoid polluting 5293 * with, or dropping, features that are set when we registered. 5294 */ 5295 hw_features = hw_enc_features; 5296 5297 /* get HW VLAN features that can be toggled */ 5298 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5299 5300 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5301 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5302 TC_U32_SUPPORT(adapter)) 5303 hw_features |= NETIF_F_HW_TC; 5304 5305 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5306 hw_features |= NETIF_F_GSO_UDP_L4; 5307 5308 netdev->hw_features |= hw_features | hw_vlan_features; 5309 vlan_features = iavf_get_netdev_vlan_features(adapter); 5310 5311 netdev->features |= hw_features | vlan_features; 5312 5313 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5314 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5315 5316 if (FDIR_FLTR_SUPPORT(adapter)) { 5317 netdev->hw_features |= NETIF_F_NTUPLE; 5318 netdev->features |= NETIF_F_NTUPLE; 5319 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5320 } 5321 5322 netdev->priv_flags |= IFF_UNICAST_FLT; 5323 5324 /* Do not turn on offloads when they are requested to be turned off. 5325 * TSO needs minimum 576 bytes to work correctly. 5326 */ 5327 if (netdev->wanted_features) { 5328 if (!(netdev->wanted_features & NETIF_F_TSO) || 5329 netdev->mtu < 576) 5330 netdev->features &= ~NETIF_F_TSO; 5331 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5332 netdev->mtu < 576) 5333 netdev->features &= ~NETIF_F_TSO6; 5334 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5335 netdev->features &= ~NETIF_F_TSO_ECN; 5336 if (!(netdev->wanted_features & NETIF_F_GRO)) 5337 netdev->features &= ~NETIF_F_GRO; 5338 if (!(netdev->wanted_features & NETIF_F_GSO)) 5339 netdev->features &= ~NETIF_F_GSO; 5340 } 5341 5342 return 0; 5343 } 5344 5345 /** 5346 * iavf_probe - Device Initialization Routine 5347 * @pdev: PCI device information struct 5348 * @ent: entry in iavf_pci_tbl 5349 * 5350 * Returns 0 on success, negative on failure 5351 * 5352 * iavf_probe initializes an adapter identified by a pci_dev structure. 5353 * The OS initialization, configuring of the adapter private structure, 5354 * and a hardware reset occur. 5355 **/ 5356 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5357 { 5358 struct net_device *netdev; 5359 struct iavf_adapter *adapter = NULL; 5360 struct iavf_hw *hw = NULL; 5361 int err, len; 5362 5363 err = pci_enable_device(pdev); 5364 if (err) 5365 return err; 5366 5367 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5368 if (err) { 5369 dev_err(&pdev->dev, 5370 "DMA configuration failed: 0x%x\n", err); 5371 goto err_dma; 5372 } 5373 5374 err = pci_request_regions(pdev, iavf_driver_name); 5375 if (err) { 5376 dev_err(&pdev->dev, 5377 "pci_request_regions failed 0x%x\n", err); 5378 goto err_pci_reg; 5379 } 5380 5381 pci_set_master(pdev); 5382 5383 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5384 IAVF_MAX_REQ_QUEUES); 5385 if (!netdev) { 5386 err = -ENOMEM; 5387 goto err_alloc_etherdev; 5388 } 5389 5390 SET_NETDEV_DEV(netdev, &pdev->dev); 5391 5392 pci_set_drvdata(pdev, netdev); 5393 adapter = netdev_priv(netdev); 5394 5395 adapter->netdev = netdev; 5396 adapter->pdev = pdev; 5397 5398 hw = &adapter->hw; 5399 hw->back = adapter; 5400 5401 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5402 iavf_driver_name); 5403 if (!adapter->wq) { 5404 err = -ENOMEM; 5405 goto err_alloc_wq; 5406 } 