xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 	switch (status) {
57 	case IAVF_SUCCESS:
58 		return 0;
59 	case IAVF_ERR_PARAM:
60 	case IAVF_ERR_MAC_TYPE:
61 	case IAVF_ERR_INVALID_MAC_ADDR:
62 	case IAVF_ERR_INVALID_LINK_SETTINGS:
63 	case IAVF_ERR_INVALID_PD_ID:
64 	case IAVF_ERR_INVALID_QP_ID:
65 	case IAVF_ERR_INVALID_CQ_ID:
66 	case IAVF_ERR_INVALID_CEQ_ID:
67 	case IAVF_ERR_INVALID_AEQ_ID:
68 	case IAVF_ERR_INVALID_SIZE:
69 	case IAVF_ERR_INVALID_ARP_INDEX:
70 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 	case IAVF_ERR_INVALID_FRAG_COUNT:
73 	case IAVF_ERR_INVALID_ALIGNMENT:
74 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 	case IAVF_ERR_INVALID_VF_ID:
77 	case IAVF_ERR_INVALID_HMCFN_ID:
78 	case IAVF_ERR_INVALID_PBLE_INDEX:
79 	case IAVF_ERR_INVALID_SD_INDEX:
80 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 	case IAVF_ERR_INVALID_SD_TYPE:
82 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 		return -EINVAL;
86 	case IAVF_ERR_NVM:
87 	case IAVF_ERR_NVM_CHECKSUM:
88 	case IAVF_ERR_PHY:
89 	case IAVF_ERR_CONFIG:
90 	case IAVF_ERR_UNKNOWN_PHY:
91 	case IAVF_ERR_LINK_SETUP:
92 	case IAVF_ERR_ADAPTER_STOPPED:
93 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 	case IAVF_ERR_RESET_FAILED:
96 	case IAVF_ERR_BAD_PTR:
97 	case IAVF_ERR_SWFW_SYNC:
98 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 	case IAVF_ERR_QUEUE_EMPTY:
100 	case IAVF_ERR_FLUSHED_QUEUE:
101 	case IAVF_ERR_OPCODE_MISMATCH:
102 	case IAVF_ERR_CQP_COMPL_ERROR:
103 	case IAVF_ERR_BACKING_PAGE_ERROR:
104 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 	case IAVF_ERR_MEMCPY_FAILED:
106 	case IAVF_ERR_SRQ_ENABLED:
107 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 	case IAVF_ERR_ADMIN_QUEUE_FULL:
109 	case IAVF_ERR_BAD_IWARP_CQE:
110 	case IAVF_ERR_NVM_BLANK_MODE:
111 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 	case IAVF_ERR_DIAG_TEST_FAILED:
113 	case IAVF_ERR_FIRMWARE_API_VERSION:
114 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 		return -EIO;
116 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 		return -ENODEV;
118 	case IAVF_ERR_NO_AVAILABLE_VSI:
119 	case IAVF_ERR_RING_FULL:
120 		return -ENOSPC;
121 	case IAVF_ERR_NO_MEMORY:
122 		return -ENOMEM;
123 	case IAVF_ERR_TIMEOUT:
124 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 		return -ETIMEDOUT;
126 	case IAVF_ERR_NOT_IMPLEMENTED:
127 	case IAVF_NOT_SUPPORTED:
128 		return -EOPNOTSUPP;
129 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 		return -EALREADY;
131 	case IAVF_ERR_NOT_READY:
132 		return -EBUSY;
133 	case IAVF_ERR_BUF_TOO_SHORT:
134 		return -EMSGSIZE;
135 	}
136 
137 	return -EIO;
138 }
139 
140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 	switch (v_status) {
143 	case VIRTCHNL_STATUS_SUCCESS:
144 		return 0;
145 	case VIRTCHNL_STATUS_ERR_PARAM:
146 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 		return -EINVAL;
148 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 		return -ENOMEM;
150 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 		return -EIO;
154 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 		return -EOPNOTSUPP;
156 	}
157 
158 	return -EIO;
159 }
160 
161 /**
162  * iavf_pdev_to_adapter - go from pci_dev to adapter
163  * @pdev: pci_dev pointer
164  */
165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 	return netdev_priv(pci_get_drvdata(pdev));
168 }
169 
170 /**
171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172  * @hw:   pointer to the HW structure
173  * @mem:  ptr to mem struct to fill out
174  * @size: size of memory requested
175  * @alignment: what to align the allocation to
176  **/
177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 					 struct iavf_dma_mem *mem,
179 					 u64 size, u32 alignment)
180 {
181 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182 
183 	if (!mem)
184 		return IAVF_ERR_PARAM;
185 
186 	mem->size = ALIGN(size, alignment);
187 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 	if (mem->va)
190 		return 0;
191 	else
192 		return IAVF_ERR_NO_MEMORY;
193 }
194 
195 /**
196  * iavf_free_dma_mem_d - OS specific memory free for shared code
197  * @hw:   pointer to the HW structure
198  * @mem:  ptr to mem struct to free
199  **/
200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 				     struct iavf_dma_mem *mem)
202 {
203 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204 
205 	if (!mem || !mem->va)
206 		return IAVF_ERR_PARAM;
207 	dma_free_coherent(&adapter->pdev->dev, mem->size,
208 			  mem->va, (dma_addr_t)mem->pa);
209 	return 0;
210 }
211 
212 /**
213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214  * @hw:   pointer to the HW structure
215  * @mem:  ptr to mem struct to fill out
216  * @size: size of memory requested
217  **/
218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 					  struct iavf_virt_mem *mem, u32 size)
220 {
221 	if (!mem)
222 		return IAVF_ERR_PARAM;
223 
224 	mem->size = size;
225 	mem->va = kzalloc(size, GFP_KERNEL);
226 
227 	if (mem->va)
228 		return 0;
229 	else
230 		return IAVF_ERR_NO_MEMORY;
231 }
232 
233 /**
234  * iavf_free_virt_mem_d - OS specific memory free for shared code
235  * @hw:   pointer to the HW structure
236  * @mem:  ptr to mem struct to free
237  **/
238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 				      struct iavf_virt_mem *mem)
240 {
241 	if (!mem)
242 		return IAVF_ERR_PARAM;
243 
244 	/* it's ok to kfree a NULL pointer */
245 	kfree(mem->va);
246 
247 	return 0;
248 }
249 
250 /**
251  * iavf_lock_timeout - try to lock mutex but give up after timeout
252  * @lock: mutex that should be locked
253  * @msecs: timeout in msecs
254  *
255  * Returns 0 on success, negative on failure
256  **/
257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 	unsigned int wait, delay = 10;
260 
261 	for (wait = 0; wait < msecs; wait += delay) {
262 		if (mutex_trylock(lock))
263 			return 0;
264 
265 		msleep(delay);
266 	}
267 
268 	return -1;
269 }
270 
271 /**
272  * iavf_schedule_reset - Set the flags and schedule a reset event
273  * @adapter: board private structure
274  **/
275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 	if (!(adapter->flags &
278 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 		queue_work(iavf_wq, &adapter->reset_task);
281 	}
282 }
283 
284 /**
285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
286  * @adapter: board private structure
287  *
288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289  * request and refresh ethtool stats
290  **/
291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296 
297 /**
298  * iavf_tx_timeout - Respond to a Tx Hang
299  * @netdev: network interface device structure
300  * @txqueue: queue number that is timing out
301  **/
302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 	struct iavf_adapter *adapter = netdev_priv(netdev);
305 
306 	adapter->tx_timeout_count++;
307 	iavf_schedule_reset(adapter);
