xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 7fe03f8ff55d33fe6398637f78a8620dd2a78b38)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/net/intel/libie/rx.h>
5 
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9  * be included exactly once across the whole kernel with
10  * CREATE_TRACE_POINTS defined
11  */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14 
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20 
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24 
25 static const char iavf_copyright[] =
26 	"Copyright (c) 2013 - 2018 Intel Corporation.";
27 
28 /* iavf_pci_tbl - PCI Device ID Table
29  *
30  * Wildcard entries (PCI_ANY_ID) should come last
31  * Last entry must be all 0s
32  *
33  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34  *   Class, Class Mask, private data (not used) }
35  */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 	/* required last entry */
42 	{0, }
43 };
44 
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46 
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS("LIBETH");
50 MODULE_IMPORT_NS("LIBIE");
51 MODULE_LICENSE("GPL v2");
52 
53 static const struct net_device_ops iavf_netdev_ops;
54 
55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 	switch (status) {
58 	case IAVF_SUCCESS:
59 		return 0;
60 	case IAVF_ERR_PARAM:
61 	case IAVF_ERR_MAC_TYPE:
62 	case IAVF_ERR_INVALID_MAC_ADDR:
63 	case IAVF_ERR_INVALID_LINK_SETTINGS:
64 	case IAVF_ERR_INVALID_PD_ID:
65 	case IAVF_ERR_INVALID_QP_ID:
66 	case IAVF_ERR_INVALID_CQ_ID:
67 	case IAVF_ERR_INVALID_CEQ_ID:
68 	case IAVF_ERR_INVALID_AEQ_ID:
69 	case IAVF_ERR_INVALID_SIZE:
70 	case IAVF_ERR_INVALID_ARP_INDEX:
71 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 	case IAVF_ERR_INVALID_FRAG_COUNT:
74 	case IAVF_ERR_INVALID_ALIGNMENT:
75 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 	case IAVF_ERR_INVALID_VF_ID:
78 	case IAVF_ERR_INVALID_HMCFN_ID:
79 	case IAVF_ERR_INVALID_PBLE_INDEX:
80 	case IAVF_ERR_INVALID_SD_INDEX:
81 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 	case IAVF_ERR_INVALID_SD_TYPE:
83 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 		return -EINVAL;
87 	case IAVF_ERR_NVM:
88 	case IAVF_ERR_NVM_CHECKSUM:
89 	case IAVF_ERR_PHY:
90 	case IAVF_ERR_CONFIG:
91 	case IAVF_ERR_UNKNOWN_PHY:
92 	case IAVF_ERR_LINK_SETUP:
93 	case IAVF_ERR_ADAPTER_STOPPED:
94 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 	case IAVF_ERR_RESET_FAILED:
97 	case IAVF_ERR_BAD_PTR:
98 	case IAVF_ERR_SWFW_SYNC:
99 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 	case IAVF_ERR_QUEUE_EMPTY:
101 	case IAVF_ERR_FLUSHED_QUEUE:
102 	case IAVF_ERR_OPCODE_MISMATCH:
103 	case IAVF_ERR_CQP_COMPL_ERROR:
104 	case IAVF_ERR_BACKING_PAGE_ERROR:
105 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 	case IAVF_ERR_MEMCPY_FAILED:
107 	case IAVF_ERR_SRQ_ENABLED:
108 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 	case IAVF_ERR_ADMIN_QUEUE_FULL:
110 	case IAVF_ERR_BAD_RDMA_CQE:
111 	case IAVF_ERR_NVM_BLANK_MODE:
112 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 	case IAVF_ERR_DIAG_TEST_FAILED:
114 	case IAVF_ERR_FIRMWARE_API_VERSION:
115 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 		return -EIO;
117 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 		return -ENODEV;
119 	case IAVF_ERR_NO_AVAILABLE_VSI:
120 	case IAVF_ERR_RING_FULL:
121 		return -ENOSPC;
122 	case IAVF_ERR_NO_MEMORY:
123 		return -ENOMEM;
124 	case IAVF_ERR_TIMEOUT:
125 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 		return -ETIMEDOUT;
127 	case IAVF_ERR_NOT_IMPLEMENTED:
128 	case IAVF_NOT_SUPPORTED:
129 		return -EOPNOTSUPP;
130 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 		return -EALREADY;
132 	case IAVF_ERR_NOT_READY:
133 		return -EBUSY;
134 	case IAVF_ERR_BUF_TOO_SHORT:
135 		return -EMSGSIZE;
136 	}
137 
138 	return -EIO;
139 }
140 
141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 	switch (v_status) {
144 	case VIRTCHNL_STATUS_SUCCESS:
145 		return 0;
146 	case VIRTCHNL_STATUS_ERR_PARAM:
147 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 		return -EINVAL;
149 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 		return -ENOMEM;
151 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 		return -EIO;
155 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 		return -EOPNOTSUPP;
157 	}
158 
159 	return -EIO;
160 }
161 
162 /**
163  * iavf_pdev_to_adapter - go from pci_dev to adapter
164  * @pdev: pci_dev pointer
165  */
166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 	return netdev_priv(pci_get_drvdata(pdev));
169 }
170 
171 /**
172  * iavf_is_reset_in_progress - Check if a reset is in progress
173  * @adapter: board private structure
174  */
175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 	if (adapter->state == __IAVF_RESETTING ||
178 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 			      IAVF_FLAG_RESET_NEEDED))
180 		return true;
181 
182 	return false;
183 }
184 
185 /**
186  * iavf_wait_for_reset - Wait for reset to finish.
187  * @adapter: board private structure
188  *
189  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190  */
191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 					!iavf_is_reset_in_progress(adapter),
195 					msecs_to_jiffies(5000));
196 
197 	/* If ret < 0 then it means wait was interrupted.
198 	 * If ret == 0 then it means we got a timeout while waiting
199 	 * for reset to finish.
200 	 * If ret > 0 it means reset has finished.
201 	 */
202 	if (ret > 0)
203 		return 0;
204 	else if (ret < 0)
205 		return -EINTR;
206 	else
207 		return -EBUSY;
208 }
209 
210 /**
211  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212  * @hw:   pointer to the HW structure
213  * @mem:  ptr to mem struct to fill out
214  * @size: size of memory requested
215  * @alignment: what to align the allocation to
216  **/
217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 					 struct iavf_dma_mem *mem,
219 					 u64 size, u32 alignment)
220 {
221 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222 
223 	if (!mem)
224 		return IAVF_ERR_PARAM;
225 
226 	mem->size = ALIGN(size, alignment);
227 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 	if (mem->va)
230 		return 0;
231 	else
232 		return IAVF_ERR_NO_MEMORY;
233 }
234 
235 /**
236  * iavf_free_dma_mem - wrapper for DMA memory freeing
237  * @hw:   pointer to the HW structure
238  * @mem:  ptr to mem struct to free
239  **/
240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243 
244 	if (!mem || !mem->va)
245 		return IAVF_ERR_PARAM;
246 	dma_free_coherent(&adapter->pdev->dev, mem->size,
247 			  mem->va, (dma_addr_t)mem->pa);
248 	return 0;
249 }
250 
251 /**
252  * iavf_allocate_virt_mem - virt memory alloc wrapper
253  * @hw:   pointer to the HW structure
254  * @mem:  ptr to mem struct to fill out
255  * @size: size of memory requested
256  **/
257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 					struct iavf_virt_mem *mem, u32 size)
259 {
260 	if (!mem)
261 		return IAVF_ERR_PARAM;
262 
263 	mem->size = size;
264 	mem->va = kzalloc(size, GFP_KERNEL);
265 
266 	if (mem->va)
267 		return 0;
268 	else
269 		return IAVF_ERR_NO_MEMORY;
270 }
271 
272 /**
273  * iavf_free_virt_mem - virt memory free wrapper
274  * @hw:   pointer to the HW structure
275  * @mem:  ptr to mem struct to free
276  **/
277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 	kfree(mem->va);
280 }
281 
282 /**
283  * iavf_schedule_reset - Set the flags and schedule a reset event
284  * @adapter: board private structure
285  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286  **/
287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 	    !(adapter->flags &
291 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 		adapter->flags |= flags;
293 		queue_work(adapter->wq, &adapter->reset_task);
294 	}
295 }
296 
297 /**
298  * iavf_schedule_aq_request - Set the flags and schedule aq request
299  * @adapter: board private structure
300  * @flags: requested aq flags
301  **/
302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 	adapter->aq_required |= flags;
305 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307 
308 /**
309  * iavf_tx_timeout - Respond to a Tx Hang
310  * @netdev: network interface device structure
311  * @txqueue: queue number that is timing out
312  **/
313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 	struct iavf_adapter *adapter = netdev_priv(netdev);
316 
317 	adapter->tx_timeout_count++;
318 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320 
321 /**
322  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323  * @adapter: board private structure
324  **/
325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 	struct iavf_hw *hw = &adapter->hw;
328 
329 	if (!adapter->msix_entries)
330 		return;
331 
332 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333 
334 	iavf_flush(hw);
335 
336 	synchronize_irq(adapter->msix_entries[0].vector);
337 }
338 
339 /**
340  * iavf_misc_irq_enable - Enable default interrupt generation settings
341  * @adapter: board private structure
342  **/
343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 	struct iavf_hw *hw = &adapter->hw;
346 
347 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350 
351 	iavf_flush(hw);
352 }
353 
354 /**
355  * iavf_irq_disable - Mask off interrupt generation on the NIC
356  * @adapter: board private structure
357  **/
358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 	int i;
361 	struct iavf_hw *hw = &adapter->hw;
362 
363 	if (!adapter->msix_entries)
364 		return;
365 
366 	for (i = 1; i < adapter->num_msix_vectors; i++) {
367 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 		synchronize_irq(adapter->msix_entries[i].vector);
369 	}
370 	iavf_flush(hw);
371 }
372 
373 /**
374  * iavf_irq_enable_queues - Enable interrupt for all queues
375  * @adapter: board private structure
376  **/
377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 	struct iavf_hw *hw = &adapter->hw;
380 	int i;
381 
382 	for (i = 1; i < adapter->num_msix_vectors; i++) {
383 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 	}
387 }
388 
389 /**
390  * iavf_irq_enable - Enable default interrupt generation settings
391  * @adapter: board private structure
392  * @flush: boolean value whether to run rd32()
393  **/
394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 	struct iavf_hw *hw = &adapter->hw;
397 
398 	iavf_misc_irq_enable(adapter);
399 	iavf_irq_enable_queues(adapter);
400 
401 	if (flush)
402 		iavf_flush(hw);
403 }
404 
405 /**
406  * iavf_msix_aq - Interrupt handler for vector 0
407  * @irq: interrupt number
408  * @data: pointer to netdev
409  **/
410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 	struct net_device *netdev = data;
413 	struct iavf_adapter *adapter = netdev_priv(netdev);
414 	struct iavf_hw *hw = &adapter->hw;
415 
416 	/* handle non-queue interrupts, these reads clear the registers */
417 	rd32(hw, IAVF_VFINT_ICR01);
418 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
419 
420 	if (adapter->state != __IAVF_REMOVE)
421 		/* schedule work on the private workqueue */
422 		queue_work(adapter->wq, &adapter->adminq_task);
423 
424 	return IRQ_HANDLED;
425 }
426 
427 /**
428  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429  * @irq: interrupt number
430  * @data: pointer to a q_vector
431  **/
432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 	struct iavf_q_vector *q_vector = data;
435 
436 	if (!q_vector->tx.ring && !q_vector->rx.ring)
437 		return IRQ_HANDLED;
438 
439 	napi_schedule_irqoff(&q_vector->napi);
440 
441 	return IRQ_HANDLED;
442 }
443 
444 /**
445  * iavf_map_vector_to_rxq - associate irqs with rx queues
446  * @adapter: board private structure
447  * @v_idx: interrupt number
448  * @r_idx: queue number
449  **/
450 static void
451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 	struct iavf_hw *hw = &adapter->hw;
456 
457 	rx_ring->q_vector = q_vector;
458 	rx_ring->next = q_vector->rx.ring;
459 	rx_ring->vsi = &adapter->vsi;
460 	q_vector->rx.ring = rx_ring;
461 	q_vector->rx.count++;
462 	q_vector->rx.next_update = jiffies + 1;
463 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 	q_vector->ring_mask |= BIT(r_idx);
465 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 	     q_vector->rx.current_itr >> 1);
467 	q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469 
470 /**
471  * iavf_map_vector_to_txq - associate irqs with tx queues
472  * @adapter: board private structure
473  * @v_idx: interrupt number
474  * @t_idx: queue number
475  **/
476 static void
477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 	struct iavf_hw *hw = &adapter->hw;
482 
483 	tx_ring->q_vector = q_vector;
484 	tx_ring->next = q_vector->tx.ring;
485 	tx_ring->vsi = &adapter->vsi;
486 	q_vector->tx.ring = tx_ring;
487 	q_vector->tx.count++;
488 	q_vector->tx.next_update = jiffies + 1;
489 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 	q_vector->num_ringpairs++;
491 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 	     q_vector->tx.target_itr >> 1);
493 	q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495 
496 /**
497  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498  * @adapter: board private structure to initialize
499  *
500  * This function maps descriptor rings to the queue-specific vectors
501  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
502  * one vector per ring/queue, but on a constrained vector budget, we
503  * group the rings as "efficiently" as possible.  You would add new
504  * mapping configurations in here.
505  **/
506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 	int rings_remaining = adapter->num_active_queues;
509 	int ridx = 0, vidx = 0;
510 	int q_vectors;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (; ridx < rings_remaining; ridx++) {
515 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 		iavf_map_vector_to_txq(adapter, vidx, ridx);
517 
518 		/* In the case where we have more queues than vectors, continue
519 		 * round-robin on vectors until all queues are mapped.
520 		 */
521 		if (++vidx >= q_vectors)
522 			vidx = 0;
523 	}
524 
525 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527 
528 /**
529  * iavf_irq_affinity_notify - Callback for affinity changes
530  * @notify: context as to what irq was changed
531  * @mask: the new affinity mask
532  *
533  * This is a callback function used by the irq_set_affinity_notifier function
534  * so that we may register to receive changes to the irq affinity masks.
535  **/
536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 				     const cpumask_t *mask)
538 {
539 	struct iavf_q_vector *q_vector =
540 		container_of(notify, struct iavf_q_vector, affinity_notify);
541 
542 	cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544 
545 /**
546  * iavf_irq_affinity_release - Callback for affinity notifier release
547  * @ref: internal core kernel usage
548  *
549  * This is a callback function used by the irq_set_affinity_notifier function
550  * to inform the current notification subscriber that they will no longer
551  * receive notifications.
552  **/
553 static void iavf_irq_affinity_release(struct kref *ref) {}
554 
555 /**
556  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557  * @adapter: board private structure
558  * @basename: device basename
559  *
560  * Allocates MSI-X vectors for tx and rx handling, and requests
561  * interrupts from the kernel.
562  **/
563 static int
564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 	unsigned int vector, q_vectors;
567 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 	int irq_num, err;
569 	int cpu;
570 
571 	iavf_irq_disable(adapter);
572 	/* Decrement for Other and TCP Timer vectors */
573 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574 
575 	for (vector = 0; vector < q_vectors; vector++) {
576 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577 
578 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579 
580 		if (q_vector->tx.ring && q_vector->rx.ring) {
581 			snprintf(q_vector->name, sizeof(q_vector->name),
582 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 			tx_int_idx++;
584 		} else if (q_vector->rx.ring) {
585 			snprintf(q_vector->name, sizeof(q_vector->name),
586 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 		} else if (q_vector->tx.ring) {
588 			snprintf(q_vector->name, sizeof(q_vector->name),
589 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 		} else {
591 			/* skip this unused q_vector */
592 			continue;
593 		}
594 		err = request_irq(irq_num,
595 				  iavf_msix_clean_rings,
596 				  0,
597 				  q_vector->name,
598 				  q_vector);
599 		if (err) {
600 			dev_info(&adapter->pdev->dev,
601 				 "Request_irq failed, error: %d\n", err);
602 			goto free_queue_irqs;
603 		}
604 		/* register for affinity change notifications */
605 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 		q_vector->affinity_notify.release =
607 						   iavf_irq_affinity_release;
608 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 		/* Spread the IRQ affinity hints across online CPUs. Note that
610 		 * get_cpu_mask returns a mask with a permanent lifetime so
611 		 * it's safe to use as a hint for irq_update_affinity_hint.
612 		 */
613 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 	}
616 
617 	return 0;
618 
619 free_queue_irqs:
620 	while (vector) {
621 		vector--;
622 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 		irq_set_affinity_notifier(irq_num, NULL);
624 		irq_update_affinity_hint(irq_num, NULL);
625 		free_irq(irq_num, &adapter->q_vectors[vector]);
626 	}
627 	return err;
628 }
629 
630 /**
631  * iavf_request_misc_irq - Initialize MSI-X interrupts
632  * @adapter: board private structure
633  *
634  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635  * vector is only for the admin queue, and stays active even when the netdev
636  * is closed.
637  **/
638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 	struct net_device *netdev = adapter->netdev;
641 	int err;
642 
643 	snprintf(adapter->misc_vector_name,
644 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 		 dev_name(&adapter->pdev->dev));
646 	err = request_irq(adapter->msix_entries[0].vector,
647 			  &iavf_msix_aq, 0,
648 			  adapter->misc_vector_name, netdev);
649 	if (err) {
650 		dev_err(&adapter->pdev->dev,
651 			"request_irq for %s failed: %d\n",
652 			adapter->misc_vector_name, err);
653 		free_irq(adapter->msix_entries[0].vector, netdev);
654 	}
655 	return err;
656 }
657 
658 /**
659  * iavf_free_traffic_irqs - Free MSI-X interrupts
660  * @adapter: board private structure
661  *
662  * Frees all MSI-X vectors other than 0.
663  **/
664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 	int vector, irq_num, q_vectors;
667 
668 	if (!adapter->msix_entries)
669 		return;
670 
671 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672 
673 	for (vector = 0; vector < q_vectors; vector++) {
674 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 		irq_set_affinity_notifier(irq_num, NULL);
676 		irq_update_affinity_hint(irq_num, NULL);
677 		free_irq(irq_num, &adapter->q_vectors[vector]);
678 	}
679 }
680 
681 /**
682  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683  * @adapter: board private structure
684  *
685  * Frees MSI-X vector 0.
686  **/
687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 	struct net_device *netdev = adapter->netdev;
690 
691 	if (!adapter->msix_entries)
692 		return;
693 
694 	free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696 
697 /**
698  * iavf_configure_tx - Configure Transmit Unit after Reset
699  * @adapter: board private structure
700  *
701  * Configure the Tx unit of the MAC after a reset.
702  **/
703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 	struct iavf_hw *hw = &adapter->hw;
706 	int i;
707 
708 	for (i = 0; i < adapter->num_active_queues; i++)
709 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711 
712 /**
713  * iavf_configure_rx - Configure Receive Unit after Reset
714  * @adapter: board private structure
715  *
716  * Configure the Rx unit of the MAC after a reset.
717  **/
718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 	struct iavf_hw *hw = &adapter->hw;
721 
722 	for (u32 i = 0; i < adapter->num_active_queues; i++)
723 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725 
726 /**
727  * iavf_find_vlan - Search filter list for specific vlan filter
728  * @adapter: board private structure
729  * @vlan: vlan tag
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 				 struct iavf_vlan vlan)
737 {
738 	struct iavf_vlan_filter *f;
739 
740 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 		if (f->vlan.vid == vlan.vid &&
742 		    f->vlan.tpid == vlan.tpid)
743 			return f;
744 	}
745 
746 	return NULL;
747 }
748 
749 /**
750  * iavf_add_vlan - Add a vlan filter to the list
751  * @adapter: board private structure
752  * @vlan: VLAN tag
753  *
754  * Returns ptr to the filter object or NULL when no memory available.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 				struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f = NULL;
761 
762 	spin_lock_bh(&adapter->mac_vlan_list_lock);
763 
764 	f = iavf_find_vlan(adapter, vlan);
765 	if (!f) {
766 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 		if (!f)
768 			goto clearout;
769 
770 		f->vlan = vlan;
771 
772 		list_add_tail(&f->list, &adapter->vlan_filter_list);
773 		f->state = IAVF_VLAN_ADD;
774 		adapter->num_vlan_filters++;
775 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 	} else if (f->state == IAVF_VLAN_REMOVE) {
777 		/* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 		 * We can safely only change the state here.
