xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_pdev_to_adapter - go from pci_dev to adapter
56  * @pdev: pci_dev pointer
57  */
58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
59 {
60 	return netdev_priv(pci_get_drvdata(pdev));
61 }
62 
63 /**
64  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
65  * @hw:   pointer to the HW structure
66  * @mem:  ptr to mem struct to fill out
67  * @size: size of memory requested
68  * @alignment: what to align the allocation to
69  **/
70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
71 					 struct iavf_dma_mem *mem,
72 					 u64 size, u32 alignment)
73 {
74 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
75 
76 	if (!mem)
77 		return IAVF_ERR_PARAM;
78 
79 	mem->size = ALIGN(size, alignment);
80 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
81 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
82 	if (mem->va)
83 		return 0;
84 	else
85 		return IAVF_ERR_NO_MEMORY;
86 }
87 
88 /**
89  * iavf_free_dma_mem_d - OS specific memory free for shared code
90  * @hw:   pointer to the HW structure
91  * @mem:  ptr to mem struct to free
92  **/
93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
94 				     struct iavf_dma_mem *mem)
95 {
96 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
97 
98 	if (!mem || !mem->va)
99 		return IAVF_ERR_PARAM;
100 	dma_free_coherent(&adapter->pdev->dev, mem->size,
101 			  mem->va, (dma_addr_t)mem->pa);
102 	return 0;
103 }
104 
105 /**
106  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
107  * @hw:   pointer to the HW structure
108  * @mem:  ptr to mem struct to fill out
109  * @size: size of memory requested
110  **/
111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
112 					  struct iavf_virt_mem *mem, u32 size)
113 {
114 	if (!mem)
115 		return IAVF_ERR_PARAM;
116 
117 	mem->size = size;
118 	mem->va = kzalloc(size, GFP_KERNEL);
119 
120 	if (mem->va)
121 		return 0;
122 	else
123 		return IAVF_ERR_NO_MEMORY;
124 }
125 
126 /**
127  * iavf_free_virt_mem_d - OS specific memory free for shared code
128  * @hw:   pointer to the HW structure
129  * @mem:  ptr to mem struct to free
130  **/
131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
132 				      struct iavf_virt_mem *mem)
133 {
134 	if (!mem)
135 		return IAVF_ERR_PARAM;
136 
137 	/* it's ok to kfree a NULL pointer */
138 	kfree(mem->va);
139 
140 	return 0;
141 }
142 
143 /**
144  * iavf_lock_timeout - try to lock mutex but give up after timeout
145  * @lock: mutex that should be locked
146  * @msecs: timeout in msecs
147  *
148  * Returns 0 on success, negative on failure
149  **/
150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
151 {
152 	unsigned int wait, delay = 10;
153 
154 	for (wait = 0; wait < msecs; wait += delay) {
155 		if (mutex_trylock(lock))
156 			return 0;
157 
158 		msleep(delay);
159 	}
160 
161 	return -1;
162 }
163 
164 /**
165  * iavf_schedule_reset - Set the flags and schedule a reset event
166  * @adapter: board private structure
167  **/
168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170 	if (!(adapter->flags &
171 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173 		queue_work(iavf_wq, &adapter->reset_task);
174 	}
175 }
176 
177 /**
178  * iavf_schedule_request_stats - Set the flags and schedule statistics request
179  * @adapter: board private structure
180  *
181  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
182  * request and refresh ethtool stats
183  **/
184 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
185 {
186 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
187 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
188 }
189 
190 /**
191  * iavf_tx_timeout - Respond to a Tx Hang
192  * @netdev: network interface device structure
193  * @txqueue: queue number that is timing out
194  **/
195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
196 {
197 	struct iavf_adapter *adapter = netdev_priv(netdev);
198 
199 	adapter->tx_timeout_count++;
200 	iavf_schedule_reset(adapter);
201 }
202 
203 /**
204  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
205  * @adapter: board private structure
206  **/
207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
208 {
209 	struct iavf_hw *hw = &adapter->hw;
210 
211 	if (!adapter->msix_entries)
212 		return;
213 
214 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
215 
216 	iavf_flush(hw);
217 
218 	synchronize_irq(adapter->msix_entries[0].vector);
219 }
220 
221 /**
222  * iavf_misc_irq_enable - Enable default interrupt generation settings
223  * @adapter: board private structure
224  **/
225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
226 {
227 	struct iavf_hw *hw = &adapter->hw;
228 
229 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
230 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
231 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
232 
233 	iavf_flush(hw);
234 }
235 
236 /**
237  * iavf_irq_disable - Mask off interrupt generation on the NIC
238  * @adapter: board private structure
239  **/
240 static void iavf_irq_disable(struct iavf_adapter *adapter)
241 {
242 	int i;
243 	struct iavf_hw *hw = &adapter->hw;
244 
245 	if (!adapter->msix_entries)
246 		return;
247 
248 	for (i = 1; i < adapter->num_msix_vectors; i++) {
249 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
250 		synchronize_irq(adapter->msix_entries[i].vector);
251 	}
252 	iavf_flush(hw);
253 }
254 
255 /**
256  * iavf_irq_enable_queues - Enable interrupt for specified queues
257  * @adapter: board private structure
258  * @mask: bitmap of queues to enable
259  **/
260 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
261 {
262 	struct iavf_hw *hw = &adapter->hw;
263 	int i;
264 
265 	for (i = 1; i < adapter->num_msix_vectors; i++) {
266 		if (mask & BIT(i - 1)) {
267 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
268 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
269 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
270 		}
271 	}
272 }
273 
274 /**
275  * iavf_irq_enable - Enable default interrupt generation settings
276  * @adapter: board private structure
277  * @flush: boolean value whether to run rd32()
278  **/
279 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
280 {
281 	struct iavf_hw *hw = &adapter->hw;
282 
283 	iavf_misc_irq_enable(adapter);
284 	iavf_irq_enable_queues(adapter, ~0);
285 
286 	if (flush)
287 		iavf_flush(hw);
288 }
289 
290 /**
291  * iavf_msix_aq - Interrupt handler for vector 0
292  * @irq: interrupt number
293  * @data: pointer to netdev
294  **/
295 static irqreturn_t iavf_msix_aq(int irq, void *data)
296 {
297 	struct net_device *netdev = data;
298 	struct iavf_adapter *adapter = netdev_priv(netdev);
299 	struct iavf_hw *hw = &adapter->hw;
300 
301 	/* handle non-queue interrupts, these reads clear the registers */
302 	rd32(hw, IAVF_VFINT_ICR01);
303 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
304 
305 	/* schedule work on the private workqueue */
306 	queue_work(iavf_wq, &adapter->adminq_task);
307 
308 	return IRQ_HANDLED;
309 }
310 
311 /**
312  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
313  * @irq: interrupt number
314  * @data: pointer to a q_vector
315  **/
316 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
317 {
318 	struct iavf_q_vector *q_vector = data;
319 
320 	if (!q_vector->tx.ring && !q_vector->rx.ring)
321 		return IRQ_HANDLED;
322 
323 	napi_schedule_irqoff(&q_vector->napi);
324 
325 	return IRQ_HANDLED;
326 }
327 
328 /**
329  * iavf_map_vector_to_rxq - associate irqs with rx queues
330  * @adapter: board private structure
331  * @v_idx: interrupt number
332  * @r_idx: queue number
333  **/
334 static void
335 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
336 {
337 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
338 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
339 	struct iavf_hw *hw = &adapter->hw;
340 
341 	rx_ring->q_vector = q_vector;
342 	rx_ring->next = q_vector->rx.ring;
343 	rx_ring->vsi = &adapter->vsi;
344 	q_vector->rx.ring = rx_ring;
345 	q_vector->rx.count++;
346 	q_vector->rx.next_update = jiffies + 1;
347 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
348 	q_vector->ring_mask |= BIT(r_idx);
349 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
350 	     q_vector->rx.current_itr >> 1);
351 	q_vector->rx.current_itr = q_vector->rx.target_itr;
352 }
353 
354 /**
355  * iavf_map_vector_to_txq - associate irqs with tx queues
356  * @adapter: board private structure
357  * @v_idx: interrupt number
358  * @t_idx: queue number
359  **/
360 static void
361 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
362 {
363 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
364 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
365 	struct iavf_hw *hw = &adapter->hw;
366 
367 	tx_ring->q_vector = q_vector;
368 	tx_ring->next = q_vector->tx.ring;
369 	tx_ring->vsi = &adapter->vsi;
370 	q_vector->tx.ring = tx_ring;
371 	q_vector->tx.count++;
372 	q_vector->tx.next_update = jiffies + 1;
373 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
374 	q_vector->num_ringpairs++;
375 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
376 	     q_vector->tx.target_itr >> 1);
377 	q_vector->tx.current_itr = q_vector->tx.target_itr;
378 }
379 
380 /**
381  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
382  * @adapter: board private structure to initialize
383  *
384  * This function maps descriptor rings to the queue-specific vectors
385  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
386  * one vector per ring/queue, but on a constrained vector budget, we
387  * group the rings as "efficiently" as possible.  You would add new
388  * mapping configurations in here.
389  **/
390 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
391 {
392 	int rings_remaining = adapter->num_active_queues;
393 	int ridx = 0, vidx = 0;
394 	int q_vectors;
395 
396 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
397 
398 	for (; ridx < rings_remaining; ridx++) {
399 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
400 		iavf_map_vector_to_txq(adapter, vidx, ridx);
401 
402 		/* In the case where we have more queues than vectors, continue
403 		 * round-robin on vectors until all queues are mapped.
404 		 */
405 		if (++vidx >= q_vectors)
406 			vidx = 0;
407 	}
408 
409 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
410 }
411 
412 /**
413  * iavf_irq_affinity_notify - Callback for affinity changes
414  * @notify: context as to what irq was changed
415  * @mask: the new affinity mask
416  *
417  * This is a callback function used by the irq_set_affinity_notifier function
418  * so that we may register to receive changes to the irq affinity masks.
419  **/
420 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
421 				     const cpumask_t *mask)
422 {
423 	struct iavf_q_vector *q_vector =
424 		container_of(notify, struct iavf_q_vector, affinity_notify);
425 
426 	cpumask_copy(&q_vector->affinity_mask, mask);
427 }
428 
429 /**
430  * iavf_irq_affinity_release - Callback for affinity notifier release
431  * @ref: internal core kernel usage
432  *
433  * This is a callback function used by the irq_set_affinity_notifier function
434  * to inform the current notification subscriber that they will no longer
435  * receive notifications.
436  **/
437 static void iavf_irq_affinity_release(struct kref *ref) {}
438 
439 /**
440  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
441  * @adapter: board private structure
442  * @basename: device basename
443  *
444  * Allocates MSI-X vectors for tx and rx handling, and requests
445  * interrupts from the kernel.
446  **/
447 static int
448 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
449 {
450 	unsigned int vector, q_vectors;
451 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
452 	int irq_num, err;
453 	int cpu;
454 
455 	iavf_irq_disable(adapter);
456 	/* Decrement for Other and TCP Timer vectors */
457 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
458 
459 	for (vector = 0; vector < q_vectors; vector++) {
460 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
461 
462 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463 
464 		if (q_vector->tx.ring && q_vector->rx.ring) {
465 			snprintf(q_vector->name, sizeof(q_vector->name),
466 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
467 			tx_int_idx++;
468 		} else if (q_vector->rx.ring) {
469 			snprintf(q_vector->name, sizeof(q_vector->name),
470 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
471 		} else if (q_vector->tx.ring) {
472 			snprintf(q_vector->name, sizeof(q_vector->name),
473 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
474 		} else {
475 			/* skip this unused q_vector */
476 			continue;
477 		}
478 		err = request_irq(irq_num,
479 				  iavf_msix_clean_rings,
480 				  0,
481 				  q_vector->name,
482 				  q_vector);
483 		if (err) {
484 			dev_info(&adapter->pdev->dev,
485 				 "Request_irq failed, error: %d\n", err);
486 			goto free_queue_irqs;
487 		}
488 		/* register for affinity change notifications */
489 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
490 		q_vector->affinity_notify.release =
491 						   iavf_irq_affinity_release;
492 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
493 		/* Spread the IRQ affinity hints across online CPUs. Note that
494 		 * get_cpu_mask returns a mask with a permanent lifetime so
495 		 * it's safe to use as a hint for irq_update_affinity_hint.
496 		 */
497 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
498 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
499 	}
500 
501 	return 0;
502 
503 free_queue_irqs:
504 	while (vector) {
505 		vector--;
506 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
507 		irq_set_affinity_notifier(irq_num, NULL);
508 		irq_update_affinity_hint(irq_num, NULL);
509 		free_irq(irq_num, &adapter->q_vectors[vector]);
510 	}
511 	return err;
512 }
513 
514 /**
515  * iavf_request_misc_irq - Initialize MSI-X interrupts
516  * @adapter: board private structure
517  *
518  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
519  * vector is only for the admin queue, and stays active even when the netdev
520  * is closed.
521  **/
522 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
523 {
524 	struct net_device *netdev = adapter->netdev;
525 	int err;
526 
527 	snprintf(adapter->misc_vector_name,
528 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
529 		 dev_name(&adapter->pdev->dev));
530 	err = request_irq(adapter->msix_entries[0].vector,
531 			  &iavf_msix_aq, 0,
532 			  adapter->misc_vector_name, netdev);
533 	if (err) {
534 		dev_err(&adapter->pdev->dev,
535 			"request_irq for %s failed: %d\n",
536 			adapter->misc_vector_name, err);
537 		free_irq(adapter->msix_entries[0].vector, netdev);
538 	}
539 	return err;
540 }
541 
542 /**
543  * iavf_free_traffic_irqs - Free MSI-X interrupts
544  * @adapter: board private structure
545  *
546  * Frees all MSI-X vectors other than 0.
547  **/
548 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
549 {
550 	int vector, irq_num, q_vectors;
551 
552 	if (!adapter->msix_entries)
553 		return;
554 
555 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
556 
557 	for (vector = 0; vector < q_vectors; vector++) {
558 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
559 		irq_set_affinity_notifier(irq_num, NULL);
560 		irq_update_affinity_hint(irq_num, NULL);
561 		free_irq(irq_num, &adapter->q_vectors[vector]);
562 	}
563 }
564 
565 /**
566  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
567  * @adapter: board private structure
568  *
569  * Frees MSI-X vector 0.
570  **/
571 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
572 {
573 	struct net_device *netdev = adapter->netdev;
574 
575 	if (!adapter->msix_entries)
576 		return;
577 
578 	free_irq(adapter->msix_entries[0].vector, netdev);
579 }
580 
581 /**
582  * iavf_configure_tx - Configure Transmit Unit after Reset
583  * @adapter: board private structure
584  *
585  * Configure the Tx unit of the MAC after a reset.
586  **/
587 static void iavf_configure_tx(struct iavf_adapter *adapter)
588 {
589 	struct iavf_hw *hw = &adapter->hw;
590 	int i;
591 
592 	for (i = 0; i < adapter->num_active_queues; i++)
593 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
594 }
595 
596 /**
597  * iavf_configure_rx - Configure Receive Unit after Reset
598  * @adapter: board private structure
599  *
600  * Configure the Rx unit of the MAC after a reset.
601  **/
602 static void iavf_configure_rx(struct iavf_adapter *adapter)
603 {
604 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
605 	struct iavf_hw *hw = &adapter->hw;
606 	int i;
607 
608 	/* Legacy Rx will always default to a 2048 buffer size. */
609 #if (PAGE_SIZE < 8192)
610 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
611 		struct net_device *netdev = adapter->netdev;
612 
613 		/* For jumbo frames on systems with 4K pages we have to use
614 		 * an order 1 page, so we might as well increase the size
615 		 * of our Rx buffer to make better use of the available space
616 		 */
617 		rx_buf_len = IAVF_RXBUFFER_3072;
618 
619 		/* We use a 1536 buffer size for configurations with
620 		 * standard Ethernet mtu.  On x86 this gives us enough room
621 		 * for shared info and 192 bytes of padding.
622 		 */
623 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
624 		    (netdev->mtu <= ETH_DATA_LEN))
625 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
626 	}
627 #endif
628 
629 	for (i = 0; i < adapter->num_active_queues; i++) {
630 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
631 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
632 
633 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
634 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
635 		else
636 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
637 	}
638 }
639 
640 /**
641  * iavf_find_vlan - Search filter list for specific vlan filter
642  * @adapter: board private structure
643  * @vlan: vlan tag
644  *
645  * Returns ptr to the filter object or NULL. Must be called while holding the
646  * mac_vlan_list_lock.
647  **/
648 static struct
649 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
650 				 struct iavf_vlan vlan)
651 {
652 	struct iavf_vlan_filter *f;
653 
654 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
655 		if (f->vlan.vid == vlan.vid &&
656 		    f->vlan.tpid == vlan.tpid)
657 			return f;
658 	}
659 
660 	return NULL;
661 }
662 
663 /**
664  * iavf_add_vlan - Add a vlan filter to the list
665  * @adapter: board private structure
666  * @vlan: VLAN tag
667  *
668  * Returns ptr to the filter object or NULL when no memory available.