308 }
309 
310 /**
311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312  * @adapter: board private structure
313  **/
314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 	struct iavf_hw *hw = &adapter->hw;
317 
318 	if (!adapter->msix_entries)
319 		return;
320 
321 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322 
323 	iavf_flush(hw);
324 
325 	synchronize_irq(adapter->msix_entries[0].vector);
326 }
327 
328 /**
329  * iavf_misc_irq_enable - Enable default interrupt generation settings
330  * @adapter: board private structure
331  **/
332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 	struct iavf_hw *hw = &adapter->hw;
335 
336 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339 
340 	iavf_flush(hw);
341 }
342 
343 /**
344  * iavf_irq_disable - Mask off interrupt generation on the NIC
345  * @adapter: board private structure
346  **/
347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 	int i;
350 	struct iavf_hw *hw = &adapter->hw;
351 
352 	if (!adapter->msix_entries)
353 		return;
354 
355 	for (i = 1; i < adapter->num_msix_vectors; i++) {
356 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 		synchronize_irq(adapter->msix_entries[i].vector);
358 	}
359 	iavf_flush(hw);
360 }
361 
362 /**
363  * iavf_irq_enable_queues - Enable interrupt for specified queues
364  * @adapter: board private structure
365  * @mask: bitmap of queues to enable
366  **/
367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 	struct iavf_hw *hw = &adapter->hw;
370 	int i;
371 
372 	for (i = 1; i < adapter->num_msix_vectors; i++) {
373 		if (mask & BIT(i - 1)) {
374 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 		}
378 	}
379 }
380 
381 /**
382  * iavf_irq_enable - Enable default interrupt generation settings
383  * @adapter: board private structure
384  * @flush: boolean value whether to run rd32()
385  **/
386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 	struct iavf_hw *hw = &adapter->hw;
389 
390 	iavf_misc_irq_enable(adapter);
391 	iavf_irq_enable_queues(adapter, ~0);
392 
393 	if (flush)
394 		iavf_flush(hw);
395 }
396 
397 /**
398  * iavf_msix_aq - Interrupt handler for vector 0
399  * @irq: interrupt number
400  * @data: pointer to netdev
401  **/
402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 	struct net_device *netdev = data;
405 	struct iavf_adapter *adapter = netdev_priv(netdev);
406 	struct iavf_hw *hw = &adapter->hw;
407 
408 	/* handle non-queue interrupts, these reads clear the registers */
409 	rd32(hw, IAVF_VFINT_ICR01);
410 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
411 
412 	if (adapter->state != __IAVF_REMOVE)
413 		/* schedule work on the private workqueue */
414 		queue_work(iavf_wq, &adapter->adminq_task);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /**
420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421  * @irq: interrupt number
422  * @data: pointer to a q_vector
423  **/
424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 	struct iavf_q_vector *q_vector = data;
427 
428 	if (!q_vector->tx.ring && !q_vector->rx.ring)
429 		return IRQ_HANDLED;
430 
431 	napi_schedule_irqoff(&q_vector->napi);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * iavf_map_vector_to_rxq - associate irqs with rx queues
438  * @adapter: board private structure
439  * @v_idx: interrupt number
440  * @r_idx: queue number
441  **/
442 static void
443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 	struct iavf_hw *hw = &adapter->hw;
448 
449 	rx_ring->q_vector = q_vector;
450 	rx_ring->next = q_vector->rx.ring;
451 	rx_ring->vsi = &adapter->vsi;
452 	q_vector->rx.ring = rx_ring;
453 	q_vector->rx.count++;
454 	q_vector->rx.next_update = jiffies + 1;
455 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 	q_vector->ring_mask |= BIT(r_idx);
457 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 	     q_vector->rx.current_itr >> 1);
459 	q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461 
462 /**
463  * iavf_map_vector_to_txq - associate irqs with tx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @t_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	tx_ring->q_vector = q_vector;
476 	tx_ring->next = q_vector->tx.ring;
477 	tx_ring->vsi = &adapter->vsi;
478 	q_vector->tx.ring = tx_ring;
479 	q_vector->tx.count++;
480 	q_vector->tx.next_update = jiffies + 1;
481 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 	q_vector->num_ringpairs++;
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 	     q_vector->tx.target_itr >> 1);
485 	q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487 
488 /**
489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490  * @adapter: board private structure to initialize
491  *
492  * This function maps descriptor rings to the queue-specific vectors
493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
494  * one vector per ring/queue, but on a constrained vector budget, we
495  * group the rings as "efficiently" as possible.  You would add new
496  * mapping configurations in here.
497  **/
498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 	int rings_remaining = adapter->num_active_queues;
501 	int ridx = 0, vidx = 0;
502 	int q_vectors;
503 
504 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505 
506 	for (; ridx < rings_remaining; ridx++) {
507 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 		iavf_map_vector_to_txq(adapter, vidx, ridx);
509 
510 		/* In the case where we have more queues than vectors, continue
511 		 * round-robin on vectors until all queues are mapped.
512 		 */
513 		if (++vidx >= q_vectors)
514 			vidx = 0;
515 	}
516 
517 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519 
520 /**
521  * iavf_irq_affinity_notify - Callback for affinity changes
522  * @notify: context as to what irq was changed
523  * @mask: the new affinity mask
524  *
525  * This is a callback function used by the irq_set_affinity_notifier function
526  * so that we may register to receive changes to the irq affinity masks.
527  **/
528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 				     const cpumask_t *mask)
530 {
531 	struct iavf_q_vector *q_vector =
532 		container_of(notify, struct iavf_q_vector, affinity_notify);
533 
534 	cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536 
537 /**
538  * iavf_irq_affinity_release - Callback for affinity notifier release
539  * @ref: internal core kernel usage
540  *
541  * This is a callback function used by the irq_set_affinity_notifier function
542  * to inform the current notification subscriber that they will no longer
543  * receive notifications.
544  **/
545 static void iavf_irq_affinity_release(struct kref *ref) {}
546 
547 /**
548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549  * @adapter: board private structure
550  * @basename: device basename
551  *
552  * Allocates MSI-X vectors for tx and rx handling, and requests
553  * interrupts from the kernel.