779 		 */
780 		f->state = IAVF_VLAN_ACTIVE;
781 	}
782 
783 clearout:
784 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 	return f;
786 }
787 
788 /**
789  * iavf_del_vlan - Remove a vlan filter from the list
790  * @adapter: board private structure
791  * @vlan: VLAN tag
792  **/
793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794 {
795 	struct iavf_vlan_filter *f;
796 
797 	spin_lock_bh(&adapter->mac_vlan_list_lock);
798 
799 	f = iavf_find_vlan(adapter, vlan);
800 	if (f) {
801 		/* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 		 * Remove it from the list.
803 		 */
804 		if (f->state == IAVF_VLAN_ADD) {
805 			list_del(&f->list);
806 			kfree(f);
807 			adapter->num_vlan_filters--;
808 		} else {
809 			f->state = IAVF_VLAN_REMOVE;
810 			iavf_schedule_aq_request(adapter,
811 						 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 		}
813 	}
814 
815 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
816 }
817 
818 /**
819  * iavf_restore_filters
820  * @adapter: board private structure
821  *
822  * Restore existing non MAC filters when VF netdev comes back up
823  **/
824 static void iavf_restore_filters(struct iavf_adapter *adapter)
825 {
826 	struct iavf_vlan_filter *f;
827 
828 	/* re-add all VLAN filters */
829 	spin_lock_bh(&adapter->mac_vlan_list_lock);
830 
831 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 		if (f->state == IAVF_VLAN_INACTIVE)
833 			f->state = IAVF_VLAN_ADD;
834 	}
835 
836 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838 }
839 
840 /**
841  * iavf_get_num_vlans_added - get number of VLANs added
842  * @adapter: board private structure
843  */
844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845 {
846 	return adapter->num_vlan_filters;
847 }
848 
849 /**
850  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851  * @adapter: board private structure
852  *
853  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854  * do not impose a limit as that maintains current behavior and for
855  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856  **/
857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858 {
859 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 	 * never been a limit on the VF driver side
861 	 */
862 	if (VLAN_ALLOWED(adapter))
863 		return VLAN_N_VID;
864 	else if (VLAN_V2_ALLOWED(adapter))
865 		return adapter->vlan_v2_caps.filtering.max_filters;
866 
867 	return 0;
868 }
869 
870 /**
871  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872  * @adapter: board private structure
873  **/
874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875 {
876 	if (iavf_get_num_vlans_added(adapter) <
877 	    iavf_get_max_vlans_allowed(adapter))
878 		return false;
879 
880 	return true;
881 }
882 
883 /**
884  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885  * @netdev: network device struct
886  * @proto: unused protocol data
887  * @vid: VLAN tag
888  **/
889 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 				__always_unused __be16 proto, u16 vid)
891 {
892 	struct iavf_adapter *adapter = netdev_priv(netdev);
893 
894 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
895 	if (!vid)
896 		return 0;
897 
898 	if (!VLAN_FILTERING_ALLOWED(adapter))
899 		return -EIO;
900 
901 	if (iavf_max_vlans_added(adapter)) {
902 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 			   iavf_get_max_vlans_allowed(adapter));
904 		return -EIO;
905 	}
906 
907 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 		return -ENOMEM;
909 
910 	return 0;
911 }
912 
913 /**
914  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915  * @netdev: network device struct
916  * @proto: unused protocol data
917  * @vid: VLAN tag
918  **/
919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 				 __always_unused __be16 proto, u16 vid)
921 {
922 	struct iavf_adapter *adapter = netdev_priv(netdev);
923 
924 	/* We do not track VLAN 0 filter */
925 	if (!vid)
926 		return 0;
927 
928 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 	return 0;
930 }
931 
932 /**
933  * iavf_find_filter - Search filter list for specific mac filter
934  * @adapter: board private structure
935  * @macaddr: the MAC address
936  *
937  * Returns ptr to the filter object or NULL. Must be called while holding the
938  * mac_vlan_list_lock.
939  **/
940 static struct
941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 				  const u8 *macaddr)
943 {
944 	struct iavf_mac_filter *f;
945 
946 	if (!macaddr)
947 		return NULL;
948 
949 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 		if (ether_addr_equal(macaddr, f->macaddr))
951 			return f;
952 	}
953 	return NULL;
954 }
955 
956 /**
957  * iavf_add_filter - Add a mac filter to the filter list
958  * @adapter: board private structure
959  * @macaddr: the MAC address
960  *
961  * Returns ptr to the filter object or NULL when no memory available.
962  **/
963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 					const u8 *macaddr)
965 {
966 	struct iavf_mac_filter *f;
967 
968 	if (!macaddr)
969 		return NULL;
970 
971 	f = iavf_find_filter(adapter, macaddr);
972 	if (!f) {
973 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 		if (!f)
975 			return f;
976 
977 		ether_addr_copy(f->macaddr, macaddr);
978 
979 		list_add_tail(&f->list, &adapter->mac_filter_list);
980 		f->add = true;
981 		f->add_handled = false;
982 		f->is_new_mac = true;
983 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 	} else {
986 		f->remove = false;
987 	}
988 
989 	return f;
990 }
991 
992 /**
993  * iavf_replace_primary_mac - Replace current primary address
994  * @adapter: board private structure
995  * @new_mac: new MAC address to be applied
996  *
997  * Replace current dev_addr and send request to PF for removal of previous
998  * primary MAC address filter and addition of new primary MAC filter.
999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 				    const u8 *new_mac)
1005 {
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *new_f;
1008 	struct iavf_mac_filter *old_f;
1009 
1010 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1011 
1012 	new_f = iavf_add_filter(adapter, new_mac);
1013 	if (!new_f) {
1014 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 	if (old_f) {
1020 		old_f->is_primary = false;
1021 		old_f->remove = true;
1022 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 	}
1024 	/* Always send the request to add if changing primary MAC,
1025 	 * even if filter is already present on the list
1026 	 */
1027 	new_f->is_primary = true;
1028 	new_f->add = true;
1029 	ether_addr_copy(hw->mac.addr, new_mac);
1030 
1031 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032 
1033 	/* schedule the watchdog task to immediately process the request */
1034 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 	return 0;
1036 }
1037 
1038 /**
1039  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040  * @netdev: network interface device structure
1041  * @macaddr: MAC address to set
1042  *
1043  * Returns true on success, false on failure
1044  */
1045 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 				    const u8 *macaddr)
1047 {
1048 	struct iavf_adapter *adapter = netdev_priv(netdev);
1049 	struct iavf_mac_filter *f;
1050 	bool ret = false;
1051 
1052 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1053 
1054 	f = iavf_find_filter(adapter, macaddr);
1055 
1056 	if (!f || (!f->add && f->add_handled))
1057 		ret = true;
1058 
1059 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060 
1061 	return ret;
1062 }
1063 
1064 /**
1065  * iavf_set_mac - NDO callback to set port MAC address
1066  * @netdev: network interface device structure
1067  * @p: pointer to an address structure
1068  *
1069  * Returns 0 on success, negative on failure
1070  */
1071 static int iavf_set_mac(struct net_device *netdev, void *p)
1072 {
1073 	struct iavf_adapter *adapter = netdev_priv(netdev);
1074 	struct sockaddr *addr = p;
1075 	int ret;
1076 
1077 	if (!is_valid_ether_addr(addr->sa_data))
1078 		return -EADDRNOTAVAIL;
1079 
1080 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081 
1082 	if (ret)
1083 		return ret;
1084 
1085 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 					       msecs_to_jiffies(2500));
1088 
1089 	/* If ret < 0 then it means wait was interrupted.
1090 	 * If ret == 0 then it means we got a timeout.
1091 	 * else it means we got response for set MAC from PF,
1092 	 * check if netdev MAC was updated to requested MAC,
1093 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 	 */
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	if (!ret)
1099 		return -EAGAIN;
1100 
1101 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 		return -EACCES;
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109  * @netdev: the netdevice
1110  * @addr: address to add
1111  *
1112  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114  */
1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116 {
1117 	struct iavf_adapter *adapter = netdev_priv(netdev);
1118 
1119 	if (iavf_add_filter(adapter, addr))
1120 		return 0;
1121 	else
1122 		return -ENOMEM;
1123 }
1124 
1125 /**
1126  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127  * @netdev: the netdevice
1128  * @addr: address to add
1129  *
1130  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132  */
1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134 {
1135 	struct iavf_adapter *adapter = netdev_priv(netdev);
1136 	struct iavf_mac_filter *f;
1137 
1138 	/* Under some circumstances, we might receive a request to delete
1139 	 * our own device address from our uc list. Because we store the
1140 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 	 * such requests and not delete our device address from this list.
1142 	 */
1143 	if (ether_addr_equal(addr, netdev->dev_addr))
1144 		return 0;
1145 
1146 	f = iavf_find_filter(adapter, addr);
1147 	if (f) {
1148 		f->remove = true;
1149 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 	}
1151 	return 0;
1152 }
1153 
1154 /**
1155  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156  * @adapter: device specific adapter
1157  */
1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159 {
1160 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 		(IFF_PROMISC | IFF_ALLMULTI);
1162 }
1163 
1164 /**
1165  * iavf_set_rx_mode - NDO callback to set the netdev filters
1166  * @netdev: network interface device structure
1167  **/
1168 static void iavf_set_rx_mode(struct net_device *netdev)
1169 {
1170 	struct iavf_adapter *adapter = netdev_priv(netdev);
1171 
1172 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176 
1177 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 	if (iavf_promiscuous_mode_changed(adapter))
1179 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181 }
1182 
1183 /**
1184  * iavf_napi_enable_all - enable NAPI on all queue vectors
1185  * @adapter: board private structure
1186  **/
1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188 {
1189 	int q_idx;
1190 	struct iavf_q_vector *q_vector;
1191 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192 
1193 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 		struct napi_struct *napi;
1195 
1196 		q_vector = &adapter->q_vectors[q_idx];
1197 		napi = &q_vector->napi;
1198 		napi_enable_locked(napi);
1199 	}
1200 }
1201 
1202 /**
1203  * iavf_napi_disable_all - disable NAPI on all queue vectors
1204  * @adapter: board private structure
1205  **/
1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207 {
1208 	int q_idx;
1209 	struct iavf_q_vector *q_vector;
1210 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211 
1212 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 		q_vector = &adapter->q_vectors[q_idx];
1214 		napi_disable_locked(&q_vector->napi);
1215 	}
1216 }
1217 
1218 /**
1219  * iavf_configure - set up transmit and receive data structures
1220  * @adapter: board private structure
1221  **/
1222 static void iavf_configure(struct iavf_adapter *adapter)
1223 {
1224 	struct net_device *netdev = adapter->netdev;
1225 	int i;
1226 
1227 	iavf_set_rx_mode(netdev);
1228 
1229 	iavf_configure_tx(adapter);
1230 	iavf_configure_rx(adapter);
1231 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232 
1233 	for (i = 0; i < adapter->num_active_queues; i++) {
1234 		struct iavf_ring *ring = &adapter->rx_rings[i];
1235 
1236 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 	}
1238 }
1239 
1240 /**
1241  * iavf_up_complete - Finish the last steps of bringing up a connection
1242  * @adapter: board private structure
1243  *
1244  * Expects to be called while holding crit_lock.
1245  **/
1246 static void iavf_up_complete(struct iavf_adapter *adapter)
1247 {
1248 	iavf_change_state(adapter, __IAVF_RUNNING);
1249 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250 
1251 	iavf_napi_enable_all(adapter);
1252 
1253 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254 }
1255 
1256 /**
1257  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258  * yet and mark other to be removed.
1259  * @adapter: board private structure
1260  **/
1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262 {
1263 	struct iavf_vlan_filter *vlf, *vlftmp;
1264 	struct iavf_mac_filter *f, *ftmp;
1265 
1266 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 	/* clear the sync flag on all filters */
1268 	__dev_uc_unsync(adapter->netdev, NULL);
1269 	__dev_mc_unsync(adapter->netdev, NULL);
1270 
1271 	/* remove all MAC filters */
1272 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 				 list) {
1274 		if (f->add) {
1275 			list_del(&f->list);
1276 			kfree(f);
1277 		} else {
1278 			f->remove = true;
1279 		}
1280 	}
1281 
1282 	/* disable all VLAN filters */
1283 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 				 list)
1285 		vlf->state = IAVF_VLAN_DISABLE;
1286 
1287 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288 }
1289 
1290 /**
1291  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292  * mark other to be removed.
1293  * @adapter: board private structure
1294  **/
1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296 {
1297 	struct iavf_cloud_filter *cf, *cftmp;
1298 
1299 	/* remove all cloud filters */
1300 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 				 list) {
1303 		if (cf->add) {
1304 			list_del(&cf->list);
1305 			kfree(cf);
1306 			adapter->num_cloud_filters--;
1307 		} else {
1308 			cf->del = true;
1309 		}
1310 	}
1311 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312 }
1313 
1314 /**
1315  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316  * other to be removed.
1317  * @adapter: board private structure
1318  **/
1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320 {
1321 	struct iavf_fdir_fltr *fdir;
1322 
1323 	/* remove all Flow Director filters */
1324 	spin_lock_bh(&adapter->fdir_fltr_lock);
1325 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 			/* Cancel a request, keep filter as inactive */
1328 			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 			/* Disable filters which are active or have a pending
1332 			 * request to PF to be added
1333 			 */
1334 			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 		}
1336 	}
1337 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1338 }
1339 
1340 /**
1341  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342  * other to be removed.
1343  * @adapter: board private structure
1344  **/
1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346 {
1347 	struct iavf_adv_rss *rss, *rsstmp;
1348 
1349 	/* remove all advance RSS configuration */
1350 	spin_lock_bh(&adapter->adv_rss_lock);
1351 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 				 list) {
1353 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 			list_del(&rss->list);
1355 			kfree(rss);
1356 		} else {
1357 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 		}
1359 	}
1360 	spin_unlock_bh(&adapter->adv_rss_lock);
1361 }
1362 
1363 /**
1364  * iavf_down - Shutdown the connection processing
1365  * @adapter: board private structure
1366  *
1367  * Expects to be called while holding crit_lock.
1368  **/
1369 void iavf_down(struct iavf_adapter *adapter)
1370 {
1371 	struct net_device *netdev = adapter->netdev;
1372 
1373 	if (adapter->state <= __IAVF_DOWN_PENDING)
1374 		return;
1375 
1376 	netif_carrier_off(netdev);
1377 	netif_tx_disable(netdev);
1378 	adapter->link_up = false;
1379 	iavf_napi_disable_all(adapter);
1380 	iavf_irq_disable(adapter);
1381 
1382 	iavf_clear_mac_vlan_filters(adapter);
1383 	iavf_clear_cloud_filters(adapter);
1384 	iavf_clear_fdir_filters(adapter);
1385 	iavf_clear_adv_rss_conf(adapter);
1386 
1387 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 		return;
1389 
1390 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 		/* cancel any current operation */
1392 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 		/* Schedule operations to close down the HW. Don't wait
1394 		 * here for this to complete. The watchdog is still running
1395 		 * and it will take care of this.
1396 		 */
1397 		if (!list_empty(&adapter->mac_filter_list))
1398 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 		if (!list_empty(&adapter->vlan_filter_list))
1400 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 		if (!list_empty(&adapter->cloud_filter_list))
1402 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 		if (!list_empty(&adapter->fdir_list_head))
1404 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 		if (!list_empty(&adapter->adv_rss_list_head))
1406 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 	}
1408 
1409 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410 }
1411 
1412 /**
1413  * iavf_acquire_msix_vectors - Setup the MSIX capability
1414  * @adapter: board private structure
1415  * @vectors: number of vectors to request
1416  *
1417  * Work with the OS to set up the MSIX vectors needed.
1418  *
1419  * Returns 0 on success, negative on failure
1420  **/
1421 static int
1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423 {
1424 	int err, vector_threshold;
1425 
1426 	/* We'll want at least 3 (vector_threshold):
1427 	 * 0) Other (Admin Queue and link, mostly)
1428 	 * 1) TxQ[0] Cleanup
1429 	 * 2) RxQ[0] Cleanup
1430 	 */
1431 	vector_threshold = MIN_MSIX_COUNT;
1432 
1433 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1434 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 	 * Right now, we simply care about how many we'll get; we'll
1436 	 * set them up later while requesting irq's.
1437 	 */
1438 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 				    vector_threshold, vectors);
1440 	if (err < 0) {
1441 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 		kfree(adapter->msix_entries);
1443 		adapter->msix_entries = NULL;
1444 		return err;
1445 	}
1446 
1447 	/* Adjust for only the vectors we'll use, which is minimum
1448 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 	 * vectors we were allocated.
1450 	 */
1451 	adapter->num_msix_vectors = err;
1452 	return 0;
1453 }
1454 
1455 /**
1456  * iavf_free_queues - Free memory for all rings
1457  * @adapter: board private structure to initialize
1458  *
1459  * Free all of the memory associated with queue pairs.
1460  **/
1461 static void iavf_free_queues(struct iavf_adapter *adapter)
1462 {
1463 	if (!adapter->vsi_res)
1464 		return;
1465 	adapter->num_active_queues = 0;
1466 	kfree(adapter->tx_rings);
1467 	adapter->tx_rings = NULL;
1468 	kfree(adapter->rx_rings);
1469 	adapter->rx_rings = NULL;
1470 }
1471 
1472 /**
1473  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474  * @adapter: board private structure
1475  *
1476  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477  * stripped in certain descriptor fields. Instead of checking the offload
1478  * capability bits in the hot path, cache the location the ring specific
1479  * flags.
1480  */
1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482 {
1483 	int i;
1484 
1485 	for (i = 0; i < adapter->num_active_queues; i++) {
1486 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488 
1489 		/* prevent multiple L2TAG bits being set after VFR */
1490 		tx_ring->flags &=
1491 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 		rx_ring->flags &=
1494 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496 
1497 		if (VLAN_ALLOWED(adapter)) {
1498 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 		} else if (VLAN_V2_ALLOWED(adapter)) {
1501 			struct virtchnl_vlan_supported_caps *stripping_support;
1502 			struct virtchnl_vlan_supported_caps *insertion_support;
1503 
1504 			stripping_support =
1505 				&adapter->vlan_v2_caps.offloads.stripping_support;
1506 			insertion_support =
1507 				&adapter->vlan_v2_caps.offloads.insertion_support;
1508 
1509 			if (stripping_support->outer) {
1510 				if (stripping_support->outer &
1511 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 					rx_ring->flags |=
1513 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 				else if (stripping_support->outer &
1515 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 					rx_ring->flags |=
1517 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 			} else if (stripping_support->inner) {
1519 				if (stripping_support->inner &
1520 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 					rx_ring->flags |=
1522 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 				else if (stripping_support->inner &
1524 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 					rx_ring->flags |=
1526 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 			}
1528 
1529 			if (insertion_support->outer) {
1530 				if (insertion_support->outer &
1531 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 					tx_ring->flags |=
1533 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 				else if (insertion_support->outer &
1535 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 					tx_ring->flags |=
1537 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 			} else if (insertion_support->inner) {
1539 				if (insertion_support->inner &
1540 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 					tx_ring->flags |=
1542 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 				else if (insertion_support->inner &
1544 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 					tx_ring->flags |=
1546 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 			}
1548 		}
1549 	}
1550 }
1551 
1552 /**
1553  * iavf_alloc_queues - Allocate memory for all rings
1554  * @adapter: board private structure to initialize
1555  *
1556  * We allocate one ring per queue at run-time since we don't know the
1557  * number of queues at compile-time.  The polling_netdev array is
1558  * intended for Multiqueue, but should work fine with a single queue.