5407 5408 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5409 iavf_change_state(adapter, __IAVF_STARTUP); 5410 5411 /* Call save state here because it relies on the adapter struct. */ 5412 pci_save_state(pdev); 5413 5414 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5415 pci_resource_len(pdev, 0)); 5416 if (!hw->hw_addr) { 5417 err = -EIO; 5418 goto err_ioremap; 5419 } 5420 hw->vendor_id = pdev->vendor; 5421 hw->device_id = pdev->device; 5422 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5423 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5424 hw->subsystem_device_id = pdev->subsystem_device; 5425 hw->bus.device = PCI_SLOT(pdev->devfn); 5426 hw->bus.func = PCI_FUNC(pdev->devfn); 5427 hw->bus.bus_id = pdev->bus->number; 5428 5429 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5430 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5431 if (!adapter->qos_caps) { 5432 err = -ENOMEM; 5433 goto err_alloc_qos_cap; 5434 } 5435 5436 mutex_init(&hw->aq.asq_mutex); 5437 mutex_init(&hw->aq.arq_mutex); 5438 5439 spin_lock_init(&adapter->mac_vlan_list_lock); 5440 spin_lock_init(&adapter->cloud_filter_list_lock); 5441 spin_lock_init(&adapter->fdir_fltr_lock); 5442 spin_lock_init(&adapter->adv_rss_lock); 5443 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5444 5445 INIT_LIST_HEAD(&adapter->mac_filter_list); 5446 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5447 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5448 INIT_LIST_HEAD(&adapter->fdir_list_head); 5449 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5450 5451 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5452 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5453 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5454 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5455 5456 /* Setup the wait queue for indicating transition to down status */ 5457 init_waitqueue_head(&adapter->down_waitqueue); 5458 5459 /* Setup the wait queue for indicating transition to running state */ 5460 init_waitqueue_head(&adapter->reset_waitqueue); 5461 5462 /* Setup the wait queue for indicating virtchannel events */ 5463 init_waitqueue_head(&adapter->vc_waitqueue); 5464 5465 INIT_LIST_HEAD(&adapter->ptp.aq_cmds); 5466 init_waitqueue_head(&adapter->ptp.phc_time_waitqueue); 5467 mutex_init(&adapter->ptp.aq_cmd_lock); 5468 5469 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5470 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5471 /* Initialization goes on in the work. Do not add more of it below. */ 5472 return 0; 5473 5474 err_alloc_qos_cap: 5475 iounmap(hw->hw_addr); 5476 err_ioremap: 5477 destroy_workqueue(adapter->wq); 5478 err_alloc_wq: 5479 free_netdev(netdev); 5480 err_alloc_etherdev: 5481 pci_release_regions(pdev); 5482 err_pci_reg: 5483 err_dma: 5484 pci_disable_device(pdev); 5485 return err; 5486 } 5487 5488 /** 5489 * iavf_suspend - Power management suspend routine 5490 * @dev_d: device info pointer 5491 * 5492 * Called when the system (VM) is entering sleep/suspend. 5493 **/ 5494 static int iavf_suspend(struct device *dev_d) 5495 { 5496 struct net_device *netdev = dev_get_drvdata(dev_d); 5497 struct iavf_adapter *adapter = netdev_priv(netdev); 5498 bool running; 5499 5500 netif_device_detach(netdev); 5501 5502 running = netif_running(netdev); 5503 if (running) 5504 rtnl_lock(); 5505 netdev_lock(netdev); 5506 5507 if (running) 5508 iavf_down(adapter); 5509 5510 iavf_free_misc_irq(adapter); 5511 iavf_reset_interrupt_capability(adapter); 5512 5513 netdev_unlock(netdev); 5514 if (running) 5515 rtnl_unlock(); 5516 5517 return 0; 5518 } 5519 5520 /** 5521 * iavf_resume - Power management resume routine 5522 * @dev_d: device info pointer 5523 * 5524 * Called when the system (VM) is resumed from sleep/suspend. 