1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_prototype.h" 8 /* All iavf tracepoints are defined by the include below, which must 9 * be included exactly once across the whole kernel with 10 * CREATE_TRACE_POINTS defined 11 */ 12 #define CREATE_TRACE_POINTS 13 #include "iavf_trace.h" 14 15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 17 static int iavf_close(struct net_device *netdev); 18 static void iavf_init_get_resources(struct iavf_adapter *adapter); 19 static int iavf_check_reset_complete(struct iavf_hw *hw); 20 21 char iavf_driver_name[] = "iavf"; 22 static const char iavf_driver_string[] = 23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 24 25 static const char iavf_copyright[] = 26 "Copyright (c) 2013 - 2018 Intel Corporation."; 27 28 /* iavf_pci_tbl - PCI Device ID Table 29 * 30 * Wildcard entries (PCI_ANY_ID) should come last 31 * Last entry must be all 0s 32 * 33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 34 * Class, Class Mask, private data (not used) } 35 */ 36 static const struct pci_device_id iavf_pci_tbl[] = { 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 41 /* required last entry */ 42 {0, } 43 }; 44 45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 46 47 MODULE_ALIAS("i40evf"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_IMPORT_NS("LIBETH"); 50 MODULE_IMPORT_NS("LIBIE"); 51 MODULE_LICENSE("GPL v2"); 52 53 static const struct net_device_ops iavf_netdev_ops; 54 55 int iavf_status_to_errno(enum iavf_status status) 56 { 57 switch (status) { 58 case IAVF_SUCCESS: 59 return 0; 60 case IAVF_ERR_PARAM: 61 case IAVF_ERR_MAC_TYPE: 62 case IAVF_ERR_INVALID_MAC_ADDR: 63 case IAVF_ERR_INVALID_LINK_SETTINGS: 64 case IAVF_ERR_INVALID_PD_ID: 65 case IAVF_ERR_INVALID_QP_ID: 66 case IAVF_ERR_INVALID_CQ_ID: 67 case IAVF_ERR_INVALID_CEQ_ID: 68 case IAVF_ERR_INVALID_AEQ_ID: 69 case IAVF_ERR_INVALID_SIZE: 70 case IAVF_ERR_INVALID_ARP_INDEX: 71 case IAVF_ERR_INVALID_FPM_FUNC_ID: 72 case IAVF_ERR_QP_INVALID_MSG_SIZE: 73 case IAVF_ERR_INVALID_FRAG_COUNT: 74 case IAVF_ERR_INVALID_ALIGNMENT: 75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 76 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 77 case IAVF_ERR_INVALID_VF_ID: 78 case IAVF_ERR_INVALID_HMCFN_ID: 79 case IAVF_ERR_INVALID_PBLE_INDEX: 80 case IAVF_ERR_INVALID_SD_INDEX: 81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 82 case IAVF_ERR_INVALID_SD_TYPE: 83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 86 return -EINVAL; 87 case IAVF_ERR_NVM: 88 case IAVF_ERR_NVM_CHECKSUM: 89 case IAVF_ERR_PHY: 90 case IAVF_ERR_CONFIG: 91 case IAVF_ERR_UNKNOWN_PHY: 92 case IAVF_ERR_LINK_SETUP: 93 case IAVF_ERR_ADAPTER_STOPPED: 94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 95 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 96 case IAVF_ERR_RESET_FAILED: 97 case IAVF_ERR_BAD_PTR: 98 case IAVF_ERR_SWFW_SYNC: 99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 100 case IAVF_ERR_QUEUE_EMPTY: 101 case IAVF_ERR_FLUSHED_QUEUE: 102 case IAVF_ERR_OPCODE_MISMATCH: 103 case IAVF_ERR_CQP_COMPL_ERROR: 104 case IAVF_ERR_BACKING_PAGE_ERROR: 105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 106 case IAVF_ERR_MEMCPY_FAILED: 107 case IAVF_ERR_SRQ_ENABLED: 108 case IAVF_ERR_ADMIN_QUEUE_ERROR: 109 case IAVF_ERR_ADMIN_QUEUE_FULL: 110 case IAVF_ERR_BAD_RDMA_CQE: 111 case IAVF_ERR_NVM_BLANK_MODE: 112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 113 case IAVF_ERR_DIAG_TEST_FAILED: 114 case IAVF_ERR_FIRMWARE_API_VERSION: 115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 116 return -EIO; 117 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 118 return -ENODEV; 119 case IAVF_ERR_NO_AVAILABLE_VSI: 120 case IAVF_ERR_RING_FULL: 121 return -ENOSPC; 122 case IAVF_ERR_NO_MEMORY: 123 return -ENOMEM; 124 case IAVF_ERR_TIMEOUT: 125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 126 return -ETIMEDOUT; 127 case IAVF_ERR_NOT_IMPLEMENTED: 128 case IAVF_NOT_SUPPORTED: 129 return -EOPNOTSUPP; 130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 131 return -EALREADY; 132 case IAVF_ERR_NOT_READY: 133 return -EBUSY; 134 case IAVF_ERR_BUF_TOO_SHORT: 135 return -EMSGSIZE; 136 } 137 138 return -EIO; 139 } 140 141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 142 { 143 switch (v_status) { 144 case VIRTCHNL_STATUS_SUCCESS: 145 return 0; 146 case VIRTCHNL_STATUS_ERR_PARAM: 147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 148 return -EINVAL; 149 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 150 return -ENOMEM; 151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 154 return -EIO; 155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 156 return -EOPNOTSUPP; 157 } 158 159 return -EIO; 160 } 161 162 /** 163 * iavf_pdev_to_adapter - go from pci_dev to adapter 164 * @pdev: pci_dev pointer 165 */ 166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 167 { 168 return netdev_priv(pci_get_drvdata(pdev)); 169 } 170 171 /** 172 * iavf_is_reset_in_progress - Check if a reset is in progress 173 * @adapter: board private structure 174 */ 175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 176 { 177 if (adapter->state == __IAVF_RESETTING || 178 adapter->flags & (IAVF_FLAG_RESET_PENDING | 179 IAVF_FLAG_RESET_NEEDED)) 180 return true; 181 182 return false; 183 } 184 185 /** 186 * iavf_wait_for_reset - Wait for reset to finish. 187 * @adapter: board private structure 188 * 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 190 */ 191 int iavf_wait_for_reset(struct iavf_adapter *adapter) 192 { 193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 194 !iavf_is_reset_in_progress(adapter), 195 msecs_to_jiffies(5000)); 196 197 /* If ret < 0 then it means wait was interrupted. 198 * If ret == 0 then it means we got a timeout while waiting 199 * for reset to finish. 200 * If ret > 0 it means reset has finished. 201 */ 202 if (ret > 0) 203 return 0; 204 else if (ret < 0) 205 return -EINTR; 206 else 207 return -EBUSY; 208 } 209 210 /** 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 212 * @hw: pointer to the HW structure 213 * @mem: ptr to mem struct to fill out 214 * @size: size of memory requested 215 * @alignment: what to align the allocation to 216 **/ 217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 218 struct iavf_dma_mem *mem, 219 u64 size, u32 alignment) 220 { 221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 222 223 if (!mem) 224 return IAVF_ERR_PARAM; 225 226 mem->size = ALIGN(size, alignment); 227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 228 (dma_addr_t *)&mem->pa, GFP_KERNEL); 229 if (mem->va) 230 return 0; 231 else 232 return IAVF_ERR_NO_MEMORY; 233 } 234 235 /** 236 * iavf_free_dma_mem - wrapper for DMA memory freeing 237 * @hw: pointer to the HW structure 238 * @mem: ptr to mem struct to free 239 **/ 240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 241 { 242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 243 244 if (!mem || !mem->va) 245 return IAVF_ERR_PARAM; 246 dma_free_coherent(&adapter->pdev->dev, mem->size, 247 mem->va, (dma_addr_t)mem->pa); 248 return 0; 249 } 250 251 /** 252 * iavf_allocate_virt_mem - virt memory alloc wrapper 253 * @hw: pointer to the HW structure 254 * @mem: ptr to mem struct to fill out 255 * @size: size of memory requested 256 **/ 257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 258 struct iavf_virt_mem *mem, u32 size) 259 { 260 if (!mem) 261 return IAVF_ERR_PARAM; 262 263 mem->size = size; 264 mem->va = kzalloc(size, GFP_KERNEL); 265 266 if (mem->va) 267 return 0; 268 else 269 return IAVF_ERR_NO_MEMORY; 270 } 271 272 /** 273 * iavf_free_virt_mem - virt memory free wrapper 274 * @hw: pointer to the HW structure 275 * @mem: ptr to mem struct to free 276 **/ 277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 278 { 279 kfree(mem->va); 280 } 281 282 /** 283 * iavf_schedule_reset - Set the flags and schedule a reset event 284 * @adapter: board private structure 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 286 **/ 287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 288 { 289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 290 !(adapter->flags & 291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 292 adapter->flags |= flags; 293 queue_work(adapter->wq, &adapter->reset_task); 294 } 295 } 296 297 /** 298 * iavf_schedule_aq_request - Set the flags and schedule aq request 299 * @adapter: board private structure 300 * @flags: requested aq flags 301 **/ 302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 303 { 304 adapter->aq_required |= flags; 305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 306 } 307 308 /** 309 * iavf_tx_timeout - Respond to a Tx Hang 310 * @netdev: network interface device structure 311 * @txqueue: queue number that is timing out 312 **/ 313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 314 { 315 struct iavf_adapter *adapter = netdev_priv(netdev); 316 317 adapter->tx_timeout_count++; 318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 319 } 320 321 /** 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 323 * @adapter: board private structure 324 **/ 325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 326 { 327 struct iavf_hw *hw = &adapter->hw; 328 329 if (!adapter->msix_entries) 330 return; 331 332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 333 334 iavf_flush(hw); 335 336 synchronize_irq(adapter->msix_entries[0].vector); 337 } 338 339 /** 340 * iavf_misc_irq_enable - Enable default interrupt generation settings 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 350 351 iavf_flush(hw); 352 } 353 354 /** 355 * iavf_irq_disable - Mask off interrupt generation on the NIC 356 * @adapter: board private structure 357 **/ 358 static void iavf_irq_disable(struct iavf_adapter *adapter) 359 { 360 int i; 361 struct iavf_hw *hw = &adapter->hw; 362 363 if (!adapter->msix_entries) 364 return; 365 366 for (i = 1; i < adapter->num_msix_vectors; i++) { 367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 368 synchronize_irq(adapter->msix_entries[i].vector); 369 } 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_enable_queues - Enable interrupt for all queues 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 378 { 379 struct iavf_hw *hw = &adapter->hw; 380 int i; 381 382 for (i = 1; i < adapter->num_msix_vectors; i++) { 383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 386 } 387 } 388 389 /** 390 * iavf_irq_enable - Enable default interrupt generation settings 391 * @adapter: board private structure 392 * @flush: boolean value whether to run rd32() 393 **/ 394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 395 { 396 struct iavf_hw *hw = &adapter->hw; 397 398 iavf_misc_irq_enable(adapter); 399 iavf_irq_enable_queues(adapter); 400 401 if (flush) 402 iavf_flush(hw); 403 } 404 405 /** 406 * iavf_msix_aq - Interrupt handler for vector 0 407 * @irq: interrupt number 408 * @data: pointer to netdev 409 **/ 410 static irqreturn_t iavf_msix_aq(int irq, void *data) 411 { 412 struct net_device *netdev = data; 413 struct iavf_adapter *adapter = netdev_priv(netdev); 414 struct iavf_hw *hw = &adapter->hw; 415 416 /* handle non-queue interrupts, these reads clear the registers */ 417 rd32(hw, IAVF_VFINT_ICR01); 418 rd32(hw, IAVF_VFINT_ICR0_ENA1); 419 420 if (adapter->state != __IAVF_REMOVE) 421 /* schedule work on the private workqueue */ 422 queue_work(adapter->wq, &adapter->adminq_task); 423 424 return IRQ_HANDLED; 425 } 426 427 /** 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 429 * @irq: interrupt number 430 * @data: pointer to a q_vector 431 **/ 432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 433 { 434 struct iavf_q_vector *q_vector = data; 435 436 if (!q_vector->tx.ring && !q_vector->rx.ring) 437 return IRQ_HANDLED; 438 439 napi_schedule_irqoff(&q_vector->napi); 440 441 return IRQ_HANDLED; 442 } 443 444 /** 445 * iavf_map_vector_to_rxq - associate irqs with rx queues 446 * @adapter: board private structure 447 * @v_idx: interrupt number 448 * @r_idx: queue number 449 **/ 450 static void 451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 452 { 453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 455 struct iavf_hw *hw = &adapter->hw; 456 457 rx_ring->q_vector = q_vector; 458 rx_ring->next = q_vector->rx.ring; 459 rx_ring->vsi = &adapter->vsi; 460 q_vector->rx.ring = rx_ring; 461 q_vector->rx.count++; 462 q_vector->rx.next_update = jiffies + 1; 463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 464 q_vector->ring_mask |= BIT(r_idx); 465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 466 q_vector->rx.current_itr >> 1); 467 q_vector->rx.current_itr = q_vector->rx.target_itr; 468 } 469 470 /** 471 * iavf_map_vector_to_txq - associate irqs with tx queues 472 * @adapter: board private structure 473 * @v_idx: interrupt number 474 * @t_idx: queue number 475 **/ 476 static void 477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 478 { 479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 481 struct iavf_hw *hw = &adapter->hw; 482 483 tx_ring->q_vector = q_vector; 484 tx_ring->next = q_vector->tx.ring; 485 tx_ring->vsi = &adapter->vsi; 486 q_vector->tx.ring = tx_ring; 487 q_vector->tx.count++; 488 q_vector->tx.next_update = jiffies + 1; 489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 490 q_vector->num_ringpairs++; 491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 492 q_vector->tx.target_itr >> 1); 493 q_vector->tx.current_itr = q_vector->tx.target_itr; 494 } 495 496 /** 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 498 * @adapter: board private structure to initialize 499 * 500 * This function maps descriptor rings to the queue-specific vectors 501 * we were allotted through the MSI-X enabling code. Ideally, we'd have 502 * one vector per ring/queue, but on a constrained vector budget, we 503 * group the rings as "efficiently" as possible. You would add new 504 * mapping configurations in here. 505 **/ 506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 507 { 508 int rings_remaining = adapter->num_active_queues; 509 int ridx = 0, vidx = 0; 510 int q_vectors; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (; ridx < rings_remaining; ridx++) { 515 iavf_map_vector_to_rxq(adapter, vidx, ridx); 516 iavf_map_vector_to_txq(adapter, vidx, ridx); 517 518 /* In the case where we have more queues than vectors, continue 519 * round-robin on vectors until all queues are mapped. 520 */ 521 if (++vidx >= q_vectors) 522 vidx = 0; 523 } 524 525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 526 } 527 528 /** 529 * iavf_irq_affinity_notify - Callback for affinity changes 530 * @notify: context as to what irq was changed 531 * @mask: the new affinity mask 532 * 533 * This is a callback function used by the irq_set_affinity_notifier function 534 * so that we may register to receive changes to the irq affinity masks. 535 **/ 536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 537 const cpumask_t *mask) 538 { 539 struct iavf_q_vector *q_vector = 540 container_of(notify, struct iavf_q_vector, affinity_notify); 541 542 cpumask_copy(&q_vector->affinity_mask, mask); 543 } 544 545 /** 546 * iavf_irq_affinity_release - Callback for affinity notifier release 547 * @ref: internal core kernel usage 548 * 549 * This is a callback function used by the irq_set_affinity_notifier function 550 * to inform the current notification subscriber that they will no longer 551 * receive notifications. 552 **/ 553 static void iavf_irq_affinity_release(struct kref *ref) {} 554 555 /** 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 557 * @adapter: board private structure 558 * @basename: device basename 559 * 560 * Allocates MSI-X vectors for tx and rx handling, and requests 561 * interrupts from the kernel. 562 **/ 563 static int 564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 565 { 566 unsigned int vector, q_vectors; 567 unsigned int rx_int_idx = 0, tx_int_idx = 0; 568 int irq_num, err; 569 int cpu; 570 571 iavf_irq_disable(adapter); 572 /* Decrement for Other and TCP Timer vectors */ 573 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 574 575 for (vector = 0; vector < q_vectors; vector++) { 576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 577 578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 579 580 if (q_vector->tx.ring && q_vector->rx.ring) { 581 snprintf(q_vector->name, sizeof(q_vector->name), 582 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 583 tx_int_idx++; 584 } else if (q_vector->rx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-rx-%u", basename, rx_int_idx++); 587 } else if (q_vector->tx.ring) { 588 snprintf(q_vector->name, sizeof(q_vector->name), 589 "iavf-%s-tx-%u", basename, tx_int_idx++); 590 } else { 591 /* skip this unused q_vector */ 592 continue; 593 } 594 err = request_irq(irq_num, 595 iavf_msix_clean_rings, 596 0, 597 q_vector->name, 598 q_vector); 599 if (err) { 600 dev_info(&adapter->pdev->dev, 601 "Request_irq failed, error: %d\n", err); 602 goto free_queue_irqs; 603 } 604 /* register for affinity change notifications */ 605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 606 q_vector->affinity_notify.release = 607 iavf_irq_affinity_release; 608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 609 /* Spread the IRQ affinity hints across online CPUs. Note that 610 * get_cpu_mask returns a mask with a permanent lifetime so 611 * it's safe to use as a hint for irq_update_affinity_hint. 612 */ 613 cpu = cpumask_local_spread(q_vector->v_idx, -1); 614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 615 } 616 617 return 0; 618 619 free_queue_irqs: 620 while (vector) { 621 vector--; 622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 623 irq_set_affinity_notifier(irq_num, NULL); 624 irq_update_affinity_hint(irq_num, NULL); 625 free_irq(irq_num, &adapter->q_vectors[vector]); 626 } 627 return err; 628 } 629 630 /** 631 * iavf_request_misc_irq - Initialize MSI-X interrupts 632 * @adapter: board private structure 633 * 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 635 * vector is only for the admin queue, and stays active even when the netdev 636 * is closed. 637 **/ 638 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 639 { 640 struct net_device *netdev = adapter->netdev; 641 int err; 642 643 snprintf(adapter->misc_vector_name, 644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 645 dev_name(&adapter->pdev->dev)); 646 err = request_irq(adapter->msix_entries[0].vector, 647 &iavf_msix_aq, 0, 648 adapter->misc_vector_name, netdev); 649 if (err) { 650 dev_err(&adapter->pdev->dev, 651 "request_irq for %s failed: %d\n", 652 adapter->misc_vector_name, err); 653 free_irq(adapter->msix_entries[0].vector, netdev); 654 } 655 return err; 656 } 657 658 /** 659 * iavf_free_traffic_irqs - Free MSI-X interrupts 660 * @adapter: board private structure 661 * 662 * Frees all MSI-X vectors other than 0. 663 **/ 664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 665 { 666 int vector, irq_num, q_vectors; 667 668 if (!adapter->msix_entries) 669 return; 670 671 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 672 673 for (vector = 0; vector < q_vectors; vector++) { 674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 675 irq_set_affinity_notifier(irq_num, NULL); 676 irq_update_affinity_hint(irq_num, NULL); 677 free_irq(irq_num, &adapter->q_vectors[vector]); 678 } 679 } 680 681 /** 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 683 * @adapter: board private structure 684 * 685 * Frees MSI-X vector 0. 686 **/ 687 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 688 { 689 struct net_device *netdev = adapter->netdev; 690 691 if (!adapter->msix_entries) 692 return; 693 694 free_irq(adapter->msix_entries[0].vector, netdev); 695 } 696 697 /** 698 * iavf_configure_tx - Configure Transmit Unit after Reset 699 * @adapter: board private structure 700 * 701 * Configure the Tx unit of the MAC after a reset. 702 **/ 703 static void iavf_configure_tx(struct iavf_adapter *adapter) 704 { 705 struct iavf_hw *hw = &adapter->hw; 706 int i; 707 708 for (i = 0; i < adapter->num_active_queues; i++) 709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 710 } 711 712 /** 713 * iavf_configure_rx - Configure Receive Unit after Reset 714 * @adapter: board private structure 715 * 716 * Configure the Rx unit of the MAC after a reset. 717 **/ 718 static void iavf_configure_rx(struct iavf_adapter *adapter) 719 { 720 struct iavf_hw *hw = &adapter->hw; 721 722 for (u32 i = 0; i < adapter->num_active_queues; i++) 723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 724 } 725 726 /** 727 * iavf_find_vlan - Search filter list for specific vlan filter 728 * @adapter: board private structure 729 * @vlan: vlan tag 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 736 struct iavf_vlan vlan) 737 { 738 struct iavf_vlan_filter *f; 739 740 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 741 if (f->vlan.vid == vlan.vid && 742 f->vlan.tpid == vlan.tpid) 743 return f; 744 } 745 746 return NULL; 747 } 748 749 /** 750 * iavf_add_vlan - Add a vlan filter to the list 751 * @adapter: board private structure 752 * @vlan: VLAN tag 753 * 754 * Returns ptr to the filter object or NULL when no memory available. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f = NULL; 761 762 spin_lock_bh(&adapter->mac_vlan_list_lock); 763 764 f = iavf_find_vlan(adapter, vlan); 765 if (!f) { 766 f = kzalloc(sizeof(*f), GFP_ATOMIC); 767 if (!f) 768 goto clearout; 769 770 f->vlan = vlan; 771 772 list_add_tail(&f->list, &adapter->vlan_filter_list); 773 f->state = IAVF_VLAN_ADD; 774 adapter->num_vlan_filters++; 775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 776 } else if (f->state == IAVF_VLAN_REMOVE) { 777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 778 * We can safely only change the state here. 779 */ 780 f->state = IAVF_VLAN_ACTIVE; 781 } 782 783 clearout: 784 spin_unlock_bh(&adapter->mac_vlan_list_lock); 785 return f; 786 } 787 788 /** 789 * iavf_del_vlan - Remove a vlan filter from the list 790 * @adapter: board private structure 791 * @vlan: VLAN tag 792 **/ 793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 794 { 795 struct iavf_vlan_filter *f; 796 797 spin_lock_bh(&adapter->mac_vlan_list_lock); 798 799 f = iavf_find_vlan(adapter, vlan); 800 if (f) { 801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 802 * Remove it from the list. 803 */ 804 if (f->state == IAVF_VLAN_ADD) { 805 list_del(&f->list); 806 kfree(f); 807 adapter->num_vlan_filters--; 808 } else { 809 f->state = IAVF_VLAN_REMOVE; 810 iavf_schedule_aq_request(adapter, 811 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 812 } 813 } 814 815 spin_unlock_bh(&adapter->mac_vlan_list_lock); 816 } 817 818 /** 819 * iavf_restore_filters 820 * @adapter: board private structure 821 * 822 * Restore existing non MAC filters when VF netdev comes back up 823 **/ 824 static void iavf_restore_filters(struct iavf_adapter *adapter) 825 { 826 struct iavf_vlan_filter *f; 827 828 /* re-add all VLAN filters */ 829 spin_lock_bh(&adapter->mac_vlan_list_lock); 830 831 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 832 if (f->state == IAVF_VLAN_INACTIVE) 833 f->state = IAVF_VLAN_ADD; 834 } 835 836 spin_unlock_bh(&adapter->mac_vlan_list_lock); 837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 838 } 839 840 /** 841 * iavf_get_num_vlans_added - get number of VLANs added 842 * @adapter: board private structure 843 */ 844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 845 { 846 return adapter->num_vlan_filters; 847 } 848 849 /** 850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 851 * @adapter: board private structure 852 * 853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 854 * do not impose a limit as that maintains current behavior and for 855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 856 **/ 857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 858 { 859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 860 * never been a limit on the VF driver side 861 */ 862 if (VLAN_ALLOWED(adapter)) 863 return VLAN_N_VID; 864 else if (VLAN_V2_ALLOWED(adapter)) 865 return adapter->vlan_v2_caps.filtering.max_filters; 866 867 return 0; 868 } 869 870 /** 871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 872 * @adapter: board private structure 873 **/ 874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 875 { 876 if (iavf_get_num_vlans_added(adapter) < 877 iavf_get_max_vlans_allowed(adapter)) 878 return false; 879 880 return true; 881 } 882 883 /** 884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 885 * @netdev: network device struct 886 * @proto: unused protocol data 887 * @vid: VLAN tag 888 **/ 889 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 890 __always_unused __be16 proto, u16 vid) 891 { 892 struct iavf_adapter *adapter = netdev_priv(netdev); 893 894 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 895 if (!vid) 896 return 0; 897 898 if (!VLAN_FILTERING_ALLOWED(adapter)) 899 return -EIO; 900 901 if (iavf_max_vlans_added(adapter)) { 902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 903 iavf_get_max_vlans_allowed(adapter)); 904 return -EIO; 905 } 906 907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 908 return -ENOMEM; 909 910 return 0; 911 } 912 913 /** 914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 915 * @netdev: network device struct 916 * @proto: unused protocol data 917 * @vid: VLAN tag 918 **/ 919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 920 __always_unused __be16 proto, u16 vid) 921 { 922 struct iavf_adapter *adapter = netdev_priv(netdev); 923 924 /* We do not track VLAN 0 filter */ 925 if (!vid) 926 return 0; 927 928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *new_f; 1008 struct iavf_mac_filter *old_f; 1009 1010 spin_lock_bh(&adapter->mac_vlan_list_lock); 1011 1012 new_f = iavf_add_filter(adapter, new_mac); 1013 if (!new_f) { 1014 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1015 return -ENOMEM; 1016 } 1017 1018 old_f = iavf_find_filter(adapter, hw->mac.addr); 1019 if (old_f) { 1020 old_f->is_primary = false; 1021 old_f->remove = true; 1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1023 } 1024 /* Always send the request to add if changing primary MAC, 1025 * even if filter is already present on the list 1026 */ 1027 new_f->is_primary = true; 1028 new_f->add = true; 1029 ether_addr_copy(hw->mac.addr, new_mac); 1030 1031 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1032 1033 /* schedule the watchdog task to immediately process the request */ 1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1035 return 0; 1036 } 1037 1038 /** 1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1040 * @netdev: network interface device structure 1041 * @macaddr: MAC address to set 1042 * 1043 * Returns true on success, false on failure 1044 */ 1045 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1046 const u8 *macaddr) 1047 { 1048 struct iavf_adapter *adapter = netdev_priv(netdev); 1049 struct iavf_mac_filter *f; 1050 bool ret = false; 1051 1052 spin_lock_bh(&adapter->mac_vlan_list_lock); 1053 1054 f = iavf_find_filter(adapter, macaddr); 1055 1056 if (!f || (!f->add && f->add_handled)) 1057 ret = true; 1058 1059 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1060 1061 return ret; 1062 } 1063 1064 /** 1065 * iavf_set_mac - NDO callback to set port MAC address 1066 * @netdev: network interface device structure 1067 * @p: pointer to an address structure 1068 * 1069 * Returns 0 on success, negative on failure 1070 */ 1071 static int iavf_set_mac(struct net_device *netdev, void *p) 1072 { 1073 struct iavf_adapter *adapter = netdev_priv(netdev); 1074 struct sockaddr *addr = p; 1075 int ret; 1076 1077 if (!is_valid_ether_addr(addr->sa_data)) 1078 return -EADDRNOTAVAIL; 1079 1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1081 1082 if (ret) 1083 return ret; 1084 1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1086 iavf_is_mac_set_handled(netdev, addr->sa_data), 1087 msecs_to_jiffies(2500)); 1088 1089 /* If ret < 0 then it means wait was interrupted. 1090 * If ret == 0 then it means we got a timeout. 1091 * else it means we got response for set MAC from PF, 1092 * check if netdev MAC was updated to requested MAC, 1093 * if yes then set MAC succeeded otherwise it failed return -EACCES 1094 */ 1095 if (ret < 0) 1096 return ret; 1097 1098 if (!ret) 1099 return -EAGAIN; 1100 1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1102 return -EACCES; 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1109 * @netdev: the netdevice 1110 * @addr: address to add 1111 * 1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1114 */ 1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1116 { 1117 struct iavf_adapter *adapter = netdev_priv(netdev); 1118 1119 if (iavf_add_filter(adapter, addr)) 1120 return 0; 1121 else 1122 return -ENOMEM; 1123 } 1124 1125 /** 1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1127 * @netdev: the netdevice 1128 * @addr: address to add 1129 * 1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1132 */ 1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1134 { 1135 struct iavf_adapter *adapter = netdev_priv(netdev); 1136 struct iavf_mac_filter *f; 1137 1138 /* Under some circumstances, we might receive a request to delete 1139 * our own device address from our uc list. Because we store the 1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1141 * such requests and not delete our device address from this list. 1142 */ 1143 if (ether_addr_equal(addr, netdev->dev_addr)) 1144 return 0; 1145 1146 f = iavf_find_filter(adapter, addr); 1147 if (f) { 1148 f->remove = true; 1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1150 } 1151 return 0; 1152 } 1153 1154 /** 1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1156 * @adapter: device specific adapter 1157 */ 1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1159 { 1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1161 (IFF_PROMISC | IFF_ALLMULTI); 1162 } 1163 1164 /** 1165 * iavf_set_rx_mode - NDO callback to set the netdev filters 1166 * @netdev: network interface device structure 1167 **/ 1168 static void iavf_set_rx_mode(struct net_device *netdev) 1169 { 1170 struct iavf_adapter *adapter = netdev_priv(netdev); 1171 1172 spin_lock_bh(&adapter->mac_vlan_list_lock); 1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1175 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1176 1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1178 if (iavf_promiscuous_mode_changed(adapter)) 1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1181 } 1182 1183 /** 1184 * iavf_napi_enable_all - enable NAPI on all queue vectors 1185 * @adapter: board private structure 1186 **/ 1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1188 { 1189 int q_idx; 1190 struct iavf_q_vector *q_vector; 1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1192 1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1194 struct napi_struct *napi; 1195 1196 q_vector = &adapter->q_vectors[q_idx]; 1197 napi = &q_vector->napi; 1198 napi_enable_locked(napi); 1199 } 1200 } 1201 1202 /** 1203 * iavf_napi_disable_all - disable NAPI on all queue vectors 1204 * @adapter: board private structure 1205 **/ 1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1207 { 1208 int q_idx; 1209 struct iavf_q_vector *q_vector; 1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1211 1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1213 q_vector = &adapter->q_vectors[q_idx]; 1214 napi_disable_locked(&q_vector->napi); 1215 } 1216 } 1217 1218 /** 1219 * iavf_configure - set up transmit and receive data structures 1220 * @adapter: board private structure 1221 **/ 1222 static void iavf_configure(struct iavf_adapter *adapter) 1223 { 1224 struct net_device *netdev = adapter->netdev; 1225 int i; 1226 1227 iavf_set_rx_mode(netdev); 1228 1229 iavf_configure_tx(adapter); 1230 iavf_configure_rx(adapter); 1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1232 1233 for (i = 0; i < adapter->num_active_queues; i++) { 1234 struct iavf_ring *ring = &adapter->rx_rings[i]; 1235 1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1237 } 1238 } 1239 1240 /** 1241 * iavf_up_complete - Finish the last steps of bringing up a connection 1242 * @adapter: board private structure 1243 * 1244 * Expects to be called while holding crit_lock. 1245 **/ 1246 static void iavf_up_complete(struct iavf_adapter *adapter) 1247 { 1248 iavf_change_state(adapter, __IAVF_RUNNING); 1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1250 1251 iavf_napi_enable_all(adapter); 1252 1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1254 } 1255 1256 /** 1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1258 * yet and mark other to be removed. 1259 * @adapter: board private structure 1260 **/ 1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1262 { 1263 struct iavf_vlan_filter *vlf, *vlftmp; 1264 struct iavf_mac_filter *f, *ftmp; 1265 1266 spin_lock_bh(&adapter->mac_vlan_list_lock); 1267 /* clear the sync flag on all filters */ 1268 __dev_uc_unsync(adapter->netdev, NULL); 1269 __dev_mc_unsync(adapter->netdev, NULL); 1270 1271 /* remove all MAC filters */ 1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1273 list) { 1274 if (f->add) { 1275 list_del(&f->list); 1276 kfree(f); 1277 } else { 1278 f->remove = true; 1279 } 1280 } 1281 1282 /* disable all VLAN filters */ 1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1284 list) 1285 vlf->state = IAVF_VLAN_DISABLE; 1286 1287 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1288 } 1289 1290 /** 1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1292 * mark other to be removed. 1293 * @adapter: board private structure 1294 **/ 1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1296 { 1297 struct iavf_cloud_filter *cf, *cftmp; 1298 1299 /* remove all cloud filters */ 1300 spin_lock_bh(&adapter->cloud_filter_list_lock); 1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1302 list) { 1303 if (cf->add) { 1304 list_del(&cf->list); 1305 kfree(cf); 1306 adapter->num_cloud_filters--; 1307 } else { 1308 cf->del = true; 1309 } 1310 } 1311 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1312 } 1313 1314 /** 1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1316 * other to be removed. 1317 * @adapter: board private structure 1318 **/ 1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1320 { 1321 struct iavf_fdir_fltr *fdir; 1322 1323 /* remove all Flow Director filters */ 1324 spin_lock_bh(&adapter->fdir_fltr_lock); 1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1327 /* Cancel a request, keep filter as inactive */ 1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1331 /* Disable filters which are active or have a pending 1332 * request to PF to be added 1333 */ 1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1335 } 1336 } 1337 spin_unlock_bh(&adapter->fdir_fltr_lock); 1338 } 1339 1340 /** 1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1342 * other to be removed. 1343 * @adapter: board private structure 1344 **/ 1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1346 { 1347 struct iavf_adv_rss *rss, *rsstmp; 1348 1349 /* remove all advance RSS configuration */ 1350 spin_lock_bh(&adapter->adv_rss_lock); 1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1352 list) { 1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1354 list_del(&rss->list); 1355 kfree(rss); 1356 } else { 1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1358 } 1359 } 1360 spin_unlock_bh(&adapter->adv_rss_lock); 1361 } 1362 1363 /** 1364 * iavf_down - Shutdown the connection processing 1365 * @adapter: board private structure 1366 * 1367 * Expects to be called while holding crit_lock. 1368 **/ 1369 void iavf_down(struct iavf_adapter *adapter) 1370 { 1371 struct net_device *netdev = adapter->netdev; 1372 1373 if (adapter->state <= __IAVF_DOWN_PENDING) 1374 return; 1375 1376 netif_carrier_off(netdev); 1377 netif_tx_disable(netdev); 1378 adapter->link_up = false; 1379 iavf_napi_disable_all(adapter); 1380 iavf_irq_disable(adapter); 1381 1382 iavf_clear_mac_vlan_filters(adapter); 1383 iavf_clear_cloud_filters(adapter); 1384 iavf_clear_fdir_filters(adapter); 1385 iavf_clear_adv_rss_conf(adapter); 1386 1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1388 return; 1389 1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1391 /* cancel any current operation */ 1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1393 /* Schedule operations to close down the HW. Don't wait 1394 * here for this to complete. The watchdog is still running 1395 * and it will take care of this. 1396 */ 1397 if (!list_empty(&adapter->mac_filter_list)) 1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1399 if (!list_empty(&adapter->vlan_filter_list)) 1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1401 if (!list_empty(&adapter->cloud_filter_list)) 1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1403 if (!list_empty(&adapter->fdir_list_head)) 1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1405 if (!list_empty(&adapter->adv_rss_list_head)) 1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1407 } 1408 1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1410 } 1411 1412 /** 1413 * iavf_acquire_msix_vectors - Setup the MSIX capability 1414 * @adapter: board private structure 1415 * @vectors: number of vectors to request 1416 * 1417 * Work with the OS to set up the MSIX vectors needed. 1418 * 1419 * Returns 0 on success, negative on failure 1420 **/ 1421 static int 1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1423 { 1424 int err, vector_threshold; 1425 1426 /* We'll want at least 3 (vector_threshold): 1427 * 0) Other (Admin Queue and link, mostly) 1428 * 1) TxQ[0] Cleanup 1429 * 2) RxQ[0] Cleanup 1430 */ 1431 vector_threshold = MIN_MSIX_COUNT; 1432 1433 /* The more we get, the more we will assign to Tx/Rx Cleanup 1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1435 * Right now, we simply care about how many we'll get; we'll 1436 * set them up later while requesting irq's. 1437 */ 1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1439 vector_threshold, vectors); 1440 if (err < 0) { 1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1442 kfree(adapter->msix_entries); 1443 adapter->msix_entries = NULL; 1444 return err; 1445 } 1446 1447 /* Adjust for only the vectors we'll use, which is minimum 1448 * of max_msix_q_vectors + NONQ_VECS, or the number of 1449 * vectors we were allocated. 1450 */ 1451 adapter->num_msix_vectors = err; 1452 return 0; 1453 } 1454 1455 /** 1456 * iavf_free_queues - Free memory for all rings 1457 * @adapter: board private structure to initialize 1458 * 1459 * Free all of the memory associated with queue pairs. 1460 **/ 1461 static void iavf_free_queues(struct iavf_adapter *adapter) 1462 { 1463 if (!adapter->vsi_res) 1464 return; 1465 adapter->num_active_queues = 0; 1466 kfree(adapter->tx_rings); 1467 adapter->tx_rings = NULL; 1468 kfree(adapter->rx_rings); 1469 adapter->rx_rings = NULL; 1470 } 1471 1472 /** 1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1474 * @adapter: board private structure 1475 * 1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1477 * stripped in certain descriptor fields. Instead of checking the offload 1478 * capability bits in the hot path, cache the location the ring specific 1479 * flags. 1480 */ 1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1482 { 1483 int i; 1484 1485 for (i = 0; i < adapter->num_active_queues; i++) { 1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1488 1489 /* prevent multiple L2TAG bits being set after VFR */ 1490 tx_ring->flags &= 1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1493 rx_ring->flags &= 1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1496 1497 if (VLAN_ALLOWED(adapter)) { 1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1500 } else if (VLAN_V2_ALLOWED(adapter)) { 1501 struct virtchnl_vlan_supported_caps *stripping_support; 1502 struct virtchnl_vlan_supported_caps *insertion_support; 1503 1504 stripping_support = 1505 &adapter->vlan_v2_caps.offloads.stripping_support; 1506 insertion_support = 1507 &adapter->vlan_v2_caps.offloads.insertion_support; 1508 1509 if (stripping_support->outer) { 1510 if (stripping_support->outer & 1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1512 rx_ring->flags |= 1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1514 else if (stripping_support->outer & 1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1516 rx_ring->flags |= 1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1518 } else if (stripping_support->inner) { 1519 if (stripping_support->inner & 1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1521 rx_ring->flags |= 1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1523 else if (stripping_support->inner & 1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1525 rx_ring->flags |= 1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1527 } 1528 1529 if (insertion_support->outer) { 1530 if (insertion_support->outer & 1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1532 tx_ring->flags |= 1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 else if (insertion_support->outer & 1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1536 tx_ring->flags |= 1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1538 } else if (insertion_support->inner) { 1539 if (insertion_support->inner & 1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1541 tx_ring->flags |= 1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1543 else if (insertion_support->inner & 1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1545 tx_ring->flags |= 1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1547 } 1548 } 1549 } 1550 } 1551 1552 /** 1553 * iavf_alloc_queues - Allocate memory for all rings 1554 * @adapter: board private structure to initialize 1555 * 1556 * We allocate one ring per queue at run-time since we don't know the 1557 * number of queues at compile-time. The polling_netdev array is 1558 * intended for Multiqueue, but should work fine with a single queue. 