xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/net/intel/libie/rx.h>
5 
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9  * be included exactly once across the whole kernel with
10  * CREATE_TRACE_POINTS defined
11  */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14 
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20 
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24 
25 static const char iavf_copyright[] =
26 	"Copyright (c) 2013 - 2018 Intel Corporation.";
27 
28 /* iavf_pci_tbl - PCI Device ID Table
29  *
30  * Wildcard entries (PCI_ANY_ID) should come last
31  * Last entry must be all 0s
32  *
33  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34  *   Class, Class Mask, private data (not used) }
35  */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 	/* required last entry */
42 	{0, }
43 };
44 
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46 
47 MODULE_ALIAS("i40evf");
48 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
49 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
50 MODULE_IMPORT_NS(LIBETH);
51 MODULE_IMPORT_NS(LIBIE);
52 MODULE_LICENSE("GPL v2");
53 
54 static const struct net_device_ops iavf_netdev_ops;
55 
56 int iavf_status_to_errno(enum iavf_status status)
57 {
58 	switch (status) {
59 	case IAVF_SUCCESS:
60 		return 0;
61 	case IAVF_ERR_PARAM:
62 	case IAVF_ERR_MAC_TYPE:
63 	case IAVF_ERR_INVALID_MAC_ADDR:
64 	case IAVF_ERR_INVALID_LINK_SETTINGS:
65 	case IAVF_ERR_INVALID_PD_ID:
66 	case IAVF_ERR_INVALID_QP_ID:
67 	case IAVF_ERR_INVALID_CQ_ID:
68 	case IAVF_ERR_INVALID_CEQ_ID:
69 	case IAVF_ERR_INVALID_AEQ_ID:
70 	case IAVF_ERR_INVALID_SIZE:
71 	case IAVF_ERR_INVALID_ARP_INDEX:
72 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
73 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
74 	case IAVF_ERR_INVALID_FRAG_COUNT:
75 	case IAVF_ERR_INVALID_ALIGNMENT:
76 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
77 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
78 	case IAVF_ERR_INVALID_VF_ID:
79 	case IAVF_ERR_INVALID_HMCFN_ID:
80 	case IAVF_ERR_INVALID_PBLE_INDEX:
81 	case IAVF_ERR_INVALID_SD_INDEX:
82 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
83 	case IAVF_ERR_INVALID_SD_TYPE:
84 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
85 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
86 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
87 		return -EINVAL;
88 	case IAVF_ERR_NVM:
89 	case IAVF_ERR_NVM_CHECKSUM:
90 	case IAVF_ERR_PHY:
91 	case IAVF_ERR_CONFIG:
92 	case IAVF_ERR_UNKNOWN_PHY:
93 	case IAVF_ERR_LINK_SETUP:
94 	case IAVF_ERR_ADAPTER_STOPPED:
95 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
96 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
97 	case IAVF_ERR_RESET_FAILED:
98 	case IAVF_ERR_BAD_PTR:
99 	case IAVF_ERR_SWFW_SYNC:
100 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
101 	case IAVF_ERR_QUEUE_EMPTY:
102 	case IAVF_ERR_FLUSHED_QUEUE:
103 	case IAVF_ERR_OPCODE_MISMATCH:
104 	case IAVF_ERR_CQP_COMPL_ERROR:
105 	case IAVF_ERR_BACKING_PAGE_ERROR:
106 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
107 	case IAVF_ERR_MEMCPY_FAILED:
108 	case IAVF_ERR_SRQ_ENABLED:
109 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
110 	case IAVF_ERR_ADMIN_QUEUE_FULL:
111 	case IAVF_ERR_BAD_RDMA_CQE:
112 	case IAVF_ERR_NVM_BLANK_MODE:
113 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
114 	case IAVF_ERR_DIAG_TEST_FAILED:
115 	case IAVF_ERR_FIRMWARE_API_VERSION:
116 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
117 		return -EIO;
118 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
119 		return -ENODEV;
120 	case IAVF_ERR_NO_AVAILABLE_VSI:
121 	case IAVF_ERR_RING_FULL:
122 		return -ENOSPC;
123 	case IAVF_ERR_NO_MEMORY:
124 		return -ENOMEM;
125 	case IAVF_ERR_TIMEOUT:
126 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
127 		return -ETIMEDOUT;
128 	case IAVF_ERR_NOT_IMPLEMENTED:
129 	case IAVF_NOT_SUPPORTED:
130 		return -EOPNOTSUPP;
131 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
132 		return -EALREADY;
133 	case IAVF_ERR_NOT_READY:
134 		return -EBUSY;
135 	case IAVF_ERR_BUF_TOO_SHORT:
136 		return -EMSGSIZE;
137 	}
138 
139 	return -EIO;
140 }
141 
142 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
143 {
144 	switch (v_status) {
145 	case VIRTCHNL_STATUS_SUCCESS:
146 		return 0;
147 	case VIRTCHNL_STATUS_ERR_PARAM:
148 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
149 		return -EINVAL;
150 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
151 		return -ENOMEM;
152 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
153 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
154 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
155 		return -EIO;
156 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
157 		return -EOPNOTSUPP;
158 	}
159 
160 	return -EIO;
161 }
162 
163 /**
164  * iavf_pdev_to_adapter - go from pci_dev to adapter
165  * @pdev: pci_dev pointer
166  */
167 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
168 {
169 	return netdev_priv(pci_get_drvdata(pdev));
170 }
171 
172 /**
173  * iavf_is_reset_in_progress - Check if a reset is in progress
174  * @adapter: board private structure
175  */
176 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
177 {
178 	if (adapter->state == __IAVF_RESETTING ||
179 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
180 			      IAVF_FLAG_RESET_NEEDED))
181 		return true;
182 
183 	return false;
184 }
185 
186 /**
187  * iavf_wait_for_reset - Wait for reset to finish.
188  * @adapter: board private structure
189  *
190  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
191  */
192 int iavf_wait_for_reset(struct iavf_adapter *adapter)
193 {
194 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
195 					!iavf_is_reset_in_progress(adapter),
196 					msecs_to_jiffies(5000));
197 
198 	/* If ret < 0 then it means wait was interrupted.
199 	 * If ret == 0 then it means we got a timeout while waiting
200 	 * for reset to finish.
201 	 * If ret > 0 it means reset has finished.
202 	 */
203 	if (ret > 0)
204 		return 0;
205 	else if (ret < 0)
206 		return -EINTR;
207 	else
208 		return -EBUSY;
209 }
210 
211 /**
212  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
213  * @hw:   pointer to the HW structure
214  * @mem:  ptr to mem struct to fill out
215  * @size: size of memory requested
216  * @alignment: what to align the allocation to
217  **/
218 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
219 					 struct iavf_dma_mem *mem,
220 					 u64 size, u32 alignment)
221 {
222 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
223 
224 	if (!mem)
225 		return IAVF_ERR_PARAM;
226 
227 	mem->size = ALIGN(size, alignment);
228 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
229 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
230 	if (mem->va)
231 		return 0;
232 	else
233 		return IAVF_ERR_NO_MEMORY;
234 }
235 
236 /**
237  * iavf_free_dma_mem - wrapper for DMA memory freeing
238  * @hw:   pointer to the HW structure
239  * @mem:  ptr to mem struct to free
240  **/
241 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
242 {
243 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
244 
245 	if (!mem || !mem->va)
246 		return IAVF_ERR_PARAM;
247 	dma_free_coherent(&adapter->pdev->dev, mem->size,
248 			  mem->va, (dma_addr_t)mem->pa);
249 	return 0;
250 }
251 
252 /**
253  * iavf_allocate_virt_mem - virt memory alloc wrapper
254  * @hw:   pointer to the HW structure
255  * @mem:  ptr to mem struct to fill out
256  * @size: size of memory requested
257  **/
258 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
259 					struct iavf_virt_mem *mem, u32 size)
260 {
261 	if (!mem)
262 		return IAVF_ERR_PARAM;
263 
264 	mem->size = size;
265 	mem->va = kzalloc(size, GFP_KERNEL);
266 
267 	if (mem->va)
268 		return 0;
269 	else
270 		return IAVF_ERR_NO_MEMORY;
271 }
272 
273 /**
274  * iavf_free_virt_mem - virt memory free wrapper
275  * @hw:   pointer to the HW structure
276  * @mem:  ptr to mem struct to free
277  **/
278 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
279 {
280 	kfree(mem->va);
281 }
282 
283 /**
284  * iavf_schedule_reset - Set the flags and schedule a reset event
285  * @adapter: board private structure
286  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
287  **/
288 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
289 {
290 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
291 	    !(adapter->flags &
292 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
293 		adapter->flags |= flags;
294 		queue_work(adapter->wq, &adapter->reset_task);
295 	}
296 }
297 
298 /**
299  * iavf_schedule_aq_request - Set the flags and schedule aq request
300  * @adapter: board private structure
301  * @flags: requested aq flags
302  **/
303 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
304 {
305 	adapter->aq_required |= flags;
306 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
307 }
308 
309 /**
310  * iavf_tx_timeout - Respond to a Tx Hang
311  * @netdev: network interface device structure
312  * @txqueue: queue number that is timing out
313  **/
314 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
315 {
316 	struct iavf_adapter *adapter = netdev_priv(netdev);
317 
318 	adapter->tx_timeout_count++;
319 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
320 }
321 
322 /**
323  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
324  * @adapter: board private structure
325  **/
326 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
327 {
328 	struct iavf_hw *hw = &adapter->hw;
329 
330 	if (!adapter->msix_entries)
331 		return;
332 
333 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
334 
335 	iavf_flush(hw);
336 
337 	synchronize_irq(adapter->msix_entries[0].vector);
338 }
339 
340 /**
341  * iavf_misc_irq_enable - Enable default interrupt generation settings
342  * @adapter: board private structure
343  **/
344 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
345 {
346 	struct iavf_hw *hw = &adapter->hw;
347 
348 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
349 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
350 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
351 
352 	iavf_flush(hw);
353 }
354 
355 /**
356  * iavf_irq_disable - Mask off interrupt generation on the NIC
357  * @adapter: board private structure
358  **/
359 static void iavf_irq_disable(struct iavf_adapter *adapter)
360 {
361 	int i;
362 	struct iavf_hw *hw = &adapter->hw;
363 
364 	if (!adapter->msix_entries)
365 		return;
366 
367 	for (i = 1; i < adapter->num_msix_vectors; i++) {
368 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
369 		synchronize_irq(adapter->msix_entries[i].vector);
370 	}
371 	iavf_flush(hw);
372 }
373 
374 /**
375  * iavf_irq_enable_queues - Enable interrupt for all queues
376  * @adapter: board private structure
377  **/
378 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
379 {
380 	struct iavf_hw *hw = &adapter->hw;
381 	int i;
382 
383 	for (i = 1; i < adapter->num_msix_vectors; i++) {
384 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
385 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
386 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
387 	}
388 }
389 
390 /**
391  * iavf_irq_enable - Enable default interrupt generation settings
392  * @adapter: board private structure
393  * @flush: boolean value whether to run rd32()
394  **/
395 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
396 {
397 	struct iavf_hw *hw = &adapter->hw;
398 
399 	iavf_misc_irq_enable(adapter);
400 	iavf_irq_enable_queues(adapter);
401 
402 	if (flush)
403 		iavf_flush(hw);
404 }
405 
406 /**
407  * iavf_msix_aq - Interrupt handler for vector 0
408  * @irq: interrupt number
409  * @data: pointer to netdev
410  **/
411 static irqreturn_t iavf_msix_aq(int irq, void *data)
412 {
413 	struct net_device *netdev = data;
414 	struct iavf_adapter *adapter = netdev_priv(netdev);
415 	struct iavf_hw *hw = &adapter->hw;
416 
417 	/* handle non-queue interrupts, these reads clear the registers */
418 	rd32(hw, IAVF_VFINT_ICR01);
419 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
420 
421 	if (adapter->state != __IAVF_REMOVE)
422 		/* schedule work on the private workqueue */
423 		queue_work(adapter->wq, &adapter->adminq_task);
424 
425 	return IRQ_HANDLED;
426 }
427 
428 /**
429  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
430  * @irq: interrupt number
431  * @data: pointer to a q_vector
432  **/
433 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
434 {
435 	struct iavf_q_vector *q_vector = data;
436 
437 	if (!q_vector->tx.ring && !q_vector->rx.ring)
438 		return IRQ_HANDLED;
439 
440 	napi_schedule_irqoff(&q_vector->napi);
441 
442 	return IRQ_HANDLED;
443 }
444 
445 /**
446  * iavf_map_vector_to_rxq - associate irqs with rx queues
447  * @adapter: board private structure
448  * @v_idx: interrupt number
449  * @r_idx: queue number
450  **/
451 static void
452 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
453 {
454 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
455 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
456 	struct iavf_hw *hw = &adapter->hw;
457 
458 	rx_ring->q_vector = q_vector;
459 	rx_ring->next = q_vector->rx.ring;
460 	rx_ring->vsi = &adapter->vsi;
461 	q_vector->rx.ring = rx_ring;
462 	q_vector->rx.count++;
463 	q_vector->rx.next_update = jiffies + 1;
464 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
465 	q_vector->ring_mask |= BIT(r_idx);
466 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
467 	     q_vector->rx.current_itr >> 1);
468 	q_vector->rx.current_itr = q_vector->rx.target_itr;
469 }
470 
471 /**
472  * iavf_map_vector_to_txq - associate irqs with tx queues
473  * @adapter: board private structure
474  * @v_idx: interrupt number
475  * @t_idx: queue number
476  **/
477 static void
478 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
479 {
480 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
481 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
482 	struct iavf_hw *hw = &adapter->hw;
483 
484 	tx_ring->q_vector = q_vector;
485 	tx_ring->next = q_vector->tx.ring;
486 	tx_ring->vsi = &adapter->vsi;
487 	q_vector->tx.ring = tx_ring;
488 	q_vector->tx.count++;
489 	q_vector->tx.next_update = jiffies + 1;
490 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
491 	q_vector->num_ringpairs++;
492 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
493 	     q_vector->tx.target_itr >> 1);
494 	q_vector->tx.current_itr = q_vector->tx.target_itr;
495 }
496 
497 /**
498  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
499  * @adapter: board private structure to initialize
500  *
501  * This function maps descriptor rings to the queue-specific vectors
502  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
503  * one vector per ring/queue, but on a constrained vector budget, we
504  * group the rings as "efficiently" as possible.  You would add new
505  * mapping configurations in here.
506  **/
507 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
508 {
509 	int rings_remaining = adapter->num_active_queues;
510 	int ridx = 0, vidx = 0;
511 	int q_vectors;
512 
513 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
514 
515 	for (; ridx < rings_remaining; ridx++) {
516 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
517 		iavf_map_vector_to_txq(adapter, vidx, ridx);
518 
519 		/* In the case where we have more queues than vectors, continue
520 		 * round-robin on vectors until all queues are mapped.
521 		 */
522 		if (++vidx >= q_vectors)
523 			vidx = 0;
524 	}
525 
526 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
527 }
528 
529 /**
530  * iavf_irq_affinity_notify - Callback for affinity changes
531  * @notify: context as to what irq was changed
532  * @mask: the new affinity mask
533  *
534  * This is a callback function used by the irq_set_affinity_notifier function
535  * so that we may register to receive changes to the irq affinity masks.
536  **/
537 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
538 				     const cpumask_t *mask)
539 {
540 	struct iavf_q_vector *q_vector =
541 		container_of(notify, struct iavf_q_vector, affinity_notify);
542 
543 	cpumask_copy(&q_vector->affinity_mask, mask);
544 }
545 
546 /**
547  * iavf_irq_affinity_release - Callback for affinity notifier release
548  * @ref: internal core kernel usage
549  *
550  * This is a callback function used by the irq_set_affinity_notifier function
551  * to inform the current notification subscriber that they will no longer
552  * receive notifications.
553  **/
554 static void iavf_irq_affinity_release(struct kref *ref) {}
555 
556 /**
557  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
558  * @adapter: board private structure
559  * @basename: device basename
560  *
561  * Allocates MSI-X vectors for tx and rx handling, and requests
562  * interrupts from the kernel.
563  **/
564 static int
565 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
566 {
567 	unsigned int vector, q_vectors;
568 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
569 	int irq_num, err;
570 	int cpu;
571 
572 	iavf_irq_disable(adapter);
573 	/* Decrement for Other and TCP Timer vectors */
574 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
575 
576 	for (vector = 0; vector < q_vectors; vector++) {
577 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
578 
579 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
580 
581 		if (q_vector->tx.ring && q_vector->rx.ring) {
582 			snprintf(q_vector->name, sizeof(q_vector->name),
583 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
584 			tx_int_idx++;
585 		} else if (q_vector->rx.ring) {
586 			snprintf(q_vector->name, sizeof(q_vector->name),
587 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
588 		} else if (q_vector->tx.ring) {
589 			snprintf(q_vector->name, sizeof(q_vector->name),
590 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
591 		} else {
592 			/* skip this unused q_vector */
593 			continue;
594 		}
595 		err = request_irq(irq_num,
596 				  iavf_msix_clean_rings,
597 				  0,
598 				  q_vector->name,
599 				  q_vector);
600 		if (err) {
601 			dev_info(&adapter->pdev->dev,
602 				 "Request_irq failed, error: %d\n", err);
603 			goto free_queue_irqs;
604 		}
605 		/* register for affinity change notifications */
606 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
607 		q_vector->affinity_notify.release =
608 						   iavf_irq_affinity_release;
609 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
610 		/* Spread the IRQ affinity hints across online CPUs. Note that
611 		 * get_cpu_mask returns a mask with a permanent lifetime so
612 		 * it's safe to use as a hint for irq_update_affinity_hint.
613 		 */
614 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
615 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
616 	}
617 
618 	return 0;
619 
620 free_queue_irqs:
621 	while (vector) {
622 		vector--;
623 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
624 		irq_set_affinity_notifier(irq_num, NULL);
625 		irq_update_affinity_hint(irq_num, NULL);
626 		free_irq(irq_num, &adapter->q_vectors[vector]);
627 	}
628 	return err;
629 }
630 
631 /**
632  * iavf_request_misc_irq - Initialize MSI-X interrupts
633  * @adapter: board private structure
634  *
635  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
636  * vector is only for the admin queue, and stays active even when the netdev
637  * is closed.
638  **/
639 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
640 {
641 	struct net_device *netdev = adapter->netdev;
642 	int err;
643 
644 	snprintf(adapter->misc_vector_name,
645 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
646 		 dev_name(&adapter->pdev->dev));
647 	err = request_irq(adapter->msix_entries[0].vector,
648 			  &iavf_msix_aq, 0,
649 			  adapter->misc_vector_name, netdev);
650 	if (err) {
651 		dev_err(&adapter->pdev->dev,
652 			"request_irq for %s failed: %d\n",
653 			adapter->misc_vector_name, err);
654 		free_irq(adapter->msix_entries[0].vector, netdev);
655 	}
656 	return err;
657 }
658 
659 /**
660  * iavf_free_traffic_irqs - Free MSI-X interrupts
661  * @adapter: board private structure
662  *
663  * Frees all MSI-X vectors other than 0.