5525 **/ 5526 static int iavf_resume(struct device *dev_d) 5527 { 5528 struct pci_dev *pdev = to_pci_dev(dev_d); 5529 struct iavf_adapter *adapter; 5530 u32 err; 5531 5532 adapter = iavf_pdev_to_adapter(pdev); 5533 5534 pci_set_master(pdev); 5535 5536 rtnl_lock(); 5537 err = iavf_set_interrupt_capability(adapter); 5538 if (err) { 5539 rtnl_unlock(); 5540 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5541 return err; 5542 } 5543 err = iavf_request_misc_irq(adapter); 5544 rtnl_unlock(); 5545 if (err) { 5546 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5547 return err; 5548 } 5549 5550 queue_work(adapter->wq, &adapter->reset_task); 5551 5552 netif_device_attach(adapter->netdev); 5553 5554 return err; 5555 } 5556 5557 /** 5558 * iavf_remove - Device Removal Routine 5559 * @pdev: PCI device information struct 5560 * 5561 * iavf_remove is called by the PCI subsystem to alert the driver 5562 * that it should release a PCI device. The could be caused by a 5563 * Hot-Plug event, or because the driver is going to be removed from 5564 * memory. 5565 **/ 5566 static void iavf_remove(struct pci_dev *pdev) 5567 { 5568 struct iavf_fdir_fltr *fdir, *fdirtmp; 5569 struct iavf_vlan_filter *vlf, *vlftmp; 5570 struct iavf_cloud_filter *cf, *cftmp; 5571 struct iavf_adv_rss *rss, *rsstmp; 5572 struct iavf_mac_filter *f, *ftmp; 5573 struct iavf_adapter *adapter; 5574 struct net_device *netdev; 5575 struct iavf_hw *hw; 5576 5577 /* Don't proceed with remove if netdev is already freed */ 5578 netdev = pci_get_drvdata(pdev); 5579 if (!netdev) 5580 return; 5581 5582 adapter = iavf_pdev_to_adapter(pdev); 5583 hw = &adapter->hw; 5584 5585 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5586 return; 5587 5588 /* Wait until port initialization is complete. 5589 * There are flows where register/unregister netdev may race. 5590 */ 5591 while (1) { 5592 netdev_lock(netdev); 5593 if (adapter->state == __IAVF_RUNNING || 5594 adapter->state == __IAVF_DOWN || 5595 adapter->state == __IAVF_INIT_FAILED) { 5596 netdev_unlock(netdev); 5597 break; 5598 } 5599 /* Simply return if we already went through iavf_shutdown */ 5600 if (adapter->state == __IAVF_REMOVE) { 5601 netdev_unlock(netdev); 5602 return; 5603 } 5604 5605 netdev_unlock(netdev); 5606 usleep_range(500, 1000); 5607 } 5608 cancel_delayed_work_sync(&adapter->watchdog_task); 5609 cancel_work_sync(&adapter->finish_config); 5610 5611 if (netdev->reg_state == NETREG_REGISTERED) 5612 unregister_netdev(netdev); 5613 5614 netdev_lock(netdev); 5615 dev_info(&adapter->pdev->dev, "Removing device\n"); 5616 iavf_change_state(adapter, __IAVF_REMOVE); 5617 5618 iavf_request_reset(adapter); 5619 msleep(50); 5620 /* If the FW isn't responding, kick it once, but only once. */ 5621 if (!iavf_asq_done(hw)) { 5622 iavf_request_reset(adapter); 5623 msleep(50); 5624 } 5625 5626 iavf_ptp_release(adapter); 5627 5628 iavf_misc_irq_disable(adapter); 5629 /* Shut down all the garbage mashers on the detention level */ 5630 netdev_unlock(netdev); 5631 cancel_work_sync(&adapter->reset_task); 5632 