1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_prototype.h" 8 /* All iavf tracepoints are defined by the include below, which must 9 * be included exactly once across the whole kernel with 10 * CREATE_TRACE_POINTS defined 11 */ 12 #define CREATE_TRACE_POINTS 13 #include "iavf_trace.h" 14 15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 17 static int iavf_close(struct net_device *netdev); 18 static void iavf_init_get_resources(struct iavf_adapter *adapter); 19 static int iavf_check_reset_complete(struct iavf_hw *hw); 20 21 char iavf_driver_name[] = "iavf"; 22 static const char iavf_driver_string[] = 23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 24 25 static const char iavf_copyright[] = 26 "Copyright (c) 2013 - 2018 Intel Corporation."; 27 28 /* iavf_pci_tbl - PCI Device ID Table 29 * 30 * Wildcard entries (PCI_ANY_ID) should come last 31 * Last entry must be all 0s 32 * 33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 34 * Class, Class Mask, private data (not used) } 35 */ 36 static const struct pci_device_id iavf_pci_tbl[] = { 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 41 /* required last entry */ 42 {0, } 43 }; 44 45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 46 47 MODULE_ALIAS("i40evf"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_IMPORT_NS("LIBETH"); 50 MODULE_IMPORT_NS("LIBIE"); 51 MODULE_LICENSE("GPL v2"); 52 53 static const struct net_device_ops iavf_netdev_ops; 54 55 int iavf_status_to_errno(enum iavf_status status) 56 { 57 switch (status) { 58 case IAVF_SUCCESS: 59 return 0; 60 case IAVF_ERR_PARAM: 61 case IAVF_ERR_MAC_TYPE: 62 case IAVF_ERR_INVALID_MAC_ADDR: 63 case IAVF_ERR_INVALID_LINK_SETTINGS: 64 case IAVF_ERR_INVALID_PD_ID: 65 case IAVF_ERR_INVALID_QP_ID: 66 case IAVF_ERR_INVALID_CQ_ID: 67 case IAVF_ERR_INVALID_CEQ_ID: 68 case IAVF_ERR_INVALID_AEQ_ID: 69 case IAVF_ERR_INVALID_SIZE: 70 case IAVF_ERR_INVALID_ARP_INDEX: 71 case IAVF_ERR_INVALID_FPM_FUNC_ID: 72 case IAVF_ERR_QP_INVALID_MSG_SIZE: 73 case IAVF_ERR_INVALID_FRAG_COUNT: 74 case IAVF_ERR_INVALID_ALIGNMENT: 75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 76 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 77 case IAVF_ERR_INVALID_VF_ID: 78 case IAVF_ERR_INVALID_HMCFN_ID: 79 case IAVF_ERR_INVALID_PBLE_INDEX: 80 case IAVF_ERR_INVALID_SD_INDEX: 81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 82 case IAVF_ERR_INVALID_SD_TYPE: 83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 86 return -EINVAL; 87 case IAVF_ERR_NVM: 88 case IAVF_ERR_NVM_CHECKSUM: 89 case IAVF_ERR_PHY: 90 case IAVF_ERR_CONFIG: 91 case IAVF_ERR_UNKNOWN_PHY: 92 case IAVF_ERR_LINK_SETUP: 93 case IAVF_ERR_ADAPTER_STOPPED: 94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 95 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 96 case IAVF_ERR_RESET_FAILED: 97 case IAVF_ERR_BAD_PTR: 98 case IAVF_ERR_SWFW_SYNC: 99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 100 case IAVF_ERR_QUEUE_EMPTY: 101 case IAVF_ERR_FLUSHED_QUEUE: 102 case IAVF_ERR_OPCODE_MISMATCH: 103 case IAVF_ERR_CQP_COMPL_ERROR: 104 case IAVF_ERR_BACKING_PAGE_ERROR: 105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 106 case IAVF_ERR_MEMCPY_FAILED: 107 case IAVF_ERR_SRQ_ENABLED: 108 case IAVF_ERR_ADMIN_QUEUE_ERROR: 109 case IAVF_ERR_ADMIN_QUEUE_FULL: 110 case IAVF_ERR_BAD_RDMA_CQE: 111 case IAVF_ERR_NVM_BLANK_MODE: 112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 113 case IAVF_ERR_DIAG_TEST_FAILED: 114 case IAVF_ERR_FIRMWARE_API_VERSION: 115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 116 return -EIO; 117 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 118 return -ENODEV; 119 case IAVF_ERR_NO_AVAILABLE_VSI: 120 case IAVF_ERR_RING_FULL: 121 return -ENOSPC; 122 case IAVF_ERR_NO_MEMORY: 123 return -ENOMEM; 124 case IAVF_ERR_TIMEOUT: 125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 126 return -ETIMEDOUT; 127 case IAVF_ERR_NOT_IMPLEMENTED: 128 case IAVF_NOT_SUPPORTED: 129 return -EOPNOTSUPP; 130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 131 return -EALREADY; 132 case IAVF_ERR_NOT_READY: 133 return -EBUSY; 134 case IAVF_ERR_BUF_TOO_SHORT: 135 return -EMSGSIZE; 136 } 137 138 return -EIO; 139 } 140 141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 142 { 143 switch (v_status) { 144 case VIRTCHNL_STATUS_SUCCESS: 145 return 0; 146 case VIRTCHNL_STATUS_ERR_PARAM: 147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 148 return -EINVAL; 149 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 150 return -ENOMEM; 151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 154 return -EIO; 155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 156 return -EOPNOTSUPP; 157 } 158 159 return -EIO; 160 } 161 162 /** 163 * iavf_pdev_to_adapter - go from pci_dev to adapter 164 * @pdev: pci_dev pointer 165 */ 166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 167 { 168 return netdev_priv(pci_get_drvdata(pdev)); 169 } 170 171 /** 172 * iavf_is_reset_in_progress - Check if a reset is in progress 173 * @adapter: board private structure 174 */ 175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 176 { 177 if (adapter->state == __IAVF_RESETTING || 178 adapter->flags & (IAVF_FLAG_RESET_PENDING | 179 IAVF_FLAG_RESET_NEEDED)) 180 return true; 181 182 return false; 183 } 184 185 /** 186 * iavf_wait_for_reset - Wait for reset to finish. 187 * @adapter: board private structure 188 * 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 190 */ 191 int iavf_wait_for_reset(struct iavf_adapter *adapter) 192 { 193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 194 !iavf_is_reset_in_progress(adapter), 195 msecs_to_jiffies(5000)); 196 197 /* If ret < 0 then it means wait was interrupted. 198 * If ret == 0 then it means we got a timeout while waiting 199 * for reset to finish. 200 * If ret > 0 it means reset has finished. 201 */ 202 if (ret > 0) 203 return 0; 204 else if (ret < 0) 205 return -EINTR; 206 else 207 return -EBUSY; 208 } 209 210 /** 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 212 * @hw: pointer to the HW structure 213 * @mem: ptr to mem struct to fill out 214 * @size: size of memory requested 215 * @alignment: what to align the allocation to 216 **/ 217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 218 struct iavf_dma_mem *mem, 219 u64 size, u32 alignment) 220 { 221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 222 223 if (!mem) 224 return IAVF_ERR_PARAM; 225 226 mem->size = ALIGN(size, alignment); 227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 228 (dma_addr_t *)&mem->pa, GFP_KERNEL); 229 if (mem->va) 230 return 0; 231 else 232 return IAVF_ERR_NO_MEMORY; 233 } 234 235 /** 236 * iavf_free_dma_mem - wrapper for DMA memory freeing 237 * @hw: pointer to the HW structure 238 * @mem: ptr to mem struct to free 239 **/ 240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 241 { 242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 243 244 if (!mem || !mem->va) 245 return IAVF_ERR_PARAM; 246 dma_free_coherent(&adapter->pdev->dev, mem->size, 247 mem->va, (dma_addr_t)mem->pa); 248 return 0; 249 } 250 251 /** 252 * iavf_allocate_virt_mem - virt memory alloc wrapper 253 * @hw: pointer to the HW structure 254 * @mem: ptr to mem struct to fill out 255 * @size: size of memory requested 256 **/ 257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 258 struct iavf_virt_mem *mem, u32 size) 259 { 260 if (!mem) 261 return IAVF_ERR_PARAM; 262 263 mem->size = size; 264 mem->va = kzalloc(size, GFP_KERNEL); 265 266 if (mem->va) 267 return 0; 268 else 269 return IAVF_ERR_NO_MEMORY; 270 } 271 272 /** 273 * iavf_free_virt_mem - virt memory free wrapper 274 * @hw: pointer to the HW structure 275 * @mem: ptr to mem struct to free 276 **/ 277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 278 { 279 kfree(mem->va); 280 } 281 282 /** 283 * iavf_schedule_reset - Set the flags and schedule a reset event 284 * @adapter: board private structure 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 286 **/ 287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 288 { 289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 290 !(adapter->flags & 291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 292 adapter->flags |= flags; 293 queue_work(adapter->wq, &adapter->reset_task); 294 } 295 } 296 297 /** 298 * iavf_schedule_aq_request - Set the flags and schedule aq request 299 * @adapter: board private structure 300 * @flags: requested aq flags 301 **/ 302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 303 { 304 adapter->aq_required |= flags; 305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 306 } 307 308 /** 309 * iavf_tx_timeout - Respond to a Tx Hang 310 * @netdev: network interface device structure 311 * @txqueue: queue number that is timing out 312 **/ 313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 314 { 315 struct iavf_adapter *adapter = netdev_priv(netdev); 316 317 adapter->tx_timeout_count++; 318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 319 } 320 321 /** 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 323 * @adapter: board private structure 324 **/ 325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 326 { 327 struct iavf_hw *hw = &adapter->hw; 328 329 if (!adapter->msix_entries) 330 return; 331 332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 333 334 iavf_flush(hw); 335 336 synchronize_irq(adapter->msix_entries[0].vector); 337 } 338 339 /** 340 * iavf_misc_irq_enable - Enable default interrupt generation settings 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 350 351 iavf_flush(hw); 352 } 353 354 /** 355 * iavf_irq_disable - Mask off interrupt generation on the NIC 356 * @adapter: board private structure 357 **/ 358 static void iavf_irq_disable(struct iavf_adapter *adapter) 359 { 360 int i; 361 struct iavf_hw *hw = &adapter->hw; 362 363 if (!adapter->msix_entries) 364 return; 365 366 for (i = 1; i < adapter->num_msix_vectors; i++) { 367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 368 synchronize_irq(adapter->msix_entries[i].vector); 369 } 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_enable_queues - Enable interrupt for all queues 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 378 { 379 struct iavf_hw *hw = &adapter->hw; 380 int i; 381 382 for (i = 1; i < adapter->num_msix_vectors; i++) { 383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 386 } 387 } 388 389 /** 390 * iavf_irq_enable - Enable default interrupt generation settings 391 * @adapter: board private structure 392 * @flush: boolean value whether to run rd32() 393 **/ 394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 395 { 396 struct iavf_hw *hw = &adapter->hw; 397 398 iavf_misc_irq_enable(adapter); 399 iavf_irq_enable_queues(adapter); 400 401 if (flush) 402 iavf_flush(hw); 403 } 404 405 /** 406 * iavf_msix_aq - Interrupt handler for vector 0 407 * @irq: interrupt number 408 * @data: pointer to netdev 409 **/ 410 static irqreturn_t iavf_msix_aq(int irq, void *data) 411 { 412 struct net_device *netdev = data; 413 struct iavf_adapter *adapter = netdev_priv(netdev); 414 struct iavf_hw *hw = &adapter->hw; 415 416 /* handle non-queue interrupts, these reads clear the registers */ 417 rd32(hw, IAVF_VFINT_ICR01); 418 rd32(hw, IAVF_VFINT_ICR0_ENA1); 419 420 if (adapter->state != __IAVF_REMOVE) 421 /* schedule work on the private workqueue */ 422 queue_work(adapter->wq, &adapter->adminq_task); 423 424 return IRQ_HANDLED; 425 } 426 427 /** 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 429 * @irq: interrupt number 430 * @data: pointer to a q_vector 431 **/ 432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 433 { 434 struct iavf_q_vector *q_vector = data; 435 436 if (!q_vector->tx.ring && !q_vector->rx.ring) 437 return IRQ_HANDLED; 438 439 napi_schedule_irqoff(&q_vector->napi); 440 441 return IRQ_HANDLED; 442 } 443 444 /** 445 * iavf_map_vector_to_rxq - associate irqs with rx queues 446 * @adapter: board private structure 447 * @v_idx: interrupt number 448 * @r_idx: queue number 449 **/ 450 static void 451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 452 { 453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 455 struct iavf_hw *hw = &adapter->hw; 456 457 rx_ring->q_vector = q_vector; 458 rx_ring->next = q_vector->rx.ring; 459 rx_ring->vsi = &adapter->vsi; 460 q_vector->rx.ring = rx_ring; 461 q_vector->rx.count++; 462 q_vector->rx.next_update = jiffies + 1; 463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 464 q_vector->ring_mask |= BIT(r_idx); 465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 466 q_vector->rx.current_itr >> 1); 467 q_vector->rx.current_itr = q_vector->rx.target_itr; 468 } 469 470 /** 471 * iavf_map_vector_to_txq - associate irqs with tx queues 472 * @adapter: board private structure 473 * @v_idx: interrupt number 474 * @t_idx: queue number 475 **/ 476 static void 477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 478 { 479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 481 struct iavf_hw *hw = &adapter->hw; 482 483 tx_ring->q_vector = q_vector; 484 tx_ring->next = q_vector->tx.ring; 485 tx_ring->vsi = &adapter->vsi; 486 q_vector->tx.ring = tx_ring; 487 q_vector->tx.count++; 488 q_vector->tx.next_update = jiffies + 1; 489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 490 q_vector->num_ringpairs++; 491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 492 q_vector->tx.target_itr >> 1); 493 q_vector->tx.current_itr = q_vector->tx.target_itr; 494 } 495 496 /** 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 498 * @adapter: board private structure to initialize 499 * 500 * This function maps descriptor rings to the queue-specific vectors 501 * we were allotted through the MSI-X enabling code. Ideally, we'd have 502 * one vector per ring/queue, but on a constrained vector budget, we 503 * group the rings as "efficiently" as possible. You would add new 504 * mapping configurations in here. 505 **/ 506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 507 { 508 int rings_remaining = adapter->num_active_queues; 509 int ridx = 0, vidx = 0; 510 int q_vectors; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (; ridx < rings_remaining; ridx++) { 515 iavf_map_vector_to_rxq(adapter, vidx, ridx); 516 iavf_map_vector_to_txq(adapter, vidx, ridx); 517 518 /* In the case where we have more queues than vectors, continue 519 * round-robin on vectors until all queues are mapped. 520 */ 521 if (++vidx >= q_vectors) 522 vidx = 0; 523 } 524 525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 526 } 527 528 /** 529 * iavf_irq_affinity_notify - Callback for affinity changes 530 * @notify: context as to what irq was changed 531 * @mask: the new affinity mask 532 * 533 * This is a callback function used by the irq_set_affinity_notifier function 534 * so that we may register to receive changes to the irq affinity masks. 535 **/ 536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 537 const cpumask_t *mask) 538 { 539 struct iavf_q_vector *q_vector = 540 container_of(notify, struct iavf_q_vector, affinity_notify); 541 542 cpumask_copy(&q_vector->affinity_mask, mask); 543 } 544 545 /** 546 * iavf_irq_affinity_release - Callback for affinity notifier release 547 * @ref: internal core kernel usage 548 * 549 * This is a callback function used by the irq_set_affinity_notifier function 550 * to inform the current notification subscriber that they will no longer 551 * receive notifications. 552 **/ 553 static void iavf_irq_affinity_release(struct kref *ref) {} 554 555 /** 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 557 * @adapter: board private structure 558 * @basename: device basename 559 * 560 * Allocates MSI-X vectors for tx and rx handling, and requests 561 * interrupts from the kernel. 562 **/ 563 static int 564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 565 { 566 unsigned int vector, q_vectors; 567 unsigned int rx_int_idx = 0, tx_int_idx = 0; 568 int irq_num, err; 569 int cpu; 570 571 iavf_irq_disable(adapter); 572 /* Decrement for Other and TCP Timer vectors */ 573 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 574 575 for (vector = 0; vector < q_vectors; vector++) { 576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 577 578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 579 580 if (q_vector->tx.ring && q_vector->rx.ring) { 581 snprintf(q_vector->name, sizeof(q_vector->name), 582 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 583 tx_int_idx++; 584 } else if (q_vector->rx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-rx-%u", basename, rx_int_idx++); 587 } else if (q_vector->tx.ring) { 588 snprintf(q_vector->name, sizeof(q_vector->name), 589 "iavf-%s-tx-%u", basename, tx_int_idx++); 590 } else { 591 /* skip this unused q_vector */ 592 continue; 593 } 594 err = request_irq(irq_num, 595 iavf_msix_clean_rings, 596 0, 597 q_vector->name, 598 q_vector); 599 if (err) { 600 dev_info(&adapter->pdev->dev, 601 "Request_irq failed, error: %d\n", err); 602 goto free_queue_irqs; 603 } 604 /* register for affinity change notifications */ 605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 606 q_vector->affinity_notify.release = 607 iavf_irq_affinity_release; 608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 609 /* Spread the IRQ affinity hints across online CPUs. Note that 610 * get_cpu_mask returns a mask with a permanent lifetime so 611 * it's safe to use as a hint for irq_update_affinity_hint. 612 */ 613 cpu = cpumask_local_spread(q_vector->v_idx, -1); 614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 615 } 616 617 return 0; 618 619 free_queue_irqs: 620 while (vector) { 621 vector--; 622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 623 irq_set_affinity_notifier(irq_num, NULL); 624 irq_update_affinity_hint(irq_num, NULL); 625 free_irq(irq_num, &adapter->q_vectors[vector]); 626 } 627 return err; 628 } 629 630 /** 631 * iavf_request_misc_irq - Initialize MSI-X interrupts 632 * @adapter: board private structure 633 * 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 635 * vector is only for the admin queue, and stays active even when the netdev 636 * is closed. 637 **/ 638 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 639 { 640 struct net_device *netdev = adapter->netdev; 641 int err; 642 643 snprintf(adapter->misc_vector_name, 644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 645 dev_name(&adapter->pdev->dev)); 646 err = request_irq(adapter->msix_entries[0].vector, 647 &iavf_msix_aq, 0, 648 adapter->misc_vector_name, netdev); 649 if (err) { 650 dev_err(&adapter->pdev->dev, 651 "request_irq for %s failed: %d\n", 652 adapter->misc_vector_name, err); 653 free_irq(adapter->msix_entries[0].vector, netdev); 654 } 655 return err; 656 } 657 658 /** 659 * iavf_free_traffic_irqs - Free MSI-X interrupts 660 * @adapter: board private structure 661 * 662 * Frees all MSI-X vectors other than 0. 663 **/ 664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 665 { 666 int vector, irq_num, q_vectors; 667 668 if (!adapter->msix_entries) 669 return; 670 671 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 672 673 for (vector = 0; vector < q_vectors; vector++) { 674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 675 irq_set_affinity_notifier(irq_num, NULL); 676 irq_update_affinity_hint(irq_num, NULL); 677 free_irq(irq_num, &adapter->q_vectors[vector]); 678 } 679 } 680 681 /** 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 683 * @adapter: board private structure 684 * 685 * Frees MSI-X vector 0. 686 **/ 687 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 688 { 689 struct net_device *netdev = adapter->netdev; 690 691 if (!adapter->msix_entries) 692 return; 693 694 free_irq(adapter->msix_entries[0].vector, netdev); 695 } 696 697 /** 698 * iavf_configure_tx - Configure Transmit Unit after Reset 699 * @adapter: board private structure 700 * 701 * Configure the Tx unit of the MAC after a reset. 702 **/ 703 static void iavf_configure_tx(struct iavf_adapter *adapter) 704 { 705 struct iavf_hw *hw = &adapter->hw; 706 int i; 707 708 for (i = 0; i < adapter->num_active_queues; i++) 709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 710 } 711 712 /** 713 * iavf_configure_rx - Configure Receive Unit after Reset 714 * @adapter: board private structure 715 * 716 * Configure the Rx unit of the MAC after a reset. 717 **/ 718 static void iavf_configure_rx(struct iavf_adapter *adapter) 719 { 720 struct iavf_hw *hw = &adapter->hw; 721 722 for (u32 i = 0; i < adapter->num_active_queues; i++) 723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 724 } 725 726 /** 727 * iavf_find_vlan - Search filter list for specific vlan filter 728 * @adapter: board private structure 729 * @vlan: vlan tag 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 736 struct iavf_vlan vlan) 737 { 738 struct iavf_vlan_filter *f; 739 740 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 741 if (f->vlan.vid == vlan.vid && 742 f->vlan.tpid == vlan.tpid) 743 return f; 744 } 745 746 return NULL; 747 } 748 749 /** 750 * iavf_add_vlan - Add a vlan filter to the list 751 * @adapter: board private structure 752 * @vlan: VLAN tag 753 * 754 * Returns ptr to the filter object or NULL when no memory available. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f = NULL; 761 762 spin_lock_bh(&adapter->mac_vlan_list_lock); 763 764 f = iavf_find_vlan(adapter, vlan); 765 if (!f) { 766 f = kzalloc(sizeof(*f), GFP_ATOMIC); 767 if (!f) 768 goto clearout; 769 770 f->vlan = vlan; 771 772 list_add_tail(&f->list, &adapter->vlan_filter_list); 773 f->state = IAVF_VLAN_ADD; 774 adapter->num_vlan_filters++; 775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 776 } 777 778 clearout: 779 spin_unlock_bh(&adapter->mac_vlan_list_lock); 780 return f; 781 } 782 783 /** 784 * iavf_del_vlan - Remove a vlan filter from the list 785 * @adapter: board private structure 786 * @vlan: VLAN tag 787 **/ 788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 789 { 790 struct iavf_vlan_filter *f; 791 792 spin_lock_bh(&adapter->mac_vlan_list_lock); 793 794 f = iavf_find_vlan(adapter, vlan); 795 if (f) { 796 f->state = IAVF_VLAN_REMOVE; 797 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 798 } 799 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 } 802 803 /** 804 * iavf_restore_filters 805 * @adapter: board private structure 806 * 807 * Restore existing non MAC filters when VF netdev comes back up 808 **/ 809 static void iavf_restore_filters(struct iavf_adapter *adapter) 810 { 811 struct iavf_vlan_filter *f; 812 813 /* re-add all VLAN filters */ 814 spin_lock_bh(&adapter->mac_vlan_list_lock); 815 816 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 817 if (f->state == IAVF_VLAN_INACTIVE) 818 f->state = IAVF_VLAN_ADD; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 823 } 824 825 /** 826 * iavf_get_num_vlans_added - get number of VLANs added 827 * @adapter: board private structure 828 */ 829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 830 { 831 return adapter->num_vlan_filters; 832 } 833 834 /** 835 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 836 * @adapter: board private structure 837 * 838 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 839 * do not impose a limit as that maintains current behavior and for 840 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 841 **/ 842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 843 { 844 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 845 * never been a limit on the VF driver side 846 */ 847 if (VLAN_ALLOWED(adapter)) 848 return VLAN_N_VID; 849 else if (VLAN_V2_ALLOWED(adapter)) 850 return adapter->vlan_v2_caps.filtering.max_filters; 851 852 return 0; 853 } 854 855 /** 856 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 857 * @adapter: board private structure 858 **/ 859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 860 { 861 if (iavf_get_num_vlans_added(adapter) < 862 iavf_get_max_vlans_allowed(adapter)) 863 return false; 864 865 return true; 866 } 867 868 /** 869 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 870 * @netdev: network device struct 871 * @proto: unused protocol data 872 * @vid: VLAN tag 873 **/ 874 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 875 __always_unused __be16 proto, u16 vid) 876 { 877 struct iavf_adapter *adapter = netdev_priv(netdev); 878 879 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 880 if (!vid) 881 return 0; 882 883 if (!VLAN_FILTERING_ALLOWED(adapter)) 884 return -EIO; 885 886 if (iavf_max_vlans_added(adapter)) { 887 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 888 iavf_get_max_vlans_allowed(adapter)); 889 return -EIO; 890 } 891 892 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 893 return -ENOMEM; 894 895 return 0; 896 } 897 898 /** 899 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 900 * @netdev: network device struct 901 * @proto: unused protocol data 902 * @vid: VLAN tag 903 **/ 904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 905 __always_unused __be16 proto, u16 vid) 906 { 907 struct iavf_adapter *adapter = netdev_priv(netdev); 908 909 /* We do not track VLAN 0 filter */ 910 if (!vid) 911 return 0; 912 913 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 914 return 0; 915 } 916 917 /** 918 * iavf_find_filter - Search filter list for specific mac filter 919 * @adapter: board private structure 920 * @macaddr: the MAC address 921 * 922 * Returns ptr to the filter object or NULL. Must be called while holding the 923 * mac_vlan_list_lock. 924 **/ 925 static struct 926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 927 const u8 *macaddr) 928 { 929 struct iavf_mac_filter *f; 930 931 if (!macaddr) 932 return NULL; 933 934 list_for_each_entry(f, &adapter->mac_filter_list, list) { 935 if (ether_addr_equal(macaddr, f->macaddr)) 936 return f; 937 } 938 return NULL; 939 } 940 941 /** 942 * iavf_add_filter - Add a mac filter to the filter list 943 * @adapter: board private structure 944 * @macaddr: the MAC address 945 * 946 * Returns ptr to the filter object or NULL when no memory available. 947 **/ 948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 949 const u8 *macaddr) 950 { 951 struct iavf_mac_filter *f; 952 953 if (!macaddr) 954 return NULL; 955 956 f = iavf_find_filter(adapter, macaddr); 957 if (!f) { 958 f = kzalloc(sizeof(*f), GFP_ATOMIC); 959 if (!f) 960 return f; 961 962 ether_addr_copy(f->macaddr, macaddr); 963 964 list_add_tail(&f->list, &adapter->mac_filter_list); 965 f->add = true; 966 f->add_handled = false; 967 f->is_new_mac = true; 968 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 970 } else { 971 f->remove = false; 972 } 973 974 return f; 975 } 976 977 /** 978 * iavf_replace_primary_mac - Replace current primary address 979 * @adapter: board private structure 980 * @new_mac: new MAC address to be applied 981 * 982 * Replace current dev_addr and send request to PF for removal of previous 983 * primary MAC address filter and addition of new primary MAC filter. 984 * Return 0 for success, -ENOMEM for failure. 985 * 986 * Do not call this with mac_vlan_list_lock! 987 **/ 988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 989 const u8 *new_mac) 990 { 991 struct iavf_hw *hw = &adapter->hw; 992 struct iavf_mac_filter *new_f; 993 struct iavf_mac_filter *old_f; 994 995 spin_lock_bh(&adapter->mac_vlan_list_lock); 996 997 new_f = iavf_add_filter(adapter, new_mac); 998 if (!new_f) { 999 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1000 return -ENOMEM; 1001 } 1002 1003 old_f = iavf_find_filter(adapter, hw->mac.addr); 1004 if (old_f) { 1005 old_f->is_primary = false; 1006 old_f->remove = true; 1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1008 } 1009 /* Always send the request to add if changing primary MAC, 1010 * even if filter is already present on the list 1011 */ 1012 new_f->is_primary = true; 1013 new_f->add = true; 1014 ether_addr_copy(hw->mac.addr, new_mac); 1015 1016 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1017 1018 /* schedule the watchdog task to immediately process the request */ 1019 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1020 return 0; 1021 } 1022 1023 /** 1024 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1025 * @netdev: network interface device structure 1026 * @macaddr: MAC address to set 1027 * 1028 * Returns true on success, false on failure 1029 */ 1030 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1031 const u8 *macaddr) 1032 { 1033 struct iavf_adapter *adapter = netdev_priv(netdev); 1034 struct iavf_mac_filter *f; 1035 bool ret = false; 1036 1037 spin_lock_bh(&adapter->mac_vlan_list_lock); 1038 1039 f = iavf_find_filter(adapter, macaddr); 1040 1041 if (!f || (!f->add && f->add_handled)) 1042 ret = true; 1043 1044 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1045 1046 return ret; 1047 } 1048 1049 /** 1050 * iavf_set_mac - NDO callback to set port MAC address 1051 * @netdev: network interface device structure 1052 * @p: pointer to an address structure 1053 * 1054 * Returns 0 on success, negative on failure 1055 */ 1056 static int iavf_set_mac(struct net_device *netdev, void *p) 1057 { 1058 struct iavf_adapter *adapter = netdev_priv(netdev); 1059 struct sockaddr *addr = p; 1060 int ret; 1061 1062 if (!is_valid_ether_addr(addr->sa_data)) 1063 return -EADDRNOTAVAIL; 1064 1065 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1066 1067 if (ret) 1068 return ret; 1069 1070 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1071 iavf_is_mac_set_handled(netdev, addr->sa_data), 1072 msecs_to_jiffies(2500)); 1073 1074 /* If ret < 0 then it means wait was interrupted. 1075 * If ret == 0 then it means we got a timeout. 1076 * else it means we got response for set MAC from PF, 1077 * check if netdev MAC was updated to requested MAC, 1078 * if yes then set MAC succeeded otherwise it failed return -EACCES 1079 */ 1080 if (ret < 0) 1081 return ret; 1082 1083 if (!ret) 1084 return -EAGAIN; 1085 1086 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1087 return -EACCES; 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1094 * @netdev: the netdevice 1095 * @addr: address to add 1096 * 1097 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1098 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1099 */ 1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1101 { 1102 struct iavf_adapter *adapter = netdev_priv(netdev); 1103 1104 if (iavf_add_filter(adapter, addr)) 1105 return 0; 1106 else 1107 return -ENOMEM; 1108 } 1109 1110 /** 1111 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1112 * @netdev: the netdevice 1113 * @addr: address to add 1114 * 1115 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1116 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1117 */ 1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct iavf_mac_filter *f; 1122 1123 /* Under some circumstances, we might receive a request to delete 1124 * our own device address from our uc list. Because we store the 1125 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1126 * such requests and not delete our device address from this list. 1127 */ 1128 if (ether_addr_equal(addr, netdev->dev_addr)) 1129 return 0; 1130 1131 f = iavf_find_filter(adapter, addr); 1132 if (f) { 1133 f->remove = true; 1134 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1141 * @adapter: device specific adapter 1142 */ 1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1144 { 1145 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1146 (IFF_PROMISC | IFF_ALLMULTI); 1147 } 1148 1149 /** 1150 * iavf_set_rx_mode - NDO callback to set the netdev filters 1151 * @netdev: network interface device structure 1152 **/ 1153 static void iavf_set_rx_mode(struct net_device *netdev) 1154 { 1155 struct iavf_adapter *adapter = netdev_priv(netdev); 1156 1157 spin_lock_bh(&adapter->mac_vlan_list_lock); 1158 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1159 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1160 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1161 1162 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1163 if (iavf_promiscuous_mode_changed(adapter)) 1164 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1165 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1166 } 1167 1168 /** 1169 * iavf_napi_enable_all - enable NAPI on all queue vectors 1170 * @adapter: board private structure 1171 **/ 1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1173 { 1174 int q_idx; 1175 struct iavf_q_vector *q_vector; 1176 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1177 1178 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1179 struct napi_struct *napi; 1180 1181 q_vector = &adapter->q_vectors[q_idx]; 1182 napi = &q_vector->napi; 1183 napi_enable(napi); 1184 } 1185 } 1186 1187 /** 1188 * iavf_napi_disable_all - disable NAPI on all queue vectors 1189 * @adapter: board private structure 1190 **/ 1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1192 { 1193 int q_idx; 1194 struct iavf_q_vector *q_vector; 1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1196 1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1198 q_vector = &adapter->q_vectors[q_idx]; 1199 napi_disable(&q_vector->napi); 1200 } 1201 } 1202 1203 /** 1204 * iavf_configure - set up transmit and receive data structures 1205 * @adapter: board private structure 1206 **/ 1207 static void iavf_configure(struct iavf_adapter *adapter) 1208 { 1209 struct net_device *netdev = adapter->netdev; 1210 int i; 1211 1212 iavf_set_rx_mode(netdev); 1213 1214 iavf_configure_tx(adapter); 1215 iavf_configure_rx(adapter); 1216 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1217 1218 for (i = 0; i < adapter->num_active_queues; i++) { 1219 struct iavf_ring *ring = &adapter->rx_rings[i]; 1220 1221 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1222 } 1223 } 1224 1225 /** 1226 * iavf_up_complete - Finish the last steps of bringing up a connection 1227 * @adapter: board private structure 1228 * 1229 * Expects to be called while holding crit_lock. 1230 **/ 1231 static void iavf_up_complete(struct iavf_adapter *adapter) 1232 { 1233 iavf_change_state(adapter, __IAVF_RUNNING); 1234 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1235 1236 iavf_napi_enable_all(adapter); 1237 1238 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1239 } 1240 1241 /** 1242 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1243 * yet and mark other to be removed. 1244 * @adapter: board private structure 1245 **/ 1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1247 { 1248 struct iavf_vlan_filter *vlf, *vlftmp; 1249 struct iavf_mac_filter *f, *ftmp; 1250 1251 spin_lock_bh(&adapter->mac_vlan_list_lock); 1252 /* clear the sync flag on all filters */ 1253 __dev_uc_unsync(adapter->netdev, NULL); 1254 __dev_mc_unsync(adapter->netdev, NULL); 1255 1256 /* remove all MAC filters */ 1257 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1258 list) { 1259 if (f->add) { 1260 list_del(&f->list); 1261 kfree(f); 1262 } else { 1263 f->remove = true; 1264 } 1265 } 1266 1267 /* disable all VLAN filters */ 1268 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1269 list) 1270 vlf->state = IAVF_VLAN_DISABLE; 1271 1272 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1273 } 1274 1275 /** 1276 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1277 * mark other to be removed. 1278 * @adapter: board private structure 1279 **/ 1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1281 { 1282 struct iavf_cloud_filter *cf, *cftmp; 1283 1284 /* remove all cloud filters */ 1285 spin_lock_bh(&adapter->cloud_filter_list_lock); 1286 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1287 list) { 1288 if (cf->add) { 1289 list_del(&cf->list); 1290 kfree(cf); 1291 adapter->num_cloud_filters--; 1292 } else { 1293 cf->del = true; 1294 } 1295 } 1296 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1297 } 1298 1299 /** 1300 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1301 * other to be removed. 1302 * @adapter: board private structure 1303 **/ 1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1305 { 1306 struct iavf_fdir_fltr *fdir; 1307 1308 /* remove all Flow Director filters */ 1309 spin_lock_bh(&adapter->fdir_fltr_lock); 1310 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1311 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1312 /* Cancel a request, keep filter as inactive */ 1313 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1314 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1315 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1316 /* Disable filters which are active or have a pending 1317 * request to PF to be added 1318 */ 1319 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1320 } 1321 } 1322 spin_unlock_bh(&adapter->fdir_fltr_lock); 1323 } 1324 1325 /** 1326 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1327 * other to be removed. 1328 * @adapter: board private structure 1329 **/ 1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1331 { 1332 struct iavf_adv_rss *rss, *rsstmp; 1333 1334 /* remove all advance RSS configuration */ 1335 spin_lock_bh(&adapter->adv_rss_lock); 1336 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1337 list) { 1338 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1339 list_del(&rss->list); 1340 kfree(rss); 1341 } else { 1342 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1343 } 1344 } 1345 spin_unlock_bh(&adapter->adv_rss_lock); 1346 } 1347 1348 /** 1349 * iavf_down - Shutdown the connection processing 1350 * @adapter: board private structure 1351 * 1352 * Expects to be called while holding crit_lock. 1353 **/ 1354 void iavf_down(struct iavf_adapter *adapter) 1355 { 1356 struct net_device *netdev = adapter->netdev; 1357 1358 if (adapter->state <= __IAVF_DOWN_PENDING) 1359 return; 1360 1361 netif_carrier_off(netdev); 1362 netif_tx_disable(netdev); 1363 adapter->link_up = false; 1364 iavf_napi_disable_all(adapter); 1365 iavf_irq_disable(adapter); 1366 1367 iavf_clear_mac_vlan_filters(adapter); 1368 iavf_clear_cloud_filters(adapter); 1369 iavf_clear_fdir_filters(adapter); 1370 iavf_clear_adv_rss_conf(adapter); 1371 1372 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1373 return; 1374 1375 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1376 /* cancel any current operation */ 1377 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1378 /* Schedule operations to close down the HW. Don't wait 1379 * here for this to complete. The watchdog is still running 1380 * and it will take care of this. 1381 */ 1382 if (!list_empty(&adapter->mac_filter_list)) 1383 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1384 if (!list_empty(&adapter->vlan_filter_list)) 1385 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1386 if (!list_empty(&adapter->cloud_filter_list)) 1387 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1388 if (!list_empty(&adapter->fdir_list_head)) 1389 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1390 if (!list_empty(&adapter->adv_rss_list_head)) 1391 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1392 } 1393 1394 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1395 } 1396 1397 /** 1398 * iavf_acquire_msix_vectors - Setup the MSIX capability 1399 * @adapter: board private structure 1400 * @vectors: number of vectors to request 1401 * 1402 * Work with the OS to set up the MSIX vectors needed. 1403 * 1404 * Returns 0 on success, negative on failure 1405 **/ 1406 static int 1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1408 { 1409 int err, vector_threshold; 1410 1411 /* We'll want at least 3 (vector_threshold): 1412 * 0) Other (Admin Queue and link, mostly) 1413 * 1) TxQ[0] Cleanup 1414 * 2) RxQ[0] Cleanup 1415 */ 1416 vector_threshold = MIN_MSIX_COUNT; 1417 1418 /* The more we get, the more we will assign to Tx/Rx Cleanup 1419 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1420 * Right now, we simply care about how many we'll get; we'll 1421 * set them up later while requesting irq's. 1422 */ 1423 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1424 vector_threshold, vectors); 1425 if (err < 0) { 1426 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1427 kfree(adapter->msix_entries); 1428 adapter->msix_entries = NULL; 1429 return err; 1430 } 1431 1432 /* Adjust for only the vectors we'll use, which is minimum 1433 * of max_msix_q_vectors + NONQ_VECS, or the number of 1434 * vectors we were allocated. 1435 */ 1436 adapter->num_msix_vectors = err; 1437 return 0; 1438 } 1439 1440 /** 1441 * iavf_free_queues - Free memory for all rings 1442 * @adapter: board private structure to initialize 1443 * 1444 * Free all of the memory associated with queue pairs. 1445 **/ 1446 static void iavf_free_queues(struct iavf_adapter *adapter) 1447 { 1448 if (!adapter->vsi_res) 1449 return; 1450 adapter->num_active_queues = 0; 1451 kfree(adapter->tx_rings); 1452 adapter->tx_rings = NULL; 1453 kfree(adapter->rx_rings); 1454 adapter->rx_rings = NULL; 1455 } 1456 1457 /** 1458 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1459 * @adapter: board private structure 1460 * 1461 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1462 * stripped in certain descriptor fields. Instead of checking the offload 1463 * capability bits in the hot path, cache the location the ring specific 1464 * flags. 