664  **/
665 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
666 {
667 	int vector, irq_num, q_vectors;
668 
669 	if (!adapter->msix_entries)
670 		return;
671 
672 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
673 
674 	for (vector = 0; vector < q_vectors; vector++) {
675 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
676 		irq_set_affinity_notifier(irq_num, NULL);
677 		irq_update_affinity_hint(irq_num, NULL);
678 		free_irq(irq_num, &adapter->q_vectors[vector]);
679 	}
680 }
681 
682 /**
683  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
684  * @adapter: board private structure
685  *
686  * Frees MSI-X vector 0.
687  **/
688 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
689 {
690 	struct net_device *netdev = adapter->netdev;
691 
692 	if (!adapter->msix_entries)
693 		return;
694 
695 	free_irq(adapter->msix_entries[0].vector, netdev);
696 }
697 
698 /**
699  * iavf_configure_tx - Configure Transmit Unit after Reset
700  * @adapter: board private structure
701  *
702  * Configure the Tx unit of the MAC after a reset.
703  **/
704 static void iavf_configure_tx(struct iavf_adapter *adapter)
705 {
706 	struct iavf_hw *hw = &adapter->hw;
707 	int i;
708 
709 	for (i = 0; i < adapter->num_active_queues; i++)
710 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
711 }
712 
713 /**
714  * iavf_configure_rx - Configure Receive Unit after Reset
715  * @adapter: board private structure
716  *
717  * Configure the Rx unit of the MAC after a reset.
718  **/
719 static void iavf_configure_rx(struct iavf_adapter *adapter)
720 {
721 	struct iavf_hw *hw = &adapter->hw;
722 
723 	for (u32 i = 0; i < adapter->num_active_queues; i++)
724 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
725 }
726 
727 /**
728  * iavf_find_vlan - Search filter list for specific vlan filter
729  * @adapter: board private structure
730  * @vlan: vlan tag
731  *
732  * Returns ptr to the filter object or NULL. Must be called while holding the
733  * mac_vlan_list_lock.
734  **/
735 static struct
736 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
737 				 struct iavf_vlan vlan)
738 {
739 	struct iavf_vlan_filter *f;
740 
741 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
742 		if (f->vlan.vid == vlan.vid &&
743 		    f->vlan.tpid == vlan.tpid)
744 			return f;
745 	}
746 
747 	return NULL;
748 }
749 
750 /**
751  * iavf_add_vlan - Add a vlan filter to the list
752  * @adapter: board private structure
753  * @vlan: VLAN tag
754  *
755  * Returns ptr to the filter object or NULL when no memory available.
756  **/
757 static struct
758 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
759 				struct iavf_vlan vlan)
760 {
761 	struct iavf_vlan_filter *f = NULL;
762 
763 	spin_lock_bh(&adapter->mac_vlan_list_lock);
764 
765 	f = iavf_find_vlan(adapter, vlan);
766 	if (!f) {
767 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 		if (!f)
769 			goto clearout;
770 
771 		f->vlan = vlan;
772 
773 		list_add_tail(&f->list, &adapter->vlan_filter_list);
774 		f->state = IAVF_VLAN_ADD;
775 		adapter->num_vlan_filters++;
776 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
777 	}
778 
779 clearout:
780 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
781 	return f;
782 }
783 
784 /**
785  * iavf_del_vlan - Remove a vlan filter from the list
786  * @adapter: board private structure
787  * @vlan: VLAN tag
788  **/
789 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
790 {
791 	struct iavf_vlan_filter *f;
792 
793 	spin_lock_bh(&adapter->mac_vlan_list_lock);
794 
795 	f = iavf_find_vlan(adapter, vlan);
796 	if (f) {
797 		f->state = IAVF_VLAN_REMOVE;
798 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
799 	}
800 
801 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
802 }
803 
804 /**
805  * iavf_restore_filters
806  * @adapter: board private structure
807  *
808  * Restore existing non MAC filters when VF netdev comes back up
809  **/
810 static void iavf_restore_filters(struct iavf_adapter *adapter)
811 {
812 	struct iavf_vlan_filter *f;
813 
814 	/* re-add all VLAN filters */
815 	spin_lock_bh(&adapter->mac_vlan_list_lock);
816 
817 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
818 		if (f->state == IAVF_VLAN_INACTIVE)
819 			f->state = IAVF_VLAN_ADD;
820 	}
821 
822 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
823 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
824 }
825 
826 /**
827  * iavf_get_num_vlans_added - get number of VLANs added
828  * @adapter: board private structure
829  */
830 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
831 {
832 	return adapter->num_vlan_filters;
833 }
834 
835 /**
836  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
837  * @adapter: board private structure
838  *
839  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
840  * do not impose a limit as that maintains current behavior and for
841  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
842  **/
843 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
844 {
845 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
846 	 * never been a limit on the VF driver side
847 	 */
848 	if (VLAN_ALLOWED(adapter))
849 		return VLAN_N_VID;
850 	else if (VLAN_V2_ALLOWED(adapter))
851 		return adapter->vlan_v2_caps.filtering.max_filters;
852 
853 	return 0;
854 }
855 
856 /**
857  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
858  * @adapter: board private structure
859  **/
860 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
861 {
862 	if (iavf_get_num_vlans_added(adapter) <
863 	    iavf_get_max_vlans_allowed(adapter))
864 		return false;
865 
866 	return true;
867 }
868 
869 /**
870  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
871  * @netdev: network device struct
872  * @proto: unused protocol data
873  * @vid: VLAN tag
874  **/
875 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
876 				__always_unused __be16 proto, u16 vid)
877 {
878 	struct iavf_adapter *adapter = netdev_priv(netdev);
879 
880 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
881 	if (!vid)
882 		return 0;
883 
884 	if (!VLAN_FILTERING_ALLOWED(adapter))
885 		return -EIO;
886 
887 	if (iavf_max_vlans_added(adapter)) {
888 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
889 			   iavf_get_max_vlans_allowed(adapter));
890 		return -EIO;
891 	}
892 
893 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
894 		return -ENOMEM;
895 
896 	return 0;
897 }
898 
899 /**
900  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
901  * @netdev: network device struct
902  * @proto: unused protocol data
903  * @vid: VLAN tag
904  **/
905 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
906 				 __always_unused __be16 proto, u16 vid)
907 {
908 	struct iavf_adapter *adapter = netdev_priv(netdev);
909 
910 	/* We do not track VLAN 0 filter */
911 	if (!vid)
912 		return 0;
913 
914 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
915 	return 0;
916 }
917 
918 /**
919  * iavf_find_filter - Search filter list for specific mac filter
920  * @adapter: board private structure
921  * @macaddr: the MAC address
922  *
923  * Returns ptr to the filter object or NULL. Must be called while holding the
924  * mac_vlan_list_lock.
925  **/
926 static struct
927 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
928 				  const u8 *macaddr)
929 {
930 	struct iavf_mac_filter *f;
931 
932 	if (!macaddr)
933 		return NULL;
934 
935 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
936 		if (ether_addr_equal(macaddr, f->macaddr))
937 			return f;
938 	}
939 	return NULL;
940 }
941 
942 /**
943  * iavf_add_filter - Add a mac filter to the filter list
944  * @adapter: board private structure
945  * @macaddr: the MAC address
946  *
947  * Returns ptr to the filter object or NULL when no memory available.
948  **/
949 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
950 					const u8 *macaddr)
951 {
952 	struct iavf_mac_filter *f;
953 
954 	if (!macaddr)
955 		return NULL;
956 
957 	f = iavf_find_filter(adapter, macaddr);
958 	if (!f) {
959 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
960 		if (!f)
961 			return f;
962 
963 		ether_addr_copy(f->macaddr, macaddr);
964 
965 		list_add_tail(&f->list, &adapter->mac_filter_list);
966 		f->add = true;
967 		f->add_handled = false;
968 		f->is_new_mac = true;
969 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
970 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
971 	} else {
972 		f->remove = false;
973 	}
974 
975 	return f;
976 }
977 
978 /**
979  * iavf_replace_primary_mac - Replace current primary address
980  * @adapter: board private structure
981  * @new_mac: new MAC address to be applied
982  *
983  * Replace current dev_addr and send request to PF for removal of previous
984  * primary MAC address filter and addition of new primary MAC filter.
985  * Return 0 for success, -ENOMEM for failure.
986  *
987  * Do not call this with mac_vlan_list_lock!
988  **/
989 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
990 				    const u8 *new_mac)
991 {
992 	struct iavf_hw *hw = &adapter->hw;
993 	struct iavf_mac_filter *new_f;
994 	struct iavf_mac_filter *old_f;
995 
996 	spin_lock_bh(&adapter->mac_vlan_list_lock);
997 
998 	new_f = iavf_add_filter(adapter, new_mac);
999 	if (!new_f) {
1000 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1001 		return -ENOMEM;
1002 	}
1003 
1004 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1005 	if (old_f) {
1006 		old_f->is_primary = false;
1007 		old_f->remove = true;
1008 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1009 	}
1010 	/* Always send the request to add if changing primary MAC,
1011 	 * even if filter is already present on the list
1012 	 */
1013 	new_f->is_primary = true;
1014 	new_f->add = true;
1015 	ether_addr_copy(hw->mac.addr, new_mac);
1016 
1017 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1018 
1019 	/* schedule the watchdog task to immediately process the request */
1020 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1021 	return 0;
1022 }
1023 
1024 /**
1025  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1026  * @netdev: network interface device structure
1027  * @macaddr: MAC address to set
1028  *
1029  * Returns true on success, false on failure
1030  */
1031 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1032 				    const u8 *macaddr)
1033 {
1034 	struct iavf_adapter *adapter = netdev_priv(netdev);
1035 	struct iavf_mac_filter *f;
1036 	bool ret = false;
1037 
1038 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1039 
1040 	f = iavf_find_filter(adapter, macaddr);
1041 
1042 	if (!f || (!f->add && f->add_handled))
1043 		ret = true;
1044 
1045 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1046 
1047 	return ret;
1048 }
1049 
1050 /**
1051  * iavf_set_mac - NDO callback to set port MAC address
1052  * @netdev: network interface device structure
1053  * @p: pointer to an address structure
1054  *
1055  * Returns 0 on success, negative on failure
1056  */
1057 static int iavf_set_mac(struct net_device *netdev, void *p)
1058 {
1059 	struct iavf_adapter *adapter = netdev_priv(netdev);
1060 	struct sockaddr *addr = p;
1061 	int ret;
1062 
1063 	if (!is_valid_ether_addr(addr->sa_data))
1064 		return -EADDRNOTAVAIL;
1065 
1066 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1067 
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1072 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1073 					       msecs_to_jiffies(2500));
1074 
1075 	/* If ret < 0 then it means wait was interrupted.
1076 	 * If ret == 0 then it means we got a timeout.
1077 	 * else it means we got response for set MAC from PF,
1078 	 * check if netdev MAC was updated to requested MAC,
1079 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1080 	 */
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	if (!ret)
1085 		return -EAGAIN;
1086 
1087 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1088 		return -EACCES;
1089 
1090 	return 0;
1091 }
1092 
1093 /**
1094  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1095  * @netdev: the netdevice
1096  * @addr: address to add
1097  *
1098  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1099  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1100  */
1101 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1102 {
1103 	struct iavf_adapter *adapter = netdev_priv(netdev);
1104 
1105 	if (iavf_add_filter(adapter, addr))
1106 		return 0;
1107 	else
1108 		return -ENOMEM;
1109 }
1110 
1111 /**
1112  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1113  * @netdev: the netdevice
1114  * @addr: address to add
1115  *
1116  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1117  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1118  */
1119 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1120 {
1121 	struct iavf_adapter *adapter = netdev_priv(netdev);
1122 	struct iavf_mac_filter *f;
1123 
1124 	/* Under some circumstances, we might receive a request to delete
1125 	 * our own device address from our uc list. Because we store the
1126 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1127 	 * such requests and not delete our device address from this list.
1128 	 */
1129 	if (ether_addr_equal(addr, netdev->dev_addr))
1130 		return 0;
1131 
1132 	f = iavf_find_filter(adapter, addr);
1133 	if (f) {
1134 		f->remove = true;
1135 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /**
1141  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1142  * @adapter: device specific adapter
1143  */
1144 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1145 {
1146 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1147 		(IFF_PROMISC | IFF_ALLMULTI);
1148 }
1149 
1150 /**
1151  * iavf_set_rx_mode - NDO callback to set the netdev filters
1152  * @netdev: network interface device structure
1153  **/
1154 static void iavf_set_rx_mode(struct net_device *netdev)
1155 {
1156 	struct iavf_adapter *adapter = netdev_priv(netdev);
1157 
1158 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1159 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1160 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1161 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1162 
1163 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1164 	if (iavf_promiscuous_mode_changed(adapter))
1165 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1166 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1167 }
1168 
1169 /**
1170  * iavf_napi_enable_all - enable NAPI on all queue vectors
1171  * @adapter: board private structure
1172  **/
1173 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1174 {
1175 	int q_idx;
1176 	struct iavf_q_vector *q_vector;
1177 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1178 
1179 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1180 		struct napi_struct *napi;
1181 
1182 		q_vector = &adapter->q_vectors[q_idx];
1183 		napi = &q_vector->napi;
1184 		napi_enable(napi);
1185 	}
1186 }
1187 
1188 /**
1189  * iavf_napi_disable_all - disable NAPI on all queue vectors
1190  * @adapter: board private structure
1191  **/
1192 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1193 {
1194 	int q_idx;
1195 	struct iavf_q_vector *q_vector;
1196 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1197 
1198 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1199 		q_vector = &adapter->q_vectors[q_idx];
1200 		napi_disable(&q_vector->napi);
1201 	}
1202 }
1203 
1204 /**
1205  * iavf_configure - set up transmit and receive data structures
1206  * @adapter: board private structure
1207  **/
1208 static void iavf_configure(struct iavf_adapter *adapter)
1209 {
1210 	struct net_device *netdev = adapter->netdev;
1211 	int i;
1212 
1213 	iavf_set_rx_mode(netdev);
1214 
1215 	iavf_configure_tx(adapter);
1216 	iavf_configure_rx(adapter);
1217 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1218 
1219 	for (i = 0; i < adapter->num_active_queues; i++) {
1220 		struct iavf_ring *ring = &adapter->rx_rings[i];
1221 
1222 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1223 	}
1224 }
1225 
1226 /**
1227  * iavf_up_complete - Finish the last steps of bringing up a connection
1228  * @adapter: board private structure
1229  *
1230  * Expects to be called while holding crit_lock.
1231  **/
1232 static void iavf_up_complete(struct iavf_adapter *adapter)
1233 {
1234 	iavf_change_state(adapter, __IAVF_RUNNING);
1235 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1236 
1237 	iavf_napi_enable_all(adapter);
1238 
1239 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1240 }
1241 
1242 /**
1243  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1244  * yet and mark other to be removed.
1245  * @adapter: board private structure
1246  **/
1247 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1248 {
1249 	struct iavf_vlan_filter *vlf, *vlftmp;
1250 	struct iavf_mac_filter *f, *ftmp;
1251 
1252 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1253 	/* clear the sync flag on all filters */
1254 	__dev_uc_unsync(adapter->netdev, NULL);
1255 	__dev_mc_unsync(adapter->netdev, NULL);
1256 
1257 	/* remove all MAC filters */
1258 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1259 				 list) {
1260 		if (f->add) {
1261 			list_del(&f->list);
1262 			kfree(f);
1263 		} else {
1264 			f->remove = true;
1265 		}
1266 	}
1267 
1268 	/* disable all VLAN filters */
1269 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1270 				 list)
1271 		vlf->state = IAVF_VLAN_DISABLE;
1272 
1273 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1274 }
1275 
1276 /**
1277  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1278  * mark other to be removed.
1279  * @adapter: board private structure
1280  **/
1281 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1282 {
1283 	struct iavf_cloud_filter *cf, *cftmp;
1284 
1285 	/* remove all cloud filters */
1286 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1287 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1288 				 list) {
1289 		if (cf->add) {
1290 			list_del(&cf->list);
1291 			kfree(cf);
1292 			adapter->num_cloud_filters--;
1293 		} else {
1294 			cf->del = true;
1295 		}
1296 	}
1297 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1298 }
1299 
1300 /**
1301  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1302  * other to be removed.
1303  * @adapter: board private structure
1304  **/
1305 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1306 {
1307 	struct iavf_fdir_fltr *fdir;
1308 
1309 	/* remove all Flow Director filters */
1310 	spin_lock_bh(&adapter->fdir_fltr_lock);
1311 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1312 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1313 			/* Cancel a request, keep filter as inactive */
1314 			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1315 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1316 			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1317 			/* Disable filters which are active or have a pending
1318 			 * request to PF to be added
1319 			 */
1320 			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1321 		}
1322 	}
1323 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1324 }
1325 
1326 /**
1327  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1328  * other to be removed.
1329  * @adapter: board private structure
1330  **/
1331 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1332 {
1333 	struct iavf_adv_rss *rss, *rsstmp;
1334 
1335 	/* remove all advance RSS configuration */
1336 	spin_lock_bh(&adapter->adv_rss_lock);
1337 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1338 				 list) {
1339 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1340 			list_del(&rss->list);
1341 			kfree(rss);
1342 		} else {
1343 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1344 		}
1345 	}
1346 	spin_unlock_bh(&adapter->adv_rss_lock);
1347 }
1348 
1349 /**
1350  * iavf_down - Shutdown the connection processing
1351  * @adapter: board private structure
1352  *
1353  * Expects to be called while holding crit_lock.
1354  **/
1355 void iavf_down(struct iavf_adapter *adapter)
1356 {
1357 	struct net_device *netdev = adapter->netdev;
1358 
1359 	if (adapter->state <= __IAVF_DOWN_PENDING)
1360 		return;
1361 
1362 	netif_carrier_off(netdev);
1363 	netif_tx_disable(netdev);
1364 	adapter->link_up = false;
1365 	iavf_napi_disable_all(adapter);
1366 	iavf_irq_disable(adapter);
1367 
1368 	iavf_clear_mac_vlan_filters(adapter);
1369 	iavf_clear_cloud_filters(adapter);
1370 	iavf_clear_fdir_filters(adapter);
1371 	iavf_clear_adv_rss_conf(adapter);
1372 
1373 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1374 		return;
1375 
1376 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1377 		/* cancel any current operation */
1378 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1379 		/* Schedule operations to close down the HW. Don't wait
1380 		 * here for this to complete. The watchdog is still running
1381 		 * and it will take care of this.