669  **/
670 static struct
671 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
672 				struct iavf_vlan vlan)
673 {
674 	struct iavf_vlan_filter *f = NULL;
675 
676 	spin_lock_bh(&adapter->mac_vlan_list_lock);
677 
678 	f = iavf_find_vlan(adapter, vlan);
679 	if (!f) {
680 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
681 		if (!f)
682 			goto clearout;
683 
684 		f->vlan = vlan;
685 
686 		list_add_tail(&f->list, &adapter->vlan_filter_list);
687 		f->add = true;
688 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
689 	}
690 
691 clearout:
692 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
693 	return f;
694 }
695 
696 /**
697  * iavf_del_vlan - Remove a vlan filter from the list
698  * @adapter: board private structure
699  * @vlan: VLAN tag
700  **/
701 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
702 {
703 	struct iavf_vlan_filter *f;
704 
705 	spin_lock_bh(&adapter->mac_vlan_list_lock);
706 
707 	f = iavf_find_vlan(adapter, vlan);
708 	if (f) {
709 		f->remove = true;
710 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
711 	}
712 
713 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
714 }
715 
716 /**
717  * iavf_restore_filters
718  * @adapter: board private structure
719  *
720  * Restore existing non MAC filters when VF netdev comes back up
721  **/
722 static void iavf_restore_filters(struct iavf_adapter *adapter)
723 {
724 	u16 vid;
725 
726 	/* re-add all VLAN filters */
727 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
728 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
729 
730 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
731 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
732 }
733 
734 /**
735  * iavf_get_num_vlans_added - get number of VLANs added
736  * @adapter: board private structure
737  */
738 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
739 {
740 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
741 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
742 }
743 
744 /**
745  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
746  * @adapter: board private structure
747  *
748  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
749  * do not impose a limit as that maintains current behavior and for
750  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
751  **/
752 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
753 {
754 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
755 	 * never been a limit on the VF driver side
756 	 */
757 	if (VLAN_ALLOWED(adapter))
758 		return VLAN_N_VID;
759 	else if (VLAN_V2_ALLOWED(adapter))
760 		return adapter->vlan_v2_caps.filtering.max_filters;
761 
762 	return 0;
763 }
764 
765 /**
766  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
767  * @adapter: board private structure
768  **/
769 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
770 {
771 	if (iavf_get_num_vlans_added(adapter) <
772 	    iavf_get_max_vlans_allowed(adapter))
773 		return false;
774 
775 	return true;
776 }
777 
778 /**
779  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
780  * @netdev: network device struct
781  * @proto: unused protocol data
782  * @vid: VLAN tag
783  **/
784 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
785 				__always_unused __be16 proto, u16 vid)
786 {
787 	struct iavf_adapter *adapter = netdev_priv(netdev);
788 
789 	if (!VLAN_FILTERING_ALLOWED(adapter))
790 		return -EIO;
791 
792 	if (iavf_max_vlans_added(adapter)) {
793 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
794 			   iavf_get_max_vlans_allowed(adapter));
795 		return -EIO;
796 	}
797 
798 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
799 		return -ENOMEM;
800 
801 	if (proto == cpu_to_be16(ETH_P_8021Q))
802 		set_bit(vid, adapter->vsi.active_cvlans);
803 	else
804 		set_bit(vid, adapter->vsi.active_svlans);
805 
806 	return 0;
807 }
808 
809 /**
810  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
811  * @netdev: network device struct
812  * @proto: unused protocol data
813  * @vid: VLAN tag
814  **/
815 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
816 				 __always_unused __be16 proto, u16 vid)
817 {
818 	struct iavf_adapter *adapter = netdev_priv(netdev);
819 
820 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
821 	if (proto == cpu_to_be16(ETH_P_8021Q))
822 		clear_bit(vid, adapter->vsi.active_cvlans);
823 	else
824 		clear_bit(vid, adapter->vsi.active_svlans);
825 
826 	return 0;
827 }
828 
829 /**
830  * iavf_find_filter - Search filter list for specific mac filter
831  * @adapter: board private structure
832  * @macaddr: the MAC address
833  *
834  * Returns ptr to the filter object or NULL. Must be called while holding the
835  * mac_vlan_list_lock.
836  **/
837 static struct
838 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
839 				  const u8 *macaddr)
840 {
841 	struct iavf_mac_filter *f;
842 
843 	if (!macaddr)
844 		return NULL;
845 
846 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
847 		if (ether_addr_equal(macaddr, f->macaddr))
848 			return f;
849 	}
850 	return NULL;
851 }
852 
853 /**
854  * iavf_add_filter - Add a mac filter to the filter list
855  * @adapter: board private structure
856  * @macaddr: the MAC address
857  *
858  * Returns ptr to the filter object or NULL when no memory available.
859  **/
860 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
861 					const u8 *macaddr)
862 {
863 	struct iavf_mac_filter *f;
864 
865 	if (!macaddr)
866 		return NULL;
867 
868 	f = iavf_find_filter(adapter, macaddr);
869 	if (!f) {
870 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
871 		if (!f)
872 			return f;
873 
874 		ether_addr_copy(f->macaddr, macaddr);
875 
876 		list_add_tail(&f->list, &adapter->mac_filter_list);
877 		f->add = true;
878 		f->is_new_mac = true;
879 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
880 	} else {
881 		f->remove = false;
882 	}
883 
884 	return f;
885 }
886 
887 /**
888  * iavf_set_mac - NDO callback to set port mac address
889  * @netdev: network interface device structure
890  * @p: pointer to an address structure
891  *
892  * Returns 0 on success, negative on failure
893  **/
894 static int iavf_set_mac(struct net_device *netdev, void *p)
895 {
896 	struct iavf_adapter *adapter = netdev_priv(netdev);
897 	struct iavf_hw *hw = &adapter->hw;
898 	struct iavf_mac_filter *f;
899 	struct sockaddr *addr = p;
900 
901 	if (!is_valid_ether_addr(addr->sa_data))
902 		return -EADDRNOTAVAIL;
903 
904 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
905 		return 0;
906 
907 	spin_lock_bh(&adapter->mac_vlan_list_lock);
908 
909 	f = iavf_find_filter(adapter, hw->mac.addr);
910 	if (f) {
911 		f->remove = true;
912 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
913 	}
914 
915 	f = iavf_add_filter(adapter, addr->sa_data);
916 
917 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
918 
919 	if (f) {
920 		ether_addr_copy(hw->mac.addr, addr->sa_data);
921 	}
922 
923 	return (f == NULL) ? -ENOMEM : 0;
924 }
925 
926 /**
927  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
928  * @netdev: the netdevice
929  * @addr: address to add
930  *
931  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
932  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
933  */
934 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
935 {
936 	struct iavf_adapter *adapter = netdev_priv(netdev);
937 
938 	if (iavf_add_filter(adapter, addr))
939 		return 0;
940 	else
941 		return -ENOMEM;
942 }
943 
944 /**
945  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
946  * @netdev: the netdevice
947  * @addr: address to add
948  *
949  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
950  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
951  */
952 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
953 {
954 	struct iavf_adapter *adapter = netdev_priv(netdev);
955 	struct iavf_mac_filter *f;
956 
957 	/* Under some circumstances, we might receive a request to delete
958 	 * our own device address from our uc list. Because we store the
959 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
960 	 * such requests and not delete our device address from this list.
961 	 */
962 	if (ether_addr_equal(addr, netdev->dev_addr))
963 		return 0;
964 
965 	f = iavf_find_filter(adapter, addr);
966 	if (f) {
967 		f->remove = true;
968 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
969 	}
970 	return 0;
971 }
972 
973 /**
974  * iavf_set_rx_mode - NDO callback to set the netdev filters
975  * @netdev: network interface device structure
976  **/
977 static void iavf_set_rx_mode(struct net_device *netdev)
978 {
979 	struct iavf_adapter *adapter = netdev_priv(netdev);
980 
981 	spin_lock_bh(&adapter->mac_vlan_list_lock);
982 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
983 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
984 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
985 
986 	if (netdev->flags & IFF_PROMISC &&
987 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
988 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
989 	else if (!(netdev->flags & IFF_PROMISC) &&
990 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
991 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
992 
993 	if (netdev->flags & IFF_ALLMULTI &&
994 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
995 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
996 	else if (!(netdev->flags & IFF_ALLMULTI) &&
997 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
998 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
999 }
1000 
1001 /**
1002  * iavf_napi_enable_all - enable NAPI on all queue vectors
1003  * @adapter: board private structure
1004  **/
1005 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1006 {
1007 	int q_idx;
1008 	struct iavf_q_vector *q_vector;
1009 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1010 
1011 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1012 		struct napi_struct *napi;
1013 
1014 		q_vector = &adapter->q_vectors[q_idx];
1015 		napi = &q_vector->napi;
1016 		napi_enable(napi);
1017 	}
1018 }
1019 
1020 /**
1021  * iavf_napi_disable_all - disable NAPI on all queue vectors
1022  * @adapter: board private structure
1023  **/
1024 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1025 {
1026 	int q_idx;
1027 	struct iavf_q_vector *q_vector;
1028 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1029 
1030 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1031 		q_vector = &adapter->q_vectors[q_idx];
1032 		napi_disable(&q_vector->napi);
1033 	}
1034 }
1035 
1036 /**
1037  * iavf_configure - set up transmit and receive data structures
1038  * @adapter: board private structure
1039  **/
1040 static void iavf_configure(struct iavf_adapter *adapter)
1041 {
1042 	struct net_device *netdev = adapter->netdev;
1043 	int i;
1044 
1045 	iavf_set_rx_mode(netdev);
1046 
1047 	iavf_configure_tx(adapter);
1048 	iavf_configure_rx(adapter);
1049 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1050 
1051 	for (i = 0; i < adapter->num_active_queues; i++) {
1052 		struct iavf_ring *ring = &adapter->rx_rings[i];
1053 
1054 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1055 	}
1056 }
1057 
1058 /**
1059  * iavf_up_complete - Finish the last steps of bringing up a connection
1060  * @adapter: board private structure
1061  *
1062  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1063  **/
1064 static void iavf_up_complete(struct iavf_adapter *adapter)
1065 {
1066 	iavf_change_state(adapter, __IAVF_RUNNING);
1067 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1068 
1069 	iavf_napi_enable_all(adapter);
1070 
1071 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1072 	if (CLIENT_ENABLED(adapter))
1073 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1074 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1075 }
1076 
1077 /**
1078  * iavf_down - Shutdown the connection processing
1079  * @adapter: board private structure
1080  *
1081  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1082  **/
1083 void iavf_down(struct iavf_adapter *adapter)
1084 {
1085 	struct net_device *netdev = adapter->netdev;
1086 	struct iavf_vlan_filter *vlf;
1087 	struct iavf_cloud_filter *cf;
1088 	struct iavf_fdir_fltr *fdir;
1089 	struct iavf_mac_filter *f;
1090 	struct iavf_adv_rss *rss;
1091 
1092 	if (adapter->state <= __IAVF_DOWN_PENDING)
1093 		return;
1094 
1095 	netif_carrier_off(netdev);
1096 	netif_tx_disable(netdev);
1097 	adapter->link_up = false;
1098 	iavf_napi_disable_all(adapter);
1099 	iavf_irq_disable(adapter);
1100 
1101 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1102 
1103 	/* clear the sync flag on all filters */
1104 	__dev_uc_unsync(adapter->netdev, NULL);
1105 	__dev_mc_unsync(adapter->netdev, NULL);
1106 
1107 	/* remove all MAC filters */
1108 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1109 		f->remove = true;
1110 	}
1111 
1112 	/* remove all VLAN filters */
1113 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1114 		vlf->remove = true;
1115 	}
1116 
1117 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1118 
1119 	/* remove all cloud filters */
1120 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1121 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1122 		cf->del = true;
1123 	}
1124 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1125 
1126 	/* remove all Flow Director filters */
1127 	spin_lock_bh(&adapter->fdir_fltr_lock);
1128 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1129 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1130 	}
1131 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1132 
1133 	/* remove all advance RSS configuration */
1134 	spin_lock_bh(&adapter->adv_rss_lock);
1135 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1136 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1137 	spin_unlock_bh(&adapter->adv_rss_lock);
1138 
1139 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1140 	    adapter->state != __IAVF_RESETTING) {
1141 		/* cancel any current operation */
1142 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1143 		/* Schedule operations to close down the HW. Don't wait
1144 		 * here for this to complete. The watchdog is still running
1145 		 * and it will take care of this.
1146 		 */
1147 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1148 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1149 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1150 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1151 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1152 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1153 	}
1154 
1155 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1156 }
1157 
1158 /**
1159  * iavf_acquire_msix_vectors - Setup the MSIX capability
1160  * @adapter: board private structure
1161  * @vectors: number of vectors to request
1162  *
1163  * Work with the OS to set up the MSIX vectors needed.
1164  *
1165  * Returns 0 on success, negative on failure
1166  **/
1167 static int
1168 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1169 {
1170 	int err, vector_threshold;
1171 
1172 	/* We'll want at least 3 (vector_threshold):
1173 	 * 0) Other (Admin Queue and link, mostly)
1174 	 * 1) TxQ[0] Cleanup
1175 	 * 2) RxQ[0] Cleanup
1176 	 */
1177 	vector_threshold = MIN_MSIX_COUNT;
1178 
1179 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1180 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1181 	 * Right now, we simply care about how many we'll get; we'll
1182 	 * set them up later while requesting irq's.
1183 	 */
1184 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1185 				    vector_threshold, vectors);
1186 	if (err < 0) {
1187 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1188 		kfree(adapter->msix_entries);
1189 		adapter->msix_entries = NULL;
1190 		return err;
1191 	}
1192 
1193 	/* Adjust for only the vectors we'll use, which is minimum
1194 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1195 	 * vectors we were allocated.
1196 	 */
1197 	adapter->num_msix_vectors = err;
1198 	return 0;
1199 }
1200 
1201 /**
1202  * iavf_free_queues - Free memory for all rings
1203  * @adapter: board private structure to initialize
1204  *
1205  * Free all of the memory associated with queue pairs.
1206  **/
1207 static void iavf_free_queues(struct iavf_adapter *adapter)
1208 {
1209 	if (!adapter->vsi_res)
1210 		return;
1211 	adapter->num_active_queues = 0;
1212 	kfree(adapter->tx_rings);
1213 	adapter->tx_rings = NULL;
1214 	kfree(adapter->rx_rings);
1215 	adapter->rx_rings = NULL;
1216 }
1217 
1218 /**
1219  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1220  * @adapter: board private structure
1221  *
1222  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1223  * stripped in certain descriptor fields. Instead of checking the offload
1224  * capability bits in the hot path, cache the location the ring specific
1225  * flags.
1226  */
1227 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1228 {
1229 	int i;
1230 
1231 	for (i = 0; i < adapter->num_active_queues; i++) {
1232 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1233 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1234 
1235 		/* prevent multiple L2TAG bits being set after VFR */
1236 		tx_ring->flags &=
1237 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1238 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1239 		rx_ring->flags &=
1240 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1241 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1242 
1243 		if (VLAN_ALLOWED(adapter)) {
1244 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1245 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1246 		} else if (VLAN_V2_ALLOWED(adapter)) {
1247 			struct virtchnl_vlan_supported_caps *stripping_support;
1248 			struct virtchnl_vlan_supported_caps *insertion_support;
1249 
1250 			stripping_support =
1251 				&adapter->vlan_v2_caps.offloads.stripping_support;
1252 			insertion_support =
1253 				&adapter->vlan_v2_caps.offloads.insertion_support;
1254 
1255 			if (stripping_support->outer) {
1256 				if (stripping_support->outer &
1257 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1258 					rx_ring->flags |=
1259 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1260 				else if (stripping_support->outer &
1261 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1262 					rx_ring->flags |=
1263 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1264 			} else if (stripping_support->inner) {
1265 				if (stripping_support->inner &
1266 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1267 					rx_ring->flags |=
1268 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1269 				else if (stripping_support->inner &
1270 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1271 					rx_ring->flags |=
1272 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1273 			}
1274 
1275 			if (insertion_support->outer) {
1276 				if (insertion_support->outer &
1277 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1278 					tx_ring->flags |=
1279 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1280 				else if (insertion_support->outer &
1281 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1282 					tx_ring->flags |=
1283 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1284 			} else if (insertion_support->inner) {
1285 				if (insertion_support->inner &
1286 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1287 					tx_ring->flags |=
1288 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1289 				else if (insertion_support->inner &
1290 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1291 					tx_ring->flags |=
1292 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1293 			}
1294 		}
1295 	}
1296 }
1297 
1298 /**
1299  * iavf_alloc_queues - Allocate memory for all rings
1300  * @adapter: board private structure to initialize
1301  *
1302  * We allocate one ring per queue at run-time since we don't know the
1303  * number of queues at compile-time.  The polling_netdev array is
1304  * intended for Multiqueue, but should work fine with a single queue.