cancel_delayed_work_sync(&adapter->watchdog_task); 5633 cancel_work_sync(&adapter->adminq_task); 5634 netdev_lock(netdev); 5635 5636 adapter->aq_required = 0; 5637 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5638 5639 iavf_free_all_tx_resources(adapter); 5640 iavf_free_all_rx_resources(adapter); 5641 iavf_free_misc_irq(adapter); 5642 iavf_free_interrupt_scheme(adapter); 5643 5644 iavf_free_rss(adapter); 5645 5646 if (hw->aq.asq.count) 5647 iavf_shutdown_adminq(hw); 5648 5649 /* destroy the locks only once, here */ 5650 mutex_destroy(&hw->aq.arq_mutex); 5651 mutex_destroy(&hw->aq.asq_mutex); 5652 netdev_unlock(netdev); 5653 5654 iounmap(hw->hw_addr); 5655 pci_release_regions(pdev); 5656 kfree(adapter->vf_res); 5657 spin_lock_bh(&adapter->mac_vlan_list_lock); 5658 /* If we got removed before an up/down sequence, we've got a filter 5659 * hanging out there that we need to get rid of. 5660 */ 5661 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5662 list_del(&f->list); 5663 kfree(f); 5664 } 5665 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5666 list) { 5667 list_del(&vlf->list); 5668 kfree(vlf); 5669 } 5670 5671 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5672 5673 spin_lock_bh(&adapter->cloud_filter_list_lock); 5674 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5675 list_del(&cf->list); 5676 kfree(cf); 5677 } 5678 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5679 5680 spin_lock_bh(&adapter->fdir_fltr_lock); 5681 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5682 list_del(&fdir->list); 5683 kfree(fdir); 5684 } 5685 spin_unlock_bh(&adapter->fdir_fltr_lock); 5686 5687 spin_lock_bh(&adapter->adv_rss_lock); 5688 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5689 list) { 5690 list_del(&rss->list); 5691 kfree(rss); 5692 } 5693 spin_unlock_bh(&adapter->adv_rss_lock); 5694 5695 destroy_workqueue(adapter->wq); 5696 5697 pci_set_drvdata(pdev, NULL); 5698 5699 free_netdev(netdev); 5700 5701 pci_disable_device(pdev); 5702 } 5703 5704 /** 5705 * iavf_shutdown - Shutdown the device in preparation for a reboot 5706 * @pdev: pci device structure 5707 **/ 5708 static void iavf_shutdown(struct pci_dev *pdev) 5709 { 5710 iavf_remove(pdev); 5711 5712 if (system_state == SYSTEM_POWER_OFF) 5713 pci_set_power_state(pdev, PCI_D3hot); 5714 } 5715 5716 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5717 5718 static struct pci_driver iavf_driver = { 5719 .name = iavf_driver_name, 5720 .id_table = iavf_pci_tbl, 5721 .probe = iavf_probe, 5722 .remove = iavf_remove, 5723 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5724 .shutdown = iavf_shutdown, 5725 }; 5726 5727 /** 5728 * iavf_init_module - Driver Registration Routine 5729 * 5730 * iavf_init_module is the first routine called when the driver is 5731 * loaded. All it does is register with the PCI subsystem. 5732 **/ 5733 static int __init iavf_init_module(void) 5734 { 5735 pr_info("iavf: %s\n", iavf_driver_string); 5736 5737 pr_info("%s\n", iavf_copyright); 5738 5739 return pci_register_driver(&iavf_driver); 5740 } 5741 5742 module_init(iavf_init_module); 5743 5744 /** 5745 * iavf_exit_module - Driver Exit Cleanup Routine 5746 * 5747 * iavf_exit_module is called just before the driver is removed 5748 * from memory. 5749 **/ 5750 static void __exit iavf_exit_module(void) 5751 { 5752 pci_unregister_driver(&iavf_driver); 5753 } 5754 5755 module_exit(iavf_exit_module); 5756 5757 /* iavf_main.c */ 5758