1559  **/
1560 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561 {
1562 	int i, num_active_queues;
1563 
1564 	/* If we're in reset reallocating queues we don't actually know yet for
1565 	 * certain the PF gave us the number of queues we asked for but we'll
1566 	 * assume it did.  Once basic reset is finished we'll confirm once we
1567 	 * start negotiating config with PF.
1568 	 */
1569 	if (adapter->num_req_queues)
1570 		num_active_queues = adapter->num_req_queues;
1571 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 		 adapter->num_tc)
1573 		num_active_queues = adapter->ch_config.total_qps;
1574 	else
1575 		num_active_queues = min_t(int,
1576 					  adapter->vsi_res->num_queue_pairs,
1577 					  (int)(num_online_cpus()));
1578 
1579 
1580 	adapter->tx_rings = kcalloc(num_active_queues,
1581 				    sizeof(struct iavf_ring), GFP_KERNEL);
1582 	if (!adapter->tx_rings)
1583 		goto err_out;
1584 	adapter->rx_rings = kcalloc(num_active_queues,
1585 				    sizeof(struct iavf_ring), GFP_KERNEL);
1586 	if (!adapter->rx_rings)
1587 		goto err_out;
1588 
1589 	for (i = 0; i < num_active_queues; i++) {
1590 		struct iavf_ring *tx_ring;
1591 		struct iavf_ring *rx_ring;
1592 
1593 		tx_ring = &adapter->tx_rings[i];
1594 
1595 		tx_ring->queue_index = i;
1596 		tx_ring->netdev = adapter->netdev;
1597 		tx_ring->dev = &adapter->pdev->dev;
1598 		tx_ring->count = adapter->tx_desc_count;
1599 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602 
1603 		rx_ring = &adapter->rx_rings[i];
1604 		rx_ring->queue_index = i;
1605 		rx_ring->netdev = adapter->netdev;
1606 		rx_ring->count = adapter->rx_desc_count;
1607 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 	}
1609 
1610 	adapter->num_active_queues = num_active_queues;
1611 
1612 	iavf_set_queue_vlan_tag_loc(adapter);
1613 
1614 	return 0;
1615 
1616 err_out:
1617 	iavf_free_queues(adapter);
1618 	return -ENOMEM;
1619 }
1620 
1621 /**
1622  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623  * @adapter: board private structure to initialize
1624  *
1625  * Attempt to configure the interrupts using the best available
1626  * capabilities of the hardware and the kernel.
1627  **/
1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629 {
1630 	int vector, v_budget;
1631 	int pairs = 0;
1632 	int err = 0;
1633 
1634 	if (!adapter->vsi_res) {
1635 		err = -EIO;
1636 		goto out;
1637 	}
1638 	pairs = adapter->num_active_queues;
1639 
1640 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 	 * us much good if we have more vectors than CPUs. However, we already
1642 	 * limit the total number of queues by the number of CPUs so we do not
1643 	 * need any further limiting here.
1644 	 */
1645 	v_budget = min_t(int, pairs + NONQ_VECS,
1646 			 (int)adapter->vf_res->max_vectors);
1647 
1648 	adapter->msix_entries = kcalloc(v_budget,
1649 					sizeof(struct msix_entry), GFP_KERNEL);
1650 	if (!adapter->msix_entries) {
1651 		err = -ENOMEM;
1652 		goto out;
1653 	}
1654 
1655 	for (vector = 0; vector < v_budget; vector++)
1656 		adapter->msix_entries[vector].entry = vector;
1657 
1658 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 	if (!err)
1660 		iavf_schedule_finish_config(adapter);
1661 
1662 out:
1663 	return err;
1664 }
1665 
1666 /**
1667  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668  * @adapter: board private structure
1669  *
1670  * Return 0 on success, negative on failure
1671  **/
1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673 {
1674 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 	struct iavf_hw *hw = &adapter->hw;
1677 	enum iavf_status status;
1678 
1679 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 		/* bail because we already have a command pending */
1681 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 			adapter->current_op);
1683 		return -EBUSY;
1684 	}
1685 
1686 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 	if (status) {
1688 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 			iavf_stat_str(hw, status),
1690 			iavf_aq_str(hw, hw->aq.asq_last_status));
1691 		return iavf_status_to_errno(status);
1692 
1693 	}
1694 
1695 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 				     adapter->rss_lut, adapter->rss_lut_size);
1697 	if (status) {
1698 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 			iavf_stat_str(hw, status),
1700 			iavf_aq_str(hw, hw->aq.asq_last_status));
1701 		return iavf_status_to_errno(status);
1702 	}
1703 
1704 	return 0;
1705 
1706 }
1707 
1708 /**
1709  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710  * @adapter: board private structure
1711  *
1712  * Returns 0 on success, negative on failure
1713  **/
1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715 {
1716 	struct iavf_hw *hw = &adapter->hw;
1717 	u32 *dw;
1718 	u16 i;
1719 
1720 	dw = (u32 *)adapter->rss_key;
1721 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723 
1724 	dw = (u32 *)adapter->rss_lut;
1725 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727 
1728 	iavf_flush(hw);
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * iavf_config_rss - Configure RSS keys and lut
1735  * @adapter: board private structure
1736  *
1737  * Returns 0 on success, negative on failure
1738  **/
1739 int iavf_config_rss(struct iavf_adapter *adapter)
1740 {
1741 
1742 	if (RSS_PF(adapter)) {
1743 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 					IAVF_FLAG_AQ_SET_RSS_KEY;
1745 		return 0;
1746 	} else if (RSS_AQ(adapter)) {
1747 		return iavf_config_rss_aq(adapter);
1748 	} else {
1749 		return iavf_config_rss_reg(adapter);
1750 	}
1751 }
1752 
1753 /**
1754  * iavf_fill_rss_lut - Fill the lut with default values
1755  * @adapter: board private structure
1756  **/
1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758 {
1759 	u16 i;
1760 
1761 	for (i = 0; i < adapter->rss_lut_size; i++)
1762 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1763 }
1764 
1765 /**
1766  * iavf_init_rss - Prepare for RSS
1767  * @adapter: board private structure
1768  *
1769  * Return 0 on success, negative on failure
1770  **/
1771 static int iavf_init_rss(struct iavf_adapter *adapter)
1772 {
1773 	struct iavf_hw *hw = &adapter->hw;
1774 
1775 	if (!RSS_PF(adapter)) {
1776 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 		if (adapter->vf_res->vf_cap_flags &
1778 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 		else
1781 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782 
1783 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 	}
1786 
1787 	iavf_fill_rss_lut(adapter);
1788 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789 
1790 	return iavf_config_rss(adapter);
1791 }
1792 
1793 /**
1794  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795  * @adapter: board private structure to initialize
1796  *
1797  * We allocate one q_vector per queue interrupt.  If allocation fails we
1798  * return -ENOMEM.
1799  **/
1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801 {
1802 	int q_idx = 0, num_q_vectors;
1803 	struct iavf_q_vector *q_vector;
1804 
1805 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 				     GFP_KERNEL);
1808 	if (!adapter->q_vectors)
1809 		return -ENOMEM;
1810 
1811 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 		q_vector = &adapter->q_vectors[q_idx];
1813 		q_vector->adapter = adapter;
1814 		q_vector->vsi = &adapter->vsi;
1815 		q_vector->v_idx = q_idx;
1816 		q_vector->reg_idx = q_idx;
1817 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 		netif_napi_add_locked(adapter->netdev, &q_vector->napi,
1819 				      iavf_napi_poll);
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827  * @adapter: board private structure to initialize
1828  *
1829  * This function frees the memory allocated to the q_vectors.  In addition if
1830  * NAPI is enabled it will delete any references to the NAPI struct prior
1831  * to freeing the q_vector.
1832  **/
1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834 {
1835 	int q_idx, num_q_vectors;
1836 
1837 	if (!adapter->q_vectors)
1838 		return;
1839 
1840 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841 
1842 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844 
1845 		netif_napi_del_locked(&q_vector->napi);
1846 	}
1847 	kfree(adapter->q_vectors);
1848 	adapter->q_vectors = NULL;
1849 }
1850 
1851 /**
1852  * iavf_reset_interrupt_capability - Reset MSIX setup
1853  * @adapter: board private structure
1854  *
1855  **/
1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857 {
1858 	if (!adapter->msix_entries)
1859 		return;
1860 
1861 	pci_disable_msix(adapter->pdev);
1862 	kfree(adapter->msix_entries);
1863 	adapter->msix_entries = NULL;
1864 }
1865 
1866 /**
1867  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868  * @adapter: board private structure to initialize
1869  *
1870  **/
1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872 {
1873 	int err;
1874 
1875 	err = iavf_alloc_queues(adapter);
1876 	if (err) {
1877 		dev_err(&adapter->pdev->dev,
1878 			"Unable to allocate memory for queues\n");
1879 		goto err_alloc_queues;
1880 	}
1881 
1882 	err = iavf_set_interrupt_capability(adapter);
1883 	if (err) {
1884 		dev_err(&adapter->pdev->dev,
1885 			"Unable to setup interrupt capabilities\n");
1886 		goto err_set_interrupt;
1887 	}
1888 
1889 	err = iavf_alloc_q_vectors(adapter);
1890 	if (err) {
1891 		dev_err(&adapter->pdev->dev,
1892 			"Unable to allocate memory for queue vectors\n");
1893 		goto err_alloc_q_vectors;
1894 	}
1895 
1896 	/* If we've made it so far while ADq flag being ON, then we haven't
1897 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 	 * resources have been allocated in the reset path.
1899 	 * Now we can truly claim that ADq is enabled.
1900 	 */
1901 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 	    adapter->num_tc)
1903 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 			 adapter->num_tc);
1905 
1906 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 		 adapter->num_active_queues);
1909 
1910 	return 0;
1911 err_alloc_q_vectors:
1912 	iavf_reset_interrupt_capability(adapter);
1913 err_set_interrupt:
1914 	iavf_free_queues(adapter);
1915 err_alloc_queues:
1916 	return err;
1917 }
1918 
1919 /**
1920  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921  * @adapter: board private structure
1922  **/
1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924 {
1925 	iavf_free_q_vectors(adapter);
1926 	iavf_reset_interrupt_capability(adapter);
1927 	iavf_free_queues(adapter);
1928 }
1929 
1930 /**
1931  * iavf_free_rss - Free memory used by RSS structs
1932  * @adapter: board private structure
1933  **/
1934 static void iavf_free_rss(struct iavf_adapter *adapter)
1935 {
1936 	kfree(adapter->rss_key);
1937 	adapter->rss_key = NULL;
1938 
1939 	kfree(adapter->rss_lut);
1940 	adapter->rss_lut = NULL;
1941 }
1942 
1943 /**
1944  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945  * @adapter: board private structure
1946  * @running: true if adapter->state == __IAVF_RUNNING
1947  *
1948  * Returns 0 on success, negative on failure
1949  **/
1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951 {
1952 	struct net_device *netdev = adapter->netdev;
1953 	int err;
1954 
1955 	if (running)
1956 		iavf_free_traffic_irqs(adapter);
1957 	iavf_free_misc_irq(adapter);
1958 	iavf_free_interrupt_scheme(adapter);
1959 
1960 	err = iavf_init_interrupt_scheme(adapter);
1961 	if (err)
1962 		goto err;
1963 
1964 	netif_tx_stop_all_queues(netdev);
1965 
1966 	err = iavf_request_misc_irq(adapter);
1967 	if (err)
1968 		goto err;
1969 
1970 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971 
1972 	iavf_map_rings_to_vectors(adapter);
1973 err:
1974 	return err;
1975 }
1976 
1977 /**
1978  * iavf_finish_config - do all netdev work that needs RTNL
1979  * @work: our work_struct
1980  *
1981  * Do work that needs both RTNL and crit_lock.
1982  **/
1983 static void iavf_finish_config(struct work_struct *work)
1984 {
1985 	struct iavf_adapter *adapter;
1986 	bool netdev_released = false;
1987 	int pairs, err;
1988 
1989 	adapter = container_of(work, struct iavf_adapter, finish_config);
1990 
1991 	/* Always take RTNL first to prevent circular lock dependency;
1992 	 * The dev->lock is needed to update the queue number
1993 	 */
1994 	rtnl_lock();
1995 	netdev_lock(adapter->netdev);
1996 	mutex_lock(&adapter->crit_lock);
1997 
1998 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1999 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2000 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2001 		netdev_update_features(adapter->netdev);
2002 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2003 	}
2004 
2005 	switch (adapter->state) {
2006 	case __IAVF_DOWN:
2007 		/* Set the real number of queues when reset occurs while
2008 		 * state == __IAVF_DOWN
2009 		 */
2010 		pairs = adapter->num_active_queues;
2011 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2012 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2013 
2014 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2015 			netdev_unlock(adapter->netdev);
2016 			netdev_released = true;
2017 			err = register_netdevice(adapter->netdev);
2018 			if (err) {
2019 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020 					err);
2021 
2022 				/* go back and try again.*/
2023 				iavf_free_rss(adapter);
2024 				iavf_free_misc_irq(adapter);
2025 				iavf_reset_interrupt_capability(adapter);
2026 				iavf_change_state(adapter,
2027 						  __IAVF_INIT_CONFIG_ADAPTER);
2028 				goto out;
2029 			}
2030 		}
2031 		break;
2032 	case __IAVF_RUNNING:
2033 		pairs = adapter->num_active_queues;
2034 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2035 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2036 		break;
2037 
2038 	default:
2039 		break;
2040 	}
2041 
2042 out:
2043 	mutex_unlock(&adapter->crit_lock);
2044 	if (!netdev_released)
2045 		netdev_unlock(adapter->netdev);
2046 	rtnl_unlock();
2047 }
2048 
2049 /**
2050  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2051  * @adapter: board private structure
2052  **/
2053 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2054 {
2055 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2056 		queue_work(adapter->wq, &adapter->finish_config);
2057 }
2058 
2059 /**
2060  * iavf_process_aq_command - process aq_required flags
2061  * and sends aq command
2062  * @adapter: pointer to iavf adapter structure
2063  *
2064  * Returns 0 on success
2065  * Returns error code if no command was sent
2066  * or error code if the command failed.
2067  **/
2068 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2069 {
2070 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2071 		return iavf_send_vf_config_msg(adapter);
2072 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2073 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2074 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2075 		iavf_disable_queues(adapter);
2076 		return 0;
2077 	}
2078 
2079 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2080 		iavf_map_queues(adapter);
2081 		return 0;
2082 	}
2083 
2084 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2085 		iavf_add_ether_addrs(adapter);
2086 		return 0;
2087 	}
2088 
2089 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2090 		iavf_add_vlans(adapter);
2091 		return 0;
2092 	}
2093 
2094 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2095 		iavf_del_ether_addrs(adapter);
2096 		return 0;
2097 	}
2098 
2099 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2100 		iavf_del_vlans(adapter);
2101 		return 0;
2102 	}
2103 
2104 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2105 		iavf_enable_vlan_stripping(adapter);
2106 		return 0;
2107 	}
2108 
2109 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2110 		iavf_disable_vlan_stripping(adapter);
2111 		return 0;
2112 	}
2113 
2114 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2115 		iavf_cfg_queues_bw(adapter);
2116 		return 0;
2117 	}
2118 
2119 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2120 		iavf_get_qos_caps(adapter);
2121 		return 0;
2122 	}
2123 
2124 	if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2125 		iavf_cfg_queues_quanta_size(adapter);
2126 		return 0;
2127 	}
2128 
2129 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2130 		iavf_configure_queues(adapter);
2131 		return 0;
2132 	}
2133 
2134 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2135 		iavf_enable_queues(adapter);
2136 		return 0;
2137 	}
2138 
2139 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2140 		/* This message goes straight to the firmware, not the
2141 		 * PF, so we don't have to set current_op as we will
2142 		 * not get a response through the ARQ.
2143 		 */
2144 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2145 		return 0;
2146 	}
2147 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2148 		iavf_get_hena(adapter);
2149 		return 0;
2150 	}
2151 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2152 		iavf_set_hena(adapter);
2153 		return 0;
2154 	}
2155 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2156 		iavf_set_rss_key(adapter);
2157 		return 0;
2158 	}
2159 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2160 		iavf_set_rss_lut(adapter);
2161 		return 0;
2162 	}
2163 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2164 		iavf_set_rss_hfunc(adapter);
2165 		return 0;
2166 	}
2167 
2168 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2169 		iavf_set_promiscuous(adapter);
2170 		return 0;
2171 	}
2172 
2173 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2174 		iavf_enable_channels(adapter);
2175 		return 0;
2176 	}
2177 
2178 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2179 		iavf_disable_channels(adapter);
2180 		return 0;
2181 	}
2182 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2183 		iavf_add_cloud_filter(adapter);
2184 		return 0;
2185 	}
2186 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2187 		iavf_del_cloud_filter(adapter);
2188 		return 0;
2189 	}
2190 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2191 		iavf_add_fdir_filter(adapter);
2192 		return IAVF_SUCCESS;
2193 	}
2194 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2195 		iavf_del_fdir_filter(adapter);
2196 		return IAVF_SUCCESS;
2197 	}
2198 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2199 		iavf_add_adv_rss_cfg(adapter);
2200 		return 0;
2201 	}
2202 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2203 		iavf_del_adv_rss_cfg(adapter);
2204 		return 0;
2205 	}
2206 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2207 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2208 		return 0;
2209 	}
2210 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2211 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2212 		return 0;
2213 	}
2214 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2215 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2216 		return 0;
2217 	}
2218 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2219 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2220 		return 0;
2221 	}
2222 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2223 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2224 		return 0;
2225 	}
2226 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2227 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2228 		return 0;
2229 	}
2230 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2231 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2232 		return 0;
2233 	}
2234 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2235 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2236 		return 0;
2237 	}
2238 
2239 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2240 		iavf_request_stats(adapter);
2241 		return 0;
2242 	}
2243 
2244 	return -EAGAIN;
2245 }
2246 
2247 /**
2248  * iavf_set_vlan_offload_features - set VLAN offload configuration
2249  * @adapter: board private structure
2250  * @prev_features: previous features used for comparison
2251  * @features: updated features used for configuration
2252  *
2253  * Set the aq_required bit(s) based on the requested features passed in to
2254  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2255  * the watchdog if any changes are requested to expedite the request via
2256  * virtchnl.
2257  **/
2258 static void
2259 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2260 			       netdev_features_t prev_features,
2261 			       netdev_features_t features)
2262 {
2263 	bool enable_stripping = true, enable_insertion = true;
2264 	u16 vlan_ethertype = 0;
2265 	u64 aq_required = 0;
2266 
2267 	/* keep cases separate because one ethertype for offloads can be
2268 	 * disabled at the same time as another is disabled, so check for an
2269 	 * enabled ethertype first, then check for disabled. Default to
2270 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2271 	 * stripping.
2272 	 */
2273 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2274 		vlan_ethertype = ETH_P_8021AD;
2275 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2276 		vlan_ethertype = ETH_P_8021Q;
2277 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2278 		vlan_ethertype = ETH_P_8021AD;
2279 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2280 		vlan_ethertype = ETH_P_8021Q;
2281 	else
2282 		vlan_ethertype = ETH_P_8021Q;
2283 
2284 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2285 		enable_stripping = false;
2286 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2287 		enable_insertion = false;
2288 
2289 	if (VLAN_ALLOWED(adapter)) {
2290 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2291 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2292 		 * netdev, but it doesn't require a virtchnl message
2293 		 */
2294 		if (enable_stripping)
2295 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2296 		else
2297 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2298 
2299 	} else if (VLAN_V2_ALLOWED(adapter)) {
2300 		switch (vlan_ethertype) {
2301 		case ETH_P_8021Q:
2302 			if (enable_stripping)
2303 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2304 			else
2305 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2306 
2307 			if (enable_insertion)
2308 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2309 			else
2310 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2311 			break;
2312 		case ETH_P_8021AD:
2313 			if (enable_stripping)
2314 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2315 			else
2316 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2317 
2318 			if (enable_insertion)
2319 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2320 			else
2321 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2322 			break;
2323 		}
2324 	}
2325 
2326 	if (aq_required)
2327 		iavf_schedule_aq_request(adapter, aq_required);
2328 }
2329 
2330 /**
2331  * iavf_startup - first step of driver startup
2332  * @adapter: board private structure
2333  *
2334  * Function process __IAVF_STARTUP driver state.