554  **/
555 static int
556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 	unsigned int vector, q_vectors;
559 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 	int irq_num, err;
561 	int cpu;
562 
563 	iavf_irq_disable(adapter);
564 	/* Decrement for Other and TCP Timer vectors */
565 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566 
567 	for (vector = 0; vector < q_vectors; vector++) {
568 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569 
570 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571 
572 		if (q_vector->tx.ring && q_vector->rx.ring) {
573 			snprintf(q_vector->name, sizeof(q_vector->name),
574 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 			tx_int_idx++;
576 		} else if (q_vector->rx.ring) {
577 			snprintf(q_vector->name, sizeof(q_vector->name),
578 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 		} else if (q_vector->tx.ring) {
580 			snprintf(q_vector->name, sizeof(q_vector->name),
581 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 		} else {
583 			/* skip this unused q_vector */
584 			continue;
585 		}
586 		err = request_irq(irq_num,
587 				  iavf_msix_clean_rings,
588 				  0,
589 				  q_vector->name,
590 				  q_vector);
591 		if (err) {
592 			dev_info(&adapter->pdev->dev,
593 				 "Request_irq failed, error: %d\n", err);
594 			goto free_queue_irqs;
595 		}
596 		/* register for affinity change notifications */
597 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 		q_vector->affinity_notify.release =
599 						   iavf_irq_affinity_release;
600 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 		/* Spread the IRQ affinity hints across online CPUs. Note that
602 		 * get_cpu_mask returns a mask with a permanent lifetime so
603 		 * it's safe to use as a hint for irq_update_affinity_hint.
604 		 */
605 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 	}
608 
609 	return 0;
610 
611 free_queue_irqs:
612 	while (vector) {
613 		vector--;
614 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 		irq_set_affinity_notifier(irq_num, NULL);
616 		irq_update_affinity_hint(irq_num, NULL);
617 		free_irq(irq_num, &adapter->q_vectors[vector]);
618 	}
619 	return err;
620 }
621 
622 /**
623  * iavf_request_misc_irq - Initialize MSI-X interrupts
624  * @adapter: board private structure
625  *
626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627  * vector is only for the admin queue, and stays active even when the netdev
628  * is closed.
629  **/
630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 	struct net_device *netdev = adapter->netdev;
633 	int err;
634 
635 	snprintf(adapter->misc_vector_name,
636 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 		 dev_name(&adapter->pdev->dev));
638 	err = request_irq(adapter->msix_entries[0].vector,
639 			  &iavf_msix_aq, 0,
640 			  adapter->misc_vector_name, netdev);
641 	if (err) {
642 		dev_err(&adapter->pdev->dev,
643 			"request_irq for %s failed: %d\n",
644 			adapter->misc_vector_name, err);
645 		free_irq(adapter->msix_entries[0].vector, netdev);
646 	}
647 	return err;
648 }
649 
650 /**
651  * iavf_free_traffic_irqs - Free MSI-X interrupts
652  * @adapter: board private structure
653  *
654  * Frees all MSI-X vectors other than 0.
655  **/
656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 	int vector, irq_num, q_vectors;
659 
660 	if (!adapter->msix_entries)
661 		return;
662 
663 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664 
665 	for (vector = 0; vector < q_vectors; vector++) {
666 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 		irq_set_affinity_notifier(irq_num, NULL);
668 		irq_update_affinity_hint(irq_num, NULL);
669 		free_irq(irq_num, &adapter->q_vectors[vector]);
670 	}
671 }
672 
673 /**
674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675  * @adapter: board private structure
676  *
677  * Frees MSI-X vector 0.
678  **/
679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 	struct net_device *netdev = adapter->netdev;
682 
683 	if (!adapter->msix_entries)
684 		return;
685 
686 	free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688 
689 /**
690  * iavf_configure_tx - Configure Transmit Unit after Reset
691  * @adapter: board private structure
692  *
693  * Configure the Tx unit of the MAC after a reset.
694  **/
695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 	struct iavf_hw *hw = &adapter->hw;
698 	int i;
699 
700 	for (i = 0; i < adapter->num_active_queues; i++)
701 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703 
704 /**
705  * iavf_configure_rx - Configure Receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  **/
710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 	struct iavf_hw *hw = &adapter->hw;
714 	int i;
715 
716 	/* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 		struct net_device *netdev = adapter->netdev;
720 
721 		/* For jumbo frames on systems with 4K pages we have to use
722 		 * an order 1 page, so we might as well increase the size
723 		 * of our Rx buffer to make better use of the available space
724 		 */
725 		rx_buf_len = IAVF_RXBUFFER_3072;
726 
727 		/* We use a 1536 buffer size for configurations with
728 		 * standard Ethernet mtu.  On x86 this gives us enough room
729 		 * for shared info and 192 bytes of padding.
730 		 */
731 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 		    (netdev->mtu <= ETH_DATA_LEN))
733 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 	}
735 #endif
736 
737 	for (i = 0; i < adapter->num_active_queues; i++) {
738 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740 
741 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 		else
744 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 	}
746 }
747 
748 /**
749  * iavf_find_vlan - Search filter list for specific vlan filter
750  * @adapter: board private structure
751  * @vlan: vlan tag
752  *
753  * Returns ptr to the filter object or NULL. Must be called while holding the
754  * mac_vlan_list_lock.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 				 struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f;
761 
762 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 		if (f->vlan.vid == vlan.vid &&
764 		    f->vlan.tpid == vlan.tpid)
765 			return f;
766 	}
767 
768 	return NULL;
769 }
770 
771 /**
772  * iavf_add_vlan - Add a vlan filter to the list
773  * @adapter: board private structure
774  * @vlan: VLAN tag
775  *
776  * Returns ptr to the filter object or NULL when no memory available.
777  **/
778 static struct
779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 				struct iavf_vlan vlan)
781 {
782 	struct iavf_vlan_filter *f = NULL;
783 
784 	spin_lock_bh(&adapter->mac_vlan_list_lock);
785 
786 	f = iavf_find_vlan(adapter, vlan);
787 	if (!f) {
788 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 		if (!f)
790 			goto clearout;
791 
792 		f->vlan = vlan;
793 
794 		list_add_tail(&f->list, &adapter->vlan_filter_list);
795 		f->add = true;
796 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 	}
798 
799 clearout:
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 	return f;
802 }
803 
804 /**
805  * iavf_del_vlan - Remove a vlan filter from the list
806  * @adapter: board private structure
807  * @vlan: VLAN tag
808  **/
809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	spin_lock_bh(&adapter->mac_vlan_list_lock);
814 
815 	f = iavf_find_vlan(adapter, vlan);
816 	if (f) {
817 		f->remove = true;
818 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823 
824 /**
825  * iavf_restore_filters
826  * @adapter: board private structure
827  *
828  * Restore existing non MAC filters when VF netdev comes back up
829  **/
830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 	u16 vid;
833 
834 	/* re-add all VLAN filters */
835 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837 
838 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841 
842 /**
843  * iavf_get_num_vlans_added - get number of VLANs added
844  * @adapter: board private structure
845  */
846 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851 
852 /**
853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854  * @adapter: board private structure
855  *
856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857  * do not impose a limit as that maintains current behavior and for
858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859  **/
860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 	 * never been a limit on the VF driver side
864 	 */
865 	if (VLAN_ALLOWED(adapter))
866 		return VLAN_N_VID;
867 	else if (VLAN_V2_ALLOWED(adapter))
868 		return adapter->vlan_v2_caps.filtering.max_filters;
869 
870 	return 0;
871 }
872 
873 /**
874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875  * @adapter: board private structure
876  **/
877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 	if (iavf_get_num_vlans_added(adapter) <
880 	    iavf_get_max_vlans_allowed(adapter))
881 		return false;
882 
883 	return true;
884 }
885 
886 /**
887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888  * @netdev: network device struct
889  * @proto: unused protocol data
890  * @vid: VLAN tag
891  **/
892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 				__always_unused __be16 proto, u16 vid)
894 {
895 	struct iavf_adapter *adapter = netdev_priv(netdev);
896 
897 	if (!VLAN_FILTERING_ALLOWED(adapter))
898 		return -EIO;
899 
900 	if (iavf_max_vlans_added(adapter)) {
901 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 			   iavf_get_max_vlans_allowed(adapter));
903 		return -EIO;
904 	}
905 
906 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 		return -ENOMEM;
908 
909 	if (proto == cpu_to_be16(ETH_P_8021Q))
910 		set_bit(vid, adapter->vsi.active_cvlans);
911 	else
912 		set_bit(vid, adapter->vsi.active_svlans);
913 
914 	return 0;
915 }
916 
917 /**
918  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
919  * @netdev: network device struct
920  * @proto: unused protocol data
921  * @vid: VLAN tag
922  **/
923 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
924 				 __always_unused __be16 proto, u16 vid)
925 {
926 	struct iavf_adapter *adapter = netdev_priv(netdev);
927 
928 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 	if (proto == cpu_to_be16(ETH_P_8021Q))
930 		clear_bit(vid, adapter->vsi.active_cvlans);
931 	else
932 		clear_bit(vid, adapter->vsi.active_svlans);
933 
934 	return 0;
935 }
936 
937 /**
938  * iavf_find_filter - Search filter list for specific mac filter
939  * @adapter: board private structure
940  * @macaddr: the MAC address
941  *
942  * Returns ptr to the filter object or NULL. Must be called while holding the
943  * mac_vlan_list_lock.