1305  **/
1306 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1307 {
1308 	int i, num_active_queues;
1309 
1310 	/* If we're in reset reallocating queues we don't actually know yet for
1311 	 * certain the PF gave us the number of queues we asked for but we'll
1312 	 * assume it did.  Once basic reset is finished we'll confirm once we
1313 	 * start negotiating config with PF.
1314 	 */
1315 	if (adapter->num_req_queues)
1316 		num_active_queues = adapter->num_req_queues;
1317 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1318 		 adapter->num_tc)
1319 		num_active_queues = adapter->ch_config.total_qps;
1320 	else
1321 		num_active_queues = min_t(int,
1322 					  adapter->vsi_res->num_queue_pairs,
1323 					  (int)(num_online_cpus()));
1324 
1325 
1326 	adapter->tx_rings = kcalloc(num_active_queues,
1327 				    sizeof(struct iavf_ring), GFP_KERNEL);
1328 	if (!adapter->tx_rings)
1329 		goto err_out;
1330 	adapter->rx_rings = kcalloc(num_active_queues,
1331 				    sizeof(struct iavf_ring), GFP_KERNEL);
1332 	if (!adapter->rx_rings)
1333 		goto err_out;
1334 
1335 	for (i = 0; i < num_active_queues; i++) {
1336 		struct iavf_ring *tx_ring;
1337 		struct iavf_ring *rx_ring;
1338 
1339 		tx_ring = &adapter->tx_rings[i];
1340 
1341 		tx_ring->queue_index = i;
1342 		tx_ring->netdev = adapter->netdev;
1343 		tx_ring->dev = &adapter->pdev->dev;
1344 		tx_ring->count = adapter->tx_desc_count;
1345 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1346 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1347 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1348 
1349 		rx_ring = &adapter->rx_rings[i];
1350 		rx_ring->queue_index = i;
1351 		rx_ring->netdev = adapter->netdev;
1352 		rx_ring->dev = &adapter->pdev->dev;
1353 		rx_ring->count = adapter->rx_desc_count;
1354 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1355 	}
1356 
1357 	adapter->num_active_queues = num_active_queues;
1358 
1359 	iavf_set_queue_vlan_tag_loc(adapter);
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	iavf_free_queues(adapter);
1365 	return -ENOMEM;
1366 }
1367 
1368 /**
1369  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1370  * @adapter: board private structure to initialize
1371  *
1372  * Attempt to configure the interrupts using the best available
1373  * capabilities of the hardware and the kernel.
1374  **/
1375 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1376 {
1377 	int vector, v_budget;
1378 	int pairs = 0;
1379 	int err = 0;
1380 
1381 	if (!adapter->vsi_res) {
1382 		err = -EIO;
1383 		goto out;
1384 	}
1385 	pairs = adapter->num_active_queues;
1386 
1387 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1388 	 * us much good if we have more vectors than CPUs. However, we already
1389 	 * limit the total number of queues by the number of CPUs so we do not
1390 	 * need any further limiting here.
1391 	 */
1392 	v_budget = min_t(int, pairs + NONQ_VECS,
1393 			 (int)adapter->vf_res->max_vectors);
1394 
1395 	adapter->msix_entries = kcalloc(v_budget,
1396 					sizeof(struct msix_entry), GFP_KERNEL);
1397 	if (!adapter->msix_entries) {
1398 		err = -ENOMEM;
1399 		goto out;
1400 	}
1401 
1402 	for (vector = 0; vector < v_budget; vector++)
1403 		adapter->msix_entries[vector].entry = vector;
1404 
1405 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1406 
1407 out:
1408 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1409 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1410 	return err;
1411 }
1412 
1413 /**
1414  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1415  * @adapter: board private structure
1416  *
1417  * Return 0 on success, negative on failure
1418  **/
1419 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1420 {
1421 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1422 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1423 	struct iavf_hw *hw = &adapter->hw;
1424 	int ret = 0;
1425 
1426 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1427 		/* bail because we already have a command pending */
1428 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1429 			adapter->current_op);
1430 		return -EBUSY;
1431 	}
1432 
1433 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1434 	if (ret) {
1435 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1436 			iavf_stat_str(hw, ret),
1437 			iavf_aq_str(hw, hw->aq.asq_last_status));
1438 		return ret;
1439 
1440 	}
1441 
1442 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1443 				  adapter->rss_lut, adapter->rss_lut_size);
1444 	if (ret) {
1445 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1446 			iavf_stat_str(hw, ret),
1447 			iavf_aq_str(hw, hw->aq.asq_last_status));
1448 	}
1449 
1450 	return ret;
1451 
1452 }
1453 
1454 /**
1455  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1456  * @adapter: board private structure
1457  *
1458  * Returns 0 on success, negative on failure
1459  **/
1460 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1461 {
1462 	struct iavf_hw *hw = &adapter->hw;
1463 	u32 *dw;
1464 	u16 i;
1465 
1466 	dw = (u32 *)adapter->rss_key;
1467 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1468 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1469 
1470 	dw = (u32 *)adapter->rss_lut;
1471 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1472 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1473 
1474 	iavf_flush(hw);
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * iavf_config_rss - Configure RSS keys and lut
1481  * @adapter: board private structure
1482  *
1483  * Returns 0 on success, negative on failure
1484  **/
1485 int iavf_config_rss(struct iavf_adapter *adapter)
1486 {
1487 
1488 	if (RSS_PF(adapter)) {
1489 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1490 					IAVF_FLAG_AQ_SET_RSS_KEY;
1491 		return 0;
1492 	} else if (RSS_AQ(adapter)) {
1493 		return iavf_config_rss_aq(adapter);
1494 	} else {
1495 		return iavf_config_rss_reg(adapter);
1496 	}
1497 }
1498 
1499 /**
1500  * iavf_fill_rss_lut - Fill the lut with default values
1501  * @adapter: board private structure
1502  **/
1503 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1504 {
1505 	u16 i;
1506 
1507 	for (i = 0; i < adapter->rss_lut_size; i++)
1508 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1509 }
1510 
1511 /**
1512  * iavf_init_rss - Prepare for RSS
1513  * @adapter: board private structure
1514  *
1515  * Return 0 on success, negative on failure
1516  **/
1517 static int iavf_init_rss(struct iavf_adapter *adapter)
1518 {
1519 	struct iavf_hw *hw = &adapter->hw;
1520 	int ret;
1521 
1522 	if (!RSS_PF(adapter)) {
1523 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1524 		if (adapter->vf_res->vf_cap_flags &
1525 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1526 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1527 		else
1528 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1529 
1530 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1531 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1532 	}
1533 
1534 	iavf_fill_rss_lut(adapter);
1535 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1536 	ret = iavf_config_rss(adapter);
1537 
1538 	return ret;
1539 }
1540 
1541 /**
1542  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1543  * @adapter: board private structure to initialize
1544  *
1545  * We allocate one q_vector per queue interrupt.  If allocation fails we
1546  * return -ENOMEM.
1547  **/
1548 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1549 {
1550 	int q_idx = 0, num_q_vectors;
1551 	struct iavf_q_vector *q_vector;
1552 
1553 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1554 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1555 				     GFP_KERNEL);
1556 	if (!adapter->q_vectors)
1557 		return -ENOMEM;
1558 
1559 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1560 		q_vector = &adapter->q_vectors[q_idx];
1561 		q_vector->adapter = adapter;
1562 		q_vector->vsi = &adapter->vsi;
1563 		q_vector->v_idx = q_idx;
1564 		q_vector->reg_idx = q_idx;
1565 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1566 		netif_napi_add(adapter->netdev, &q_vector->napi,
1567 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /**
1574  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1575  * @adapter: board private structure to initialize
1576  *
1577  * This function frees the memory allocated to the q_vectors.  In addition if
1578  * NAPI is enabled it will delete any references to the NAPI struct prior
1579  * to freeing the q_vector.
1580  **/
1581 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1582 {
1583 	int q_idx, num_q_vectors;
1584 	int napi_vectors;
1585 
1586 	if (!adapter->q_vectors)
1587 		return;
1588 
1589 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1590 	napi_vectors = adapter->num_active_queues;
1591 
1592 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1593 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1594 
1595 		if (q_idx < napi_vectors)
1596 			netif_napi_del(&q_vector->napi);
1597 	}
1598 	kfree(adapter->q_vectors);
1599 	adapter->q_vectors = NULL;
1600 }
1601 
1602 /**
1603  * iavf_reset_interrupt_capability - Reset MSIX setup
1604  * @adapter: board private structure
1605  *
1606  **/
1607 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1608 {
1609 	if (!adapter->msix_entries)
1610 		return;
1611 
1612 	pci_disable_msix(adapter->pdev);
1613 	kfree(adapter->msix_entries);
1614 	adapter->msix_entries = NULL;
1615 }
1616 
1617 /**
1618  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1619  * @adapter: board private structure to initialize
1620  *
1621  **/
1622 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1623 {
1624 	int err;
1625 
1626 	err = iavf_alloc_queues(adapter);
1627 	if (err) {
1628 		dev_err(&adapter->pdev->dev,
1629 			"Unable to allocate memory for queues\n");
1630 		goto err_alloc_queues;
1631 	}
1632 
1633 	rtnl_lock();
1634 	err = iavf_set_interrupt_capability(adapter);
1635 	rtnl_unlock();
1636 	if (err) {
1637 		dev_err(&adapter->pdev->dev,
1638 			"Unable to setup interrupt capabilities\n");
1639 		goto err_set_interrupt;
1640 	}
1641 
1642 	err = iavf_alloc_q_vectors(adapter);
1643 	if (err) {
1644 		dev_err(&adapter->pdev->dev,
1645 			"Unable to allocate memory for queue vectors\n");
1646 		goto err_alloc_q_vectors;
1647 	}
1648 
1649 	/* If we've made it so far while ADq flag being ON, then we haven't
1650 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1651 	 * resources have been allocated in the reset path.
1652 	 * Now we can truly claim that ADq is enabled.
1653 	 */
1654 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1655 	    adapter->num_tc)
1656 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1657 			 adapter->num_tc);
1658 
1659 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1660 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1661 		 adapter->num_active_queues);
1662 
1663 	return 0;
1664 err_alloc_q_vectors:
1665 	iavf_reset_interrupt_capability(adapter);
1666 err_set_interrupt:
1667 	iavf_free_queues(adapter);
1668 err_alloc_queues:
1669 	return err;
1670 }
1671 
1672 /**
1673  * iavf_free_rss - Free memory used by RSS structs
1674  * @adapter: board private structure
1675  **/
1676 static void iavf_free_rss(struct iavf_adapter *adapter)
1677 {
1678 	kfree(adapter->rss_key);
1679 	adapter->rss_key = NULL;
1680 
1681 	kfree(adapter->rss_lut);
1682 	adapter->rss_lut = NULL;
1683 }
1684 
1685 /**
1686  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1687  * @adapter: board private structure
1688  *
1689  * Returns 0 on success, negative on failure
1690  **/
1691 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1692 {
1693 	struct net_device *netdev = adapter->netdev;
1694 	int err;
1695 
1696 	if (netif_running(netdev))
1697 		iavf_free_traffic_irqs(adapter);
1698 	iavf_free_misc_irq(adapter);
1699 	iavf_reset_interrupt_capability(adapter);
1700 	iavf_free_q_vectors(adapter);
1701 	iavf_free_queues(adapter);
1702 
1703 	err =  iavf_init_interrupt_scheme(adapter);
1704 	if (err)
1705 		goto err;
1706 
1707 	netif_tx_stop_all_queues(netdev);
1708 
1709 	err = iavf_request_misc_irq(adapter);
1710 	if (err)
1711 		goto err;
1712 
1713 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1714 
1715 	iavf_map_rings_to_vectors(adapter);
1716 err:
1717 	return err;
1718 }
1719 
1720 /**
1721  * iavf_process_aq_command - process aq_required flags
1722  * and sends aq command
1723  * @adapter: pointer to iavf adapter structure
1724  *
1725  * Returns 0 on success
1726  * Returns error code if no command was sent
1727  * or error code if the command failed.
1728  **/
1729 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1730 {
1731 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1732 		return iavf_send_vf_config_msg(adapter);
1733 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1734 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1735 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1736 		iavf_disable_queues(adapter);
1737 		return 0;
1738 	}
1739 
1740 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1741 		iavf_map_queues(adapter);
1742 		return 0;
1743 	}
1744 
1745 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1746 		iavf_add_ether_addrs(adapter);
1747 		return 0;
1748 	}
1749 
1750 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1751 		iavf_add_vlans(adapter);
1752 		return 0;
1753 	}
1754 
1755 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1756 		iavf_del_ether_addrs(adapter);
1757 		return 0;
1758 	}
1759 
1760 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1761 		iavf_del_vlans(adapter);
1762 		return 0;
1763 	}
1764 
1765 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1766 		iavf_enable_vlan_stripping(adapter);
1767 		return 0;
1768 	}
1769 
1770 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1771 		iavf_disable_vlan_stripping(adapter);
1772 		return 0;
1773 	}
1774 
1775 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1776 		iavf_configure_queues(adapter);
1777 		return 0;
1778 	}
1779 
1780 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1781 		iavf_enable_queues(adapter);
1782 		return 0;
1783 	}
1784 
1785 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1786 		/* This message goes straight to the firmware, not the
1787 		 * PF, so we don't have to set current_op as we will
1788 		 * not get a response through the ARQ.
1789 		 */
1790 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1791 		return 0;
1792 	}
1793 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1794 		iavf_get_hena(adapter);
1795 		return 0;
1796 	}
1797 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1798 		iavf_set_hena(adapter);
1799 		return 0;
1800 	}
1801 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1802 		iavf_set_rss_key(adapter);
1803 		return 0;
1804 	}
1805 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1806 		iavf_set_rss_lut(adapter);
1807 		return 0;
1808 	}
1809 
1810 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1811 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1812 				       FLAG_VF_MULTICAST_PROMISC);
1813 		return 0;
1814 	}
1815 
1816 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1817 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1818 		return 0;
1819 	}
1820 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1821 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1822 		iavf_set_promiscuous(adapter, 0);
1823 		return 0;
1824 	}
1825 
1826 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1827 		iavf_enable_channels(adapter);
1828 		return 0;
1829 	}
1830 
1831 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1832 		iavf_disable_channels(adapter);
1833 		return 0;
1834 	}
1835 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1836 		iavf_add_cloud_filter(adapter);
1837 		return 0;
1838 	}
1839 
1840 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1841 		iavf_del_cloud_filter(adapter);
1842 		return 0;
1843 	}
1844 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1845 		iavf_del_cloud_filter(adapter);
1846 		return 0;
1847 	}
1848 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1849 		iavf_add_cloud_filter(adapter);
1850 		return 0;
1851 	}
1852 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1853 		iavf_add_fdir_filter(adapter);
1854 		return IAVF_SUCCESS;
1855 	}
1856 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1857 		iavf_del_fdir_filter(adapter);
1858 		return IAVF_SUCCESS;
1859 	}
1860 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1861 		iavf_add_adv_rss_cfg(adapter);
1862 		return 0;
1863 	}
1864 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1865 		iavf_del_adv_rss_cfg(adapter);
1866 		return 0;
1867 	}
1868 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1869 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1870 		return 0;
1871 	}
1872 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1873 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1874 		return 0;
1875 	}
1876 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1877 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1878 		return 0;
1879 	}
1880 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1881 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1882 		return 0;
1883 	}
1884 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1885 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1886 		return 0;
1887 	}
1888 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
1889 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1890 		return 0;
1891 	}
1892 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
1893 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1894 		return 0;
1895 	}
1896 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
1897 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1898 		return 0;
1899 	}
1900 
1901 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
1902 		iavf_request_stats(adapter);
1903 		return 0;
1904 	}
1905 
1906 	return -EAGAIN;
1907 }
1908 
1909 /**
1910  * iavf_set_vlan_offload_features - set VLAN offload configuration
1911  * @adapter: board private structure
1912  * @prev_features: previous features used for comparison
1913  * @features: updated features used for configuration
1914  *
1915  * Set the aq_required bit(s) based on the requested features passed in to
1916  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
1917  * the watchdog if any changes are requested to expedite the request via
1918  * virtchnl.
1919  **/
1920 void
1921 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
1922 			       netdev_features_t prev_features,
1923 			       netdev_features_t features)
1924 {
1925 	bool enable_stripping = true, enable_insertion = true;
1926 	u16 vlan_ethertype = 0;
1927 	u64 aq_required = 0;
1928 
1929 	/* keep cases separate because one ethertype for offloads can be
1930 	 * disabled at the same time as another is disabled, so check for an
1931 	 * enabled ethertype first, then check for disabled. Default to
1932 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
1933 	 * stripping.