1382 		 */
1383 		if (!list_empty(&adapter->mac_filter_list))
1384 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1385 		if (!list_empty(&adapter->vlan_filter_list))
1386 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1387 		if (!list_empty(&adapter->cloud_filter_list))
1388 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1389 		if (!list_empty(&adapter->fdir_list_head))
1390 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1391 		if (!list_empty(&adapter->adv_rss_list_head))
1392 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1393 	}
1394 
1395 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1396 }
1397 
1398 /**
1399  * iavf_acquire_msix_vectors - Setup the MSIX capability
1400  * @adapter: board private structure
1401  * @vectors: number of vectors to request
1402  *
1403  * Work with the OS to set up the MSIX vectors needed.
1404  *
1405  * Returns 0 on success, negative on failure
1406  **/
1407 static int
1408 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1409 {
1410 	int err, vector_threshold;
1411 
1412 	/* We'll want at least 3 (vector_threshold):
1413 	 * 0) Other (Admin Queue and link, mostly)
1414 	 * 1) TxQ[0] Cleanup
1415 	 * 2) RxQ[0] Cleanup
1416 	 */
1417 	vector_threshold = MIN_MSIX_COUNT;
1418 
1419 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1420 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1421 	 * Right now, we simply care about how many we'll get; we'll
1422 	 * set them up later while requesting irq's.
1423 	 */
1424 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1425 				    vector_threshold, vectors);
1426 	if (err < 0) {
1427 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1428 		kfree(adapter->msix_entries);
1429 		adapter->msix_entries = NULL;
1430 		return err;
1431 	}
1432 
1433 	/* Adjust for only the vectors we'll use, which is minimum
1434 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1435 	 * vectors we were allocated.
1436 	 */
1437 	adapter->num_msix_vectors = err;
1438 	return 0;
1439 }
1440 
1441 /**
1442  * iavf_free_queues - Free memory for all rings
1443  * @adapter: board private structure to initialize
1444  *
1445  * Free all of the memory associated with queue pairs.
1446  **/
1447 static void iavf_free_queues(struct iavf_adapter *adapter)
1448 {
1449 	if (!adapter->vsi_res)
1450 		return;
1451 	adapter->num_active_queues = 0;
1452 	kfree(adapter->tx_rings);
1453 	adapter->tx_rings = NULL;
1454 	kfree(adapter->rx_rings);
1455 	adapter->rx_rings = NULL;
1456 }
1457 
1458 /**
1459  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1460  * @adapter: board private structure
1461  *
1462  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1463  * stripped in certain descriptor fields. Instead of checking the offload
1464  * capability bits in the hot path, cache the location the ring specific
1465  * flags.
1466  */
1467 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1468 {
1469 	int i;
1470 
1471 	for (i = 0; i < adapter->num_active_queues; i++) {
1472 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1473 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1474 
1475 		/* prevent multiple L2TAG bits being set after VFR */
1476 		tx_ring->flags &=
1477 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1478 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1479 		rx_ring->flags &=
1480 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1481 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1482 
1483 		if (VLAN_ALLOWED(adapter)) {
1484 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1485 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1486 		} else if (VLAN_V2_ALLOWED(adapter)) {
1487 			struct virtchnl_vlan_supported_caps *stripping_support;
1488 			struct virtchnl_vlan_supported_caps *insertion_support;
1489 
1490 			stripping_support =
1491 				&adapter->vlan_v2_caps.offloads.stripping_support;
1492 			insertion_support =
1493 				&adapter->vlan_v2_caps.offloads.insertion_support;
1494 
1495 			if (stripping_support->outer) {
1496 				if (stripping_support->outer &
1497 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1498 					rx_ring->flags |=
1499 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 				else if (stripping_support->outer &
1501 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1502 					rx_ring->flags |=
1503 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1504 			} else if (stripping_support->inner) {
1505 				if (stripping_support->inner &
1506 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1507 					rx_ring->flags |=
1508 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1509 				else if (stripping_support->inner &
1510 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1511 					rx_ring->flags |=
1512 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1513 			}
1514 
1515 			if (insertion_support->outer) {
1516 				if (insertion_support->outer &
1517 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1518 					tx_ring->flags |=
1519 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1520 				else if (insertion_support->outer &
1521 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1522 					tx_ring->flags |=
1523 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1524 			} else if (insertion_support->inner) {
1525 				if (insertion_support->inner &
1526 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1527 					tx_ring->flags |=
1528 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1529 				else if (insertion_support->inner &
1530 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1531 					tx_ring->flags |=
1532 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1533 			}
1534 		}
1535 	}
1536 }
1537 
1538 /**
1539  * iavf_alloc_queues - Allocate memory for all rings
1540  * @adapter: board private structure to initialize
1541  *
1542  * We allocate one ring per queue at run-time since we don't know the
1543  * number of queues at compile-time.  The polling_netdev array is
1544  * intended for Multiqueue, but should work fine with a single queue.
1545  **/
1546 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1547 {
1548 	int i, num_active_queues;
1549 
1550 	/* If we're in reset reallocating queues we don't actually know yet for
1551 	 * certain the PF gave us the number of queues we asked for but we'll
1552 	 * assume it did.  Once basic reset is finished we'll confirm once we
1553 	 * start negotiating config with PF.
1554 	 */
1555 	if (adapter->num_req_queues)
1556 		num_active_queues = adapter->num_req_queues;
1557 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1558 		 adapter->num_tc)
1559 		num_active_queues = adapter->ch_config.total_qps;
1560 	else
1561 		num_active_queues = min_t(int,
1562 					  adapter->vsi_res->num_queue_pairs,
1563 					  (int)(num_online_cpus()));
1564 
1565 
1566 	adapter->tx_rings = kcalloc(num_active_queues,
1567 				    sizeof(struct iavf_ring), GFP_KERNEL);
1568 	if (!adapter->tx_rings)
1569 		goto err_out;
1570 	adapter->rx_rings = kcalloc(num_active_queues,
1571 				    sizeof(struct iavf_ring), GFP_KERNEL);
1572 	if (!adapter->rx_rings)
1573 		goto err_out;
1574 
1575 	for (i = 0; i < num_active_queues; i++) {
1576 		struct iavf_ring *tx_ring;
1577 		struct iavf_ring *rx_ring;
1578 
1579 		tx_ring = &adapter->tx_rings[i];
1580 
1581 		tx_ring->queue_index = i;
1582 		tx_ring->netdev = adapter->netdev;
1583 		tx_ring->dev = &adapter->pdev->dev;
1584 		tx_ring->count = adapter->tx_desc_count;
1585 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1586 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1587 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1588 
1589 		rx_ring = &adapter->rx_rings[i];
1590 		rx_ring->queue_index = i;
1591 		rx_ring->netdev = adapter->netdev;
1592 		rx_ring->count = adapter->rx_desc_count;
1593 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1594 	}
1595 
1596 	adapter->num_active_queues = num_active_queues;
1597 
1598 	iavf_set_queue_vlan_tag_loc(adapter);
1599 
1600 	return 0;
1601 
1602 err_out:
1603 	iavf_free_queues(adapter);
1604 	return -ENOMEM;
1605 }
1606 
1607 /**
1608  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1609  * @adapter: board private structure to initialize
1610  *
1611  * Attempt to configure the interrupts using the best available
1612  * capabilities of the hardware and the kernel.
1613  **/
1614 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1615 {
1616 	int vector, v_budget;
1617 	int pairs = 0;
1618 	int err = 0;
1619 
1620 	if (!adapter->vsi_res) {
1621 		err = -EIO;
1622 		goto out;
1623 	}
1624 	pairs = adapter->num_active_queues;
1625 
1626 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1627 	 * us much good if we have more vectors than CPUs. However, we already
1628 	 * limit the total number of queues by the number of CPUs so we do not
1629 	 * need any further limiting here.
1630 	 */
1631 	v_budget = min_t(int, pairs + NONQ_VECS,
1632 			 (int)adapter->vf_res->max_vectors);
1633 
1634 	adapter->msix_entries = kcalloc(v_budget,
1635 					sizeof(struct msix_entry), GFP_KERNEL);
1636 	if (!adapter->msix_entries) {
1637 		err = -ENOMEM;
1638 		goto out;
1639 	}
1640 
1641 	for (vector = 0; vector < v_budget; vector++)
1642 		adapter->msix_entries[vector].entry = vector;
1643 
1644 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1645 	if (!err)
1646 		iavf_schedule_finish_config(adapter);
1647 
1648 out:
1649 	return err;
1650 }
1651 
1652 /**
1653  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1654  * @adapter: board private structure
1655  *
1656  * Return 0 on success, negative on failure
1657  **/
1658 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1659 {
1660 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1661 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1662 	struct iavf_hw *hw = &adapter->hw;
1663 	enum iavf_status status;
1664 
1665 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1666 		/* bail because we already have a command pending */
1667 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1668 			adapter->current_op);
1669 		return -EBUSY;
1670 	}
1671 
1672 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1673 	if (status) {
1674 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1675 			iavf_stat_str(hw, status),
1676 			iavf_aq_str(hw, hw->aq.asq_last_status));
1677 		return iavf_status_to_errno(status);
1678 
1679 	}
1680 
1681 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1682 				     adapter->rss_lut, adapter->rss_lut_size);
1683 	if (status) {
1684 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1685 			iavf_stat_str(hw, status),
1686 			iavf_aq_str(hw, hw->aq.asq_last_status));
1687 		return iavf_status_to_errno(status);
1688 	}
1689 
1690 	return 0;
1691 
1692 }
1693 
1694 /**
1695  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1696  * @adapter: board private structure
1697  *
1698  * Returns 0 on success, negative on failure
1699  **/
1700 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1701 {
1702 	struct iavf_hw *hw = &adapter->hw;
1703 	u32 *dw;
1704 	u16 i;
1705 
1706 	dw = (u32 *)adapter->rss_key;
1707 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1708 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1709 
1710 	dw = (u32 *)adapter->rss_lut;
1711 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1712 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1713 
1714 	iavf_flush(hw);
1715 
1716 	return 0;
1717 }
1718 
1719 /**
1720  * iavf_config_rss - Configure RSS keys and lut
1721  * @adapter: board private structure
1722  *
1723  * Returns 0 on success, negative on failure
1724  **/
1725 int iavf_config_rss(struct iavf_adapter *adapter)
1726 {
1727 
1728 	if (RSS_PF(adapter)) {
1729 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1730 					IAVF_FLAG_AQ_SET_RSS_KEY;
1731 		return 0;
1732 	} else if (RSS_AQ(adapter)) {
1733 		return iavf_config_rss_aq(adapter);
1734 	} else {
1735 		return iavf_config_rss_reg(adapter);
1736 	}
1737 }
1738 
1739 /**
1740  * iavf_fill_rss_lut - Fill the lut with default values
1741  * @adapter: board private structure
1742  **/
1743 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1744 {
1745 	u16 i;
1746 
1747 	for (i = 0; i < adapter->rss_lut_size; i++)
1748 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1749 }
1750 
1751 /**
1752  * iavf_init_rss - Prepare for RSS
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 static int iavf_init_rss(struct iavf_adapter *adapter)
1758 {
1759 	struct iavf_hw *hw = &adapter->hw;
1760 
1761 	if (!RSS_PF(adapter)) {
1762 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1763 		if (adapter->vf_res->vf_cap_flags &
1764 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1765 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1766 		else
1767 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1768 
1769 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1770 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1771 	}
1772 
1773 	iavf_fill_rss_lut(adapter);
1774 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1775 
1776 	return iavf_config_rss(adapter);
1777 }
1778 
1779 /**
1780  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1781  * @adapter: board private structure to initialize
1782  *
1783  * We allocate one q_vector per queue interrupt.  If allocation fails we
1784  * return -ENOMEM.
1785  **/
1786 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1787 {
1788 	int q_idx = 0, num_q_vectors;
1789 	struct iavf_q_vector *q_vector;
1790 
1791 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1792 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1793 				     GFP_KERNEL);
1794 	if (!adapter->q_vectors)
1795 		return -ENOMEM;
1796 
1797 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1798 		q_vector = &adapter->q_vectors[q_idx];
1799 		q_vector->adapter = adapter;
1800 		q_vector->vsi = &adapter->vsi;
1801 		q_vector->v_idx = q_idx;
1802 		q_vector->reg_idx = q_idx;
1803 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1804 		netif_napi_add(adapter->netdev, &q_vector->napi,
1805 			       iavf_napi_poll);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 /**
1812  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1813  * @adapter: board private structure to initialize
1814  *
1815  * This function frees the memory allocated to the q_vectors.  In addition if
1816  * NAPI is enabled it will delete any references to the NAPI struct prior
1817  * to freeing the q_vector.
1818  **/
1819 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1820 {
1821 	int q_idx, num_q_vectors;
1822 
1823 	if (!adapter->q_vectors)
1824 		return;
1825 
1826 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1827 
1828 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1829 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1830 
1831 		netif_napi_del(&q_vector->napi);
1832 	}
1833 	kfree(adapter->q_vectors);
1834 	adapter->q_vectors = NULL;
1835 }
1836 
1837 /**
1838  * iavf_reset_interrupt_capability - Reset MSIX setup
1839  * @adapter: board private structure
1840  *
1841  **/
1842 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1843 {
1844 	if (!adapter->msix_entries)
1845 		return;
1846 
1847 	pci_disable_msix(adapter->pdev);
1848 	kfree(adapter->msix_entries);
1849 	adapter->msix_entries = NULL;
1850 }
1851 
1852 /**
1853  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1854  * @adapter: board private structure to initialize
1855  *
1856  **/
1857 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1858 {
1859 	int err;
1860 
1861 	err = iavf_alloc_queues(adapter);
1862 	if (err) {
1863 		dev_err(&adapter->pdev->dev,
1864 			"Unable to allocate memory for queues\n");
1865 		goto err_alloc_queues;
1866 	}
1867 
1868 	err = iavf_set_interrupt_capability(adapter);
1869 	if (err) {
1870 		dev_err(&adapter->pdev->dev,
1871 			"Unable to setup interrupt capabilities\n");
1872 		goto err_set_interrupt;
1873 	}
1874 
1875 	err = iavf_alloc_q_vectors(adapter);
1876 	if (err) {
1877 		dev_err(&adapter->pdev->dev,
1878 			"Unable to allocate memory for queue vectors\n");
1879 		goto err_alloc_q_vectors;
1880 	}
1881 
1882 	/* If we've made it so far while ADq flag being ON, then we haven't
1883 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1884 	 * resources have been allocated in the reset path.
1885 	 * Now we can truly claim that ADq is enabled.
1886 	 */
1887 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1888 	    adapter->num_tc)
1889 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1890 			 adapter->num_tc);
1891 
1892 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1893 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1894 		 adapter->num_active_queues);
1895 
1896 	return 0;
1897 err_alloc_q_vectors:
1898 	iavf_reset_interrupt_capability(adapter);
1899 err_set_interrupt:
1900 	iavf_free_queues(adapter);
1901 err_alloc_queues:
1902 	return err;
1903 }
1904 
1905 /**
1906  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1907  * @adapter: board private structure
1908  **/
1909 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1910 {
1911 	iavf_free_q_vectors(adapter);
1912 	iavf_reset_interrupt_capability(adapter);
1913 	iavf_free_queues(adapter);
1914 }
1915 
1916 /**
1917  * iavf_free_rss - Free memory used by RSS structs
1918  * @adapter: board private structure
1919  **/
1920 static void iavf_free_rss(struct iavf_adapter *adapter)
1921 {
1922 	kfree(adapter->rss_key);
1923 	adapter->rss_key = NULL;
1924 
1925 	kfree(adapter->rss_lut);
1926 	adapter->rss_lut = NULL;
1927 }
1928 
1929 /**
1930  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1931  * @adapter: board private structure
1932  * @running: true if adapter->state == __IAVF_RUNNING
1933  *
1934  * Returns 0 on success, negative on failure
1935  **/
1936 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1937 {
1938 	struct net_device *netdev = adapter->netdev;
1939 	int err;
1940 
1941 	if (running)
1942 		iavf_free_traffic_irqs(adapter);
1943 	iavf_free_misc_irq(adapter);
1944 	iavf_free_interrupt_scheme(adapter);
1945 
1946 	err = iavf_init_interrupt_scheme(adapter);
1947 	if (err)
1948 		goto err;
1949 
1950 	netif_tx_stop_all_queues(netdev);
1951 
1952 	err = iavf_request_misc_irq(adapter);
1953 	if (err)
1954 		goto err;
1955 
1956 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1957 
1958 	iavf_map_rings_to_vectors(adapter);
1959 err:
1960 	return err;
1961 }
1962 
1963 /**
1964  * iavf_finish_config - do all netdev work that needs RTNL
1965  * @work: our work_struct
1966  *
1967  * Do work that needs both RTNL and crit_lock.
1968  **/
1969 static void iavf_finish_config(struct work_struct *work)
1970 {
1971 	struct iavf_adapter *adapter;
1972 	int pairs, err;
1973 
1974 	adapter = container_of(work, struct iavf_adapter, finish_config);
1975 
1976 	/* Always take RTNL first to prevent circular lock dependency */
1977 	rtnl_lock();
1978 	mutex_lock(&adapter->crit_lock);
1979 
1980 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1981 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
1982 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1983 		netdev_update_features(adapter->netdev);
1984 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1985 	}
1986 
1987 	switch (adapter->state) {
1988 	case __IAVF_DOWN:
1989 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
1990 			err = register_netdevice(adapter->netdev);
1991 			if (err) {
1992 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
1993 					err);
1994 
1995 				/* go back and try again.*/
1996 				iavf_free_rss(adapter);
1997 				iavf_free_misc_irq(adapter);
1998 				iavf_reset_interrupt_capability(adapter);
1999 				iavf_change_state(adapter,
2000 						  __IAVF_INIT_CONFIG_ADAPTER);
2001 				goto out;
2002 			}
2003 		}
2004 
2005 		/* Set the real number of queues when reset occurs while
2006 		 * state == __IAVF_DOWN
2007 		 */
2008 		fallthrough;
2009 	case __IAVF_RUNNING:
2010 		pairs = adapter->num_active_queues;
2011 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2012 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2013 		break;
2014 
2015 	default:
2016 		break;
2017 	}
2018 
2019 out:
2020 	mutex_unlock(&adapter->crit_lock);
2021 	rtnl_unlock();
2022 }
2023 
2024 /**
2025  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2026  * @adapter: board private structure
2027  **/
2028 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2029 {
2030 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2031 		queue_work(adapter->wq, &adapter->finish_config);
2032 }
2033 
2034 /**
2035  * iavf_process_aq_command - process aq_required flags
2036  * and sends aq command
2037  * @adapter: pointer to iavf adapter structure
2038  *
2039  * Returns 0 on success
2040  * Returns error code if no command was sent
2041  * or error code if the command failed.