944  **/
945 static struct
946 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
947 				  const u8 *macaddr)
948 {
949 	struct iavf_mac_filter *f;
950 
951 	if (!macaddr)
952 		return NULL;
953 
954 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
955 		if (ether_addr_equal(macaddr, f->macaddr))
956 			return f;
957 	}
958 	return NULL;
959 }
960 
961 /**
962  * iavf_add_filter - Add a mac filter to the filter list
963  * @adapter: board private structure
964  * @macaddr: the MAC address
965  *
966  * Returns ptr to the filter object or NULL when no memory available.
967  **/
968 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
969 					const u8 *macaddr)
970 {
971 	struct iavf_mac_filter *f;
972 
973 	if (!macaddr)
974 		return NULL;
975 
976 	f = iavf_find_filter(adapter, macaddr);
977 	if (!f) {
978 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
979 		if (!f)
980 			return f;
981 
982 		ether_addr_copy(f->macaddr, macaddr);
983 
984 		list_add_tail(&f->list, &adapter->mac_filter_list);
985 		f->add = true;
986 		f->is_new_mac = true;
987 		f->is_primary = false;
988 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
989 	} else {
990 		f->remove = false;
991 	}
992 
993 	return f;
994 }
995 
996 /**
997  * iavf_set_mac - NDO callback to set port mac address
998  * @netdev: network interface device structure
999  * @p: pointer to an address structure
1000  *
1001  * Returns 0 on success, negative on failure
1002  **/
1003 static int iavf_set_mac(struct net_device *netdev, void *p)
1004 {
1005 	struct iavf_adapter *adapter = netdev_priv(netdev);
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *f;
1008 	struct sockaddr *addr = p;
1009 
1010 	if (!is_valid_ether_addr(addr->sa_data))
1011 		return -EADDRNOTAVAIL;
1012 
1013 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
1014 		return 0;
1015 
1016 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1017 
1018 	f = iavf_find_filter(adapter, hw->mac.addr);
1019 	if (f) {
1020 		f->remove = true;
1021 		f->is_primary = true;
1022 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 	}
1024 
1025 	f = iavf_add_filter(adapter, addr->sa_data);
1026 	if (f) {
1027 		f->is_primary = true;
1028 		ether_addr_copy(hw->mac.addr, addr->sa_data);
1029 	}
1030 
1031 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032 
1033 	/* schedule the watchdog task to immediately process the request */
1034 	if (f)
1035 		queue_work(iavf_wq, &adapter->watchdog_task.work);
1036 
1037 	return (f == NULL) ? -ENOMEM : 0;
1038 }
1039 
1040 /**
1041  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1042  * @netdev: the netdevice
1043  * @addr: address to add
1044  *
1045  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1046  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1047  */
1048 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1049 {
1050 	struct iavf_adapter *adapter = netdev_priv(netdev);
1051 
1052 	if (iavf_add_filter(adapter, addr))
1053 		return 0;
1054 	else
1055 		return -ENOMEM;
1056 }
1057 
1058 /**
1059  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1060  * @netdev: the netdevice
1061  * @addr: address to add
1062  *
1063  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1064  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1065  */
1066 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1067 {
1068 	struct iavf_adapter *adapter = netdev_priv(netdev);
1069 	struct iavf_mac_filter *f;
1070 
1071 	/* Under some circumstances, we might receive a request to delete
1072 	 * our own device address from our uc list. Because we store the
1073 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1074 	 * such requests and not delete our device address from this list.