2335  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2336  * when fails the state is changed to __IAVF_INIT_FAILED
2337  **/
2338 static void iavf_startup(struct iavf_adapter *adapter)
2339 {
2340 	struct pci_dev *pdev = adapter->pdev;
2341 	struct iavf_hw *hw = &adapter->hw;
2342 	enum iavf_status status;
2343 	int ret;
2344 
2345 	WARN_ON(adapter->state != __IAVF_STARTUP);
2346 
2347 	/* driver loaded, probe complete */
2348 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2349 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2350 
2351 	ret = iavf_check_reset_complete(hw);
2352 	if (ret) {
2353 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2354 			 ret);
2355 		goto err;
2356 	}
2357 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2358 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2359 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2360 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2361 
2362 	status = iavf_init_adminq(hw);
2363 	if (status) {
2364 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2365 			status);
2366 		goto err;
2367 	}
2368 	ret = iavf_send_api_ver(adapter);
2369 	if (ret) {
2370 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2371 		iavf_shutdown_adminq(hw);
2372 		goto err;
2373 	}
2374 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2375 	return;
2376 err:
2377 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2378 }
2379 
2380 /**
2381  * iavf_init_version_check - second step of driver startup
2382  * @adapter: board private structure
2383  *
2384  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2385  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2386  * when fails the state is changed to __IAVF_INIT_FAILED
2387  **/
2388 static void iavf_init_version_check(struct iavf_adapter *adapter)
2389 {
2390 	struct pci_dev *pdev = adapter->pdev;
2391 	struct iavf_hw *hw = &adapter->hw;
2392 	int err = -EAGAIN;
2393 
2394 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2395 
2396 	if (!iavf_asq_done(hw)) {
2397 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2398 		iavf_shutdown_adminq(hw);
2399 		iavf_change_state(adapter, __IAVF_STARTUP);
2400 		goto err;
2401 	}
2402 
2403 	/* aq msg sent, awaiting reply */
2404 	err = iavf_verify_api_ver(adapter);
2405 	if (err) {
2406 		if (err == -EALREADY)
2407 			err = iavf_send_api_ver(adapter);
2408 		else
2409 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2410 				adapter->pf_version.major,
2411 				adapter->pf_version.minor,
2412 				VIRTCHNL_VERSION_MAJOR,
2413 				VIRTCHNL_VERSION_MINOR);
2414 		goto err;
2415 	}
2416 	err = iavf_send_vf_config_msg(adapter);
2417 	if (err) {
2418 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2419 			err);
2420 		goto err;
2421 	}
2422 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2423 	return;
2424 err:
2425 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2426 }
2427 
2428 /**
2429  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2430  * @adapter: board private structure
2431  */
2432 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2433 {
2434 	int i, num_req_queues = adapter->num_req_queues;
2435 	struct iavf_vsi *vsi = &adapter->vsi;
2436 
2437 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2438 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2439 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2440 	}
2441 	if (!adapter->vsi_res) {
2442 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2443 		return -ENODEV;
2444 	}
2445 
2446 	if (num_req_queues &&
2447 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2448 		/* Problem.  The PF gave us fewer queues than what we had
2449 		 * negotiated in our request.  Need a reset to see if we can't
2450 		 * get back to a working state.
2451 		 */
2452 		dev_err(&adapter->pdev->dev,
2453 			"Requested %d queues, but PF only gave us %d.\n",
2454 			num_req_queues,
2455 			adapter->vsi_res->num_queue_pairs);
2456 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2457 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2458 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2459 
2460 		return -EAGAIN;
2461 	}
2462 	adapter->num_req_queues = 0;
2463 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2464 
2465 	adapter->vsi.back = adapter;
2466 	adapter->vsi.base_vector = 1;
2467 	vsi->netdev = adapter->netdev;
2468 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2469 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2470 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2471 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2472 	} else {
2473 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2474 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * iavf_init_get_resources - third step of driver startup
2482  * @adapter: board private structure
2483  *
2484  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2485  * finishes driver initialization procedure.
2486  * When success the state is changed to __IAVF_DOWN
2487  * when fails the state is changed to __IAVF_INIT_FAILED
2488  **/
2489 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2490 {
2491 	struct pci_dev *pdev = adapter->pdev;
2492 	struct iavf_hw *hw = &adapter->hw;
2493 	int err;
2494 
2495 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2496 	/* aq msg sent, awaiting reply */
2497 	if (!adapter->vf_res) {
2498 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2499 					  GFP_KERNEL);
2500 		if (!adapter->vf_res) {
2501 			err = -ENOMEM;
2502 			goto err;
2503 		}
2504 	}
2505 	err = iavf_get_vf_config(adapter);
2506 	if (err == -EALREADY) {
2507 		err = iavf_send_vf_config_msg(adapter);
2508 		goto err;
2509 	} else if (err == -EINVAL) {
2510 		/* We only get -EINVAL if the device is in a very bad
2511 		 * state or if we've been disabled for previous bad
2512 		 * behavior. Either way, we're done now.
2513 		 */
2514 		iavf_shutdown_adminq(hw);
2515 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2516 		return;
2517 	}
2518 	if (err) {
2519 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2520 		goto err_alloc;
2521 	}
2522 
2523 	err = iavf_parse_vf_resource_msg(adapter);
2524 	if (err) {
2525 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2526 			err);
2527 		goto err_alloc;
2528 	}
2529 	/* Some features require additional messages to negotiate extended
2530 	 * capabilities. These are processed in sequence by the
2531 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2532 	 */
2533 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2534 
2535 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2536 	return;
2537 
2538 err_alloc:
2539 	kfree(adapter->vf_res);
2540 	adapter->vf_res = NULL;
2541 err:
2542 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2543 }
2544 
2545 /**
2546  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2547  * @adapter: board private structure
2548  *
2549  * Function processes send of the extended VLAN V2 capability message to the
2550  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2551  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2552  */
2553 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2554 {
2555 	int ret;
2556 
2557 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2558 
2559 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2560 	if (ret && ret == -EOPNOTSUPP) {
2561 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2562 		 * we did not send the capability exchange message and do not
2563 		 * expect a response.
2564 		 */
2565 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2566 	}
2567 
2568 	/* We sent the message, so move on to the next step */
2569 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2570 }
2571 
2572 /**
2573  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2574  * @adapter: board private structure
2575  *
2576  * Function processes receipt of the extended VLAN V2 capability message from
2577  * the PF.
2578  **/
2579 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2580 {
2581 	int ret;
2582 
2583 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2584 
2585 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2586 
2587 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2588 	if (ret)
2589 		goto err;
2590 
2591 	/* We've processed receipt of the VLAN V2 caps message */
2592 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2593 	return;
2594 err:
2595 	/* We didn't receive a reply. Make sure we try sending again when
2596 	 * __IAVF_INIT_FAILED attempts to recover.
2597 	 */
2598 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2599 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2600 }
2601 
2602 /**
2603  * iavf_init_process_extended_caps - Part of driver startup
2604  * @adapter: board private structure
2605  *
2606  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2607  * handles negotiating capabilities for features which require an additional
2608  * message.
2609  *
2610  * Once all extended capabilities exchanges are finished, the driver will
2611  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2612  */
2613 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2614 {
2615 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2616 
2617 	/* Process capability exchange for VLAN V2 */
2618 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2619 		iavf_init_send_offload_vlan_v2_caps(adapter);
2620 		return;
2621 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2622 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2623 		return;
2624 	}
2625 
2626 	/* When we reach here, no further extended capabilities exchanges are
2627 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2628 	 */
2629 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2630 }
2631 
2632 /**
2633  * iavf_init_config_adapter - last part of driver startup
2634  * @adapter: board private structure
2635  *
2636  * After all the supported capabilities are negotiated, then the
2637  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2638  */
2639 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2640 {
2641 	struct net_device *netdev = adapter->netdev;
2642 	struct pci_dev *pdev = adapter->pdev;
2643 	int err;
2644 
2645 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2646 
2647 	if (iavf_process_config(adapter))
2648 		goto err;
2649 
2650 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2651 
2652 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2653 
2654 	netdev->netdev_ops = &iavf_netdev_ops;
2655 	iavf_set_ethtool_ops(netdev);
2656 	netdev->watchdog_timeo = 5 * HZ;
2657 
2658 	netdev->min_mtu = ETH_MIN_MTU;
2659 	netdev->max_mtu = LIBIE_MAX_MTU;
2660 
2661 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2662 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2663 			 adapter->hw.mac.addr);
2664 		eth_hw_addr_random(netdev);
2665 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2666 	} else {
2667 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2668 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2669 	}
2670 
2671 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2672 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2673 	err = iavf_init_interrupt_scheme(adapter);
2674 	if (err)
2675 		goto err_sw_init;
2676 	iavf_map_rings_to_vectors(adapter);
2677 	if (adapter->vf_res->vf_cap_flags &
2678 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2679 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2680 
2681 	err = iavf_request_misc_irq(adapter);
2682 	if (err)
2683 		goto err_sw_init;
2684 
2685 	netif_carrier_off(netdev);
2686 	adapter->link_up = false;
2687 	netif_tx_stop_all_queues(netdev);
2688 
2689 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2690 	if (netdev->features & NETIF_F_GRO)
2691 		dev_info(&pdev->dev, "GRO is enabled\n");
2692 
2693 	iavf_change_state(adapter, __IAVF_DOWN);
2694 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2695 
2696 	iavf_misc_irq_enable(adapter);
2697 	wake_up(&adapter->down_waitqueue);
2698 
2699 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2700 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2701 	if (!adapter->rss_key || !adapter->rss_lut) {
2702 		err = -ENOMEM;
2703 		goto err_mem;
2704 	}
2705 	if (RSS_AQ(adapter))
2706 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2707 	else
2708 		iavf_init_rss(adapter);
2709 
2710 	if (VLAN_V2_ALLOWED(adapter))
2711 		/* request initial VLAN offload settings */
2712 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2713 
2714 	if (QOS_ALLOWED(adapter))
2715 		adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2716 
2717 	iavf_schedule_finish_config(adapter);
2718 	return;
2719 
2720 err_mem:
2721 	iavf_free_rss(adapter);
2722 	iavf_free_misc_irq(adapter);
2723 err_sw_init:
2724 	iavf_reset_interrupt_capability(adapter);
2725 err:
2726 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2727 }
2728 
2729 /**
2730  * iavf_watchdog_task - Periodic call-back task
2731  * @work: pointer to work_struct
2732  **/
2733 static void iavf_watchdog_task(struct work_struct *work)
2734 {
2735 	struct iavf_adapter *adapter = container_of(work,
2736 						    struct iavf_adapter,
2737 						    watchdog_task.work);
2738 	struct net_device *netdev = adapter->netdev;
2739 	struct iavf_hw *hw = &adapter->hw;
2740 	u32 reg_val;
2741 
2742 	netdev_lock(netdev);
2743 	if (!mutex_trylock(&adapter->crit_lock)) {
2744 		if (adapter->state == __IAVF_REMOVE) {
2745 			netdev_unlock(netdev);
2746 			return;
2747 		}
2748 
2749 		goto restart_watchdog;
2750 	}
2751 
2752 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2753 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2754 
2755 	switch (adapter->state) {
2756 	case __IAVF_STARTUP:
2757 		iavf_startup(adapter);
2758 		mutex_unlock(&adapter->crit_lock);
2759 		netdev_unlock(netdev);
2760 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 				   msecs_to_jiffies(30));
2762 		return;
2763 	case __IAVF_INIT_VERSION_CHECK:
2764 		iavf_init_version_check(adapter);
2765 		mutex_unlock(&adapter->crit_lock);
2766 		netdev_unlock(netdev);
2767 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2768 				   msecs_to_jiffies(30));
2769 		return;
2770 	case __IAVF_INIT_GET_RESOURCES:
2771 		iavf_init_get_resources(adapter);
2772 		mutex_unlock(&adapter->crit_lock);
2773 		netdev_unlock(netdev);
2774 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2775 				   msecs_to_jiffies(1));
2776 		return;
2777 	case __IAVF_INIT_EXTENDED_CAPS:
2778 		iavf_init_process_extended_caps(adapter);
2779 		mutex_unlock(&adapter->crit_lock);
2780 		netdev_unlock(netdev);
2781 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2782 				   msecs_to_jiffies(1));
2783 		return;
2784 	case __IAVF_INIT_CONFIG_ADAPTER:
2785 		iavf_init_config_adapter(adapter);
2786 		mutex_unlock(&adapter->crit_lock);
2787 		netdev_unlock(netdev);
2788 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2789 				   msecs_to_jiffies(1));
2790 		return;
2791 	case __IAVF_INIT_FAILED:
2792 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2793 			     &adapter->crit_section)) {
2794 			/* Do not update the state and do not reschedule
2795 			 * watchdog task, iavf_remove should handle this state
2796 			 * as it can loop forever
2797 			 */
2798 			mutex_unlock(&adapter->crit_lock);
2799 			netdev_unlock(netdev);
2800 			return;
2801 		}
2802 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2803 			dev_err(&adapter->pdev->dev,
2804 				"Failed to communicate with PF; waiting before retry\n");
2805 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2806 			iavf_shutdown_adminq(hw);
2807 			mutex_unlock(&adapter->crit_lock);
2808 			netdev_unlock(netdev);
2809 			queue_delayed_work(adapter->wq,
2810 					   &adapter->watchdog_task, (5 * HZ));
2811 			return;
2812 		}
2813 		/* Try again from failed step*/
2814 		iavf_change_state(adapter, adapter->last_state);
2815 		mutex_unlock(&adapter->crit_lock);
2816 		netdev_unlock(netdev);
2817 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2818 		return;
2819 	case __IAVF_COMM_FAILED:
2820 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2821 			     &adapter->crit_section)) {
2822 			/* Set state to __IAVF_INIT_FAILED and perform remove
2823 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2824 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2825 			 */
2826 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2827 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2828 			mutex_unlock(&adapter->crit_lock);
2829 			netdev_unlock(netdev);
2830 			return;
2831 		}
2832 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2833 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2834 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2835 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2836 			/* A chance for redemption! */
2837 			dev_err(&adapter->pdev->dev,
2838 				"Hardware came out of reset. Attempting reinit.\n");
2839 			/* When init task contacts the PF and
2840 			 * gets everything set up again, it'll restart the
2841 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2842 			 */
2843 			iavf_change_state(adapter, __IAVF_STARTUP);
2844 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2845 		}
2846 		adapter->aq_required = 0;
2847 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2848 		mutex_unlock(&adapter->crit_lock);
2849 		netdev_unlock(netdev);
2850 		queue_delayed_work(adapter->wq,
2851 				   &adapter->watchdog_task,
2852 				   msecs_to_jiffies(10));
2853 		return;
2854 	case __IAVF_RESETTING:
2855 		mutex_unlock(&adapter->crit_lock);
2856 		netdev_unlock(netdev);
2857 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2858 				   HZ * 2);
2859 		return;
2860 	case __IAVF_DOWN:
2861 	case __IAVF_DOWN_PENDING:
2862 	case __IAVF_TESTING:
2863 	case __IAVF_RUNNING:
2864 		if (adapter->current_op) {
2865 			if (!iavf_asq_done(hw)) {
2866 				dev_dbg(&adapter->pdev->dev,
2867 					"Admin queue timeout\n");
2868 				iavf_send_api_ver(adapter);
2869 			}
2870 		} else {
2871 			int ret = iavf_process_aq_command(adapter);
2872 
2873 			/* An error will be returned if no commands were
2874 			 * processed; use this opportunity to update stats
2875 			 * if the error isn't -ENOTSUPP
2876 			 */
2877 			if (ret && ret != -EOPNOTSUPP &&
2878 			    adapter->state == __IAVF_RUNNING)
2879 				iavf_request_stats(adapter);
2880 		}
2881 		if (adapter->state == __IAVF_RUNNING)
2882 			iavf_detect_recover_hung(&adapter->vsi);
2883 		break;
2884 	case __IAVF_REMOVE:
2885 	default:
2886 		mutex_unlock(&adapter->crit_lock);
2887 		netdev_unlock(netdev);
2888 		return;
2889 	}
2890 
2891 	/* check for hw reset */
2892 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2893 	if (!reg_val) {
2894 		adapter->aq_required = 0;
2895 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2896 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2897 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2898 		mutex_unlock(&adapter->crit_lock);
2899 		netdev_unlock(netdev);
2900 		queue_delayed_work(adapter->wq,
2901 				   &adapter->watchdog_task, HZ * 2);
2902 		return;
2903 	}
2904 
2905 	mutex_unlock(&adapter->crit_lock);
2906 	netdev_unlock(netdev);
2907 restart_watchdog:
2908 	if (adapter->state >= __IAVF_DOWN)
2909 		queue_work(adapter->wq, &adapter->adminq_task);
2910 	if (adapter->aq_required)
2911 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2912 				   msecs_to_jiffies(20));
2913 	else
2914 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2915 				   HZ * 2);
2916 }
2917 
2918 /**
2919  * iavf_disable_vf - disable VF
2920  * @adapter: board private structure
2921  *
2922  * Set communication failed flag and free all resources.
2923  * NOTE: This function is expected to be called with crit_lock being held.
2924  **/
2925 static void iavf_disable_vf(struct iavf_adapter *adapter)
2926 {
2927 	struct iavf_mac_filter *f, *ftmp;
2928 	struct iavf_vlan_filter *fv, *fvtmp;
2929 	struct iavf_cloud_filter *cf, *cftmp;
2930 
2931 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2932 
2933 	/* We don't use netif_running() because it may be true prior to
2934 	 * ndo_open() returning, so we can't assume it means all our open
2935 	 * tasks have finished, since we're not holding the rtnl_lock here.
2936 	 */
2937 	if (adapter->state == __IAVF_RUNNING) {
2938 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2939 		netif_carrier_off(adapter->netdev);
2940 		netif_tx_disable(adapter->netdev);
2941 		adapter->link_up = false;
2942 		iavf_napi_disable_all(adapter);
2943 		iavf_irq_disable(adapter);
2944 		iavf_free_traffic_irqs(adapter);
2945 		iavf_free_all_tx_resources(adapter);
2946 		iavf_free_all_rx_resources(adapter);
2947 	}
2948 
2949 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2950 
2951 	/* Delete all of the filters */
2952 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2953 		list_del(&f->list);
2954 		kfree(f);
2955 	}
2956 
2957 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2958 		list_del(&fv->list);
2959 		kfree(fv);
2960 	}
2961 	adapter->num_vlan_filters = 0;
2962 
2963 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2964 
2965 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2966 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2967 		list_del(&cf->list);
2968 		kfree(cf);
2969 		adapter->num_cloud_filters--;
2970 	}
2971 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2972 
2973 	iavf_free_misc_irq(adapter);
2974 	iavf_free_interrupt_scheme(adapter);
2975 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2976 	iavf_shutdown_adminq(&adapter->hw);
2977 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2978 	iavf_change_state(adapter, __IAVF_DOWN);
2979 	wake_up(&adapter->down_waitqueue);
2980 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2981 }
2982 
2983 /**
2984  * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2985  * @adapter: board private structure
2986  *
2987  * After a reset, the shaper parameters of queues need to be replayed again.
2988  * Since the net_shaper object inside TX rings persists across reset,
2989  * set the update flag for all queues so that the virtchnl message is triggered
2990  * for all queues.