1465 */ 1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1467 { 1468 int i; 1469 1470 for (i = 0; i < adapter->num_active_queues; i++) { 1471 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1472 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1473 1474 /* prevent multiple L2TAG bits being set after VFR */ 1475 tx_ring->flags &= 1476 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1478 rx_ring->flags &= 1479 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1480 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1481 1482 if (VLAN_ALLOWED(adapter)) { 1483 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1484 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1485 } else if (VLAN_V2_ALLOWED(adapter)) { 1486 struct virtchnl_vlan_supported_caps *stripping_support; 1487 struct virtchnl_vlan_supported_caps *insertion_support; 1488 1489 stripping_support = 1490 &adapter->vlan_v2_caps.offloads.stripping_support; 1491 insertion_support = 1492 &adapter->vlan_v2_caps.offloads.insertion_support; 1493 1494 if (stripping_support->outer) { 1495 if (stripping_support->outer & 1496 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1497 rx_ring->flags |= 1498 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1499 else if (stripping_support->outer & 1500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1501 rx_ring->flags |= 1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1503 } else if (stripping_support->inner) { 1504 if (stripping_support->inner & 1505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1506 rx_ring->flags |= 1507 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1508 else if (stripping_support->inner & 1509 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1510 rx_ring->flags |= 1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1512 } 1513 1514 if (insertion_support->outer) { 1515 if (insertion_support->outer & 1516 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1517 tx_ring->flags |= 1518 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1519 else if (insertion_support->outer & 1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1521 tx_ring->flags |= 1522 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1523 } else if (insertion_support->inner) { 1524 if (insertion_support->inner & 1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1526 tx_ring->flags |= 1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1528 else if (insertion_support->inner & 1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1530 tx_ring->flags |= 1531 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1532 } 1533 } 1534 } 1535 } 1536 1537 /** 1538 * iavf_alloc_queues - Allocate memory for all rings 1539 * @adapter: board private structure to initialize 1540 * 1541 * We allocate one ring per queue at run-time since we don't know the 1542 * number of queues at compile-time. The polling_netdev array is 1543 * intended for Multiqueue, but should work fine with a single queue. 1544 **/ 1545 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1546 { 1547 int i, num_active_queues; 1548 1549 /* If we're in reset reallocating queues we don't actually know yet for 1550 * certain the PF gave us the number of queues we asked for but we'll 1551 * assume it did. Once basic reset is finished we'll confirm once we 1552 * start negotiating config with PF. 1553 */ 1554 if (adapter->num_req_queues) 1555 num_active_queues = adapter->num_req_queues; 1556 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1557 adapter->num_tc) 1558 num_active_queues = adapter->ch_config.total_qps; 1559 else 1560 num_active_queues = min_t(int, 1561 adapter->vsi_res->num_queue_pairs, 1562 (int)(num_online_cpus())); 1563 1564 1565 adapter->tx_rings = kcalloc(num_active_queues, 1566 sizeof(struct iavf_ring), GFP_KERNEL); 1567 if (!adapter->tx_rings) 1568 goto err_out; 1569 adapter->rx_rings = kcalloc(num_active_queues, 1570 sizeof(struct iavf_ring), GFP_KERNEL); 1571 if (!adapter->rx_rings) 1572 goto err_out; 1573 1574 for (i = 0; i < num_active_queues; i++) { 1575 struct iavf_ring *tx_ring; 1576 struct iavf_ring *rx_ring; 1577 1578 tx_ring = &adapter->tx_rings[i]; 1579 1580 tx_ring->queue_index = i; 1581 tx_ring->netdev = adapter->netdev; 1582 tx_ring->dev = &adapter->pdev->dev; 1583 tx_ring->count = adapter->tx_desc_count; 1584 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1585 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1586 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1587 1588 rx_ring = &adapter->rx_rings[i]; 1589 rx_ring->queue_index = i; 1590 rx_ring->netdev = adapter->netdev; 1591 rx_ring->count = adapter->rx_desc_count; 1592 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1593 } 1594 1595 adapter->num_active_queues = num_active_queues; 1596 1597 iavf_set_queue_vlan_tag_loc(adapter); 1598 1599 return 0; 1600 1601 err_out: 1602 iavf_free_queues(adapter); 1603 return -ENOMEM; 1604 } 1605 1606 /** 1607 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1608 * @adapter: board private structure to initialize 1609 * 1610 * Attempt to configure the interrupts using the best available 1611 * capabilities of the hardware and the kernel. 1612 **/ 1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1614 { 1615 int vector, v_budget; 1616 int pairs = 0; 1617 int err = 0; 1618 1619 if (!adapter->vsi_res) { 1620 err = -EIO; 1621 goto out; 1622 } 1623 pairs = adapter->num_active_queues; 1624 1625 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1626 * us much good if we have more vectors than CPUs. However, we already 1627 * limit the total number of queues by the number of CPUs so we do not 1628 * need any further limiting here. 1629 */ 1630 v_budget = min_t(int, pairs + NONQ_VECS, 1631 (int)adapter->vf_res->max_vectors); 1632 1633 adapter->msix_entries = kcalloc(v_budget, 1634 sizeof(struct msix_entry), GFP_KERNEL); 1635 if (!adapter->msix_entries) { 1636 err = -ENOMEM; 1637 goto out; 1638 } 1639 1640 for (vector = 0; vector < v_budget; vector++) 1641 adapter->msix_entries[vector].entry = vector; 1642 1643 err = iavf_acquire_msix_vectors(adapter, v_budget); 1644 if (!err) 1645 iavf_schedule_finish_config(adapter); 1646 1647 out: 1648 return err; 1649 } 1650 1651 /** 1652 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1653 * @adapter: board private structure 1654 * 1655 * Return 0 on success, negative on failure 1656 **/ 1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1658 { 1659 struct iavf_aqc_get_set_rss_key_data *rss_key = 1660 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1661 struct iavf_hw *hw = &adapter->hw; 1662 enum iavf_status status; 1663 1664 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1665 /* bail because we already have a command pending */ 1666 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1667 adapter->current_op); 1668 return -EBUSY; 1669 } 1670 1671 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1672 if (status) { 1673 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1674 iavf_stat_str(hw, status), 1675 iavf_aq_str(hw, hw->aq.asq_last_status)); 1676 return iavf_status_to_errno(status); 1677 1678 } 1679 1680 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1681 adapter->rss_lut, adapter->rss_lut_size); 1682 if (status) { 1683 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1684 iavf_stat_str(hw, status), 1685 iavf_aq_str(hw, hw->aq.asq_last_status)); 1686 return iavf_status_to_errno(status); 1687 } 1688 1689 return 0; 1690 1691 } 1692 1693 /** 1694 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1695 * @adapter: board private structure 1696 * 1697 * Returns 0 on success, negative on failure 1698 **/ 1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1700 { 1701 struct iavf_hw *hw = &adapter->hw; 1702 u32 *dw; 1703 u16 i; 1704 1705 dw = (u32 *)adapter->rss_key; 1706 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1707 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1708 1709 dw = (u32 *)adapter->rss_lut; 1710 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1711 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1712 1713 iavf_flush(hw); 1714 1715 return 0; 1716 } 1717 1718 /** 1719 * iavf_config_rss - Configure RSS keys and lut 1720 * @adapter: board private structure 1721 * 1722 * Returns 0 on success, negative on failure 1723 **/ 1724 int iavf_config_rss(struct iavf_adapter *adapter) 1725 { 1726 1727 if (RSS_PF(adapter)) { 1728 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1729 IAVF_FLAG_AQ_SET_RSS_KEY; 1730 return 0; 1731 } else if (RSS_AQ(adapter)) { 1732 return iavf_config_rss_aq(adapter); 1733 } else { 1734 return iavf_config_rss_reg(adapter); 1735 } 1736 } 1737 1738 /** 1739 * iavf_fill_rss_lut - Fill the lut with default values 1740 * @adapter: board private structure 1741 **/ 1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1743 { 1744 u16 i; 1745 1746 for (i = 0; i < adapter->rss_lut_size; i++) 1747 adapter->rss_lut[i] = i % adapter->num_active_queues; 1748 } 1749 1750 /** 1751 * iavf_init_rss - Prepare for RSS 1752 * @adapter: board private structure 1753 * 1754 * Return 0 on success, negative on failure 1755 **/ 1756 static int iavf_init_rss(struct iavf_adapter *adapter) 1757 { 1758 struct iavf_hw *hw = &adapter->hw; 1759 1760 if (!RSS_PF(adapter)) { 1761 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1762 if (adapter->vf_res->vf_cap_flags & 1763 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1764 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1765 else 1766 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1767 1768 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1769 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1770 } 1771 1772 iavf_fill_rss_lut(adapter); 1773 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1774 1775 return iavf_config_rss(adapter); 1776 } 1777 1778 /** 1779 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1780 * @adapter: board private structure to initialize 1781 * 1782 * We allocate one q_vector per queue interrupt. If allocation fails we 1783 * return -ENOMEM. 1784 **/ 1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1786 { 1787 int q_idx = 0, num_q_vectors; 1788 struct iavf_q_vector *q_vector; 1789 1790 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1791 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1792 GFP_KERNEL); 1793 if (!adapter->q_vectors) 1794 return -ENOMEM; 1795 1796 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1797 q_vector = &adapter->q_vectors[q_idx]; 1798 q_vector->adapter = adapter; 1799 q_vector->vsi = &adapter->vsi; 1800 q_vector->v_idx = q_idx; 1801 q_vector->reg_idx = q_idx; 1802 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1803 netif_napi_add(adapter->netdev, &q_vector->napi, 1804 iavf_napi_poll); 1805 } 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1812 * @adapter: board private structure to initialize 1813 * 1814 * This function frees the memory allocated to the q_vectors. In addition if 1815 * NAPI is enabled it will delete any references to the NAPI struct prior 1816 * to freeing the q_vector. 1817 **/ 1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1819 { 1820 int q_idx, num_q_vectors; 1821 1822 if (!adapter->q_vectors) 1823 return; 1824 1825 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1826 1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1828 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1829 1830 netif_napi_del(&q_vector->napi); 1831 } 1832 kfree(adapter->q_vectors); 1833 adapter->q_vectors = NULL; 1834 } 1835 1836 /** 1837 * iavf_reset_interrupt_capability - Reset MSIX setup 1838 * @adapter: board private structure 1839 * 1840 **/ 1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1842 { 1843 if (!adapter->msix_entries) 1844 return; 1845 1846 pci_disable_msix(adapter->pdev); 1847 kfree(adapter->msix_entries); 1848 adapter->msix_entries = NULL; 1849 } 1850 1851 /** 1852 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1853 * @adapter: board private structure to initialize 1854 * 1855 **/ 1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1857 { 1858 int err; 1859 1860 err = iavf_alloc_queues(adapter); 1861 if (err) { 1862 dev_err(&adapter->pdev->dev, 1863 "Unable to allocate memory for queues\n"); 1864 goto err_alloc_queues; 1865 } 1866 1867 err = iavf_set_interrupt_capability(adapter); 1868 if (err) { 1869 dev_err(&adapter->pdev->dev, 1870 "Unable to setup interrupt capabilities\n"); 1871 goto err_set_interrupt; 1872 } 1873 1874 err = iavf_alloc_q_vectors(adapter); 1875 if (err) { 1876 dev_err(&adapter->pdev->dev, 1877 "Unable to allocate memory for queue vectors\n"); 1878 goto err_alloc_q_vectors; 1879 } 1880 1881 /* If we've made it so far while ADq flag being ON, then we haven't 1882 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1883 * resources have been allocated in the reset path. 1884 * Now we can truly claim that ADq is enabled. 1885 */ 1886 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1887 adapter->num_tc) 1888 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1889 adapter->num_tc); 1890 1891 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1892 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1893 adapter->num_active_queues); 1894 1895 return 0; 1896 err_alloc_q_vectors: 1897 iavf_reset_interrupt_capability(adapter); 1898 err_set_interrupt: 1899 iavf_free_queues(adapter); 1900 err_alloc_queues: 1901 return err; 1902 } 1903 1904 /** 1905 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1906 * @adapter: board private structure 1907 **/ 1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1909 { 1910 iavf_free_q_vectors(adapter); 1911 iavf_reset_interrupt_capability(adapter); 1912 iavf_free_queues(adapter); 1913 } 1914 1915 /** 1916 * iavf_free_rss - Free memory used by RSS structs 1917 * @adapter: board private structure 1918 **/ 1919 static void iavf_free_rss(struct iavf_adapter *adapter) 1920 { 1921 kfree(adapter->rss_key); 1922 adapter->rss_key = NULL; 1923 1924 kfree(adapter->rss_lut); 1925 adapter->rss_lut = NULL; 1926 } 1927 1928 /** 1929 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1930 * @adapter: board private structure 1931 * @running: true if adapter->state == __IAVF_RUNNING 1932 * 1933 * Returns 0 on success, negative on failure 1934 **/ 1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1936 { 1937 struct net_device *netdev = adapter->netdev; 1938 int err; 1939 1940 if (running) 1941 iavf_free_traffic_irqs(adapter); 1942 iavf_free_misc_irq(adapter); 1943 iavf_free_interrupt_scheme(adapter); 1944 1945 err = iavf_init_interrupt_scheme(adapter); 1946 if (err) 1947 goto err; 1948 1949 netif_tx_stop_all_queues(netdev); 1950 1951 err = iavf_request_misc_irq(adapter); 1952 if (err) 1953 goto err; 1954 1955 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1956 1957 iavf_map_rings_to_vectors(adapter); 1958 err: 1959 return err; 1960 } 1961 1962 /** 1963 * iavf_finish_config - do all netdev work that needs RTNL 1964 * @work: our work_struct 1965 * 1966 * Do work that needs both RTNL and crit_lock. 1967 **/ 1968 static void iavf_finish_config(struct work_struct *work) 1969 { 1970 struct iavf_adapter *adapter; 1971 int pairs, err; 1972 1973 adapter = container_of(work, struct iavf_adapter, finish_config); 1974 1975 /* Always take RTNL first to prevent circular lock dependency; 1976 * The dev->lock is needed to update the queue number 1977 */ 1978 rtnl_lock(); 1979 mutex_lock(&adapter->netdev->lock); 1980 mutex_lock(&adapter->crit_lock); 1981 1982 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 1983 adapter->netdev->reg_state == NETREG_REGISTERED && 1984 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1985 netdev_update_features(adapter->netdev); 1986 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 1987 } 1988 1989 switch (adapter->state) { 1990 case __IAVF_DOWN: 1991 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 1992 err = register_netdevice(adapter->netdev); 1993 if (err) { 1994 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 1995 err); 1996 1997 /* go back and try again.*/ 1998 iavf_free_rss(adapter); 1999 iavf_free_misc_irq(adapter); 2000 iavf_reset_interrupt_capability(adapter); 2001 iavf_change_state(adapter, 2002 __IAVF_INIT_CONFIG_ADAPTER); 2003 goto out; 2004 } 2005 } 2006 2007 /* Set the real number of queues when reset occurs while 2008 * state == __IAVF_DOWN 2009 */ 2010 fallthrough; 2011 case __IAVF_RUNNING: 2012 pairs = adapter->num_active_queues; 2013 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2014 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2015 break; 2016 2017 default: 2018 break; 2019 } 2020 2021 out: 2022 mutex_unlock(&adapter->crit_lock); 2023 mutex_unlock(&adapter->netdev->lock); 2024 rtnl_unlock(); 2025 } 2026 2027 /** 2028 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2029 * @adapter: board private structure 2030 **/ 2031 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2032 { 2033 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2034 queue_work(adapter->wq, &adapter->finish_config); 2035 } 2036 2037 /** 2038 * iavf_process_aq_command - process aq_required flags 2039 * and sends aq command 2040 * @adapter: pointer to iavf adapter structure 2041 * 2042 * Returns 0 on success 2043 * Returns error code if no command was sent 2044 * or error code if the command failed. 2045 **/ 2046 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2047 { 2048 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2049 return iavf_send_vf_config_msg(adapter); 2050 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2051 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2052 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2053 iavf_disable_queues(adapter); 2054 return 0; 2055 } 2056 2057 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2058 iavf_map_queues(adapter); 2059 return 0; 2060 } 2061 2062 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2063 iavf_add_ether_addrs(adapter); 2064 return 0; 2065 } 2066 2067 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2068 iavf_add_vlans(adapter); 2069 return 0; 2070 } 2071 2072 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2073 iavf_del_ether_addrs(adapter); 2074 return 0; 2075 } 2076 2077 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2078 iavf_del_vlans(adapter); 2079 return 0; 2080 } 2081 2082 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2083 iavf_enable_vlan_stripping(adapter); 2084 return 0; 2085 } 2086 2087 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2088 iavf_disable_vlan_stripping(adapter); 2089 return 0; 2090 } 2091 2092 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2093 iavf_cfg_queues_bw(adapter); 2094 return 0; 2095 } 2096 2097 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2098 iavf_get_qos_caps(adapter); 2099 return 0; 2100 } 2101 2102 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2103 iavf_cfg_queues_quanta_size(adapter); 2104 return 0; 2105 } 2106 2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2108 iavf_configure_queues(adapter); 2109 return 0; 2110 } 2111 2112 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2113 iavf_enable_queues(adapter); 2114 return 0; 2115 } 2116 2117 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2118 /* This message goes straight to the firmware, not the 2119 * PF, so we don't have to set current_op as we will 2120 * not get a response through the ARQ. 2121 */ 2122 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2123 return 0; 2124 } 2125 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2126 iavf_get_hena(adapter); 2127 return 0; 2128 } 2129 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2130 iavf_set_hena(adapter); 2131 return 0; 2132 } 2133 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2134 iavf_set_rss_key(adapter); 2135 return 0; 2136 } 2137 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2138 iavf_set_rss_lut(adapter); 2139 return 0; 2140 } 2141 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2142 iavf_set_rss_hfunc(adapter); 2143 return 0; 2144 } 2145 2146 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2147 iavf_set_promiscuous(adapter); 2148 return 0; 2149 } 2150 2151 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2152 iavf_enable_channels(adapter); 2153 return 0; 2154 } 2155 2156 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2157 iavf_disable_channels(adapter); 2158 return 0; 2159 } 2160 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2161 iavf_add_cloud_filter(adapter); 2162 return 0; 2163 } 2164 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2165 iavf_del_cloud_filter(adapter); 2166 return 0; 2167 } 2168 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2169 iavf_add_fdir_filter(adapter); 2170 return IAVF_SUCCESS; 2171 } 2172 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2173 iavf_del_fdir_filter(adapter); 2174 return IAVF_SUCCESS; 2175 } 2176 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2177 iavf_add_adv_rss_cfg(adapter); 2178 return 0; 2179 } 2180 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2181 iavf_del_adv_rss_cfg(adapter); 2182 return 0; 2183 } 2184 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2185 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2186 return 0; 2187 } 2188 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2189 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2190 return 0; 2191 } 2192 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2193 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2194 return 0; 2195 } 2196 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2197 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2198 return 0; 2199 } 2200 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2201 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2202 return 0; 2203 } 2204 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2205 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2206 return 0; 2207 } 2208 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2209 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2210 return 0; 2211 } 2212 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2213 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2214 return 0; 2215 } 2216 2217 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2218 iavf_request_stats(adapter); 2219 return 0; 2220 } 2221 2222 return -EAGAIN; 2223 } 2224 2225 /** 2226 * iavf_set_vlan_offload_features - set VLAN offload configuration 2227 * @adapter: board private structure 2228 * @prev_features: previous features used for comparison 2229 * @features: updated features used for configuration 2230 * 2231 * Set the aq_required bit(s) based on the requested features passed in to 2232 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2233 * the watchdog if any changes are requested to expedite the request via 2234 * virtchnl. 