1075 	 */
1076 	if (ether_addr_equal(addr, netdev->dev_addr))
1077 		return 0;
1078 
1079 	f = iavf_find_filter(adapter, addr);
1080 	if (f) {
1081 		f->remove = true;
1082 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1083 	}
1084 	return 0;
1085 }
1086 
1087 /**
1088  * iavf_set_rx_mode - NDO callback to set the netdev filters
1089  * @netdev: network interface device structure
1090  **/
1091 static void iavf_set_rx_mode(struct net_device *netdev)
1092 {
1093 	struct iavf_adapter *adapter = netdev_priv(netdev);
1094 
1095 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1096 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1097 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1098 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1099 
1100 	if (netdev->flags & IFF_PROMISC &&
1101 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1102 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1103 	else if (!(netdev->flags & IFF_PROMISC) &&
1104 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1105 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1106 
1107 	if (netdev->flags & IFF_ALLMULTI &&
1108 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1109 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1110 	else if (!(netdev->flags & IFF_ALLMULTI) &&
1111 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1112 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1113 }
1114 
1115 /**
1116  * iavf_napi_enable_all - enable NAPI on all queue vectors
1117  * @adapter: board private structure
1118  **/
1119 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1120 {
1121 	int q_idx;
1122 	struct iavf_q_vector *q_vector;
1123 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1124 
1125 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1126 		struct napi_struct *napi;
1127 
1128 		q_vector = &adapter->q_vectors[q_idx];
1129 		napi = &q_vector->napi;
1130 		napi_enable(napi);
1131 	}
1132 }
1133 
1134 /**
1135  * iavf_napi_disable_all - disable NAPI on all queue vectors
1136  * @adapter: board private structure
1137  **/
1138 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1139 {
1140 	int q_idx;
1141 	struct iavf_q_vector *q_vector;
1142 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1143 
1144 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1145 		q_vector = &adapter->q_vectors[q_idx];
1146 		napi_disable(&q_vector->napi);
1147 	}
1148 }
1149 
1150 /**
1151  * iavf_configure - set up transmit and receive data structures
1152  * @adapter: board private structure
1153  **/
1154 static void iavf_configure(struct iavf_adapter *adapter)
1155 {
1156 	struct net_device *netdev = adapter->netdev;
1157 	int i;
1158 
1159 	iavf_set_rx_mode(netdev);
1160 
1161 	iavf_configure_tx(adapter);
1162 	iavf_configure_rx(adapter);
1163 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1164 
1165 	for (i = 0; i < adapter->num_active_queues; i++) {
1166 		struct iavf_ring *ring = &adapter->rx_rings[i];
1167 
1168 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1169 	}
1170 }
1171 
1172 /**
1173  * iavf_up_complete - Finish the last steps of bringing up a connection
1174  * @adapter: board private structure
1175  *
1176  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1177  **/
1178 static void iavf_up_complete(struct iavf_adapter *adapter)
1179 {
1180 	iavf_change_state(adapter, __IAVF_RUNNING);
1181 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1182 
1183 	iavf_napi_enable_all(adapter);
1184 
1185 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1186 	if (CLIENT_ENABLED(adapter))
1187 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1188 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1189 }
1190 
1191 /**
1192  * iavf_down - Shutdown the connection processing
1193  * @adapter: board private structure
1194  *
1195  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1196  **/
1197 void iavf_down(struct iavf_adapter *adapter)
1198 {
1199 	struct net_device *netdev = adapter->netdev;
1200 	struct iavf_vlan_filter *vlf;
1201 	struct iavf_cloud_filter *cf;
1202 	struct iavf_fdir_fltr *fdir;
1203 	struct iavf_mac_filter *f;
1204 	struct iavf_adv_rss *rss;
1205 
1206 	if (adapter->state <= __IAVF_DOWN_PENDING)
1207 		return;
1208 
1209 	netif_carrier_off(netdev);
1210 	netif_tx_disable(netdev);
1211 	adapter->link_up = false;
1212 	iavf_napi_disable_all(adapter);
1213 	iavf_irq_disable(adapter);
1214 
1215 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1216 
1217 	/* clear the sync flag on all filters */
1218 	__dev_uc_unsync(adapter->netdev, NULL);
1219 	__dev_mc_unsync(adapter->netdev, NULL);
1220 
1221 	/* remove all MAC filters */
1222 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1223 		f->remove = true;
1224 	}
1225 
1226 	/* remove all VLAN filters */
1227 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1228 		vlf->remove = true;
1229 	}
1230 
1231 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1232 
1233 	/* remove all cloud filters */
1234 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1235 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1236 		cf->del = true;
1237 	}
1238 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1239 
1240 	/* remove all Flow Director filters */
1241 	spin_lock_bh(&adapter->fdir_fltr_lock);
1242 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1243 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1244 	}
1245 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1246 
1247 	/* remove all advance RSS configuration */
1248 	spin_lock_bh(&adapter->adv_rss_lock);
1249 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1250 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1251 	spin_unlock_bh(&adapter->adv_rss_lock);
1252 
1253 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1254 		/* cancel any current operation */
1255 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1256 		/* Schedule operations to close down the HW. Don't wait
1257 		 * here for this to complete. The watchdog is still running
1258 		 * and it will take care of this.
1259 		 */
1260 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1261 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1262 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1263 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1264 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1265 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1266 	}
1267 
1268 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1269 }
1270 
1271 /**
1272  * iavf_acquire_msix_vectors - Setup the MSIX capability
1273  * @adapter: board private structure
1274  * @vectors: number of vectors to request
1275  *
1276  * Work with the OS to set up the MSIX vectors needed.
1277  *
1278  * Returns 0 on success, negative on failure
1279  **/
1280 static int
1281 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1282 {
1283 	int err, vector_threshold;
1284 
1285 	/* We'll want at least 3 (vector_threshold):
1286 	 * 0) Other (Admin Queue and link, mostly)
1287 	 * 1) TxQ[0] Cleanup
1288 	 * 2) RxQ[0] Cleanup
1289 	 */
1290 	vector_threshold = MIN_MSIX_COUNT;
1291 
1292 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1293 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1294 	 * Right now, we simply care about how many we'll get; we'll
1295 	 * set them up later while requesting irq's.
1296 	 */
1297 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1298 				    vector_threshold, vectors);
1299 	if (err < 0) {
1300 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1301 		kfree(adapter->msix_entries);
1302 		adapter->msix_entries = NULL;
1303 		return err;
1304 	}
1305 
1306 	/* Adjust for only the vectors we'll use, which is minimum
1307 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1308 	 * vectors we were allocated.
1309 	 */
1310 	adapter->num_msix_vectors = err;
1311 	return 0;
1312 }
1313 
1314 /**
1315  * iavf_free_queues - Free memory for all rings
1316  * @adapter: board private structure to initialize
1317  *
1318  * Free all of the memory associated with queue pairs.
1319  **/
1320 static void iavf_free_queues(struct iavf_adapter *adapter)
1321 {
1322 	if (!adapter->vsi_res)
1323 		return;
1324 	adapter->num_active_queues = 0;
1325 	kfree(adapter->tx_rings);
1326 	adapter->tx_rings = NULL;
1327 	kfree(adapter->rx_rings);
1328 	adapter->rx_rings = NULL;
1329 }
1330 
1331 /**
1332  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1333  * @adapter: board private structure
1334  *
1335  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1336  * stripped in certain descriptor fields. Instead of checking the offload
1337  * capability bits in the hot path, cache the location the ring specific
1338  * flags.
1339  */
1340 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1341 {
1342 	int i;
1343 
1344 	for (i = 0; i < adapter->num_active_queues; i++) {
1345 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1346 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1347 
1348 		/* prevent multiple L2TAG bits being set after VFR */
1349 		tx_ring->flags &=
1350 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1351 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1352 		rx_ring->flags &=
1353 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1354 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1355 
1356 		if (VLAN_ALLOWED(adapter)) {
1357 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1358 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1359 		} else if (VLAN_V2_ALLOWED(adapter)) {
1360 			struct virtchnl_vlan_supported_caps *stripping_support;
1361 			struct virtchnl_vlan_supported_caps *insertion_support;
1362 
1363 			stripping_support =
1364 				&adapter->vlan_v2_caps.offloads.stripping_support;
1365 			insertion_support =
1366 				&adapter->vlan_v2_caps.offloads.insertion_support;
1367 
1368 			if (stripping_support->outer) {
1369 				if (stripping_support->outer &
1370 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1371 					rx_ring->flags |=
1372 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1373 				else if (stripping_support->outer &
1374 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1375 					rx_ring->flags |=
1376 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1377 			} else if (stripping_support->inner) {
1378 				if (stripping_support->inner &
1379 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1380 					rx_ring->flags |=
1381 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1382 				else if (stripping_support->inner &
1383 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1384 					rx_ring->flags |=
1385 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1386 			}
1387 
1388 			if (insertion_support->outer) {
1389 				if (insertion_support->outer &
1390 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1391 					tx_ring->flags |=
1392 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1393 				else if (insertion_support->outer &
1394 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1395 					tx_ring->flags |=
1396 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1397 			} else if (insertion_support->inner) {
1398 				if (insertion_support->inner &
1399 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1400 					tx_ring->flags |=
1401 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1402 				else if (insertion_support->inner &
1403 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1404 					tx_ring->flags |=
1405 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1406 			}
1407 		}
1408 	}
1409 }
1410 
1411 /**
1412  * iavf_alloc_queues - Allocate memory for all rings
1413  * @adapter: board private structure to initialize
1414  *
1415  * We allocate one ring per queue at run-time since we don't know the
1416  * number of queues at compile-time.  The polling_netdev array is
1417  * intended for Multiqueue, but should work fine with a single queue.