1559 **/ 1560 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1561 { 1562 int i, num_active_queues; 1563 1564 /* If we're in reset reallocating queues we don't actually know yet for 1565 * certain the PF gave us the number of queues we asked for but we'll 1566 * assume it did. Once basic reset is finished we'll confirm once we 1567 * start negotiating config with PF. 1568 */ 1569 if (adapter->num_req_queues) 1570 num_active_queues = adapter->num_req_queues; 1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1572 adapter->num_tc) 1573 num_active_queues = adapter->ch_config.total_qps; 1574 else 1575 num_active_queues = min_t(int, 1576 adapter->vsi_res->num_queue_pairs, 1577 (int)(num_online_cpus())); 1578 1579 1580 adapter->tx_rings = kcalloc(num_active_queues, 1581 sizeof(struct iavf_ring), GFP_KERNEL); 1582 if (!adapter->tx_rings) 1583 goto err_out; 1584 adapter->rx_rings = kcalloc(num_active_queues, 1585 sizeof(struct iavf_ring), GFP_KERNEL); 1586 if (!adapter->rx_rings) 1587 goto err_out; 1588 1589 for (i = 0; i < num_active_queues; i++) { 1590 struct iavf_ring *tx_ring; 1591 struct iavf_ring *rx_ring; 1592 1593 tx_ring = &adapter->tx_rings[i]; 1594 1595 tx_ring->queue_index = i; 1596 tx_ring->netdev = adapter->netdev; 1597 tx_ring->dev = &adapter->pdev->dev; 1598 tx_ring->count = adapter->tx_desc_count; 1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1602 1603 rx_ring = &adapter->rx_rings[i]; 1604 rx_ring->queue_index = i; 1605 rx_ring->netdev = adapter->netdev; 1606 rx_ring->count = adapter->rx_desc_count; 1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1608 } 1609 1610 adapter->num_active_queues = num_active_queues; 1611 1612 iavf_set_queue_vlan_tag_loc(adapter); 1613 1614 return 0; 1615 1616 err_out: 1617 iavf_free_queues(adapter); 1618 return -ENOMEM; 1619 } 1620 1621 /** 1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1623 * @adapter: board private structure to initialize 1624 * 1625 * Attempt to configure the interrupts using the best available 1626 * capabilities of the hardware and the kernel. 1627 **/ 1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1629 { 1630 int vector, v_budget; 1631 int pairs = 0; 1632 int err = 0; 1633 1634 if (!adapter->vsi_res) { 1635 err = -EIO; 1636 goto out; 1637 } 1638 pairs = adapter->num_active_queues; 1639 1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1641 * us much good if we have more vectors than CPUs. However, we already 1642 * limit the total number of queues by the number of CPUs so we do not 1643 * need any further limiting here. 1644 */ 1645 v_budget = min_t(int, pairs + NONQ_VECS, 1646 (int)adapter->vf_res->max_vectors); 1647 1648 adapter->msix_entries = kcalloc(v_budget, 1649 sizeof(struct msix_entry), GFP_KERNEL); 1650 if (!adapter->msix_entries) { 1651 err = -ENOMEM; 1652 goto out; 1653 } 1654 1655 for (vector = 0; vector < v_budget; vector++) 1656 adapter->msix_entries[vector].entry = vector; 1657 1658 err = iavf_acquire_msix_vectors(adapter, v_budget); 1659 if (!err) 1660 iavf_schedule_finish_config(adapter); 1661 1662 out: 1663 return err; 1664 } 1665 1666 /** 1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1668 * @adapter: board private structure 1669 * 1670 * Return 0 on success, negative on failure 1671 **/ 1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1673 { 1674 struct iavf_aqc_get_set_rss_key_data *rss_key = 1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1676 struct iavf_hw *hw = &adapter->hw; 1677 enum iavf_status status; 1678 1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1680 /* bail because we already have a command pending */ 1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1682 adapter->current_op); 1683 return -EBUSY; 1684 } 1685 1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1687 if (status) { 1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1689 iavf_stat_str(hw, status), 1690 iavf_aq_str(hw, hw->aq.asq_last_status)); 1691 return iavf_status_to_errno(status); 1692 1693 } 1694 1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1696 adapter->rss_lut, adapter->rss_lut_size); 1697 if (status) { 1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1699 iavf_stat_str(hw, status), 1700 iavf_aq_str(hw, hw->aq.asq_last_status)); 1701 return iavf_status_to_errno(status); 1702 } 1703 1704 return 0; 1705 1706 } 1707 1708 /** 1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1710 * @adapter: board private structure 1711 * 1712 * Returns 0 on success, negative on failure 1713 **/ 1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1715 { 1716 struct iavf_hw *hw = &adapter->hw; 1717 u32 *dw; 1718 u16 i; 1719 1720 dw = (u32 *)adapter->rss_key; 1721 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1723 1724 dw = (u32 *)adapter->rss_lut; 1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1727 1728 iavf_flush(hw); 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * iavf_config_rss - Configure RSS keys and lut 1735 * @adapter: board private structure 1736 * 1737 * Returns 0 on success, negative on failure 1738 **/ 1739 int iavf_config_rss(struct iavf_adapter *adapter) 1740 { 1741 1742 if (RSS_PF(adapter)) { 1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1744 IAVF_FLAG_AQ_SET_RSS_KEY; 1745 return 0; 1746 } else if (RSS_AQ(adapter)) { 1747 return iavf_config_rss_aq(adapter); 1748 } else { 1749 return iavf_config_rss_reg(adapter); 1750 } 1751 } 1752 1753 /** 1754 * iavf_fill_rss_lut - Fill the lut with default values 1755 * @adapter: board private structure 1756 **/ 1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1758 { 1759 u16 i; 1760 1761 for (i = 0; i < adapter->rss_lut_size; i++) 1762 adapter->rss_lut[i] = i % adapter->num_active_queues; 1763 } 1764 1765 /** 1766 * iavf_init_rss - Prepare for RSS 1767 * @adapter: board private structure 1768 * 1769 * Return 0 on success, negative on failure 1770 **/ 1771 static int iavf_init_rss(struct iavf_adapter *adapter) 1772 { 1773 struct iavf_hw *hw = &adapter->hw; 1774 1775 if (!RSS_PF(adapter)) { 1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1777 if (adapter->vf_res->vf_cap_flags & 1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1780 else 1781 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1782 1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1785 } 1786 1787 iavf_fill_rss_lut(adapter); 1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1789 1790 return iavf_config_rss(adapter); 1791 } 1792 1793 /** 1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1795 * @adapter: board private structure to initialize 1796 * 1797 * We allocate one q_vector per queue interrupt. If allocation fails we 1798 * return -ENOMEM. 1799 **/ 1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1801 { 1802 int q_idx = 0, num_q_vectors; 1803 struct iavf_q_vector *q_vector; 1804 1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1807 GFP_KERNEL); 1808 if (!adapter->q_vectors) 1809 return -ENOMEM; 1810 1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1812 q_vector = &adapter->q_vectors[q_idx]; 1813 q_vector->adapter = adapter; 1814 q_vector->vsi = &adapter->vsi; 1815 q_vector->v_idx = q_idx; 1816 q_vector->reg_idx = q_idx; 1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1818 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1819 iavf_napi_poll); 1820 } 1821 1822 return 0; 1823 } 1824 1825 /** 1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1827 * @adapter: board private structure to initialize 1828 * 1829 * This function frees the memory allocated to the q_vectors. In addition if 1830 * NAPI is enabled it will delete any references to the NAPI struct prior 1831 * to freeing the q_vector. 1832 **/ 1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1834 { 1835 int q_idx, num_q_vectors; 1836 1837 if (!adapter->q_vectors) 1838 return; 1839 1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1841 1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1844 1845 netif_napi_del_locked(&q_vector->napi); 1846 } 1847 kfree(adapter->q_vectors); 1848 adapter->q_vectors = NULL; 1849 } 1850 1851 /** 1852 * iavf_reset_interrupt_capability - Reset MSIX setup 1853 * @adapter: board private structure 1854 * 1855 **/ 1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1857 { 1858 if (!adapter->msix_entries) 1859 return; 1860 1861 pci_disable_msix(adapter->pdev); 1862 kfree(adapter->msix_entries); 1863 adapter->msix_entries = NULL; 1864 } 1865 1866 /** 1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1868 * @adapter: board private structure to initialize 1869 * 1870 **/ 1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1872 { 1873 int err; 1874 1875 err = iavf_alloc_queues(adapter); 1876 if (err) { 1877 dev_err(&adapter->pdev->dev, 1878 "Unable to allocate memory for queues\n"); 1879 goto err_alloc_queues; 1880 } 1881 1882 err = iavf_set_interrupt_capability(adapter); 1883 if (err) { 1884 dev_err(&adapter->pdev->dev, 1885 "Unable to setup interrupt capabilities\n"); 1886 goto err_set_interrupt; 1887 } 1888 1889 err = iavf_alloc_q_vectors(adapter); 1890 if (err) { 1891 dev_err(&adapter->pdev->dev, 1892 "Unable to allocate memory for queue vectors\n"); 1893 goto err_alloc_q_vectors; 1894 } 1895 1896 /* If we've made it so far while ADq flag being ON, then we haven't 1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1898 * resources have been allocated in the reset path. 1899 * Now we can truly claim that ADq is enabled. 1900 */ 1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1902 adapter->num_tc) 1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1904 adapter->num_tc); 1905 1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1908 adapter->num_active_queues); 1909 1910 return 0; 1911 err_alloc_q_vectors: 1912 iavf_reset_interrupt_capability(adapter); 1913 err_set_interrupt: 1914 iavf_free_queues(adapter); 1915 err_alloc_queues: 1916 return err; 1917 } 1918 1919 /** 1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1921 * @adapter: board private structure 1922 **/ 1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1924 { 1925 iavf_free_q_vectors(adapter); 1926 iavf_reset_interrupt_capability(adapter); 1927 iavf_free_queues(adapter); 1928 } 1929 1930 /** 1931 * iavf_free_rss - Free memory used by RSS structs 1932 * @adapter: board private structure 1933 **/ 1934 static void iavf_free_rss(struct iavf_adapter *adapter) 1935 { 1936 kfree(adapter->rss_key); 1937 adapter->rss_key = NULL; 1938 1939 kfree(adapter->rss_lut); 1940 adapter->rss_lut = NULL; 1941 } 1942 1943 /** 1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1945 * @adapter: board private structure 1946 * @running: true if adapter->state == __IAVF_RUNNING 1947 * 1948 * Returns 0 on success, negative on failure 1949 **/ 1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1951 { 1952 struct net_device *netdev = adapter->netdev; 1953 int err; 1954 1955 if (running) 1956 iavf_free_traffic_irqs(adapter); 1957 iavf_free_misc_irq(adapter); 1958 iavf_free_interrupt_scheme(adapter); 1959 1960 err = iavf_init_interrupt_scheme(adapter); 1961 if (err) 1962 goto err; 1963 1964 netif_tx_stop_all_queues(netdev); 1965 1966 err = iavf_request_misc_irq(adapter); 1967 if (err) 1968 goto err; 1969 1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1971 1972 iavf_map_rings_to_vectors(adapter); 1973 err: 1974 return err; 1975 } 1976 1977 /** 1978 * iavf_finish_config - do all netdev work that needs RTNL 1979 * @work: our work_struct 1980 * 1981 * Do work that needs both RTNL and crit_lock. 1982 **/ 1983 static void iavf_finish_config(struct work_struct *work) 1984 { 1985 struct iavf_adapter *adapter; 1986 bool netdev_released = false; 1987 int pairs, err; 1988 1989 adapter = container_of(work, struct iavf_adapter, finish_config); 1990 1991 /* Always take RTNL first to prevent circular lock dependency; 1992 * The dev->lock is needed to update the queue number 1993 */ 1994 rtnl_lock(); 1995 netdev_lock(adapter->netdev); 1996 mutex_lock(&adapter->crit_lock); 1997 1998 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 1999 adapter->netdev->reg_state == NETREG_REGISTERED && 2000 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2001 netdev_update_features(adapter->netdev); 2002 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2003 } 2004 2005 switch (adapter->state) { 2006 case __IAVF_DOWN: 2007 /* Set the real number of queues when reset occurs while 2008 * state == __IAVF_DOWN 2009 */ 2010 pairs = adapter->num_active_queues; 2011 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2012 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2013 2014 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2015 netdev_unlock(adapter->netdev); 2016 netdev_released = true; 2017 err = register_netdevice(adapter->netdev); 2018 if (err) { 2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2020 err); 2021 2022 /* go back and try again.*/ 2023 iavf_free_rss(adapter); 2024 iavf_free_misc_irq(adapter); 2025 iavf_reset_interrupt_capability(adapter); 2026 iavf_change_state(adapter, 2027 __IAVF_INIT_CONFIG_ADAPTER); 2028 goto out; 2029 } 2030 } 2031 break; 2032 case __IAVF_RUNNING: 2033 pairs = adapter->num_active_queues; 2034 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2035 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2036 break; 2037 2038 default: 2039 break; 2040 } 2041 2042 out: 2043 mutex_unlock(&adapter->crit_lock); 2044 if (!netdev_released) 2045 netdev_unlock(adapter->netdev); 2046 rtnl_unlock(); 2047 } 2048 2049 /** 2050 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2051 * @adapter: board private structure 2052 **/ 2053 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2054 { 2055 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2056 queue_work(adapter->wq, &adapter->finish_config); 2057 } 2058 2059 /** 2060 * iavf_process_aq_command - process aq_required flags 2061 * and sends aq command 2062 * @adapter: pointer to iavf adapter structure 2063 * 2064 * Returns 0 on success 2065 * Returns error code if no command was sent 2066 * or error code if the command failed. 2067 **/ 2068 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2069 { 2070 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2071 return iavf_send_vf_config_msg(adapter); 2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2073 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2074 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2075 iavf_disable_queues(adapter); 2076 return 0; 2077 } 2078 2079 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2080 iavf_map_queues(adapter); 2081 return 0; 2082 } 2083 2084 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2085 iavf_add_ether_addrs(adapter); 2086 return 0; 2087 } 2088 2089 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2090 iavf_add_vlans(adapter); 2091 return 0; 2092 } 2093 2094 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2095 iavf_del_ether_addrs(adapter); 2096 return 0; 2097 } 2098 2099 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2100 iavf_del_vlans(adapter); 2101 return 0; 2102 } 2103 2104 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2105 iavf_enable_vlan_stripping(adapter); 2106 return 0; 2107 } 2108 2109 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2110 iavf_disable_vlan_stripping(adapter); 2111 return 0; 2112 } 2113 2114 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2115 iavf_cfg_queues_bw(adapter); 2116 return 0; 2117 } 2118 2119 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2120 iavf_get_qos_caps(adapter); 2121 return 0; 2122 } 2123 2124 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2125 iavf_cfg_queues_quanta_size(adapter); 2126 return 0; 2127 } 2128 2129 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2130 iavf_configure_queues(adapter); 2131 return 0; 2132 } 2133 2134 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2135 iavf_enable_queues(adapter); 2136 return 0; 2137 } 2138 2139 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2140 /* This message goes straight to the firmware, not the 2141 * PF, so we don't have to set current_op as we will 2142 * not get a response through the ARQ. 2143 */ 2144 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2145 return 0; 2146 } 2147 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2148 iavf_get_hena(adapter); 2149 return 0; 2150 } 2151 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2152 iavf_set_hena(adapter); 2153 return 0; 2154 } 2155 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2156 iavf_set_rss_key(adapter); 2157 return 0; 2158 } 2159 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2160 iavf_set_rss_lut(adapter); 2161 return 0; 2162 } 2163 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2164 iavf_set_rss_hfunc(adapter); 2165 return 0; 2166 } 2167 2168 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2169 iavf_set_promiscuous(adapter); 2170 return 0; 2171 } 2172 2173 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2174 iavf_enable_channels(adapter); 2175 return 0; 2176 } 2177 2178 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2179 iavf_disable_channels(adapter); 2180 return 0; 2181 } 2182 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2183 iavf_add_cloud_filter(adapter); 2184 return 0; 2185 } 2186 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2187 iavf_del_cloud_filter(adapter); 2188 return 0; 2189 } 2190 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2191 iavf_add_fdir_filter(adapter); 2192 return IAVF_SUCCESS; 2193 } 2194 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2195 iavf_del_fdir_filter(adapter); 2196 return IAVF_SUCCESS; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2199 iavf_add_adv_rss_cfg(adapter); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2203 iavf_del_adv_rss_cfg(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2207 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2211 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2215 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2219 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2220 return 0; 2221 } 2222 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2223 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2224 return 0; 2225 } 2226 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2227 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2228 return 0; 2229 } 2230 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2231 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2232 return 0; 2233 } 2234 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2235 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2236 return 0; 2237 } 2238 2239 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2240 iavf_request_stats(adapter); 2241 return 0; 2242 } 2243 2244 return -EAGAIN; 2245 } 2246 2247 /** 2248 * iavf_set_vlan_offload_features - set VLAN offload configuration 2249 * @adapter: board private structure 2250 * @prev_features: previous features used for comparison 2251 * @features: updated features used for configuration 2252 * 2253 * Set the aq_required bit(s) based on the requested features passed in to 2254 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2255 * the watchdog if any changes are requested to expedite the request via 2256 * virtchnl. 2257 **/ 2258 static void 2259 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2260 netdev_features_t prev_features, 2261 netdev_features_t features) 2262 { 2263 bool enable_stripping = true, enable_insertion = true; 2264 u16 vlan_ethertype = 0; 2265 u64 aq_required = 0; 2266 2267 /* keep cases separate because one ethertype for offloads can be 2268 * disabled at the same time as another is disabled, so check for an 2269 * enabled ethertype first, then check for disabled. Default to 2270 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2271 * stripping. 2272 */ 2273 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2274 vlan_ethertype = ETH_P_8021AD; 2275 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2276 vlan_ethertype = ETH_P_8021Q; 2277 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2278 vlan_ethertype = ETH_P_8021AD; 2279 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2280 vlan_ethertype = ETH_P_8021Q; 2281 else 2282 vlan_ethertype = ETH_P_8021Q; 2283 2284 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2285 enable_stripping = false; 2286 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2287 enable_insertion = false; 2288 2289 if (VLAN_ALLOWED(adapter)) { 2290 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2291 * stripping via virtchnl. VLAN insertion can be toggled on the 2292 * netdev, but it doesn't require a virtchnl message 2293 */ 2294 if (enable_stripping) 2295 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2296 else 2297 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2298 2299 } else if (VLAN_V2_ALLOWED(adapter)) { 2300 switch (vlan_ethertype) { 2301 case ETH_P_8021Q: 2302 if (enable_stripping) 2303 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2304 else 2305 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2306 2307 if (enable_insertion) 2308 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2309 else 2310 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2311 break; 2312 case ETH_P_8021AD: 2313 if (enable_stripping) 2314 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2315 else 2316 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2317 2318 if (enable_insertion) 2319 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2320 else 2321 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2322 break; 2323 } 2324 } 2325 2326 if (aq_required) 2327 iavf_schedule_aq_request(adapter, aq_required); 2328 } 2329 2330 /** 2331 * iavf_startup - first step of driver startup 2332 * @adapter: board private structure 2333 * 2334 * Function process __IAVF_STARTUP driver state. 