2991  **/
2992 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2993 {
2994 	int i, num = 0;
2995 
2996 	for (i = 0; i < adapter->num_active_queues; i++)
2997 		if (adapter->tx_rings[i].q_shaper.bw_min ||
2998 		    adapter->tx_rings[i].q_shaper.bw_max) {
2999 			adapter->tx_rings[i].q_shaper_update = true;
3000 			num++;
3001 		}
3002 
3003 	if (num)
3004 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
3005 }
3006 
3007 /**
3008  * iavf_reset_task - Call-back task to handle hardware reset
3009  * @work: pointer to work_struct
3010  *
3011  * During reset we need to shut down and reinitialize the admin queue
3012  * before we can use it to communicate with the PF again. We also clear
3013  * and reinit the rings because that context is lost as well.
3014  **/
3015 static void iavf_reset_task(struct work_struct *work)
3016 {
3017 	struct iavf_adapter *adapter = container_of(work,
3018 						      struct iavf_adapter,
3019 						      reset_task);
3020 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3021 	struct net_device *netdev = adapter->netdev;
3022 	struct iavf_hw *hw = &adapter->hw;
3023 	struct iavf_mac_filter *f, *ftmp;
3024 	struct iavf_cloud_filter *cf;
3025 	enum iavf_status status;
3026 	u32 reg_val;
3027 	int i = 0, err;
3028 	bool running;
3029 
3030 	/* When device is being removed it doesn't make sense to run the reset
3031 	 * task, just return in such a case.
3032 	 */
3033 	netdev_lock(netdev);
3034 	if (!mutex_trylock(&adapter->crit_lock)) {
3035 		if (adapter->state != __IAVF_REMOVE)
3036 			queue_work(adapter->wq, &adapter->reset_task);
3037 
3038 		netdev_unlock(netdev);
3039 		return;
3040 	}
3041 
3042 	iavf_misc_irq_disable(adapter);
3043 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3044 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3045 		/* Restart the AQ here. If we have been reset but didn't
3046 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
3047 		 */
3048 		iavf_shutdown_adminq(hw);
3049 		iavf_init_adminq(hw);
3050 		iavf_request_reset(adapter);
3051 	}
3052 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3053 
3054 	/* poll until we see the reset actually happen */
3055 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3056 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3057 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3058 		if (!reg_val)
3059 			break;
3060 		usleep_range(5000, 10000);
3061 	}
3062 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3063 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3064 		goto continue_reset; /* act like the reset happened */
3065 	}
3066 
3067 	/* wait until the reset is complete and the PF is responding to us */
3068 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3069 		/* sleep first to make sure a minimum wait time is met */
3070 		msleep(IAVF_RESET_WAIT_MS);
3071 
3072 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3073 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3074 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3075 			break;
3076 	}
3077 
3078 	pci_set_master(adapter->pdev);
3079 	pci_restore_msi_state(adapter->pdev);
3080 
3081 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3082 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3083 			reg_val);
3084 		iavf_disable_vf(adapter);
3085 		mutex_unlock(&adapter->crit_lock);
3086 		netdev_unlock(netdev);
3087 		return; /* Do not attempt to reinit. It's dead, Jim. */
3088 	}
3089 
3090 continue_reset:
3091 	/* We don't use netif_running() because it may be true prior to
3092 	 * ndo_open() returning, so we can't assume it means all our open
3093 	 * tasks have finished, since we're not holding the rtnl_lock here.
3094 	 */
3095 	running = adapter->state == __IAVF_RUNNING;
3096 
3097 	if (running) {
3098 		netif_carrier_off(netdev);
3099 		netif_tx_stop_all_queues(netdev);
3100 		adapter->link_up = false;
3101 		iavf_napi_disable_all(adapter);
3102 	}
3103 	iavf_irq_disable(adapter);
3104 
3105 	iavf_change_state(adapter, __IAVF_RESETTING);
3106 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3107 
3108 	/* free the Tx/Rx rings and descriptors, might be better to just
3109 	 * re-use them sometime in the future
3110 	 */
3111 	iavf_free_all_rx_resources(adapter);
3112 	iavf_free_all_tx_resources(adapter);
3113 
3114 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3115 	/* kill and reinit the admin queue */
3116 	iavf_shutdown_adminq(hw);
3117 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3118 	status = iavf_init_adminq(hw);
3119 	if (status) {
3120 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3121 			 status);
3122 		goto reset_err;
3123 	}
3124 	adapter->aq_required = 0;
3125 
3126 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3127 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3128 		err = iavf_reinit_interrupt_scheme(adapter, running);
3129 		if (err)
3130 			goto reset_err;
3131 	}
3132 
3133 	if (RSS_AQ(adapter)) {
3134 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3135 	} else {
3136 		err = iavf_init_rss(adapter);
3137 		if (err)
3138 			goto reset_err;
3139 	}
3140 
3141 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3142 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3143 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3144 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3145 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3146 	 * been successfully sent and negotiated
3147 	 */
3148 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3149 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3150 
3151 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3152 
3153 	/* Delete filter for the current MAC address, it could have
3154 	 * been changed by the PF via administratively set MAC.
3155 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3156 	 */
3157 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3158 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3159 			list_del(&f->list);
3160 			kfree(f);
3161 		}
3162 	}
3163 	/* re-add all MAC filters */
3164 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3165 		f->add = true;
3166 	}
3167 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3168 
3169 	/* check if TCs are running and re-add all cloud filters */
3170 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3171 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3172 	    adapter->num_tc) {
3173 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3174 			cf->add = true;
3175 		}
3176 	}
3177 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3178 
3179 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3180 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3181 	iavf_misc_irq_enable(adapter);
3182 
3183 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3184 
3185 	/* We were running when the reset started, so we need to restore some
3186 	 * state here.
3187 	 */
3188 	if (running) {
3189 		/* allocate transmit descriptors */
3190 		err = iavf_setup_all_tx_resources(adapter);
3191 		if (err)
3192 			goto reset_err;
3193 
3194 		/* allocate receive descriptors */
3195 		err = iavf_setup_all_rx_resources(adapter);
3196 		if (err)
3197 			goto reset_err;
3198 
3199 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3200 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3201 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3202 			if (err)
3203 				goto reset_err;
3204 
3205 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3206 		}
3207 
3208 		iavf_configure(adapter);
3209 
3210 		/* iavf_up_complete() will switch device back
3211 		 * to __IAVF_RUNNING
3212 		 */
3213 		iavf_up_complete(adapter);
3214 
3215 		iavf_irq_enable(adapter, true);
3216 
3217 		iavf_reconfig_qs_bw(adapter);
3218 	} else {
3219 		iavf_change_state(adapter, __IAVF_DOWN);
3220 		wake_up(&adapter->down_waitqueue);
3221 	}
3222 
3223 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3224 
3225 	wake_up(&adapter->reset_waitqueue);
3226 	mutex_unlock(&adapter->crit_lock);
3227 	netdev_unlock(netdev);
3228 
3229 	return;
3230 reset_err:
3231 	if (running) {
3232 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3233 		iavf_free_traffic_irqs(adapter);
3234 	}
3235 	iavf_disable_vf(adapter);
3236 
3237 	mutex_unlock(&adapter->crit_lock);
3238 	netdev_unlock(netdev);
3239 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3240 }
3241 
3242 /**
3243  * iavf_adminq_task - worker thread to clean the admin queue
3244  * @work: pointer to work_struct containing our data
3245  **/
3246 static void iavf_adminq_task(struct work_struct *work)
3247 {
3248 	struct iavf_adapter *adapter =
3249 		container_of(work, struct iavf_adapter, adminq_task);
3250 	struct iavf_hw *hw = &adapter->hw;
3251 	struct iavf_arq_event_info event;
3252 	enum virtchnl_ops v_op;
3253 	enum iavf_status ret, v_ret;
3254 	u32 val, oldval;
3255 	u16 pending;
3256 
3257 	if (!mutex_trylock(&adapter->crit_lock)) {
3258 		if (adapter->state == __IAVF_REMOVE)
3259 			return;
3260 
3261 		queue_work(adapter->wq, &adapter->adminq_task);
3262 		goto out;
3263 	}
3264 
3265 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3266 		goto unlock;
3267 
3268 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3269 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3270 	if (!event.msg_buf)
3271 		goto unlock;
3272 
3273 	do {
3274 		ret = iavf_clean_arq_element(hw, &event, &pending);
3275 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3276 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3277 
3278 		if (ret || !v_op)
3279 			break; /* No event to process or error cleaning ARQ */
3280 
3281 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3282 					 event.msg_len);
3283 		if (pending != 0)
3284 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3285 	} while (pending);
3286 
3287 	if (iavf_is_reset_in_progress(adapter))
3288 		goto freedom;
3289 
3290 	/* check for error indications */
3291 	val = rd32(hw, IAVF_VF_ARQLEN1);
3292 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3293 		goto freedom;
3294 	oldval = val;
3295 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3296 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3297 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3298 	}
3299 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3300 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3301 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3302 	}
3303 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3304 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3305 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3306 	}
3307 	if (oldval != val)
3308 		wr32(hw, IAVF_VF_ARQLEN1, val);
3309 
3310 	val = rd32(hw, IAVF_VF_ATQLEN1);
3311 	oldval = val;
3312 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3313 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3314 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3315 	}
3316 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3317 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3318 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3319 	}
3320 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3321 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3322 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3323 	}
3324 	if (oldval != val)
3325 		wr32(hw, IAVF_VF_ATQLEN1, val);
3326 
3327 freedom:
3328 	kfree(event.msg_buf);
3329 unlock:
3330 	mutex_unlock(&adapter->crit_lock);
3331 out:
3332 	/* re-enable Admin queue interrupt cause */
3333 	iavf_misc_irq_enable(adapter);
3334 }
3335 
3336 /**
3337  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3338  * @adapter: board private structure
3339  *
3340  * Free all transmit software resources
3341  **/
3342 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3343 {
3344 	int i;
3345 
3346 	if (!adapter->tx_rings)
3347 		return;
3348 
3349 	for (i = 0; i < adapter->num_active_queues; i++)
3350 		if (adapter->tx_rings[i].desc)
3351 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3352 }
3353 
3354 /**
3355  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3356  * @adapter: board private structure
3357  *
3358  * If this function returns with an error, then it's possible one or
3359  * more of the rings is populated (while the rest are not).  It is the
3360  * callers duty to clean those orphaned rings.
3361  *
3362  * Return 0 on success, negative on failure
3363  **/
3364 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3365 {
3366 	int i, err = 0;
3367 
3368 	for (i = 0; i < adapter->num_active_queues; i++) {
3369 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3370 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3371 		if (!err)
3372 			continue;
3373 		dev_err(&adapter->pdev->dev,
3374 			"Allocation for Tx Queue %u failed\n", i);
3375 		break;
3376 	}
3377 
3378 	return err;
3379 }
3380 
3381 /**
3382  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3383  * @adapter: board private structure
3384  *
3385  * If this function returns with an error, then it's possible one or
3386  * more of the rings is populated (while the rest are not).  It is the
3387  * callers duty to clean those orphaned rings.
3388  *
3389  * Return 0 on success, negative on failure
3390  **/
3391 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3392 {
3393 	int i, err = 0;
3394 
3395 	for (i = 0; i < adapter->num_active_queues; i++) {
3396 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3397 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3398 		if (!err)
3399 			continue;
3400 		dev_err(&adapter->pdev->dev,
3401 			"Allocation for Rx Queue %u failed\n", i);
3402 		break;
3403 	}
3404 	return err;
3405 }
3406 
3407 /**
3408  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3409  * @adapter: board private structure
3410  *
3411  * Free all receive software resources
3412  **/
3413 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3414 {
3415 	int i;
3416 
3417 	if (!adapter->rx_rings)
3418 		return;
3419 
3420 	for (i = 0; i < adapter->num_active_queues; i++)
3421 		if (adapter->rx_rings[i].desc)
3422 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3423 }
3424 
3425 /**
3426  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3427  * @adapter: board private structure
3428  * @max_tx_rate: max Tx bw for a tc
3429  **/
3430 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3431 				      u64 max_tx_rate)
3432 {
3433 	int speed = 0, ret = 0;
3434 
3435 	if (ADV_LINK_SUPPORT(adapter)) {
3436 		if (adapter->link_speed_mbps < U32_MAX) {
3437 			speed = adapter->link_speed_mbps;
3438 			goto validate_bw;
3439 		} else {
3440 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3441 			return -EINVAL;
3442 		}
3443 	}
3444 
3445 	switch (adapter->link_speed) {
3446 	case VIRTCHNL_LINK_SPEED_40GB:
3447 		speed = SPEED_40000;
3448 		break;
3449 	case VIRTCHNL_LINK_SPEED_25GB:
3450 		speed = SPEED_25000;
3451 		break;
3452 	case VIRTCHNL_LINK_SPEED_20GB:
3453 		speed = SPEED_20000;
3454 		break;
3455 	case VIRTCHNL_LINK_SPEED_10GB:
3456 		speed = SPEED_10000;
3457 		break;
3458 	case VIRTCHNL_LINK_SPEED_5GB:
3459 		speed = SPEED_5000;
3460 		break;
3461 	case VIRTCHNL_LINK_SPEED_2_5GB:
3462 		speed = SPEED_2500;
3463 		break;
3464 	case VIRTCHNL_LINK_SPEED_1GB:
3465 		speed = SPEED_1000;
3466 		break;
3467 	case VIRTCHNL_LINK_SPEED_100MB:
3468 		speed = SPEED_100;
3469 		break;
3470 	default:
3471 		break;
3472 	}
3473 
3474 validate_bw:
3475 	if (max_tx_rate > speed) {
3476 		dev_err(&adapter->pdev->dev,
3477 			"Invalid tx rate specified\n");
3478 		ret = -EINVAL;
3479 	}
3480 
3481 	return ret;
3482 }
3483 
3484 /**
3485  * iavf_validate_ch_config - validate queue mapping info
3486  * @adapter: board private structure
3487  * @mqprio_qopt: queue parameters
3488  *
3489  * This function validates if the config provided by the user to
3490  * configure queue channels is valid or not. Returns 0 on a valid
3491  * config.
3492  **/
3493 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3494 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3495 {
3496 	u64 total_max_rate = 0;
3497 	u32 tx_rate_rem = 0;
3498 	int i, num_qps = 0;
3499 	u64 tx_rate = 0;
3500 	int ret = 0;
3501 
3502 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3503 	    mqprio_qopt->qopt.num_tc < 1)
3504 		return -EINVAL;
3505 
3506 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3507 		if (!mqprio_qopt->qopt.count[i] ||
3508 		    mqprio_qopt->qopt.offset[i] != num_qps)
3509 			return -EINVAL;
3510 		if (mqprio_qopt->min_rate[i]) {
3511 			dev_err(&adapter->pdev->dev,
3512 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3513 				i);
3514 			return -EINVAL;
3515 		}
3516 
3517 		/* convert to Mbps */
3518 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3519 				  IAVF_MBPS_DIVISOR);
3520 
3521 		if (mqprio_qopt->max_rate[i] &&
3522 		    tx_rate < IAVF_MBPS_QUANTA) {
3523 			dev_err(&adapter->pdev->dev,
3524 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3525 				i, IAVF_MBPS_QUANTA);
3526 			return -EINVAL;
3527 		}
3528 
3529 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3530 
3531 		if (tx_rate_rem != 0) {
3532 			dev_err(&adapter->pdev->dev,
3533 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3534 				i, IAVF_MBPS_QUANTA);
3535 			return -EINVAL;
3536 		}
3537 
3538 		total_max_rate += tx_rate;
3539 		num_qps += mqprio_qopt->qopt.count[i];
3540 	}
3541 	if (num_qps > adapter->num_active_queues) {
3542 		dev_err(&adapter->pdev->dev,
3543 			"Cannot support requested number of queues\n");
3544 		return -EINVAL;
3545 	}
3546 
3547 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3548 	return ret;
3549 }
3550 
3551 /**
3552  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3553  * @adapter: board private structure
3554  **/
3555 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3556 {
3557 	struct iavf_cloud_filter *cf, *cftmp;
3558 
3559 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3560 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3561 				 list) {
3562 		list_del(&cf->list);
3563 		kfree(cf);
3564 		adapter->num_cloud_filters--;
3565 	}
3566 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3567 }
3568 
3569 /**
3570  * iavf_is_tc_config_same - Compare the mqprio TC config with the
3571  * TC config already configured on this adapter.
3572  * @adapter: board private structure
3573  * @mqprio_qopt: TC config received from kernel.
3574  *
3575  * This function compares the TC config received from the kernel
3576  * with the config already configured on the adapter.
3577  *
3578  * Return: True if configuration is same, false otherwise.
3579  **/
3580 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3581 				   struct tc_mqprio_qopt *mqprio_qopt)
3582 {
3583 	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3584 	int i;
3585 
3586 	if (adapter->num_tc != mqprio_qopt->num_tc)
3587 		return false;
3588 
3589 	for (i = 0; i < adapter->num_tc; i++) {
3590 		if (ch[i].count != mqprio_qopt->count[i] ||
3591 		    ch[i].offset != mqprio_qopt->offset[i])
3592 			return false;
3593 	}
3594 	return true;
3595 }
3596 
3597 /**
3598  * __iavf_setup_tc - configure multiple traffic classes
3599  * @netdev: network interface device structure
3600  * @type_data: tc offload data
3601  *
3602  * This function processes the config information provided by the
3603  * user to configure traffic classes/queue channels and packages the
3604  * information to request the PF to setup traffic classes.
3605  *
3606  * Returns 0 on success.