1418  **/
1419 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1420 {
1421 	int i, num_active_queues;
1422 
1423 	/* If we're in reset reallocating queues we don't actually know yet for
1424 	 * certain the PF gave us the number of queues we asked for but we'll
1425 	 * assume it did.  Once basic reset is finished we'll confirm once we
1426 	 * start negotiating config with PF.
1427 	 */
1428 	if (adapter->num_req_queues)
1429 		num_active_queues = adapter->num_req_queues;
1430 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1431 		 adapter->num_tc)
1432 		num_active_queues = adapter->ch_config.total_qps;
1433 	else
1434 		num_active_queues = min_t(int,
1435 					  adapter->vsi_res->num_queue_pairs,
1436 					  (int)(num_online_cpus()));
1437 
1438 
1439 	adapter->tx_rings = kcalloc(num_active_queues,
1440 				    sizeof(struct iavf_ring), GFP_KERNEL);
1441 	if (!adapter->tx_rings)
1442 		goto err_out;
1443 	adapter->rx_rings = kcalloc(num_active_queues,
1444 				    sizeof(struct iavf_ring), GFP_KERNEL);
1445 	if (!adapter->rx_rings)
1446 		goto err_out;
1447 
1448 	for (i = 0; i < num_active_queues; i++) {
1449 		struct iavf_ring *tx_ring;
1450 		struct iavf_ring *rx_ring;
1451 
1452 		tx_ring = &adapter->tx_rings[i];
1453 
1454 		tx_ring->queue_index = i;
1455 		tx_ring->netdev = adapter->netdev;
1456 		tx_ring->dev = &adapter->pdev->dev;
1457 		tx_ring->count = adapter->tx_desc_count;
1458 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1459 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1460 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1461 
1462 		rx_ring = &adapter->rx_rings[i];
1463 		rx_ring->queue_index = i;
1464 		rx_ring->netdev = adapter->netdev;
1465 		rx_ring->dev = &adapter->pdev->dev;
1466 		rx_ring->count = adapter->rx_desc_count;
1467 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1468 	}
1469 
1470 	adapter->num_active_queues = num_active_queues;
1471 
1472 	iavf_set_queue_vlan_tag_loc(adapter);
1473 
1474 	return 0;
1475 
1476 err_out:
1477 	iavf_free_queues(adapter);
1478 	return -ENOMEM;
1479 }
1480 
1481 /**
1482  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1483  * @adapter: board private structure to initialize
1484  *
1485  * Attempt to configure the interrupts using the best available
1486  * capabilities of the hardware and the kernel.
1487  **/
1488 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1489 {
1490 	int vector, v_budget;
1491 	int pairs = 0;
1492 	int err = 0;
1493 
1494 	if (!adapter->vsi_res) {
1495 		err = -EIO;
1496 		goto out;
1497 	}
1498 	pairs = adapter->num_active_queues;
1499 
1500 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1501 	 * us much good if we have more vectors than CPUs. However, we already
1502 	 * limit the total number of queues by the number of CPUs so we do not
1503 	 * need any further limiting here.
1504 	 */
1505 	v_budget = min_t(int, pairs + NONQ_VECS,
1506 			 (int)adapter->vf_res->max_vectors);
1507 
1508 	adapter->msix_entries = kcalloc(v_budget,
1509 					sizeof(struct msix_entry), GFP_KERNEL);
1510 	if (!adapter->msix_entries) {
1511 		err = -ENOMEM;
1512 		goto out;
1513 	}
1514 
1515 	for (vector = 0; vector < v_budget; vector++)
1516 		adapter->msix_entries[vector].entry = vector;
1517 
1518 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1519 
1520 out:
1521 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1522 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1523 	return err;
1524 }
1525 
1526 /**
1527  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1528  * @adapter: board private structure
1529  *
1530  * Return 0 on success, negative on failure
1531  **/
1532 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1533 {
1534 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1535 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1536 	struct iavf_hw *hw = &adapter->hw;
1537 	enum iavf_status status;
1538 
1539 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1540 		/* bail because we already have a command pending */
1541 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1542 			adapter->current_op);
1543 		return -EBUSY;
1544 	}
1545 
1546 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1547 	if (status) {
1548 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1549 			iavf_stat_str(hw, status),
1550 			iavf_aq_str(hw, hw->aq.asq_last_status));
1551 		return iavf_status_to_errno(status);
1552 
1553 	}
1554 
1555 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1556 				     adapter->rss_lut, adapter->rss_lut_size);
1557 	if (status) {
1558 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1559 			iavf_stat_str(hw, status),
1560 			iavf_aq_str(hw, hw->aq.asq_last_status));
1561 		return iavf_status_to_errno(status);
1562 	}
1563 
1564 	return 0;
1565 
1566 }
1567 
1568 /**
1569  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1570  * @adapter: board private structure
1571  *
1572  * Returns 0 on success, negative on failure
1573  **/
1574 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1575 {
1576 	struct iavf_hw *hw = &adapter->hw;
1577 	u32 *dw;
1578 	u16 i;
1579 
1580 	dw = (u32 *)adapter->rss_key;
1581 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1582 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1583 
1584 	dw = (u32 *)adapter->rss_lut;
1585 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1586 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1587 
1588 	iavf_flush(hw);
1589 
1590 	return 0;
1591 }
1592 
1593 /**
1594  * iavf_config_rss - Configure RSS keys and lut
1595  * @adapter: board private structure
1596  *
1597  * Returns 0 on success, negative on failure
1598  **/
1599 int iavf_config_rss(struct iavf_adapter *adapter)
1600 {
1601 
1602 	if (RSS_PF(adapter)) {
1603 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1604 					IAVF_FLAG_AQ_SET_RSS_KEY;
1605 		return 0;
1606 	} else if (RSS_AQ(adapter)) {
1607 		return iavf_config_rss_aq(adapter);
1608 	} else {
1609 		return iavf_config_rss_reg(adapter);
1610 	}
1611 }
1612 
1613 /**
1614  * iavf_fill_rss_lut - Fill the lut with default values
1615  * @adapter: board private structure
1616  **/
1617 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1618 {
1619 	u16 i;
1620 
1621 	for (i = 0; i < adapter->rss_lut_size; i++)
1622 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1623 }
1624 
1625 /**
1626  * iavf_init_rss - Prepare for RSS
1627  * @adapter: board private structure
1628  *
1629  * Return 0 on success, negative on failure
1630  **/
1631 static int iavf_init_rss(struct iavf_adapter *adapter)
1632 {
1633 	struct iavf_hw *hw = &adapter->hw;
1634 
1635 	if (!RSS_PF(adapter)) {
1636 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1637 		if (adapter->vf_res->vf_cap_flags &
1638 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1639 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1640 		else
1641 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1642 
1643 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1644 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1645 	}
1646 
1647 	iavf_fill_rss_lut(adapter);
1648 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1649 
1650 	return iavf_config_rss(adapter);
1651 }
1652 
1653 /**
1654  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1655  * @adapter: board private structure to initialize
1656  *
1657  * We allocate one q_vector per queue interrupt.  If allocation fails we
1658  * return -ENOMEM.