2335 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2336 * when fails the state is changed to __IAVF_INIT_FAILED 2337 **/ 2338 static void iavf_startup(struct iavf_adapter *adapter) 2339 { 2340 struct pci_dev *pdev = adapter->pdev; 2341 struct iavf_hw *hw = &adapter->hw; 2342 enum iavf_status status; 2343 int ret; 2344 2345 WARN_ON(adapter->state != __IAVF_STARTUP); 2346 2347 /* driver loaded, probe complete */ 2348 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2349 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2350 2351 ret = iavf_check_reset_complete(hw); 2352 if (ret) { 2353 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2354 ret); 2355 goto err; 2356 } 2357 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2358 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2359 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2360 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2361 2362 status = iavf_init_adminq(hw); 2363 if (status) { 2364 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2365 status); 2366 goto err; 2367 } 2368 ret = iavf_send_api_ver(adapter); 2369 if (ret) { 2370 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2371 iavf_shutdown_adminq(hw); 2372 goto err; 2373 } 2374 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2375 return; 2376 err: 2377 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2378 } 2379 2380 /** 2381 * iavf_init_version_check - second step of driver startup 2382 * @adapter: board private structure 2383 * 2384 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2385 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2386 * when fails the state is changed to __IAVF_INIT_FAILED 2387 **/ 2388 static void iavf_init_version_check(struct iavf_adapter *adapter) 2389 { 2390 struct pci_dev *pdev = adapter->pdev; 2391 struct iavf_hw *hw = &adapter->hw; 2392 int err = -EAGAIN; 2393 2394 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2395 2396 if (!iavf_asq_done(hw)) { 2397 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2398 iavf_shutdown_adminq(hw); 2399 iavf_change_state(adapter, __IAVF_STARTUP); 2400 goto err; 2401 } 2402 2403 /* aq msg sent, awaiting reply */ 2404 err = iavf_verify_api_ver(adapter); 2405 if (err) { 2406 if (err == -EALREADY) 2407 err = iavf_send_api_ver(adapter); 2408 else 2409 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2410 adapter->pf_version.major, 2411 adapter->pf_version.minor, 2412 VIRTCHNL_VERSION_MAJOR, 2413 VIRTCHNL_VERSION_MINOR); 2414 goto err; 2415 } 2416 err = iavf_send_vf_config_msg(adapter); 2417 if (err) { 2418 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2419 err); 2420 goto err; 2421 } 2422 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2423 return; 2424 err: 2425 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2426 } 2427 2428 /** 2429 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2430 * @adapter: board private structure 2431 */ 2432 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2433 { 2434 int i, num_req_queues = adapter->num_req_queues; 2435 struct iavf_vsi *vsi = &adapter->vsi; 2436 2437 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2438 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2439 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2440 } 2441 if (!adapter->vsi_res) { 2442 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2443 return -ENODEV; 2444 } 2445 2446 if (num_req_queues && 2447 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2448 /* Problem. The PF gave us fewer queues than what we had 2449 * negotiated in our request. Need a reset to see if we can't 2450 * get back to a working state. 2451 */ 2452 dev_err(&adapter->pdev->dev, 2453 "Requested %d queues, but PF only gave us %d.\n", 2454 num_req_queues, 2455 adapter->vsi_res->num_queue_pairs); 2456 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2457 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2458 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2459 2460 return -EAGAIN; 2461 } 2462 adapter->num_req_queues = 0; 2463 adapter->vsi.id = adapter->vsi_res->vsi_id; 2464 2465 adapter->vsi.back = adapter; 2466 adapter->vsi.base_vector = 1; 2467 vsi->netdev = adapter->netdev; 2468 vsi->qs_handle = adapter->vsi_res->qset_handle; 2469 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2470 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2471 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2472 } else { 2473 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2474 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2475 } 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * iavf_init_get_resources - third step of driver startup 2482 * @adapter: board private structure 2483 * 2484 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2485 * finishes driver initialization procedure. 2486 * When success the state is changed to __IAVF_DOWN 2487 * when fails the state is changed to __IAVF_INIT_FAILED 2488 **/ 2489 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2490 { 2491 struct pci_dev *pdev = adapter->pdev; 2492 struct iavf_hw *hw = &adapter->hw; 2493 int err; 2494 2495 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2496 /* aq msg sent, awaiting reply */ 2497 if (!adapter->vf_res) { 2498 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2499 GFP_KERNEL); 2500 if (!adapter->vf_res) { 2501 err = -ENOMEM; 2502 goto err; 2503 } 2504 } 2505 err = iavf_get_vf_config(adapter); 2506 if (err == -EALREADY) { 2507 err = iavf_send_vf_config_msg(adapter); 2508 goto err; 2509 } else if (err == -EINVAL) { 2510 /* We only get -EINVAL if the device is in a very bad 2511 * state or if we've been disabled for previous bad 2512 * behavior. Either way, we're done now. 2513 */ 2514 iavf_shutdown_adminq(hw); 2515 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2516 return; 2517 } 2518 if (err) { 2519 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2520 goto err_alloc; 2521 } 2522 2523 err = iavf_parse_vf_resource_msg(adapter); 2524 if (err) { 2525 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2526 err); 2527 goto err_alloc; 2528 } 2529 /* Some features require additional messages to negotiate extended 2530 * capabilities. These are processed in sequence by the 2531 * __IAVF_INIT_EXTENDED_CAPS driver state. 2532 */ 2533 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2534 2535 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2536 return; 2537 2538 err_alloc: 2539 kfree(adapter->vf_res); 2540 adapter->vf_res = NULL; 2541 err: 2542 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2543 } 2544 2545 /** 2546 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2547 * @adapter: board private structure 2548 * 2549 * Function processes send of the extended VLAN V2 capability message to the 2550 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2551 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2552 */ 2553 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2554 { 2555 int ret; 2556 2557 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2558 2559 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2560 if (ret && ret == -EOPNOTSUPP) { 2561 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2562 * we did not send the capability exchange message and do not 2563 * expect a response. 2564 */ 2565 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2566 } 2567 2568 /* We sent the message, so move on to the next step */ 2569 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2570 } 2571 2572 /** 2573 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2574 * @adapter: board private structure 2575 * 2576 * Function processes receipt of the extended VLAN V2 capability message from 2577 * the PF. 2578 **/ 2579 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2580 { 2581 int ret; 2582 2583 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2584 2585 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2586 2587 ret = iavf_get_vf_vlan_v2_caps(adapter); 2588 if (ret) 2589 goto err; 2590 2591 /* We've processed receipt of the VLAN V2 caps message */ 2592 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2593 return; 2594 err: 2595 /* We didn't receive a reply. Make sure we try sending again when 2596 * __IAVF_INIT_FAILED attempts to recover. 2597 */ 2598 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2599 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2600 } 2601 2602 /** 2603 * iavf_init_process_extended_caps - Part of driver startup 2604 * @adapter: board private structure 2605 * 2606 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2607 * handles negotiating capabilities for features which require an additional 2608 * message. 2609 * 2610 * Once all extended capabilities exchanges are finished, the driver will 2611 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2612 */ 2613 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2614 { 2615 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2616 2617 /* Process capability exchange for VLAN V2 */ 2618 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2619 iavf_init_send_offload_vlan_v2_caps(adapter); 2620 return; 2621 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2622 iavf_init_recv_offload_vlan_v2_caps(adapter); 2623 return; 2624 } 2625 2626 /* When we reach here, no further extended capabilities exchanges are 2627 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2628 */ 2629 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2630 } 2631 2632 /** 2633 * iavf_init_config_adapter - last part of driver startup 2634 * @adapter: board private structure 2635 * 2636 * After all the supported capabilities are negotiated, then the 2637 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2638 */ 2639 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2640 { 2641 struct net_device *netdev = adapter->netdev; 2642 struct pci_dev *pdev = adapter->pdev; 2643 int err; 2644 2645 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2646 2647 if (iavf_process_config(adapter)) 2648 goto err; 2649 2650 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2651 2652 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2653 2654 netdev->netdev_ops = &iavf_netdev_ops; 2655 iavf_set_ethtool_ops(netdev); 2656 netdev->watchdog_timeo = 5 * HZ; 2657 2658 netdev->min_mtu = ETH_MIN_MTU; 2659 netdev->max_mtu = LIBIE_MAX_MTU; 2660 2661 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2662 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2663 adapter->hw.mac.addr); 2664 eth_hw_addr_random(netdev); 2665 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2666 } else { 2667 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2668 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2669 } 2670 2671 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2672 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2673 err = iavf_init_interrupt_scheme(adapter); 2674 if (err) 2675 goto err_sw_init; 2676 iavf_map_rings_to_vectors(adapter); 2677 if (adapter->vf_res->vf_cap_flags & 2678 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2679 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2680 2681 err = iavf_request_misc_irq(adapter); 2682 if (err) 2683 goto err_sw_init; 2684 2685 netif_carrier_off(netdev); 2686 adapter->link_up = false; 2687 netif_tx_stop_all_queues(netdev); 2688 2689 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2690 if (netdev->features & NETIF_F_GRO) 2691 dev_info(&pdev->dev, "GRO is enabled\n"); 2692 2693 iavf_change_state(adapter, __IAVF_DOWN); 2694 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2695 2696 iavf_misc_irq_enable(adapter); 2697 wake_up(&adapter->down_waitqueue); 2698 2699 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2700 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2701 if (!adapter->rss_key || !adapter->rss_lut) { 2702 err = -ENOMEM; 2703 goto err_mem; 2704 } 2705 if (RSS_AQ(adapter)) 2706 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2707 else 2708 iavf_init_rss(adapter); 2709 2710 if (VLAN_V2_ALLOWED(adapter)) 2711 /* request initial VLAN offload settings */ 2712 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2713 2714 if (QOS_ALLOWED(adapter)) 2715 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2716 2717 iavf_schedule_finish_config(adapter); 2718 return; 2719 2720 err_mem: 2721 iavf_free_rss(adapter); 2722 iavf_free_misc_irq(adapter); 2723 err_sw_init: 2724 iavf_reset_interrupt_capability(adapter); 2725 err: 2726 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2727 } 2728 2729 /** 2730 * iavf_watchdog_task - Periodic call-back task 2731 * @work: pointer to work_struct 2732 **/ 2733 static void iavf_watchdog_task(struct work_struct *work) 2734 { 2735 struct iavf_adapter *adapter = container_of(work, 2736 struct iavf_adapter, 2737 watchdog_task.work); 2738 struct net_device *netdev = adapter->netdev; 2739 struct iavf_hw *hw = &adapter->hw; 2740 u32 reg_val; 2741 2742 netdev_lock(netdev); 2743 if (!mutex_trylock(&adapter->crit_lock)) { 2744 if (adapter->state == __IAVF_REMOVE) { 2745 netdev_unlock(netdev); 2746 return; 2747 } 2748 2749 goto restart_watchdog; 2750 } 2751 2752 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2753 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2754 2755 switch (adapter->state) { 2756 case __IAVF_STARTUP: 2757 iavf_startup(adapter); 2758 mutex_unlock(&adapter->crit_lock); 2759 netdev_unlock(netdev); 2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2761 msecs_to_jiffies(30)); 2762 return; 2763 case __IAVF_INIT_VERSION_CHECK: 2764 iavf_init_version_check(adapter); 2765 mutex_unlock(&adapter->crit_lock); 2766 netdev_unlock(netdev); 2767 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2768 msecs_to_jiffies(30)); 2769 return; 2770 case __IAVF_INIT_GET_RESOURCES: 2771 iavf_init_get_resources(adapter); 2772 mutex_unlock(&adapter->crit_lock); 2773 netdev_unlock(netdev); 2774 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2775 msecs_to_jiffies(1)); 2776 return; 2777 case __IAVF_INIT_EXTENDED_CAPS: 2778 iavf_init_process_extended_caps(adapter); 2779 mutex_unlock(&adapter->crit_lock); 2780 netdev_unlock(netdev); 2781 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2782 msecs_to_jiffies(1)); 2783 return; 2784 case __IAVF_INIT_CONFIG_ADAPTER: 2785 iavf_init_config_adapter(adapter); 2786 mutex_unlock(&adapter->crit_lock); 2787 netdev_unlock(netdev); 2788 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2789 msecs_to_jiffies(1)); 2790 return; 2791 case __IAVF_INIT_FAILED: 2792 if (test_bit(__IAVF_IN_REMOVE_TASK, 2793 &adapter->crit_section)) { 2794 /* Do not update the state and do not reschedule 2795 * watchdog task, iavf_remove should handle this state 2796 * as it can loop forever 2797 */ 2798 mutex_unlock(&adapter->crit_lock); 2799 netdev_unlock(netdev); 2800 return; 2801 } 2802 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2803 dev_err(&adapter->pdev->dev, 2804 "Failed to communicate with PF; waiting before retry\n"); 2805 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2806 iavf_shutdown_adminq(hw); 2807 mutex_unlock(&adapter->crit_lock); 2808 netdev_unlock(netdev); 2809 queue_delayed_work(adapter->wq, 2810 &adapter->watchdog_task, (5 * HZ)); 2811 return; 2812 } 2813 /* Try again from failed step*/ 2814 iavf_change_state(adapter, adapter->last_state); 2815 mutex_unlock(&adapter->crit_lock); 2816 netdev_unlock(netdev); 2817 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2818 return; 2819 case __IAVF_COMM_FAILED: 2820 if (test_bit(__IAVF_IN_REMOVE_TASK, 2821 &adapter->crit_section)) { 2822 /* Set state to __IAVF_INIT_FAILED and perform remove 2823 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2824 * doesn't bring the state back to __IAVF_COMM_FAILED. 2825 */ 2826 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2827 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2828 mutex_unlock(&adapter->crit_lock); 2829 netdev_unlock(netdev); 2830 return; 2831 } 2832 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2833 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2834 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2835 reg_val == VIRTCHNL_VFR_COMPLETED) { 2836 /* A chance for redemption! */ 2837 dev_err(&adapter->pdev->dev, 2838 "Hardware came out of reset. Attempting reinit.\n"); 2839 /* When init task contacts the PF and 2840 * gets everything set up again, it'll restart the 2841 * watchdog for us. Down, boy. Sit. Stay. Woof. 2842 */ 2843 iavf_change_state(adapter, __IAVF_STARTUP); 2844 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2845 } 2846 adapter->aq_required = 0; 2847 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2848 mutex_unlock(&adapter->crit_lock); 2849 netdev_unlock(netdev); 2850 queue_delayed_work(adapter->wq, 2851 &adapter->watchdog_task, 2852 msecs_to_jiffies(10)); 2853 return; 2854 case __IAVF_RESETTING: 2855 mutex_unlock(&adapter->crit_lock); 2856 netdev_unlock(netdev); 2857 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2858 HZ * 2); 2859 return; 2860 case __IAVF_DOWN: 2861 case __IAVF_DOWN_PENDING: 2862 case __IAVF_TESTING: 2863 case __IAVF_RUNNING: 2864 if (adapter->current_op) { 2865 if (!iavf_asq_done(hw)) { 2866 dev_dbg(&adapter->pdev->dev, 2867 "Admin queue timeout\n"); 2868 iavf_send_api_ver(adapter); 2869 } 2870 } else { 2871 int ret = iavf_process_aq_command(adapter); 2872 2873 /* An error will be returned if no commands were 2874 * processed; use this opportunity to update stats 2875 * if the error isn't -ENOTSUPP 2876 */ 2877 if (ret && ret != -EOPNOTSUPP && 2878 adapter->state == __IAVF_RUNNING) 2879 iavf_request_stats(adapter); 2880 } 2881 if (adapter->state == __IAVF_RUNNING) 2882 iavf_detect_recover_hung(&adapter->vsi); 2883 break; 2884 case __IAVF_REMOVE: 2885 default: 2886 mutex_unlock(&adapter->crit_lock); 2887 netdev_unlock(netdev); 2888 return; 2889 } 2890 2891 /* check for hw reset */ 2892 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2893 if (!reg_val) { 2894 adapter->aq_required = 0; 2895 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2896 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2897 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2898 mutex_unlock(&adapter->crit_lock); 2899 netdev_unlock(netdev); 2900 queue_delayed_work(adapter->wq, 2901 &adapter->watchdog_task, HZ * 2); 2902 return; 2903 } 2904 2905 mutex_unlock(&adapter->crit_lock); 2906 netdev_unlock(netdev); 2907 restart_watchdog: 2908 if (adapter->state >= __IAVF_DOWN) 2909 queue_work(adapter->wq, &adapter->adminq_task); 2910 if (adapter->aq_required) 2911 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2912 msecs_to_jiffies(20)); 2913 else 2914 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2915 HZ * 2); 2916 } 2917 2918 /** 2919 * iavf_disable_vf - disable VF 2920 * @adapter: board private structure 2921 * 2922 * Set communication failed flag and free all resources. 2923 * NOTE: This function is expected to be called with crit_lock being held. 2924 **/ 2925 static void iavf_disable_vf(struct iavf_adapter *adapter) 2926 { 2927 struct iavf_mac_filter *f, *ftmp; 2928 struct iavf_vlan_filter *fv, *fvtmp; 2929 struct iavf_cloud_filter *cf, *cftmp; 2930 2931 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2932 2933 /* We don't use netif_running() because it may be true prior to 2934 * ndo_open() returning, so we can't assume it means all our open 2935 * tasks have finished, since we're not holding the rtnl_lock here. 2936 */ 2937 if (adapter->state == __IAVF_RUNNING) { 2938 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2939 netif_carrier_off(adapter->netdev); 2940 netif_tx_disable(adapter->netdev); 2941 adapter->link_up = false; 2942 iavf_napi_disable_all(adapter); 2943 iavf_irq_disable(adapter); 2944 iavf_free_traffic_irqs(adapter); 2945 iavf_free_all_tx_resources(adapter); 2946 iavf_free_all_rx_resources(adapter); 2947 } 2948 2949 spin_lock_bh(&adapter->mac_vlan_list_lock); 2950 2951 /* Delete all of the filters */ 2952 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2953 list_del(&f->list); 2954 kfree(f); 2955 } 2956 2957 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2958 list_del(&fv->list); 2959 kfree(fv); 2960 } 2961 adapter->num_vlan_filters = 0; 2962 2963 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2964 2965 spin_lock_bh(&adapter->cloud_filter_list_lock); 2966 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2967 list_del(&cf->list); 2968 kfree(cf); 2969 adapter->num_cloud_filters--; 2970 } 2971 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2972 2973 iavf_free_misc_irq(adapter); 2974 iavf_free_interrupt_scheme(adapter); 2975 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2976 iavf_shutdown_adminq(&adapter->hw); 2977 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2978 iavf_change_state(adapter, __IAVF_DOWN); 2979 wake_up(&adapter->down_waitqueue); 2980 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2981 } 2982 2983 /** 2984 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 2985 * @adapter: board private structure 2986 * 2987 * After a reset, the shaper parameters of queues need to be replayed again. 