1934 	 */
1935 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1936 		vlan_ethertype = ETH_P_8021AD;
1937 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1938 		vlan_ethertype = ETH_P_8021Q;
1939 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1940 		vlan_ethertype = ETH_P_8021AD;
1941 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1942 		vlan_ethertype = ETH_P_8021Q;
1943 	else
1944 		vlan_ethertype = ETH_P_8021Q;
1945 
1946 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
1947 		enable_stripping = false;
1948 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
1949 		enable_insertion = false;
1950 
1951 	if (VLAN_ALLOWED(adapter)) {
1952 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
1953 		 * stripping via virtchnl. VLAN insertion can be toggled on the
1954 		 * netdev, but it doesn't require a virtchnl message
1955 		 */
1956 		if (enable_stripping)
1957 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
1958 		else
1959 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
1960 
1961 	} else if (VLAN_V2_ALLOWED(adapter)) {
1962 		switch (vlan_ethertype) {
1963 		case ETH_P_8021Q:
1964 			if (enable_stripping)
1965 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
1966 			else
1967 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
1968 
1969 			if (enable_insertion)
1970 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
1971 			else
1972 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
1973 			break;
1974 		case ETH_P_8021AD:
1975 			if (enable_stripping)
1976 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
1977 			else
1978 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
1979 
1980 			if (enable_insertion)
1981 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
1982 			else
1983 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
1984 			break;
1985 		}
1986 	}
1987 
1988 	if (aq_required) {
1989 		adapter->aq_required |= aq_required;
1990 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1991 	}
1992 }
1993 
1994 /**
1995  * iavf_startup - first step of driver startup
1996  * @adapter: board private structure
1997  *
1998  * Function process __IAVF_STARTUP driver state.
1999  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2000  * when fails the state is changed to __IAVF_INIT_FAILED
2001  **/
2002 static void iavf_startup(struct iavf_adapter *adapter)
2003 {
2004 	struct pci_dev *pdev = adapter->pdev;
2005 	struct iavf_hw *hw = &adapter->hw;
2006 	int err;
2007 
2008 	WARN_ON(adapter->state != __IAVF_STARTUP);
2009 
2010 	/* driver loaded, probe complete */
2011 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2012 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2013 	err = iavf_set_mac_type(hw);
2014 	if (err) {
2015 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
2016 		goto err;
2017 	}
2018 
2019 	err = iavf_check_reset_complete(hw);
2020 	if (err) {
2021 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2022 			 err);
2023 		goto err;
2024 	}
2025 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2026 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2027 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2028 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2029 
2030 	err = iavf_init_adminq(hw);
2031 	if (err) {
2032 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
2033 		goto err;
2034 	}
2035 	err = iavf_send_api_ver(adapter);
2036 	if (err) {
2037 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
2038 		iavf_shutdown_adminq(hw);
2039 		goto err;
2040 	}
2041 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2042 	return;
2043 err:
2044 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2045 }
2046 
2047 /**
2048  * iavf_init_version_check - second step of driver startup
2049  * @adapter: board private structure
2050  *
2051  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2052  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2053  * when fails the state is changed to __IAVF_INIT_FAILED
2054  **/
2055 static void iavf_init_version_check(struct iavf_adapter *adapter)
2056 {
2057 	struct pci_dev *pdev = adapter->pdev;
2058 	struct iavf_hw *hw = &adapter->hw;
2059 	int err = -EAGAIN;
2060 
2061 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2062 
2063 	if (!iavf_asq_done(hw)) {
2064 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2065 		iavf_shutdown_adminq(hw);
2066 		iavf_change_state(adapter, __IAVF_STARTUP);
2067 		goto err;
2068 	}
2069 
2070 	/* aq msg sent, awaiting reply */
2071 	err = iavf_verify_api_ver(adapter);
2072 	if (err) {
2073 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2074 			err = iavf_send_api_ver(adapter);
2075 		else
2076 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2077 				adapter->pf_version.major,
2078 				adapter->pf_version.minor,
2079 				VIRTCHNL_VERSION_MAJOR,
2080 				VIRTCHNL_VERSION_MINOR);
2081 		goto err;
2082 	}
2083 	err = iavf_send_vf_config_msg(adapter);
2084 	if (err) {
2085 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2086 			err);
2087 		goto err;
2088 	}
2089 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2090 	return;
2091 err:
2092 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2093 }
2094 
2095 /**
2096  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2097  * @adapter: board private structure
2098  */
2099 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2100 {
2101 	int i, num_req_queues = adapter->num_req_queues;
2102 	struct iavf_vsi *vsi = &adapter->vsi;
2103 
2104 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2105 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2106 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2107 	}
2108 	if (!adapter->vsi_res) {
2109 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2110 		return -ENODEV;
2111 	}
2112 
2113 	if (num_req_queues &&
2114 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2115 		/* Problem.  The PF gave us fewer queues than what we had
2116 		 * negotiated in our request.  Need a reset to see if we can't
2117 		 * get back to a working state.
2118 		 */
2119 		dev_err(&adapter->pdev->dev,
2120 			"Requested %d queues, but PF only gave us %d.\n",
2121 			num_req_queues,
2122 			adapter->vsi_res->num_queue_pairs);
2123 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
2124 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2125 		iavf_schedule_reset(adapter);
2126 
2127 		return -EAGAIN;
2128 	}
2129 	adapter->num_req_queues = 0;
2130 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2131 
2132 	adapter->vsi.back = adapter;
2133 	adapter->vsi.base_vector = 1;
2134 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
2135 	vsi->netdev = adapter->netdev;
2136 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2137 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2138 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2139 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2140 	} else {
2141 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2142 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  * iavf_init_get_resources - third step of driver startup
2150  * @adapter: board private structure
2151  *
2152  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2153  * finishes driver initialization procedure.
2154  * When success the state is changed to __IAVF_DOWN
2155  * when fails the state is changed to __IAVF_INIT_FAILED
2156  **/
2157 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2158 {
2159 	struct pci_dev *pdev = adapter->pdev;
2160 	struct iavf_hw *hw = &adapter->hw;
2161 	int err;
2162 
2163 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2164 	/* aq msg sent, awaiting reply */
2165 	if (!adapter->vf_res) {
2166 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2167 					  GFP_KERNEL);
2168 		if (!adapter->vf_res) {
2169 			err = -ENOMEM;
2170 			goto err;
2171 		}
2172 	}
2173 	err = iavf_get_vf_config(adapter);
2174 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
2175 		err = iavf_send_vf_config_msg(adapter);
2176 		goto err_alloc;
2177 	} else if (err == IAVF_ERR_PARAM) {
2178 		/* We only get ERR_PARAM if the device is in a very bad
2179 		 * state or if we've been disabled for previous bad
2180 		 * behavior. Either way, we're done now.
2181 		 */
2182 		iavf_shutdown_adminq(hw);
2183 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2184 		return;
2185 	}
2186 	if (err) {
2187 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2188 		goto err_alloc;
2189 	}
2190 
2191 	err = iavf_parse_vf_resource_msg(adapter);
2192 	if (err)
2193 		goto err_alloc;
2194 
2195 	err = iavf_send_vf_offload_vlan_v2_msg(adapter);
2196 	if (err == -EOPNOTSUPP) {
2197 		/* underlying PF doesn't support VIRTCHNL_VF_OFFLOAD_VLAN_V2, so
2198 		 * go directly to finishing initialization
2199 		 */
2200 		iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2201 		return;
2202 	} else if (err) {
2203 		dev_err(&pdev->dev, "Unable to send offload vlan v2 request (%d)\n",
2204 			err);
2205 		goto err_alloc;
2206 	}
2207 
2208 	/* underlying PF supports VIRTCHNL_VF_OFFLOAD_VLAN_V2, so update the
2209 	 * state accordingly
2210 	 */
2211 	iavf_change_state(adapter, __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2212 	return;
2213 
2214 err_alloc:
2215 	kfree(adapter->vf_res);
2216 	adapter->vf_res = NULL;
2217 err:
2218 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2219 }
2220 
2221 /**
2222  * iavf_init_get_offload_vlan_v2_caps - part of driver startup
2223  * @adapter: board private structure
2224  *
2225  * Function processes __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS driver state if the
2226  * VF negotiates VIRTCHNL_VF_OFFLOAD_VLAN_V2. If VIRTCHNL_VF_OFFLOAD_VLAN_V2 is
2227  * not negotiated, then this state will never be entered.
2228  **/
2229 static void iavf_init_get_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2230 {
2231 	int ret;
2232 
2233 	WARN_ON(adapter->state != __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2234 
2235 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2236 
2237 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2238 	if (ret) {
2239 		if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2240 			iavf_send_vf_offload_vlan_v2_msg(adapter);
2241 		goto err;
2242 	}
2243 
2244 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2245 	return;
2246 err:
2247 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2248 }
2249 
2250 /**
2251  * iavf_init_config_adapter - last part of driver startup
2252  * @adapter: board private structure
2253  *
2254  * After all the supported capabilities are negotiated, then the
2255  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2256  */
2257 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2258 {
2259 	struct net_device *netdev = adapter->netdev;
2260 	struct pci_dev *pdev = adapter->pdev;
2261 	int err;
2262 
2263 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2264 
2265 	if (iavf_process_config(adapter))
2266 		goto err;
2267 
2268 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2269 
2270 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2271 
2272 	netdev->netdev_ops = &iavf_netdev_ops;
2273 	iavf_set_ethtool_ops(netdev);
2274 	netdev->watchdog_timeo = 5 * HZ;
2275 
2276 	/* MTU range: 68 - 9710 */
2277 	netdev->min_mtu = ETH_MIN_MTU;
2278 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2279 
2280 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2281 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2282 			 adapter->hw.mac.addr);
2283 		eth_hw_addr_random(netdev);
2284 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2285 	} else {
2286 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2287 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2288 	}
2289 
2290 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2291 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2292 	err = iavf_init_interrupt_scheme(adapter);
2293 	if (err)
2294 		goto err_sw_init;
2295 	iavf_map_rings_to_vectors(adapter);
2296 	if (adapter->vf_res->vf_cap_flags &
2297 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2298 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2299 
2300 	err = iavf_request_misc_irq(adapter);
2301 	if (err)
2302 		goto err_sw_init;
2303 
2304 	netif_carrier_off(netdev);
2305 	adapter->link_up = false;
2306 
2307 	/* set the semaphore to prevent any callbacks after device registration
2308 	 * up to time when state of driver will be set to __IAVF_DOWN
2309 	 */
2310 	rtnl_lock();
2311 	if (!adapter->netdev_registered) {
2312 		err = register_netdevice(netdev);
2313 		if (err) {
2314 			rtnl_unlock();
2315 			goto err_register;
2316 		}
2317 	}
2318 
2319 	adapter->netdev_registered = true;
2320 
2321 	netif_tx_stop_all_queues(netdev);
2322 	if (CLIENT_ALLOWED(adapter)) {
2323 		err = iavf_lan_add_device(adapter);
2324 		if (err)
2325 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2326 				 err);
2327 	}
2328 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2329 	if (netdev->features & NETIF_F_GRO)
2330 		dev_info(&pdev->dev, "GRO is enabled\n");
2331 
2332 	iavf_change_state(adapter, __IAVF_DOWN);
2333 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2334 	rtnl_unlock();
2335 
2336 	iavf_misc_irq_enable(adapter);
2337 	wake_up(&adapter->down_waitqueue);
2338 
2339 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2340 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2341 	if (!adapter->rss_key || !adapter->rss_lut) {
2342 		err = -ENOMEM;
2343 		goto err_mem;
2344 	}
2345 	if (RSS_AQ(adapter))
2346 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2347 	else
2348 		iavf_init_rss(adapter);
2349 
2350 	if (VLAN_V2_ALLOWED(adapter))
2351 		/* request initial VLAN offload settings */
2352 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2353 
2354 	return;
2355 err_mem:
2356 	iavf_free_rss(adapter);
2357 err_register:
2358 	iavf_free_misc_irq(adapter);
2359 err_sw_init:
2360 	iavf_reset_interrupt_capability(adapter);
2361 err:
2362 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2363 }
2364 
2365 /**
2366  * iavf_watchdog_task - Periodic call-back task
2367  * @work: pointer to work_struct
2368  **/
2369 static void iavf_watchdog_task(struct work_struct *work)
2370 {
2371 	struct iavf_adapter *adapter = container_of(work,
2372 						    struct iavf_adapter,
2373 						    watchdog_task.work);
2374 	struct iavf_hw *hw = &adapter->hw;
2375 	u32 reg_val;
2376 
2377 	if (!mutex_trylock(&adapter->crit_lock))
2378 		goto restart_watchdog;
2379 
2380 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2381 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2382 
2383 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED &&
2384 	    adapter->state != __IAVF_RESETTING) {
2385 		iavf_change_state(adapter, __IAVF_RESETTING);
2386 		adapter->aq_required = 0;
2387 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2388 	}
2389 
2390 	switch (adapter->state) {
2391 	case __IAVF_STARTUP:
2392 		iavf_startup(adapter);
2393 		mutex_unlock(&adapter->crit_lock);
2394 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2395 				   msecs_to_jiffies(30));
2396 		return;
2397 	case __IAVF_INIT_VERSION_CHECK:
2398 		iavf_init_version_check(adapter);
2399 		mutex_unlock(&adapter->crit_lock);
2400 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2401 				   msecs_to_jiffies(30));
2402 		return;
2403 	case __IAVF_INIT_GET_RESOURCES:
2404 		iavf_init_get_resources(adapter);
2405 		mutex_unlock(&adapter->crit_lock);
2406 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2407 				   msecs_to_jiffies(1));
2408 		return;
2409 	case __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS:
2410 		iavf_init_get_offload_vlan_v2_caps(adapter);
2411 		mutex_unlock(&adapter->crit_lock);
2412 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2413 				   msecs_to_jiffies(1));
2414 		return;
2415 	case __IAVF_INIT_CONFIG_ADAPTER:
2416 		iavf_init_config_adapter(adapter);
2417 		mutex_unlock(&adapter->crit_lock);
2418 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2419 				   msecs_to_jiffies(1));
2420 		return;
2421 	case __IAVF_INIT_FAILED:
2422 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2423 			dev_err(&adapter->pdev->dev,
2424 				"Failed to communicate with PF; waiting before retry\n");
2425 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2426 			iavf_shutdown_adminq(hw);
2427 			mutex_unlock(&adapter->crit_lock);
2428 			queue_delayed_work(iavf_wq,
2429 					   &adapter->watchdog_task, (5 * HZ));
2430 			return;
2431 		}
2432 		/* Try again from failed step*/
2433 		iavf_change_state(adapter, adapter->last_state);
2434 		mutex_unlock(&adapter->crit_lock);
2435 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2436 		return;
2437 	case __IAVF_COMM_FAILED:
2438 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2439 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2440 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2441 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2442 			/* A chance for redemption! */
2443 			dev_err(&adapter->pdev->dev,
2444 				"Hardware came out of reset. Attempting reinit.\n");
2445 			/* When init task contacts the PF and
2446 			 * gets everything set up again, it'll restart the
2447 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2448 			 */
2449 			iavf_change_state(adapter, __IAVF_STARTUP);
2450 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2451 		}
2452 		adapter->aq_required = 0;
2453 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2454 		mutex_unlock(&adapter->crit_lock);
2455 		queue_delayed_work(iavf_wq,
2456 				   &adapter->watchdog_task,
2457 				   msecs_to_jiffies(10));
2458 		return;
2459 	case __IAVF_RESETTING:
2460 		mutex_unlock(&adapter->crit_lock);
2461 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2462 		return;
2463 	case __IAVF_DOWN:
2464 	case __IAVF_DOWN_PENDING:
2465 	case __IAVF_TESTING:
2466 	case __IAVF_RUNNING:
2467 		if (adapter->current_op) {
2468 			if (!iavf_asq_done(hw)) {
2469 				dev_dbg(&adapter->pdev->dev,
2470 					"Admin queue timeout\n");
2471 				iavf_send_api_ver(adapter);
2472 			}
2473 		} else {
2474 			int ret = iavf_process_aq_command(adapter);
2475 
2476 			/* An error will be returned if no commands were
2477 			 * processed; use this opportunity to update stats
2478 			 * if the error isn't -ENOTSUPP
2479 			 */
2480 			if (ret && ret != -EOPNOTSUPP &&
2481 			    adapter->state == __IAVF_RUNNING)
2482 				iavf_request_stats(adapter);
2483 		}
2484 		if (adapter->state == __IAVF_RUNNING)
2485 			iavf_detect_recover_hung(&adapter->vsi);
2486 		break;
2487 	case __IAVF_REMOVE:
2488 	default:
2489 		mutex_unlock(&adapter->crit_lock);
2490 		return;
2491 	}
2492 
2493 	/* check for hw reset */
2494 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2495 	if (!reg_val) {
2496 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2497 		adapter->aq_required = 0;
2498 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2499 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2500 		queue_work(iavf_wq, &adapter->reset_task);
2501 		mutex_unlock(&adapter->crit_lock);
2502 		queue_delayed_work(iavf_wq,
2503 				   &adapter->watchdog_task, HZ * 2);
2504 		return;
2505 	}
2506 
2507 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2508 	mutex_unlock(&adapter->crit_lock);
2509 restart_watchdog:
2510 	queue_work(iavf_wq, &adapter->adminq_task);
2511 	if (adapter->aq_required)
2512 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2513 				   msecs_to_jiffies(20));
2514 	else
2515 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2516 }
2517 
2518 static void iavf_disable_vf(struct iavf_adapter *adapter)
2519 {
2520 	struct iavf_mac_filter *f, *ftmp;
2521 	struct iavf_vlan_filter *fv, *fvtmp;
2522 	struct iavf_cloud_filter *cf, *cftmp;
2523 
2524 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2525 
2526 	/* We don't use netif_running() because it may be true prior to
2527 	 * ndo_open() returning, so we can't assume it means all our open
2528 	 * tasks have finished, since we're not holding the rtnl_lock here.