3607  **/
3608 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3609 {
3610 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3611 	struct iavf_adapter *adapter = netdev_priv(netdev);
3612 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3613 	u8 num_tc = 0, total_qps = 0;
3614 	int ret = 0, netdev_tc = 0;
3615 	u64 max_tx_rate;
3616 	u16 mode;
3617 	int i;
3618 
3619 	num_tc = mqprio_qopt->qopt.num_tc;
3620 	mode = mqprio_qopt->mode;
3621 
3622 	/* delete queue_channel */
3623 	if (!mqprio_qopt->qopt.hw) {
3624 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3625 			/* reset the tc configuration */
3626 			netdev_reset_tc(netdev);
3627 			adapter->num_tc = 0;
3628 			netif_tx_stop_all_queues(netdev);
3629 			netif_tx_disable(netdev);
3630 			iavf_del_all_cloud_filters(adapter);
3631 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3632 			total_qps = adapter->orig_num_active_queues;
3633 			goto exit;
3634 		} else {
3635 			return -EINVAL;
3636 		}
3637 	}
3638 
3639 	/* add queue channel */
3640 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3641 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3642 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3643 			return -EOPNOTSUPP;
3644 		}
3645 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3646 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3647 			return -EINVAL;
3648 		}
3649 
3650 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3651 		if (ret)
3652 			return ret;
3653 		/* Return if same TC config is requested */
3654 		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3655 			return 0;
3656 		adapter->num_tc = num_tc;
3657 
3658 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3659 			if (i < num_tc) {
3660 				adapter->ch_config.ch_info[i].count =
3661 					mqprio_qopt->qopt.count[i];
3662 				adapter->ch_config.ch_info[i].offset =
3663 					mqprio_qopt->qopt.offset[i];
3664 				total_qps += mqprio_qopt->qopt.count[i];
3665 				max_tx_rate = mqprio_qopt->max_rate[i];
3666 				/* convert to Mbps */
3667 				max_tx_rate = div_u64(max_tx_rate,
3668 						      IAVF_MBPS_DIVISOR);
3669 				adapter->ch_config.ch_info[i].max_tx_rate =
3670 					max_tx_rate;
3671 			} else {
3672 				adapter->ch_config.ch_info[i].count = 1;
3673 				adapter->ch_config.ch_info[i].offset = 0;
3674 			}
3675 		}
3676 
3677 		/* Take snapshot of original config such as "num_active_queues"
3678 		 * It is used later when delete ADQ flow is exercised, so that
3679 		 * once delete ADQ flow completes, VF shall go back to its
3680 		 * original queue configuration
3681 		 */
3682 
3683 		adapter->orig_num_active_queues = adapter->num_active_queues;
3684 
3685 		/* Store queue info based on TC so that VF gets configured
3686 		 * with correct number of queues when VF completes ADQ config
3687 		 * flow
3688 		 */
3689 		adapter->ch_config.total_qps = total_qps;
3690 
3691 		netif_tx_stop_all_queues(netdev);
3692 		netif_tx_disable(netdev);
3693 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3694 		netdev_reset_tc(netdev);
3695 		/* Report the tc mapping up the stack */
3696 		netdev_set_num_tc(adapter->netdev, num_tc);
3697 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3698 			u16 qcount = mqprio_qopt->qopt.count[i];
3699 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3700 
3701 			if (i < num_tc)
3702 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3703 						    qoffset);
3704 		}
3705 	}
3706 exit:
3707 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3708 		return 0;
3709 
3710 	netdev_lock(netdev);
3711 	netif_set_real_num_rx_queues(netdev, total_qps);
3712 	netif_set_real_num_tx_queues(netdev, total_qps);
3713 	netdev_unlock(netdev);
3714 
3715 	return ret;
3716 }
3717 
3718 /**
3719  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3720  * @adapter: board private structure
3721  * @f: pointer to struct flow_cls_offload
3722  * @filter: pointer to cloud filter structure
3723  */
3724 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3725 				 struct flow_cls_offload *f,
3726 				 struct iavf_cloud_filter *filter)
3727 {
3728 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3729 	struct flow_dissector *dissector = rule->match.dissector;
3730 	u16 n_proto_mask = 0;
3731 	u16 n_proto_key = 0;
3732 	u8 field_flags = 0;
3733 	u16 addr_type = 0;
3734 	u16 n_proto = 0;
3735 	int i = 0;
3736 	struct virtchnl_filter *vf = &filter->f;
3737 
3738 	if (dissector->used_keys &
3739 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3740 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3741 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3742 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3743 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3744 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3745 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3746 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3747 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3748 			dissector->used_keys);
3749 		return -EOPNOTSUPP;
3750 	}
3751 
3752 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3753 		struct flow_match_enc_keyid match;
3754 
3755 		flow_rule_match_enc_keyid(rule, &match);
3756 		if (match.mask->keyid != 0)
3757 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3758 	}
3759 
3760 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3761 		struct flow_match_basic match;
3762 
3763 		flow_rule_match_basic(rule, &match);
3764 		n_proto_key = ntohs(match.key->n_proto);
3765 		n_proto_mask = ntohs(match.mask->n_proto);
3766 
3767 		if (n_proto_key == ETH_P_ALL) {
3768 			n_proto_key = 0;
3769 			n_proto_mask = 0;
3770 		}
3771 		n_proto = n_proto_key & n_proto_mask;
3772 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3773 			return -EINVAL;
3774 		if (n_proto == ETH_P_IPV6) {
3775 			/* specify flow type as TCP IPv6 */
3776 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3777 		}
3778 
3779 		if (match.key->ip_proto != IPPROTO_TCP) {
3780 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3781 			return -EINVAL;
3782 		}
3783 	}
3784 
3785 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3786 		struct flow_match_eth_addrs match;
3787 
3788 		flow_rule_match_eth_addrs(rule, &match);
3789 
3790 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3791 		if (!is_zero_ether_addr(match.mask->dst)) {
3792 			if (is_broadcast_ether_addr(match.mask->dst)) {
3793 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3794 			} else {
3795 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3796 					match.mask->dst);
3797 				return -EINVAL;
3798 			}
3799 		}
3800 
3801 		if (!is_zero_ether_addr(match.mask->src)) {
3802 			if (is_broadcast_ether_addr(match.mask->src)) {
3803 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3804 			} else {
3805 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3806 					match.mask->src);
3807 				return -EINVAL;
3808 			}
3809 		}
3810 
3811 		if (!is_zero_ether_addr(match.key->dst))
3812 			if (is_valid_ether_addr(match.key->dst) ||
3813 			    is_multicast_ether_addr(match.key->dst)) {
3814 				/* set the mask if a valid dst_mac address */
3815 				for (i = 0; i < ETH_ALEN; i++)
3816 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3817 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3818 						match.key->dst);
3819 			}
3820 
3821 		if (!is_zero_ether_addr(match.key->src))
3822 			if (is_valid_ether_addr(match.key->src) ||
3823 			    is_multicast_ether_addr(match.key->src)) {
3824 				/* set the mask if a valid dst_mac address */
3825 				for (i = 0; i < ETH_ALEN; i++)
3826 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3827 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3828 						match.key->src);
3829 		}
3830 	}
3831 
3832 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3833 		struct flow_match_vlan match;
3834 
3835 		flow_rule_match_vlan(rule, &match);
3836 		if (match.mask->vlan_id) {
3837 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3838 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3839 			} else {
3840 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3841 					match.mask->vlan_id);
3842 				return -EINVAL;
3843 			}
3844 		}
3845 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3846 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3847 	}
3848 
3849 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3850 		struct flow_match_control match;
3851 
3852 		flow_rule_match_control(rule, &match);
3853 		addr_type = match.key->addr_type;
3854 
3855 		if (flow_rule_has_control_flags(match.mask->flags,
3856 						f->common.extack))
3857 			return -EOPNOTSUPP;
3858 	}
3859 
3860 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3861 		struct flow_match_ipv4_addrs match;
3862 
3863 		flow_rule_match_ipv4_addrs(rule, &match);
3864 		if (match.mask->dst) {
3865 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3866 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3867 			} else {
3868 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3869 					be32_to_cpu(match.mask->dst));
3870 				return -EINVAL;
3871 			}
3872 		}
3873 
3874 		if (match.mask->src) {
3875 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3876 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3877 			} else {
3878 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3879 					be32_to_cpu(match.mask->src));
3880 				return -EINVAL;
3881 			}
3882 		}
3883 
3884 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3885 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3886 			return -EINVAL;
3887 		}
3888 		if (match.key->dst) {
3889 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3890 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3891 		}
3892 		if (match.key->src) {
3893 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3894 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3895 		}
3896 	}
3897 
3898 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3899 		struct flow_match_ipv6_addrs match;
3900 
3901 		flow_rule_match_ipv6_addrs(rule, &match);
3902 
3903 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3904 		if (ipv6_addr_any(&match.mask->dst)) {
3905 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3906 				IPV6_ADDR_ANY);
3907 			return -EINVAL;
3908 		}
3909 
3910 		/* src and dest IPv6 address should not be LOOPBACK
3911 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3912 		 */
3913 		if (ipv6_addr_loopback(&match.key->dst) ||
3914 		    ipv6_addr_loopback(&match.key->src)) {
3915 			dev_err(&adapter->pdev->dev,
3916 				"ipv6 addr should not be loopback\n");
3917 			return -EINVAL;
3918 		}
3919 		if (!ipv6_addr_any(&match.mask->dst) ||
3920 		    !ipv6_addr_any(&match.mask->src))
3921 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3922 
3923 		for (i = 0; i < 4; i++)
3924 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3925 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3926 		       sizeof(vf->data.tcp_spec.dst_ip));
3927 		for (i = 0; i < 4; i++)
3928 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3929 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3930 		       sizeof(vf->data.tcp_spec.src_ip));
3931 	}
3932 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3933 		struct flow_match_ports match;
3934 
3935 		flow_rule_match_ports(rule, &match);
3936 		if (match.mask->src) {
3937 			if (match.mask->src == cpu_to_be16(0xffff)) {
3938 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3939 			} else {
3940 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3941 					be16_to_cpu(match.mask->src));
3942 				return -EINVAL;
3943 			}
3944 		}
3945 
3946 		if (match.mask->dst) {
3947 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3948 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3949 			} else {
3950 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3951 					be16_to_cpu(match.mask->dst));
3952 				return -EINVAL;
3953 			}
3954 		}
3955 		if (match.key->dst) {
3956 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3957 			vf->data.tcp_spec.dst_port = match.key->dst;
3958 		}
3959 
3960 		if (match.key->src) {
3961 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3962 			vf->data.tcp_spec.src_port = match.key->src;
3963 		}
3964 	}
3965 	vf->field_flags = field_flags;
3966 
3967 	return 0;
3968 }
3969 
3970 /**
3971  * iavf_handle_tclass - Forward to a traffic class on the device
3972  * @adapter: board private structure
3973  * @tc: traffic class index on the device
3974  * @filter: pointer to cloud filter structure
3975  */
3976 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3977 			      struct iavf_cloud_filter *filter)
3978 {
3979 	if (tc == 0)
3980 		return 0;
3981 	if (tc < adapter->num_tc) {
3982 		if (!filter->f.data.tcp_spec.dst_port) {
3983 			dev_err(&adapter->pdev->dev,
3984 				"Specify destination port to redirect to traffic class other than TC0\n");
3985 			return -EINVAL;
3986 		}
3987 	}
3988 	/* redirect to a traffic class on the same device */
3989 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3990 	filter->f.action_meta = tc;
3991 	return 0;
3992 }
3993 
3994 /**
3995  * iavf_find_cf - Find the cloud filter in the list
3996  * @adapter: Board private structure
3997  * @cookie: filter specific cookie
3998  *
3999  * Returns ptr to the filter object or NULL. Must be called while holding the
4000  * cloud_filter_list_lock.
4001  */
4002 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
4003 					      unsigned long *cookie)
4004 {
4005 	struct iavf_cloud_filter *filter = NULL;
4006 
4007 	if (!cookie)
4008 		return NULL;
4009 
4010 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
4011 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
4012 			return filter;
4013 	}
4014 	return NULL;
4015 }
4016 
4017 /**
4018  * iavf_configure_clsflower - Add tc flower filters
4019  * @adapter: board private structure
4020  * @cls_flower: Pointer to struct flow_cls_offload
4021  */
4022 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
4023 				    struct flow_cls_offload *cls_flower)
4024 {
4025 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4026 	struct iavf_cloud_filter *filter = NULL;
4027 	int err = -EINVAL, count = 50;
4028 
4029 	if (tc < 0) {
4030 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4031 		return -EINVAL;
4032 	}
4033 
4034 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4035 	if (!filter)
4036 		return -ENOMEM;
4037 
4038 	while (!mutex_trylock(&adapter->crit_lock)) {
4039 		if (--count == 0) {
4040 			kfree(filter);
4041 			return err;
4042 		}
4043 		udelay(1);
4044 	}
4045 
4046 	filter->cookie = cls_flower->cookie;
4047 
4048 	/* bail out here if filter already exists */
4049 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4050 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4051 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4052 		err = -EEXIST;
4053 		goto spin_unlock;
4054 	}
4055 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4056 
4057 	/* set the mask to all zeroes to begin with */
4058 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4059 	/* start out with flow type and eth type IPv4 to begin with */
4060 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4061 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4062 	if (err)
4063 		goto err;
4064 
4065 	err = iavf_handle_tclass(adapter, tc, filter);
4066 	if (err)
4067 		goto err;
4068 
4069 	/* add filter to the list */
4070 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4071 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4072 	adapter->num_cloud_filters++;
4073 	filter->add = true;
4074 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4075 spin_unlock:
4076 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4077 err:
4078 	if (err)
4079 		kfree(filter);
4080 
4081 	mutex_unlock(&adapter->crit_lock);
4082 	return err;
4083 }
4084 
4085 /**
4086  * iavf_delete_clsflower - Remove tc flower filters
4087  * @adapter: board private structure
4088  * @cls_flower: Pointer to struct flow_cls_offload
4089  */
4090 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4091 				 struct flow_cls_offload *cls_flower)
4092 {
4093 	struct iavf_cloud_filter *filter = NULL;
4094 	int err = 0;
4095 
4096 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4097 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4098 	if (filter) {
4099 		filter->del = true;
4100 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4101 	} else {
4102 		err = -EINVAL;
4103 	}
4104 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4105 
4106 	return err;
4107 }
4108 
4109 /**
4110  * iavf_setup_tc_cls_flower - flower classifier offloads
4111  * @adapter: pointer to iavf adapter structure
4112  * @cls_flower: pointer to flow_cls_offload struct with flow info
4113  */
4114 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4115 				    struct flow_cls_offload *cls_flower)
4116 {
4117 	switch (cls_flower->command) {
4118 	case FLOW_CLS_REPLACE:
4119 		return iavf_configure_clsflower(adapter, cls_flower);
4120 	case FLOW_CLS_DESTROY:
4121 		return iavf_delete_clsflower(adapter, cls_flower);
4122 	case FLOW_CLS_STATS:
4123 		return -EOPNOTSUPP;
4124 	default:
4125 		return -EOPNOTSUPP;
4126 	}
4127 }
4128 
4129 /**
4130  * iavf_add_cls_u32 - Add U32 classifier offloads
4131  * @adapter: pointer to iavf adapter structure
4132  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4133  *
4134  * Return: 0 on success or negative errno on failure.
4135  */
4136 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4137 			    struct tc_cls_u32_offload *cls_u32)
4138 {
4139 	struct netlink_ext_ack *extack = cls_u32->common.extack;
4140 	struct virtchnl_fdir_rule *rule_cfg;
4141 	struct virtchnl_filter_action *vact;
4142 	struct virtchnl_proto_hdrs *hdrs;
4143 	struct ethhdr *spec_h, *mask_h;
4144 	const struct tc_action *act;
4145 	struct iavf_fdir_fltr *fltr;
4146 	struct tcf_exts *exts;
4147 	unsigned int q_index;
4148 	int i, status = 0;
4149 	int off_base = 0;
4150 
4151 	if (cls_u32->knode.link_handle) {
4152 		NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4153 		return -EOPNOTSUPP;
4154 	}
4155 
4156 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4157 	if (!fltr)
4158 		return -ENOMEM;
4159 
4160 	rule_cfg = &fltr->vc_add_msg.rule_cfg;
4161 	hdrs = &rule_cfg->proto_hdrs;
4162 	hdrs->count = 0;
4163 
4164 	/* The parser lib at the PF expects the packet starting with MAC hdr */
4165 	switch (ntohs(cls_u32->common.protocol)) {
4166 	case ETH_P_802_3:
4167 		break;
4168 	case ETH_P_IP:
4169 		spec_h = (struct ethhdr *)hdrs->raw.spec;
4170 		mask_h = (struct ethhdr *)hdrs->raw.mask;
4171 		spec_h->h_proto = htons(ETH_P_IP);
4172 		mask_h->h_proto = htons(0xFFFF);
4173 		off_base += ETH_HLEN;
4174 		break;
4175 	default:
4176 		NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4177 		status = -EOPNOTSUPP;
4178 		goto free_alloc;
4179 	}
4180 
4181 	for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4182 		__be32 val, mask;
4183 		int off;
4184 
4185 		off = off_base + cls_u32->knode.sel->keys[i].off;
4186 		val = cls_u32->knode.sel->keys[i].val;
4187 		mask = cls_u32->knode.sel->keys[i].mask;
4188 
4189 		if (off >= sizeof(hdrs->raw.spec)) {
4190 			NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4191 			status = -EINVAL;
4192 			goto free_alloc;
4193 		}
4194 
4195 		memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4196 		memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4197 		hdrs->raw.pkt_len = off + sizeof(val);
4198 	}
4199 
4200 	/* Only one action is allowed */
4201 	rule_cfg->action_set.count = 1;
4202 	vact = &rule_cfg->action_set.actions[0];
4203 	exts = cls_u32->knode.exts;
4204 
4205 	tcf_exts_for_each_action(i, act, exts) {
4206 		/* FDIR queue */
4207 		if (is_tcf_skbedit_rx_queue_mapping(act)) {
4208 			q_index = tcf_skbedit_rx_queue_mapping(act);
4209 			if (q_index >= adapter->num_active_queues) {
4210 				status = -EINVAL;
4211 				goto free_alloc;
4212 			}
4213 
4214 			vact->type = VIRTCHNL_ACTION_QUEUE;
4215 			vact->act_conf.queue.index = q_index;
4216 			break;
4217 		}
4218 
4219 		/* Drop */
4220 		if (is_tcf_gact_shot(act)) {
4221 			vact->type = VIRTCHNL_ACTION_DROP;
4222 			break;
4223 		}
4224 
4225 		/* Unsupported action */
4226 		NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4227 		status = -EOPNOTSUPP;
4228 		goto free_alloc;
4229 	}
4230 
4231 	fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4232 	fltr->cls_u32_handle = cls_u32->knode.handle;
4233 	return iavf_fdir_add_fltr(adapter, fltr);
4234 
4235 free_alloc:
4236 	kfree(fltr);
4237 	return status;
4238 }
4239 
4240 /**
4241  * iavf_del_cls_u32 - Delete U32 classifier offloads
4242  * @adapter: pointer to iavf adapter structure
4243  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4244  *
4245  * Return: 0 on success or negative errno on failure.
4246  */
4247 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4248 			    struct tc_cls_u32_offload *cls_u32)
4249 {
4250 	return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4251 }
4252 
4253 /**
4254  * iavf_setup_tc_cls_u32 - U32 filter offloads
4255  * @adapter: pointer to iavf adapter structure
4256  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4257  *
4258  * Return: 0 on success or negative errno on failure.
4259  */
4260 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4261 				 struct tc_cls_u32_offload *cls_u32)
4262 {
4263 	if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4264 		return -EOPNOTSUPP;
4265 
4266 	switch (cls_u32->command) {
4267 	case TC_CLSU32_NEW_KNODE:
4268 	case TC_CLSU32_REPLACE_KNODE:
4269 		return iavf_add_cls_u32(adapter, cls_u32);
4270 	case TC_CLSU32_DELETE_KNODE:
4271 		return iavf_del_cls_u32(adapter, cls_u32);
4272 	default:
4273 		return -EOPNOTSUPP;
4274 	}
4275 }
4276 
4277 /**
4278  * iavf_setup_tc_block_cb - block callback for tc
4279  * @type: type of offload
4280  * @type_data: offload data
4281  * @cb_priv:
4282  *
4283  * This function is the block callback for traffic classes
4284  **/
4285 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4286 				  void *cb_priv)
4287 {
4288 	struct iavf_adapter *adapter = cb_priv;
4289 
4290 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4291 		return -EOPNOTSUPP;
4292 
4293 	switch (type) {
4294 	case TC_SETUP_CLSFLOWER:
4295 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4296 	case TC_SETUP_CLSU32:
4297 		return iavf_setup_tc_cls_u32(cb_priv, type_data);
4298 	default:
4299 		return -EOPNOTSUPP;
4300 	}
4301 }
4302 
4303 static LIST_HEAD(iavf_block_cb_list);
4304 
4305 /**
4306  * iavf_setup_tc - configure multiple traffic classes
4307  * @netdev: network interface device structure
4308  * @type: type of offload
4309  * @type_data: tc offload data
4310  *
4311  * This function is the callback to ndo_setup_tc in the
4312  * netdev_ops.
4313  *
4314  * Returns 0 on success
4315  **/
4316 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4317 			 void *type_data)
4318 {
4319 	struct iavf_adapter *adapter = netdev_priv(netdev);
4320 
4321 	switch (type) {
4322 	case TC_SETUP_QDISC_MQPRIO:
4323 		return __iavf_setup_tc(netdev, type_data);
4324 	case TC_SETUP_BLOCK:
4325 		return flow_block_cb_setup_simple(type_data,
4326 						  &iavf_block_cb_list,
4327 						  iavf_setup_tc_block_cb,
4328 						  adapter, adapter, true);
4329 	default:
4330 		return -EOPNOTSUPP;
4331 	}
4332 }
4333 
4334 /**
4335  * iavf_restore_fdir_filters
4336  * @adapter: board private structure
4337  *
4338  * Restore existing FDIR filters when VF netdev comes back up.
4339  **/
4340 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4341 {
4342 	struct iavf_fdir_fltr *f;
4343 
4344 	spin_lock_bh(&adapter->fdir_fltr_lock);
4345 	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4346 		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4347 			/* Cancel a request, keep filter as active */
4348 			f->state = IAVF_FDIR_FLTR_ACTIVE;
4349 		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4350 			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4351 			/* Add filters which are inactive or have a pending
4352 			 * request to PF to be deleted
4353 			 */
4354 			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4355 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4356 		}
4357 	}
4358 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4359 }
4360 
4361 /**
4362  * iavf_open - Called when a network interface is made active
4363  * @netdev: network interface device structure
4364  *
4365  * Returns 0 on success, negative value on failure
4366  *
4367  * The open entry point is called when a network interface is made
4368  * active by the system (IFF_UP).  At this point all resources needed
4369  * for transmit and receive operations are allocated, the interrupt
4370  * handler is registered with the OS, the watchdog is started,
4371  * and the stack is notified that the interface is ready.