2988 * Since the net_shaper object inside TX rings persists across reset, 2989 * set the update flag for all queues so that the virtchnl message is triggered 2990 * for all queues. 2991 **/ 2992 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 2993 { 2994 int i, num = 0; 2995 2996 for (i = 0; i < adapter->num_active_queues; i++) 2997 if (adapter->tx_rings[i].q_shaper.bw_min || 2998 adapter->tx_rings[i].q_shaper.bw_max) { 2999 adapter->tx_rings[i].q_shaper_update = true; 3000 num++; 3001 } 3002 3003 if (num) 3004 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3005 } 3006 3007 /** 3008 * iavf_reset_task - Call-back task to handle hardware reset 3009 * @work: pointer to work_struct 3010 * 3011 * During reset we need to shut down and reinitialize the admin queue 3012 * before we can use it to communicate with the PF again. We also clear 3013 * and reinit the rings because that context is lost as well. 3014 **/ 3015 static void iavf_reset_task(struct work_struct *work) 3016 { 3017 struct iavf_adapter *adapter = container_of(work, 3018 struct iavf_adapter, 3019 reset_task); 3020 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3021 struct net_device *netdev = adapter->netdev; 3022 struct iavf_hw *hw = &adapter->hw; 3023 struct iavf_mac_filter *f, *ftmp; 3024 struct iavf_cloud_filter *cf; 3025 enum iavf_status status; 3026 u32 reg_val; 3027 int i = 0, err; 3028 bool running; 3029 3030 /* When device is being removed it doesn't make sense to run the reset 3031 * task, just return in such a case. 3032 */ 3033 netdev_lock(netdev); 3034 if (!mutex_trylock(&adapter->crit_lock)) { 3035 if (adapter->state != __IAVF_REMOVE) 3036 queue_work(adapter->wq, &adapter->reset_task); 3037 3038 netdev_unlock(netdev); 3039 return; 3040 } 3041 3042 iavf_misc_irq_disable(adapter); 3043 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3044 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3045 /* Restart the AQ here. If we have been reset but didn't 3046 * detect it, or if the PF had to reinit, our AQ will be hosed. 3047 */ 3048 iavf_shutdown_adminq(hw); 3049 iavf_init_adminq(hw); 3050 iavf_request_reset(adapter); 3051 } 3052 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3053 3054 /* poll until we see the reset actually happen */ 3055 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3056 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3057 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3058 if (!reg_val) 3059 break; 3060 usleep_range(5000, 10000); 3061 } 3062 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3063 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3064 goto continue_reset; /* act like the reset happened */ 3065 } 3066 3067 /* wait until the reset is complete and the PF is responding to us */ 3068 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3069 /* sleep first to make sure a minimum wait time is met */ 3070 msleep(IAVF_RESET_WAIT_MS); 3071 3072 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3073 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3074 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3075 break; 3076 } 3077 3078 pci_set_master(adapter->pdev); 3079 pci_restore_msi_state(adapter->pdev); 3080 3081 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3082 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3083 reg_val); 3084 iavf_disable_vf(adapter); 3085 mutex_unlock(&adapter->crit_lock); 3086 netdev_unlock(netdev); 3087 return; /* Do not attempt to reinit. It's dead, Jim. */ 3088 } 3089 3090 continue_reset: 3091 /* We don't use netif_running() because it may be true prior to 3092 * ndo_open() returning, so we can't assume it means all our open 3093 * tasks have finished, since we're not holding the rtnl_lock here. 3094 */ 3095 running = adapter->state == __IAVF_RUNNING; 3096 3097 if (running) { 3098 netif_carrier_off(netdev); 3099 netif_tx_stop_all_queues(netdev); 3100 adapter->link_up = false; 3101 iavf_napi_disable_all(adapter); 3102 } 3103 iavf_irq_disable(adapter); 3104 3105 iavf_change_state(adapter, __IAVF_RESETTING); 3106 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3107 3108 /* free the Tx/Rx rings and descriptors, might be better to just 3109 * re-use them sometime in the future 3110 */ 3111 iavf_free_all_rx_resources(adapter); 3112 iavf_free_all_tx_resources(adapter); 3113 3114 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3115 /* kill and reinit the admin queue */ 3116 iavf_shutdown_adminq(hw); 3117 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3118 status = iavf_init_adminq(hw); 3119 if (status) { 3120 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3121 status); 3122 goto reset_err; 3123 } 3124 adapter->aq_required = 0; 3125 3126 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3127 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3128 err = iavf_reinit_interrupt_scheme(adapter, running); 3129 if (err) 3130 goto reset_err; 3131 } 3132 3133 if (RSS_AQ(adapter)) { 3134 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3135 } else { 3136 err = iavf_init_rss(adapter); 3137 if (err) 3138 goto reset_err; 3139 } 3140 3141 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3142 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3143 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3144 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3145 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3146 * been successfully sent and negotiated 3147 */ 3148 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3149 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3150 3151 spin_lock_bh(&adapter->mac_vlan_list_lock); 3152 3153 /* Delete filter for the current MAC address, it could have 3154 * been changed by the PF via administratively set MAC. 3155 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3156 */ 3157 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3158 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3159 list_del(&f->list); 3160 kfree(f); 3161 } 3162 } 3163 /* re-add all MAC filters */ 3164 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3165 f->add = true; 3166 } 3167 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3168 3169 /* check if TCs are running and re-add all cloud filters */ 3170 spin_lock_bh(&adapter->cloud_filter_list_lock); 3171 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3172 adapter->num_tc) { 3173 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3174 cf->add = true; 3175 } 3176 } 3177 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3178 3179 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3180 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3181 iavf_misc_irq_enable(adapter); 3182 3183 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3184 3185 /* We were running when the reset started, so we need to restore some 3186 * state here. 3187 */ 3188 if (running) { 3189 /* allocate transmit descriptors */ 3190 err = iavf_setup_all_tx_resources(adapter); 3191 if (err) 3192 goto reset_err; 3193 3194 /* allocate receive descriptors */ 3195 err = iavf_setup_all_rx_resources(adapter); 3196 if (err) 3197 goto reset_err; 3198 3199 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3200 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3201 err = iavf_request_traffic_irqs(adapter, netdev->name); 3202 if (err) 3203 goto reset_err; 3204 3205 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3206 } 3207 3208 iavf_configure(adapter); 3209 3210 /* iavf_up_complete() will switch device back 3211 * to __IAVF_RUNNING 3212 */ 3213 iavf_up_complete(adapter); 3214 3215 iavf_irq_enable(adapter, true); 3216 3217 iavf_reconfig_qs_bw(adapter); 3218 } else { 3219 iavf_change_state(adapter, __IAVF_DOWN); 3220 wake_up(&adapter->down_waitqueue); 3221 } 3222 3223 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3224 3225 wake_up(&adapter->reset_waitqueue); 3226 mutex_unlock(&adapter->crit_lock); 3227 netdev_unlock(netdev); 3228 3229 return; 3230 reset_err: 3231 if (running) { 3232 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3233 iavf_free_traffic_irqs(adapter); 3234 } 3235 iavf_disable_vf(adapter); 3236 3237 mutex_unlock(&adapter->crit_lock); 3238 netdev_unlock(netdev); 3239 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3240 } 3241 3242 /** 3243 * iavf_adminq_task - worker thread to clean the admin queue 3244 * @work: pointer to work_struct containing our data 3245 **/ 3246 static void iavf_adminq_task(struct work_struct *work) 3247 { 3248 struct iavf_adapter *adapter = 3249 container_of(work, struct iavf_adapter, adminq_task); 3250 struct iavf_hw *hw = &adapter->hw; 3251 struct iavf_arq_event_info event; 3252 enum virtchnl_ops v_op; 3253 enum iavf_status ret, v_ret; 3254 u32 val, oldval; 3255 u16 pending; 3256 3257 if (!mutex_trylock(&adapter->crit_lock)) { 3258 if (adapter->state == __IAVF_REMOVE) 3259 return; 3260 3261 queue_work(adapter->wq, &adapter->adminq_task); 3262 goto out; 3263 } 3264 3265 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3266 goto unlock; 3267 3268 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3269 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3270 if (!event.msg_buf) 3271 goto unlock; 3272 3273 do { 3274 ret = iavf_clean_arq_element(hw, &event, &pending); 3275 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3276 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3277 3278 if (ret || !v_op) 3279 break; /* No event to process or error cleaning ARQ */ 3280 3281 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3282 event.msg_len); 3283 if (pending != 0) 3284 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3285 } while (pending); 3286 3287 if (iavf_is_reset_in_progress(adapter)) 3288 goto freedom; 3289 3290 /* check for error indications */ 3291 val = rd32(hw, IAVF_VF_ARQLEN1); 3292 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3293 goto freedom; 3294 oldval = val; 3295 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3296 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3297 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3298 } 3299 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3300 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3301 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3302 } 3303 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3304 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3305 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3306 } 3307 if (oldval != val) 3308 wr32(hw, IAVF_VF_ARQLEN1, val); 3309 3310 val = rd32(hw, IAVF_VF_ATQLEN1); 3311 oldval = val; 3312 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3313 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3314 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3315 } 3316 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3317 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3318 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3319 } 3320 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3321 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3322 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3323 } 3324 if (oldval != val) 3325 wr32(hw, IAVF_VF_ATQLEN1, val); 3326 3327 freedom: 3328 kfree(event.msg_buf); 3329 unlock: 3330 mutex_unlock(&adapter->crit_lock); 3331 out: 3332 /* re-enable Admin queue interrupt cause */ 3333 iavf_misc_irq_enable(adapter); 3334 } 3335 3336 /** 3337 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3338 * @adapter: board private structure 3339 * 3340 * Free all transmit software resources 3341 **/ 3342 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3343 { 3344 int i; 3345 3346 if (!adapter->tx_rings) 3347 return; 3348 3349 for (i = 0; i < adapter->num_active_queues; i++) 3350 if (adapter->tx_rings[i].desc) 3351 iavf_free_tx_resources(&adapter->tx_rings[i]); 3352 } 3353 3354 /** 3355 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3356 * @adapter: board private structure 3357 * 3358 * If this function returns with an error, then it's possible one or 3359 * more of the rings is populated (while the rest are not). It is the 3360 * callers duty to clean those orphaned rings. 3361 * 3362 * Return 0 on success, negative on failure 3363 **/ 3364 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3365 { 3366 int i, err = 0; 3367 3368 for (i = 0; i < adapter->num_active_queues; i++) { 3369 adapter->tx_rings[i].count = adapter->tx_desc_count; 3370 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3371 if (!err) 3372 continue; 3373 dev_err(&adapter->pdev->dev, 3374 "Allocation for Tx Queue %u failed\n", i); 3375 break; 3376 } 3377 3378 return err; 3379 } 3380 3381 /** 3382 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3383 * @adapter: board private structure 3384 * 3385 * If this function returns with an error, then it's possible one or 3386 * more of the rings is populated (while the rest are not). It is the 3387 * callers duty to clean those orphaned rings. 3388 * 3389 * Return 0 on success, negative on failure 3390 **/ 3391 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3392 { 3393 int i, err = 0; 3394 3395 for (i = 0; i < adapter->num_active_queues; i++) { 3396 adapter->rx_rings[i].count = adapter->rx_desc_count; 3397 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3398 if (!err) 3399 continue; 3400 dev_err(&adapter->pdev->dev, 3401 "Allocation for Rx Queue %u failed\n", i); 3402 break; 3403 } 3404 return err; 3405 } 3406 3407 /** 3408 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3409 * @adapter: board private structure 3410 * 3411 * Free all receive software resources 3412 **/ 3413 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3414 { 3415 int i; 3416 3417 if (!adapter->rx_rings) 3418 return; 3419 3420 for (i = 0; i < adapter->num_active_queues; i++) 3421 if (adapter->rx_rings[i].desc) 3422 iavf_free_rx_resources(&adapter->rx_rings[i]); 3423 } 3424 3425 /** 3426 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3427 * @adapter: board private structure 3428 * @max_tx_rate: max Tx bw for a tc 3429 **/ 3430 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3431 u64 max_tx_rate) 3432 { 3433 int speed = 0, ret = 0; 3434 3435 if (ADV_LINK_SUPPORT(adapter)) { 3436 if (adapter->link_speed_mbps < U32_MAX) { 3437 speed = adapter->link_speed_mbps; 3438 goto validate_bw; 3439 } else { 3440 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3441 return -EINVAL; 3442 } 3443 } 3444 3445 switch (adapter->link_speed) { 3446 case VIRTCHNL_LINK_SPEED_40GB: 3447 speed = SPEED_40000; 3448 break; 3449 case VIRTCHNL_LINK_SPEED_25GB: 3450 speed = SPEED_25000; 3451 break; 3452 case VIRTCHNL_LINK_SPEED_20GB: 3453 speed = SPEED_20000; 3454 break; 3455 case VIRTCHNL_LINK_SPEED_10GB: 3456 speed = SPEED_10000; 3457 break; 3458 case VIRTCHNL_LINK_SPEED_5GB: 3459 speed = SPEED_5000; 3460 break; 3461 case VIRTCHNL_LINK_SPEED_2_5GB: 3462 speed = SPEED_2500; 3463 break; 3464 case VIRTCHNL_LINK_SPEED_1GB: 3465 speed = SPEED_1000; 3466 break; 3467 case VIRTCHNL_LINK_SPEED_100MB: 3468 speed = SPEED_100; 3469 break; 3470 default: 3471 break; 3472 } 3473 3474 validate_bw: 3475 if (max_tx_rate > speed) { 3476 dev_err(&adapter->pdev->dev, 3477 "Invalid tx rate specified\n"); 3478 ret = -EINVAL; 3479 } 3480 3481 return ret; 3482 } 3483 3484 /** 3485 * iavf_validate_ch_config - validate queue mapping info 3486 * @adapter: board private structure 3487 * @mqprio_qopt: queue parameters 3488 * 3489 * This function validates if the config provided by the user to 3490 * configure queue channels is valid or not. Returns 0 on a valid 3491 * config. 3492 **/ 3493 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3494 struct tc_mqprio_qopt_offload *mqprio_qopt) 3495 { 3496 u64 total_max_rate = 0; 3497 u32 tx_rate_rem = 0; 3498 int i, num_qps = 0; 3499 u64 tx_rate = 0; 3500 int ret = 0; 3501 3502 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3503 mqprio_qopt->qopt.num_tc < 1) 3504 return -EINVAL; 3505 3506 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3507 if (!mqprio_qopt->qopt.count[i] || 3508 mqprio_qopt->qopt.offset[i] != num_qps) 3509 return -EINVAL; 3510 if (mqprio_qopt->min_rate[i]) { 3511 dev_err(&adapter->pdev->dev, 3512 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3513 i); 3514 return -EINVAL; 3515 } 3516 3517 /* convert to Mbps */ 3518 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3519 IAVF_MBPS_DIVISOR); 3520 3521 if (mqprio_qopt->max_rate[i] && 3522 tx_rate < IAVF_MBPS_QUANTA) { 3523 dev_err(&adapter->pdev->dev, 3524 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3525 i, IAVF_MBPS_QUANTA); 3526 return -EINVAL; 3527 } 3528 3529 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3530 3531 if (tx_rate_rem != 0) { 3532 dev_err(&adapter->pdev->dev, 3533 "Invalid max tx rate for TC%d, not divisible by %d\n", 3534 i, IAVF_MBPS_QUANTA); 3535 return -EINVAL; 3536 } 3537 3538 total_max_rate += tx_rate; 3539 num_qps += mqprio_qopt->qopt.count[i]; 3540 } 3541 if (num_qps > adapter->num_active_queues) { 3542 dev_err(&adapter->pdev->dev, 3543 "Cannot support requested number of queues\n"); 3544 return -EINVAL; 3545 } 3546 3547 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3548 return ret; 3549 } 3550 3551 /** 3552 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3553 * @adapter: board private structure 3554 **/ 3555 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3556 { 3557 struct iavf_cloud_filter *cf, *cftmp; 3558 3559 spin_lock_bh(&adapter->cloud_filter_list_lock); 3560 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3561 list) { 3562 list_del(&cf->list); 3563 kfree(cf); 3564 adapter->num_cloud_filters--; 3565 } 3566 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3567 } 3568 3569 /** 3570 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3571 * TC config already configured on this adapter. 3572 * @adapter: board private structure 3573 * @mqprio_qopt: TC config received from kernel. 3574 * 3575 * This function compares the TC config received from the kernel 3576 * with the config already configured on the adapter. 3577 * 3578 * Return: True if configuration is same, false otherwise. 3579 **/ 3580 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3581 struct tc_mqprio_qopt *mqprio_qopt) 3582 { 3583 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3584 int i; 3585 3586 if (adapter->num_tc != mqprio_qopt->num_tc) 3587 return false; 3588 3589 for (i = 0; i < adapter->num_tc; i++) { 3590 if (ch[i].count != mqprio_qopt->count[i] || 3591 ch[i].offset != mqprio_qopt->offset[i]) 3592 return false; 3593 } 3594 return true; 3595 } 3596 3597 /** 3598 * __iavf_setup_tc - configure multiple traffic classes 3599 * @netdev: network interface device structure 3600 * @type_data: tc offload data 3601 * 3602 * This function processes the config information provided by the 3603 * user to configure traffic classes/queue channels and packages the 3604 * information to request the PF to setup traffic classes. 3605 * 3606 * Returns 0 on success. 