2529 	 */
2530 	if (adapter->state == __IAVF_RUNNING) {
2531 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2532 		netif_carrier_off(adapter->netdev);
2533 		netif_tx_disable(adapter->netdev);
2534 		adapter->link_up = false;
2535 		iavf_napi_disable_all(adapter);
2536 		iavf_irq_disable(adapter);
2537 		iavf_free_traffic_irqs(adapter);
2538 		iavf_free_all_tx_resources(adapter);
2539 		iavf_free_all_rx_resources(adapter);
2540 	}
2541 
2542 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2543 
2544 	/* Delete all of the filters */
2545 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2546 		list_del(&f->list);
2547 		kfree(f);
2548 	}
2549 
2550 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2551 		list_del(&fv->list);
2552 		kfree(fv);
2553 	}
2554 
2555 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2556 
2557 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2558 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2559 		list_del(&cf->list);
2560 		kfree(cf);
2561 		adapter->num_cloud_filters--;
2562 	}
2563 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2564 
2565 	iavf_free_misc_irq(adapter);
2566 	iavf_reset_interrupt_capability(adapter);
2567 	iavf_free_q_vectors(adapter);
2568 	iavf_free_queues(adapter);
2569 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2570 	iavf_shutdown_adminq(&adapter->hw);
2571 	adapter->netdev->flags &= ~IFF_UP;
2572 	mutex_unlock(&adapter->crit_lock);
2573 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2574 	iavf_change_state(adapter, __IAVF_DOWN);
2575 	wake_up(&adapter->down_waitqueue);
2576 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2577 }
2578 
2579 /**
2580  * iavf_reset_task - Call-back task to handle hardware reset
2581  * @work: pointer to work_struct
2582  *
2583  * During reset we need to shut down and reinitialize the admin queue
2584  * before we can use it to communicate with the PF again. We also clear
2585  * and reinit the rings because that context is lost as well.
2586  **/
2587 static void iavf_reset_task(struct work_struct *work)
2588 {
2589 	struct iavf_adapter *adapter = container_of(work,
2590 						      struct iavf_adapter,
2591 						      reset_task);
2592 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2593 	struct net_device *netdev = adapter->netdev;
2594 	struct iavf_hw *hw = &adapter->hw;
2595 	struct iavf_mac_filter *f, *ftmp;
2596 	struct iavf_cloud_filter *cf;
2597 	u32 reg_val;
2598 	int i = 0, err;
2599 	bool running;
2600 
2601 	/* When device is being removed it doesn't make sense to run the reset
2602 	 * task, just return in such a case.
2603 	 */
2604 	if (mutex_is_locked(&adapter->remove_lock))
2605 		return;
2606 
2607 	if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2608 		schedule_work(&adapter->reset_task);
2609 		return;
2610 	}
2611 	while (!mutex_trylock(&adapter->client_lock))
2612 		usleep_range(500, 1000);
2613 	if (CLIENT_ENABLED(adapter)) {
2614 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2615 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2616 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2617 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2618 		cancel_delayed_work_sync(&adapter->client_task);
2619 		iavf_notify_client_close(&adapter->vsi, true);
2620 	}
2621 	iavf_misc_irq_disable(adapter);
2622 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2623 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2624 		/* Restart the AQ here. If we have been reset but didn't
2625 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2626 		 */
2627 		iavf_shutdown_adminq(hw);
2628 		iavf_init_adminq(hw);
2629 		iavf_request_reset(adapter);
2630 	}
2631 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2632 
2633 	/* poll until we see the reset actually happen */
2634 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2635 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2636 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2637 		if (!reg_val)
2638 			break;
2639 		usleep_range(5000, 10000);
2640 	}
2641 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2642 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2643 		goto continue_reset; /* act like the reset happened */
2644 	}
2645 
2646 	/* wait until the reset is complete and the PF is responding to us */
2647 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2648 		/* sleep first to make sure a minimum wait time is met */
2649 		msleep(IAVF_RESET_WAIT_MS);
2650 
2651 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2652 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2653 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2654 			break;
2655 	}
2656 
2657 	pci_set_master(adapter->pdev);
2658 	pci_restore_msi_state(adapter->pdev);
2659 
2660 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2661 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2662 			reg_val);
2663 		iavf_disable_vf(adapter);
2664 		mutex_unlock(&adapter->client_lock);
2665 		return; /* Do not attempt to reinit. It's dead, Jim. */
2666 	}
2667 
2668 continue_reset:
2669 	/* We don't use netif_running() because it may be true prior to
2670 	 * ndo_open() returning, so we can't assume it means all our open
2671 	 * tasks have finished, since we're not holding the rtnl_lock here.
2672 	 */
2673 	running = ((adapter->state == __IAVF_RUNNING) ||
2674 		   (adapter->state == __IAVF_RESETTING));
2675 
2676 	if (running) {
2677 		netdev->flags &= ~IFF_UP;
2678 		netif_carrier_off(netdev);
2679 		netif_tx_stop_all_queues(netdev);
2680 		adapter->link_up = false;
2681 		iavf_napi_disable_all(adapter);
2682 	}
2683 	iavf_irq_disable(adapter);
2684 
2685 	iavf_change_state(adapter, __IAVF_RESETTING);
2686 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2687 
2688 	/* free the Tx/Rx rings and descriptors, might be better to just
2689 	 * re-use them sometime in the future
2690 	 */
2691 	iavf_free_all_rx_resources(adapter);
2692 	iavf_free_all_tx_resources(adapter);
2693 
2694 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2695 	/* kill and reinit the admin queue */
2696 	iavf_shutdown_adminq(hw);
2697 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2698 	err = iavf_init_adminq(hw);
2699 	if (err)
2700 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2701 			 err);
2702 	adapter->aq_required = 0;
2703 
2704 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2705 		err = iavf_reinit_interrupt_scheme(adapter);
2706 		if (err)
2707 			goto reset_err;
2708 	}
2709 
2710 	if (RSS_AQ(adapter)) {
2711 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2712 	} else {
2713 		err = iavf_init_rss(adapter);
2714 		if (err)
2715 			goto reset_err;
2716 	}
2717 
2718 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2719 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2720 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2721 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2722 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2723 	 * been successfully sent and negotiated
2724 	 */
2725 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2726 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2727 
2728 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2729 
2730 	/* Delete filter for the current MAC address, it could have
2731 	 * been changed by the PF via administratively set MAC.
2732 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2733 	 */
2734 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2735 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2736 			list_del(&f->list);
2737 			kfree(f);
2738 		}
2739 	}
2740 	/* re-add all MAC filters */
2741 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2742 		f->add = true;
2743 	}
2744 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2745 
2746 	/* check if TCs are running and re-add all cloud filters */
2747 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2748 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2749 	    adapter->num_tc) {
2750 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2751 			cf->add = true;
2752 		}
2753 	}
2754 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2755 
2756 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2757 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2758 	iavf_misc_irq_enable(adapter);
2759 
2760 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2761 
2762 	/* We were running when the reset started, so we need to restore some
2763 	 * state here.
2764 	 */
2765 	if (running) {
2766 		/* allocate transmit descriptors */
2767 		err = iavf_setup_all_tx_resources(adapter);
2768 		if (err)
2769 			goto reset_err;
2770 
2771 		/* allocate receive descriptors */
2772 		err = iavf_setup_all_rx_resources(adapter);
2773 		if (err)
2774 			goto reset_err;
2775 
2776 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2777 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2778 			if (err)
2779 				goto reset_err;
2780 
2781 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2782 		}
2783 
2784 		iavf_configure(adapter);
2785 
2786 		/* iavf_up_complete() will switch device back
2787 		 * to __IAVF_RUNNING
2788 		 */
2789 		iavf_up_complete(adapter);
2790 		netdev->flags |= IFF_UP;
2791 		iavf_irq_enable(adapter, true);
2792 	} else {
2793 		iavf_change_state(adapter, __IAVF_DOWN);
2794 		wake_up(&adapter->down_waitqueue);
2795 	}
2796 	mutex_unlock(&adapter->client_lock);
2797 	mutex_unlock(&adapter->crit_lock);
2798 
2799 	return;
2800 reset_err:
2801 	mutex_unlock(&adapter->client_lock);
2802 	mutex_unlock(&adapter->crit_lock);
2803 	if (running) {
2804 		iavf_change_state(adapter, __IAVF_RUNNING);
2805 		netdev->flags |= IFF_UP;
2806 	}
2807 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2808 	iavf_close(netdev);
2809 }
2810 
2811 /**
2812  * iavf_adminq_task - worker thread to clean the admin queue
2813  * @work: pointer to work_struct containing our data
2814  **/
2815 static void iavf_adminq_task(struct work_struct *work)
2816 {
2817 	struct iavf_adapter *adapter =
2818 		container_of(work, struct iavf_adapter, adminq_task);
2819 	struct iavf_hw *hw = &adapter->hw;
2820 	struct iavf_arq_event_info event;
2821 	enum virtchnl_ops v_op;
2822 	enum iavf_status ret, v_ret;
2823 	u32 val, oldval;
2824 	u16 pending;
2825 
2826 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2827 		goto out;
2828 
2829 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2830 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2831 	if (!event.msg_buf)
2832 		goto out;
2833 
2834 	if (iavf_lock_timeout(&adapter->crit_lock, 200))
2835 		goto freedom;
2836 	do {
2837 		ret = iavf_clean_arq_element(hw, &event, &pending);
2838 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2839 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2840 
2841 		if (ret || !v_op)
2842 			break; /* No event to process or error cleaning ARQ */
2843 
2844 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2845 					 event.msg_len);
2846 		if (pending != 0)
2847 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2848 	} while (pending);
2849 	mutex_unlock(&adapter->crit_lock);
2850 
2851 	if ((adapter->flags &
2852 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2853 	    adapter->state == __IAVF_RESETTING)
2854 		goto freedom;
2855 
2856 	/* check for error indications */
2857 	val = rd32(hw, hw->aq.arq.len);
2858 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2859 		goto freedom;
2860 	oldval = val;
2861 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2862 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2863 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2864 	}
2865 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2866 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2867 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2868 	}
2869 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2870 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2871 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2872 	}
2873 	if (oldval != val)
2874 		wr32(hw, hw->aq.arq.len, val);
2875 
2876 	val = rd32(hw, hw->aq.asq.len);
2877 	oldval = val;
2878 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2879 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2880 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2881 	}
2882 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2883 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2884 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2885 	}
2886 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2887 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2888 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2889 	}
2890 	if (oldval != val)
2891 		wr32(hw, hw->aq.asq.len, val);
2892 
2893 freedom:
2894 	kfree(event.msg_buf);
2895 out:
2896 	/* re-enable Admin queue interrupt cause */
2897 	iavf_misc_irq_enable(adapter);
2898 }
2899 
2900 /**
2901  * iavf_client_task - worker thread to perform client work
2902  * @work: pointer to work_struct containing our data
2903  *
2904  * This task handles client interactions. Because client calls can be
2905  * reentrant, we can't handle them in the watchdog.
2906  **/
2907 static void iavf_client_task(struct work_struct *work)
2908 {
2909 	struct iavf_adapter *adapter =
2910 		container_of(work, struct iavf_adapter, client_task.work);
2911 
2912 	/* If we can't get the client bit, just give up. We'll be rescheduled
2913 	 * later.
2914 	 */
2915 
2916 	if (!mutex_trylock(&adapter->client_lock))
2917 		return;
2918 
2919 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2920 		iavf_client_subtask(adapter);
2921 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2922 		goto out;
2923 	}
2924 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2925 		iavf_notify_client_l2_params(&adapter->vsi);
2926 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2927 		goto out;
2928 	}
2929 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2930 		iavf_notify_client_close(&adapter->vsi, false);
2931 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2932 		goto out;
2933 	}
2934 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2935 		iavf_notify_client_open(&adapter->vsi);
2936 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2937 	}
2938 out:
2939 	mutex_unlock(&adapter->client_lock);
2940 }
2941 
2942 /**
2943  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2944  * @adapter: board private structure
2945  *
2946  * Free all transmit software resources
2947  **/
2948 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2949 {
2950 	int i;
2951 
2952 	if (!adapter->tx_rings)
2953 		return;
2954 
2955 	for (i = 0; i < adapter->num_active_queues; i++)
2956 		if (adapter->tx_rings[i].desc)
2957 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2958 }
2959 
2960 /**
2961  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2962  * @adapter: board private structure
2963  *
2964  * If this function returns with an error, then it's possible one or
2965  * more of the rings is populated (while the rest are not).  It is the
2966  * callers duty to clean those orphaned rings.
2967  *
2968  * Return 0 on success, negative on failure
2969  **/
2970 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2971 {
2972 	int i, err = 0;
2973 
2974 	for (i = 0; i < adapter->num_active_queues; i++) {
2975 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2976 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2977 		if (!err)
2978 			continue;
2979 		dev_err(&adapter->pdev->dev,
2980 			"Allocation for Tx Queue %u failed\n", i);
2981 		break;
2982 	}
2983 
2984 	return err;
2985 }
2986 
2987 /**
2988  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2989  * @adapter: board private structure
2990  *
2991  * If this function returns with an error, then it's possible one or
2992  * more of the rings is populated (while the rest are not).  It is the
2993  * callers duty to clean those orphaned rings.
2994  *
2995  * Return 0 on success, negative on failure
2996  **/
2997 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2998 {
2999 	int i, err = 0;
3000 
3001 	for (i = 0; i < adapter->num_active_queues; i++) {
3002 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3003 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3004 		if (!err)
3005 			continue;
3006 		dev_err(&adapter->pdev->dev,
3007 			"Allocation for Rx Queue %u failed\n", i);
3008 		break;
3009 	}
3010 	return err;
3011 }
3012 
3013 /**
3014  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3015  * @adapter: board private structure
3016  *
3017  * Free all receive software resources
3018  **/
3019 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3020 {
3021 	int i;
3022 
3023 	if (!adapter->rx_rings)
3024 		return;
3025 
3026 	for (i = 0; i < adapter->num_active_queues; i++)
3027 		if (adapter->rx_rings[i].desc)
3028 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3029 }
3030 
3031 /**
3032  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3033  * @adapter: board private structure
3034  * @max_tx_rate: max Tx bw for a tc
3035  **/
3036 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3037 				      u64 max_tx_rate)
3038 {
3039 	int speed = 0, ret = 0;
3040 
3041 	if (ADV_LINK_SUPPORT(adapter)) {
3042 		if (adapter->link_speed_mbps < U32_MAX) {
3043 			speed = adapter->link_speed_mbps;
3044 			goto validate_bw;
3045 		} else {
3046 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3047 			return -EINVAL;
3048 		}
3049 	}
3050 
3051 	switch (adapter->link_speed) {
3052 	case VIRTCHNL_LINK_SPEED_40GB:
3053 		speed = SPEED_40000;
3054 		break;
3055 	case VIRTCHNL_LINK_SPEED_25GB:
3056 		speed = SPEED_25000;
3057 		break;
3058 	case VIRTCHNL_LINK_SPEED_20GB:
3059 		speed = SPEED_20000;
3060 		break;
3061 	case VIRTCHNL_LINK_SPEED_10GB:
3062 		speed = SPEED_10000;
3063 		break;
3064 	case VIRTCHNL_LINK_SPEED_5GB:
3065 		speed = SPEED_5000;
3066 		break;
3067 	case VIRTCHNL_LINK_SPEED_2_5GB:
3068 		speed = SPEED_2500;
3069 		break;
3070 	case VIRTCHNL_LINK_SPEED_1GB:
3071 		speed = SPEED_1000;
3072 		break;
3073 	case VIRTCHNL_LINK_SPEED_100MB:
3074 		speed = SPEED_100;
3075 		break;
3076 	default:
3077 		break;
3078 	}
3079 
3080 validate_bw:
3081 	if (max_tx_rate > speed) {
3082 		dev_err(&adapter->pdev->dev,
3083 			"Invalid tx rate specified\n");
3084 		ret = -EINVAL;
3085 	}
3086 
3087 	return ret;
3088 }
3089 
3090 /**
3091  * iavf_validate_ch_config - validate queue mapping info
3092  * @adapter: board private structure
3093  * @mqprio_qopt: queue parameters
3094  *
3095  * This function validates if the config provided by the user to
3096  * configure queue channels is valid or not. Returns 0 on a valid
3097  * config.