4372  **/
4373 static int iavf_open(struct net_device *netdev)
4374 {
4375 	struct iavf_adapter *adapter = netdev_priv(netdev);
4376 	int err;
4377 
4378 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4379 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4380 		return -EIO;
4381 	}
4382 
4383 	netdev_lock(netdev);
4384 	while (!mutex_trylock(&adapter->crit_lock)) {
4385 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4386 		 * is already taken and iavf_open is called from an upper
4387 		 * device's notifier reacting on NETDEV_REGISTER event.
4388 		 * We have to leave here to avoid dead lock.
4389 		 */
4390 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) {
4391 			netdev_unlock(netdev);
4392 			return -EBUSY;
4393 		}
4394 
4395 		usleep_range(500, 1000);
4396 	}
4397 
4398 	if (adapter->state != __IAVF_DOWN) {
4399 		err = -EBUSY;
4400 		goto err_unlock;
4401 	}
4402 
4403 	if (adapter->state == __IAVF_RUNNING &&
4404 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4405 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4406 		err = 0;
4407 		goto err_unlock;
4408 	}
4409 
4410 	/* allocate transmit descriptors */
4411 	err = iavf_setup_all_tx_resources(adapter);
4412 	if (err)
4413 		goto err_setup_tx;
4414 
4415 	/* allocate receive descriptors */
4416 	err = iavf_setup_all_rx_resources(adapter);
4417 	if (err)
4418 		goto err_setup_rx;
4419 
4420 	/* clear any pending interrupts, may auto mask */
4421 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4422 	if (err)
4423 		goto err_req_irq;
4424 
4425 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4426 
4427 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4428 
4429 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4430 
4431 	/* Restore filters that were removed with IFF_DOWN */
4432 	iavf_restore_filters(adapter);
4433 	iavf_restore_fdir_filters(adapter);
4434 
4435 	iavf_configure(adapter);
4436 
4437 	iavf_up_complete(adapter);
4438 
4439 	iavf_irq_enable(adapter, true);
4440 
4441 	mutex_unlock(&adapter->crit_lock);
4442 	netdev_unlock(netdev);
4443 
4444 	return 0;
4445 
4446 err_req_irq:
4447 	iavf_down(adapter);
4448 	iavf_free_traffic_irqs(adapter);
4449 err_setup_rx:
4450 	iavf_free_all_rx_resources(adapter);
4451 err_setup_tx:
4452 	iavf_free_all_tx_resources(adapter);
4453 err_unlock:
4454 	mutex_unlock(&adapter->crit_lock);
4455 	netdev_unlock(netdev);
4456 
4457 	return err;
4458 }
4459 
4460 /**
4461  * iavf_close - Disables a network interface
4462  * @netdev: network interface device structure
4463  *
4464  * Returns 0, this is not allowed to fail
4465  *
4466  * The close entry point is called when an interface is de-activated
4467  * by the OS.  The hardware is still under the drivers control, but
4468  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4469  * are freed, along with all transmit and receive resources.
4470  **/
4471 static int iavf_close(struct net_device *netdev)
4472 {
4473 	struct iavf_adapter *adapter = netdev_priv(netdev);
4474 	u64 aq_to_restore;
4475 	int status;
4476 
4477 	netdev_lock(netdev);
4478 	mutex_lock(&adapter->crit_lock);
4479 
4480 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4481 		mutex_unlock(&adapter->crit_lock);
4482 		netdev_unlock(netdev);
4483 		return 0;
4484 	}
4485 
4486 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4487 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4488 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4489 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4490 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4491 	 * disable queues possible for vf. Give only necessary flags to
4492 	 * iavf_down and save other to set them right before iavf_close()
4493 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4494 	 * iavf will be in DOWN state.
4495 	 */
4496 	aq_to_restore = adapter->aq_required;
4497 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4498 
4499 	/* Remove flags which we do not want to send after close or we want to
4500 	 * send before disable queues.
4501 	 */
4502 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4503 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4504 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4505 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4506 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4507 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4508 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4509 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4510 
4511 	iavf_down(adapter);
4512 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4513 	iavf_free_traffic_irqs(adapter);
4514 
4515 	mutex_unlock(&adapter->crit_lock);
4516 	netdev_unlock(netdev);
4517 
4518 	/* We explicitly don't free resources here because the hardware is
4519 	 * still active and can DMA into memory. Resources are cleared in
4520 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4521 	 * driver that the rings have been stopped.
4522 	 *
4523 	 * Also, we wait for state to transition to __IAVF_DOWN before
4524 	 * returning. State change occurs in iavf_virtchnl_completion() after
4525 	 * VF resources are released (which occurs after PF driver processes and
4526 	 * responds to admin queue commands).
4527 	 */
4528 
4529 	status = wait_event_timeout(adapter->down_waitqueue,
4530 				    adapter->state == __IAVF_DOWN,
4531 				    msecs_to_jiffies(500));
4532 	if (!status)
4533 		netdev_warn(netdev, "Device resources not yet released\n");
4534 
4535 	mutex_lock(&adapter->crit_lock);
4536 	adapter->aq_required |= aq_to_restore;
4537 	mutex_unlock(&adapter->crit_lock);
4538 	return 0;
4539 }
4540 
4541 /**
4542  * iavf_change_mtu - Change the Maximum Transfer Unit
4543  * @netdev: network interface device structure
4544  * @new_mtu: new value for maximum frame size
4545  *
4546  * Returns 0 on success, negative on failure
4547  **/
4548 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4549 {
4550 	struct iavf_adapter *adapter = netdev_priv(netdev);
4551 	int ret = 0;
4552 
4553 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4554 		   netdev->mtu, new_mtu);
4555 	WRITE_ONCE(netdev->mtu, new_mtu);
4556 
4557 	if (netif_running(netdev)) {
4558 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4559 		ret = iavf_wait_for_reset(adapter);
4560 		if (ret < 0)
4561 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4562 		else if (ret)
4563 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4564 	}
4565 
4566 	return ret;
4567 }
4568 
4569 /**
4570  * iavf_disable_fdir - disable Flow Director and clear existing filters
4571  * @adapter: board private structure
4572  **/
4573 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4574 {
4575 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4576 	bool del_filters = false;
4577 
4578 	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4579 
4580 	/* remove all Flow Director filters */
4581 	spin_lock_bh(&adapter->fdir_fltr_lock);
4582 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4583 				 list) {
4584 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4585 		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4586 			/* Delete filters not registered in PF */
4587 			list_del(&fdir->list);
4588 			iavf_dec_fdir_active_fltr(adapter, fdir);
4589 			kfree(fdir);
4590 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4591 			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4592 			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4593 			/* Filters registered in PF, schedule their deletion */
4594 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4595 			del_filters = true;
4596 		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4597 			/* Request to delete filter already sent to PF, change
4598 			 * state to DEL_PENDING to delete filter after PF's
4599 			 * response, not set as INACTIVE
4600 			 */
4601 			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4602 		}
4603 	}
4604 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4605 
4606 	if (del_filters) {
4607 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4608 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4609 	}
4610 }
4611 
4612 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4613 					 NETIF_F_HW_VLAN_CTAG_TX | \
4614 					 NETIF_F_HW_VLAN_STAG_RX | \
4615 					 NETIF_F_HW_VLAN_STAG_TX)
4616 
4617 /**
4618  * iavf_set_features - set the netdev feature flags
4619  * @netdev: ptr to the netdev being adjusted
4620  * @features: the feature set that the stack is suggesting
4621  * Note: expects to be called while under rtnl_lock()
4622  **/
4623 static int iavf_set_features(struct net_device *netdev,
4624 			     netdev_features_t features)
4625 {
4626 	struct iavf_adapter *adapter = netdev_priv(netdev);
4627 
4628 	/* trigger update on any VLAN feature change */
4629 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4630 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4631 		iavf_set_vlan_offload_features(adapter, netdev->features,
4632 					       features);
4633 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4634 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4635 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4636 
4637 	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4638 		if (features & NETIF_F_NTUPLE)
4639 			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4640 		else
4641 			iavf_disable_fdir(adapter);
4642 	}
4643 
4644 	return 0;
4645 }
4646 
4647 /**
4648  * iavf_features_check - Validate encapsulated packet conforms to limits
4649  * @skb: skb buff
4650  * @dev: This physical port's netdev
4651  * @features: Offload features that the stack believes apply
4652  **/
4653 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4654 					     struct net_device *dev,
4655 					     netdev_features_t features)
4656 {
4657 	size_t len;
4658 
4659 	/* No point in doing any of this if neither checksum nor GSO are
4660 	 * being requested for this frame.  We can rule out both by just
4661 	 * checking for CHECKSUM_PARTIAL
4662 	 */
4663 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4664 		return features;
4665 
4666 	/* We cannot support GSO if the MSS is going to be less than
4667 	 * 64 bytes.  If it is then we need to drop support for GSO.
4668 	 */
4669 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4670 		features &= ~NETIF_F_GSO_MASK;
4671 
4672 	/* MACLEN can support at most 63 words */
4673 	len = skb_network_offset(skb);
4674 	if (len & ~(63 * 2))
4675 		goto out_err;
4676 
4677 	/* IPLEN and EIPLEN can support at most 127 dwords */
4678 	len = skb_network_header_len(skb);
4679 	if (len & ~(127 * 4))
4680 		goto out_err;
4681 
4682 	if (skb->encapsulation) {
4683 		/* L4TUNLEN can support 127 words */
4684 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4685 		if (len & ~(127 * 2))
4686 			goto out_err;
4687 
4688 		/* IPLEN can support at most 127 dwords */
4689 		len = skb_inner_transport_header(skb) -
4690 		      skb_inner_network_header(skb);
4691 		if (len & ~(127 * 4))
4692 			goto out_err;
4693 	}
4694 
4695 	/* No need to validate L4LEN as TCP is the only protocol with a
4696 	 * flexible value and we support all possible values supported
4697 	 * by TCP, which is at most 15 dwords
4698 	 */
4699 
4700 	return features;
4701 out_err:
4702 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4703 }
4704 
4705 /**
4706  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4707  * @adapter: board private structure
4708  *
4709  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4710  * were negotiated determine the VLAN features that can be toggled on and off.
4711  **/
4712 static netdev_features_t
4713 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4714 {
4715 	netdev_features_t hw_features = 0;
4716 
4717 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4718 		return hw_features;
4719 
4720 	/* Enable VLAN features if supported */
4721 	if (VLAN_ALLOWED(adapter)) {
4722 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4723 				NETIF_F_HW_VLAN_CTAG_RX);
4724 	} else if (VLAN_V2_ALLOWED(adapter)) {
4725 		struct virtchnl_vlan_caps *vlan_v2_caps =
4726 			&adapter->vlan_v2_caps;
4727 		struct virtchnl_vlan_supported_caps *stripping_support =
4728 			&vlan_v2_caps->offloads.stripping_support;
4729 		struct virtchnl_vlan_supported_caps *insertion_support =
4730 			&vlan_v2_caps->offloads.insertion_support;
4731 
4732 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4733 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4734 			if (stripping_support->outer &
4735 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4736 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4737 			if (stripping_support->outer &
4738 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4739 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4740 		} else if (stripping_support->inner !=
4741 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4742 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4743 			if (stripping_support->inner &
4744 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4745 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4746 		}
4747 
4748 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4749 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4750 			if (insertion_support->outer &
4751 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4752 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4753 			if (insertion_support->outer &
4754 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4755 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4756 		} else if (insertion_support->inner &&
4757 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4758 			if (insertion_support->inner &
4759 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4760 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4761 		}
4762 	}
4763 
4764 	if (CRC_OFFLOAD_ALLOWED(adapter))
4765 		hw_features |= NETIF_F_RXFCS;
4766 
4767 	return hw_features;
4768 }
4769 
4770 /**
4771  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4772  * @adapter: board private structure
4773  *
4774  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4775  * were negotiated determine the VLAN features that are enabled by default.
4776  **/
4777 static netdev_features_t
4778 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4779 {
4780 	netdev_features_t features = 0;
4781 
4782 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4783 		return features;
4784 
4785 	if (VLAN_ALLOWED(adapter)) {
4786 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4787 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4788 	} else if (VLAN_V2_ALLOWED(adapter)) {
4789 		struct virtchnl_vlan_caps *vlan_v2_caps =
4790 			&adapter->vlan_v2_caps;
4791 		struct virtchnl_vlan_supported_caps *filtering_support =
4792 			&vlan_v2_caps->filtering.filtering_support;
4793 		struct virtchnl_vlan_supported_caps *stripping_support =
4794 			&vlan_v2_caps->offloads.stripping_support;
4795 		struct virtchnl_vlan_supported_caps *insertion_support =
4796 			&vlan_v2_caps->offloads.insertion_support;
4797 		u32 ethertype_init;
4798 
4799 		/* give priority to outer stripping and don't support both outer
4800 		 * and inner stripping
4801 		 */
4802 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4803 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4804 			if (stripping_support->outer &
4805 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4806 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4807 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4808 			else if (stripping_support->outer &
4809 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4810 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4811 				features |= NETIF_F_HW_VLAN_STAG_RX;
4812 		} else if (stripping_support->inner !=
4813 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4814 			if (stripping_support->inner &
4815 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4816 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4817 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4818 		}
4819 
4820 		/* give priority to outer insertion and don't support both outer
4821 		 * and inner insertion
4822 		 */
4823 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4824 			if (insertion_support->outer &
4825 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4826 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4827 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4828 			else if (insertion_support->outer &
4829 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4830 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4831 				features |= NETIF_F_HW_VLAN_STAG_TX;
4832 		} else if (insertion_support->inner !=
4833 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4834 			if (insertion_support->inner &
4835 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4836 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4837 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4838 		}
4839 
4840 		/* give priority to outer filtering and don't bother if both
4841 		 * outer and inner filtering are enabled
4842 		 */
4843 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4844 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4845 			if (filtering_support->outer &
4846 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4847 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4848 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4849 			if (filtering_support->outer &
4850 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4851 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4852 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4853 		} else if (filtering_support->inner !=
4854 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4855 			if (filtering_support->inner &
4856 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4857 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4858 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4859 			if (filtering_support->inner &
4860 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4861 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4862 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4863 		}
4864 	}
4865 
4866 	return features;
4867 }
4868 
4869 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4870 	(!(((requested) & (feature_bit)) && \
4871 	   !((allowed) & (feature_bit))))
4872 
4873 /**
4874  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4875  * @adapter: board private structure
4876  * @requested_features: stack requested NETDEV features
4877  **/
4878 static netdev_features_t
4879 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4880 			      netdev_features_t requested_features)
4881 {
4882 	netdev_features_t allowed_features;
4883 
4884 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4885 		iavf_get_netdev_vlan_features(adapter);
4886 
4887 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4888 					      allowed_features,
4889 					      NETIF_F_HW_VLAN_CTAG_TX))
4890 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4891 
4892 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4893 					      allowed_features,
4894 					      NETIF_F_HW_VLAN_CTAG_RX))
4895 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4896 
4897 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4898 					      allowed_features,
4899 					      NETIF_F_HW_VLAN_STAG_TX))
4900 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4901 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4902 					      allowed_features,
4903 					      NETIF_F_HW_VLAN_STAG_RX))
4904 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4905 
4906 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4907 					      allowed_features,
4908 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4909 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4910 
4911 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4912 					      allowed_features,
4913 					      NETIF_F_HW_VLAN_STAG_FILTER))
4914 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4915 
4916 	if ((requested_features &
4917 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4918 	    (requested_features &
4919 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4920 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4921 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4922 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4923 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4924 					NETIF_F_HW_VLAN_STAG_TX);
4925 	}
4926 
4927 	return requested_features;
4928 }
4929 
4930 /**
4931  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4932  * @adapter: board private structure
4933  * @requested_features: stack requested NETDEV features
4934  *
4935  * Returns fixed-up features bits
4936  **/
4937 static netdev_features_t
4938 iavf_fix_strip_features(struct iavf_adapter *adapter,
4939 			netdev_features_t requested_features)
4940 {
4941 	struct net_device *netdev = adapter->netdev;
4942 	bool crc_offload_req, is_vlan_strip;
4943 	netdev_features_t vlan_strip;
4944 	int num_non_zero_vlan;
4945 
4946 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4947 			  (requested_features & NETIF_F_RXFCS);
4948 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4949 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4950 	is_vlan_strip = requested_features & vlan_strip;
4951 
4952 	if (!crc_offload_req)
4953 		return requested_features;
4954 
4955 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4956 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4957 		requested_features &= ~vlan_strip;
4958 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4959 		return requested_features;
4960 	}
4961 
4962 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4963 		requested_features &= ~vlan_strip;
4964 		if (!(netdev->features & vlan_strip))
4965 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4966 
4967 		return requested_features;
4968 	}
4969 
4970 	if (num_non_zero_vlan && is_vlan_strip &&
4971 	    !(netdev->features & NETIF_F_RXFCS)) {
4972 		requested_features &= ~NETIF_F_RXFCS;
4973 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4974 	}
4975 
4976 	return requested_features;
4977 }
4978 
4979 /**
4980  * iavf_fix_features - fix up the netdev feature bits
4981  * @netdev: our net device
4982  * @features: desired feature bits
4983  *
4984  * Returns fixed-up features bits
4985  **/
4986 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4987 					   netdev_features_t features)
4988 {
4989 	struct iavf_adapter *adapter = netdev_priv(netdev);
4990 
4991 	features = iavf_fix_netdev_vlan_features(adapter, features);
4992 
4993 	if (!FDIR_FLTR_SUPPORT(adapter))
4994 		features &= ~NETIF_F_NTUPLE;
4995 
4996 	return iavf_fix_strip_features(adapter, features);
4997 }
4998 
4999 static int
5000 iavf_verify_shaper(struct net_shaper_binding *binding,
5001 		   const struct net_shaper *shaper,
5002 		   struct netlink_ext_ack *extack)
5003 {
5004 	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5005 	u64 vf_max;
5006 
5007 	if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
5008 		vf_max = adapter->qos_caps->cap[0].shaper.peak;
5009 		if (vf_max && shaper->bw_max > vf_max) {
5010 			NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
5011 					   shaper->bw_max, shaper->handle.id,
5012 					   vf_max);
5013 			return -EINVAL;
5014 		}
5015 	}
5016 	return 0;
5017 }
5018 
5019 static int
5020 iavf_shaper_set(struct net_shaper_binding *binding,
5021 		const struct net_shaper *shaper,
5022 		struct netlink_ext_ack *extack)
5023 {
5024 	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5025 	const struct net_shaper_handle *handle = &shaper->handle;
5026 	struct iavf_ring *tx_ring;
5027 	int ret = 0;
5028 
5029 	mutex_lock(&adapter->crit_lock);
5030 	if (handle->id >= adapter->num_active_queues)
5031 		goto unlock;
5032 
5033 	ret = iavf_verify_shaper(binding, shaper, extack);
5034 	if (ret)
5035 		goto unlock;
5036 
5037 	tx_ring = &adapter->tx_rings[handle->id];
5038 
5039 	tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5040 	tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5041 	tx_ring->q_shaper_update = true;
5042 
5043 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5044 
5045 unlock:
5046 	mutex_unlock(&adapter->crit_lock);
5047 	return ret;
5048 }
5049 
5050 static int iavf_shaper_del(struct net_shaper_binding *binding,
5051 			   const struct net_shaper_handle *handle,
5052 			   struct netlink_ext_ack *extack)
5053 {
5054 	struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5055 	struct iavf_ring *tx_ring;
5056 
5057 	mutex_lock(&adapter->crit_lock);
5058 	if (handle->id >= adapter->num_active_queues)
5059 		goto unlock;
5060 
5061 	tx_ring = &adapter->tx_rings[handle->id];
5062 	tx_ring->q_shaper.bw_min = 0;
5063 	tx_ring->q_shaper.bw_max = 0;
5064 	tx_ring->q_shaper_update = true;
5065 
5066 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5067 
5068 unlock:
5069 	mutex_unlock(&adapter->crit_lock);
5070 	return 0;
5071 }
5072 
5073 static void iavf_shaper_cap(struct net_shaper_binding *binding,
5074 			    enum net_shaper_scope scope,
5075 			    unsigned long *flags)
5076 {
5077 	if (scope != NET_SHAPER_SCOPE_QUEUE)
5078 		return;
5079 
5080 	*flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5081 		 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5082 		 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5083 }
5084 
5085 static const struct net_shaper_ops iavf_shaper_ops = {
5086 	.set = iavf_shaper_set,
5087 	.delete = iavf_shaper_del,
5088 	.capabilities = iavf_shaper_cap,
5089 };
5090 
5091 static const struct net_device_ops iavf_netdev_ops = {
5092 	.ndo_open		= iavf_open,
5093 	.ndo_stop		= iavf_close,
5094 	.ndo_start_xmit		= iavf_xmit_frame,
5095 	.ndo_set_rx_mode	= iavf_set_rx_mode,
5096 	.ndo_validate_addr	= eth_validate_addr,
5097 	.ndo_set_mac_address	= iavf_set_mac,
5098 	.ndo_change_mtu		= iavf_change_mtu,
5099 	.ndo_tx_timeout		= iavf_tx_timeout,
5100 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
5101 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
5102 	.ndo_features_check	= iavf_features_check,
5103 	.ndo_fix_features	= iavf_fix_features,
5104 	.ndo_set_features	= iavf_set_features,
5105 	.ndo_setup_tc		= iavf_setup_tc,
5106 	.net_shaper_ops		= &iavf_shaper_ops,
5107 };
5108 
5109 /**
5110  * iavf_check_reset_complete - check that VF reset is complete
5111  * @hw: pointer to hw struct
5112  *
5113  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5114  **/
5115 static int iavf_check_reset_complete(struct iavf_hw *hw)
5116 {
5117 	u32 rstat;
5118 	int i;
5119 
5120 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5121 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5122 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5123 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5124 		    (rstat == VIRTCHNL_VFR_COMPLETED))
5125 			return 0;
5126 		msleep(IAVF_RESET_WAIT_MS);
5127 	}
5128 	return -EBUSY;
5129 }
5130 
5131 /**
5132  * iavf_process_config - Process the config information we got from the PF
5133  * @adapter: board private structure
5134  *
5135  * Verify that we have a valid config struct, and set up our netdev features
5136  * and our VSI struct.