3607 **/ 3608 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3609 { 3610 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3611 struct iavf_adapter *adapter = netdev_priv(netdev); 3612 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3613 u8 num_tc = 0, total_qps = 0; 3614 int ret = 0, netdev_tc = 0; 3615 u64 max_tx_rate; 3616 u16 mode; 3617 int i; 3618 3619 num_tc = mqprio_qopt->qopt.num_tc; 3620 mode = mqprio_qopt->mode; 3621 3622 /* delete queue_channel */ 3623 if (!mqprio_qopt->qopt.hw) { 3624 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3625 /* reset the tc configuration */ 3626 netdev_reset_tc(netdev); 3627 adapter->num_tc = 0; 3628 netif_tx_stop_all_queues(netdev); 3629 netif_tx_disable(netdev); 3630 iavf_del_all_cloud_filters(adapter); 3631 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3632 total_qps = adapter->orig_num_active_queues; 3633 goto exit; 3634 } else { 3635 return -EINVAL; 3636 } 3637 } 3638 3639 /* add queue channel */ 3640 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3641 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3642 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3643 return -EOPNOTSUPP; 3644 } 3645 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3646 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3647 return -EINVAL; 3648 } 3649 3650 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3651 if (ret) 3652 return ret; 3653 /* Return if same TC config is requested */ 3654 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3655 return 0; 3656 adapter->num_tc = num_tc; 3657 3658 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3659 if (i < num_tc) { 3660 adapter->ch_config.ch_info[i].count = 3661 mqprio_qopt->qopt.count[i]; 3662 adapter->ch_config.ch_info[i].offset = 3663 mqprio_qopt->qopt.offset[i]; 3664 total_qps += mqprio_qopt->qopt.count[i]; 3665 max_tx_rate = mqprio_qopt->max_rate[i]; 3666 /* convert to Mbps */ 3667 max_tx_rate = div_u64(max_tx_rate, 3668 IAVF_MBPS_DIVISOR); 3669 adapter->ch_config.ch_info[i].max_tx_rate = 3670 max_tx_rate; 3671 } else { 3672 adapter->ch_config.ch_info[i].count = 1; 3673 adapter->ch_config.ch_info[i].offset = 0; 3674 } 3675 } 3676 3677 /* Take snapshot of original config such as "num_active_queues" 3678 * It is used later when delete ADQ flow is exercised, so that 3679 * once delete ADQ flow completes, VF shall go back to its 3680 * original queue configuration 3681 */ 3682 3683 adapter->orig_num_active_queues = adapter->num_active_queues; 3684 3685 /* Store queue info based on TC so that VF gets configured 3686 * with correct number of queues when VF completes ADQ config 3687 * flow 3688 */ 3689 adapter->ch_config.total_qps = total_qps; 3690 3691 netif_tx_stop_all_queues(netdev); 3692 netif_tx_disable(netdev); 3693 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3694 netdev_reset_tc(netdev); 3695 /* Report the tc mapping up the stack */ 3696 netdev_set_num_tc(adapter->netdev, num_tc); 3697 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3698 u16 qcount = mqprio_qopt->qopt.count[i]; 3699 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3700 3701 if (i < num_tc) 3702 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3703 qoffset); 3704 } 3705 } 3706 exit: 3707 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3708 return 0; 3709 3710 netdev_lock(netdev); 3711 netif_set_real_num_rx_queues(netdev, total_qps); 3712 netif_set_real_num_tx_queues(netdev, total_qps); 3713 netdev_unlock(netdev); 3714 3715 return ret; 3716 } 3717 3718 /** 3719 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3720 * @adapter: board private structure 3721 * @f: pointer to struct flow_cls_offload 3722 * @filter: pointer to cloud filter structure 3723 */ 3724 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3725 struct flow_cls_offload *f, 3726 struct iavf_cloud_filter *filter) 3727 { 3728 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3729 struct flow_dissector *dissector = rule->match.dissector; 3730 u16 n_proto_mask = 0; 3731 u16 n_proto_key = 0; 3732 u8 field_flags = 0; 3733 u16 addr_type = 0; 3734 u16 n_proto = 0; 3735 int i = 0; 3736 struct virtchnl_filter *vf = &filter->f; 3737 3738 if (dissector->used_keys & 3739 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3740 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3741 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3742 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3743 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3744 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3745 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3746 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3747 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3748 dissector->used_keys); 3749 return -EOPNOTSUPP; 3750 } 3751 3752 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3753 struct flow_match_enc_keyid match; 3754 3755 flow_rule_match_enc_keyid(rule, &match); 3756 if (match.mask->keyid != 0) 3757 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3758 } 3759 3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3761 struct flow_match_basic match; 3762 3763 flow_rule_match_basic(rule, &match); 3764 n_proto_key = ntohs(match.key->n_proto); 3765 n_proto_mask = ntohs(match.mask->n_proto); 3766 3767 if (n_proto_key == ETH_P_ALL) { 3768 n_proto_key = 0; 3769 n_proto_mask = 0; 3770 } 3771 n_proto = n_proto_key & n_proto_mask; 3772 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3773 return -EINVAL; 3774 if (n_proto == ETH_P_IPV6) { 3775 /* specify flow type as TCP IPv6 */ 3776 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3777 } 3778 3779 if (match.key->ip_proto != IPPROTO_TCP) { 3780 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3781 return -EINVAL; 3782 } 3783 } 3784 3785 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3786 struct flow_match_eth_addrs match; 3787 3788 flow_rule_match_eth_addrs(rule, &match); 3789 3790 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3791 if (!is_zero_ether_addr(match.mask->dst)) { 3792 if (is_broadcast_ether_addr(match.mask->dst)) { 3793 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3794 } else { 3795 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3796 match.mask->dst); 3797 return -EINVAL; 3798 } 3799 } 3800 3801 if (!is_zero_ether_addr(match.mask->src)) { 3802 if (is_broadcast_ether_addr(match.mask->src)) { 3803 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3804 } else { 3805 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3806 match.mask->src); 3807 return -EINVAL; 3808 } 3809 } 3810 3811 if (!is_zero_ether_addr(match.key->dst)) 3812 if (is_valid_ether_addr(match.key->dst) || 3813 is_multicast_ether_addr(match.key->dst)) { 3814 /* set the mask if a valid dst_mac address */ 3815 for (i = 0; i < ETH_ALEN; i++) 3816 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3817 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3818 match.key->dst); 3819 } 3820 3821 if (!is_zero_ether_addr(match.key->src)) 3822 if (is_valid_ether_addr(match.key->src) || 3823 is_multicast_ether_addr(match.key->src)) { 3824 /* set the mask if a valid dst_mac address */ 3825 for (i = 0; i < ETH_ALEN; i++) 3826 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3827 ether_addr_copy(vf->data.tcp_spec.src_mac, 3828 match.key->src); 3829 } 3830 } 3831 3832 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3833 struct flow_match_vlan match; 3834 3835 flow_rule_match_vlan(rule, &match); 3836 if (match.mask->vlan_id) { 3837 if (match.mask->vlan_id == VLAN_VID_MASK) { 3838 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3839 } else { 3840 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3841 match.mask->vlan_id); 3842 return -EINVAL; 3843 } 3844 } 3845 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3846 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3847 } 3848 3849 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3850 struct flow_match_control match; 3851 3852 flow_rule_match_control(rule, &match); 3853 addr_type = match.key->addr_type; 3854 3855 if (flow_rule_has_control_flags(match.mask->flags, 3856 f->common.extack)) 3857 return -EOPNOTSUPP; 3858 } 3859 3860 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3861 struct flow_match_ipv4_addrs match; 3862 3863 flow_rule_match_ipv4_addrs(rule, &match); 3864 if (match.mask->dst) { 3865 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3866 field_flags |= IAVF_CLOUD_FIELD_IIP; 3867 } else { 3868 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3869 be32_to_cpu(match.mask->dst)); 3870 return -EINVAL; 3871 } 3872 } 3873 3874 if (match.mask->src) { 3875 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3876 field_flags |= IAVF_CLOUD_FIELD_IIP; 3877 } else { 3878 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3879 be32_to_cpu(match.mask->src)); 3880 return -EINVAL; 3881 } 3882 } 3883 3884 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3885 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3886 return -EINVAL; 3887 } 3888 if (match.key->dst) { 3889 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3890 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3891 } 3892 if (match.key->src) { 3893 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3894 vf->data.tcp_spec.src_ip[0] = match.key->src; 3895 } 3896 } 3897 3898 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3899 struct flow_match_ipv6_addrs match; 3900 3901 flow_rule_match_ipv6_addrs(rule, &match); 3902 3903 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3904 if (ipv6_addr_any(&match.mask->dst)) { 3905 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3906 IPV6_ADDR_ANY); 3907 return -EINVAL; 3908 } 3909 3910 /* src and dest IPv6 address should not be LOOPBACK 3911 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3912 */ 3913 if (ipv6_addr_loopback(&match.key->dst) || 3914 ipv6_addr_loopback(&match.key->src)) { 3915 dev_err(&adapter->pdev->dev, 3916 "ipv6 addr should not be loopback\n"); 3917 return -EINVAL; 3918 } 3919 if (!ipv6_addr_any(&match.mask->dst) || 3920 !ipv6_addr_any(&match.mask->src)) 3921 field_flags |= IAVF_CLOUD_FIELD_IIP; 3922 3923 for (i = 0; i < 4; i++) 3924 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3925 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3926 sizeof(vf->data.tcp_spec.dst_ip)); 3927 for (i = 0; i < 4; i++) 3928 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3929 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3930 sizeof(vf->data.tcp_spec.src_ip)); 3931 } 3932 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3933 struct flow_match_ports match; 3934 3935 flow_rule_match_ports(rule, &match); 3936 if (match.mask->src) { 3937 if (match.mask->src == cpu_to_be16(0xffff)) { 3938 field_flags |= IAVF_CLOUD_FIELD_IIP; 3939 } else { 3940 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3941 be16_to_cpu(match.mask->src)); 3942 return -EINVAL; 3943 } 3944 } 3945 3946 if (match.mask->dst) { 3947 if (match.mask->dst == cpu_to_be16(0xffff)) { 3948 field_flags |= IAVF_CLOUD_FIELD_IIP; 3949 } else { 3950 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3951 be16_to_cpu(match.mask->dst)); 3952 return -EINVAL; 3953 } 3954 } 3955 if (match.key->dst) { 3956 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3957 vf->data.tcp_spec.dst_port = match.key->dst; 3958 } 3959 3960 if (match.key->src) { 3961 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3962 vf->data.tcp_spec.src_port = match.key->src; 3963 } 3964 } 3965 vf->field_flags = field_flags; 3966 3967 return 0; 3968 } 3969 3970 /** 3971 * iavf_handle_tclass - Forward to a traffic class on the device 3972 * @adapter: board private structure 3973 * @tc: traffic class index on the device 3974 * @filter: pointer to cloud filter structure 3975 */ 3976 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3977 struct iavf_cloud_filter *filter) 3978 { 3979 if (tc == 0) 3980 return 0; 3981 if (tc < adapter->num_tc) { 3982 if (!filter->f.data.tcp_spec.dst_port) { 3983 dev_err(&adapter->pdev->dev, 3984 "Specify destination port to redirect to traffic class other than TC0\n"); 3985 return -EINVAL; 3986 } 3987 } 3988 /* redirect to a traffic class on the same device */ 3989 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3990 filter->f.action_meta = tc; 3991 return 0; 3992 } 3993 3994 /** 3995 * iavf_find_cf - Find the cloud filter in the list 3996 * @adapter: Board private structure 3997 * @cookie: filter specific cookie 3998 * 3999 * Returns ptr to the filter object or NULL. Must be called while holding the 4000 * cloud_filter_list_lock. 4001 */ 4002 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4003 unsigned long *cookie) 4004 { 4005 struct iavf_cloud_filter *filter = NULL; 4006 4007 if (!cookie) 4008 return NULL; 4009 4010 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4011 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4012 return filter; 4013 } 4014 return NULL; 4015 } 4016 4017 /** 4018 * iavf_configure_clsflower - Add tc flower filters 4019 * @adapter: board private structure 4020 * @cls_flower: Pointer to struct flow_cls_offload 4021 */ 4022 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4023 struct flow_cls_offload *cls_flower) 4024 { 4025 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4026 struct iavf_cloud_filter *filter = NULL; 4027 int err = -EINVAL, count = 50; 4028 4029 if (tc < 0) { 4030 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4031 return -EINVAL; 4032 } 4033 4034 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4035 if (!filter) 4036 return -ENOMEM; 4037 4038 while (!mutex_trylock(&adapter->crit_lock)) { 4039 if (--count == 0) { 4040 kfree(filter); 4041 return err; 4042 } 4043 udelay(1); 4044 } 4045 4046 filter->cookie = cls_flower->cookie; 4047 4048 /* bail out here if filter already exists */ 4049 spin_lock_bh(&adapter->cloud_filter_list_lock); 4050 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4051 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4052 err = -EEXIST; 4053 goto spin_unlock; 4054 } 4055 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4056 4057 /* set the mask to all zeroes to begin with */ 4058 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4059 /* start out with flow type and eth type IPv4 to begin with */ 4060 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4061 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4062 if (err) 4063 goto err; 4064 4065 err = iavf_handle_tclass(adapter, tc, filter); 4066 if (err) 4067 goto err; 4068 4069 /* add filter to the list */ 4070 spin_lock_bh(&adapter->cloud_filter_list_lock); 4071 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4072 adapter->num_cloud_filters++; 4073 filter->add = true; 4074 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4075 spin_unlock: 4076 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4077 err: 4078 if (err) 4079 kfree(filter); 4080 4081 mutex_unlock(&adapter->crit_lock); 4082 return err; 4083 } 4084 4085 /** 4086 * iavf_delete_clsflower - Remove tc flower filters 4087 * @adapter: board private structure 4088 * @cls_flower: Pointer to struct flow_cls_offload 4089 */ 4090 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4091 struct flow_cls_offload *cls_flower) 4092 { 4093 struct iavf_cloud_filter *filter = NULL; 4094 int err = 0; 4095 4096 spin_lock_bh(&adapter->cloud_filter_list_lock); 4097 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4098 if (filter) { 4099 filter->del = true; 4100 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4101 } else { 4102 err = -EINVAL; 4103 } 4104 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4105 4106 return err; 4107 } 4108 4109 /** 4110 * iavf_setup_tc_cls_flower - flower classifier offloads 4111 * @adapter: pointer to iavf adapter structure 4112 * @cls_flower: pointer to flow_cls_offload struct with flow info 4113 */ 4114 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4115 struct flow_cls_offload *cls_flower) 4116 { 4117 switch (cls_flower->command) { 4118 case FLOW_CLS_REPLACE: 4119 return iavf_configure_clsflower(adapter, cls_flower); 4120 case FLOW_CLS_DESTROY: 4121 return iavf_delete_clsflower(adapter, cls_flower); 4122 case FLOW_CLS_STATS: 4123 return -EOPNOTSUPP; 4124 default: 4125 return -EOPNOTSUPP; 4126 } 4127 } 4128 4129 /** 4130 * iavf_add_cls_u32 - Add U32 classifier offloads 4131 * @adapter: pointer to iavf adapter structure 4132 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4133 * 4134 * Return: 0 on success or negative errno on failure. 4135 */ 4136 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4137 struct tc_cls_u32_offload *cls_u32) 4138 { 4139 struct netlink_ext_ack *extack = cls_u32->common.extack; 4140 struct virtchnl_fdir_rule *rule_cfg; 4141 struct virtchnl_filter_action *vact; 4142 struct virtchnl_proto_hdrs *hdrs; 4143 struct ethhdr *spec_h, *mask_h; 4144 const struct tc_action *act; 4145 struct iavf_fdir_fltr *fltr; 4146 struct tcf_exts *exts; 4147 unsigned int q_index; 4148 int i, status = 0; 4149 int off_base = 0; 4150 4151 if (cls_u32->knode.link_handle) { 4152 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4153 return -EOPNOTSUPP; 4154 } 4155 4156 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4157 if (!fltr) 4158 return -ENOMEM; 4159 4160 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4161 hdrs = &rule_cfg->proto_hdrs; 4162 hdrs->count = 0; 4163 4164 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4165 switch (ntohs(cls_u32->common.protocol)) { 4166 case ETH_P_802_3: 4167 break; 4168 case ETH_P_IP: 4169 spec_h = (struct ethhdr *)hdrs->raw.spec; 4170 mask_h = (struct ethhdr *)hdrs->raw.mask; 4171 spec_h->h_proto = htons(ETH_P_IP); 4172 mask_h->h_proto = htons(0xFFFF); 4173 off_base += ETH_HLEN; 4174 break; 4175 default: 4176 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4177 status = -EOPNOTSUPP; 4178 goto free_alloc; 4179 } 4180 4181 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4182 __be32 val, mask; 4183 int off; 4184 4185 off = off_base + cls_u32->knode.sel->keys[i].off; 4186 val = cls_u32->knode.sel->keys[i].val; 4187 mask = cls_u32->knode.sel->keys[i].mask; 4188 4189 if (off >= sizeof(hdrs->raw.spec)) { 4190 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4191 status = -EINVAL; 4192 goto free_alloc; 4193 } 4194 4195 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4196 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4197 hdrs->raw.pkt_len = off + sizeof(val); 4198 } 4199 4200 /* Only one action is allowed */ 4201 rule_cfg->action_set.count = 1; 4202 vact = &rule_cfg->action_set.actions[0]; 4203 exts = cls_u32->knode.exts; 4204 4205 tcf_exts_for_each_action(i, act, exts) { 4206 /* FDIR queue */ 4207 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4208 q_index = tcf_skbedit_rx_queue_mapping(act); 4209 if (q_index >= adapter->num_active_queues) { 4210 status = -EINVAL; 4211 goto free_alloc; 4212 } 4213 4214 vact->type = VIRTCHNL_ACTION_QUEUE; 4215 vact->act_conf.queue.index = q_index; 4216 break; 4217 } 4218 4219 /* Drop */ 4220 if (is_tcf_gact_shot(act)) { 4221 vact->type = VIRTCHNL_ACTION_DROP; 4222 break; 4223 } 4224 4225 /* Unsupported action */ 4226 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4227 status = -EOPNOTSUPP; 4228 goto free_alloc; 4229 } 4230 4231 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4232 fltr->cls_u32_handle = cls_u32->knode.handle; 4233 return iavf_fdir_add_fltr(adapter, fltr); 4234 4235 free_alloc: 4236 kfree(fltr); 4237 return status; 4238 } 4239 4240 /** 4241 * iavf_del_cls_u32 - Delete U32 classifier offloads 4242 * @adapter: pointer to iavf adapter structure 4243 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4244 * 4245 * Return: 0 on success or negative errno on failure. 4246 */ 4247 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4248 struct tc_cls_u32_offload *cls_u32) 4249 { 4250 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4251 } 4252 4253 /** 4254 * iavf_setup_tc_cls_u32 - U32 filter offloads 4255 * @adapter: pointer to iavf adapter structure 4256 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4257 * 4258 * Return: 0 on success or negative errno on failure. 4259 */ 4260 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4261 struct tc_cls_u32_offload *cls_u32) 4262 { 4263 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4264 return -EOPNOTSUPP; 4265 4266 switch (cls_u32->command) { 4267 case TC_CLSU32_NEW_KNODE: 4268 case TC_CLSU32_REPLACE_KNODE: 4269 return iavf_add_cls_u32(adapter, cls_u32); 4270 case TC_CLSU32_DELETE_KNODE: 4271 return iavf_del_cls_u32(adapter, cls_u32); 4272 default: 4273 return -EOPNOTSUPP; 4274 } 4275 } 4276 4277 /** 4278 * iavf_setup_tc_block_cb - block callback for tc 4279 * @type: type of offload 4280 * @type_data: offload data 4281 * @cb_priv: 4282 * 4283 * This function is the block callback for traffic classes 4284 **/ 4285 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4286 void *cb_priv) 4287 { 4288 struct iavf_adapter *adapter = cb_priv; 4289 4290 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4291 return -EOPNOTSUPP; 4292 4293 switch (type) { 4294 case TC_SETUP_CLSFLOWER: 4295 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4296 case TC_SETUP_CLSU32: 4297 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4298 default: 4299 return -EOPNOTSUPP; 4300 } 4301 } 4302 4303 static LIST_HEAD(iavf_block_cb_list); 4304 4305 /** 4306 * iavf_setup_tc - configure multiple traffic classes 4307 * @netdev: network interface device structure 4308 * @type: type of offload 4309 * @type_data: tc offload data 4310 * 4311 * This function is the callback to ndo_setup_tc in the 4312 * netdev_ops. 4313 * 4314 * Returns 0 on success 4315 **/ 4316 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4317 void *type_data) 4318 { 4319 struct iavf_adapter *adapter = netdev_priv(netdev); 4320 4321 switch (type) { 4322 case TC_SETUP_QDISC_MQPRIO: 4323 return __iavf_setup_tc(netdev, type_data); 4324 case TC_SETUP_BLOCK: 4325 return flow_block_cb_setup_simple(type_data, 4326 &iavf_block_cb_list, 4327 iavf_setup_tc_block_cb, 4328 adapter, adapter, true); 4329 default: 4330 return -EOPNOTSUPP; 4331 } 4332 } 4333 4334 /** 4335 * iavf_restore_fdir_filters 4336 * @adapter: board private structure 4337 * 4338 * Restore existing FDIR filters when VF netdev comes back up. 4339 **/ 4340 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4341 { 4342 struct iavf_fdir_fltr *f; 4343 4344 spin_lock_bh(&adapter->fdir_fltr_lock); 4345 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4346 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4347 /* Cancel a request, keep filter as active */ 4348 f->state = IAVF_FDIR_FLTR_ACTIVE; 4349 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4350 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4351 /* Add filters which are inactive or have a pending 4352 * request to PF to be deleted 4353 */ 4354 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4355 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4356 } 4357 } 4358 spin_unlock_bh(&adapter->fdir_fltr_lock); 4359 } 4360 4361 /** 4362 * iavf_open - Called when a network interface is made active 4363 * @netdev: network interface device structure 4364 * 4365 * Returns 0 on success, negative value on failure 4366 * 4367 * The open entry point is called when a network interface is made 4368 * active by the system (IFF_UP). At this point all resources needed 4369 * for transmit and receive operations are allocated, the interrupt 4370 * handler is registered with the OS, the watchdog is started, 4371 * and the stack is notified that the interface is ready. 