2235 **/ 2236 static void 2237 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2238 netdev_features_t prev_features, 2239 netdev_features_t features) 2240 { 2241 bool enable_stripping = true, enable_insertion = true; 2242 u16 vlan_ethertype = 0; 2243 u64 aq_required = 0; 2244 2245 /* keep cases separate because one ethertype for offloads can be 2246 * disabled at the same time as another is disabled, so check for an 2247 * enabled ethertype first, then check for disabled. Default to 2248 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2249 * stripping. 2250 */ 2251 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2252 vlan_ethertype = ETH_P_8021AD; 2253 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2254 vlan_ethertype = ETH_P_8021Q; 2255 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2256 vlan_ethertype = ETH_P_8021AD; 2257 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2258 vlan_ethertype = ETH_P_8021Q; 2259 else 2260 vlan_ethertype = ETH_P_8021Q; 2261 2262 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2263 enable_stripping = false; 2264 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2265 enable_insertion = false; 2266 2267 if (VLAN_ALLOWED(adapter)) { 2268 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2269 * stripping via virtchnl. VLAN insertion can be toggled on the 2270 * netdev, but it doesn't require a virtchnl message 2271 */ 2272 if (enable_stripping) 2273 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2274 else 2275 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2276 2277 } else if (VLAN_V2_ALLOWED(adapter)) { 2278 switch (vlan_ethertype) { 2279 case ETH_P_8021Q: 2280 if (enable_stripping) 2281 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2282 else 2283 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2284 2285 if (enable_insertion) 2286 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2287 else 2288 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2289 break; 2290 case ETH_P_8021AD: 2291 if (enable_stripping) 2292 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2293 else 2294 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2295 2296 if (enable_insertion) 2297 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2298 else 2299 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2300 break; 2301 } 2302 } 2303 2304 if (aq_required) 2305 iavf_schedule_aq_request(adapter, aq_required); 2306 } 2307 2308 /** 2309 * iavf_startup - first step of driver startup 2310 * @adapter: board private structure 2311 * 2312 * Function process __IAVF_STARTUP driver state. 2313 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2314 * when fails the state is changed to __IAVF_INIT_FAILED 2315 **/ 2316 static void iavf_startup(struct iavf_adapter *adapter) 2317 { 2318 struct pci_dev *pdev = adapter->pdev; 2319 struct iavf_hw *hw = &adapter->hw; 2320 enum iavf_status status; 2321 int ret; 2322 2323 WARN_ON(adapter->state != __IAVF_STARTUP); 2324 2325 /* driver loaded, probe complete */ 2326 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2327 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2328 2329 ret = iavf_check_reset_complete(hw); 2330 if (ret) { 2331 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2332 ret); 2333 goto err; 2334 } 2335 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2336 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2337 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2338 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2339 2340 status = iavf_init_adminq(hw); 2341 if (status) { 2342 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2343 status); 2344 goto err; 2345 } 2346 ret = iavf_send_api_ver(adapter); 2347 if (ret) { 2348 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2349 iavf_shutdown_adminq(hw); 2350 goto err; 2351 } 2352 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2353 return; 2354 err: 2355 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2356 } 2357 2358 /** 2359 * iavf_init_version_check - second step of driver startup 2360 * @adapter: board private structure 2361 * 2362 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2363 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2364 * when fails the state is changed to __IAVF_INIT_FAILED 2365 **/ 2366 static void iavf_init_version_check(struct iavf_adapter *adapter) 2367 { 2368 struct pci_dev *pdev = adapter->pdev; 2369 struct iavf_hw *hw = &adapter->hw; 2370 int err = -EAGAIN; 2371 2372 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2373 2374 if (!iavf_asq_done(hw)) { 2375 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2376 iavf_shutdown_adminq(hw); 2377 iavf_change_state(adapter, __IAVF_STARTUP); 2378 goto err; 2379 } 2380 2381 /* aq msg sent, awaiting reply */ 2382 err = iavf_verify_api_ver(adapter); 2383 if (err) { 2384 if (err == -EALREADY) 2385 err = iavf_send_api_ver(adapter); 2386 else 2387 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2388 adapter->pf_version.major, 2389 adapter->pf_version.minor, 2390 VIRTCHNL_VERSION_MAJOR, 2391 VIRTCHNL_VERSION_MINOR); 2392 goto err; 2393 } 2394 err = iavf_send_vf_config_msg(adapter); 2395 if (err) { 2396 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2397 err); 2398 goto err; 2399 } 2400 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2401 return; 2402 err: 2403 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2404 } 2405 2406 /** 2407 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2408 * @adapter: board private structure 2409 */ 2410 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2411 { 2412 int i, num_req_queues = adapter->num_req_queues; 2413 struct iavf_vsi *vsi = &adapter->vsi; 2414 2415 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2416 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2417 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2418 } 2419 if (!adapter->vsi_res) { 2420 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2421 return -ENODEV; 2422 } 2423 2424 if (num_req_queues && 2425 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2426 /* Problem. The PF gave us fewer queues than what we had 2427 * negotiated in our request. Need a reset to see if we can't 2428 * get back to a working state. 2429 */ 2430 dev_err(&adapter->pdev->dev, 2431 "Requested %d queues, but PF only gave us %d.\n", 2432 num_req_queues, 2433 adapter->vsi_res->num_queue_pairs); 2434 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2435 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2436 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2437 2438 return -EAGAIN; 2439 } 2440 adapter->num_req_queues = 0; 2441 adapter->vsi.id = adapter->vsi_res->vsi_id; 2442 2443 adapter->vsi.back = adapter; 2444 adapter->vsi.base_vector = 1; 2445 vsi->netdev = adapter->netdev; 2446 vsi->qs_handle = adapter->vsi_res->qset_handle; 2447 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2448 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2449 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2450 } else { 2451 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2452 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2453 } 2454 2455 return 0; 2456 } 2457 2458 /** 2459 * iavf_init_get_resources - third step of driver startup 2460 * @adapter: board private structure 2461 * 2462 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2463 * finishes driver initialization procedure. 2464 * When success the state is changed to __IAVF_DOWN 2465 * when fails the state is changed to __IAVF_INIT_FAILED 2466 **/ 2467 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2468 { 2469 struct pci_dev *pdev = adapter->pdev; 2470 struct iavf_hw *hw = &adapter->hw; 2471 int err; 2472 2473 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2474 /* aq msg sent, awaiting reply */ 2475 if (!adapter->vf_res) { 2476 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2477 GFP_KERNEL); 2478 if (!adapter->vf_res) { 2479 err = -ENOMEM; 2480 goto err; 2481 } 2482 } 2483 err = iavf_get_vf_config(adapter); 2484 if (err == -EALREADY) { 2485 err = iavf_send_vf_config_msg(adapter); 2486 goto err; 2487 } else if (err == -EINVAL) { 2488 /* We only get -EINVAL if the device is in a very bad 2489 * state or if we've been disabled for previous bad 2490 * behavior. Either way, we're done now. 2491 */ 2492 iavf_shutdown_adminq(hw); 2493 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2494 return; 2495 } 2496 if (err) { 2497 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2498 goto err_alloc; 2499 } 2500 2501 err = iavf_parse_vf_resource_msg(adapter); 2502 if (err) { 2503 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2504 err); 2505 goto err_alloc; 2506 } 2507 /* Some features require additional messages to negotiate extended 2508 * capabilities. These are processed in sequence by the 2509 * __IAVF_INIT_EXTENDED_CAPS driver state. 2510 */ 2511 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2512 2513 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2514 return; 2515 2516 err_alloc: 2517 kfree(adapter->vf_res); 2518 adapter->vf_res = NULL; 2519 err: 2520 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2521 } 2522 2523 /** 2524 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2525 * @adapter: board private structure 2526 * 2527 * Function processes send of the extended VLAN V2 capability message to the 2528 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2529 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2530 */ 2531 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2532 { 2533 int ret; 2534 2535 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2536 2537 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2538 if (ret && ret == -EOPNOTSUPP) { 2539 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2540 * we did not send the capability exchange message and do not 2541 * expect a response. 2542 */ 2543 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2544 } 2545 2546 /* We sent the message, so move on to the next step */ 2547 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2548 } 2549 2550 /** 2551 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2552 * @adapter: board private structure 2553 * 2554 * Function processes receipt of the extended VLAN V2 capability message from 2555 * the PF. 2556 **/ 2557 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2558 { 2559 int ret; 2560 2561 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2562 2563 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2564 2565 ret = iavf_get_vf_vlan_v2_caps(adapter); 2566 if (ret) 2567 goto err; 2568 2569 /* We've processed receipt of the VLAN V2 caps message */ 2570 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2571 return; 2572 err: 2573 /* We didn't receive a reply. Make sure we try sending again when 2574 * __IAVF_INIT_FAILED attempts to recover. 2575 */ 2576 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2577 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2578 } 2579 2580 /** 2581 * iavf_init_process_extended_caps - Part of driver startup 2582 * @adapter: board private structure 2583 * 2584 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2585 * handles negotiating capabilities for features which require an additional 2586 * message. 2587 * 2588 * Once all extended capabilities exchanges are finished, the driver will 2589 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2590 */ 2591 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2592 { 2593 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2594 2595 /* Process capability exchange for VLAN V2 */ 2596 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2597 iavf_init_send_offload_vlan_v2_caps(adapter); 2598 return; 2599 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2600 iavf_init_recv_offload_vlan_v2_caps(adapter); 2601 return; 2602 } 2603 2604 /* When we reach here, no further extended capabilities exchanges are 2605 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2606 */ 2607 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2608 } 2609 2610 /** 2611 * iavf_init_config_adapter - last part of driver startup 2612 * @adapter: board private structure 2613 * 2614 * After all the supported capabilities are negotiated, then the 2615 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2616 */ 2617 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2618 { 2619 struct net_device *netdev = adapter->netdev; 2620 struct pci_dev *pdev = adapter->pdev; 2621 int err; 2622 2623 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2624 2625 if (iavf_process_config(adapter)) 2626 goto err; 2627 2628 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2629 2630 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2631 2632 netdev->netdev_ops = &iavf_netdev_ops; 2633 iavf_set_ethtool_ops(netdev); 2634 netdev->watchdog_timeo = 5 * HZ; 2635 2636 netdev->min_mtu = ETH_MIN_MTU; 2637 netdev->max_mtu = LIBIE_MAX_MTU; 2638 2639 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2640 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2641 adapter->hw.mac.addr); 2642 eth_hw_addr_random(netdev); 2643 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2644 } else { 2645 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2646 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2647 } 2648 2649 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2650 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2651 err = iavf_init_interrupt_scheme(adapter); 2652 if (err) 2653 goto err_sw_init; 2654 iavf_map_rings_to_vectors(adapter); 2655 if (adapter->vf_res->vf_cap_flags & 2656 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2657 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2658 2659 err = iavf_request_misc_irq(adapter); 2660 if (err) 2661 goto err_sw_init; 2662 2663 netif_carrier_off(netdev); 2664 adapter->link_up = false; 2665 netif_tx_stop_all_queues(netdev); 2666 2667 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2668 if (netdev->features & NETIF_F_GRO) 2669 dev_info(&pdev->dev, "GRO is enabled\n"); 2670 2671 iavf_change_state(adapter, __IAVF_DOWN); 2672 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2673 2674 iavf_misc_irq_enable(adapter); 2675 wake_up(&adapter->down_waitqueue); 2676 2677 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2678 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2679 if (!adapter->rss_key || !adapter->rss_lut) { 2680 err = -ENOMEM; 2681 goto err_mem; 2682 } 2683 if (RSS_AQ(adapter)) 2684 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2685 else 2686 iavf_init_rss(adapter); 2687 2688 if (VLAN_V2_ALLOWED(adapter)) 2689 /* request initial VLAN offload settings */ 2690 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2691 2692 if (QOS_ALLOWED(adapter)) 2693 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2694 2695 iavf_schedule_finish_config(adapter); 2696 return; 2697 2698 err_mem: 2699 iavf_free_rss(adapter); 2700 iavf_free_misc_irq(adapter); 2701 err_sw_init: 2702 iavf_reset_interrupt_capability(adapter); 2703 err: 2704 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2705 } 2706 2707 /** 2708 * iavf_watchdog_task - Periodic call-back task 2709 * @work: pointer to work_struct 2710 **/ 2711 static void iavf_watchdog_task(struct work_struct *work) 2712 { 2713 struct iavf_adapter *adapter = container_of(work, 2714 struct iavf_adapter, 2715 watchdog_task.work); 2716 struct iavf_hw *hw = &adapter->hw; 2717 u32 reg_val; 2718 2719 if (!mutex_trylock(&adapter->crit_lock)) { 2720 if (adapter->state == __IAVF_REMOVE) 2721 return; 2722 2723 goto restart_watchdog; 2724 } 2725 2726 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2727 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2728 2729 switch (adapter->state) { 2730 case __IAVF_STARTUP: 2731 iavf_startup(adapter); 2732 mutex_unlock(&adapter->crit_lock); 2733 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2734 msecs_to_jiffies(30)); 2735 return; 2736 case __IAVF_INIT_VERSION_CHECK: 2737 iavf_init_version_check(adapter); 2738 mutex_unlock(&adapter->crit_lock); 2739 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2740 msecs_to_jiffies(30)); 2741 return; 2742 case __IAVF_INIT_GET_RESOURCES: 2743 iavf_init_get_resources(adapter); 2744 mutex_unlock(&adapter->crit_lock); 2745 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2746 msecs_to_jiffies(1)); 2747 return; 2748 case __IAVF_INIT_EXTENDED_CAPS: 2749 iavf_init_process_extended_caps(adapter); 2750 mutex_unlock(&adapter->crit_lock); 2751 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2752 msecs_to_jiffies(1)); 2753 return; 2754 case __IAVF_INIT_CONFIG_ADAPTER: 2755 iavf_init_config_adapter(adapter); 2756 mutex_unlock(&adapter->crit_lock); 2757 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2758 msecs_to_jiffies(1)); 2759 return; 2760 case __IAVF_INIT_FAILED: 2761 if (test_bit(__IAVF_IN_REMOVE_TASK, 2762 &adapter->crit_section)) { 2763 /* Do not update the state and do not reschedule 2764 * watchdog task, iavf_remove should handle this state 2765 * as it can loop forever 2766 */ 2767 mutex_unlock(&adapter->crit_lock); 2768 return; 2769 } 2770 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2771 dev_err(&adapter->pdev->dev, 2772 "Failed to communicate with PF; waiting before retry\n"); 2773 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2774 iavf_shutdown_adminq(hw); 2775 mutex_unlock(&adapter->crit_lock); 2776 queue_delayed_work(adapter->wq, 2777 &adapter->watchdog_task, (5 * HZ)); 2778 return; 2779 } 2780 /* Try again from failed step*/ 2781 iavf_change_state(adapter, adapter->last_state); 2782 mutex_unlock(&adapter->crit_lock); 2783 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2784 return; 2785 case __IAVF_COMM_FAILED: 2786 if (test_bit(__IAVF_IN_REMOVE_TASK, 2787 &adapter->crit_section)) { 2788 /* Set state to __IAVF_INIT_FAILED and perform remove 2789 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2790 * doesn't bring the state back to __IAVF_COMM_FAILED. 2791 */ 2792 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2793 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2794 mutex_unlock(&adapter->crit_lock); 2795 return; 2796 } 2797 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2798 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2799 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2800 reg_val == VIRTCHNL_VFR_COMPLETED) { 2801 /* A chance for redemption! */ 2802 dev_err(&adapter->pdev->dev, 2803 "Hardware came out of reset. Attempting reinit.\n"); 2804 /* When init task contacts the PF and 2805 * gets everything set up again, it'll restart the 2806 * watchdog for us. Down, boy. Sit. Stay. Woof. 2807 */ 2808 iavf_change_state(adapter, __IAVF_STARTUP); 2809 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2810 } 2811 adapter->aq_required = 0; 2812 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2813 mutex_unlock(&adapter->crit_lock); 2814 queue_delayed_work(adapter->wq, 2815 &adapter->watchdog_task, 2816 msecs_to_jiffies(10)); 2817 return; 2818 case __IAVF_RESETTING: 2819 mutex_unlock(&adapter->crit_lock); 2820 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2821 HZ * 2); 2822 return; 2823 case __IAVF_DOWN: 2824 case __IAVF_DOWN_PENDING: 2825 case __IAVF_TESTING: 2826 case __IAVF_RUNNING: 2827 if (adapter->current_op) { 2828 if (!iavf_asq_done(hw)) { 2829 dev_dbg(&adapter->pdev->dev, 2830 "Admin queue timeout\n"); 2831 iavf_send_api_ver(adapter); 2832 } 2833 } else { 2834 int ret = iavf_process_aq_command(adapter); 2835 2836 /* An error will be returned if no commands were 2837 * processed; use this opportunity to update stats 2838 * if the error isn't -ENOTSUPP 2839 */ 2840 if (ret && ret != -EOPNOTSUPP && 2841 adapter->state == __IAVF_RUNNING) 2842 iavf_request_stats(adapter); 2843 } 2844 if (adapter->state == __IAVF_RUNNING) 2845 iavf_detect_recover_hung(&adapter->vsi); 2846 break; 2847 case __IAVF_REMOVE: 2848 default: 2849 mutex_unlock(&adapter->crit_lock); 2850 return; 2851 } 2852 2853 /* check for hw reset */ 2854 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2855 if (!reg_val) { 2856 adapter->aq_required = 0; 2857 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2858 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2859 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2860 mutex_unlock(&adapter->crit_lock); 2861 queue_delayed_work(adapter->wq, 2862 &adapter->watchdog_task, HZ * 2); 2863 return; 2864 } 2865 2866 mutex_unlock(&adapter->crit_lock); 2867 restart_watchdog: 2868 if (adapter->state >= __IAVF_DOWN) 2869 queue_work(adapter->wq, &adapter->adminq_task); 2870 if (adapter->aq_required) 2871 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2872 msecs_to_jiffies(20)); 2873 else 2874 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2875 HZ * 2); 2876 } 2877 2878 /** 2879 * iavf_disable_vf - disable VF 2880 * @adapter: board private structure 2881 * 2882 * Set communication failed flag and free all resources. 