5137  **/
5138 int iavf_process_config(struct iavf_adapter *adapter)
5139 {
5140 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
5141 	netdev_features_t hw_vlan_features, vlan_features;
5142 	struct net_device *netdev = adapter->netdev;
5143 	netdev_features_t hw_enc_features;
5144 	netdev_features_t hw_features;
5145 
5146 	hw_enc_features = NETIF_F_SG			|
5147 			  NETIF_F_IP_CSUM		|
5148 			  NETIF_F_IPV6_CSUM		|
5149 			  NETIF_F_HIGHDMA		|
5150 			  NETIF_F_SOFT_FEATURES	|
5151 			  NETIF_F_TSO			|
5152 			  NETIF_F_TSO_ECN		|
5153 			  NETIF_F_TSO6			|
5154 			  NETIF_F_SCTP_CRC		|
5155 			  NETIF_F_RXHASH		|
5156 			  NETIF_F_RXCSUM		|
5157 			  0;
5158 
5159 	/* advertise to stack only if offloads for encapsulated packets is
5160 	 * supported
5161 	 */
5162 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5163 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
5164 				   NETIF_F_GSO_GRE		|
5165 				   NETIF_F_GSO_GRE_CSUM		|
5166 				   NETIF_F_GSO_IPXIP4		|
5167 				   NETIF_F_GSO_IPXIP6		|
5168 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
5169 				   NETIF_F_GSO_PARTIAL		|
5170 				   0;
5171 
5172 		if (!(vfres->vf_cap_flags &
5173 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5174 			netdev->gso_partial_features |=
5175 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
5176 
5177 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5178 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5179 		netdev->hw_enc_features |= hw_enc_features;
5180 	}
5181 	/* record features VLANs can make use of */
5182 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5183 
5184 	/* Write features and hw_features separately to avoid polluting
5185 	 * with, or dropping, features that are set when we registered.
5186 	 */
5187 	hw_features = hw_enc_features;
5188 
5189 	/* get HW VLAN features that can be toggled */
5190 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5191 
5192 	/* Enable HW TC offload if ADQ or tc U32 is supported */
5193 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5194 	    TC_U32_SUPPORT(adapter))
5195 		hw_features |= NETIF_F_HW_TC;
5196 
5197 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5198 		hw_features |= NETIF_F_GSO_UDP_L4;
5199 
5200 	netdev->hw_features |= hw_features | hw_vlan_features;
5201 	vlan_features = iavf_get_netdev_vlan_features(adapter);
5202 
5203 	netdev->features |= hw_features | vlan_features;
5204 
5205 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5206 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5207 
5208 	if (FDIR_FLTR_SUPPORT(adapter)) {
5209 		netdev->hw_features |= NETIF_F_NTUPLE;
5210 		netdev->features |= NETIF_F_NTUPLE;
5211 		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5212 	}
5213 
5214 	netdev->priv_flags |= IFF_UNICAST_FLT;
5215 
5216 	/* Do not turn on offloads when they are requested to be turned off.
5217 	 * TSO needs minimum 576 bytes to work correctly.
5218 	 */
5219 	if (netdev->wanted_features) {
5220 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
5221 		    netdev->mtu < 576)
5222 			netdev->features &= ~NETIF_F_TSO;
5223 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5224 		    netdev->mtu < 576)
5225 			netdev->features &= ~NETIF_F_TSO6;
5226 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5227 			netdev->features &= ~NETIF_F_TSO_ECN;
5228 		if (!(netdev->wanted_features & NETIF_F_GRO))
5229 			netdev->features &= ~NETIF_F_GRO;
5230 		if (!(netdev->wanted_features & NETIF_F_GSO))
5231 			netdev->features &= ~NETIF_F_GSO;
5232 	}
5233 
5234 	return 0;
5235 }
5236 
5237 /**
5238  * iavf_probe - Device Initialization Routine
5239  * @pdev: PCI device information struct
5240  * @ent: entry in iavf_pci_tbl
5241  *
5242  * Returns 0 on success, negative on failure
5243  *
5244  * iavf_probe initializes an adapter identified by a pci_dev structure.
5245  * The OS initialization, configuring of the adapter private structure,
5246  * and a hardware reset occur.
5247  **/
5248 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5249 {
5250 	struct net_device *netdev;
5251 	struct iavf_adapter *adapter = NULL;
5252 	struct iavf_hw *hw = NULL;
5253 	int err, len;
5254 
5255 	err = pci_enable_device(pdev);
5256 	if (err)
5257 		return err;
5258 
5259 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5260 	if (err) {
5261 		dev_err(&pdev->dev,
5262 			"DMA configuration failed: 0x%x\n", err);
5263 		goto err_dma;
5264 	}
5265 
5266 	err = pci_request_regions(pdev, iavf_driver_name);
5267 	if (err) {
5268 		dev_err(&pdev->dev,
5269 			"pci_request_regions failed 0x%x\n", err);
5270 		goto err_pci_reg;
5271 	}
5272 
5273 	pci_set_master(pdev);
5274 
5275 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5276 				   IAVF_MAX_REQ_QUEUES);
5277 	if (!netdev) {
5278 		err = -ENOMEM;
5279 		goto err_alloc_etherdev;
5280 	}
5281 
5282 	SET_NETDEV_DEV(netdev, &pdev->dev);
5283 
5284 	pci_set_drvdata(pdev, netdev);
5285 	adapter = netdev_priv(netdev);
5286 
5287 	adapter->netdev = netdev;
5288 	adapter->pdev = pdev;
5289 
5290 	hw = &adapter->hw;
5291 	hw->back = adapter;
5292 
5293 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5294 					      iavf_driver_name);
5295 	if (!adapter->wq) {
5296 		err = -ENOMEM;
5297 		goto err_alloc_wq;
5298 	}
5299 
5300 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5301 	iavf_change_state(adapter, __IAVF_STARTUP);
5302 
5303 	/* Call save state here because it relies on the adapter struct. */
5304 	pci_save_state(pdev);
5305 
5306 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5307 			      pci_resource_len(pdev, 0));
5308 	if (!hw->hw_addr) {
5309 		err = -EIO;
5310 		goto err_ioremap;
5311 	}
5312 	hw->vendor_id = pdev->vendor;
5313 	hw->device_id = pdev->device;
5314 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5315 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5316 	hw->subsystem_device_id = pdev->subsystem_device;
5317 	hw->bus.device = PCI_SLOT(pdev->devfn);
5318 	hw->bus.func = PCI_FUNC(pdev->devfn);
5319 	hw->bus.bus_id = pdev->bus->number;
5320 
5321 	len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5322 	adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5323 	if (!adapter->qos_caps) {
5324 		err = -ENOMEM;
5325 		goto err_alloc_qos_cap;
5326 	}
5327 
5328 	/* set up the locks for the AQ, do this only once in probe
5329 	 * and destroy them only once in remove
5330 	 */
5331 	mutex_init(&adapter->crit_lock);
5332 	mutex_init(&hw->aq.asq_mutex);
5333 	mutex_init(&hw->aq.arq_mutex);
5334 
5335 	spin_lock_init(&adapter->mac_vlan_list_lock);
5336 	spin_lock_init(&adapter->cloud_filter_list_lock);
5337 	spin_lock_init(&adapter->fdir_fltr_lock);
5338 	spin_lock_init(&adapter->adv_rss_lock);
5339 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5340 
5341 	INIT_LIST_HEAD(&adapter->mac_filter_list);
5342 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5343 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5344 	INIT_LIST_HEAD(&adapter->fdir_list_head);
5345 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5346 
5347 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5348 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5349 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5350 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5351 
5352 	/* Setup the wait queue for indicating transition to down status */
5353 	init_waitqueue_head(&adapter->down_waitqueue);
5354 
5355 	/* Setup the wait queue for indicating transition to running state */
5356 	init_waitqueue_head(&adapter->reset_waitqueue);
5357 
5358 	/* Setup the wait queue for indicating virtchannel events */
5359 	init_waitqueue_head(&adapter->vc_waitqueue);
5360 
5361 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5362 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5363 	/* Initialization goes on in the work. Do not add more of it below. */
5364 	return 0;
5365 
5366 err_alloc_qos_cap:
5367 	iounmap(hw->hw_addr);
5368 err_ioremap:
5369 	destroy_workqueue(adapter->wq);
5370 err_alloc_wq:
5371 	free_netdev(netdev);
5372 err_alloc_etherdev:
5373 	pci_release_regions(pdev);
5374 err_pci_reg:
5375 err_dma:
5376 	pci_disable_device(pdev);
5377 	return err;
5378 }
5379 
5380 /**
5381  * iavf_suspend - Power management suspend routine
5382  * @dev_d: device info pointer
5383  *
5384  * Called when the system (VM) is entering sleep/suspend.
5385  **/
5386 static int iavf_suspend(struct device *dev_d)
5387 {
5388 	struct net_device *netdev = dev_get_drvdata(dev_d);
5389 	struct iavf_adapter *adapter = netdev_priv(netdev);
5390 
5391 	netif_device_detach(netdev);
5392 
5393 	netdev_lock(netdev);
5394 	mutex_lock(&adapter->crit_lock);
5395 
5396 	if (netif_running(netdev)) {
5397 		rtnl_lock();
5398 		iavf_down(adapter);
5399 		rtnl_unlock();
5400 	}
5401 	iavf_free_misc_irq(adapter);
5402 	iavf_reset_interrupt_capability(adapter);
5403 
5404 	mutex_unlock(&adapter->crit_lock);
5405 	netdev_unlock(netdev);
5406 
5407 	return 0;
5408 }
5409 
5410 /**
5411  * iavf_resume - Power management resume routine
5412  * @dev_d: device info pointer
5413  *
5414  * Called when the system (VM) is resumed from sleep/suspend.
5415  **/
5416 static int iavf_resume(struct device *dev_d)
5417 {
5418 	struct pci_dev *pdev = to_pci_dev(dev_d);
5419 	struct iavf_adapter *adapter;
5420 	u32 err;
5421 
5422 	adapter = iavf_pdev_to_adapter(pdev);
5423 
5424 	pci_set_master(pdev);
5425 
5426 	rtnl_lock();
5427 	err = iavf_set_interrupt_capability(adapter);
5428 	if (err) {
5429 		rtnl_unlock();
5430 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5431 		return err;
5432 	}
5433 	err = iavf_request_misc_irq(adapter);
5434 	rtnl_unlock();
5435 	if (err) {
5436 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5437 		return err;
5438 	}
5439 
5440 	queue_work(adapter->wq, &adapter->reset_task);
5441 
5442 	netif_device_attach(adapter->netdev);
5443 
5444 	return err;
5445 }
5446 
5447 /**
5448  * iavf_remove - Device Removal Routine
5449  * @pdev: PCI device information struct
5450  *
5451  * iavf_remove is called by the PCI subsystem to alert the driver
5452  * that it should release a PCI device.  The could be caused by a
5453  * Hot-Plug event, or because the driver is going to be removed from
5454  * memory.
5455  **/
5456 static void iavf_remove(struct pci_dev *pdev)
5457 {
5458 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5459 	struct iavf_vlan_filter *vlf, *vlftmp;
5460 	struct iavf_cloud_filter *cf, *cftmp;
5461 	struct iavf_adv_rss *rss, *rsstmp;
5462 	struct iavf_mac_filter *f, *ftmp;
5463 	struct iavf_adapter *adapter;
5464 	struct net_device *netdev;
5465 	struct iavf_hw *hw;
5466 
5467 	/* Don't proceed with remove if netdev is already freed */
5468 	netdev = pci_get_drvdata(pdev);
5469 	if (!netdev)
5470 		return;
5471 
5472 	adapter = iavf_pdev_to_adapter(pdev);
5473 	hw = &adapter->hw;
5474 
5475 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5476 		return;
5477 
5478 	/* Wait until port initialization is complete.
5479 	 * There are flows where register/unregister netdev may race.
5480 	 */
5481 	while (1) {
5482 		mutex_lock(&adapter->crit_lock);
5483 		if (adapter->state == __IAVF_RUNNING ||
5484 		    adapter->state == __IAVF_DOWN ||
5485 		    adapter->state == __IAVF_INIT_FAILED) {
5486 			mutex_unlock(&adapter->crit_lock);
5487 			break;
5488 		}
5489 		/* Simply return if we already went through iavf_shutdown */
5490 		if (adapter->state == __IAVF_REMOVE) {
5491 			mutex_unlock(&adapter->crit_lock);
5492 			return;
5493 		}
5494 
5495 		mutex_unlock(&adapter->crit_lock);
5496 		usleep_range(500, 1000);
5497 	}
5498 	cancel_delayed_work_sync(&adapter->watchdog_task);
5499 	cancel_work_sync(&adapter->finish_config);
5500 
5501 	if (netdev->reg_state == NETREG_REGISTERED)
5502 		unregister_netdev(netdev);
5503 
5504 	netdev_lock(netdev);
5505 	mutex_lock(&adapter->crit_lock);
5506 	dev_info(&adapter->pdev->dev, "Removing device\n");
5507 	iavf_change_state(adapter, __IAVF_REMOVE);
5508 
5509 	iavf_request_reset(adapter);
5510 	msleep(50);
5511 	/* If the FW isn't responding, kick it once, but only once. */
5512 	if (!iavf_asq_done(hw)) {
5513 		iavf_request_reset(adapter);
5514 		msleep(50);
5515 	}
5516 
5517 	iavf_misc_irq_disable(adapter);
5518 	/* Shut down all the garbage mashers on the detention level */
5519 	cancel_work_sync(&adapter->reset_task);
5520 	cancel_delayed_work_sync(&adapter->watchdog_task);
5521 	cancel_work_sync(&adapter->adminq_task);
5522 
5523 	adapter->aq_required = 0;
5524 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5525 
5526 	iavf_free_all_tx_resources(adapter);
5527 	iavf_free_all_rx_resources(adapter);
5528 	iavf_free_misc_irq(adapter);
5529 	iavf_free_interrupt_scheme(adapter);
5530 
5531 	iavf_free_rss(adapter);
5532 
5533 	if (hw->aq.asq.count)
5534 		iavf_shutdown_adminq(hw);
5535 
5536 	/* destroy the locks only once, here */
5537 	mutex_destroy(&hw->aq.arq_mutex);
5538 	mutex_destroy(&hw->aq.asq_mutex);
5539 	mutex_unlock(&adapter->crit_lock);
5540 	mutex_destroy(&adapter->crit_lock);
5541 	netdev_unlock(netdev);
5542 
5543 	iounmap(hw->hw_addr);
5544 	pci_release_regions(pdev);
5545 	kfree(adapter->vf_res);
5546 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5547 	/* If we got removed before an up/down sequence, we've got a filter
5548 	 * hanging out there that we need to get rid of.
5549 	 */
5550 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5551 		list_del(&f->list);
5552 		kfree(f);
5553 	}
5554 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5555 				 list) {
5556 		list_del(&vlf->list);
5557 		kfree(vlf);
5558 	}
5559 
5560 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5561 
5562 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5563 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5564 		list_del(&cf->list);
5565 		kfree(cf);
5566 	}
5567 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5568 
5569 	spin_lock_bh(&adapter->fdir_fltr_lock);
5570 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5571 		list_del(&fdir->list);
5572 		kfree(fdir);
5573 	}
5574 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5575 
5576 	spin_lock_bh(&adapter->adv_rss_lock);
5577 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5578 				 list) {
5579 		list_del(&rss->list);
5580 		kfree(rss);
5581 	}
5582 	spin_unlock_bh(&adapter->adv_rss_lock);
5583 
5584 	destroy_workqueue(adapter->wq);
5585 
5586 	pci_set_drvdata(pdev, NULL);
5587 
5588 	free_netdev(netdev);
5589 
5590 	pci_disable_device(pdev);
5591 }
5592 
5593 /**
5594  * iavf_shutdown - Shutdown the device in preparation for a reboot
5595  * @pdev: pci device structure
5596  **/
5597 static void iavf_shutdown(struct pci_dev *pdev)
5598 {
5599 	iavf_remove(pdev);
5600 
5601 	if (system_state == SYSTEM_POWER_OFF)
5602 		pci_set_power_state(pdev, PCI_D3hot);
5603 }
5604 
5605 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5606 
5607 static struct pci_driver iavf_driver = {
5608 	.name      = iavf_driver_name,
5609 	.id_table  = iavf_pci_tbl,
5610 	.probe     = iavf_probe,
5611 	.remove    = iavf_remove,
5612 	.driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5613 	.shutdown  = iavf_shutdown,
5614 };
5615 
5616 /**
5617  * iavf_init_module - Driver Registration Routine
5618  *
5619  * iavf_init_module is the first routine called when the driver is
5620  * loaded. All it does is register with the PCI subsystem.
5621  **/
5622 static int __init iavf_init_module(void)
5623 {
5624 	pr_info("iavf: %s\n", iavf_driver_string);
5625 
5626 	pr_info("%s\n", iavf_copyright);
5627 
5628 	return pci_register_driver(&iavf_driver);
5629 }
5630 
5631 module_init(iavf_init_module);
5632 
5633 /**
5634  * iavf_exit_module - Driver Exit Cleanup Routine
5635  *
5636  * iavf_exit_module is called just before the driver is removed
5637  * from memory.
5638  **/
5639 static void __exit iavf_exit_module(void)
5640 {
5641 	pci_unregister_driver(&iavf_driver);
5642 }
5643 
5644 module_exit(iavf_exit_module);
5645 
5646 /* iavf_main.c */
5647