4372 **/ 4373 static int iavf_open(struct net_device *netdev) 4374 { 4375 struct iavf_adapter *adapter = netdev_priv(netdev); 4376 int err; 4377 4378 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4379 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4380 return -EIO; 4381 } 4382 4383 netdev_lock(netdev); 4384 while (!mutex_trylock(&adapter->crit_lock)) { 4385 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4386 * is already taken and iavf_open is called from an upper 4387 * device's notifier reacting on NETDEV_REGISTER event. 4388 * We have to leave here to avoid dead lock. 4389 */ 4390 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) { 4391 netdev_unlock(netdev); 4392 return -EBUSY; 4393 } 4394 4395 usleep_range(500, 1000); 4396 } 4397 4398 if (adapter->state != __IAVF_DOWN) { 4399 err = -EBUSY; 4400 goto err_unlock; 4401 } 4402 4403 if (adapter->state == __IAVF_RUNNING && 4404 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4405 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4406 err = 0; 4407 goto err_unlock; 4408 } 4409 4410 /* allocate transmit descriptors */ 4411 err = iavf_setup_all_tx_resources(adapter); 4412 if (err) 4413 goto err_setup_tx; 4414 4415 /* allocate receive descriptors */ 4416 err = iavf_setup_all_rx_resources(adapter); 4417 if (err) 4418 goto err_setup_rx; 4419 4420 /* clear any pending interrupts, may auto mask */ 4421 err = iavf_request_traffic_irqs(adapter, netdev->name); 4422 if (err) 4423 goto err_req_irq; 4424 4425 spin_lock_bh(&adapter->mac_vlan_list_lock); 4426 4427 iavf_add_filter(adapter, adapter->hw.mac.addr); 4428 4429 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4430 4431 /* Restore filters that were removed with IFF_DOWN */ 4432 iavf_restore_filters(adapter); 4433 iavf_restore_fdir_filters(adapter); 4434 4435 iavf_configure(adapter); 4436 4437 iavf_up_complete(adapter); 4438 4439 iavf_irq_enable(adapter, true); 4440 4441 mutex_unlock(&adapter->crit_lock); 4442 netdev_unlock(netdev); 4443 4444 return 0; 4445 4446 err_req_irq: 4447 iavf_down(adapter); 4448 iavf_free_traffic_irqs(adapter); 4449 err_setup_rx: 4450 iavf_free_all_rx_resources(adapter); 4451 err_setup_tx: 4452 iavf_free_all_tx_resources(adapter); 4453 err_unlock: 4454 mutex_unlock(&adapter->crit_lock); 4455 netdev_unlock(netdev); 4456 4457 return err; 4458 } 4459 4460 /** 4461 * iavf_close - Disables a network interface 4462 * @netdev: network interface device structure 4463 * 4464 * Returns 0, this is not allowed to fail 4465 * 4466 * The close entry point is called when an interface is de-activated 4467 * by the OS. The hardware is still under the drivers control, but 4468 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4469 * are freed, along with all transmit and receive resources. 4470 **/ 4471 static int iavf_close(struct net_device *netdev) 4472 { 4473 struct iavf_adapter *adapter = netdev_priv(netdev); 4474 u64 aq_to_restore; 4475 int status; 4476 4477 netdev_lock(netdev); 4478 mutex_lock(&adapter->crit_lock); 4479 4480 if (adapter->state <= __IAVF_DOWN_PENDING) { 4481 mutex_unlock(&adapter->crit_lock); 4482 netdev_unlock(netdev); 4483 return 0; 4484 } 4485 4486 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4487 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4488 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4489 * deadlock with adminq_task() until iavf_close timeouts. We must send 4490 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4491 * disable queues possible for vf. Give only necessary flags to 4492 * iavf_down and save other to set them right before iavf_close() 4493 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4494 * iavf will be in DOWN state. 4495 */ 4496 aq_to_restore = adapter->aq_required; 4497 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4498 4499 /* Remove flags which we do not want to send after close or we want to 4500 * send before disable queues. 4501 */ 4502 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4503 IAVF_FLAG_AQ_ENABLE_QUEUES | 4504 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4505 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4506 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4507 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4508 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4509 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4510 4511 iavf_down(adapter); 4512 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4513 iavf_free_traffic_irqs(adapter); 4514 4515 mutex_unlock(&adapter->crit_lock); 4516 netdev_unlock(netdev); 4517 4518 /* We explicitly don't free resources here because the hardware is 4519 * still active and can DMA into memory. Resources are cleared in 4520 * iavf_virtchnl_completion() after we get confirmation from the PF 4521 * driver that the rings have been stopped. 4522 * 4523 * Also, we wait for state to transition to __IAVF_DOWN before 4524 * returning. State change occurs in iavf_virtchnl_completion() after 4525 * VF resources are released (which occurs after PF driver processes and 4526 * responds to admin queue commands). 4527 */ 4528 4529 status = wait_event_timeout(adapter->down_waitqueue, 4530 adapter->state == __IAVF_DOWN, 4531 msecs_to_jiffies(500)); 4532 if (!status) 4533 netdev_warn(netdev, "Device resources not yet released\n"); 4534 4535 mutex_lock(&adapter->crit_lock); 4536 adapter->aq_required |= aq_to_restore; 4537 mutex_unlock(&adapter->crit_lock); 4538 return 0; 4539 } 4540 4541 /** 4542 * iavf_change_mtu - Change the Maximum Transfer Unit 4543 * @netdev: network interface device structure 4544 * @new_mtu: new value for maximum frame size 4545 * 4546 * Returns 0 on success, negative on failure 4547 **/ 4548 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4549 { 4550 struct iavf_adapter *adapter = netdev_priv(netdev); 4551 int ret = 0; 4552 4553 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4554 netdev->mtu, new_mtu); 4555 WRITE_ONCE(netdev->mtu, new_mtu); 4556 4557 if (netif_running(netdev)) { 4558 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4559 ret = iavf_wait_for_reset(adapter); 4560 if (ret < 0) 4561 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4562 else if (ret) 4563 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4564 } 4565 4566 return ret; 4567 } 4568 4569 /** 4570 * iavf_disable_fdir - disable Flow Director and clear existing filters 4571 * @adapter: board private structure 4572 **/ 4573 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4574 { 4575 struct iavf_fdir_fltr *fdir, *fdirtmp; 4576 bool del_filters = false; 4577 4578 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4579 4580 /* remove all Flow Director filters */ 4581 spin_lock_bh(&adapter->fdir_fltr_lock); 4582 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4583 list) { 4584 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4585 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4586 /* Delete filters not registered in PF */ 4587 list_del(&fdir->list); 4588 iavf_dec_fdir_active_fltr(adapter, fdir); 4589 kfree(fdir); 4590 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4591 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4592 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4593 /* Filters registered in PF, schedule their deletion */ 4594 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4595 del_filters = true; 4596 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4597 /* Request to delete filter already sent to PF, change 4598 * state to DEL_PENDING to delete filter after PF's 4599 * response, not set as INACTIVE 4600 */ 4601 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4602 } 4603 } 4604 spin_unlock_bh(&adapter->fdir_fltr_lock); 4605 4606 if (del_filters) { 4607 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4608 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4609 } 4610 } 4611 4612 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4613 NETIF_F_HW_VLAN_CTAG_TX | \ 4614 NETIF_F_HW_VLAN_STAG_RX | \ 4615 NETIF_F_HW_VLAN_STAG_TX) 4616 4617 /** 4618 * iavf_set_features - set the netdev feature flags 4619 * @netdev: ptr to the netdev being adjusted 4620 * @features: the feature set that the stack is suggesting 4621 * Note: expects to be called while under rtnl_lock() 4622 **/ 4623 static int iavf_set_features(struct net_device *netdev, 4624 netdev_features_t features) 4625 { 4626 struct iavf_adapter *adapter = netdev_priv(netdev); 4627 4628 /* trigger update on any VLAN feature change */ 4629 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4630 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4631 iavf_set_vlan_offload_features(adapter, netdev->features, 4632 features); 4633 if (CRC_OFFLOAD_ALLOWED(adapter) && 4634 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4635 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4636 4637 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4638 if (features & NETIF_F_NTUPLE) 4639 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4640 else 4641 iavf_disable_fdir(adapter); 4642 } 4643 4644 return 0; 4645 } 4646 4647 /** 4648 * iavf_features_check - Validate encapsulated packet conforms to limits 4649 * @skb: skb buff 4650 * @dev: This physical port's netdev 4651 * @features: Offload features that the stack believes apply 4652 **/ 4653 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4654 struct net_device *dev, 4655 netdev_features_t features) 4656 { 4657 size_t len; 4658 4659 /* No point in doing any of this if neither checksum nor GSO are 4660 * being requested for this frame. We can rule out both by just 4661 * checking for CHECKSUM_PARTIAL 4662 */ 4663 if (skb->ip_summed != CHECKSUM_PARTIAL) 4664 return features; 4665 4666 /* We cannot support GSO if the MSS is going to be less than 4667 * 64 bytes. If it is then we need to drop support for GSO. 4668 */ 4669 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4670 features &= ~NETIF_F_GSO_MASK; 4671 4672 /* MACLEN can support at most 63 words */ 4673 len = skb_network_offset(skb); 4674 if (len & ~(63 * 2)) 4675 goto out_err; 4676 4677 /* IPLEN and EIPLEN can support at most 127 dwords */ 4678 len = skb_network_header_len(skb); 4679 if (len & ~(127 * 4)) 4680 goto out_err; 4681 4682 if (skb->encapsulation) { 4683 /* L4TUNLEN can support 127 words */ 4684 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4685 if (len & ~(127 * 2)) 4686 goto out_err; 4687 4688 /* IPLEN can support at most 127 dwords */ 4689 len = skb_inner_transport_header(skb) - 4690 skb_inner_network_header(skb); 4691 if (len & ~(127 * 4)) 4692 goto out_err; 4693 } 4694 4695 /* No need to validate L4LEN as TCP is the only protocol with a 4696 * flexible value and we support all possible values supported 4697 * by TCP, which is at most 15 dwords 4698 */ 4699 4700 return features; 4701 out_err: 4702 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4703 } 4704 4705 /** 4706 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4707 * @adapter: board private structure 4708 * 4709 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4710 * were negotiated determine the VLAN features that can be toggled on and off. 4711 **/ 4712 static netdev_features_t 4713 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4714 { 4715 netdev_features_t hw_features = 0; 4716 4717 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4718 return hw_features; 4719 4720 /* Enable VLAN features if supported */ 4721 if (VLAN_ALLOWED(adapter)) { 4722 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4723 NETIF_F_HW_VLAN_CTAG_RX); 4724 } else if (VLAN_V2_ALLOWED(adapter)) { 4725 struct virtchnl_vlan_caps *vlan_v2_caps = 4726 &adapter->vlan_v2_caps; 4727 struct virtchnl_vlan_supported_caps *stripping_support = 4728 &vlan_v2_caps->offloads.stripping_support; 4729 struct virtchnl_vlan_supported_caps *insertion_support = 4730 &vlan_v2_caps->offloads.insertion_support; 4731 4732 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4733 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4734 if (stripping_support->outer & 4735 VIRTCHNL_VLAN_ETHERTYPE_8100) 4736 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4737 if (stripping_support->outer & 4738 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4739 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4740 } else if (stripping_support->inner != 4741 VIRTCHNL_VLAN_UNSUPPORTED && 4742 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4743 if (stripping_support->inner & 4744 VIRTCHNL_VLAN_ETHERTYPE_8100) 4745 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4746 } 4747 4748 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4749 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4750 if (insertion_support->outer & 4751 VIRTCHNL_VLAN_ETHERTYPE_8100) 4752 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4753 if (insertion_support->outer & 4754 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4755 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4756 } else if (insertion_support->inner && 4757 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4758 if (insertion_support->inner & 4759 VIRTCHNL_VLAN_ETHERTYPE_8100) 4760 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4761 } 4762 } 4763 4764 if (CRC_OFFLOAD_ALLOWED(adapter)) 4765 hw_features |= NETIF_F_RXFCS; 4766 4767 return hw_features; 4768 } 4769 4770 /** 4771 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4772 * @adapter: board private structure 4773 * 4774 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4775 * were negotiated determine the VLAN features that are enabled by default. 4776 **/ 4777 static netdev_features_t 4778 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4779 { 4780 netdev_features_t features = 0; 4781 4782 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4783 return features; 4784 4785 if (VLAN_ALLOWED(adapter)) { 4786 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4787 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4788 } else if (VLAN_V2_ALLOWED(adapter)) { 4789 struct virtchnl_vlan_caps *vlan_v2_caps = 4790 &adapter->vlan_v2_caps; 4791 struct virtchnl_vlan_supported_caps *filtering_support = 4792 &vlan_v2_caps->filtering.filtering_support; 4793 struct virtchnl_vlan_supported_caps *stripping_support = 4794 &vlan_v2_caps->offloads.stripping_support; 4795 struct virtchnl_vlan_supported_caps *insertion_support = 4796 &vlan_v2_caps->offloads.insertion_support; 4797 u32 ethertype_init; 4798 4799 /* give priority to outer stripping and don't support both outer 4800 * and inner stripping 4801 */ 4802 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4803 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4804 if (stripping_support->outer & 4805 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4806 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4807 features |= NETIF_F_HW_VLAN_CTAG_RX; 4808 else if (stripping_support->outer & 4809 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4810 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4811 features |= NETIF_F_HW_VLAN_STAG_RX; 4812 } else if (stripping_support->inner != 4813 VIRTCHNL_VLAN_UNSUPPORTED) { 4814 if (stripping_support->inner & 4815 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4816 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4817 features |= NETIF_F_HW_VLAN_CTAG_RX; 4818 } 4819 4820 /* give priority to outer insertion and don't support both outer 4821 * and inner insertion 4822 */ 4823 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4824 if (insertion_support->outer & 4825 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4826 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4827 features |= NETIF_F_HW_VLAN_CTAG_TX; 4828 else if (insertion_support->outer & 4829 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4830 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4831 features |= NETIF_F_HW_VLAN_STAG_TX; 4832 } else if (insertion_support->inner != 4833 VIRTCHNL_VLAN_UNSUPPORTED) { 4834 if (insertion_support->inner & 4835 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4836 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4837 features |= NETIF_F_HW_VLAN_CTAG_TX; 4838 } 4839 4840 /* give priority to outer filtering and don't bother if both 4841 * outer and inner filtering are enabled 4842 */ 4843 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4844 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4845 if (filtering_support->outer & 4846 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4847 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4848 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4849 if (filtering_support->outer & 4850 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4851 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4852 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4853 } else if (filtering_support->inner != 4854 VIRTCHNL_VLAN_UNSUPPORTED) { 4855 if (filtering_support->inner & 4856 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4857 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4858 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4859 if (filtering_support->inner & 4860 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4861 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4862 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4863 } 4864 } 4865 4866 return features; 4867 } 4868 4869 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4870 (!(((requested) & (feature_bit)) && \ 4871 !((allowed) & (feature_bit)))) 4872 4873 /** 4874 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4875 * @adapter: board private structure 4876 * @requested_features: stack requested NETDEV features 4877 **/ 4878 static netdev_features_t 4879 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4880 netdev_features_t requested_features) 4881 { 4882 netdev_features_t allowed_features; 4883 4884 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4885 iavf_get_netdev_vlan_features(adapter); 4886 4887 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4888 allowed_features, 4889 NETIF_F_HW_VLAN_CTAG_TX)) 4890 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4891 4892 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4893 allowed_features, 4894 NETIF_F_HW_VLAN_CTAG_RX)) 4895 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4896 4897 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4898 allowed_features, 4899 NETIF_F_HW_VLAN_STAG_TX)) 4900 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4901 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4902 allowed_features, 4903 NETIF_F_HW_VLAN_STAG_RX)) 4904 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4905 4906 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4907 allowed_features, 4908 NETIF_F_HW_VLAN_CTAG_FILTER)) 4909 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4910 4911 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4912 allowed_features, 4913 NETIF_F_HW_VLAN_STAG_FILTER)) 4914 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4915 4916 if ((requested_features & 4917 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4918 (requested_features & 4919 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4920 adapter->vlan_v2_caps.offloads.ethertype_match == 4921 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4922 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4923 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4924 NETIF_F_HW_VLAN_STAG_TX); 4925 } 4926 4927 return requested_features; 4928 } 4929 4930 /** 4931 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4932 * @adapter: board private structure 4933 * @requested_features: stack requested NETDEV features 4934 * 4935 * Returns fixed-up features bits 4936 **/ 4937 static netdev_features_t 4938 iavf_fix_strip_features(struct iavf_adapter *adapter, 4939 netdev_features_t requested_features) 4940 { 4941 struct net_device *netdev = adapter->netdev; 4942 bool crc_offload_req, is_vlan_strip; 4943 netdev_features_t vlan_strip; 4944 int num_non_zero_vlan; 4945 4946 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4947 (requested_features & NETIF_F_RXFCS); 4948 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4949 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4950 is_vlan_strip = requested_features & vlan_strip; 4951 4952 if (!crc_offload_req) 4953 return requested_features; 4954 4955 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4956 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4957 requested_features &= ~vlan_strip; 4958 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4959 return requested_features; 4960 } 4961 4962 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4963 requested_features &= ~vlan_strip; 4964 if (!