2883 * NOTE: This function is expected to be called with crit_lock being held. 2884 **/ 2885 static void iavf_disable_vf(struct iavf_adapter *adapter) 2886 { 2887 struct iavf_mac_filter *f, *ftmp; 2888 struct iavf_vlan_filter *fv, *fvtmp; 2889 struct iavf_cloud_filter *cf, *cftmp; 2890 2891 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2892 2893 /* We don't use netif_running() because it may be true prior to 2894 * ndo_open() returning, so we can't assume it means all our open 2895 * tasks have finished, since we're not holding the rtnl_lock here. 2896 */ 2897 if (adapter->state == __IAVF_RUNNING) { 2898 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2899 netif_carrier_off(adapter->netdev); 2900 netif_tx_disable(adapter->netdev); 2901 adapter->link_up = false; 2902 iavf_napi_disable_all(adapter); 2903 iavf_irq_disable(adapter); 2904 iavf_free_traffic_irqs(adapter); 2905 iavf_free_all_tx_resources(adapter); 2906 iavf_free_all_rx_resources(adapter); 2907 } 2908 2909 spin_lock_bh(&adapter->mac_vlan_list_lock); 2910 2911 /* Delete all of the filters */ 2912 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2913 list_del(&f->list); 2914 kfree(f); 2915 } 2916 2917 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2918 list_del(&fv->list); 2919 kfree(fv); 2920 } 2921 adapter->num_vlan_filters = 0; 2922 2923 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2924 2925 spin_lock_bh(&adapter->cloud_filter_list_lock); 2926 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2927 list_del(&cf->list); 2928 kfree(cf); 2929 adapter->num_cloud_filters--; 2930 } 2931 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2932 2933 iavf_free_misc_irq(adapter); 2934 iavf_free_interrupt_scheme(adapter); 2935 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2936 iavf_shutdown_adminq(&adapter->hw); 2937 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2938 iavf_change_state(adapter, __IAVF_DOWN); 2939 wake_up(&adapter->down_waitqueue); 2940 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2941 } 2942 2943 /** 2944 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 2945 * @adapter: board private structure 2946 * 2947 * After a reset, the shaper parameters of queues need to be replayed again. 2948 * Since the net_shaper object inside TX rings persists across reset, 2949 * set the update flag for all queues so that the virtchnl message is triggered 2950 * for all queues. 2951 **/ 2952 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 2953 { 2954 int i, num = 0; 2955 2956 for (i = 0; i < adapter->num_active_queues; i++) 2957 if (adapter->tx_rings[i].q_shaper.bw_min || 2958 adapter->tx_rings[i].q_shaper.bw_max) { 2959 adapter->tx_rings[i].q_shaper_update = true; 2960 num++; 2961 } 2962 2963 if (num) 2964 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 2965 } 2966 2967 /** 2968 * iavf_reset_task - Call-back task to handle hardware reset 2969 * @work: pointer to work_struct 2970 * 2971 * During reset we need to shut down and reinitialize the admin queue 2972 * before we can use it to communicate with the PF again. We also clear 2973 * and reinit the rings because that context is lost as well. 2974 **/ 2975 static void iavf_reset_task(struct work_struct *work) 2976 { 2977 struct iavf_adapter *adapter = container_of(work, 2978 struct iavf_adapter, 2979 reset_task); 2980 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2981 struct net_device *netdev = adapter->netdev; 2982 struct iavf_hw *hw = &adapter->hw; 2983 struct iavf_mac_filter *f, *ftmp; 2984 struct iavf_cloud_filter *cf; 2985 enum iavf_status status; 2986 u32 reg_val; 2987 int i = 0, err; 2988 bool running; 2989 2990 /* When device is being removed it doesn't make sense to run the reset 2991 * task, just return in such a case. 2992 */ 2993 mutex_lock(&netdev->lock); 2994 if (!mutex_trylock(&adapter->crit_lock)) { 2995 if (adapter->state != __IAVF_REMOVE) 2996 queue_work(adapter->wq, &adapter->reset_task); 2997 2998 mutex_unlock(&netdev->lock); 2999 return; 3000 } 3001 3002 iavf_misc_irq_disable(adapter); 3003 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3004 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3005 /* Restart the AQ here. If we have been reset but didn't 3006 * detect it, or if the PF had to reinit, our AQ will be hosed. 3007 */ 3008 iavf_shutdown_adminq(hw); 3009 iavf_init_adminq(hw); 3010 iavf_request_reset(adapter); 3011 } 3012 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3013 3014 /* poll until we see the reset actually happen */ 3015 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3016 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3017 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3018 if (!reg_val) 3019 break; 3020 usleep_range(5000, 10000); 3021 } 3022 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3023 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3024 goto continue_reset; /* act like the reset happened */ 3025 } 3026 3027 /* wait until the reset is complete and the PF is responding to us */ 3028 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3029 /* sleep first to make sure a minimum wait time is met */ 3030 msleep(IAVF_RESET_WAIT_MS); 3031 3032 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3033 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3034 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3035 break; 3036 } 3037 3038 pci_set_master(adapter->pdev); 3039 pci_restore_msi_state(adapter->pdev); 3040 3041 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3042 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3043 reg_val); 3044 iavf_disable_vf(adapter); 3045 mutex_unlock(&adapter->crit_lock); 3046 mutex_unlock(&netdev->lock); 3047 return; /* Do not attempt to reinit. It's dead, Jim. */ 3048 } 3049 3050 continue_reset: 3051 /* We don't use netif_running() because it may be true prior to 3052 * ndo_open() returning, so we can't assume it means all our open 3053 * tasks have finished, since we're not holding the rtnl_lock here. 3054 */ 3055 running = adapter->state == __IAVF_RUNNING; 3056 3057 if (running) { 3058 netif_carrier_off(netdev); 3059 netif_tx_stop_all_queues(netdev); 3060 adapter->link_up = false; 3061 iavf_napi_disable_all(adapter); 3062 } 3063 iavf_irq_disable(adapter); 3064 3065 iavf_change_state(adapter, __IAVF_RESETTING); 3066 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3067 3068 /* free the Tx/Rx rings and descriptors, might be better to just 3069 * re-use them sometime in the future 3070 */ 3071 iavf_free_all_rx_resources(adapter); 3072 iavf_free_all_tx_resources(adapter); 3073 3074 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3075 /* kill and reinit the admin queue */ 3076 iavf_shutdown_adminq(hw); 3077 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3078 status = iavf_init_adminq(hw); 3079 if (status) { 3080 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3081 status); 3082 goto reset_err; 3083 } 3084 adapter->aq_required = 0; 3085 3086 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3087 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3088 err = iavf_reinit_interrupt_scheme(adapter, running); 3089 if (err) 3090 goto reset_err; 3091 } 3092 3093 if (RSS_AQ(adapter)) { 3094 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3095 } else { 3096 err = iavf_init_rss(adapter); 3097 if (err) 3098 goto reset_err; 3099 } 3100 3101 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3102 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3103 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3104 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3105 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3106 * been successfully sent and negotiated 3107 */ 3108 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3109 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3110 3111 spin_lock_bh(&adapter->mac_vlan_list_lock); 3112 3113 /* Delete filter for the current MAC address, it could have 3114 * been changed by the PF via administratively set MAC. 3115 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3116 */ 3117 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3118 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3119 list_del(&f->list); 3120 kfree(f); 3121 } 3122 } 3123 /* re-add all MAC filters */ 3124 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3125 f->add = true; 3126 } 3127 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3128 3129 /* check if TCs are running and re-add all cloud filters */ 3130 spin_lock_bh(&adapter->cloud_filter_list_lock); 3131 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3132 adapter->num_tc) { 3133 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3134 cf->add = true; 3135 } 3136 } 3137 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3138 3139 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3140 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3141 iavf_misc_irq_enable(adapter); 3142 3143 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3144 3145 /* We were running when the reset started, so we need to restore some 3146 * state here. 3147 */ 3148 if (running) { 3149 /* allocate transmit descriptors */ 3150 err = iavf_setup_all_tx_resources(adapter); 3151 if (err) 3152 goto reset_err; 3153 3154 /* allocate receive descriptors */ 3155 err = iavf_setup_all_rx_resources(adapter); 3156 if (err) 3157 goto reset_err; 3158 3159 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3160 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3161 err = iavf_request_traffic_irqs(adapter, netdev->name); 3162 if (err) 3163 goto reset_err; 3164 3165 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3166 } 3167 3168 iavf_configure(adapter); 3169 3170 /* iavf_up_complete() will switch device back 3171 * to __IAVF_RUNNING 3172 */ 3173 iavf_up_complete(adapter); 3174 3175 iavf_irq_enable(adapter, true); 3176 3177 iavf_reconfig_qs_bw(adapter); 3178 } else { 3179 iavf_change_state(adapter, __IAVF_DOWN); 3180 wake_up(&adapter->down_waitqueue); 3181 } 3182 3183 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3184 3185 wake_up(&adapter->reset_waitqueue); 3186 mutex_unlock(&adapter->crit_lock); 3187 mutex_unlock(&netdev->lock); 3188 3189 return; 3190 reset_err: 3191 if (running) { 3192 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3193 iavf_free_traffic_irqs(adapter); 3194 } 3195 iavf_disable_vf(adapter); 3196 3197 mutex_unlock(&adapter->crit_lock); 3198 mutex_unlock(&netdev->lock); 3199 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3200 } 3201 3202 /** 3203 * iavf_adminq_task - worker thread to clean the admin queue 3204 * @work: pointer to work_struct containing our data 3205 **/ 3206 static void iavf_adminq_task(struct work_struct *work) 3207 { 3208 struct iavf_adapter *adapter = 3209 container_of(work, struct iavf_adapter, adminq_task); 3210 struct iavf_hw *hw = &adapter->hw; 3211 struct iavf_arq_event_info event; 3212 enum virtchnl_ops v_op; 3213 enum iavf_status ret, v_ret; 3214 u32 val, oldval; 3215 u16 pending; 3216 3217 if (!mutex_trylock(&adapter->crit_lock)) { 3218 if (adapter->state == __IAVF_REMOVE) 3219 return; 3220 3221 queue_work(adapter->wq, &adapter->adminq_task); 3222 goto out; 3223 } 3224 3225 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3226 goto unlock; 3227 3228 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3229 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3230 if (!event.msg_buf) 3231 goto unlock; 3232 3233 do { 3234 ret = iavf_clean_arq_element(hw, &event, &pending); 3235 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3236 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3237 3238 if (ret || !v_op) 3239 break; /* No event to process or error cleaning ARQ */ 3240 3241 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3242 event.msg_len); 3243 if (pending != 0) 3244 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3245 } while (pending); 3246 3247 if (iavf_is_reset_in_progress(adapter)) 3248 goto freedom; 3249 3250 /* check for error indications */ 3251 val = rd32(hw, IAVF_VF_ARQLEN1); 3252 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3253 goto freedom; 3254 oldval = val; 3255 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3256 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3257 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3258 } 3259 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3260 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3261 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3262 } 3263 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3264 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3265 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3266 } 3267 if (oldval != val) 3268 wr32(hw, IAVF_VF_ARQLEN1, val); 3269 3270 val = rd32(hw, IAVF_VF_ATQLEN1); 3271 oldval = val; 3272 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3273 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3274 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3275 } 3276 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3277 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3278 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3279 } 3280 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3281 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3282 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3283 } 3284 if (oldval != val) 3285 wr32(hw, IAVF_VF_ATQLEN1, val); 3286 3287 freedom: 3288 kfree(event.msg_buf); 3289 unlock: 3290 mutex_unlock(&adapter->crit_lock); 3291 out: 3292 /* re-enable Admin queue interrupt cause */ 3293 iavf_misc_irq_enable(adapter); 3294 } 3295 3296 /** 3297 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3298 * @adapter: board private structure 3299 * 3300 * Free all transmit software resources 3301 **/ 3302 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3303 { 3304 int i; 3305 3306 if (!adapter->tx_rings) 3307 return; 3308 3309 for (i = 0; i < adapter->num_active_queues; i++) 3310 if (adapter->tx_rings[i].desc) 3311 iavf_free_tx_resources(&adapter->tx_rings[i]); 3312 } 3313 3314 /** 3315 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3316 * @adapter: board private structure 3317 * 3318 * If this function returns with an error, then it's possible one or 3319 * more of the rings is populated (while the rest are not). It is the 3320 * callers duty to clean those orphaned rings. 3321 * 3322 * Return 0 on success, negative on failure 3323 **/ 3324 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3325 { 3326 int i, err = 0; 3327 3328 for (i = 0; i < adapter->num_active_queues; i++) { 3329 adapter->tx_rings[i].count = adapter->tx_desc_count; 3330 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3331 if (!err) 3332 continue; 3333 dev_err(&adapter->pdev->dev, 3334 "Allocation for Tx Queue %u failed\n", i); 3335 break; 3336 } 3337 3338 return err; 3339 } 3340 3341 /** 3342 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3343 * @adapter: board private structure 3344 * 3345 * If this function returns with an error, then it's possible one or 3346 * more of the rings is populated (while the rest are not). It is the 3347 * callers duty to clean those orphaned rings. 3348 * 3349 * Return 0 on success, negative on failure 3350 **/ 3351 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3352 { 3353 int i, err = 0; 3354 3355 for (i = 0; i < adapter->num_active_queues; i++) { 3356 adapter->rx_rings[i].count = adapter->rx_desc_count; 3357 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3358 if (!err) 3359 continue; 3360 dev_err(&adapter->pdev->dev, 3361 "Allocation for Rx Queue %u failed\n", i); 3362 break; 3363 } 3364 return err; 3365 } 3366 3367 /** 3368 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3369 * @adapter: board private structure 3370 * 3371 * Free all receive software resources 3372 **/ 3373 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3374 { 3375 int i; 3376 3377 if (!adapter->rx_rings) 3378 return; 3379 3380 for (i = 0; i < adapter->num_active_queues; i++) 3381 if (adapter->rx_rings[i].desc) 3382 iavf_free_rx_resources(&adapter->rx_rings[i]); 3383 } 3384 3385 /** 3386 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3387 * @adapter: board private structure 3388 * @max_tx_rate: max Tx bw for a tc 3389 **/ 3390 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3391 u64 max_tx_rate) 3392 { 3393 int speed = 0, ret = 0; 3394 3395 if (ADV_LINK_SUPPORT(adapter)) { 3396 if (adapter->link_speed_mbps < U32_MAX) { 3397 speed = adapter->link_speed_mbps; 3398 goto validate_bw; 3399 } else { 3400 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3401 return -EINVAL; 3402 } 3403 } 3404 3405 switch (adapter->link_speed) { 3406 case VIRTCHNL_LINK_SPEED_40GB: 3407 speed = SPEED_40000; 3408 break; 3409 case VIRTCHNL_LINK_SPEED_25GB: 3410 speed = SPEED_25000; 3411 break; 3412 case VIRTCHNL_LINK_SPEED_20GB: 3413 speed = SPEED_20000; 3414 break; 3415 case VIRTCHNL_LINK_SPEED_10GB: 3416 speed = SPEED_10000; 3417 break; 3418 case VIRTCHNL_LINK_SPEED_5GB: 3419 speed = SPEED_5000; 3420 break; 3421 case VIRTCHNL_LINK_SPEED_2_5GB: 3422 speed = SPEED_2500; 3423 break; 3424 case VIRTCHNL_LINK_SPEED_1GB: 3425 speed = SPEED_1000; 3426 break; 3427 case VIRTCHNL_LINK_SPEED_100MB: 3428 speed = SPEED_100; 3429 break; 3430 default: 3431 break; 3432 } 3433 3434 validate_bw: 3435 if (max_tx_rate > speed) { 3436 dev_err(&adapter->pdev->dev, 3437 "Invalid tx rate specified\n"); 3438 ret = -EINVAL; 3439 } 3440 3441 return ret; 3442 } 3443 3444 /** 3445 * iavf_validate_ch_config - validate queue mapping info 3446 * @adapter: board private structure 3447 * @mqprio_qopt: queue parameters 3448 * 3449 * This function validates if the config provided by the user to 3450 * configure queue channels is valid or not. Returns 0 on a valid 3451 * config. 3452 **/ 3453 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3454 struct tc_mqprio_qopt_offload *mqprio_qopt) 3455 { 3456 u64 total_max_rate = 0; 3457 u32 tx_rate_rem = 0; 3458 int i, num_qps = 0; 3459 u64 tx_rate = 0; 3460 int ret = 0; 3461 3462 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3463 mqprio_qopt->qopt.num_tc < 1) 3464 return -EINVAL; 3465 3466 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3467 if (!mqprio_qopt->qopt.count[i] || 3468 mqprio_qopt->qopt.offset[i] != num_qps) 3469 return -EINVAL; 3470 if (mqprio_qopt->min_rate[i]) { 3471 dev_err(&adapter->pdev->dev, 3472 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3473 i); 3474 return -EINVAL; 3475 } 3476 3477 /* convert to Mbps */ 3478 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3479 IAVF_MBPS_DIVISOR); 3480 3481 if (mqprio_qopt->max_rate[i] && 3482 tx_rate < IAVF_MBPS_QUANTA) { 3483 dev_err(&adapter->pdev->dev, 3484 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3485 i, IAVF_MBPS_QUANTA); 3486 return -EINVAL; 3487 } 3488 3489 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3490 3491 if (tx_rate_rem != 0) { 3492 dev_err(&adapter->pdev->dev, 3493 "Invalid max tx rate for TC%d, not divisible by %d\n", 3494 i, IAVF_MBPS_QUANTA); 3495 return -EINVAL; 3496 } 3497 3498 total_max_rate += tx_rate; 3499 num_qps += mqprio_qopt->qopt.count[i]; 3500 } 3501 if (num_qps > adapter->num_active_queues) { 3502 dev_err(&adapter->pdev->dev, 3503 "Cannot support requested number of queues\n"); 3504 return -EINVAL; 3505 } 3506 3507 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3508 return ret; 3509 } 3510 3511 /** 3512 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3513 * @adapter: board private structure 3514 **/ 3515 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3516 { 3517 struct iavf_cloud_filter *cf, *cftmp; 3518 3519 spin_lock_bh(&adapter->cloud_filter_list_lock); 3520 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3521 list) { 3522 list_del(&cf->list); 3523 kfree(cf); 3524 adapter->num_cloud_filters--; 3525 } 3526 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3527 } 3528 3529 /** 3530 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3531 * TC config already configured on this adapter. 3532 * @adapter: board private structure 3533 * @mqprio_qopt: TC config received from kernel. 3534 * 3535 * This function compares the TC config received from the kernel 3536 * with the config already configured on the adapter. 3537 * 3538 * Return: True if configuration is same, false otherwise. 3539 **/ 3540 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3541 struct tc_mqprio_qopt *mqprio_qopt) 3542 { 3543 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3544 int i; 3545 3546 if (adapter->num_tc != mqprio_qopt->num_tc) 3547 return false; 3548 3549 for (i = 0; i < adapter->num_tc; i++) { 3550 if (ch[i].count != mqprio_qopt->count[i] || 3551 ch[i].offset != mqprio_qopt->offset[i]) 3552 return false; 3553 } 3554 return true; 3555 } 3556 3557 /** 3558 * __iavf_setup_tc - configure multiple traffic classes 3559 * @netdev: network interface device structure 3560 * @type_data: tc offload data 3561 * 3562 * This function processes the config information provided by the 3563 * user to configure traffic classes/queue channels and packages the 3564 * information to request the PF to setup traffic classes. 3565 * 3566 * Returns 0 on success. 