1659  **/
1660 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1661 {
1662 	int q_idx = 0, num_q_vectors;
1663 	struct iavf_q_vector *q_vector;
1664 
1665 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1666 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1667 				     GFP_KERNEL);
1668 	if (!adapter->q_vectors)
1669 		return -ENOMEM;
1670 
1671 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1672 		q_vector = &adapter->q_vectors[q_idx];
1673 		q_vector->adapter = adapter;
1674 		q_vector->vsi = &adapter->vsi;
1675 		q_vector->v_idx = q_idx;
1676 		q_vector->reg_idx = q_idx;
1677 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1678 		netif_napi_add(adapter->netdev, &q_vector->napi,
1679 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1687  * @adapter: board private structure to initialize
1688  *
1689  * This function frees the memory allocated to the q_vectors.  In addition if
1690  * NAPI is enabled it will delete any references to the NAPI struct prior
1691  * to freeing the q_vector.
1692  **/
1693 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1694 {
1695 	int q_idx, num_q_vectors;
1696 	int napi_vectors;
1697 
1698 	if (!adapter->q_vectors)
1699 		return;
1700 
1701 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1702 	napi_vectors = adapter->num_active_queues;
1703 
1704 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1705 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1706 
1707 		if (q_idx < napi_vectors)
1708 			netif_napi_del(&q_vector->napi);
1709 	}
1710 	kfree(adapter->q_vectors);
1711 	adapter->q_vectors = NULL;
1712 }
1713 
1714 /**
1715  * iavf_reset_interrupt_capability - Reset MSIX setup
1716  * @adapter: board private structure
1717  *
1718  **/
1719 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1720 {
1721 	if (!adapter->msix_entries)
1722 		return;
1723 
1724 	pci_disable_msix(adapter->pdev);
1725 	kfree(adapter->msix_entries);
1726 	adapter->msix_entries = NULL;
1727 }
1728 
1729 /**
1730  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1731  * @adapter: board private structure to initialize
1732  *
1733  **/
1734 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1735 {
1736 	int err;
1737 
1738 	err = iavf_alloc_queues(adapter);
1739 	if (err) {
1740 		dev_err(&adapter->pdev->dev,
1741 			"Unable to allocate memory for queues\n");
1742 		goto err_alloc_queues;
1743 	}
1744 
1745 	rtnl_lock();
1746 	err = iavf_set_interrupt_capability(adapter);
1747 	rtnl_unlock();
1748 	if (err) {
1749 		dev_err(&adapter->pdev->dev,
1750 			"Unable to setup interrupt capabilities\n");
1751 		goto err_set_interrupt;
1752 	}
1753 
1754 	err = iavf_alloc_q_vectors(adapter);
1755 	if (err) {
1756 		dev_err(&adapter->pdev->dev,
1757 			"Unable to allocate memory for queue vectors\n");
1758 		goto err_alloc_q_vectors;
1759 	}
1760 
1761 	/* If we've made it so far while ADq flag being ON, then we haven't
1762 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1763 	 * resources have been allocated in the reset path.
1764 	 * Now we can truly claim that ADq is enabled.
1765 	 */
1766 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1767 	    adapter->num_tc)
1768 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1769 			 adapter->num_tc);
1770 
1771 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1772 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1773 		 adapter->num_active_queues);
1774 
1775 	return 0;
1776 err_alloc_q_vectors:
1777 	iavf_reset_interrupt_capability(adapter);
1778 err_set_interrupt:
1779 	iavf_free_queues(adapter);
1780 err_alloc_queues:
1781 	return err;
1782 }
1783 
1784 /**
1785  * iavf_free_rss - Free memory used by RSS structs
1786  * @adapter: board private structure
1787  **/
1788 static void iavf_free_rss(struct iavf_adapter *adapter)
1789 {
1790 	kfree(adapter->rss_key);
1791 	adapter->rss_key = NULL;
1792 
1793 	kfree(adapter->rss_lut);
1794 	adapter->rss_lut = NULL;
1795 }
1796 
1797 /**
1798  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1799  * @adapter: board private structure
1800  *
1801  * Returns 0 on success, negative on failure
1802  **/
1803 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1804 {
1805 	struct net_device *netdev = adapter->netdev;
1806 	int err;
1807 
1808 	if (netif_running(netdev))
1809 		iavf_free_traffic_irqs(adapter);
1810 	iavf_free_misc_irq(adapter);
1811 	iavf_reset_interrupt_capability(adapter);
1812 	iavf_free_q_vectors(adapter);
1813 	iavf_free_queues(adapter);
1814 
1815 	err =  iavf_init_interrupt_scheme(adapter);
1816 	if (err)
1817 		goto err;
1818 
1819 	netif_tx_stop_all_queues(netdev);
1820 
1821 	err = iavf_request_misc_irq(adapter);
1822 	if (err)
1823 		goto err;
1824 
1825 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1826 
1827 	iavf_map_rings_to_vectors(adapter);
1828 err:
1829 	return err;
1830 }
1831 
1832 /**
1833  * iavf_process_aq_command - process aq_required flags
1834  * and sends aq command
1835  * @adapter: pointer to iavf adapter structure
1836  *
1837  * Returns 0 on success
1838  * Returns error code if no command was sent
1839  * or error code if the command failed.
1840  **/
1841 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1842 {
1843 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1844 		return iavf_send_vf_config_msg(adapter);
1845 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1846 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1847 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1848 		iavf_disable_queues(adapter);
1849 		return 0;
1850 	}
1851 
1852 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1853 		iavf_map_queues(adapter);
1854 		return 0;
1855 	}
1856 
1857 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1858 		iavf_add_ether_addrs(adapter);
1859 		return 0;
1860 	}
1861 
1862 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1863 		iavf_add_vlans(adapter);
1864 		return 0;
1865 	}
1866 
1867 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1868 		iavf_del_ether_addrs(adapter);
1869 		return 0;
1870 	}
1871 
1872 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1873 		iavf_del_vlans(adapter);
1874 		return 0;
1875 	}
1876 
1877 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1878 		iavf_enable_vlan_stripping(adapter);
1879 		return 0;
1880 	}
1881 
1882 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1883 		iavf_disable_vlan_stripping(adapter);
1884 		return 0;
1885 	}
1886 
1887 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1888 		iavf_configure_queues(adapter);
1889 		return 0;
1890 	}
1891 
1892 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1893 		iavf_enable_queues(adapter);
1894 		return 0;
1895 	}
1896 
1897 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1898 		/* This message goes straight to the firmware, not the
1899 		 * PF, so we don't have to set current_op as we will
1900 		 * not get a response through the ARQ.