2042  **/
2043 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2044 {
2045 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2046 		return iavf_send_vf_config_msg(adapter);
2047 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2048 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2049 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2050 		iavf_disable_queues(adapter);
2051 		return 0;
2052 	}
2053 
2054 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2055 		iavf_map_queues(adapter);
2056 		return 0;
2057 	}
2058 
2059 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2060 		iavf_add_ether_addrs(adapter);
2061 		return 0;
2062 	}
2063 
2064 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2065 		iavf_add_vlans(adapter);
2066 		return 0;
2067 	}
2068 
2069 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2070 		iavf_del_ether_addrs(adapter);
2071 		return 0;
2072 	}
2073 
2074 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2075 		iavf_del_vlans(adapter);
2076 		return 0;
2077 	}
2078 
2079 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2080 		iavf_enable_vlan_stripping(adapter);
2081 		return 0;
2082 	}
2083 
2084 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2085 		iavf_disable_vlan_stripping(adapter);
2086 		return 0;
2087 	}
2088 
2089 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2090 		iavf_configure_queues(adapter);
2091 		return 0;
2092 	}
2093 
2094 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2095 		iavf_enable_queues(adapter);
2096 		return 0;
2097 	}
2098 
2099 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2100 		/* This message goes straight to the firmware, not the
2101 		 * PF, so we don't have to set current_op as we will
2102 		 * not get a response through the ARQ.
2103 		 */
2104 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2105 		return 0;
2106 	}
2107 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2108 		iavf_get_hena(adapter);
2109 		return 0;
2110 	}
2111 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2112 		iavf_set_hena(adapter);
2113 		return 0;
2114 	}
2115 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2116 		iavf_set_rss_key(adapter);
2117 		return 0;
2118 	}
2119 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2120 		iavf_set_rss_lut(adapter);
2121 		return 0;
2122 	}
2123 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2124 		iavf_set_rss_hfunc(adapter);
2125 		return 0;
2126 	}
2127 
2128 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2129 		iavf_set_promiscuous(adapter);
2130 		return 0;
2131 	}
2132 
2133 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2134 		iavf_enable_channels(adapter);
2135 		return 0;
2136 	}
2137 
2138 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2139 		iavf_disable_channels(adapter);
2140 		return 0;
2141 	}
2142 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2143 		iavf_add_cloud_filter(adapter);
2144 		return 0;
2145 	}
2146 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2147 		iavf_del_cloud_filter(adapter);
2148 		return 0;
2149 	}
2150 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2151 		iavf_add_fdir_filter(adapter);
2152 		return IAVF_SUCCESS;
2153 	}
2154 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2155 		iavf_del_fdir_filter(adapter);
2156 		return IAVF_SUCCESS;
2157 	}
2158 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2159 		iavf_add_adv_rss_cfg(adapter);
2160 		return 0;
2161 	}
2162 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2163 		iavf_del_adv_rss_cfg(adapter);
2164 		return 0;
2165 	}
2166 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2167 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2168 		return 0;
2169 	}
2170 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2171 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2172 		return 0;
2173 	}
2174 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2175 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2176 		return 0;
2177 	}
2178 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2179 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2180 		return 0;
2181 	}
2182 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2183 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2184 		return 0;
2185 	}
2186 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2187 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2188 		return 0;
2189 	}
2190 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2191 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2192 		return 0;
2193 	}
2194 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2195 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2196 		return 0;
2197 	}
2198 
2199 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2200 		iavf_request_stats(adapter);
2201 		return 0;
2202 	}
2203 
2204 	return -EAGAIN;
2205 }
2206 
2207 /**
2208  * iavf_set_vlan_offload_features - set VLAN offload configuration
2209  * @adapter: board private structure
2210  * @prev_features: previous features used for comparison
2211  * @features: updated features used for configuration
2212  *
2213  * Set the aq_required bit(s) based on the requested features passed in to
2214  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2215  * the watchdog if any changes are requested to expedite the request via
2216  * virtchnl.
2217  **/
2218 static void
2219 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2220 			       netdev_features_t prev_features,
2221 			       netdev_features_t features)
2222 {
2223 	bool enable_stripping = true, enable_insertion = true;
2224 	u16 vlan_ethertype = 0;
2225 	u64 aq_required = 0;
2226 
2227 	/* keep cases separate because one ethertype for offloads can be
2228 	 * disabled at the same time as another is disabled, so check for an
2229 	 * enabled ethertype first, then check for disabled. Default to
2230 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2231 	 * stripping.
2232 	 */
2233 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2234 		vlan_ethertype = ETH_P_8021AD;
2235 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2236 		vlan_ethertype = ETH_P_8021Q;
2237 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2238 		vlan_ethertype = ETH_P_8021AD;
2239 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2240 		vlan_ethertype = ETH_P_8021Q;
2241 	else
2242 		vlan_ethertype = ETH_P_8021Q;
2243 
2244 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2245 		enable_stripping = false;
2246 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2247 		enable_insertion = false;
2248 
2249 	if (VLAN_ALLOWED(adapter)) {
2250 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2251 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2252 		 * netdev, but it doesn't require a virtchnl message
2253 		 */
2254 		if (enable_stripping)
2255 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2256 		else
2257 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2258 
2259 	} else if (VLAN_V2_ALLOWED(adapter)) {
2260 		switch (vlan_ethertype) {
2261 		case ETH_P_8021Q:
2262 			if (enable_stripping)
2263 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2264 			else
2265 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2266 
2267 			if (enable_insertion)
2268 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2269 			else
2270 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2271 			break;
2272 		case ETH_P_8021AD:
2273 			if (enable_stripping)
2274 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2275 			else
2276 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2277 
2278 			if (enable_insertion)
2279 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2280 			else
2281 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2282 			break;
2283 		}
2284 	}
2285 
2286 	if (aq_required)
2287 		iavf_schedule_aq_request(adapter, aq_required);
2288 }
2289 
2290 /**
2291  * iavf_startup - first step of driver startup
2292  * @adapter: board private structure
2293  *
2294  * Function process __IAVF_STARTUP driver state.
2295  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2296  * when fails the state is changed to __IAVF_INIT_FAILED
2297  **/
2298 static void iavf_startup(struct iavf_adapter *adapter)
2299 {
2300 	struct pci_dev *pdev = adapter->pdev;
2301 	struct iavf_hw *hw = &adapter->hw;
2302 	enum iavf_status status;
2303 	int ret;
2304 
2305 	WARN_ON(adapter->state != __IAVF_STARTUP);
2306 
2307 	/* driver loaded, probe complete */
2308 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2309 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2310 
2311 	ret = iavf_check_reset_complete(hw);
2312 	if (ret) {
2313 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2314 			 ret);
2315 		goto err;
2316 	}
2317 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2318 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2319 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2320 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2321 
2322 	status = iavf_init_adminq(hw);
2323 	if (status) {
2324 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2325 			status);
2326 		goto err;
2327 	}
2328 	ret = iavf_send_api_ver(adapter);
2329 	if (ret) {
2330 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2331 		iavf_shutdown_adminq(hw);
2332 		goto err;
2333 	}
2334 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2335 	return;
2336 err:
2337 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2338 }
2339 
2340 /**
2341  * iavf_init_version_check - second step of driver startup
2342  * @adapter: board private structure
2343  *
2344  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2345  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2346  * when fails the state is changed to __IAVF_INIT_FAILED
2347  **/
2348 static void iavf_init_version_check(struct iavf_adapter *adapter)
2349 {
2350 	struct pci_dev *pdev = adapter->pdev;
2351 	struct iavf_hw *hw = &adapter->hw;
2352 	int err = -EAGAIN;
2353 
2354 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2355 
2356 	if (!iavf_asq_done(hw)) {
2357 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2358 		iavf_shutdown_adminq(hw);
2359 		iavf_change_state(adapter, __IAVF_STARTUP);
2360 		goto err;
2361 	}
2362 
2363 	/* aq msg sent, awaiting reply */
2364 	err = iavf_verify_api_ver(adapter);
2365 	if (err) {
2366 		if (err == -EALREADY)
2367 			err = iavf_send_api_ver(adapter);
2368 		else
2369 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2370 				adapter->pf_version.major,
2371 				adapter->pf_version.minor,
2372 				VIRTCHNL_VERSION_MAJOR,
2373 				VIRTCHNL_VERSION_MINOR);
2374 		goto err;
2375 	}
2376 	err = iavf_send_vf_config_msg(adapter);
2377 	if (err) {
2378 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2379 			err);
2380 		goto err;
2381 	}
2382 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2383 	return;
2384 err:
2385 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2386 }
2387 
2388 /**
2389  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2390  * @adapter: board private structure
2391  */
2392 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2393 {
2394 	int i, num_req_queues = adapter->num_req_queues;
2395 	struct iavf_vsi *vsi = &adapter->vsi;
2396 
2397 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2398 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2399 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2400 	}
2401 	if (!adapter->vsi_res) {
2402 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2403 		return -ENODEV;
2404 	}
2405 
2406 	if (num_req_queues &&
2407 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2408 		/* Problem.  The PF gave us fewer queues than what we had
2409 		 * negotiated in our request.  Need a reset to see if we can't
2410 		 * get back to a working state.
2411 		 */
2412 		dev_err(&adapter->pdev->dev,
2413 			"Requested %d queues, but PF only gave us %d.\n",
2414 			num_req_queues,
2415 			adapter->vsi_res->num_queue_pairs);
2416 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2417 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2418 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2419 
2420 		return -EAGAIN;
2421 	}
2422 	adapter->num_req_queues = 0;
2423 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2424 
2425 	adapter->vsi.back = adapter;
2426 	adapter->vsi.base_vector = 1;
2427 	vsi->netdev = adapter->netdev;
2428 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2429 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2430 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2431 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2432 	} else {
2433 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2434 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 /**
2441  * iavf_init_get_resources - third step of driver startup
2442  * @adapter: board private structure
2443  *
2444  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2445  * finishes driver initialization procedure.
2446  * When success the state is changed to __IAVF_DOWN
2447  * when fails the state is changed to __IAVF_INIT_FAILED
2448  **/
2449 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2450 {
2451 	struct pci_dev *pdev = adapter->pdev;
2452 	struct iavf_hw *hw = &adapter->hw;
2453 	int err;
2454 
2455 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2456 	/* aq msg sent, awaiting reply */
2457 	if (!adapter->vf_res) {
2458 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2459 					  GFP_KERNEL);
2460 		if (!adapter->vf_res) {
2461 			err = -ENOMEM;
2462 			goto err;
2463 		}
2464 	}
2465 	err = iavf_get_vf_config(adapter);
2466 	if (err == -EALREADY) {
2467 		err = iavf_send_vf_config_msg(adapter);
2468 		goto err;
2469 	} else if (err == -EINVAL) {
2470 		/* We only get -EINVAL if the device is in a very bad
2471 		 * state or if we've been disabled for previous bad
2472 		 * behavior. Either way, we're done now.
2473 		 */
2474 		iavf_shutdown_adminq(hw);
2475 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2476 		return;
2477 	}
2478 	if (err) {
2479 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2480 		goto err_alloc;
2481 	}
2482 
2483 	err = iavf_parse_vf_resource_msg(adapter);
2484 	if (err) {
2485 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2486 			err);
2487 		goto err_alloc;
2488 	}
2489 	/* Some features require additional messages to negotiate extended
2490 	 * capabilities. These are processed in sequence by the
2491 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2492 	 */
2493 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2494 
2495 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2496 	return;
2497 
2498 err_alloc:
2499 	kfree(adapter->vf_res);
2500 	adapter->vf_res = NULL;
2501 err:
2502 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2503 }
2504 
2505 /**
2506  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2507  * @adapter: board private structure
2508  *
2509  * Function processes send of the extended VLAN V2 capability message to the
2510  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2511  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2512  */
2513 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2514 {
2515 	int ret;
2516 
2517 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2518 
2519 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2520 	if (ret && ret == -EOPNOTSUPP) {
2521 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2522 		 * we did not send the capability exchange message and do not
2523 		 * expect a response.
2524 		 */
2525 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2526 	}
2527 
2528 	/* We sent the message, so move on to the next step */
2529 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2530 }
2531 
2532 /**
2533  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2534  * @adapter: board private structure
2535  *
2536  * Function processes receipt of the extended VLAN V2 capability message from
2537  * the PF.
2538  **/
2539 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2540 {
2541 	int ret;
2542 
2543 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2544 
2545 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2546 
2547 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2548 	if (ret)
2549 		goto err;
2550 
2551 	/* We've processed receipt of the VLAN V2 caps message */
2552 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2553 	return;
2554 err:
2555 	/* We didn't receive a reply. Make sure we try sending again when
2556 	 * __IAVF_INIT_FAILED attempts to recover.
2557 	 */
2558 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2559 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2560 }
2561 
2562 /**
2563  * iavf_init_process_extended_caps - Part of driver startup
2564  * @adapter: board private structure
2565  *
2566  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2567  * handles negotiating capabilities for features which require an additional
2568  * message.
2569  *
2570  * Once all extended capabilities exchanges are finished, the driver will
2571  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2572  */
2573 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2574 {
2575 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2576 
2577 	/* Process capability exchange for VLAN V2 */
2578 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2579 		iavf_init_send_offload_vlan_v2_caps(adapter);
2580 		return;
2581 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2582 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2583 		return;
2584 	}
2585 
2586 	/* When we reach here, no further extended capabilities exchanges are
2587 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2588 	 */
2589 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2590 }
2591 
2592 /**
2593  * iavf_init_config_adapter - last part of driver startup
2594  * @adapter: board private structure
2595  *
2596  * After all the supported capabilities are negotiated, then the
2597  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2598  */
2599 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2600 {
2601 	struct net_device *netdev = adapter->netdev;
2602 	struct pci_dev *pdev = adapter->pdev;
2603 	int err;
2604 
2605 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2606 
2607 	if (iavf_process_config(adapter))
2608 		goto err;
2609 
2610 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2611 
2612 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2613 
2614 	netdev->netdev_ops = &iavf_netdev_ops;
2615 	iavf_set_ethtool_ops(netdev);
2616 	netdev->watchdog_timeo = 5 * HZ;
2617 
2618 	netdev->min_mtu = ETH_MIN_MTU;
2619 	netdev->max_mtu = LIBIE_MAX_MTU;
2620 
2621 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2622 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2623 			 adapter->hw.mac.addr);
2624 		eth_hw_addr_random(netdev);
2625 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2626 	} else {
2627 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2628 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2629 	}
2630 
2631 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2632 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2633 	err = iavf_init_interrupt_scheme(adapter);
2634 	if (err)
2635 		goto err_sw_init;
2636 	iavf_map_rings_to_vectors(adapter);
2637 	if (adapter->vf_res->vf_cap_flags &
2638 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2639 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2640 
2641 	err = iavf_request_misc_irq(adapter);
2642 	if (err)
2643 		goto err_sw_init;
2644 
2645 	netif_carrier_off(netdev);
2646 	adapter->link_up = false;
2647 	netif_tx_stop_all_queues(netdev);
2648 
2649 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2650 	if (netdev->features & NETIF_F_GRO)
2651 		dev_info(&pdev->dev, "GRO is enabled\n");
2652 
2653 	iavf_change_state(adapter, __IAVF_DOWN);
2654 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2655 
2656 	iavf_misc_irq_enable(adapter);
2657 	wake_up(&adapter->down_waitqueue);
2658 
2659 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2660 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2661 	if (!adapter->rss_key || !adapter->rss_lut) {
2662 		err = -ENOMEM;
2663 		goto err_mem;
2664 	}
2665 	if (RSS_AQ(adapter))
2666 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2667 	else
2668 		iavf_init_rss(adapter);
2669 
2670 	if (VLAN_V2_ALLOWED(adapter))
2671 		/* request initial VLAN offload settings */
2672 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2673 
2674 	iavf_schedule_finish_config(adapter);
2675 	return;
2676 
2677 err_mem:
2678 	iavf_free_rss(adapter);
2679 	iavf_free_misc_irq(adapter);
2680 err_sw_init:
2681 	iavf_reset_interrupt_capability(adapter);
2682 err:
2683 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2684 }
2685 
2686 /**
2687  * iavf_watchdog_task - Periodic call-back task
2688  * @work: pointer to work_struct
2689  **/
2690 static void iavf_watchdog_task(struct work_struct *work)
2691 {
2692 	struct iavf_adapter *adapter = container_of(work,
2693 						    struct iavf_adapter,
2694 						    watchdog_task.work);
2695 	struct iavf_hw *hw = &adapter->hw;
2696 	u32 reg_val;
2697 
2698 	if (!mutex_trylock(&adapter->crit_lock)) {
2699 		if (adapter->state == __IAVF_REMOVE)
2700 			return;
2701 
2702 		goto restart_watchdog;
2703 	}
2704 
2705 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2706 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2707 
2708 	switch (adapter->state) {
2709 	case __IAVF_STARTUP:
2710 		iavf_startup(adapter);
2711 		mutex_unlock(&adapter->crit_lock);
2712 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2713 				   msecs_to_jiffies(30));
2714 		return;
2715 	case __IAVF_INIT_VERSION_CHECK:
2716 		iavf_init_version_check(adapter);
2717 		mutex_unlock(&adapter->crit_lock);
2718 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2719 				   msecs_to_jiffies(30));
2720 		return;
2721 	case __IAVF_INIT_GET_RESOURCES:
2722 		iavf_init_get_resources(adapter);
2723 		mutex_unlock(&adapter->crit_lock);
2724 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2725 				   msecs_to_jiffies(1));
2726 		return;
2727 	case __IAVF_INIT_EXTENDED_CAPS:
2728 		iavf_init_process_extended_caps(adapter);
2729 		mutex_unlock(&adapter->crit_lock);
2730 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2731 				   msecs_to_jiffies(1));
2732 		return;
2733 	case __IAVF_INIT_CONFIG_ADAPTER:
2734 		iavf_init_config_adapter(adapter);
2735 		mutex_unlock(&adapter->crit_lock);
2736 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2737 				   msecs_to_jiffies(1));
2738 		return;
2739 	case __IAVF_INIT_FAILED:
2740 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2741 			     &adapter->crit_section)) {
2742 			/* Do not update the state and do not reschedule
2743 			 * watchdog task, iavf_remove should handle this state
2744 			 * as it can loop forever
2745 			 */
2746 			mutex_unlock(&adapter->crit_lock);
2747 			return;
2748 		}
2749 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2750 			dev_err(&adapter->pdev->dev,
2751 				"Failed to communicate with PF; waiting before retry\n");
2752 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2753 			iavf_shutdown_adminq(hw);
2754 			mutex_unlock(&adapter->crit_lock);
2755 			queue_delayed_work(adapter->wq,
2756 					   &adapter->watchdog_task, (5 * HZ));
2757 			return;
2758 		}
2759 		/* Try again from failed step*/
2760 		iavf_change_state(adapter, adapter->last_state);
2761 		mutex_unlock(&adapter->crit_lock);
2762 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2763 		return;
2764 	case __IAVF_COMM_FAILED:
2765 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2766 			     &adapter->crit_section)) {
2767 			/* Set state to __IAVF_INIT_FAILED and perform remove
2768 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2769 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2770 			 */
2771 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2772 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2773 			mutex_unlock(&adapter->crit_lock);
2774 			return;
2775 		}
2776 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2777 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2778 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2779 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2780 			/* A chance for redemption! */
2781 			dev_err(&adapter->pdev->dev,
2782 				"Hardware came out of reset. Attempting reinit.\n");
2783 			/* When init task contacts the PF and
2784 			 * gets everything set up again, it'll restart the
2785 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2786 			 */
2787 			iavf_change_state(adapter, __IAVF_STARTUP);
2788 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2789 		}
2790 		adapter->aq_required = 0;
2791 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2792 		mutex_unlock(&adapter->crit_lock);
2793 		queue_delayed_work(adapter->wq,
2794 				   &adapter->watchdog_task,
2795 				   msecs_to_jiffies(10));
2796 		return;
2797 	case __IAVF_RESETTING:
2798 		mutex_unlock(&adapter->crit_lock);
2799 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2800 				   HZ * 2);
2801 		return;
2802 	case __IAVF_DOWN:
2803 	case __IAVF_DOWN_PENDING:
2804 	case __IAVF_TESTING:
2805 	case __IAVF_RUNNING:
2806 		if (adapter->current_op) {
2807 			if (!iavf_asq_done(hw)) {
2808 				dev_dbg(&adapter->pdev->dev,
2809 					"Admin queue timeout\n");
2810 				iavf_send_api_ver(adapter);
2811 			}
2812 		} else {
2813 			int ret = iavf_process_aq_command(adapter);
2814 
2815 			/* An error will be returned if no commands were
2816 			 * processed; use this opportunity to update stats
2817 			 * if the error isn't -ENOTSUPP
2818 			 */
2819 			if (ret && ret != -EOPNOTSUPP &&
2820 			    adapter->state == __IAVF_RUNNING)
2821 				iavf_request_stats(adapter);
2822 		}
2823 		if (adapter->state == __IAVF_RUNNING)
2824 			iavf_detect_recover_hung(&adapter->vsi);
2825 		break;
2826 	case __IAVF_REMOVE:
2827 	default:
2828 		mutex_unlock(&adapter->crit_lock);
2829 		return;
2830 	}
2831 
2832 	/* check for hw reset */
2833 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2834 	if (!reg_val) {
2835 		adapter->aq_required = 0;
2836 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2837 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2838 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2839 		mutex_unlock(&adapter->crit_lock);
2840 		queue_delayed_work(adapter->wq,
2841 				   &adapter->watchdog_task, HZ * 2);
2842 		return;
2843 	}
2844 
2845 	mutex_unlock(&adapter->crit_lock);
2846 restart_watchdog:
2847 	if (adapter->state >= __IAVF_DOWN)
2848 		queue_work(adapter->wq, &adapter->adminq_task);
2849 	if (adapter->aq_required)
2850 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2851 				   msecs_to_jiffies(20));
2852 	else
2853 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2854 				   HZ * 2);
2855 }
2856 
2857 /**
2858  * iavf_disable_vf - disable VF
2859  * @adapter: board private structure
2860  *
2861  * Set communication failed flag and free all resources.