(netdev->features & vlan_strip)) 4965 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4966 4967 return requested_features; 4968 } 4969 4970 if (num_non_zero_vlan && is_vlan_strip && 4971 !(netdev->features & NETIF_F_RXFCS)) { 4972 requested_features &= ~NETIF_F_RXFCS; 4973 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4974 } 4975 4976 return requested_features; 4977 } 4978 4979 /** 4980 * iavf_fix_features - fix up the netdev feature bits 4981 * @netdev: our net device 4982 * @features: desired feature bits 4983 * 4984 * Returns fixed-up features bits 4985 **/ 4986 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4987 netdev_features_t features) 4988 { 4989 struct iavf_adapter *adapter = netdev_priv(netdev); 4990 4991 features = iavf_fix_netdev_vlan_features(adapter, features); 4992 4993 if (!FDIR_FLTR_SUPPORT(adapter)) 4994 features &= ~NETIF_F_NTUPLE; 4995 4996 return iavf_fix_strip_features(adapter, features); 4997 } 4998 4999 static int 5000 iavf_verify_shaper(struct net_shaper_binding *binding, 5001 const struct net_shaper *shaper, 5002 struct netlink_ext_ack *extack) 5003 { 5004 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5005 u64 vf_max; 5006 5007 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5008 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5009 if (vf_max && shaper->bw_max > vf_max) { 5010 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5011 shaper->bw_max, shaper->handle.id, 5012 vf_max); 5013 return -EINVAL; 5014 } 5015 } 5016 return 0; 5017 } 5018 5019 static int 5020 iavf_shaper_set(struct net_shaper_binding *binding, 5021 const struct net_shaper *shaper, 5022 struct netlink_ext_ack *extack) 5023 { 5024 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5025 const struct net_shaper_handle *handle = &shaper->handle; 5026 struct iavf_ring *tx_ring; 5027 int ret = 0; 5028 5029 mutex_lock(&adapter->crit_lock); 5030 if (handle->id >= adapter->num_active_queues) 5031 goto unlock; 5032 5033 ret = iavf_verify_shaper(binding, shaper, extack); 5034 if (ret) 5035 goto unlock; 5036 5037 tx_ring = &adapter->tx_rings[handle->id]; 5038 5039 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5040 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5041 tx_ring->q_shaper_update = true; 5042 5043 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5044 5045 unlock: 5046 mutex_unlock(&adapter->crit_lock); 5047 return ret; 5048 } 5049 5050 static int iavf_shaper_del(struct net_shaper_binding *binding, 5051 const struct net_shaper_handle *handle, 5052 struct netlink_ext_ack *extack) 5053 { 5054 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5055 struct iavf_ring *tx_ring; 5056 5057 mutex_lock(&adapter->crit_lock); 5058 if (handle->id >= adapter->num_active_queues) 5059 goto unlock; 5060 5061 tx_ring = &adapter->tx_rings[handle->id]; 5062 tx_ring->q_shaper.bw_min = 0; 5063 tx_ring->q_shaper.bw_max = 0; 5064 tx_ring->q_shaper_update = true; 5065 5066 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5067 5068 unlock: 5069 mutex_unlock(&adapter->crit_lock); 5070 return 0; 5071 } 5072 5073 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5074 enum net_shaper_scope scope, 5075 unsigned long *flags) 5076 { 5077 if (scope != NET_SHAPER_SCOPE_QUEUE) 5078 return; 5079 5080 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5081 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5082 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5083 } 5084 5085 static const struct net_shaper_ops iavf_shaper_ops = { 5086 .set = iavf_shaper_set, 5087 .delete = iavf_shaper_del, 5088 .capabilities = iavf_shaper_cap, 5089 }; 5090 5091 static const struct net_device_ops iavf_netdev_ops = { 5092 .ndo_open = iavf_open, 5093 .ndo_stop = iavf_close, 5094 .ndo_start_xmit = iavf_xmit_frame, 5095 .ndo_set_rx_mode = iavf_set_rx_mode, 5096 .ndo_validate_addr = eth_validate_addr, 5097 .ndo_set_mac_address = iavf_set_mac, 5098 .ndo_change_mtu = iavf_change_mtu, 5099 .ndo_tx_timeout = iavf_tx_timeout, 5100 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5101 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5102 .ndo_features_check = iavf_features_check, 5103 .ndo_fix_features = iavf_fix_features, 5104 .ndo_set_features = iavf_set_features, 5105 .ndo_setup_tc = iavf_setup_tc, 5106 .net_shaper_ops = &iavf_shaper_ops, 5107 }; 5108 5109 /** 5110 * iavf_check_reset_complete - check that VF reset is complete 5111 * @hw: pointer to hw struct 5112 * 5113 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5114 **/ 5115 static int iavf_check_reset_complete(struct iavf_hw *hw) 5116 { 5117 u32 rstat; 5118 int i; 5119 5120 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5121 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5122 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5123 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5124 (rstat == VIRTCHNL_VFR_COMPLETED)) 5125 return 0; 5126 msleep(IAVF_RESET_WAIT_MS); 5127 } 5128 return -EBUSY; 5129 } 5130 5131 /** 5132 * iavf_process_config - Process the config information we got from the PF 5133 * @adapter: board private structure 5134 * 5135 * Verify that we have a valid config struct, and set up our netdev features 5136 * and our VSI struct. 5137 **/ 5138 int iavf_process_config(struct iavf_adapter *adapter) 5139 { 5140 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5141 netdev_features_t hw_vlan_features, vlan_features; 5142 struct net_device *netdev = adapter->netdev; 5143 netdev_features_t hw_enc_features; 5144 netdev_features_t hw_features; 5145 5146 hw_enc_features = NETIF_F_SG | 5147 NETIF_F_IP_CSUM | 5148 NETIF_F_IPV6_CSUM | 5149 NETIF_F_HIGHDMA | 5150 NETIF_F_SOFT_FEATURES | 5151 NETIF_F_TSO | 5152 NETIF_F_TSO_ECN | 5153 NETIF_F_TSO6 | 5154 NETIF_F_SCTP_CRC | 5155 NETIF_F_RXHASH | 5156 NETIF_F_RXCSUM | 5157 0; 5158 5159 /* advertise to stack only if offloads for encapsulated packets is 5160 * supported 5161 */ 5162 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5163 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5164 NETIF_F_GSO_GRE | 5165 NETIF_F_GSO_GRE_CSUM | 5166 NETIF_F_GSO_IPXIP4 | 5167 NETIF_F_GSO_IPXIP6 | 5168 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5169 NETIF_F_GSO_PARTIAL | 5170 0; 5171 5172 if (!(vfres->vf_cap_flags & 5173 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5174 netdev->gso_partial_features |= 5175 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5176 5177 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5178 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5179 netdev->hw_enc_features |= hw_enc_features; 5180 } 5181 /* record features VLANs can make use of */ 5182 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5183 5184 /* Write features and hw_features separately to avoid polluting 5185 * with, or dropping, features that are set when we registered. 5186 */ 5187 hw_features = hw_enc_features; 5188 5189 /* get HW VLAN features that can be toggled */ 5190 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5191 5192 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5193 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5194 TC_U32_SUPPORT(adapter)) 5195 hw_features |= NETIF_F_HW_TC; 5196 5197 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5198 hw_features |= NETIF_F_GSO_UDP_L4; 5199 5200 netdev->hw_features |= hw_features | hw_vlan_features; 5201 vlan_features = iavf_get_netdev_vlan_features(adapter); 5202 5203 netdev->features |= hw_features | vlan_features; 5204 5205 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5206 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5207 5208 if (FDIR_FLTR_SUPPORT(adapter)) { 5209 netdev->hw_features |= NETIF_F_NTUPLE; 5210 netdev->features |= NETIF_F_NTUPLE; 5211 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5212 } 5213 5214 netdev->priv_flags |= IFF_UNICAST_FLT; 5215 5216 /* Do not turn on offloads when they are requested to be turned off. 5217 * TSO needs minimum 576 bytes to work correctly. 5218 */ 5219 if (netdev->wanted_features) { 5220 if (!(netdev->wanted_features & NETIF_F_TSO) || 5221 netdev->mtu < 576) 5222 netdev->features &= ~NETIF_F_TSO; 5223 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5224 netdev->mtu < 576) 5225 netdev->features &= ~NETIF_F_TSO6; 5226 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5227 netdev->features &= ~NETIF_F_TSO_ECN; 5228 if (!(netdev->wanted_features & NETIF_F_GRO)) 5229 netdev->features &= ~NETIF_F_GRO; 5230 if (!(netdev->wanted_features & NETIF_F_GSO)) 5231 netdev->features &= ~NETIF_F_GSO; 5232 } 5233 5234 return 0; 5235 } 5236 5237 /** 5238 * iavf_probe - Device Initialization Routine 5239 * @pdev: PCI device information struct 5240 * @ent: entry in iavf_pci_tbl 5241 * 5242 * Returns 0 on success, negative on failure 5243 * 5244 * iavf_probe initializes an adapter identified by a pci_dev structure. 5245 * The OS initialization, configuring of the adapter private structure, 5246 * and a hardware reset occur. 5247 **/ 5248 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5249 { 5250 struct net_device *netdev; 5251 struct iavf_adapter *adapter = NULL; 5252 struct iavf_hw *hw = NULL; 5253 int err, len; 5254 5255 err = pci_enable_device(pdev); 5256 if (err) 5257 return err; 5258 5259 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5260 if (err) { 5261 dev_err(&pdev->dev, 5262 "DMA configuration failed: 0x%x\n", err); 5263 goto err_dma; 5264 } 5265 5266 err = pci_request_regions(pdev, iavf_driver_name); 5267 if (err) { 5268 dev_err(&pdev->dev, 5269 "pci_request_regions failed 0x%x\n", err); 5270 goto err_pci_reg; 5271 } 5272 5273 pci_set_master(pdev); 5274 5275 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5276 IAVF_MAX_REQ_QUEUES); 5277 if (!netdev) { 5278 err = -ENOMEM; 5279 goto err_alloc_etherdev; 5280 } 5281 5282 SET_NETDEV_DEV(netdev, &pdev->dev); 5283 5284 pci_set_drvdata(pdev, netdev); 5285 adapter = netdev_priv(netdev); 5286 5287 adapter->netdev = netdev; 5288 adapter->pdev = pdev; 5289 5290 hw = &adapter->hw; 5291 hw->back = adapter; 5292 5293 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5294 iavf_driver_name); 5295 if (!adapter->wq) { 5296 err = -ENOMEM; 5297 goto err_alloc_wq; 5298 } 5299 5300 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5301 iavf_change_state(adapter, __IAVF_STARTUP); 5302 5303 /* Call save state here because it relies on the adapter struct. */ 5304 pci_save_state(pdev); 5305 5306 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5307 pci_resource_len(pdev, 0)); 5308 if (!hw->hw_addr) { 5309 err = -EIO; 5310 goto err_ioremap; 5311 } 5312 hw->vendor_id = pdev->vendor; 5313 hw->device_id = pdev->device; 5314 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5315 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5316 hw->subsystem_device_id = pdev->subsystem_device; 5317 hw->bus.device = PCI_SLOT(pdev->devfn); 5318 hw->bus.func = PCI_FUNC(pdev->devfn); 5319 hw->bus.bus_id = pdev->bus->number; 5320 5321 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5322 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5323 if (!adapter->qos_caps) { 5324 err = -ENOMEM; 5325 goto err_alloc_qos_cap; 5326 } 5327 5328 /* set up the locks for the AQ, do this only once in probe 5329 * and destroy them only once in remove 5330 */ 5331 mutex_init(&adapter->crit_lock); 5332 mutex_init(&hw->aq.asq_mutex); 5333 mutex_init(&hw->aq.arq_mutex); 5334 5335 spin_lock_init(&adapter->mac_vlan_list_lock); 5336 spin_lock_init(&adapter->cloud_filter_list_lock); 5337 spin_lock_init(&adapter->fdir_fltr_lock); 5338 spin_lock_init(&adapter->adv_rss_lock); 5339 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5340 5341 INIT_LIST_HEAD(&adapter->mac_filter_list); 5342 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5343 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5344 INIT_LIST_HEAD(&adapter->fdir_list_head); 5345 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5346 5347 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5348 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5349 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5350 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5351 5352 /* Setup the wait queue for indicating transition to down status */ 5353 init_waitqueue_head(&adapter->down_waitqueue); 5354 5355 /* Setup the wait queue for indicating transition to running state */ 5356 init_waitqueue_head(&adapter->reset_waitqueue); 5357 5358 /* Setup the wait queue for indicating virtchannel events */ 5359 init_waitqueue_head(&adapter->vc_waitqueue); 5360 5361 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5362 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5363 /* Initialization goes on in the work. Do not add more of it below. */ 5364 return 0; 5365 5366 err_alloc_qos_cap: 5367 iounmap(hw->hw_addr); 5368 err_ioremap: 5369 destroy_workqueue(adapter->wq); 5370 err_alloc_wq: 5371 free_netdev(netdev); 5372 err_alloc_etherdev: 5373 pci_release_regions(pdev); 5374 err_pci_reg: 5375 err_dma: 5376 pci_disable_device(pdev); 5377 return err; 5378 } 5379 5380 /** 5381 * iavf_suspend - Power management suspend routine 5382 * @dev_d: device info pointer 5383 * 5384 * Called when the system (VM) is entering sleep/suspend. 5385 **/ 5386 static int iavf_suspend(struct device *dev_d) 5387 { 5388 struct net_device *netdev = dev_get_drvdata(dev_d); 5389 struct iavf_adapter *adapter = netdev_priv(netdev); 5390 5391 netif_device_detach(netdev); 5392 5393 netdev_lock(netdev); 5394 mutex_lock(&adapter->crit_lock); 5395 5396 if (netif_running(netdev)) { 5397 rtnl_lock(); 5398 iavf_down(adapter); 5399 rtnl_unlock(); 5400 } 5401 iavf_free_misc_irq(adapter); 5402 iavf_reset_interrupt_capability(adapter); 5403 5404 mutex_unlock(&adapter->crit_lock); 5405 netdev_unlock(netdev); 5406 5407 return 0; 5408 } 5409 5410 /** 5411 * iavf_resume - Power management resume routine 5412 * @dev_d: device info pointer 5413 * 5414 * Called when the system (VM) is resumed from sleep/suspend. 5415 **/ 5416 static int iavf_resume(struct device *dev_d) 5417 { 5418 struct pci_dev *pdev = to_pci_dev(dev_d); 5419 struct iavf_adapter *adapter; 5420 u32 err; 5421 5422 adapter = iavf_pdev_to_adapter(pdev); 5423 5424 pci_set_master(pdev); 5425 5426 rtnl_lock(); 5427 err = iavf_set_interrupt_capability(adapter); 5428 if (err) { 5429 rtnl_unlock(); 5430 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5431 return err; 5432 } 5433 err = iavf_request_misc_irq(adapter); 5434 rtnl_unlock(); 5435 if (err) { 5436 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5437 return err; 5438 } 5439 5440 queue_work(adapter->wq, &adapter->reset_task); 5441 5442 netif_device_attach(adapter->netdev); 5443 5444 return err; 5445 } 5446 5447 /** 5448 * iavf_remove - Device Removal Routine 5449 * @pdev: PCI device information struct 5450 * 5451 * iavf_remove is called by the PCI subsystem to alert the driver 5452 * that it should release a PCI device. The could be caused by a 5453 * Hot-Plug event, or because the driver is going to be removed from 5454 * memory. 5455 **/ 5456 static void iavf_remove(struct pci_dev *pdev) 5457 { 5458 struct iavf_fdir_fltr *fdir, *fdirtmp; 5459 struct iavf_vlan_filter *vlf, *vlftmp; 5460 struct iavf_cloud_filter *cf, *cftmp; 5461 struct iavf_adv_rss *rss, *rsstmp; 5462 struct iavf_mac_filter *f, *ftmp; 5463 struct iavf_adapter *adapter; 5464 struct net_device *netdev; 5465 struct iavf_hw *hw; 5466 5467 /* Don't proceed with remove if netdev is already freed */ 5468 netdev = pci_get_drvdata(pdev); 5469 if (!netdev) 5470 return; 5471 5472 adapter = iavf_pdev_to_adapter(pdev); 5473 hw = &adapter->hw; 5474 5475 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5476 return; 5477 5478 /* Wait until port initialization is complete. 5479 * There are flows where register/unregister netdev may race. 5480 */ 5481 while (1) { 5482 mutex_lock(&adapter->crit_lock); 5483 if (adapter->state == __IAVF_RUNNING || 5484 adapter->state == __IAVF_DOWN || 5485 adapter->state == __IAVF_INIT_FAILED) { 5486 mutex_unlock(&adapter->crit_lock); 5487 break; 5488 } 5489 /* Simply return if we already went through iavf_shutdown */ 5490 if (adapter->state == __IAVF_REMOVE) { 5491 mutex_unlock(&adapter->crit_lock); 5492 return; 5493 } 5494 5495 mutex_unlock(&adapter->crit_lock); 5496 usleep_range(500, 1000); 5497 } 5498 cancel_delayed_work_sync(&adapter->watchdog_task); 5499 cancel_work_sync(&adapter->finish_config); 5500 5501 if (netdev->reg_state == NETREG_REGISTERED) 5502 unregister_netdev(netdev); 5503 5504 netdev_lock(netdev); 5505 mutex_lock(&adapter->crit_lock); 5506 dev_info(&adapter->pdev->dev, "Removing device\n"); 5507 iavf_change_state(adapter, __IAVF_REMOVE); 5508 5509 iavf_request_reset(adapter); 5510 msleep(50); 5511 /* If the FW isn't responding, kick it once, but only once. */ 5512 if (!iavf_asq_done(hw)) { 5513 iavf_request_reset(adapter); 5514 msleep(50); 5515 } 5516 5517 iavf_misc_irq_disable(adapter); 5518 /* Shut down all the garbage mashers on the detention level */ 5519 cancel_work_sync(&adapter->reset_task); 5520 cancel_delayed_work_sync(&adapter->watchdog_task); 5521 cancel_work_sync(&adapter->adminq_task); 5522 5523 adapter->aq_required = 0; 5524 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5525 5526 iavf_free_all_tx_resources(adapter); 5527 iavf_free_all_rx_resources(adapter); 5528 iavf_free_misc_irq(adapter); 5529 iavf_free_interrupt_scheme(adapter); 5530 5531 iavf_free_rss(adapter); 5532 5533 if (hw->aq.asq.count) 5534 iavf_shutdown_adminq(hw); 5535 5536 /* destroy the locks only once, here */ 5537 mutex_destroy(&hw->aq.arq_mutex); 5538 mutex_destroy(&hw->aq.asq_mutex); 5539 mutex_unlock(&adapter->crit_lock); 5540 mutex_destroy(&adapter->crit_lock); 5541 netdev_unlock(netdev); 5542 5543 iounmap(hw->hw_addr); 5544 pci_release_regions(pdev); 5545 kfree(adapter->vf_res); 5546 spin_lock_bh(&adapter->mac_vlan_list_lock); 5547 /* If we got removed before an up/down sequence, we've got a filter 5548 * hanging out there that we need to get rid of. 5549 */ 5550 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5551 list_del(&f->list); 5552 kfree(f); 5553 } 5554 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5555 list) { 5556 list_del(&vlf->list); 5557 kfree(vlf); 5558 } 5559 5560 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5561 5562 spin_lock_bh(&adapter->cloud_filter_list_lock); 5563 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5564 list_del(&cf->list); 5565 kfree(cf); 5566 } 5567 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5568 5569 spin_lock_bh(&adapter->fdir_fltr_lock); 5570 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5571 list_del(&fdir->list); 5572 kfree(fdir); 5573 } 5574 spin_unlock_bh(&adapter->fdir_fltr_lock); 5575 5576 spin_lock_bh(&adapter->adv_rss_lock); 5577 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5578 list) { 5579 list_del(&rss->list); 5580 kfree(rss); 5581 } 5582 spin_unlock_bh(&adapter->adv_rss_lock); 5583 5584 destroy_workqueue(adapter->wq); 5585 5586 pci_set_drvdata(pdev, NULL); 5587 5588 free_netdev(netdev); 5589 5590 pci_disable_device(pdev); 5591 } 5592 5593 /** 5594 * iavf_shutdown - Shutdown the device in preparation for a reboot 5595 * @pdev: pci device structure 5596 **/ 5597 static void iavf_shutdown(struct pci_dev *pdev) 5598 { 5599 iavf_remove(pdev); 5600 5601 if (system_state == SYSTEM_POWER_OFF) 5602 pci_set_power_state(pdev, PCI_D3hot); 5603 } 5604 5605 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5606 5607 static struct pci_driver iavf_driver = { 5608 .name = iavf_driver_name, 5609 .id_table = iavf_pci_tbl, 5610 .probe = iavf_probe, 5611 .remove = iavf_remove, 5612 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5613 .shutdown = iavf_shutdown, 5614 }; 5615 5616 /** 5617 * iavf_init_module - Driver Registration Routine 5618 * 5619 * iavf_init_module is the first routine called when the driver is 5620 * loaded. All it does is register with the PCI subsystem. 5621 **/ 5622 static int __init iavf_init_module(void) 5623 { 5624 pr_info("iavf: %s\n", iavf_driver_string); 5625 5626 pr_info("%s\n", iavf_copyright); 5627 5628 return pci_register_driver(&iavf_driver); 5629 } 5630 5631 module_init(iavf_init_module); 5632 5633 /** 5634 * iavf_exit_module - Driver Exit Cleanup Routine 5635 * 5636 * iavf_exit_module is called just before the driver is removed 5637 * from memory. 5638 **/ 5639 static void __exit iavf_exit_module(void) 5640 { 5641 pci_unregister_driver(&iavf_driver); 5642 } 5643 5644 module_exit(iavf_exit_module); 5645 5646 /* iavf_main.c */ 5647