3098  **/
3099 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3100 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3101 {
3102 	u64 total_max_rate = 0;
3103 	int i, num_qps = 0;
3104 	u64 tx_rate = 0;
3105 	int ret = 0;
3106 
3107 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3108 	    mqprio_qopt->qopt.num_tc < 1)
3109 		return -EINVAL;
3110 
3111 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3112 		if (!mqprio_qopt->qopt.count[i] ||
3113 		    mqprio_qopt->qopt.offset[i] != num_qps)
3114 			return -EINVAL;
3115 		if (mqprio_qopt->min_rate[i]) {
3116 			dev_err(&adapter->pdev->dev,
3117 				"Invalid min tx rate (greater than 0) specified\n");
3118 			return -EINVAL;
3119 		}
3120 		/*convert to Mbps */
3121 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3122 				  IAVF_MBPS_DIVISOR);
3123 		total_max_rate += tx_rate;
3124 		num_qps += mqprio_qopt->qopt.count[i];
3125 	}
3126 	if (num_qps > adapter->num_active_queues) {
3127 		dev_err(&adapter->pdev->dev,
3128 			"Cannot support requested number of queues\n");
3129 		return -EINVAL;
3130 	}
3131 
3132 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3133 	return ret;
3134 }
3135 
3136 /**
3137  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3138  * @adapter: board private structure
3139  **/
3140 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3141 {
3142 	struct iavf_cloud_filter *cf, *cftmp;
3143 
3144 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3145 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3146 				 list) {
3147 		list_del(&cf->list);
3148 		kfree(cf);
3149 		adapter->num_cloud_filters--;
3150 	}
3151 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3152 }
3153 
3154 /**
3155  * __iavf_setup_tc - configure multiple traffic classes
3156  * @netdev: network interface device structure
3157  * @type_data: tc offload data
3158  *
3159  * This function processes the config information provided by the
3160  * user to configure traffic classes/queue channels and packages the
3161  * information to request the PF to setup traffic classes.
3162  *
3163  * Returns 0 on success.
3164  **/
3165 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3166 {
3167 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3168 	struct iavf_adapter *adapter = netdev_priv(netdev);
3169 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3170 	u8 num_tc = 0, total_qps = 0;
3171 	int ret = 0, netdev_tc = 0;
3172 	u64 max_tx_rate;
3173 	u16 mode;
3174 	int i;
3175 
3176 	num_tc = mqprio_qopt->qopt.num_tc;
3177 	mode = mqprio_qopt->mode;
3178 
3179 	/* delete queue_channel */
3180 	if (!mqprio_qopt->qopt.hw) {
3181 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3182 			/* reset the tc configuration */
3183 			netdev_reset_tc(netdev);
3184 			adapter->num_tc = 0;
3185 			netif_tx_stop_all_queues(netdev);
3186 			netif_tx_disable(netdev);
3187 			iavf_del_all_cloud_filters(adapter);
3188 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3189 			goto exit;
3190 		} else {
3191 			return -EINVAL;
3192 		}
3193 	}
3194 
3195 	/* add queue channel */
3196 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3197 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3198 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3199 			return -EOPNOTSUPP;
3200 		}
3201 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3202 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3203 			return -EINVAL;
3204 		}
3205 
3206 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3207 		if (ret)
3208 			return ret;
3209 		/* Return if same TC config is requested */
3210 		if (adapter->num_tc == num_tc)
3211 			return 0;
3212 		adapter->num_tc = num_tc;
3213 
3214 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3215 			if (i < num_tc) {
3216 				adapter->ch_config.ch_info[i].count =
3217 					mqprio_qopt->qopt.count[i];
3218 				adapter->ch_config.ch_info[i].offset =
3219 					mqprio_qopt->qopt.offset[i];
3220 				total_qps += mqprio_qopt->qopt.count[i];
3221 				max_tx_rate = mqprio_qopt->max_rate[i];
3222 				/* convert to Mbps */
3223 				max_tx_rate = div_u64(max_tx_rate,
3224 						      IAVF_MBPS_DIVISOR);
3225 				adapter->ch_config.ch_info[i].max_tx_rate =
3226 					max_tx_rate;
3227 			} else {
3228 				adapter->ch_config.ch_info[i].count = 1;
3229 				adapter->ch_config.ch_info[i].offset = 0;
3230 			}
3231 		}
3232 		adapter->ch_config.total_qps = total_qps;
3233 		netif_tx_stop_all_queues(netdev);
3234 		netif_tx_disable(netdev);
3235 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3236 		netdev_reset_tc(netdev);
3237 		/* Report the tc mapping up the stack */
3238 		netdev_set_num_tc(adapter->netdev, num_tc);
3239 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3240 			u16 qcount = mqprio_qopt->qopt.count[i];
3241 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3242 
3243 			if (i < num_tc)
3244 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3245 						    qoffset);
3246 		}
3247 	}
3248 exit:
3249 	return ret;
3250 }
3251 
3252 /**
3253  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3254  * @adapter: board private structure
3255  * @f: pointer to struct flow_cls_offload
3256  * @filter: pointer to cloud filter structure
3257  */
3258 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3259 				 struct flow_cls_offload *f,
3260 				 struct iavf_cloud_filter *filter)
3261 {
3262 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3263 	struct flow_dissector *dissector = rule->match.dissector;
3264 	u16 n_proto_mask = 0;
3265 	u16 n_proto_key = 0;
3266 	u8 field_flags = 0;
3267 	u16 addr_type = 0;
3268 	u16 n_proto = 0;
3269 	int i = 0;
3270 	struct virtchnl_filter *vf = &filter->f;
3271 
3272 	if (dissector->used_keys &
3273 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3274 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3275 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3276 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3277 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3278 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3279 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3280 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3281 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3282 			dissector->used_keys);
3283 		return -EOPNOTSUPP;
3284 	}
3285 
3286 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3287 		struct flow_match_enc_keyid match;
3288 
3289 		flow_rule_match_enc_keyid(rule, &match);
3290 		if (match.mask->keyid != 0)
3291 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3292 	}
3293 
3294 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3295 		struct flow_match_basic match;
3296 
3297 		flow_rule_match_basic(rule, &match);
3298 		n_proto_key = ntohs(match.key->n_proto);
3299 		n_proto_mask = ntohs(match.mask->n_proto);
3300 
3301 		if (n_proto_key == ETH_P_ALL) {
3302 			n_proto_key = 0;
3303 			n_proto_mask = 0;
3304 		}
3305 		n_proto = n_proto_key & n_proto_mask;
3306 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3307 			return -EINVAL;
3308 		if (n_proto == ETH_P_IPV6) {
3309 			/* specify flow type as TCP IPv6 */
3310 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3311 		}
3312 
3313 		if (match.key->ip_proto != IPPROTO_TCP) {
3314 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3315 			return -EINVAL;
3316 		}
3317 	}
3318 
3319 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3320 		struct flow_match_eth_addrs match;
3321 
3322 		flow_rule_match_eth_addrs(rule, &match);
3323 
3324 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3325 		if (!is_zero_ether_addr(match.mask->dst)) {
3326 			if (is_broadcast_ether_addr(match.mask->dst)) {
3327 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3328 			} else {
3329 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3330 					match.mask->dst);
3331 				return -EINVAL;
3332 			}
3333 		}
3334 
3335 		if (!is_zero_ether_addr(match.mask->src)) {
3336 			if (is_broadcast_ether_addr(match.mask->src)) {
3337 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3338 			} else {
3339 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3340 					match.mask->src);
3341 				return -EINVAL;
3342 			}
3343 		}
3344 
3345 		if (!is_zero_ether_addr(match.key->dst))
3346 			if (is_valid_ether_addr(match.key->dst) ||
3347 			    is_multicast_ether_addr(match.key->dst)) {
3348 				/* set the mask if a valid dst_mac address */
3349 				for (i = 0; i < ETH_ALEN; i++)
3350 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3351 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3352 						match.key->dst);
3353 			}
3354 
3355 		if (!is_zero_ether_addr(match.key->src))
3356 			if (is_valid_ether_addr(match.key->src) ||
3357 			    is_multicast_ether_addr(match.key->src)) {
3358 				/* set the mask if a valid dst_mac address */
3359 				for (i = 0; i < ETH_ALEN; i++)
3360 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3361 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3362 						match.key->src);
3363 		}
3364 	}
3365 
3366 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3367 		struct flow_match_vlan match;
3368 
3369 		flow_rule_match_vlan(rule, &match);
3370 		if (match.mask->vlan_id) {
3371 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3372 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3373 			} else {
3374 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3375 					match.mask->vlan_id);
3376 				return -EINVAL;
3377 			}
3378 		}
3379 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3380 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3381 	}
3382 
3383 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3384 		struct flow_match_control match;
3385 
3386 		flow_rule_match_control(rule, &match);
3387 		addr_type = match.key->addr_type;
3388 	}
3389 
3390 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3391 		struct flow_match_ipv4_addrs match;
3392 
3393 		flow_rule_match_ipv4_addrs(rule, &match);
3394 		if (match.mask->dst) {
3395 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3396 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3397 			} else {
3398 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3399 					be32_to_cpu(match.mask->dst));
3400 				return -EINVAL;
3401 			}
3402 		}
3403 
3404 		if (match.mask->src) {
3405 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3406 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3407 			} else {
3408 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3409 					be32_to_cpu(match.mask->dst));
3410 				return -EINVAL;
3411 			}
3412 		}
3413 
3414 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3415 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3416 			return -EINVAL;
3417 		}
3418 		if (match.key->dst) {
3419 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3420 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3421 		}
3422 		if (match.key->src) {
3423 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3424 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3425 		}
3426 	}
3427 
3428 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3429 		struct flow_match_ipv6_addrs match;
3430 
3431 		flow_rule_match_ipv6_addrs(rule, &match);
3432 
3433 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3434 		if (ipv6_addr_any(&match.mask->dst)) {
3435 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3436 				IPV6_ADDR_ANY);
3437 			return -EINVAL;
3438 		}
3439 
3440 		/* src and dest IPv6 address should not be LOOPBACK
3441 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3442 		 */
3443 		if (ipv6_addr_loopback(&match.key->dst) ||
3444 		    ipv6_addr_loopback(&match.key->src)) {
3445 			dev_err(&adapter->pdev->dev,
3446 				"ipv6 addr should not be loopback\n");
3447 			return -EINVAL;
3448 		}
3449 		if (!ipv6_addr_any(&match.mask->dst) ||
3450 		    !ipv6_addr_any(&match.mask->src))
3451 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3452 
3453 		for (i = 0; i < 4; i++)
3454 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3455 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3456 		       sizeof(vf->data.tcp_spec.dst_ip));
3457 		for (i = 0; i < 4; i++)
3458 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3459 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3460 		       sizeof(vf->data.tcp_spec.src_ip));
3461 	}
3462 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3463 		struct flow_match_ports match;
3464 
3465 		flow_rule_match_ports(rule, &match);
3466 		if (match.mask->src) {
3467 			if (match.mask->src == cpu_to_be16(0xffff)) {
3468 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3469 			} else {
3470 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3471 					be16_to_cpu(match.mask->src));
3472 				return -EINVAL;
3473 			}
3474 		}
3475 
3476 		if (match.mask->dst) {
3477 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3478 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3479 			} else {
3480 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3481 					be16_to_cpu(match.mask->dst));
3482 				return -EINVAL;
3483 			}
3484 		}
3485 		if (match.key->dst) {
3486 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3487 			vf->data.tcp_spec.dst_port = match.key->dst;
3488 		}
3489 
3490 		if (match.key->src) {
3491 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3492 			vf->data.tcp_spec.src_port = match.key->src;
3493 		}
3494 	}
3495 	vf->field_flags = field_flags;
3496 
3497 	return 0;
3498 }
3499 
3500 /**
3501  * iavf_handle_tclass - Forward to a traffic class on the device
3502  * @adapter: board private structure
3503  * @tc: traffic class index on the device
3504  * @filter: pointer to cloud filter structure
3505  */
3506 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3507 			      struct iavf_cloud_filter *filter)
3508 {
3509 	if (tc == 0)
3510 		return 0;
3511 	if (tc < adapter->num_tc) {
3512 		if (!filter->f.data.tcp_spec.dst_port) {
3513 			dev_err(&adapter->pdev->dev,
3514 				"Specify destination port to redirect to traffic class other than TC0\n");
3515 			return -EINVAL;
3516 		}
3517 	}
3518 	/* redirect to a traffic class on the same device */
3519 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3520 	filter->f.action_meta = tc;
3521 	return 0;
3522 }
3523 
3524 /**
3525  * iavf_configure_clsflower - Add tc flower filters
3526  * @adapter: board private structure
3527  * @cls_flower: Pointer to struct flow_cls_offload
3528  */
3529 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3530 				    struct flow_cls_offload *cls_flower)
3531 {
3532 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3533 	struct iavf_cloud_filter *filter = NULL;
3534 	int err = -EINVAL, count = 50;
3535 
3536 	if (tc < 0) {
3537 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3538 		return -EINVAL;
3539 	}
3540 
3541 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3542 	if (!filter)
3543 		return -ENOMEM;
3544 
3545 	while (!mutex_trylock(&adapter->crit_lock)) {
3546 		if (--count == 0) {
3547 			kfree(filter);
3548 			return err;
3549 		}
3550 		udelay(1);
3551 	}
3552 
3553 	filter->cookie = cls_flower->cookie;
3554 
3555 	/* set the mask to all zeroes to begin with */
3556 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3557 	/* start out with flow type and eth type IPv4 to begin with */
3558 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3559 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3560 	if (err)
3561 		goto err;
3562 
3563 	err = iavf_handle_tclass(adapter, tc, filter);
3564 	if (err)
3565 		goto err;
3566 
3567 	/* add filter to the list */
3568 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3569 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3570 	adapter->num_cloud_filters++;
3571 	filter->add = true;
3572 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3573 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3574 err:
3575 	if (err)
3576 		kfree(filter);
3577 
3578 	mutex_unlock(&adapter->crit_lock);
3579 	return err;
3580 }
3581 
3582 /* iavf_find_cf - Find the cloud filter in the list
3583  * @adapter: Board private structure
3584  * @cookie: filter specific cookie
3585  *
3586  * Returns ptr to the filter object or NULL. Must be called while holding the
3587  * cloud_filter_list_lock.
3588  */
3589 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3590 					      unsigned long *cookie)
3591 {
3592 	struct iavf_cloud_filter *filter = NULL;
3593 
3594 	if (!cookie)
3595 		return NULL;
3596 
3597 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3598 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3599 			return filter;
3600 	}
3601 	return NULL;
3602 }
3603 
3604 /**
3605  * iavf_delete_clsflower - Remove tc flower filters
3606  * @adapter: board private structure
3607  * @cls_flower: Pointer to struct flow_cls_offload
3608  */
3609 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3610 				 struct flow_cls_offload *cls_flower)
3611 {
3612 	struct iavf_cloud_filter *filter = NULL;
3613 	int err = 0;
3614 
3615 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3616 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3617 	if (filter) {
3618 		filter->del = true;
3619 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3620 	} else {
3621 		err = -EINVAL;
3622 	}
3623 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3624 
3625 	return err;
3626 }
3627 
3628 /**
3629  * iavf_setup_tc_cls_flower - flower classifier offloads
3630  * @adapter: board private structure
3631  * @cls_flower: pointer to flow_cls_offload struct with flow info
3632  */
3633 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3634 				    struct flow_cls_offload *cls_flower)
3635 {
3636 	switch (cls_flower->command) {
3637 	case FLOW_CLS_REPLACE:
3638 		return iavf_configure_clsflower(adapter, cls_flower);
3639 	case FLOW_CLS_DESTROY:
3640 		return iavf_delete_clsflower(adapter, cls_flower);
3641 	case FLOW_CLS_STATS:
3642 		return -EOPNOTSUPP;
3643 	default:
3644 		return -EOPNOTSUPP;
3645 	}
3646 }
3647 
3648 /**
3649  * iavf_setup_tc_block_cb - block callback for tc
3650  * @type: type of offload
3651  * @type_data: offload data
3652  * @cb_priv:
3653  *
3654  * This function is the block callback for traffic classes
3655  **/
3656 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3657 				  void *cb_priv)
3658 {
3659 	struct iavf_adapter *adapter = cb_priv;
3660 
3661 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3662 		return -EOPNOTSUPP;
3663 
3664 	switch (type) {
3665 	case TC_SETUP_CLSFLOWER:
3666 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3667 	default:
3668 		return -EOPNOTSUPP;
3669 	}
3670 }
3671 
3672 static LIST_HEAD(iavf_block_cb_list);
3673 
3674 /**
3675  * iavf_setup_tc - configure multiple traffic classes
3676  * @netdev: network interface device structure
3677  * @type: type of offload
3678  * @type_data: tc offload data
3679  *
3680  * This function is the callback to ndo_setup_tc in the
3681  * netdev_ops.