2862  * NOTE: This function is expected to be called with crit_lock being held.
2863  **/
2864 static void iavf_disable_vf(struct iavf_adapter *adapter)
2865 {
2866 	struct iavf_mac_filter *f, *ftmp;
2867 	struct iavf_vlan_filter *fv, *fvtmp;
2868 	struct iavf_cloud_filter *cf, *cftmp;
2869 
2870 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2871 
2872 	/* We don't use netif_running() because it may be true prior to
2873 	 * ndo_open() returning, so we can't assume it means all our open
2874 	 * tasks have finished, since we're not holding the rtnl_lock here.
2875 	 */
2876 	if (adapter->state == __IAVF_RUNNING) {
2877 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2878 		netif_carrier_off(adapter->netdev);
2879 		netif_tx_disable(adapter->netdev);
2880 		adapter->link_up = false;
2881 		iavf_napi_disable_all(adapter);
2882 		iavf_irq_disable(adapter);
2883 		iavf_free_traffic_irqs(adapter);
2884 		iavf_free_all_tx_resources(adapter);
2885 		iavf_free_all_rx_resources(adapter);
2886 	}
2887 
2888 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2889 
2890 	/* Delete all of the filters */
2891 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2892 		list_del(&f->list);
2893 		kfree(f);
2894 	}
2895 
2896 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2897 		list_del(&fv->list);
2898 		kfree(fv);
2899 	}
2900 	adapter->num_vlan_filters = 0;
2901 
2902 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2903 
2904 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2905 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2906 		list_del(&cf->list);
2907 		kfree(cf);
2908 		adapter->num_cloud_filters--;
2909 	}
2910 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2911 
2912 	iavf_free_misc_irq(adapter);
2913 	iavf_free_interrupt_scheme(adapter);
2914 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2915 	iavf_shutdown_adminq(&adapter->hw);
2916 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2917 	iavf_change_state(adapter, __IAVF_DOWN);
2918 	wake_up(&adapter->down_waitqueue);
2919 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2920 }
2921 
2922 /**
2923  * iavf_reset_task - Call-back task to handle hardware reset
2924  * @work: pointer to work_struct
2925  *
2926  * During reset we need to shut down and reinitialize the admin queue
2927  * before we can use it to communicate with the PF again. We also clear
2928  * and reinit the rings because that context is lost as well.
2929  **/
2930 static void iavf_reset_task(struct work_struct *work)
2931 {
2932 	struct iavf_adapter *adapter = container_of(work,
2933 						      struct iavf_adapter,
2934 						      reset_task);
2935 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2936 	struct net_device *netdev = adapter->netdev;
2937 	struct iavf_hw *hw = &adapter->hw;
2938 	struct iavf_mac_filter *f, *ftmp;
2939 	struct iavf_cloud_filter *cf;
2940 	enum iavf_status status;
2941 	u32 reg_val;
2942 	int i = 0, err;
2943 	bool running;
2944 
2945 	/* When device is being removed it doesn't make sense to run the reset
2946 	 * task, just return in such a case.
2947 	 */
2948 	if (!mutex_trylock(&adapter->crit_lock)) {
2949 		if (adapter->state != __IAVF_REMOVE)
2950 			queue_work(adapter->wq, &adapter->reset_task);
2951 
2952 		return;
2953 	}
2954 
2955 	iavf_misc_irq_disable(adapter);
2956 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2957 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2958 		/* Restart the AQ here. If we have been reset but didn't
2959 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2960 		 */
2961 		iavf_shutdown_adminq(hw);
2962 		iavf_init_adminq(hw);
2963 		iavf_request_reset(adapter);
2964 	}
2965 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2966 
2967 	/* poll until we see the reset actually happen */
2968 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2969 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2970 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2971 		if (!reg_val)
2972 			break;
2973 		usleep_range(5000, 10000);
2974 	}
2975 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2976 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2977 		goto continue_reset; /* act like the reset happened */
2978 	}
2979 
2980 	/* wait until the reset is complete and the PF is responding to us */
2981 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2982 		/* sleep first to make sure a minimum wait time is met */
2983 		msleep(IAVF_RESET_WAIT_MS);
2984 
2985 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2986 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2987 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2988 			break;
2989 	}
2990 
2991 	pci_set_master(adapter->pdev);
2992 	pci_restore_msi_state(adapter->pdev);
2993 
2994 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2995 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2996 			reg_val);
2997 		iavf_disable_vf(adapter);
2998 		mutex_unlock(&adapter->crit_lock);
2999 		return; /* Do not attempt to reinit. It's dead, Jim. */
3000 	}
3001 
3002 continue_reset:
3003 	/* We don't use netif_running() because it may be true prior to
3004 	 * ndo_open() returning, so we can't assume it means all our open
3005 	 * tasks have finished, since we're not holding the rtnl_lock here.
3006 	 */
3007 	running = adapter->state == __IAVF_RUNNING;
3008 
3009 	if (running) {
3010 		netif_carrier_off(netdev);
3011 		netif_tx_stop_all_queues(netdev);
3012 		adapter->link_up = false;
3013 		iavf_napi_disable_all(adapter);
3014 	}
3015 	iavf_irq_disable(adapter);
3016 
3017 	iavf_change_state(adapter, __IAVF_RESETTING);
3018 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3019 
3020 	/* free the Tx/Rx rings and descriptors, might be better to just
3021 	 * re-use them sometime in the future
3022 	 */
3023 	iavf_free_all_rx_resources(adapter);
3024 	iavf_free_all_tx_resources(adapter);
3025 
3026 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3027 	/* kill and reinit the admin queue */
3028 	iavf_shutdown_adminq(hw);
3029 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3030 	status = iavf_init_adminq(hw);
3031 	if (status) {
3032 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3033 			 status);
3034 		goto reset_err;
3035 	}
3036 	adapter->aq_required = 0;
3037 
3038 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3039 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3040 		err = iavf_reinit_interrupt_scheme(adapter, running);
3041 		if (err)
3042 			goto reset_err;
3043 	}
3044 
3045 	if (RSS_AQ(adapter)) {
3046 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3047 	} else {
3048 		err = iavf_init_rss(adapter);
3049 		if (err)
3050 			goto reset_err;
3051 	}
3052 
3053 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3054 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3055 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3056 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3057 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3058 	 * been successfully sent and negotiated
3059 	 */
3060 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3061 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3062 
3063 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3064 
3065 	/* Delete filter for the current MAC address, it could have
3066 	 * been changed by the PF via administratively set MAC.
3067 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3068 	 */
3069 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3070 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3071 			list_del(&f->list);
3072 			kfree(f);
3073 		}
3074 	}
3075 	/* re-add all MAC filters */
3076 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3077 		f->add = true;
3078 	}
3079 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3080 
3081 	/* check if TCs are running and re-add all cloud filters */
3082 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3083 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3084 	    adapter->num_tc) {
3085 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3086 			cf->add = true;
3087 		}
3088 	}
3089 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3090 
3091 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3092 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3093 	iavf_misc_irq_enable(adapter);
3094 
3095 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3096 
3097 	/* We were running when the reset started, so we need to restore some
3098 	 * state here.
3099 	 */
3100 	if (running) {
3101 		/* allocate transmit descriptors */
3102 		err = iavf_setup_all_tx_resources(adapter);
3103 		if (err)
3104 			goto reset_err;
3105 
3106 		/* allocate receive descriptors */
3107 		err = iavf_setup_all_rx_resources(adapter);
3108 		if (err)
3109 			goto reset_err;
3110 
3111 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3112 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3113 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3114 			if (err)
3115 				goto reset_err;
3116 
3117 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3118 		}
3119 
3120 		iavf_configure(adapter);
3121 
3122 		/* iavf_up_complete() will switch device back
3123 		 * to __IAVF_RUNNING
3124 		 */
3125 		iavf_up_complete(adapter);
3126 
3127 		iavf_irq_enable(adapter, true);
3128 	} else {
3129 		iavf_change_state(adapter, __IAVF_DOWN);
3130 		wake_up(&adapter->down_waitqueue);
3131 	}
3132 
3133 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3134 
3135 	wake_up(&adapter->reset_waitqueue);
3136 	mutex_unlock(&adapter->crit_lock);
3137 
3138 	return;
3139 reset_err:
3140 	if (running) {
3141 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3142 		iavf_free_traffic_irqs(adapter);
3143 	}
3144 	iavf_disable_vf(adapter);
3145 
3146 	mutex_unlock(&adapter->crit_lock);
3147 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3148 }
3149 
3150 /**
3151  * iavf_adminq_task - worker thread to clean the admin queue
3152  * @work: pointer to work_struct containing our data
3153  **/
3154 static void iavf_adminq_task(struct work_struct *work)
3155 {
3156 	struct iavf_adapter *adapter =
3157 		container_of(work, struct iavf_adapter, adminq_task);
3158 	struct iavf_hw *hw = &adapter->hw;
3159 	struct iavf_arq_event_info event;
3160 	enum virtchnl_ops v_op;
3161 	enum iavf_status ret, v_ret;
3162 	u32 val, oldval;
3163 	u16 pending;
3164 
3165 	if (!mutex_trylock(&adapter->crit_lock)) {
3166 		if (adapter->state == __IAVF_REMOVE)
3167 			return;
3168 
3169 		queue_work(adapter->wq, &adapter->adminq_task);
3170 		goto out;
3171 	}
3172 
3173 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3174 		goto unlock;
3175 
3176 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3177 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3178 	if (!event.msg_buf)
3179 		goto unlock;
3180 
3181 	do {
3182 		ret = iavf_clean_arq_element(hw, &event, &pending);
3183 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3184 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3185 
3186 		if (ret || !v_op)
3187 			break; /* No event to process or error cleaning ARQ */
3188 
3189 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3190 					 event.msg_len);
3191 		if (pending != 0)
3192 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3193 	} while (pending);
3194 
3195 	if (iavf_is_reset_in_progress(adapter))
3196 		goto freedom;
3197 
3198 	/* check for error indications */
3199 	val = rd32(hw, IAVF_VF_ARQLEN1);
3200 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3201 		goto freedom;
3202 	oldval = val;
3203 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3204 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3205 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3206 	}
3207 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3208 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3209 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3210 	}
3211 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3212 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3213 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3214 	}
3215 	if (oldval != val)
3216 		wr32(hw, IAVF_VF_ARQLEN1, val);
3217 
3218 	val = rd32(hw, IAVF_VF_ATQLEN1);
3219 	oldval = val;
3220 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3221 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3222 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3223 	}
3224 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3225 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3226 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3227 	}
3228 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3229 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3230 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3231 	}
3232 	if (oldval != val)
3233 		wr32(hw, IAVF_VF_ATQLEN1, val);
3234 
3235 freedom:
3236 	kfree(event.msg_buf);
3237 unlock:
3238 	mutex_unlock(&adapter->crit_lock);
3239 out:
3240 	/* re-enable Admin queue interrupt cause */
3241 	iavf_misc_irq_enable(adapter);
3242 }
3243 
3244 /**
3245  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3246  * @adapter: board private structure
3247  *
3248  * Free all transmit software resources
3249  **/
3250 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3251 {
3252 	int i;
3253 
3254 	if (!adapter->tx_rings)
3255 		return;
3256 
3257 	for (i = 0; i < adapter->num_active_queues; i++)
3258 		if (adapter->tx_rings[i].desc)
3259 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3260 }
3261 
3262 /**
3263  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3264  * @adapter: board private structure
3265  *
3266  * If this function returns with an error, then it's possible one or
3267  * more of the rings is populated (while the rest are not).  It is the
3268  * callers duty to clean those orphaned rings.
3269  *
3270  * Return 0 on success, negative on failure
3271  **/
3272 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3273 {
3274 	int i, err = 0;
3275 
3276 	for (i = 0; i < adapter->num_active_queues; i++) {
3277 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3278 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3279 		if (!err)
3280 			continue;
3281 		dev_err(&adapter->pdev->dev,
3282 			"Allocation for Tx Queue %u failed\n", i);
3283 		break;
3284 	}
3285 
3286 	return err;
3287 }
3288 
3289 /**
3290  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3291  * @adapter: board private structure
3292  *
3293  * If this function returns with an error, then it's possible one or
3294  * more of the rings is populated (while the rest are not).  It is the
3295  * callers duty to clean those orphaned rings.
3296  *
3297  * Return 0 on success, negative on failure
3298  **/
3299 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3300 {
3301 	int i, err = 0;
3302 
3303 	for (i = 0; i < adapter->num_active_queues; i++) {
3304 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3305 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3306 		if (!err)
3307 			continue;
3308 		dev_err(&adapter->pdev->dev,
3309 			"Allocation for Rx Queue %u failed\n", i);
3310 		break;
3311 	}
3312 	return err;
3313 }
3314 
3315 /**
3316  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3317  * @adapter: board private structure
3318  *
3319  * Free all receive software resources
3320  **/
3321 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3322 {
3323 	int i;
3324 
3325 	if (!adapter->rx_rings)
3326 		return;
3327 
3328 	for (i = 0; i < adapter->num_active_queues; i++)
3329 		if (adapter->rx_rings[i].desc)
3330 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3331 }
3332 
3333 /**
3334  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3335  * @adapter: board private structure
3336  * @max_tx_rate: max Tx bw for a tc
3337  **/
3338 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3339 				      u64 max_tx_rate)
3340 {
3341 	int speed = 0, ret = 0;
3342 
3343 	if (ADV_LINK_SUPPORT(adapter)) {
3344 		if (adapter->link_speed_mbps < U32_MAX) {
3345 			speed = adapter->link_speed_mbps;
3346 			goto validate_bw;
3347 		} else {
3348 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3349 			return -EINVAL;
3350 		}
3351 	}
3352 
3353 	switch (adapter->link_speed) {
3354 	case VIRTCHNL_LINK_SPEED_40GB:
3355 		speed = SPEED_40000;
3356 		break;
3357 	case VIRTCHNL_LINK_SPEED_25GB:
3358 		speed = SPEED_25000;
3359 		break;
3360 	case VIRTCHNL_LINK_SPEED_20GB:
3361 		speed = SPEED_20000;
3362 		break;
3363 	case VIRTCHNL_LINK_SPEED_10GB:
3364 		speed = SPEED_10000;
3365 		break;
3366 	case VIRTCHNL_LINK_SPEED_5GB:
3367 		speed = SPEED_5000;
3368 		break;
3369 	case VIRTCHNL_LINK_SPEED_2_5GB:
3370 		speed = SPEED_2500;
3371 		break;
3372 	case VIRTCHNL_LINK_SPEED_1GB:
3373 		speed = SPEED_1000;
3374 		break;
3375 	case VIRTCHNL_LINK_SPEED_100MB:
3376 		speed = SPEED_100;
3377 		break;
3378 	default:
3379 		break;
3380 	}
3381 
3382 validate_bw:
3383 	if (max_tx_rate > speed) {
3384 		dev_err(&adapter->pdev->dev,
3385 			"Invalid tx rate specified\n");
3386 		ret = -EINVAL;
3387 	}
3388 
3389 	return ret;
3390 }
3391 
3392 /**
3393  * iavf_validate_ch_config - validate queue mapping info
3394  * @adapter: board private structure
3395  * @mqprio_qopt: queue parameters
3396  *
3397  * This function validates if the config provided by the user to
3398  * configure queue channels is valid or not. Returns 0 on a valid
3399  * config.