3567 **/ 3568 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3569 { 3570 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3571 struct iavf_adapter *adapter = netdev_priv(netdev); 3572 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3573 u8 num_tc = 0, total_qps = 0; 3574 int ret = 0, netdev_tc = 0; 3575 u64 max_tx_rate; 3576 u16 mode; 3577 int i; 3578 3579 num_tc = mqprio_qopt->qopt.num_tc; 3580 mode = mqprio_qopt->mode; 3581 3582 /* delete queue_channel */ 3583 if (!mqprio_qopt->qopt.hw) { 3584 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3585 /* reset the tc configuration */ 3586 netdev_reset_tc(netdev); 3587 adapter->num_tc = 0; 3588 netif_tx_stop_all_queues(netdev); 3589 netif_tx_disable(netdev); 3590 iavf_del_all_cloud_filters(adapter); 3591 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3592 total_qps = adapter->orig_num_active_queues; 3593 goto exit; 3594 } else { 3595 return -EINVAL; 3596 } 3597 } 3598 3599 /* add queue channel */ 3600 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3601 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3602 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3603 return -EOPNOTSUPP; 3604 } 3605 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3606 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3607 return -EINVAL; 3608 } 3609 3610 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3611 if (ret) 3612 return ret; 3613 /* Return if same TC config is requested */ 3614 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3615 return 0; 3616 adapter->num_tc = num_tc; 3617 3618 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3619 if (i < num_tc) { 3620 adapter->ch_config.ch_info[i].count = 3621 mqprio_qopt->qopt.count[i]; 3622 adapter->ch_config.ch_info[i].offset = 3623 mqprio_qopt->qopt.offset[i]; 3624 total_qps += mqprio_qopt->qopt.count[i]; 3625 max_tx_rate = mqprio_qopt->max_rate[i]; 3626 /* convert to Mbps */ 3627 max_tx_rate = div_u64(max_tx_rate, 3628 IAVF_MBPS_DIVISOR); 3629 adapter->ch_config.ch_info[i].max_tx_rate = 3630 max_tx_rate; 3631 } else { 3632 adapter->ch_config.ch_info[i].count = 1; 3633 adapter->ch_config.ch_info[i].offset = 0; 3634 } 3635 } 3636 3637 /* Take snapshot of original config such as "num_active_queues" 3638 * It is used later when delete ADQ flow is exercised, so that 3639 * once delete ADQ flow completes, VF shall go back to its 3640 * original queue configuration 3641 */ 3642 3643 adapter->orig_num_active_queues = adapter->num_active_queues; 3644 3645 /* Store queue info based on TC so that VF gets configured 3646 * with correct number of queues when VF completes ADQ config 3647 * flow 3648 */ 3649 adapter->ch_config.total_qps = total_qps; 3650 3651 netif_tx_stop_all_queues(netdev); 3652 netif_tx_disable(netdev); 3653 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3654 netdev_reset_tc(netdev); 3655 /* Report the tc mapping up the stack */ 3656 netdev_set_num_tc(adapter->netdev, num_tc); 3657 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3658 u16 qcount = mqprio_qopt->qopt.count[i]; 3659 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3660 3661 if (i < num_tc) 3662 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3663 qoffset); 3664 } 3665 } 3666 exit: 3667 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3668 return 0; 3669 3670 mutex_lock(&netdev->lock); 3671 netif_set_real_num_rx_queues(netdev, total_qps); 3672 netif_set_real_num_tx_queues(netdev, total_qps); 3673 mutex_unlock(&netdev->lock); 3674 3675 return ret; 3676 } 3677 3678 /** 3679 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3680 * @adapter: board private structure 3681 * @f: pointer to struct flow_cls_offload 3682 * @filter: pointer to cloud filter structure 3683 */ 3684 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3685 struct flow_cls_offload *f, 3686 struct iavf_cloud_filter *filter) 3687 { 3688 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3689 struct flow_dissector *dissector = rule->match.dissector; 3690 u16 n_proto_mask = 0; 3691 u16 n_proto_key = 0; 3692 u8 field_flags = 0; 3693 u16 addr_type = 0; 3694 u16 n_proto = 0; 3695 int i = 0; 3696 struct virtchnl_filter *vf = &filter->f; 3697 3698 if (dissector->used_keys & 3699 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3700 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3701 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3702 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3703 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3704 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3705 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3706 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3707 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3708 dissector->used_keys); 3709 return -EOPNOTSUPP; 3710 } 3711 3712 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3713 struct flow_match_enc_keyid match; 3714 3715 flow_rule_match_enc_keyid(rule, &match); 3716 if (match.mask->keyid != 0) 3717 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3718 } 3719 3720 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3721 struct flow_match_basic match; 3722 3723 flow_rule_match_basic(rule, &match); 3724 n_proto_key = ntohs(match.key->n_proto); 3725 n_proto_mask = ntohs(match.mask->n_proto); 3726 3727 if (n_proto_key == ETH_P_ALL) { 3728 n_proto_key = 0; 3729 n_proto_mask = 0; 3730 } 3731 n_proto = n_proto_key & n_proto_mask; 3732 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3733 return -EINVAL; 3734 if (n_proto == ETH_P_IPV6) { 3735 /* specify flow type as TCP IPv6 */ 3736 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3737 } 3738 3739 if (match.key->ip_proto != IPPROTO_TCP) { 3740 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3741 return -EINVAL; 3742 } 3743 } 3744 3745 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3746 struct flow_match_eth_addrs match; 3747 3748 flow_rule_match_eth_addrs(rule, &match); 3749 3750 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3751 if (!is_zero_ether_addr(match.mask->dst)) { 3752 if (is_broadcast_ether_addr(match.mask->dst)) { 3753 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3754 } else { 3755 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3756 match.mask->dst); 3757 return -EINVAL; 3758 } 3759 } 3760 3761 if (!is_zero_ether_addr(match.mask->src)) { 3762 if (is_broadcast_ether_addr(match.mask->src)) { 3763 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3764 } else { 3765 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3766 match.mask->src); 3767 return -EINVAL; 3768 } 3769 } 3770 3771 if (!is_zero_ether_addr(match.key->dst)) 3772 if (is_valid_ether_addr(match.key->dst) || 3773 is_multicast_ether_addr(match.key->dst)) { 3774 /* set the mask if a valid dst_mac address */ 3775 for (i = 0; i < ETH_ALEN; i++) 3776 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3777 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3778 match.key->dst); 3779 } 3780 3781 if (!is_zero_ether_addr(match.key->src)) 3782 if (is_valid_ether_addr(match.key->src) || 3783 is_multicast_ether_addr(match.key->src)) { 3784 /* set the mask if a valid dst_mac address */ 3785 for (i = 0; i < ETH_ALEN; i++) 3786 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3787 ether_addr_copy(vf->data.tcp_spec.src_mac, 3788 match.key->src); 3789 } 3790 } 3791 3792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3793 struct flow_match_vlan match; 3794 3795 flow_rule_match_vlan(rule, &match); 3796 if (match.mask->vlan_id) { 3797 if (match.mask->vlan_id == VLAN_VID_MASK) { 3798 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3799 } else { 3800 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3801 match.mask->vlan_id); 3802 return -EINVAL; 3803 } 3804 } 3805 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3806 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3807 } 3808 3809 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3810 struct flow_match_control match; 3811 3812 flow_rule_match_control(rule, &match); 3813 addr_type = match.key->addr_type; 3814 3815 if (flow_rule_has_control_flags(match.mask->flags, 3816 f->common.extack)) 3817 return -EOPNOTSUPP; 3818 } 3819 3820 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3821 struct flow_match_ipv4_addrs match; 3822 3823 flow_rule_match_ipv4_addrs(rule, &match); 3824 if (match.mask->dst) { 3825 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3826 field_flags |= IAVF_CLOUD_FIELD_IIP; 3827 } else { 3828 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3829 be32_to_cpu(match.mask->dst)); 3830 return -EINVAL; 3831 } 3832 } 3833 3834 if (match.mask->src) { 3835 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3836 field_flags |= IAVF_CLOUD_FIELD_IIP; 3837 } else { 3838 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3839 be32_to_cpu(match.mask->src)); 3840 return -EINVAL; 3841 } 3842 } 3843 3844 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3845 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3846 return -EINVAL; 3847 } 3848 if (match.key->dst) { 3849 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3850 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3851 } 3852 if (match.key->src) { 3853 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3854 vf->data.tcp_spec.src_ip[0] = match.key->src; 3855 } 3856 } 3857 3858 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3859 struct flow_match_ipv6_addrs match; 3860 3861 flow_rule_match_ipv6_addrs(rule, &match); 3862 3863 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3864 if (ipv6_addr_any(&match.mask->dst)) { 3865 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3866 IPV6_ADDR_ANY); 3867 return -EINVAL; 3868 } 3869 3870 /* src and dest IPv6 address should not be LOOPBACK 3871 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3872 */ 3873 if (ipv6_addr_loopback(&match.key->dst) || 3874 ipv6_addr_loopback(&match.key->src)) { 3875 dev_err(&adapter->pdev->dev, 3876 "ipv6 addr should not be loopback\n"); 3877 return -EINVAL; 3878 } 3879 if (!ipv6_addr_any(&match.mask->dst) || 3880 !ipv6_addr_any(&match.mask->src)) 3881 field_flags |= IAVF_CLOUD_FIELD_IIP; 3882 3883 for (i = 0; i < 4; i++) 3884 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3885 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3886 sizeof(vf->data.tcp_spec.dst_ip)); 3887 for (i = 0; i < 4; i++) 3888 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3889 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3890 sizeof(vf->data.tcp_spec.src_ip)); 3891 } 3892 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3893 struct flow_match_ports match; 3894 3895 flow_rule_match_ports(rule, &match); 3896 if (match.mask->src) { 3897 if (match.mask->src == cpu_to_be16(0xffff)) { 3898 field_flags |= IAVF_CLOUD_FIELD_IIP; 3899 } else { 3900 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3901 be16_to_cpu(match.mask->src)); 3902 return -EINVAL; 3903 } 3904 } 3905 3906 if (match.mask->dst) { 3907 if (match.mask->dst == cpu_to_be16(0xffff)) { 3908 field_flags |= IAVF_CLOUD_FIELD_IIP; 3909 } else { 3910 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3911 be16_to_cpu(match.mask->dst)); 3912 return -EINVAL; 3913 } 3914 } 3915 if (match.key->dst) { 3916 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3917 vf->data.tcp_spec.dst_port = match.key->dst; 3918 } 3919 3920 if (match.key->src) { 3921 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3922 vf->data.tcp_spec.src_port = match.key->src; 3923 } 3924 } 3925 vf->field_flags = field_flags; 3926 3927 return 0; 3928 } 3929 3930 /** 3931 * iavf_handle_tclass - Forward to a traffic class on the device 3932 * @adapter: board private structure 3933 * @tc: traffic class index on the device 3934 * @filter: pointer to cloud filter structure 3935 */ 3936 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3937 struct iavf_cloud_filter *filter) 3938 { 3939 if (tc == 0) 3940 return 0; 3941 if (tc < adapter->num_tc) { 3942 if (!filter->f.data.tcp_spec.dst_port) { 3943 dev_err(&adapter->pdev->dev, 3944 "Specify destination port to redirect to traffic class other than TC0\n"); 3945 return -EINVAL; 3946 } 3947 } 3948 /* redirect to a traffic class on the same device */ 3949 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3950 filter->f.action_meta = tc; 3951 return 0; 3952 } 3953 3954 /** 3955 * iavf_find_cf - Find the cloud filter in the list 3956 * @adapter: Board private structure 3957 * @cookie: filter specific cookie 3958 * 3959 * Returns ptr to the filter object or NULL. Must be called while holding the 3960 * cloud_filter_list_lock. 3961 */ 3962 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3963 unsigned long *cookie) 3964 { 3965 struct iavf_cloud_filter *filter = NULL; 3966 3967 if (!cookie) 3968 return NULL; 3969 3970 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3971 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3972 return filter; 3973 } 3974 return NULL; 3975 } 3976 3977 /** 3978 * iavf_configure_clsflower - Add tc flower filters 3979 * @adapter: board private structure 3980 * @cls_flower: Pointer to struct flow_cls_offload 3981 */ 3982 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3983 struct flow_cls_offload *cls_flower) 3984 { 3985 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3986 struct iavf_cloud_filter *filter = NULL; 3987 int err = -EINVAL, count = 50; 3988 3989 if (tc < 0) { 3990 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3991 return -EINVAL; 3992 } 3993 3994 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3995 if (!filter) 3996 return -ENOMEM; 3997 3998 while (!mutex_trylock(&adapter->crit_lock)) { 3999 if (--count == 0) { 4000 kfree(filter); 4001 return err; 4002 } 4003 udelay(1); 4004 } 4005 4006 filter->cookie = cls_flower->cookie; 4007 4008 /* bail out here if filter already exists */ 4009 spin_lock_bh(&adapter->cloud_filter_list_lock); 4010 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4011 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4012 err = -EEXIST; 4013 goto spin_unlock; 4014 } 4015 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4016 4017 /* set the mask to all zeroes to begin with */ 4018 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4019 /* start out with flow type and eth type IPv4 to begin with */ 4020 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4021 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4022 if (err) 4023 goto err; 4024 4025 err = iavf_handle_tclass(adapter, tc, filter); 4026 if (err) 4027 goto err; 4028 4029 /* add filter to the list */ 4030 spin_lock_bh(&adapter->cloud_filter_list_lock); 4031 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4032 adapter->num_cloud_filters++; 4033 filter->add = true; 4034 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4035 spin_unlock: 4036 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4037 err: 4038 if (err) 4039 kfree(filter); 4040 4041 mutex_unlock(&adapter->crit_lock); 4042 return err; 4043 } 4044 4045 /** 4046 * iavf_delete_clsflower - Remove tc flower filters 4047 * @adapter: board private structure 4048 * @cls_flower: Pointer to struct flow_cls_offload 4049 */ 4050 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4051 struct flow_cls_offload *cls_flower) 4052 { 4053 struct iavf_cloud_filter *filter = NULL; 4054 int err = 0; 4055 4056 spin_lock_bh(&adapter->cloud_filter_list_lock); 4057 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4058 if (filter) { 4059 filter->del = true; 4060 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4061 } else { 4062 err = -EINVAL; 4063 } 4064 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4065 4066 return err; 4067 } 4068 4069 /** 4070 * iavf_setup_tc_cls_flower - flower classifier offloads 4071 * @adapter: pointer to iavf adapter structure 4072 * @cls_flower: pointer to flow_cls_offload struct with flow info 4073 */ 4074 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4075 struct flow_cls_offload *cls_flower) 4076 { 4077 switch (cls_flower->command) { 4078 case FLOW_CLS_REPLACE: 4079 return iavf_configure_clsflower(adapter, cls_flower); 4080 case FLOW_CLS_DESTROY: 4081 return iavf_delete_clsflower(adapter, cls_flower); 4082 case FLOW_CLS_STATS: 4083 return -EOPNOTSUPP; 4084 default: 4085 return -EOPNOTSUPP; 4086 } 4087 } 4088 4089 /** 4090 * iavf_add_cls_u32 - Add U32 classifier offloads 4091 * @adapter: pointer to iavf adapter structure 4092 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4093 * 4094 * Return: 0 on success or negative errno on failure. 4095 */ 4096 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4097 struct tc_cls_u32_offload *cls_u32) 4098 { 4099 struct netlink_ext_ack *extack = cls_u32->common.extack; 4100 struct virtchnl_fdir_rule *rule_cfg; 4101 struct virtchnl_filter_action *vact; 4102 struct virtchnl_proto_hdrs *hdrs; 4103 struct ethhdr *spec_h, *mask_h; 4104 const struct tc_action *act; 4105 struct iavf_fdir_fltr *fltr; 4106 struct tcf_exts *exts; 4107 unsigned int q_index; 4108 int i, status = 0; 4109 int off_base = 0; 4110 4111 if (cls_u32->knode.link_handle) { 4112 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4113 return -EOPNOTSUPP; 4114 } 4115 4116 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4117 if (!fltr) 4118 return -ENOMEM; 4119 4120 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4121 hdrs = &rule_cfg->proto_hdrs; 4122 hdrs->count = 0; 4123 4124 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4125 switch (ntohs(cls_u32->common.protocol)) { 4126 case ETH_P_802_3: 4127 break; 4128 case ETH_P_IP: 4129 spec_h = (struct ethhdr *)hdrs->raw.spec; 4130 mask_h = (struct ethhdr *)hdrs->raw.mask; 4131 spec_h->h_proto = htons(ETH_P_IP); 4132 mask_h->h_proto = htons(0xFFFF); 4133 off_base += ETH_HLEN; 4134 break; 4135 default: 4136 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4137 status = -EOPNOTSUPP; 4138 goto free_alloc; 4139 } 4140 4141 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4142 __be32 val, mask; 4143 int off; 4144 4145 off = off_base + cls_u32->knode.sel->keys[i].off; 4146 val = cls_u32->knode.sel->keys[i].val; 4147 mask = cls_u32->knode.sel->keys[i].mask; 4148 4149 if (off >= sizeof(hdrs->raw.spec)) { 4150 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4151 status = -EINVAL; 4152 goto free_alloc; 4153 } 4154 4155 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4156 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4157 hdrs->raw.pkt_len = off + sizeof(val); 4158 } 4159 4160 /* Only one action is allowed */ 4161 rule_cfg->action_set.count = 1; 4162 vact = &rule_cfg->action_set.actions[0]; 4163 exts = cls_u32->knode.exts; 4164 4165 tcf_exts_for_each_action(i, act, exts) { 4166 /* FDIR queue */ 4167 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4168 q_index = tcf_skbedit_rx_queue_mapping(act); 4169 if (q_index >= adapter->num_active_queues) { 4170 status = -EINVAL; 4171 goto free_alloc; 4172 } 4173 4174 vact->type = VIRTCHNL_ACTION_QUEUE; 4175 vact->act_conf.queue.index = q_index; 4176 break; 4177 } 4178 4179 /* Drop */ 4180 if (is_tcf_gact_shot(act)) { 4181 vact->type = VIRTCHNL_ACTION_DROP; 4182 break; 4183 } 4184 4185 /* Unsupported action */ 4186 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4187 status = -EOPNOTSUPP; 4188 goto free_alloc; 4189 } 4190 4191 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4192 fltr->cls_u32_handle = cls_u32->knode.handle; 4193 return iavf_fdir_add_fltr(adapter, fltr); 4194 4195 free_alloc: 4196 kfree(fltr); 4197 return status; 4198 } 4199 4200 /** 4201 * iavf_del_cls_u32 - Delete U32 classifier offloads 4202 * @adapter: pointer to iavf adapter structure 4203 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4204 * 4205 * Return: 0 on success or negative errno on failure. 4206 */ 4207 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4208 struct tc_cls_u32_offload *cls_u32) 4209 { 4210 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4211 } 4212 4213 /** 4214 * iavf_setup_tc_cls_u32 - U32 filter offloads 4215 * @adapter: pointer to iavf adapter structure 4216 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4217 * 4218 * Return: 0 on success or negative errno on failure. 