3682  *
3683  * Returns 0 on success
3684  **/
3685 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3686 			 void *type_data)
3687 {
3688 	struct iavf_adapter *adapter = netdev_priv(netdev);
3689 
3690 	switch (type) {
3691 	case TC_SETUP_QDISC_MQPRIO:
3692 		return __iavf_setup_tc(netdev, type_data);
3693 	case TC_SETUP_BLOCK:
3694 		return flow_block_cb_setup_simple(type_data,
3695 						  &iavf_block_cb_list,
3696 						  iavf_setup_tc_block_cb,
3697 						  adapter, adapter, true);
3698 	default:
3699 		return -EOPNOTSUPP;
3700 	}
3701 }
3702 
3703 /**
3704  * iavf_open - Called when a network interface is made active
3705  * @netdev: network interface device structure
3706  *
3707  * Returns 0 on success, negative value on failure
3708  *
3709  * The open entry point is called when a network interface is made
3710  * active by the system (IFF_UP).  At this point all resources needed
3711  * for transmit and receive operations are allocated, the interrupt
3712  * handler is registered with the OS, the watchdog is started,
3713  * and the stack is notified that the interface is ready.
3714  **/
3715 static int iavf_open(struct net_device *netdev)
3716 {
3717 	struct iavf_adapter *adapter = netdev_priv(netdev);
3718 	int err;
3719 
3720 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3721 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3722 		return -EIO;
3723 	}
3724 
3725 	while (!mutex_trylock(&adapter->crit_lock))
3726 		usleep_range(500, 1000);
3727 
3728 	if (adapter->state != __IAVF_DOWN) {
3729 		err = -EBUSY;
3730 		goto err_unlock;
3731 	}
3732 
3733 	if (adapter->state == __IAVF_RUNNING &&
3734 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3735 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3736 		err = 0;
3737 		goto err_unlock;
3738 	}
3739 
3740 	/* allocate transmit descriptors */
3741 	err = iavf_setup_all_tx_resources(adapter);
3742 	if (err)
3743 		goto err_setup_tx;
3744 
3745 	/* allocate receive descriptors */
3746 	err = iavf_setup_all_rx_resources(adapter);
3747 	if (err)
3748 		goto err_setup_rx;
3749 
3750 	/* clear any pending interrupts, may auto mask */
3751 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3752 	if (err)
3753 		goto err_req_irq;
3754 
3755 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3756 
3757 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3758 
3759 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3760 
3761 	/* Restore VLAN filters that were removed with IFF_DOWN */
3762 	iavf_restore_filters(adapter);
3763 
3764 	iavf_configure(adapter);
3765 
3766 	iavf_up_complete(adapter);
3767 
3768 	iavf_irq_enable(adapter, true);
3769 
3770 	mutex_unlock(&adapter->crit_lock);
3771 
3772 	return 0;
3773 
3774 err_req_irq:
3775 	iavf_down(adapter);
3776 	iavf_free_traffic_irqs(adapter);
3777 err_setup_rx:
3778 	iavf_free_all_rx_resources(adapter);
3779 err_setup_tx:
3780 	iavf_free_all_tx_resources(adapter);
3781 err_unlock:
3782 	mutex_unlock(&adapter->crit_lock);
3783 
3784 	return err;
3785 }
3786 
3787 /**
3788  * iavf_close - Disables a network interface
3789  * @netdev: network interface device structure
3790  *
3791  * Returns 0, this is not allowed to fail
3792  *
3793  * The close entry point is called when an interface is de-activated
3794  * by the OS.  The hardware is still under the drivers control, but
3795  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3796  * are freed, along with all transmit and receive resources.
3797  **/
3798 static int iavf_close(struct net_device *netdev)
3799 {
3800 	struct iavf_adapter *adapter = netdev_priv(netdev);
3801 	int status;
3802 
3803 	if (adapter->state <= __IAVF_DOWN_PENDING)
3804 		return 0;
3805 
3806 	while (!mutex_trylock(&adapter->crit_lock))
3807 		usleep_range(500, 1000);
3808 
3809 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3810 	if (CLIENT_ENABLED(adapter))
3811 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3812 
3813 	iavf_down(adapter);
3814 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3815 	iavf_free_traffic_irqs(adapter);
3816 
3817 	mutex_unlock(&adapter->crit_lock);
3818 
3819 	/* We explicitly don't free resources here because the hardware is
3820 	 * still active and can DMA into memory. Resources are cleared in
3821 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3822 	 * driver that the rings have been stopped.
3823 	 *
3824 	 * Also, we wait for state to transition to __IAVF_DOWN before
3825 	 * returning. State change occurs in iavf_virtchnl_completion() after
3826 	 * VF resources are released (which occurs after PF driver processes and
3827 	 * responds to admin queue commands).
3828 	 */
3829 
3830 	status = wait_event_timeout(adapter->down_waitqueue,
3831 				    adapter->state == __IAVF_DOWN,
3832 				    msecs_to_jiffies(500));
3833 	if (!status)
3834 		netdev_warn(netdev, "Device resources not yet released\n");
3835 	return 0;
3836 }
3837 
3838 /**
3839  * iavf_change_mtu - Change the Maximum Transfer Unit
3840  * @netdev: network interface device structure
3841  * @new_mtu: new value for maximum frame size
3842  *
3843  * Returns 0 on success, negative on failure
3844  **/
3845 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3846 {
3847 	struct iavf_adapter *adapter = netdev_priv(netdev);
3848 
3849 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3850 		   netdev->mtu, new_mtu);
3851 	netdev->mtu = new_mtu;
3852 	if (CLIENT_ENABLED(adapter)) {
3853 		iavf_notify_client_l2_params(&adapter->vsi);
3854 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3855 	}
3856 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3857 	queue_work(iavf_wq, &adapter->reset_task);
3858 
3859 	return 0;
3860 }
3861 
3862 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
3863 					 NETIF_F_HW_VLAN_CTAG_TX | \
3864 					 NETIF_F_HW_VLAN_STAG_RX | \
3865 					 NETIF_F_HW_VLAN_STAG_TX)
3866 
3867 /**
3868  * iavf_set_features - set the netdev feature flags
3869  * @netdev: ptr to the netdev being adjusted
3870  * @features: the feature set that the stack is suggesting
3871  * Note: expects to be called while under rtnl_lock()
3872  **/
3873 static int iavf_set_features(struct net_device *netdev,
3874 			     netdev_features_t features)
3875 {
3876 	struct iavf_adapter *adapter = netdev_priv(netdev);
3877 
3878 	/* trigger update on any VLAN feature change */
3879 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
3880 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
3881 		iavf_set_vlan_offload_features(adapter, netdev->features,
3882 					       features);
3883 
3884 	return 0;
3885 }
3886 
3887 /**
3888  * iavf_features_check - Validate encapsulated packet conforms to limits
3889  * @skb: skb buff
3890  * @dev: This physical port's netdev
3891  * @features: Offload features that the stack believes apply
3892  **/
3893 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3894 					     struct net_device *dev,
3895 					     netdev_features_t features)
3896 {
3897 	size_t len;
3898 
3899 	/* No point in doing any of this if neither checksum nor GSO are
3900 	 * being requested for this frame.  We can rule out both by just
3901 	 * checking for CHECKSUM_PARTIAL
3902 	 */
3903 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3904 		return features;
3905 
3906 	/* We cannot support GSO if the MSS is going to be less than
3907 	 * 64 bytes.  If it is then we need to drop support for GSO.
3908 	 */
3909 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3910 		features &= ~NETIF_F_GSO_MASK;
3911 
3912 	/* MACLEN can support at most 63 words */
3913 	len = skb_network_header(skb) - skb->data;
3914 	if (len & ~(63 * 2))
3915 		goto out_err;
3916 
3917 	/* IPLEN and EIPLEN can support at most 127 dwords */
3918 	len = skb_transport_header(skb) - skb_network_header(skb);
3919 	if (len & ~(127 * 4))
3920 		goto out_err;
3921 
3922 	if (skb->encapsulation) {
3923 		/* L4TUNLEN can support 127 words */
3924 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3925 		if (len & ~(127 * 2))
3926 			goto out_err;
3927 
3928 		/* IPLEN can support at most 127 dwords */
3929 		len = skb_inner_transport_header(skb) -
3930 		      skb_inner_network_header(skb);
3931 		if (len & ~(127 * 4))
3932 			goto out_err;
3933 	}
3934 
3935 	/* No need to validate L4LEN as TCP is the only protocol with a
3936 	 * a flexible value and we support all possible values supported
3937 	 * by TCP, which is at most 15 dwords
3938 	 */
3939 
3940 	return features;
3941 out_err:
3942 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3943 }
3944 
3945 /**
3946  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
3947  * @adapter: board private structure
3948  *
3949  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
3950  * were negotiated determine the VLAN features that can be toggled on and off.
3951  **/
3952 static netdev_features_t
3953 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
3954 {
3955 	netdev_features_t hw_features = 0;
3956 
3957 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
3958 		return hw_features;
3959 
3960 	/* Enable VLAN features if supported */
3961 	if (VLAN_ALLOWED(adapter)) {
3962 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3963 				NETIF_F_HW_VLAN_CTAG_RX);
3964 	} else if (VLAN_V2_ALLOWED(adapter)) {
3965 		struct virtchnl_vlan_caps *vlan_v2_caps =
3966 			&adapter->vlan_v2_caps;
3967 		struct virtchnl_vlan_supported_caps *stripping_support =
3968 			&vlan_v2_caps->offloads.stripping_support;
3969 		struct virtchnl_vlan_supported_caps *insertion_support =
3970 			&vlan_v2_caps->offloads.insertion_support;
3971 
3972 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
3973 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
3974 			if (stripping_support->outer &
3975 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
3976 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3977 			if (stripping_support->outer &
3978 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
3979 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
3980 		} else if (stripping_support->inner !=
3981 			   VIRTCHNL_VLAN_UNSUPPORTED &&
3982 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
3983 			if (stripping_support->inner &
3984 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
3985 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3986 		}
3987 
3988 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
3989 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
3990 			if (insertion_support->outer &
3991 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
3992 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3993 			if (insertion_support->outer &
3994 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
3995 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
3996 		} else if (insertion_support->inner &&
3997 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
3998 			if (insertion_support->inner &
3999 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4000 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4001 		}
4002 	}
4003 
4004 	return hw_features;
4005 }
4006 
4007 /**
4008  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4009  * @adapter: board private structure
4010  *
4011  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4012  * were negotiated determine the VLAN features that are enabled by default.
4013  **/
4014 static netdev_features_t
4015 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4016 {
4017 	netdev_features_t features = 0;
4018 
4019 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4020 		return features;
4021 
4022 	if (VLAN_ALLOWED(adapter)) {
4023 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4024 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4025 	} else if (VLAN_V2_ALLOWED(adapter)) {
4026 		struct virtchnl_vlan_caps *vlan_v2_caps =
4027 			&adapter->vlan_v2_caps;
4028 		struct virtchnl_vlan_supported_caps *filtering_support =
4029 			&vlan_v2_caps->filtering.filtering_support;
4030 		struct virtchnl_vlan_supported_caps *stripping_support =
4031 			&vlan_v2_caps->offloads.stripping_support;
4032 		struct virtchnl_vlan_supported_caps *insertion_support =
4033 			&vlan_v2_caps->offloads.insertion_support;
4034 		u32 ethertype_init;
4035 
4036 		/* give priority to outer stripping and don't support both outer
4037 		 * and inner stripping
4038 		 */
4039 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4040 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4041 			if (stripping_support->outer &
4042 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4043 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4044 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4045 			else if (stripping_support->outer &
4046 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4047 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4048 				features |= NETIF_F_HW_VLAN_STAG_RX;
4049 		} else if (stripping_support->inner !=
4050 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4051 			if (stripping_support->inner &
4052 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4053 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4054 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4055 		}
4056 
4057 		/* give priority to outer insertion and don't support both outer
4058 		 * and inner insertion
4059 		 */
4060 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4061 			if (insertion_support->outer &
4062 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4063 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4064 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4065 			else if (insertion_support->outer &
4066 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4067 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4068 				features |= NETIF_F_HW_VLAN_STAG_TX;
4069 		} else if (insertion_support->inner !=
4070 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4071 			if (insertion_support->inner &
4072 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4073 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4074 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4075 		}
4076 
4077 		/* give priority to outer filtering and don't bother if both
4078 		 * outer and inner filtering are enabled
4079 		 */
4080 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4081 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4082 			if (filtering_support->outer &
4083 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4084 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4085 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4086 			if (filtering_support->outer &
4087 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4088 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4089 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4090 		} else if (filtering_support->inner !=
4091 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4092 			if (filtering_support->inner &
4093 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4094 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4095 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4096 			if (filtering_support->inner &
4097 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4098 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4099 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4100 		}
4101 	}
4102 
4103 	return features;
4104 }
4105 
4106 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4107 	(!(((requested) & (feature_bit)) && \
4108 	   !((allowed) & (feature_bit))))
4109 
4110 /**
4111  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4112  * @adapter: board private structure
4113  * @requested_features: stack requested NETDEV features
4114  **/
4115 static netdev_features_t
4116 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4117 			      netdev_features_t requested_features)
4118 {
4119 	netdev_features_t allowed_features;
4120 
4121 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4122 		iavf_get_netdev_vlan_features(adapter);
4123 
4124 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4125 					      allowed_features,
4126 					      NETIF_F_HW_VLAN_CTAG_TX))
4127 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4128 
4129 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4130 					      allowed_features,
4131 					      NETIF_F_HW_VLAN_CTAG_RX))
4132 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4133 
4134 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4135 					      allowed_features,
4136 					      NETIF_F_HW_VLAN_STAG_TX))
4137 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4138 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4139 					      allowed_features,
4140 					      NETIF_F_HW_VLAN_STAG_RX))
4141 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4142 
4143 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4144 					      allowed_features,
4145 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4146 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4147 
4148 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4149 					      allowed_features,
4150 					      NETIF_F_HW_VLAN_STAG_FILTER))
4151 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4152 
4153 	if ((requested_features &
4154 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4155 	    (requested_features &
4156 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4157 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4158 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4159 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4160 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4161 					NETIF_F_HW_VLAN_STAG_TX);
4162 	}
4163 
4164 	return requested_features;
4165 }
4166 
4167 /**
4168  * iavf_fix_features - fix up the netdev feature bits
4169  * @netdev: our net device
4170  * @features: desired feature bits
4171  *
4172  * Returns fixed-up features bits
4173  **/
4174 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4175 					   netdev_features_t features)
4176 {
4177 	struct iavf_adapter *adapter = netdev_priv(netdev);
4178 
4179 	return iavf_fix_netdev_vlan_features(adapter, features);
4180 }
4181 
4182 static const struct net_device_ops iavf_netdev_ops = {
4183 	.ndo_open		= iavf_open,
4184 	.ndo_stop		= iavf_close,
4185 	.ndo_start_xmit		= iavf_xmit_frame,
4186 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4187 	.ndo_validate_addr	= eth_validate_addr,
4188 	.ndo_set_mac_address	= iavf_set_mac,
4189 	.ndo_change_mtu		= iavf_change_mtu,
4190 	.ndo_tx_timeout		= iavf_tx_timeout,
4191 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4192 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4193 	.ndo_features_check	= iavf_features_check,
4194 	.ndo_fix_features	= iavf_fix_features,
4195 	.ndo_set_features	= iavf_set_features,
4196 	.ndo_setup_tc		= iavf_setup_tc,
4197 };
4198 
4199 /**
4200  * iavf_check_reset_complete - check that VF reset is complete
4201  * @hw: pointer to hw struct
4202  *
4203  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4204  **/
4205 static int iavf_check_reset_complete(struct iavf_hw *hw)
4206 {
4207 	u32 rstat;
4208 	int i;
4209 
4210 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4211 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4212 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4213 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4214 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4215 			return 0;
4216 		usleep_range(10, 20);
4217 	}
4218 	return -EBUSY;
4219 }
4220 
4221 /**
4222  * iavf_process_config - Process the config information we got from the PF
4223  * @adapter: board private structure
4224  *
4225  * Verify that we have a valid config struct, and set up our netdev features
4226  * and our VSI struct.