3400  **/
3401 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3402 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3403 {
3404 	u64 total_max_rate = 0;
3405 	u32 tx_rate_rem = 0;
3406 	int i, num_qps = 0;
3407 	u64 tx_rate = 0;
3408 	int ret = 0;
3409 
3410 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3411 	    mqprio_qopt->qopt.num_tc < 1)
3412 		return -EINVAL;
3413 
3414 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3415 		if (!mqprio_qopt->qopt.count[i] ||
3416 		    mqprio_qopt->qopt.offset[i] != num_qps)
3417 			return -EINVAL;
3418 		if (mqprio_qopt->min_rate[i]) {
3419 			dev_err(&adapter->pdev->dev,
3420 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3421 				i);
3422 			return -EINVAL;
3423 		}
3424 
3425 		/* convert to Mbps */
3426 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3427 				  IAVF_MBPS_DIVISOR);
3428 
3429 		if (mqprio_qopt->max_rate[i] &&
3430 		    tx_rate < IAVF_MBPS_QUANTA) {
3431 			dev_err(&adapter->pdev->dev,
3432 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3433 				i, IAVF_MBPS_QUANTA);
3434 			return -EINVAL;
3435 		}
3436 
3437 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3438 
3439 		if (tx_rate_rem != 0) {
3440 			dev_err(&adapter->pdev->dev,
3441 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3442 				i, IAVF_MBPS_QUANTA);
3443 			return -EINVAL;
3444 		}
3445 
3446 		total_max_rate += tx_rate;
3447 		num_qps += mqprio_qopt->qopt.count[i];
3448 	}
3449 	if (num_qps > adapter->num_active_queues) {
3450 		dev_err(&adapter->pdev->dev,
3451 			"Cannot support requested number of queues\n");
3452 		return -EINVAL;
3453 	}
3454 
3455 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3456 	return ret;
3457 }
3458 
3459 /**
3460  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3461  * @adapter: board private structure
3462  **/
3463 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3464 {
3465 	struct iavf_cloud_filter *cf, *cftmp;
3466 
3467 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3468 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3469 				 list) {
3470 		list_del(&cf->list);
3471 		kfree(cf);
3472 		adapter->num_cloud_filters--;
3473 	}
3474 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3475 }
3476 
3477 /**
3478  * iavf_is_tc_config_same - Compare the mqprio TC config with the
3479  * TC config already configured on this adapter.
3480  * @adapter: board private structure
3481  * @mqprio_qopt: TC config received from kernel.
3482  *
3483  * This function compares the TC config received from the kernel
3484  * with the config already configured on the adapter.
3485  *
3486  * Return: True if configuration is same, false otherwise.
3487  **/
3488 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3489 				   struct tc_mqprio_qopt *mqprio_qopt)
3490 {
3491 	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3492 	int i;
3493 
3494 	if (adapter->num_tc != mqprio_qopt->num_tc)
3495 		return false;
3496 
3497 	for (i = 0; i < adapter->num_tc; i++) {
3498 		if (ch[i].count != mqprio_qopt->count[i] ||
3499 		    ch[i].offset != mqprio_qopt->offset[i])
3500 			return false;
3501 	}
3502 	return true;
3503 }
3504 
3505 /**
3506  * __iavf_setup_tc - configure multiple traffic classes
3507  * @netdev: network interface device structure
3508  * @type_data: tc offload data
3509  *
3510  * This function processes the config information provided by the
3511  * user to configure traffic classes/queue channels and packages the
3512  * information to request the PF to setup traffic classes.
3513  *
3514  * Returns 0 on success.
3515  **/
3516 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3517 {
3518 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3519 	struct iavf_adapter *adapter = netdev_priv(netdev);
3520 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3521 	u8 num_tc = 0, total_qps = 0;
3522 	int ret = 0, netdev_tc = 0;
3523 	u64 max_tx_rate;
3524 	u16 mode;
3525 	int i;
3526 
3527 	num_tc = mqprio_qopt->qopt.num_tc;
3528 	mode = mqprio_qopt->mode;
3529 
3530 	/* delete queue_channel */
3531 	if (!mqprio_qopt->qopt.hw) {
3532 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3533 			/* reset the tc configuration */
3534 			netdev_reset_tc(netdev);
3535 			adapter->num_tc = 0;
3536 			netif_tx_stop_all_queues(netdev);
3537 			netif_tx_disable(netdev);
3538 			iavf_del_all_cloud_filters(adapter);
3539 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3540 			total_qps = adapter->orig_num_active_queues;
3541 			goto exit;
3542 		} else {
3543 			return -EINVAL;
3544 		}
3545 	}
3546 
3547 	/* add queue channel */
3548 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3549 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3550 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3551 			return -EOPNOTSUPP;
3552 		}
3553 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3554 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3555 			return -EINVAL;
3556 		}
3557 
3558 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3559 		if (ret)
3560 			return ret;
3561 		/* Return if same TC config is requested */
3562 		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3563 			return 0;
3564 		adapter->num_tc = num_tc;
3565 
3566 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3567 			if (i < num_tc) {
3568 				adapter->ch_config.ch_info[i].count =
3569 					mqprio_qopt->qopt.count[i];
3570 				adapter->ch_config.ch_info[i].offset =
3571 					mqprio_qopt->qopt.offset[i];
3572 				total_qps += mqprio_qopt->qopt.count[i];
3573 				max_tx_rate = mqprio_qopt->max_rate[i];
3574 				/* convert to Mbps */
3575 				max_tx_rate = div_u64(max_tx_rate,
3576 						      IAVF_MBPS_DIVISOR);
3577 				adapter->ch_config.ch_info[i].max_tx_rate =
3578 					max_tx_rate;
3579 			} else {
3580 				adapter->ch_config.ch_info[i].count = 1;
3581 				adapter->ch_config.ch_info[i].offset = 0;
3582 			}
3583 		}
3584 
3585 		/* Take snapshot of original config such as "num_active_queues"
3586 		 * It is used later when delete ADQ flow is exercised, so that
3587 		 * once delete ADQ flow completes, VF shall go back to its
3588 		 * original queue configuration
3589 		 */
3590 
3591 		adapter->orig_num_active_queues = adapter->num_active_queues;
3592 
3593 		/* Store queue info based on TC so that VF gets configured
3594 		 * with correct number of queues when VF completes ADQ config
3595 		 * flow
3596 		 */
3597 		adapter->ch_config.total_qps = total_qps;
3598 
3599 		netif_tx_stop_all_queues(netdev);
3600 		netif_tx_disable(netdev);
3601 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3602 		netdev_reset_tc(netdev);
3603 		/* Report the tc mapping up the stack */
3604 		netdev_set_num_tc(adapter->netdev, num_tc);
3605 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3606 			u16 qcount = mqprio_qopt->qopt.count[i];
3607 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3608 
3609 			if (i < num_tc)
3610 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3611 						    qoffset);
3612 		}
3613 	}
3614 exit:
3615 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3616 		return 0;
3617 
3618 	netif_set_real_num_rx_queues(netdev, total_qps);
3619 	netif_set_real_num_tx_queues(netdev, total_qps);
3620 
3621 	return ret;
3622 }
3623 
3624 /**
3625  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3626  * @adapter: board private structure
3627  * @f: pointer to struct flow_cls_offload
3628  * @filter: pointer to cloud filter structure
3629  */
3630 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3631 				 struct flow_cls_offload *f,
3632 				 struct iavf_cloud_filter *filter)
3633 {
3634 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3635 	struct flow_dissector *dissector = rule->match.dissector;
3636 	u16 n_proto_mask = 0;
3637 	u16 n_proto_key = 0;
3638 	u8 field_flags = 0;
3639 	u16 addr_type = 0;
3640 	u16 n_proto = 0;
3641 	int i = 0;
3642 	struct virtchnl_filter *vf = &filter->f;
3643 
3644 	if (dissector->used_keys &
3645 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3646 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3647 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3648 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3649 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3650 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3651 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3652 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3653 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3654 			dissector->used_keys);
3655 		return -EOPNOTSUPP;
3656 	}
3657 
3658 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3659 		struct flow_match_enc_keyid match;
3660 
3661 		flow_rule_match_enc_keyid(rule, &match);
3662 		if (match.mask->keyid != 0)
3663 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3664 	}
3665 
3666 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3667 		struct flow_match_basic match;
3668 
3669 		flow_rule_match_basic(rule, &match);
3670 		n_proto_key = ntohs(match.key->n_proto);
3671 		n_proto_mask = ntohs(match.mask->n_proto);
3672 
3673 		if (n_proto_key == ETH_P_ALL) {
3674 			n_proto_key = 0;
3675 			n_proto_mask = 0;
3676 		}
3677 		n_proto = n_proto_key & n_proto_mask;
3678 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3679 			return -EINVAL;
3680 		if (n_proto == ETH_P_IPV6) {
3681 			/* specify flow type as TCP IPv6 */
3682 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3683 		}
3684 
3685 		if (match.key->ip_proto != IPPROTO_TCP) {
3686 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3687 			return -EINVAL;
3688 		}
3689 	}
3690 
3691 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3692 		struct flow_match_eth_addrs match;
3693 
3694 		flow_rule_match_eth_addrs(rule, &match);
3695 
3696 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3697 		if (!is_zero_ether_addr(match.mask->dst)) {
3698 			if (is_broadcast_ether_addr(match.mask->dst)) {
3699 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3700 			} else {
3701 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3702 					match.mask->dst);
3703 				return -EINVAL;
3704 			}
3705 		}
3706 
3707 		if (!is_zero_ether_addr(match.mask->src)) {
3708 			if (is_broadcast_ether_addr(match.mask->src)) {
3709 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3710 			} else {
3711 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3712 					match.mask->src);
3713 				return -EINVAL;
3714 			}
3715 		}
3716 
3717 		if (!is_zero_ether_addr(match.key->dst))
3718 			if (is_valid_ether_addr(match.key->dst) ||
3719 			    is_multicast_ether_addr(match.key->dst)) {
3720 				/* set the mask if a valid dst_mac address */
3721 				for (i = 0; i < ETH_ALEN; i++)
3722 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3723 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3724 						match.key->dst);
3725 			}
3726 
3727 		if (!is_zero_ether_addr(match.key->src))
3728 			if (is_valid_ether_addr(match.key->src) ||
3729 			    is_multicast_ether_addr(match.key->src)) {
3730 				/* set the mask if a valid dst_mac address */
3731 				for (i = 0; i < ETH_ALEN; i++)
3732 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3733 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3734 						match.key->src);
3735 		}
3736 	}
3737 
3738 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3739 		struct flow_match_vlan match;
3740 
3741 		flow_rule_match_vlan(rule, &match);
3742 		if (match.mask->vlan_id) {
3743 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3744 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3745 			} else {
3746 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3747 					match.mask->vlan_id);
3748 				return -EINVAL;
3749 			}
3750 		}
3751 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3752 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3753 	}
3754 
3755 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3756 		struct flow_match_control match;
3757 
3758 		flow_rule_match_control(rule, &match);
3759 		addr_type = match.key->addr_type;
3760 
3761 		if (flow_rule_has_control_flags(match.mask->flags,
3762 						f->common.extack))
3763 			return -EOPNOTSUPP;
3764 	}
3765 
3766 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3767 		struct flow_match_ipv4_addrs match;
3768 
3769 		flow_rule_match_ipv4_addrs(rule, &match);
3770 		if (match.mask->dst) {
3771 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3772 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3773 			} else {
3774 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3775 					be32_to_cpu(match.mask->dst));
3776 				return -EINVAL;
3777 			}
3778 		}
3779 
3780 		if (match.mask->src) {
3781 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3782 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3783 			} else {
3784 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3785 					be32_to_cpu(match.mask->src));
3786 				return -EINVAL;
3787 			}
3788 		}
3789 
3790 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3791 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3792 			return -EINVAL;
3793 		}
3794 		if (match.key->dst) {
3795 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3796 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3797 		}
3798 		if (match.key->src) {
3799 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3800 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3801 		}
3802 	}
3803 
3804 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3805 		struct flow_match_ipv6_addrs match;
3806 
3807 		flow_rule_match_ipv6_addrs(rule, &match);
3808 
3809 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3810 		if (ipv6_addr_any(&match.mask->dst)) {
3811 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3812 				IPV6_ADDR_ANY);
3813 			return -EINVAL;
3814 		}
3815 
3816 		/* src and dest IPv6 address should not be LOOPBACK
3817 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3818 		 */
3819 		if (ipv6_addr_loopback(&match.key->dst) ||
3820 		    ipv6_addr_loopback(&match.key->src)) {
3821 			dev_err(&adapter->pdev->dev,
3822 				"ipv6 addr should not be loopback\n");
3823 			return -EINVAL;
3824 		}
3825 		if (!ipv6_addr_any(&match.mask->dst) ||
3826 		    !ipv6_addr_any(&match.mask->src))
3827 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3828 
3829 		for (i = 0; i < 4; i++)
3830 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3831 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3832 		       sizeof(vf->data.tcp_spec.dst_ip));
3833 		for (i = 0; i < 4; i++)
3834 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3835 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3836 		       sizeof(vf->data.tcp_spec.src_ip));
3837 	}
3838 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3839 		struct flow_match_ports match;
3840 
3841 		flow_rule_match_ports(rule, &match);
3842 		if (match.mask->src) {
3843 			if (match.mask->src == cpu_to_be16(0xffff)) {
3844 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3845 			} else {
3846 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3847 					be16_to_cpu(match.mask->src));
3848 				return -EINVAL;
3849 			}
3850 		}
3851 
3852 		if (match.mask->dst) {
3853 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3854 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3855 			} else {
3856 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3857 					be16_to_cpu(match.mask->dst));
3858 				return -EINVAL;
3859 			}
3860 		}
3861 		if (match.key->dst) {
3862 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3863 			vf->data.tcp_spec.dst_port = match.key->dst;
3864 		}
3865 
3866 		if (match.key->src) {
3867 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3868 			vf->data.tcp_spec.src_port = match.key->src;
3869 		}
3870 	}
3871 	vf->field_flags = field_flags;
3872 
3873 	return 0;
3874 }
3875 
3876 /**
3877  * iavf_handle_tclass - Forward to a traffic class on the device
3878  * @adapter: board private structure
3879  * @tc: traffic class index on the device
3880  * @filter: pointer to cloud filter structure
3881  */
3882 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3883 			      struct iavf_cloud_filter *filter)
3884 {
3885 	if (tc == 0)
3886 		return 0;
3887 	if (tc < adapter->num_tc) {
3888 		if (!filter->f.data.tcp_spec.dst_port) {
3889 			dev_err(&adapter->pdev->dev,
3890 				"Specify destination port to redirect to traffic class other than TC0\n");
3891 			return -EINVAL;
3892 		}
3893 	}
3894 	/* redirect to a traffic class on the same device */
3895 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3896 	filter->f.action_meta = tc;
3897 	return 0;
3898 }
3899 
3900 /**
3901  * iavf_find_cf - Find the cloud filter in the list
3902  * @adapter: Board private structure
3903  * @cookie: filter specific cookie
3904  *
3905  * Returns ptr to the filter object or NULL. Must be called while holding the
3906  * cloud_filter_list_lock.
3907  */
3908 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3909 					      unsigned long *cookie)
3910 {
3911 	struct iavf_cloud_filter *filter = NULL;
3912 
3913 	if (!cookie)
3914 		return NULL;
3915 
3916 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3917 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3918 			return filter;
3919 	}
3920 	return NULL;
3921 }
3922 
3923 /**
3924  * iavf_configure_clsflower - Add tc flower filters
3925  * @adapter: board private structure
3926  * @cls_flower: Pointer to struct flow_cls_offload
3927  */
3928 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3929 				    struct flow_cls_offload *cls_flower)
3930 {
3931 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3932 	struct iavf_cloud_filter *filter = NULL;
3933 	int err = -EINVAL, count = 50;
3934 
3935 	if (tc < 0) {
3936 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3937 		return -EINVAL;
3938 	}
3939 
3940 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3941 	if (!filter)
3942 		return -ENOMEM;
3943 
3944 	while (!mutex_trylock(&adapter->crit_lock)) {
3945 		if (--count == 0) {
3946 			kfree(filter);
3947 			return err;
3948 		}
3949 		udelay(1);
3950 	}
3951 
3952 	filter->cookie = cls_flower->cookie;
3953 
3954 	/* bail out here if filter already exists */
3955 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3956 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3957 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3958 		err = -EEXIST;
3959 		goto spin_unlock;
3960 	}
3961 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3962 
3963 	/* set the mask to all zeroes to begin with */
3964 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3965 	/* start out with flow type and eth type IPv4 to begin with */
3966 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3967 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3968 	if (err)
3969 		goto err;
3970 
3971 	err = iavf_handle_tclass(adapter, tc, filter);
3972 	if (err)
3973 		goto err;
3974 
3975 	/* add filter to the list */
3976 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3977 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3978 	adapter->num_cloud_filters++;
3979 	filter->add = true;
3980 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3981 spin_unlock:
3982 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3983 err:
3984 	if (err)
3985 		kfree(filter);
3986 
3987 	mutex_unlock(&adapter->crit_lock);
3988 	return err;
3989 }
3990 
3991 /**
3992  * iavf_delete_clsflower - Remove tc flower filters
3993  * @adapter: board private structure
3994  * @cls_flower: Pointer to struct flow_cls_offload
3995  */
3996 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3997 				 struct flow_cls_offload *cls_flower)
3998 {
3999 	struct iavf_cloud_filter *filter = NULL;
4000 	int err = 0;
4001 
4002 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4003 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4004 	if (filter) {
4005 		filter->del = true;
4006 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4007 	} else {
4008 		err = -EINVAL;
4009 	}
4010 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4011 
4012 	return err;
4013 }
4014 
4015 /**
4016  * iavf_setup_tc_cls_flower - flower classifier offloads
4017  * @adapter: board private structure
4018  * @cls_flower: pointer to flow_cls_offload struct with flow info
4019  */
4020 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4021 				    struct flow_cls_offload *cls_flower)
4022 {
4023 	switch (cls_flower->command) {
4024 	case FLOW_CLS_REPLACE:
4025 		return iavf_configure_clsflower(adapter, cls_flower);
4026 	case FLOW_CLS_DESTROY:
4027 		return iavf_delete_clsflower(adapter, cls_flower);
4028 	case FLOW_CLS_STATS:
4029 		return -EOPNOTSUPP;
4030 	default:
4031 		return -EOPNOTSUPP;
4032 	}
4033 }
4034 
4035 /**
4036  * iavf_setup_tc_block_cb - block callback for tc
4037  * @type: type of offload
4038  * @type_data: offload data
4039  * @cb_priv:
4040  *
4041  * This function is the block callback for traffic classes
4042  **/
4043 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4044 				  void *cb_priv)
4045 {
4046 	struct iavf_adapter *adapter = cb_priv;
4047 
4048 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4049 		return -EOPNOTSUPP;
4050 
4051 	switch (type) {
4052 	case TC_SETUP_CLSFLOWER:
4053 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4054 	default:
4055 		return -EOPNOTSUPP;
4056 	}
4057 }
4058 
4059 static LIST_HEAD(iavf_block_cb_list);
4060 
4061 /**
4062  * iavf_setup_tc - configure multiple traffic classes
4063  * @netdev: network interface device structure
4064  * @type: type of offload
4065  * @type_data: tc offload data
4066  *
4067  * This function is the callback to ndo_setup_tc in the
4068  * netdev_ops.