4219 */ 4220 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4221 struct tc_cls_u32_offload *cls_u32) 4222 { 4223 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4224 return -EOPNOTSUPP; 4225 4226 switch (cls_u32->command) { 4227 case TC_CLSU32_NEW_KNODE: 4228 case TC_CLSU32_REPLACE_KNODE: 4229 return iavf_add_cls_u32(adapter, cls_u32); 4230 case TC_CLSU32_DELETE_KNODE: 4231 return iavf_del_cls_u32(adapter, cls_u32); 4232 default: 4233 return -EOPNOTSUPP; 4234 } 4235 } 4236 4237 /** 4238 * iavf_setup_tc_block_cb - block callback for tc 4239 * @type: type of offload 4240 * @type_data: offload data 4241 * @cb_priv: 4242 * 4243 * This function is the block callback for traffic classes 4244 **/ 4245 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4246 void *cb_priv) 4247 { 4248 struct iavf_adapter *adapter = cb_priv; 4249 4250 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4251 return -EOPNOTSUPP; 4252 4253 switch (type) { 4254 case TC_SETUP_CLSFLOWER: 4255 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4256 case TC_SETUP_CLSU32: 4257 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4258 default: 4259 return -EOPNOTSUPP; 4260 } 4261 } 4262 4263 static LIST_HEAD(iavf_block_cb_list); 4264 4265 /** 4266 * iavf_setup_tc - configure multiple traffic classes 4267 * @netdev: network interface device structure 4268 * @type: type of offload 4269 * @type_data: tc offload data 4270 * 4271 * This function is the callback to ndo_setup_tc in the 4272 * netdev_ops. 4273 * 4274 * Returns 0 on success 4275 **/ 4276 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4277 void *type_data) 4278 { 4279 struct iavf_adapter *adapter = netdev_priv(netdev); 4280 4281 switch (type) { 4282 case TC_SETUP_QDISC_MQPRIO: 4283 return __iavf_setup_tc(netdev, type_data); 4284 case TC_SETUP_BLOCK: 4285 return flow_block_cb_setup_simple(type_data, 4286 &iavf_block_cb_list, 4287 iavf_setup_tc_block_cb, 4288 adapter, adapter, true); 4289 default: 4290 return -EOPNOTSUPP; 4291 } 4292 } 4293 4294 /** 4295 * iavf_restore_fdir_filters 4296 * @adapter: board private structure 4297 * 4298 * Restore existing FDIR filters when VF netdev comes back up. 4299 **/ 4300 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4301 { 4302 struct iavf_fdir_fltr *f; 4303 4304 spin_lock_bh(&adapter->fdir_fltr_lock); 4305 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4306 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4307 /* Cancel a request, keep filter as active */ 4308 f->state = IAVF_FDIR_FLTR_ACTIVE; 4309 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4310 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4311 /* Add filters which are inactive or have a pending 4312 * request to PF to be deleted 4313 */ 4314 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4315 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4316 } 4317 } 4318 spin_unlock_bh(&adapter->fdir_fltr_lock); 4319 } 4320 4321 /** 4322 * iavf_open - Called when a network interface is made active 4323 * @netdev: network interface device structure 4324 * 4325 * Returns 0 on success, negative value on failure 4326 * 4327 * The open entry point is called when a network interface is made 4328 * active by the system (IFF_UP). At this point all resources needed 4329 * for transmit and receive operations are allocated, the interrupt 4330 * handler is registered with the OS, the watchdog is started, 4331 * and the stack is notified that the interface is ready. 4332 **/ 4333 static int iavf_open(struct net_device *netdev) 4334 { 4335 struct iavf_adapter *adapter = netdev_priv(netdev); 4336 int err; 4337 4338 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4339 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4340 return -EIO; 4341 } 4342 4343 while (!mutex_trylock(&adapter->crit_lock)) { 4344 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4345 * is already taken and iavf_open is called from an upper 4346 * device's notifier reacting on NETDEV_REGISTER event. 4347 * We have to leave here to avoid dead lock. 4348 */ 4349 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4350 return -EBUSY; 4351 4352 usleep_range(500, 1000); 4353 } 4354 4355 if (adapter->state != __IAVF_DOWN) { 4356 err = -EBUSY; 4357 goto err_unlock; 4358 } 4359 4360 if (adapter->state == __IAVF_RUNNING && 4361 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4362 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4363 err = 0; 4364 goto err_unlock; 4365 } 4366 4367 /* allocate transmit descriptors */ 4368 err = iavf_setup_all_tx_resources(adapter); 4369 if (err) 4370 goto err_setup_tx; 4371 4372 /* allocate receive descriptors */ 4373 err = iavf_setup_all_rx_resources(adapter); 4374 if (err) 4375 goto err_setup_rx; 4376 4377 /* clear any pending interrupts, may auto mask */ 4378 err = iavf_request_traffic_irqs(adapter, netdev->name); 4379 if (err) 4380 goto err_req_irq; 4381 4382 spin_lock_bh(&adapter->mac_vlan_list_lock); 4383 4384 iavf_add_filter(adapter, adapter->hw.mac.addr); 4385 4386 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4387 4388 /* Restore filters that were removed with IFF_DOWN */ 4389 iavf_restore_filters(adapter); 4390 iavf_restore_fdir_filters(adapter); 4391 4392 iavf_configure(adapter); 4393 4394 iavf_up_complete(adapter); 4395 4396 iavf_irq_enable(adapter, true); 4397 4398 mutex_unlock(&adapter->crit_lock); 4399 4400 return 0; 4401 4402 err_req_irq: 4403 iavf_down(adapter); 4404 iavf_free_traffic_irqs(adapter); 4405 err_setup_rx: 4406 iavf_free_all_rx_resources(adapter); 4407 err_setup_tx: 4408 iavf_free_all_tx_resources(adapter); 4409 err_unlock: 4410 mutex_unlock(&adapter->crit_lock); 4411 4412 return err; 4413 } 4414 4415 /** 4416 * iavf_close - Disables a network interface 4417 * @netdev: network interface device structure 4418 * 4419 * Returns 0, this is not allowed to fail 4420 * 4421 * The close entry point is called when an interface is de-activated 4422 * by the OS. The hardware is still under the drivers control, but 4423 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4424 * are freed, along with all transmit and receive resources. 4425 **/ 4426 static int iavf_close(struct net_device *netdev) 4427 { 4428 struct iavf_adapter *adapter = netdev_priv(netdev); 4429 u64 aq_to_restore; 4430 int status; 4431 4432 mutex_lock(&adapter->crit_lock); 4433 4434 if (adapter->state <= __IAVF_DOWN_PENDING) { 4435 mutex_unlock(&adapter->crit_lock); 4436 return 0; 4437 } 4438 4439 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4440 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4441 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4442 * deadlock with adminq_task() until iavf_close timeouts. We must send 4443 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4444 * disable queues possible for vf. Give only necessary flags to 4445 * iavf_down and save other to set them right before iavf_close() 4446 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4447 * iavf will be in DOWN state. 4448 */ 4449 aq_to_restore = adapter->aq_required; 4450 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4451 4452 /* Remove flags which we do not want to send after close or we want to 4453 * send before disable queues. 4454 */ 4455 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4456 IAVF_FLAG_AQ_ENABLE_QUEUES | 4457 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4458 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4459 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4460 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4461 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4462 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4463 4464 iavf_down(adapter); 4465 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4466 iavf_free_traffic_irqs(adapter); 4467 4468 mutex_unlock(&adapter->crit_lock); 4469 4470 /* We explicitly don't free resources here because the hardware is 4471 * still active and can DMA into memory. Resources are cleared in 4472 * iavf_virtchnl_completion() after we get confirmation from the PF 4473 * driver that the rings have been stopped. 4474 * 4475 * Also, we wait for state to transition to __IAVF_DOWN before 4476 * returning. State change occurs in iavf_virtchnl_completion() after 4477 * VF resources are released (which occurs after PF driver processes and 4478 * responds to admin queue commands). 4479 */ 4480 4481 status = wait_event_timeout(adapter->down_waitqueue, 4482 adapter->state == __IAVF_DOWN, 4483 msecs_to_jiffies(500)); 4484 if (!status) 4485 netdev_warn(netdev, "Device resources not yet released\n"); 4486 4487 mutex_lock(&adapter->crit_lock); 4488 adapter->aq_required |= aq_to_restore; 4489 mutex_unlock(&adapter->crit_lock); 4490 return 0; 4491 } 4492 4493 /** 4494 * iavf_change_mtu - Change the Maximum Transfer Unit 4495 * @netdev: network interface device structure 4496 * @new_mtu: new value for maximum frame size 4497 * 4498 * Returns 0 on success, negative on failure 4499 **/ 4500 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4501 { 4502 struct iavf_adapter *adapter = netdev_priv(netdev); 4503 int ret = 0; 4504 4505 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4506 netdev->mtu, new_mtu); 4507 WRITE_ONCE(netdev->mtu, new_mtu); 4508 4509 if (netif_running(netdev)) { 4510 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4511 ret = iavf_wait_for_reset(adapter); 4512 if (ret < 0) 4513 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4514 else if (ret) 4515 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4516 } 4517 4518 return ret; 4519 } 4520 4521 /** 4522 * iavf_disable_fdir - disable Flow Director and clear existing filters 4523 * @adapter: board private structure 4524 **/ 4525 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4526 { 4527 struct iavf_fdir_fltr *fdir, *fdirtmp; 4528 bool del_filters = false; 4529 4530 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4531 4532 /* remove all Flow Director filters */ 4533 spin_lock_bh(&adapter->fdir_fltr_lock); 4534 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4535 list) { 4536 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4537 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4538 /* Delete filters not registered in PF */ 4539 list_del(&fdir->list); 4540 iavf_dec_fdir_active_fltr(adapter, fdir); 4541 kfree(fdir); 4542 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4543 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4544 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4545 /* Filters registered in PF, schedule their deletion */ 4546 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4547 del_filters = true; 4548 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4549 /* Request to delete filter already sent to PF, change 4550 * state to DEL_PENDING to delete filter after PF's 4551 * response, not set as INACTIVE 4552 */ 4553 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4554 } 4555 } 4556 spin_unlock_bh(&adapter->fdir_fltr_lock); 4557 4558 if (del_filters) { 4559 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4560 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4561 } 4562 } 4563 4564 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4565 NETIF_F_HW_VLAN_CTAG_TX | \ 4566 NETIF_F_HW_VLAN_STAG_RX | \ 4567 NETIF_F_HW_VLAN_STAG_TX) 4568 4569 /** 4570 * iavf_set_features - set the netdev feature flags 4571 * @netdev: ptr to the netdev being adjusted 4572 * @features: the feature set that the stack is suggesting 4573 * Note: expects to be called while under rtnl_lock() 4574 **/ 4575 static int iavf_set_features(struct net_device *netdev, 4576 netdev_features_t features) 4577 { 4578 struct iavf_adapter *adapter = netdev_priv(netdev); 4579 4580 /* trigger update on any VLAN feature change */ 4581 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4582 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4583 iavf_set_vlan_offload_features(adapter, netdev->features, 4584 features); 4585 if (CRC_OFFLOAD_ALLOWED(adapter) && 4586 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4587 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4588 4589 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4590 if (features & NETIF_F_NTUPLE) 4591 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4592 else 4593 iavf_disable_fdir(adapter); 4594 } 4595 4596 return 0; 4597 } 4598 4599 /** 4600 * iavf_features_check - Validate encapsulated packet conforms to limits 4601 * @skb: skb buff 4602 * @dev: This physical port's netdev 4603 * @features: Offload features that the stack believes apply 4604 **/ 4605 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4606 struct net_device *dev, 4607 netdev_features_t features) 4608 { 4609 size_t len; 4610 4611 /* No point in doing any of this if neither checksum nor GSO are 4612 * being requested for this frame. We can rule out both by just 4613 * checking for CHECKSUM_PARTIAL 4614 */ 4615 if (skb->ip_summed != CHECKSUM_PARTIAL) 4616 return features; 4617 4618 /* We cannot support GSO if the MSS is going to be less than 4619 * 64 bytes. If it is then we need to drop support for GSO. 4620 */ 4621 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4622 features &= ~NETIF_F_GSO_MASK; 4623 4624 /* MACLEN can support at most 63 words */ 4625 len = skb_network_offset(skb); 4626 if (len & ~(63 * 2)) 4627 goto out_err; 4628 4629 /* IPLEN and EIPLEN can support at most 127 dwords */ 4630 len = skb_network_header_len(skb); 4631 if (len & ~(127 * 4)) 4632 goto out_err; 4633 4634 if (skb->encapsulation) { 4635 /* L4TUNLEN can support 127 words */ 4636 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4637 if (len & ~(127 * 2)) 4638 goto out_err; 4639 4640 /* IPLEN can support at most 127 dwords */ 4641 len = skb_inner_transport_header(skb) - 4642 skb_inner_network_header(skb); 4643 if (len & ~(127 * 4)) 4644 goto out_err; 4645 } 4646 4647 /* No need to validate L4LEN as TCP is the only protocol with a 4648 * flexible value and we support all possible values supported 4649 * by TCP, which is at most 15 dwords 4650 */ 4651 4652 return features; 4653 out_err: 4654 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4655 } 4656 4657 /** 4658 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4659 * @adapter: board private structure 4660 * 4661 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4662 * were negotiated determine the VLAN features that can be toggled on and off. 4663 **/ 4664 static netdev_features_t 4665 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4666 { 4667 netdev_features_t hw_features = 0; 4668 4669 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4670 return hw_features; 4671 4672 /* Enable VLAN features if supported */ 4673 if (VLAN_ALLOWED(adapter)) { 4674 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4675 NETIF_F_HW_VLAN_CTAG_RX); 4676 } else if (VLAN_V2_ALLOWED(adapter)) { 4677 struct virtchnl_vlan_caps *vlan_v2_caps = 4678 &adapter->vlan_v2_caps; 4679 struct virtchnl_vlan_supported_caps *stripping_support = 4680 &vlan_v2_caps->offloads.stripping_support; 4681 struct virtchnl_vlan_supported_caps *insertion_support = 4682 &vlan_v2_caps->offloads.insertion_support; 4683 4684 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4685 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4686 if (stripping_support->outer & 4687 VIRTCHNL_VLAN_ETHERTYPE_8100) 4688 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4689 if (stripping_support->outer & 4690 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4691 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4692 } else if (stripping_support->inner != 4693 VIRTCHNL_VLAN_UNSUPPORTED && 4694 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4695 if (stripping_support->inner & 4696 VIRTCHNL_VLAN_ETHERTYPE_8100) 4697 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4698 } 4699 4700 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4701 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4702 if (insertion_support->outer & 4703 VIRTCHNL_VLAN_ETHERTYPE_8100) 4704 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4705 if (insertion_support->outer & 4706 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4707 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4708 } else if (insertion_support->inner && 4709 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4710 if (insertion_support->inner & 4711 VIRTCHNL_VLAN_ETHERTYPE_8100) 4712 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4713 } 4714 } 4715 4716 if (CRC_OFFLOAD_ALLOWED(adapter)) 4717 hw_features |= NETIF_F_RXFCS; 4718 4719 return hw_features; 4720 } 4721 4722 /** 4723 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4724 * @adapter: board private structure 4725 * 4726 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4727 * were negotiated determine the VLAN features that are enabled by default. 4728 **/ 4729 static netdev_features_t 4730 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4731 { 4732 netdev_features_t features = 0; 4733 4734 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4735 return features; 4736 4737 if (VLAN_ALLOWED(adapter)) { 4738 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4739 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4740 } else if (VLAN_V2_ALLOWED(adapter)) { 4741 struct virtchnl_vlan_caps *vlan_v2_caps = 4742 &adapter->vlan_v2_caps; 4743 struct virtchnl_vlan_supported_caps *filtering_support = 4744 &vlan_v2_caps->filtering.filtering_support; 4745 struct virtchnl_vlan_supported_caps *stripping_support = 4746 &vlan_v2_caps->offloads.stripping_support; 4747 struct virtchnl_vlan_supported_caps *insertion_support = 4748 &vlan_v2_caps->offloads.insertion_support; 4749 u32 ethertype_init; 4750 4751 /* give priority to outer stripping and don't support both outer 4752 * and inner stripping 4753 */ 4754 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4755 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4756 if (stripping_support->outer & 4757 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4758 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4759 features |= NETIF_F_HW_VLAN_CTAG_RX; 4760 else if (stripping_support->outer & 4761 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4762 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4763 features |= NETIF_F_HW_VLAN_STAG_RX; 4764 } else if (stripping_support->inner != 4765 VIRTCHNL_VLAN_UNSUPPORTED) { 4766 if (stripping_support->inner & 4767 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4768 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4769 features |= NETIF_F_HW_VLAN_CTAG_RX; 4770 } 4771 4772 /* give priority to outer insertion and don't support both outer 4773 * and inner insertion 4774 */ 4775 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4776 if (insertion_support->outer & 4777 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4778 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4779 features |= NETIF_F_HW_VLAN_CTAG_TX; 4780 else if (insertion_support->outer & 4781 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4782 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4783 features |= NETIF_F_HW_VLAN_STAG_TX; 4784 } else if (insertion_support->inner != 4785 VIRTCHNL_VLAN_UNSUPPORTED) { 4786 if (insertion_support->inner & 4787 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4788 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4789 features |= NETIF_F_HW_VLAN_CTAG_TX; 4790 } 4791 4792 /* give priority to outer filtering and don't bother if both 4793 * outer and inner filtering are enabled 4794 */ 4795 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4796 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4797 if (filtering_support->outer & 4798 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4799 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4800 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4801 if (filtering_support->outer & 4802 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4804 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4805 } else if (filtering_support->inner != 4806 VIRTCHNL_VLAN_UNSUPPORTED) { 4807 if (filtering_support->inner & 4808 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4809 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4810 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4811 if (filtering_support->inner & 4812 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4813 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4814 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4815 } 4816 } 4817 4818 return features; 4819 } 4820 4821 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4822 (!(((requested) & (feature_bit)) && \ 4823 !((allowed) & (feature_bit)))) 4824 4825 /** 4826 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4827 * @adapter: board private structure 4828 * @requested_features: stack requested NETDEV features 4829 **/ 4830 static netdev_features_t 4831 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4832 netdev_features_t requested_features) 4833 { 4834 netdev_features_t allowed_features; 4835 4836 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4837 iavf_get_netdev_vlan_features(adapter); 4838 4839 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4840 allowed_features, 4841 NETIF_F_HW_VLAN_CTAG_TX)) 4842 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4843 4844 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4845 allowed_features, 4846 NETIF_F_HW_VLAN_CTAG_RX)) 4847 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4848 4849 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4850 allowed_features, 4851 NETIF_F_HW_VLAN_STAG_TX)) 4852 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4853 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4854 allowed_features, 4855 NETIF_F_HW_VLAN_STAG_RX)) 4856 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4857 4858 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4859 allowed_features, 4860 NETIF_F_HW_VLAN_CTAG_FILTER)) 4861 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4862 4863 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4864 allowed_features, 4865 NETIF_F_HW_VLAN_STAG_FILTER)) 4866 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4867 4868 if ((requested_features & 4869 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4870 (requested_features & 4871 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4872 adapter->vlan_v2_caps.offloads.ethertype_match == 4873 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4874 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4875 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4876 NETIF_F_HW_VLAN_STAG_TX); 4877 } 4878 4879 return requested_features; 4880 } 4881 4882 /** 4883 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4884 * @adapter: board private structure 4885 * @requested_features: stack requested NETDEV features 4886 * 4887 * Returns fixed-up features bits 4888 **/ 4889 static netdev_features_t 4890 iavf_fix_strip_features(struct iavf_adapter *adapter, 4891 netdev_features_t requested_features) 4892 { 4893 struct net_device *netdev = adapter->netdev; 4894 bool crc_offload_req, is_vlan_strip; 4895 netdev_features_t vlan_strip; 4896 int num_non_zero_vlan; 4897 4898 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4899 (requested_features & NETIF_F_RXFCS); 4900 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4901 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4902 is_vlan_strip = requested_features & vlan_strip; 4903 4904 if (!crc_offload_req) 4905 return requested_features; 4906 4907 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4908 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4909 requested_features &= ~vlan_strip; 4910 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4911 return requested_features; 4912 } 4913 4914 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4915 requested_features &= ~vlan_strip; 4916 if (!