4227  **/
4228 int iavf_process_config(struct iavf_adapter *adapter)
4229 {
4230 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4231 	netdev_features_t hw_vlan_features, vlan_features;
4232 	struct net_device *netdev = adapter->netdev;
4233 	netdev_features_t hw_enc_features;
4234 	netdev_features_t hw_features;
4235 
4236 	hw_enc_features = NETIF_F_SG			|
4237 			  NETIF_F_IP_CSUM		|
4238 			  NETIF_F_IPV6_CSUM		|
4239 			  NETIF_F_HIGHDMA		|
4240 			  NETIF_F_SOFT_FEATURES	|
4241 			  NETIF_F_TSO			|
4242 			  NETIF_F_TSO_ECN		|
4243 			  NETIF_F_TSO6			|
4244 			  NETIF_F_SCTP_CRC		|
4245 			  NETIF_F_RXHASH		|
4246 			  NETIF_F_RXCSUM		|
4247 			  0;
4248 
4249 	/* advertise to stack only if offloads for encapsulated packets is
4250 	 * supported
4251 	 */
4252 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4253 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4254 				   NETIF_F_GSO_GRE		|
4255 				   NETIF_F_GSO_GRE_CSUM		|
4256 				   NETIF_F_GSO_IPXIP4		|
4257 				   NETIF_F_GSO_IPXIP6		|
4258 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4259 				   NETIF_F_GSO_PARTIAL		|
4260 				   0;
4261 
4262 		if (!(vfres->vf_cap_flags &
4263 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4264 			netdev->gso_partial_features |=
4265 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4266 
4267 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4268 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4269 		netdev->hw_enc_features |= hw_enc_features;
4270 	}
4271 	/* record features VLANs can make use of */
4272 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4273 
4274 	/* Write features and hw_features separately to avoid polluting
4275 	 * with, or dropping, features that are set when we registered.
4276 	 */
4277 	hw_features = hw_enc_features;
4278 
4279 	/* get HW VLAN features that can be toggled */
4280 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4281 
4282 	/* Enable cloud filter if ADQ is supported */
4283 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4284 		hw_features |= NETIF_F_HW_TC;
4285 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4286 		hw_features |= NETIF_F_GSO_UDP_L4;
4287 
4288 	netdev->hw_features |= hw_features | hw_vlan_features;
4289 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4290 
4291 	netdev->features |= hw_features | vlan_features;
4292 
4293 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4294 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4295 
4296 	netdev->priv_flags |= IFF_UNICAST_FLT;
4297 
4298 	/* Do not turn on offloads when they are requested to be turned off.
4299 	 * TSO needs minimum 576 bytes to work correctly.
4300 	 */
4301 	if (netdev->wanted_features) {
4302 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4303 		    netdev->mtu < 576)
4304 			netdev->features &= ~NETIF_F_TSO;
4305 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4306 		    netdev->mtu < 576)
4307 			netdev->features &= ~NETIF_F_TSO6;
4308 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4309 			netdev->features &= ~NETIF_F_TSO_ECN;
4310 		if (!(netdev->wanted_features & NETIF_F_GRO))
4311 			netdev->features &= ~NETIF_F_GRO;
4312 		if (!(netdev->wanted_features & NETIF_F_GSO))
4313 			netdev->features &= ~NETIF_F_GSO;
4314 	}
4315 
4316 	return 0;
4317 }
4318 
4319 /**
4320  * iavf_shutdown - Shutdown the device in preparation for a reboot
4321  * @pdev: pci device structure
4322  **/
4323 static void iavf_shutdown(struct pci_dev *pdev)
4324 {
4325 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4326 	struct net_device *netdev = adapter->netdev;
4327 
4328 	netif_device_detach(netdev);
4329 
4330 	if (netif_running(netdev))
4331 		iavf_close(netdev);
4332 
4333 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4334 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4335 	/* Prevent the watchdog from running. */
4336 	iavf_change_state(adapter, __IAVF_REMOVE);
4337 	adapter->aq_required = 0;
4338 	mutex_unlock(&adapter->crit_lock);
4339 
4340 #ifdef CONFIG_PM
4341 	pci_save_state(pdev);
4342 
4343 #endif
4344 	pci_disable_device(pdev);
4345 }
4346 
4347 /**
4348  * iavf_probe - Device Initialization Routine
4349  * @pdev: PCI device information struct
4350  * @ent: entry in iavf_pci_tbl
4351  *
4352  * Returns 0 on success, negative on failure
4353  *
4354  * iavf_probe initializes an adapter identified by a pci_dev structure.
4355  * The OS initialization, configuring of the adapter private structure,
4356  * and a hardware reset occur.
4357  **/
4358 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4359 {
4360 	struct net_device *netdev;
4361 	struct iavf_adapter *adapter = NULL;
4362 	struct iavf_hw *hw = NULL;
4363 	int err;
4364 
4365 	err = pci_enable_device(pdev);
4366 	if (err)
4367 		return err;
4368 
4369 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4370 	if (err) {
4371 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4372 		if (err) {
4373 			dev_err(&pdev->dev,
4374 				"DMA configuration failed: 0x%x\n", err);
4375 			goto err_dma;
4376 		}
4377 	}
4378 
4379 	err = pci_request_regions(pdev, iavf_driver_name);
4380 	if (err) {
4381 		dev_err(&pdev->dev,
4382 			"pci_request_regions failed 0x%x\n", err);
4383 		goto err_pci_reg;
4384 	}
4385 
4386 	pci_enable_pcie_error_reporting(pdev);
4387 
4388 	pci_set_master(pdev);
4389 
4390 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4391 				   IAVF_MAX_REQ_QUEUES);
4392 	if (!netdev) {
4393 		err = -ENOMEM;
4394 		goto err_alloc_etherdev;
4395 	}
4396 
4397 	SET_NETDEV_DEV(netdev, &pdev->dev);
4398 
4399 	pci_set_drvdata(pdev, netdev);
4400 	adapter = netdev_priv(netdev);
4401 
4402 	adapter->netdev = netdev;
4403 	adapter->pdev = pdev;
4404 
4405 	hw = &adapter->hw;
4406 	hw->back = adapter;
4407 
4408 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4409 	iavf_change_state(adapter, __IAVF_STARTUP);
4410 
4411 	/* Call save state here because it relies on the adapter struct. */
4412 	pci_save_state(pdev);
4413 
4414 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4415 			      pci_resource_len(pdev, 0));
4416 	if (!hw->hw_addr) {
4417 		err = -EIO;
4418 		goto err_ioremap;
4419 	}
4420 	hw->vendor_id = pdev->vendor;
4421 	hw->device_id = pdev->device;
4422 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4423 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4424 	hw->subsystem_device_id = pdev->subsystem_device;
4425 	hw->bus.device = PCI_SLOT(pdev->devfn);
4426 	hw->bus.func = PCI_FUNC(pdev->devfn);
4427 	hw->bus.bus_id = pdev->bus->number;
4428 
4429 	/* set up the locks for the AQ, do this only once in probe
4430 	 * and destroy them only once in remove
4431 	 */
4432 	mutex_init(&adapter->crit_lock);
4433 	mutex_init(&adapter->client_lock);
4434 	mutex_init(&adapter->remove_lock);
4435 	mutex_init(&hw->aq.asq_mutex);
4436 	mutex_init(&hw->aq.arq_mutex);
4437 
4438 	spin_lock_init(&adapter->mac_vlan_list_lock);
4439 	spin_lock_init(&adapter->cloud_filter_list_lock);
4440 	spin_lock_init(&adapter->fdir_fltr_lock);
4441 	spin_lock_init(&adapter->adv_rss_lock);
4442 
4443 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4444 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4445 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4446 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4447 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4448 
4449 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4450 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4451 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4452 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4453 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4454 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4455 
4456 	/* Setup the wait queue for indicating transition to down status */
4457 	init_waitqueue_head(&adapter->down_waitqueue);
4458 
4459 	return 0;
4460 
4461 err_ioremap:
4462 	free_netdev(netdev);
4463 err_alloc_etherdev:
4464 	pci_disable_pcie_error_reporting(pdev);
4465 	pci_release_regions(pdev);
4466 err_pci_reg:
4467 err_dma:
4468 	pci_disable_device(pdev);
4469 	return err;
4470 }
4471 
4472 /**
4473  * iavf_suspend - Power management suspend routine
4474  * @dev_d: device info pointer
4475  *
4476  * Called when the system (VM) is entering sleep/suspend.
4477  **/
4478 static int __maybe_unused iavf_suspend(struct device *dev_d)
4479 {
4480 	struct net_device *netdev = dev_get_drvdata(dev_d);
4481 	struct iavf_adapter *adapter = netdev_priv(netdev);
4482 
4483 	netif_device_detach(netdev);
4484 
4485 	while (!mutex_trylock(&adapter->crit_lock))
4486 		usleep_range(500, 1000);
4487 
4488 	if (netif_running(netdev)) {
4489 		rtnl_lock();
4490 		iavf_down(adapter);
4491 		rtnl_unlock();
4492 	}
4493 	iavf_free_misc_irq(adapter);
4494 	iavf_reset_interrupt_capability(adapter);
4495 
4496 	mutex_unlock(&adapter->crit_lock);
4497 
4498 	return 0;
4499 }
4500 
4501 /**
4502  * iavf_resume - Power management resume routine
4503  * @dev_d: device info pointer
4504  *
4505  * Called when the system (VM) is resumed from sleep/suspend.
4506  **/
4507 static int __maybe_unused iavf_resume(struct device *dev_d)
4508 {
4509 	struct pci_dev *pdev = to_pci_dev(dev_d);
4510 	struct iavf_adapter *adapter;
4511 	u32 err;
4512 
4513 	adapter = iavf_pdev_to_adapter(pdev);
4514 
4515 	pci_set_master(pdev);
4516 
4517 	rtnl_lock();
4518 	err = iavf_set_interrupt_capability(adapter);
4519 	if (err) {
4520 		rtnl_unlock();
4521 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4522 		return err;
4523 	}
4524 	err = iavf_request_misc_irq(adapter);
4525 	rtnl_unlock();
4526 	if (err) {
4527 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4528 		return err;
4529 	}
4530 
4531 	queue_work(iavf_wq, &adapter->reset_task);
4532 
4533 	netif_device_attach(adapter->netdev);
4534 
4535 	return err;
4536 }
4537 
4538 /**
4539  * iavf_remove - Device Removal Routine
4540  * @pdev: PCI device information struct
4541  *
4542  * iavf_remove is called by the PCI subsystem to alert the driver
4543  * that it should release a PCI device.  The could be caused by a
4544  * Hot-Plug event, or because the driver is going to be removed from
4545  * memory.
4546  **/
4547 static void iavf_remove(struct pci_dev *pdev)
4548 {
4549 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4550 	enum iavf_state_t prev_state = adapter->last_state;
4551 	struct net_device *netdev = adapter->netdev;
4552 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4553 	struct iavf_vlan_filter *vlf, *vlftmp;
4554 	struct iavf_adv_rss *rss, *rsstmp;
4555 	struct iavf_mac_filter *f, *ftmp;
4556 	struct iavf_cloud_filter *cf, *cftmp;
4557 	struct iavf_hw *hw = &adapter->hw;
4558 	int err;
4559 	/* Indicate we are in remove and not to run reset_task */
4560 	mutex_lock(&adapter->remove_lock);
4561 	cancel_work_sync(&adapter->reset_task);
4562 	cancel_delayed_work_sync(&adapter->watchdog_task);
4563 	cancel_delayed_work_sync(&adapter->client_task);
4564 	if (adapter->netdev_registered) {
4565 		unregister_netdev(netdev);
4566 		adapter->netdev_registered = false;
4567 	}
4568 	if (CLIENT_ALLOWED(adapter)) {
4569 		err = iavf_lan_del_device(adapter);
4570 		if (err)
4571 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4572 				 err);
4573 	}
4574 
4575 	iavf_request_reset(adapter);
4576 	msleep(50);
4577 	/* If the FW isn't responding, kick it once, but only once. */
4578 	if (!iavf_asq_done(hw)) {
4579 		iavf_request_reset(adapter);
4580 		msleep(50);
4581 	}
4582 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4583 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4584 
4585 	dev_info(&adapter->pdev->dev, "Removing device\n");
4586 	/* Shut down all the garbage mashers on the detention level */
4587 	iavf_change_state(adapter, __IAVF_REMOVE);
4588 	adapter->aq_required = 0;
4589 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4590 
4591 	iavf_free_all_tx_resources(adapter);
4592 	iavf_free_all_rx_resources(adapter);
4593 	iavf_misc_irq_disable(adapter);
4594 	iavf_free_misc_irq(adapter);
4595 
4596 	/* In case we enter iavf_remove from erroneous state, free traffic irqs
4597 	 * here, so as to not cause a kernel crash, when calling
4598 	 * iavf_reset_interrupt_capability.
4599 	 */
4600 	if ((adapter->last_state == __IAVF_RESETTING &&
4601 	     prev_state != __IAVF_DOWN) ||
4602 	    (adapter->last_state == __IAVF_RUNNING &&
4603 	     !(netdev->flags & IFF_UP)))
4604 		iavf_free_traffic_irqs(adapter);
4605 
4606 	iavf_reset_interrupt_capability(adapter);
4607 	iavf_free_q_vectors(adapter);
4608 
4609 	cancel_delayed_work_sync(&adapter->watchdog_task);
4610 
4611 	cancel_work_sync(&adapter->adminq_task);
4612 
4613 	iavf_free_rss(adapter);
4614 
4615 	if (hw->aq.asq.count)
4616 		iavf_shutdown_adminq(hw);
4617 
4618 	/* destroy the locks only once, here */
4619 	mutex_destroy(&hw->aq.arq_mutex);
4620 	mutex_destroy(&hw->aq.asq_mutex);
4621 	mutex_destroy(&adapter->client_lock);
4622 	mutex_unlock(&adapter->crit_lock);
4623 	mutex_destroy(&adapter->crit_lock);
4624 	mutex_unlock(&adapter->remove_lock);
4625 	mutex_destroy(&adapter->remove_lock);
4626 
4627 	iounmap(hw->hw_addr);
4628 	pci_release_regions(pdev);
4629 	iavf_free_queues(adapter);
4630 	kfree(adapter->vf_res);
4631 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4632 	/* If we got removed before an up/down sequence, we've got a filter
4633 	 * hanging out there that we need to get rid of.
4634 	 */
4635 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4636 		list_del(&f->list);
4637 		kfree(f);
4638 	}
4639 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4640 				 list) {
4641 		list_del(&vlf->list);
4642 		kfree(vlf);
4643 	}
4644 
4645 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4646 
4647 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4648 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4649 		list_del(&cf->list);
4650 		kfree(cf);
4651 	}
4652 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4653 
4654 	spin_lock_bh(&adapter->fdir_fltr_lock);
4655 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4656 		list_del(&fdir->list);
4657 		kfree(fdir);
4658 	}
4659 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4660 
4661 	spin_lock_bh(&adapter->adv_rss_lock);
4662 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4663 				 list) {
4664 		list_del(&rss->list);
4665 		kfree(rss);
4666 	}
4667 	spin_unlock_bh(&adapter->adv_rss_lock);
4668 
4669 	free_netdev(netdev);
4670 
4671 	pci_disable_pcie_error_reporting(pdev);
4672 
4673 	pci_disable_device(pdev);
4674 }
4675 
4676 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4677 
4678 static struct pci_driver iavf_driver = {
4679 	.name      = iavf_driver_name,
4680 	.id_table  = iavf_pci_tbl,
4681 	.probe     = iavf_probe,
4682 	.remove    = iavf_remove,
4683 	.driver.pm = &iavf_pm_ops,
4684 	.shutdown  = iavf_shutdown,
4685 };
4686 
4687 /**
4688  * iavf_init_module - Driver Registration Routine
4689  *
4690  * iavf_init_module is the first routine called when the driver is
4691  * loaded. All it does is register with the PCI subsystem.
4692  **/
4693 static int __init iavf_init_module(void)
4694 {
4695 	int ret;
4696 
4697 	pr_info("iavf: %s\n", iavf_driver_string);
4698 
4699 	pr_info("%s\n", iavf_copyright);
4700 
4701 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4702 				  iavf_driver_name);
4703 	if (!iavf_wq) {
4704 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4705 		return -ENOMEM;
4706 	}
4707 	ret = pci_register_driver(&iavf_driver);
4708 	return ret;
4709 }
4710 
4711 module_init(iavf_init_module);
4712 
4713 /**
4714  * iavf_exit_module - Driver Exit Cleanup Routine
4715  *
4716  * iavf_exit_module is called just before the driver is removed
4717  * from memory.
4718  **/
4719 static void __exit iavf_exit_module(void)
4720 {
4721 	pci_unregister_driver(&iavf_driver);
4722 	destroy_workqueue(iavf_wq);
4723 }
4724 
4725 module_exit(iavf_exit_module);
4726 
4727 /* iavf_main.c */
4728