4069  *
4070  * Returns 0 on success
4071  **/
4072 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4073 			 void *type_data)
4074 {
4075 	struct iavf_adapter *adapter = netdev_priv(netdev);
4076 
4077 	switch (type) {
4078 	case TC_SETUP_QDISC_MQPRIO:
4079 		return __iavf_setup_tc(netdev, type_data);
4080 	case TC_SETUP_BLOCK:
4081 		return flow_block_cb_setup_simple(type_data,
4082 						  &iavf_block_cb_list,
4083 						  iavf_setup_tc_block_cb,
4084 						  adapter, adapter, true);
4085 	default:
4086 		return -EOPNOTSUPP;
4087 	}
4088 }
4089 
4090 /**
4091  * iavf_restore_fdir_filters
4092  * @adapter: board private structure
4093  *
4094  * Restore existing FDIR filters when VF netdev comes back up.
4095  **/
4096 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4097 {
4098 	struct iavf_fdir_fltr *f;
4099 
4100 	spin_lock_bh(&adapter->fdir_fltr_lock);
4101 	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4102 		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4103 			/* Cancel a request, keep filter as active */
4104 			f->state = IAVF_FDIR_FLTR_ACTIVE;
4105 		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4106 			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4107 			/* Add filters which are inactive or have a pending
4108 			 * request to PF to be deleted
4109 			 */
4110 			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4111 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4112 		}
4113 	}
4114 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4115 }
4116 
4117 /**
4118  * iavf_open - Called when a network interface is made active
4119  * @netdev: network interface device structure
4120  *
4121  * Returns 0 on success, negative value on failure
4122  *
4123  * The open entry point is called when a network interface is made
4124  * active by the system (IFF_UP).  At this point all resources needed
4125  * for transmit and receive operations are allocated, the interrupt
4126  * handler is registered with the OS, the watchdog is started,
4127  * and the stack is notified that the interface is ready.
4128  **/
4129 static int iavf_open(struct net_device *netdev)
4130 {
4131 	struct iavf_adapter *adapter = netdev_priv(netdev);
4132 	int err;
4133 
4134 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4135 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4136 		return -EIO;
4137 	}
4138 
4139 	while (!mutex_trylock(&adapter->crit_lock)) {
4140 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4141 		 * is already taken and iavf_open is called from an upper
4142 		 * device's notifier reacting on NETDEV_REGISTER event.
4143 		 * We have to leave here to avoid dead lock.
4144 		 */
4145 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4146 			return -EBUSY;
4147 
4148 		usleep_range(500, 1000);
4149 	}
4150 
4151 	if (adapter->state != __IAVF_DOWN) {
4152 		err = -EBUSY;
4153 		goto err_unlock;
4154 	}
4155 
4156 	if (adapter->state == __IAVF_RUNNING &&
4157 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4158 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4159 		err = 0;
4160 		goto err_unlock;
4161 	}
4162 
4163 	/* allocate transmit descriptors */
4164 	err = iavf_setup_all_tx_resources(adapter);
4165 	if (err)
4166 		goto err_setup_tx;
4167 
4168 	/* allocate receive descriptors */
4169 	err = iavf_setup_all_rx_resources(adapter);
4170 	if (err)
4171 		goto err_setup_rx;
4172 
4173 	/* clear any pending interrupts, may auto mask */
4174 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4175 	if (err)
4176 		goto err_req_irq;
4177 
4178 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4179 
4180 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4181 
4182 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4183 
4184 	/* Restore filters that were removed with IFF_DOWN */
4185 	iavf_restore_filters(adapter);
4186 	iavf_restore_fdir_filters(adapter);
4187 
4188 	iavf_configure(adapter);
4189 
4190 	iavf_up_complete(adapter);
4191 
4192 	iavf_irq_enable(adapter, true);
4193 
4194 	mutex_unlock(&adapter->crit_lock);
4195 
4196 	return 0;
4197 
4198 err_req_irq:
4199 	iavf_down(adapter);
4200 	iavf_free_traffic_irqs(adapter);
4201 err_setup_rx:
4202 	iavf_free_all_rx_resources(adapter);
4203 err_setup_tx:
4204 	iavf_free_all_tx_resources(adapter);
4205 err_unlock:
4206 	mutex_unlock(&adapter->crit_lock);
4207 
4208 	return err;
4209 }
4210 
4211 /**
4212  * iavf_close - Disables a network interface
4213  * @netdev: network interface device structure
4214  *
4215  * Returns 0, this is not allowed to fail
4216  *
4217  * The close entry point is called when an interface is de-activated
4218  * by the OS.  The hardware is still under the drivers control, but
4219  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4220  * are freed, along with all transmit and receive resources.
4221  **/
4222 static int iavf_close(struct net_device *netdev)
4223 {
4224 	struct iavf_adapter *adapter = netdev_priv(netdev);
4225 	u64 aq_to_restore;
4226 	int status;
4227 
4228 	mutex_lock(&adapter->crit_lock);
4229 
4230 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4231 		mutex_unlock(&adapter->crit_lock);
4232 		return 0;
4233 	}
4234 
4235 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4236 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4237 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4238 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4239 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4240 	 * disable queues possible for vf. Give only necessary flags to
4241 	 * iavf_down and save other to set them right before iavf_close()
4242 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4243 	 * iavf will be in DOWN state.
4244 	 */
4245 	aq_to_restore = adapter->aq_required;
4246 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4247 
4248 	/* Remove flags which we do not want to send after close or we want to
4249 	 * send before disable queues.
4250 	 */
4251 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4252 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4253 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4254 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4255 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4256 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4257 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4258 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4259 
4260 	iavf_down(adapter);
4261 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4262 	iavf_free_traffic_irqs(adapter);
4263 
4264 	mutex_unlock(&adapter->crit_lock);
4265 
4266 	/* We explicitly don't free resources here because the hardware is
4267 	 * still active and can DMA into memory. Resources are cleared in
4268 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4269 	 * driver that the rings have been stopped.
4270 	 *
4271 	 * Also, we wait for state to transition to __IAVF_DOWN before
4272 	 * returning. State change occurs in iavf_virtchnl_completion() after
4273 	 * VF resources are released (which occurs after PF driver processes and
4274 	 * responds to admin queue commands).
4275 	 */
4276 
4277 	status = wait_event_timeout(adapter->down_waitqueue,
4278 				    adapter->state == __IAVF_DOWN,
4279 				    msecs_to_jiffies(500));
4280 	if (!status)
4281 		netdev_warn(netdev, "Device resources not yet released\n");
4282 
4283 	mutex_lock(&adapter->crit_lock);
4284 	adapter->aq_required |= aq_to_restore;
4285 	mutex_unlock(&adapter->crit_lock);
4286 	return 0;
4287 }
4288 
4289 /**
4290  * iavf_change_mtu - Change the Maximum Transfer Unit
4291  * @netdev: network interface device structure
4292  * @new_mtu: new value for maximum frame size
4293  *
4294  * Returns 0 on success, negative on failure
4295  **/
4296 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4297 {
4298 	struct iavf_adapter *adapter = netdev_priv(netdev);
4299 	int ret = 0;
4300 
4301 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4302 		   netdev->mtu, new_mtu);
4303 	WRITE_ONCE(netdev->mtu, new_mtu);
4304 
4305 	if (netif_running(netdev)) {
4306 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4307 		ret = iavf_wait_for_reset(adapter);
4308 		if (ret < 0)
4309 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4310 		else if (ret)
4311 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4312 	}
4313 
4314 	return ret;
4315 }
4316 
4317 /**
4318  * iavf_disable_fdir - disable Flow Director and clear existing filters
4319  * @adapter: board private structure
4320  **/
4321 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4322 {
4323 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4324 	bool del_filters = false;
4325 
4326 	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4327 
4328 	/* remove all Flow Director filters */
4329 	spin_lock_bh(&adapter->fdir_fltr_lock);
4330 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4331 				 list) {
4332 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4333 		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4334 			/* Delete filters not registered in PF */
4335 			list_del(&fdir->list);
4336 			kfree(fdir);
4337 			adapter->fdir_active_fltr--;
4338 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4339 			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4340 			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4341 			/* Filters registered in PF, schedule their deletion */
4342 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4343 			del_filters = true;
4344 		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4345 			/* Request to delete filter already sent to PF, change
4346 			 * state to DEL_PENDING to delete filter after PF's
4347 			 * response, not set as INACTIVE
4348 			 */
4349 			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4350 		}
4351 	}
4352 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4353 
4354 	if (del_filters) {
4355 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4356 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4357 	}
4358 }
4359 
4360 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4361 					 NETIF_F_HW_VLAN_CTAG_TX | \
4362 					 NETIF_F_HW_VLAN_STAG_RX | \
4363 					 NETIF_F_HW_VLAN_STAG_TX)
4364 
4365 /**
4366  * iavf_set_features - set the netdev feature flags
4367  * @netdev: ptr to the netdev being adjusted
4368  * @features: the feature set that the stack is suggesting
4369  * Note: expects to be called while under rtnl_lock()
4370  **/
4371 static int iavf_set_features(struct net_device *netdev,
4372 			     netdev_features_t features)
4373 {
4374 	struct iavf_adapter *adapter = netdev_priv(netdev);
4375 
4376 	/* trigger update on any VLAN feature change */
4377 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4378 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4379 		iavf_set_vlan_offload_features(adapter, netdev->features,
4380 					       features);
4381 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4382 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4383 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4384 
4385 	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4386 		if (features & NETIF_F_NTUPLE)
4387 			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4388 		else
4389 			iavf_disable_fdir(adapter);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 /**
4396  * iavf_features_check - Validate encapsulated packet conforms to limits
4397  * @skb: skb buff
4398  * @dev: This physical port's netdev
4399  * @features: Offload features that the stack believes apply
4400  **/
4401 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4402 					     struct net_device *dev,
4403 					     netdev_features_t features)
4404 {
4405 	size_t len;
4406 
4407 	/* No point in doing any of this if neither checksum nor GSO are
4408 	 * being requested for this frame.  We can rule out both by just
4409 	 * checking for CHECKSUM_PARTIAL
4410 	 */
4411 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4412 		return features;
4413 
4414 	/* We cannot support GSO if the MSS is going to be less than
4415 	 * 64 bytes.  If it is then we need to drop support for GSO.
4416 	 */
4417 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4418 		features &= ~NETIF_F_GSO_MASK;
4419 
4420 	/* MACLEN can support at most 63 words */
4421 	len = skb_network_offset(skb);
4422 	if (len & ~(63 * 2))
4423 		goto out_err;
4424 
4425 	/* IPLEN and EIPLEN can support at most 127 dwords */
4426 	len = skb_network_header_len(skb);
4427 	if (len & ~(127 * 4))
4428 		goto out_err;
4429 
4430 	if (skb->encapsulation) {
4431 		/* L4TUNLEN can support 127 words */
4432 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4433 		if (len & ~(127 * 2))
4434 			goto out_err;
4435 
4436 		/* IPLEN can support at most 127 dwords */
4437 		len = skb_inner_transport_header(skb) -
4438 		      skb_inner_network_header(skb);
4439 		if (len & ~(127 * 4))
4440 			goto out_err;
4441 	}
4442 
4443 	/* No need to validate L4LEN as TCP is the only protocol with a
4444 	 * flexible value and we support all possible values supported
4445 	 * by TCP, which is at most 15 dwords
4446 	 */
4447 
4448 	return features;
4449 out_err:
4450 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4451 }
4452 
4453 /**
4454  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4455  * @adapter: board private structure
4456  *
4457  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4458  * were negotiated determine the VLAN features that can be toggled on and off.
4459  **/
4460 static netdev_features_t
4461 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4462 {
4463 	netdev_features_t hw_features = 0;
4464 
4465 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4466 		return hw_features;
4467 
4468 	/* Enable VLAN features if supported */
4469 	if (VLAN_ALLOWED(adapter)) {
4470 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4471 				NETIF_F_HW_VLAN_CTAG_RX);
4472 	} else if (VLAN_V2_ALLOWED(adapter)) {
4473 		struct virtchnl_vlan_caps *vlan_v2_caps =
4474 			&adapter->vlan_v2_caps;
4475 		struct virtchnl_vlan_supported_caps *stripping_support =
4476 			&vlan_v2_caps->offloads.stripping_support;
4477 		struct virtchnl_vlan_supported_caps *insertion_support =
4478 			&vlan_v2_caps->offloads.insertion_support;
4479 
4480 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4481 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4482 			if (stripping_support->outer &
4483 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4484 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4485 			if (stripping_support->outer &
4486 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4487 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4488 		} else if (stripping_support->inner !=
4489 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4490 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4491 			if (stripping_support->inner &
4492 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4493 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4494 		}
4495 
4496 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4497 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4498 			if (insertion_support->outer &
4499 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4500 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4501 			if (insertion_support->outer &
4502 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4503 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4504 		} else if (insertion_support->inner &&
4505 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4506 			if (insertion_support->inner &
4507 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4508 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4509 		}
4510 	}
4511 
4512 	if (CRC_OFFLOAD_ALLOWED(adapter))
4513 		hw_features |= NETIF_F_RXFCS;
4514 
4515 	return hw_features;
4516 }
4517 
4518 /**
4519  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4520  * @adapter: board private structure
4521  *
4522  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4523  * were negotiated determine the VLAN features that are enabled by default.
4524  **/
4525 static netdev_features_t
4526 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4527 {
4528 	netdev_features_t features = 0;
4529 
4530 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4531 		return features;
4532 
4533 	if (VLAN_ALLOWED(adapter)) {
4534 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4535 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4536 	} else if (VLAN_V2_ALLOWED(adapter)) {
4537 		struct virtchnl_vlan_caps *vlan_v2_caps =
4538 			&adapter->vlan_v2_caps;
4539 		struct virtchnl_vlan_supported_caps *filtering_support =
4540 			&vlan_v2_caps->filtering.filtering_support;
4541 		struct virtchnl_vlan_supported_caps *stripping_support =
4542 			&vlan_v2_caps->offloads.stripping_support;
4543 		struct virtchnl_vlan_supported_caps *insertion_support =
4544 			&vlan_v2_caps->offloads.insertion_support;
4545 		u32 ethertype_init;
4546 
4547 		/* give priority to outer stripping and don't support both outer
4548 		 * and inner stripping
4549 		 */
4550 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4551 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4552 			if (stripping_support->outer &
4553 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4554 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4555 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4556 			else if (stripping_support->outer &
4557 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4558 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4559 				features |= NETIF_F_HW_VLAN_STAG_RX;
4560 		} else if (stripping_support->inner !=
4561 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4562 			if (stripping_support->inner &
4563 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4564 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4565 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4566 		}
4567 
4568 		/* give priority to outer insertion and don't support both outer
4569 		 * and inner insertion
4570 		 */
4571 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4572 			if (insertion_support->outer &
4573 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4574 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4575 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4576 			else if (insertion_support->outer &
4577 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4578 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4579 				features |= NETIF_F_HW_VLAN_STAG_TX;
4580 		} else if (insertion_support->inner !=
4581 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4582 			if (insertion_support->inner &
4583 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4584 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4585 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4586 		}
4587 
4588 		/* give priority to outer filtering and don't bother if both
4589 		 * outer and inner filtering are enabled
4590 		 */
4591 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4592 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4593 			if (filtering_support->outer &
4594 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4595 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4596 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4597 			if (filtering_support->outer &
4598 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4599 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4600 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4601 		} else if (filtering_support->inner !=
4602 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4603 			if (filtering_support->inner &
4604 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4605 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4606 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4607 			if (filtering_support->inner &
4608 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4609 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4610 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4611 		}
4612 	}
4613 
4614 	return features;
4615 }
4616 
4617 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4618 	(!(((requested) & (feature_bit)) && \
4619 	   !((allowed) & (feature_bit))))
4620 
4621 /**
4622  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4623  * @adapter: board private structure
4624  * @requested_features: stack requested NETDEV features
4625  **/
4626 static netdev_features_t
4627 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4628 			      netdev_features_t requested_features)
4629 {
4630 	netdev_features_t allowed_features;
4631 
4632 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4633 		iavf_get_netdev_vlan_features(adapter);
4634 
4635 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4636 					      allowed_features,
4637 					      NETIF_F_HW_VLAN_CTAG_TX))
4638 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4639 
4640 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4641 					      allowed_features,
4642 					      NETIF_F_HW_VLAN_CTAG_RX))
4643 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4644 
4645 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4646 					      allowed_features,
4647 					      NETIF_F_HW_VLAN_STAG_TX))
4648 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4649 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4650 					      allowed_features,
4651 					      NETIF_F_HW_VLAN_STAG_RX))
4652 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4653 
4654 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4655 					      allowed_features,
4656 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4657 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4658 
4659 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660 					      allowed_features,
4661 					      NETIF_F_HW_VLAN_STAG_FILTER))
4662 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4663 
4664 	if ((requested_features &
4665 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4666 	    (requested_features &
4667 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4668 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4669 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4670 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4671 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4672 					NETIF_F_HW_VLAN_STAG_TX);
4673 	}
4674 
4675 	return requested_features;
4676 }
4677 
4678 /**
4679  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4680  * @adapter: board private structure
4681  * @requested_features: stack requested NETDEV features
4682  *
4683  * Returns fixed-up features bits
4684  **/
4685 static netdev_features_t
4686 iavf_fix_strip_features(struct iavf_adapter *adapter,
4687 			netdev_features_t requested_features)
4688 {
4689 	struct net_device *netdev = adapter->netdev;
4690 	bool crc_offload_req, is_vlan_strip;
4691 	netdev_features_t vlan_strip;
4692 	int num_non_zero_vlan;
4693 
4694 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4695 			  (requested_features & NETIF_F_RXFCS);
4696 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4697 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4698 	is_vlan_strip = requested_features & vlan_strip;
4699 
4700 	if (!crc_offload_req)
4701 		return requested_features;
4702 
4703 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4704 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4705 		requested_features &= ~vlan_strip;
4706 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4707 		return requested_features;
4708 	}
4709 
4710 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4711 		requested_features &= ~vlan_strip;
4712 		if (!(netdev->features & vlan_strip))
4713 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4714 
4715 		return requested_features;
4716 	}
4717 
4718 	if (num_non_zero_vlan && is_vlan_strip &&
4719 	    !(netdev->features & NETIF_F_RXFCS)) {
4720 		requested_features &= ~NETIF_F_RXFCS;
4721 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4722 	}
4723 
4724 	return requested_features;
4725 }
4726 
4727 /**
4728  * iavf_fix_features - fix up the netdev feature bits
4729  * @netdev: our net device
4730  * @features: desired feature bits
4731  *
4732  * Returns fixed-up features bits
4733  **/
4734 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4735 					   netdev_features_t features)
4736 {
4737 	struct iavf_adapter *adapter = netdev_priv(netdev);
4738 
4739 	features = iavf_fix_netdev_vlan_features(adapter, features);
4740 
4741 	if (!FDIR_FLTR_SUPPORT(adapter))
4742 		features &= ~NETIF_F_NTUPLE;
4743 
4744 	return iavf_fix_strip_features(adapter, features);
4745 }
4746 
4747 static const struct net_device_ops iavf_netdev_ops = {
4748 	.ndo_open		= iavf_open,
4749 	.ndo_stop		= iavf_close,
4750 	.ndo_start_xmit		= iavf_xmit_frame,
4751 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4752 	.ndo_validate_addr	= eth_validate_addr,
4753 	.ndo_set_mac_address	= iavf_set_mac,
4754 	.ndo_change_mtu		= iavf_change_mtu,
4755 	.ndo_tx_timeout		= iavf_tx_timeout,
4756 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4757 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4758 	.ndo_features_check	= iavf_features_check,
4759 	.ndo_fix_features	= iavf_fix_features,
4760 	.ndo_set_features	= iavf_set_features,
4761 	.ndo_setup_tc		= iavf_setup_tc,
4762 };
4763 
4764 /**
4765  * iavf_check_reset_complete - check that VF reset is complete
4766  * @hw: pointer to hw struct
4767  *
4768  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4769  **/
4770 static int iavf_check_reset_complete(struct iavf_hw *hw)
4771 {
4772 	u32 rstat;
4773 	int i;
4774 
4775 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4776 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4777 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4778 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4779 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4780 			return 0;
4781 		msleep(IAVF_RESET_WAIT_MS);
4782 	}
4783 	return -EBUSY;
4784 }
4785 
4786 /**
4787  * iavf_process_config - Process the config information we got from the PF
4788  * @adapter: board private structure
4789  *
4790  * Verify that we have a valid config struct, and set up our netdev features
4791  * and our VSI struct.