(netdev->features & vlan_strip)) 4917 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4918 4919 return requested_features; 4920 } 4921 4922 if (num_non_zero_vlan && is_vlan_strip && 4923 !(netdev->features & NETIF_F_RXFCS)) { 4924 requested_features &= ~NETIF_F_RXFCS; 4925 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4926 } 4927 4928 return requested_features; 4929 } 4930 4931 /** 4932 * iavf_fix_features - fix up the netdev feature bits 4933 * @netdev: our net device 4934 * @features: desired feature bits 4935 * 4936 * Returns fixed-up features bits 4937 **/ 4938 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4939 netdev_features_t features) 4940 { 4941 struct iavf_adapter *adapter = netdev_priv(netdev); 4942 4943 features = iavf_fix_netdev_vlan_features(adapter, features); 4944 4945 if (!FDIR_FLTR_SUPPORT(adapter)) 4946 features &= ~NETIF_F_NTUPLE; 4947 4948 return iavf_fix_strip_features(adapter, features); 4949 } 4950 4951 static int 4952 iavf_verify_shaper(struct net_shaper_binding *binding, 4953 const struct net_shaper *shaper, 4954 struct netlink_ext_ack *extack) 4955 { 4956 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 4957 u64 vf_max; 4958 4959 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 4960 vf_max = adapter->qos_caps->cap[0].shaper.peak; 4961 if (vf_max && shaper->bw_max > vf_max) { 4962 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 4963 shaper->bw_max, shaper->handle.id, 4964 vf_max); 4965 return -EINVAL; 4966 } 4967 } 4968 return 0; 4969 } 4970 4971 static int 4972 iavf_shaper_set(struct net_shaper_binding *binding, 4973 const struct net_shaper *shaper, 4974 struct netlink_ext_ack *extack) 4975 { 4976 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 4977 const struct net_shaper_handle *handle = &shaper->handle; 4978 struct iavf_ring *tx_ring; 4979 int ret = 0; 4980 4981 mutex_lock(&adapter->crit_lock); 4982 if (handle->id >= adapter->num_active_queues) 4983 goto unlock; 4984 4985 ret = iavf_verify_shaper(binding, shaper, extack); 4986 if (ret) 4987 goto unlock; 4988 4989 tx_ring = &adapter->tx_rings[handle->id]; 4990 4991 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 4992 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 4993 tx_ring->q_shaper_update = true; 4994 4995 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 4996 4997 unlock: 4998 mutex_unlock(&adapter->crit_lock); 4999 return ret; 5000 } 5001 5002 static int iavf_shaper_del(struct net_shaper_binding *binding, 5003 const struct net_shaper_handle *handle, 5004 struct netlink_ext_ack *extack) 5005 { 5006 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5007 struct iavf_ring *tx_ring; 5008 5009 mutex_lock(&adapter->crit_lock); 5010 if (handle->id >= adapter->num_active_queues) 5011 goto unlock; 5012 5013 tx_ring = &adapter->tx_rings[handle->id]; 5014 tx_ring->q_shaper.bw_min = 0; 5015 tx_ring->q_shaper.bw_max = 0; 5016 tx_ring->q_shaper_update = true; 5017 5018 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5019 5020 unlock: 5021 mutex_unlock(&adapter->crit_lock); 5022 return 0; 5023 } 5024 5025 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5026 enum net_shaper_scope scope, 5027 unsigned long *flags) 5028 { 5029 if (scope != NET_SHAPER_SCOPE_QUEUE) 5030 return; 5031 5032 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5033 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5034 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5035 } 5036 5037 static const struct net_shaper_ops iavf_shaper_ops = { 5038 .set = iavf_shaper_set, 5039 .delete = iavf_shaper_del, 5040 .capabilities = iavf_shaper_cap, 5041 }; 5042 5043 static const struct net_device_ops iavf_netdev_ops = { 5044 .ndo_open = iavf_open, 5045 .ndo_stop = iavf_close, 5046 .ndo_start_xmit = iavf_xmit_frame, 5047 .ndo_set_rx_mode = iavf_set_rx_mode, 5048 .ndo_validate_addr = eth_validate_addr, 5049 .ndo_set_mac_address = iavf_set_mac, 5050 .ndo_change_mtu = iavf_change_mtu, 5051 .ndo_tx_timeout = iavf_tx_timeout, 5052 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5053 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5054 .ndo_features_check = iavf_features_check, 5055 .ndo_fix_features = iavf_fix_features, 5056 .ndo_set_features = iavf_set_features, 5057 .ndo_setup_tc = iavf_setup_tc, 5058 .net_shaper_ops = &iavf_shaper_ops, 5059 }; 5060 5061 /** 5062 * iavf_check_reset_complete - check that VF reset is complete 5063 * @hw: pointer to hw struct 5064 * 5065 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5066 **/ 5067 static int iavf_check_reset_complete(struct iavf_hw *hw) 5068 { 5069 u32 rstat; 5070 int i; 5071 5072 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5073 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5074 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5075 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5076 (rstat == VIRTCHNL_VFR_COMPLETED)) 5077 return 0; 5078 msleep(IAVF_RESET_WAIT_MS); 5079 } 5080 return -EBUSY; 5081 } 5082 5083 /** 5084 * iavf_process_config - Process the config information we got from the PF 5085 * @adapter: board private structure 5086 * 5087 * Verify that we have a valid config struct, and set up our netdev features 5088 * and our VSI struct. 5089 **/ 5090 int iavf_process_config(struct iavf_adapter *adapter) 5091 { 5092 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5093 netdev_features_t hw_vlan_features, vlan_features; 5094 struct net_device *netdev = adapter->netdev; 5095 netdev_features_t hw_enc_features; 5096 netdev_features_t hw_features; 5097 5098 hw_enc_features = NETIF_F_SG | 5099 NETIF_F_IP_CSUM | 5100 NETIF_F_IPV6_CSUM | 5101 NETIF_F_HIGHDMA | 5102 NETIF_F_SOFT_FEATURES | 5103 NETIF_F_TSO | 5104 NETIF_F_TSO_ECN | 5105 NETIF_F_TSO6 | 5106 NETIF_F_SCTP_CRC | 5107 NETIF_F_RXHASH | 5108 NETIF_F_RXCSUM | 5109 0; 5110 5111 /* advertise to stack only if offloads for encapsulated packets is 5112 * supported 5113 */ 5114 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5115 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5116 NETIF_F_GSO_GRE | 5117 NETIF_F_GSO_GRE_CSUM | 5118 NETIF_F_GSO_IPXIP4 | 5119 NETIF_F_GSO_IPXIP6 | 5120 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5121 NETIF_F_GSO_PARTIAL | 5122 0; 5123 5124 if (!(vfres->vf_cap_flags & 5125 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5126 netdev->gso_partial_features |= 5127 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5128 5129 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5130 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5131 netdev->hw_enc_features |= hw_enc_features; 5132 } 5133 /* record features VLANs can make use of */ 5134 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5135 5136 /* Write features and hw_features separately to avoid polluting 5137 * with, or dropping, features that are set when we registered. 5138 */ 5139 hw_features = hw_enc_features; 5140 5141 /* get HW VLAN features that can be toggled */ 5142 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5143 5144 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5145 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5146 TC_U32_SUPPORT(adapter)) 5147 hw_features |= NETIF_F_HW_TC; 5148 5149 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5150 hw_features |= NETIF_F_GSO_UDP_L4; 5151 5152 netdev->hw_features |= hw_features | hw_vlan_features; 5153 vlan_features = iavf_get_netdev_vlan_features(adapter); 5154 5155 netdev->features |= hw_features | vlan_features; 5156 5157 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5158 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5159 5160 if (FDIR_FLTR_SUPPORT(adapter)) { 5161 netdev->hw_features |= NETIF_F_NTUPLE; 5162 netdev->features |= NETIF_F_NTUPLE; 5163 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5164 } 5165 5166 netdev->priv_flags |= IFF_UNICAST_FLT; 5167 5168 /* Do not turn on offloads when they are requested to be turned off. 5169 * TSO needs minimum 576 bytes to work correctly. 5170 */ 5171 if (netdev->wanted_features) { 5172 if (!(netdev->wanted_features & NETIF_F_TSO) || 5173 netdev->mtu < 576) 5174 netdev->features &= ~NETIF_F_TSO; 5175 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5176 netdev->mtu < 576) 5177 netdev->features &= ~NETIF_F_TSO6; 5178 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5179 netdev->features &= ~NETIF_F_TSO_ECN; 5180 if (!(netdev->wanted_features & NETIF_F_GRO)) 5181 netdev->features &= ~NETIF_F_GRO; 5182 if (!(netdev->wanted_features & NETIF_F_GSO)) 5183 netdev->features &= ~NETIF_F_GSO; 5184 } 5185 5186 return 0; 5187 } 5188 5189 /** 5190 * iavf_probe - Device Initialization Routine 5191 * @pdev: PCI device information struct 5192 * @ent: entry in iavf_pci_tbl 5193 * 5194 * Returns 0 on success, negative on failure 5195 * 5196 * iavf_probe initializes an adapter identified by a pci_dev structure. 5197 * The OS initialization, configuring of the adapter private structure, 5198 * and a hardware reset occur. 5199 **/ 5200 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5201 { 5202 struct net_device *netdev; 5203 struct iavf_adapter *adapter = NULL; 5204 struct iavf_hw *hw = NULL; 5205 int err, len; 5206 5207 err = pci_enable_device(pdev); 5208 if (err) 5209 return err; 5210 5211 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5212 if (err) { 5213 dev_err(&pdev->dev, 5214 "DMA configuration failed: 0x%x\n", err); 5215 goto err_dma; 5216 } 5217 5218 err = pci_request_regions(pdev, iavf_driver_name); 5219 if (err) { 5220 dev_err(&pdev->dev, 5221 "pci_request_regions failed 0x%x\n", err); 5222 goto err_pci_reg; 5223 } 5224 5225 pci_set_master(pdev); 5226 5227 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5228 IAVF_MAX_REQ_QUEUES); 5229 if (!netdev) { 5230 err = -ENOMEM; 5231 goto err_alloc_etherdev; 5232 } 5233 5234 SET_NETDEV_DEV(netdev, &pdev->dev); 5235 5236 pci_set_drvdata(pdev, netdev); 5237 adapter = netdev_priv(netdev); 5238 5239 adapter->netdev = netdev; 5240 adapter->pdev = pdev; 5241 5242 hw = &adapter->hw; 5243 hw->back = adapter; 5244 5245 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5246 iavf_driver_name); 5247 if (!adapter->wq) { 5248 err = -ENOMEM; 5249 goto err_alloc_wq; 5250 } 5251 5252 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5253 iavf_change_state(adapter, __IAVF_STARTUP); 5254 5255 /* Call save state here because it relies on the adapter struct. */ 5256 pci_save_state(pdev); 5257 5258 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5259 pci_resource_len(pdev, 0)); 5260 if (!hw->hw_addr) { 5261 err = -EIO; 5262 goto err_ioremap; 5263 } 5264 hw->vendor_id = pdev->vendor; 5265 hw->device_id = pdev->device; 5266 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5267 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5268 hw->subsystem_device_id = pdev->subsystem_device; 5269 hw->bus.device = PCI_SLOT(pdev->devfn); 5270 hw->bus.func = PCI_FUNC(pdev->devfn); 5271 hw->bus.bus_id = pdev->bus->number; 5272 5273 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5274 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5275 if (!adapter->qos_caps) { 5276 err = -ENOMEM; 5277 goto err_alloc_qos_cap; 5278 } 5279 5280 /* set up the locks for the AQ, do this only once in probe 5281 * and destroy them only once in remove 5282 */ 5283 mutex_init(&adapter->crit_lock); 5284 mutex_init(&hw->aq.asq_mutex); 5285 mutex_init(&hw->aq.arq_mutex); 5286 5287 spin_lock_init(&adapter->mac_vlan_list_lock); 5288 spin_lock_init(&adapter->cloud_filter_list_lock); 5289 spin_lock_init(&adapter->fdir_fltr_lock); 5290 spin_lock_init(&adapter->adv_rss_lock); 5291 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5292 5293 INIT_LIST_HEAD(&adapter->mac_filter_list); 5294 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5295 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5296 INIT_LIST_HEAD(&adapter->fdir_list_head); 5297 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5298 5299 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5300 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5301 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5302 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5303 5304 /* Setup the wait queue for indicating transition to down status */ 5305 init_waitqueue_head(&adapter->down_waitqueue); 5306 5307 /* Setup the wait queue for indicating transition to running state */ 5308 init_waitqueue_head(&adapter->reset_waitqueue); 5309 5310 /* Setup the wait queue for indicating virtchannel events */ 5311 init_waitqueue_head(&adapter->vc_waitqueue); 5312 5313 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5314 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5315 /* Initialization goes on in the work. Do not add more of it below. */ 5316 return 0; 5317 5318 err_alloc_qos_cap: 5319 iounmap(hw->hw_addr); 5320 err_ioremap: 5321 destroy_workqueue(adapter->wq); 5322 err_alloc_wq: 5323 free_netdev(netdev); 5324 err_alloc_etherdev: 5325 pci_release_regions(pdev); 5326 err_pci_reg: 5327 err_dma: 5328 pci_disable_device(pdev); 5329 return err; 5330 } 5331 5332 /** 5333 * iavf_suspend - Power management suspend routine 5334 * @dev_d: device info pointer 5335 * 5336 * Called when the system (VM) is entering sleep/suspend. 5337 **/ 5338 static int iavf_suspend(struct device *dev_d) 5339 { 5340 struct net_device *netdev = dev_get_drvdata(dev_d); 5341 struct iavf_adapter *adapter = netdev_priv(netdev); 5342 5343 netif_device_detach(netdev); 5344 5345 mutex_lock(&adapter->crit_lock); 5346 5347 if (netif_running(netdev)) { 5348 rtnl_lock(); 5349 iavf_down(adapter); 5350 rtnl_unlock(); 5351 } 5352 iavf_free_misc_irq(adapter); 5353 iavf_reset_interrupt_capability(adapter); 5354 5355 mutex_unlock(&adapter->crit_lock); 5356 5357 return 0; 5358 } 5359 5360 /** 5361 * iavf_resume - Power management resume routine 5362 * @dev_d: device info pointer 5363 * 5364 * Called when the system (VM) is resumed from sleep/suspend. 5365 **/ 5366 static int iavf_resume(struct device *dev_d) 5367 { 5368 struct pci_dev *pdev = to_pci_dev(dev_d); 5369 struct iavf_adapter *adapter; 5370 u32 err; 5371 5372 adapter = iavf_pdev_to_adapter(pdev); 5373 5374 pci_set_master(pdev); 5375 5376 rtnl_lock(); 5377 err = iavf_set_interrupt_capability(adapter); 5378 if (err) { 5379 rtnl_unlock(); 5380 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5381 return err; 5382 } 5383 err = iavf_request_misc_irq(adapter); 5384 rtnl_unlock(); 5385 if (err) { 5386 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5387 return err; 5388 } 5389 5390 queue_work(adapter->wq, &adapter->reset_task); 5391 5392 netif_device_attach(adapter->netdev); 5393 5394 return err; 5395 } 5396 5397 /** 5398 * iavf_remove - Device Removal Routine 5399 * @pdev: PCI device information struct 5400 * 5401 * iavf_remove is called by the PCI subsystem to alert the driver 5402 * that it should release a PCI device. The could be caused by a 5403 * Hot-Plug event, or because the driver is going to be removed from 5404 * memory. 5405 **/ 5406 static void iavf_remove(struct pci_dev *pdev) 5407 { 5408 struct iavf_fdir_fltr *fdir, *fdirtmp; 5409 struct iavf_vlan_filter *vlf, *vlftmp; 5410 struct iavf_cloud_filter *cf, *cftmp; 5411 struct iavf_adv_rss *rss, *rsstmp; 5412 struct iavf_mac_filter *f, *ftmp; 5413 struct iavf_adapter *adapter; 5414 struct net_device *netdev; 5415 struct iavf_hw *hw; 5416 5417 /* Don't proceed with remove if netdev is already freed */ 5418 netdev = pci_get_drvdata(pdev); 5419 if (!netdev) 5420 return; 5421 5422 adapter = iavf_pdev_to_adapter(pdev); 5423 hw = &adapter->hw; 5424 5425 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5426 return; 5427 5428 /* Wait until port initialization is complete. 5429 * There are flows where register/unregister netdev may race. 5430 */ 5431 while (1) { 5432 mutex_lock(&adapter->crit_lock); 5433 if (adapter->state == __IAVF_RUNNING || 5434 adapter->state == __IAVF_DOWN || 5435 adapter->state == __IAVF_INIT_FAILED) { 5436 mutex_unlock(&adapter->crit_lock); 5437 break; 5438 } 5439 /* Simply return if we already went through iavf_shutdown */ 5440 if (adapter->state == __IAVF_REMOVE) { 5441 mutex_unlock(&adapter->crit_lock); 5442 return; 5443 } 5444 5445 mutex_unlock(&adapter->crit_lock); 5446 usleep_range(500, 1000); 5447 } 5448 cancel_delayed_work_sync(&adapter->watchdog_task); 5449 cancel_work_sync(&adapter->finish_config); 5450 5451 if (netdev->reg_state == NETREG_REGISTERED) 5452 unregister_netdev(netdev); 5453 5454 mutex_lock(&adapter->crit_lock); 5455 dev_info(&adapter->pdev->dev, "Removing device\n"); 5456 iavf_change_state(adapter, __IAVF_REMOVE); 5457 5458 iavf_request_reset(adapter); 5459 msleep(50); 5460 /* If the FW isn't responding, kick it once, but only once. */ 5461 if (!iavf_asq_done(hw)) { 5462 iavf_request_reset(adapter); 5463 msleep(50); 5464 } 5465 5466 iavf_misc_irq_disable(adapter); 5467 /* Shut down all the garbage mashers on the detention level */ 5468 cancel_work_sync(&adapter->reset_task); 5469 cancel_delayed_work_sync(&adapter->watchdog_task); 5470 cancel_work_sync(&adapter->adminq_task); 5471 5472 adapter->aq_required = 0; 5473 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5474 5475 iavf_free_all_tx_resources(adapter); 5476 iavf_free_all_rx_resources(adapter); 5477 iavf_free_misc_irq(adapter); 5478 iavf_free_interrupt_scheme(adapter); 5479 5480 iavf_free_rss(adapter); 5481 5482 if (hw->aq.asq.count) 5483 iavf_shutdown_adminq(hw); 5484 5485 /* destroy the locks only once, here */ 5486 mutex_destroy(&hw->aq.arq_mutex); 5487 mutex_destroy(&hw->aq.asq_mutex); 5488 mutex_unlock(&adapter->crit_lock); 5489 mutex_destroy(&adapter->crit_lock); 5490 5491 iounmap(hw->hw_addr); 5492 pci_release_regions(pdev); 5493 kfree(adapter->vf_res); 5494 spin_lock_bh(&adapter->mac_vlan_list_lock); 5495 /* If we got removed before an up/down sequence, we've got a filter 5496 * hanging out there that we need to get rid of. 5497 */ 5498 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5499 list_del(&f->list); 5500 kfree(f); 5501 } 5502 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5503 list) { 5504 list_del(&vlf->list); 5505 kfree(vlf); 5506 } 5507 5508 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5509 5510 spin_lock_bh(&adapter->cloud_filter_list_lock); 5511 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5512 list_del(&cf->list); 5513 kfree(cf); 5514 } 5515 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5516 5517 spin_lock_bh(&adapter->fdir_fltr_lock); 5518 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5519 list_del(&fdir->list); 5520 kfree(fdir); 5521 } 5522 spin_unlock_bh(&adapter->fdir_fltr_lock); 5523 5524 spin_lock_bh(&adapter->adv_rss_lock); 5525 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5526 list) { 5527 list_del(&rss->list); 5528 kfree(rss); 5529 } 5530 spin_unlock_bh(&adapter->adv_rss_lock); 5531 5532 destroy_workqueue(adapter->wq); 5533 5534 pci_set_drvdata(pdev, NULL); 5535 5536 free_netdev(netdev); 5537 5538 pci_disable_device(pdev); 5539 } 5540 5541 /** 5542 * iavf_shutdown - Shutdown the device in preparation for a reboot 5543 * @pdev: pci device structure 5544 **/ 5545 static void iavf_shutdown(struct pci_dev *pdev) 5546 { 5547 iavf_remove(pdev); 5548 5549 if (system_state == SYSTEM_POWER_OFF) 5550 pci_set_power_state(pdev, PCI_D3hot); 5551 } 5552 5553 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5554 5555 static struct pci_driver iavf_driver = { 5556 .name = iavf_driver_name, 5557 .id_table = iavf_pci_tbl, 5558 .probe = iavf_probe, 5559 .remove = iavf_remove, 5560 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5561 .shutdown = iavf_shutdown, 5562 }; 5563 5564 /** 5565 * iavf_init_module - Driver Registration Routine 5566 * 5567 * iavf_init_module is the first routine called when the driver is 5568 * loaded. All it does is register with the PCI subsystem. 5569 **/ 5570 static int __init iavf_init_module(void) 5571 { 5572 pr_info("iavf: %s\n", iavf_driver_string); 5573 5574 pr_info("%s\n", iavf_copyright); 5575 5576 return pci_register_driver(&iavf_driver); 5577 } 5578 5579 module_init(iavf_init_module); 5580 5581 /** 5582 * iavf_exit_module - Driver Exit Cleanup Routine 5583 * 5584 * iavf_exit_module is called just before the driver is removed 5585 * from memory. 5586 **/ 5587 static void __exit iavf_exit_module(void) 5588 { 5589 pci_unregister_driver(&iavf_driver); 5590 } 5591 5592 module_exit(iavf_exit_module); 5593 5594 /* iavf_main.c */ 5595