4792  **/
4793 int iavf_process_config(struct iavf_adapter *adapter)
4794 {
4795 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4796 	netdev_features_t hw_vlan_features, vlan_features;
4797 	struct net_device *netdev = adapter->netdev;
4798 	netdev_features_t hw_enc_features;
4799 	netdev_features_t hw_features;
4800 
4801 	hw_enc_features = NETIF_F_SG			|
4802 			  NETIF_F_IP_CSUM		|
4803 			  NETIF_F_IPV6_CSUM		|
4804 			  NETIF_F_HIGHDMA		|
4805 			  NETIF_F_SOFT_FEATURES	|
4806 			  NETIF_F_TSO			|
4807 			  NETIF_F_TSO_ECN		|
4808 			  NETIF_F_TSO6			|
4809 			  NETIF_F_SCTP_CRC		|
4810 			  NETIF_F_RXHASH		|
4811 			  NETIF_F_RXCSUM		|
4812 			  0;
4813 
4814 	/* advertise to stack only if offloads for encapsulated packets is
4815 	 * supported
4816 	 */
4817 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4818 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4819 				   NETIF_F_GSO_GRE		|
4820 				   NETIF_F_GSO_GRE_CSUM		|
4821 				   NETIF_F_GSO_IPXIP4		|
4822 				   NETIF_F_GSO_IPXIP6		|
4823 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4824 				   NETIF_F_GSO_PARTIAL		|
4825 				   0;
4826 
4827 		if (!(vfres->vf_cap_flags &
4828 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4829 			netdev->gso_partial_features |=
4830 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4831 
4832 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4833 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4834 		netdev->hw_enc_features |= hw_enc_features;
4835 	}
4836 	/* record features VLANs can make use of */
4837 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4838 
4839 	/* Write features and hw_features separately to avoid polluting
4840 	 * with, or dropping, features that are set when we registered.
4841 	 */
4842 	hw_features = hw_enc_features;
4843 
4844 	/* get HW VLAN features that can be toggled */
4845 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4846 
4847 	/* Enable cloud filter if ADQ is supported */
4848 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4849 		hw_features |= NETIF_F_HW_TC;
4850 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4851 		hw_features |= NETIF_F_GSO_UDP_L4;
4852 
4853 	netdev->hw_features |= hw_features | hw_vlan_features;
4854 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4855 
4856 	netdev->features |= hw_features | vlan_features;
4857 
4858 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4859 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4860 
4861 	if (FDIR_FLTR_SUPPORT(adapter)) {
4862 		netdev->hw_features |= NETIF_F_NTUPLE;
4863 		netdev->features |= NETIF_F_NTUPLE;
4864 		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4865 	}
4866 
4867 	netdev->priv_flags |= IFF_UNICAST_FLT;
4868 
4869 	/* Do not turn on offloads when they are requested to be turned off.
4870 	 * TSO needs minimum 576 bytes to work correctly.
4871 	 */
4872 	if (netdev->wanted_features) {
4873 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4874 		    netdev->mtu < 576)
4875 			netdev->features &= ~NETIF_F_TSO;
4876 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4877 		    netdev->mtu < 576)
4878 			netdev->features &= ~NETIF_F_TSO6;
4879 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4880 			netdev->features &= ~NETIF_F_TSO_ECN;
4881 		if (!(netdev->wanted_features & NETIF_F_GRO))
4882 			netdev->features &= ~NETIF_F_GRO;
4883 		if (!(netdev->wanted_features & NETIF_F_GSO))
4884 			netdev->features &= ~NETIF_F_GSO;
4885 	}
4886 
4887 	return 0;
4888 }
4889 
4890 /**
4891  * iavf_probe - Device Initialization Routine
4892  * @pdev: PCI device information struct
4893  * @ent: entry in iavf_pci_tbl
4894  *
4895  * Returns 0 on success, negative on failure
4896  *
4897  * iavf_probe initializes an adapter identified by a pci_dev structure.
4898  * The OS initialization, configuring of the adapter private structure,
4899  * and a hardware reset occur.
4900  **/
4901 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4902 {
4903 	struct net_device *netdev;
4904 	struct iavf_adapter *adapter = NULL;
4905 	struct iavf_hw *hw = NULL;
4906 	int err;
4907 
4908 	err = pci_enable_device(pdev);
4909 	if (err)
4910 		return err;
4911 
4912 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4913 	if (err) {
4914 		dev_err(&pdev->dev,
4915 			"DMA configuration failed: 0x%x\n", err);
4916 		goto err_dma;
4917 	}
4918 
4919 	err = pci_request_regions(pdev, iavf_driver_name);
4920 	if (err) {
4921 		dev_err(&pdev->dev,
4922 			"pci_request_regions failed 0x%x\n", err);
4923 		goto err_pci_reg;
4924 	}
4925 
4926 	pci_set_master(pdev);
4927 
4928 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4929 				   IAVF_MAX_REQ_QUEUES);
4930 	if (!netdev) {
4931 		err = -ENOMEM;
4932 		goto err_alloc_etherdev;
4933 	}
4934 
4935 	SET_NETDEV_DEV(netdev, &pdev->dev);
4936 
4937 	pci_set_drvdata(pdev, netdev);
4938 	adapter = netdev_priv(netdev);
4939 
4940 	adapter->netdev = netdev;
4941 	adapter->pdev = pdev;
4942 
4943 	hw = &adapter->hw;
4944 	hw->back = adapter;
4945 
4946 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4947 					      iavf_driver_name);
4948 	if (!adapter->wq) {
4949 		err = -ENOMEM;
4950 		goto err_alloc_wq;
4951 	}
4952 
4953 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4954 	iavf_change_state(adapter, __IAVF_STARTUP);
4955 
4956 	/* Call save state here because it relies on the adapter struct. */
4957 	pci_save_state(pdev);
4958 
4959 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4960 			      pci_resource_len(pdev, 0));
4961 	if (!hw->hw_addr) {
4962 		err = -EIO;
4963 		goto err_ioremap;
4964 	}
4965 	hw->vendor_id = pdev->vendor;
4966 	hw->device_id = pdev->device;
4967 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4968 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4969 	hw->subsystem_device_id = pdev->subsystem_device;
4970 	hw->bus.device = PCI_SLOT(pdev->devfn);
4971 	hw->bus.func = PCI_FUNC(pdev->devfn);
4972 	hw->bus.bus_id = pdev->bus->number;
4973 
4974 	/* set up the locks for the AQ, do this only once in probe
4975 	 * and destroy them only once in remove
4976 	 */
4977 	mutex_init(&adapter->crit_lock);
4978 	mutex_init(&hw->aq.asq_mutex);
4979 	mutex_init(&hw->aq.arq_mutex);
4980 
4981 	spin_lock_init(&adapter->mac_vlan_list_lock);
4982 	spin_lock_init(&adapter->cloud_filter_list_lock);
4983 	spin_lock_init(&adapter->fdir_fltr_lock);
4984 	spin_lock_init(&adapter->adv_rss_lock);
4985 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4986 
4987 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4988 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4989 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4990 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4991 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4992 
4993 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4994 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4995 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
4996 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4997 
4998 	/* Setup the wait queue for indicating transition to down status */
4999 	init_waitqueue_head(&adapter->down_waitqueue);
5000 
5001 	/* Setup the wait queue for indicating transition to running state */
5002 	init_waitqueue_head(&adapter->reset_waitqueue);
5003 
5004 	/* Setup the wait queue for indicating virtchannel events */
5005 	init_waitqueue_head(&adapter->vc_waitqueue);
5006 
5007 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5008 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5009 	/* Initialization goes on in the work. Do not add more of it below. */
5010 	return 0;
5011 
5012 err_ioremap:
5013 	destroy_workqueue(adapter->wq);
5014 err_alloc_wq:
5015 	free_netdev(netdev);
5016 err_alloc_etherdev:
5017 	pci_release_regions(pdev);
5018 err_pci_reg:
5019 err_dma:
5020 	pci_disable_device(pdev);
5021 	return err;
5022 }
5023 
5024 /**
5025  * iavf_suspend - Power management suspend routine
5026  * @dev_d: device info pointer
5027  *
5028  * Called when the system (VM) is entering sleep/suspend.
5029  **/
5030 static int iavf_suspend(struct device *dev_d)
5031 {
5032 	struct net_device *netdev = dev_get_drvdata(dev_d);
5033 	struct iavf_adapter *adapter = netdev_priv(netdev);
5034 
5035 	netif_device_detach(netdev);
5036 
5037 	mutex_lock(&adapter->crit_lock);
5038 
5039 	if (netif_running(netdev)) {
5040 		rtnl_lock();
5041 		iavf_down(adapter);
5042 		rtnl_unlock();
5043 	}
5044 	iavf_free_misc_irq(adapter);
5045 	iavf_reset_interrupt_capability(adapter);
5046 
5047 	mutex_unlock(&adapter->crit_lock);
5048 
5049 	return 0;
5050 }
5051 
5052 /**
5053  * iavf_resume - Power management resume routine
5054  * @dev_d: device info pointer
5055  *
5056  * Called when the system (VM) is resumed from sleep/suspend.
5057  **/
5058 static int iavf_resume(struct device *dev_d)
5059 {
5060 	struct pci_dev *pdev = to_pci_dev(dev_d);
5061 	struct iavf_adapter *adapter;
5062 	u32 err;
5063 
5064 	adapter = iavf_pdev_to_adapter(pdev);
5065 
5066 	pci_set_master(pdev);
5067 
5068 	rtnl_lock();
5069 	err = iavf_set_interrupt_capability(adapter);
5070 	if (err) {
5071 		rtnl_unlock();
5072 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5073 		return err;
5074 	}
5075 	err = iavf_request_misc_irq(adapter);
5076 	rtnl_unlock();
5077 	if (err) {
5078 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5079 		return err;
5080 	}
5081 
5082 	queue_work(adapter->wq, &adapter->reset_task);
5083 
5084 	netif_device_attach(adapter->netdev);
5085 
5086 	return err;
5087 }
5088 
5089 /**
5090  * iavf_remove - Device Removal Routine
5091  * @pdev: PCI device information struct
5092  *
5093  * iavf_remove is called by the PCI subsystem to alert the driver
5094  * that it should release a PCI device.  The could be caused by a
5095  * Hot-Plug event, or because the driver is going to be removed from
5096  * memory.
5097  **/
5098 static void iavf_remove(struct pci_dev *pdev)
5099 {
5100 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5101 	struct iavf_vlan_filter *vlf, *vlftmp;
5102 	struct iavf_cloud_filter *cf, *cftmp;
5103 	struct iavf_adv_rss *rss, *rsstmp;
5104 	struct iavf_mac_filter *f, *ftmp;
5105 	struct iavf_adapter *adapter;
5106 	struct net_device *netdev;
5107 	struct iavf_hw *hw;
5108 
5109 	/* Don't proceed with remove if netdev is already freed */
5110 	netdev = pci_get_drvdata(pdev);
5111 	if (!netdev)
5112 		return;
5113 
5114 	adapter = iavf_pdev_to_adapter(pdev);
5115 	hw = &adapter->hw;
5116 
5117 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5118 		return;
5119 
5120 	/* Wait until port initialization is complete.
5121 	 * There are flows where register/unregister netdev may race.
5122 	 */
5123 	while (1) {
5124 		mutex_lock(&adapter->crit_lock);
5125 		if (adapter->state == __IAVF_RUNNING ||
5126 		    adapter->state == __IAVF_DOWN ||
5127 		    adapter->state == __IAVF_INIT_FAILED) {
5128 			mutex_unlock(&adapter->crit_lock);
5129 			break;
5130 		}
5131 		/* Simply return if we already went through iavf_shutdown */
5132 		if (adapter->state == __IAVF_REMOVE) {
5133 			mutex_unlock(&adapter->crit_lock);
5134 			return;
5135 		}
5136 
5137 		mutex_unlock(&adapter->crit_lock);
5138 		usleep_range(500, 1000);
5139 	}
5140 	cancel_delayed_work_sync(&adapter->watchdog_task);
5141 	cancel_work_sync(&adapter->finish_config);
5142 
5143 	if (netdev->reg_state == NETREG_REGISTERED)
5144 		unregister_netdev(netdev);
5145 
5146 	mutex_lock(&adapter->crit_lock);
5147 	dev_info(&adapter->pdev->dev, "Removing device\n");
5148 	iavf_change_state(adapter, __IAVF_REMOVE);
5149 
5150 	iavf_request_reset(adapter);
5151 	msleep(50);
5152 	/* If the FW isn't responding, kick it once, but only once. */
5153 	if (!iavf_asq_done(hw)) {
5154 		iavf_request_reset(adapter);
5155 		msleep(50);
5156 	}
5157 
5158 	iavf_misc_irq_disable(adapter);
5159 	/* Shut down all the garbage mashers on the detention level */
5160 	cancel_work_sync(&adapter->reset_task);
5161 	cancel_delayed_work_sync(&adapter->watchdog_task);
5162 	cancel_work_sync(&adapter->adminq_task);
5163 
5164 	adapter->aq_required = 0;
5165 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5166 
5167 	iavf_free_all_tx_resources(adapter);
5168 	iavf_free_all_rx_resources(adapter);
5169 	iavf_free_misc_irq(adapter);
5170 	iavf_free_interrupt_scheme(adapter);
5171 
5172 	iavf_free_rss(adapter);
5173 
5174 	if (hw->aq.asq.count)
5175 		iavf_shutdown_adminq(hw);
5176 
5177 	/* destroy the locks only once, here */
5178 	mutex_destroy(&hw->aq.arq_mutex);
5179 	mutex_destroy(&hw->aq.asq_mutex);
5180 	mutex_unlock(&adapter->crit_lock);
5181 	mutex_destroy(&adapter->crit_lock);
5182 
5183 	iounmap(hw->hw_addr);
5184 	pci_release_regions(pdev);
5185 	kfree(adapter->vf_res);
5186 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5187 	/* If we got removed before an up/down sequence, we've got a filter
5188 	 * hanging out there that we need to get rid of.
5189 	 */
5190 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5191 		list_del(&f->list);
5192 		kfree(f);
5193 	}
5194 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5195 				 list) {
5196 		list_del(&vlf->list);
5197 		kfree(vlf);
5198 	}
5199 
5200 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5201 
5202 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5203 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5204 		list_del(&cf->list);
5205 		kfree(cf);
5206 	}
5207 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5208 
5209 	spin_lock_bh(&adapter->fdir_fltr_lock);
5210 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5211 		list_del(&fdir->list);
5212 		kfree(fdir);
5213 	}
5214 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5215 
5216 	spin_lock_bh(&adapter->adv_rss_lock);
5217 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5218 				 list) {
5219 		list_del(&rss->list);
5220 		kfree(rss);
5221 	}
5222 	spin_unlock_bh(&adapter->adv_rss_lock);
5223 
5224 	destroy_workqueue(adapter->wq);
5225 
5226 	pci_set_drvdata(pdev, NULL);
5227 
5228 	free_netdev(netdev);
5229 
5230 	pci_disable_device(pdev);
5231 }
5232 
5233 /**
5234  * iavf_shutdown - Shutdown the device in preparation for a reboot
5235  * @pdev: pci device structure
5236  **/
5237 static void iavf_shutdown(struct pci_dev *pdev)
5238 {
5239 	iavf_remove(pdev);
5240 
5241 	if (system_state == SYSTEM_POWER_OFF)
5242 		pci_set_power_state(pdev, PCI_D3hot);
5243 }
5244 
5245 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5246 
5247 static struct pci_driver iavf_driver = {
5248 	.name      = iavf_driver_name,
5249 	.id_table  = iavf_pci_tbl,
5250 	.probe     = iavf_probe,
5251 	.remove    = iavf_remove,
5252 	.driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5253 	.shutdown  = iavf_shutdown,
5254 };
5255 
5256 /**
5257  * iavf_init_module - Driver Registration Routine
5258  *
5259  * iavf_init_module is the first routine called when the driver is
5260  * loaded. All it does is register with the PCI subsystem.
5261  **/
5262 static int __init iavf_init_module(void)
5263 {
5264 	pr_info("iavf: %s\n", iavf_driver_string);
5265 
5266 	pr_info("%s\n", iavf_copyright);
5267 
5268 	return pci_register_driver(&iavf_driver);
5269 }
5270 
5271 module_init(iavf_init_module);
5272 
5273 /**
5274  * iavf_exit_module - Driver Exit Cleanup Routine
5275  *
5276  * iavf_exit_module is called just before the driver is removed
5277  * from memory.
5278  **/
5279 static void __exit iavf_exit_module(void)
5280 {
5281 	pci_unregister_driver(&iavf_driver);
5282 }
5283 
5284 module_exit(iavf_exit_module);
5285 
5286 /* iavf_main.c */
5287