1901 		 */
1902 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1903 		return 0;
1904 	}
1905 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1906 		iavf_get_hena(adapter);
1907 		return 0;
1908 	}
1909 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1910 		iavf_set_hena(adapter);
1911 		return 0;
1912 	}
1913 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1914 		iavf_set_rss_key(adapter);
1915 		return 0;
1916 	}
1917 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1918 		iavf_set_rss_lut(adapter);
1919 		return 0;
1920 	}
1921 
1922 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1923 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1924 				       FLAG_VF_MULTICAST_PROMISC);
1925 		return 0;
1926 	}
1927 
1928 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1929 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1930 		return 0;
1931 	}
1932 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1933 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1934 		iavf_set_promiscuous(adapter, 0);
1935 		return 0;
1936 	}
1937 
1938 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1939 		iavf_enable_channels(adapter);
1940 		return 0;
1941 	}
1942 
1943 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1944 		iavf_disable_channels(adapter);
1945 		return 0;
1946 	}
1947 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1948 		iavf_add_cloud_filter(adapter);
1949 		return 0;
1950 	}
1951 
1952 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1953 		iavf_del_cloud_filter(adapter);
1954 		return 0;
1955 	}
1956 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1957 		iavf_del_cloud_filter(adapter);
1958 		return 0;
1959 	}
1960 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1961 		iavf_add_cloud_filter(adapter);
1962 		return 0;
1963 	}
1964 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1965 		iavf_add_fdir_filter(adapter);
1966 		return IAVF_SUCCESS;
1967 	}
1968 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1969 		iavf_del_fdir_filter(adapter);
1970 		return IAVF_SUCCESS;
1971 	}
1972 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1973 		iavf_add_adv_rss_cfg(adapter);
1974 		return 0;
1975 	}
1976 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1977 		iavf_del_adv_rss_cfg(adapter);
1978 		return 0;
1979 	}
1980 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1981 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1982 		return 0;
1983 	}
1984 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1985 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1986 		return 0;
1987 	}
1988 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1989 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1990 		return 0;
1991 	}
1992 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1993 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1994 		return 0;
1995 	}
1996 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1997 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1998 		return 0;
1999 	}
2000 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2001 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2002 		return 0;
2003 	}
2004 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2005 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2006 		return 0;
2007 	}
2008 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2009 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2010 		return 0;
2011 	}
2012 
2013 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2014 		iavf_request_stats(adapter);
2015 		return 0;
2016 	}
2017 
2018 	return -EAGAIN;
2019 }
2020 
2021 /**
2022  * iavf_set_vlan_offload_features - set VLAN offload configuration
2023  * @adapter: board private structure
2024  * @prev_features: previous features used for comparison
2025  * @features: updated features used for configuration
2026  *
2027  * Set the aq_required bit(s) based on the requested features passed in to
2028  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2029  * the watchdog if any changes are requested to expedite the request via
2030  * virtchnl.
2031  **/
2032 void
2033 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2034 			       netdev_features_t prev_features,
2035 			       netdev_features_t features)
2036 {
2037 	bool enable_stripping = true, enable_insertion = true;
2038 	u16 vlan_ethertype = 0;
2039 	u64 aq_required = 0;
2040 
2041 	/* keep cases separate because one ethertype for offloads can be
2042 	 * disabled at the same time as another is disabled, so check for an
2043 	 * enabled ethertype first, then check for disabled. Default to
2044 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2045 	 * stripping.
2046 	 */
2047 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2048 		vlan_ethertype = ETH_P_8021AD;
2049 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2050 		vlan_ethertype = ETH_P_8021Q;
2051 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2052 		vlan_ethertype = ETH_P_8021AD;
2053 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2054 		vlan_ethertype = ETH_P_8021Q;
2055 	else
2056 		vlan_ethertype = ETH_P_8021Q;
2057 
2058 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2059 		enable_stripping = false;
2060 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2061 		enable_insertion = false;
2062 
2063 	if (VLAN_ALLOWED(adapter)) {
2064 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2065 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2066 		 * netdev, but it doesn't require a virtchnl message
2067 		 */
2068 		if (enable_stripping)
2069 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2070 		else
2071 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2072 
2073 	} else if (VLAN_V2_ALLOWED(adapter)) {
2074 		switch (vlan_ethertype) {
2075 		case ETH_P_8021Q:
2076 			if (enable_stripping)
2077 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2078 			else
2079 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2080 
2081 			if (enable_insertion)
2082 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2083 			else
2084 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2085 			break;
2086 		case ETH_P_8021AD:
2087 			if (enable_stripping)
2088 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2089 			else
2090 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2091 
2092 			if (enable_insertion)
2093 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2094 			else
2095 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2096 			break;
2097 		}
2098 	}
2099 
2100 	if (aq_required) {
2101 		adapter->aq_required |= aq_required;
2102 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2103 	}
2104 }
2105 
2106 /**
2107  * iavf_startup - first step of driver startup
2108  * @adapter: board private structure
2109  *
2110  * Function process __IAVF_STARTUP driver state.
2111  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2112  * when fails the state is changed to __IAVF_INIT_FAILED
2113  **/
2114 static void iavf_startup(struct iavf_adapter *adapter)
2115 {
2116 	struct pci_dev *pdev = adapter->pdev;
2117 	struct iavf_hw *hw = &adapter->hw;
2118 	enum iavf_status status;
2119 	int ret;
2120 
2121 	WARN_ON(adapter->state != __IAVF_STARTUP);
2122 
2123 	/* driver loaded, probe complete */
2124 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2125 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2126 	status = iavf_set_mac_type(hw);
2127 	if (status) {
2128 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2129 		goto err;
2130 	}
2131 
2132 	ret = iavf_check_reset_complete(hw);
2133 	if (ret) {
2134 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2135 			 ret);
2136 		goto err;
2137 	}
2138 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2139 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2140 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2141 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2142 
2143 	status = iavf_init_adminq(hw);
2144 	if (status) {
2145 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2146 			status);
2147 		goto err;
2148 	}
2149 	ret = iavf_send_api_ver(adapter);
2150 	if (ret) {
2151 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2152 		iavf_shutdown_adminq(hw);
2153 		goto err;
2154 	}
2155 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2156 	return;
2157 err:
2158 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2159 }
2160 
2161 /**
2162  * iavf_init_version_check - second step of driver startup
2163  * @adapter: board private structure
2164  *
2165  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2166  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2167  * when fails the state is changed to __IAVF_INIT_FAILED
2168  **/
2169 static void iavf_init_version_check(struct iavf_adapter *adapter)
2170 {
2171 	struct pci_dev *pdev = adapter->pdev;
2172 	struct iavf_hw *hw = &adapter->hw;
2173 	int err = -EAGAIN;
2174 
2175 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2176 
2177 	if (!iavf_asq_done(hw)) {
2178 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2179 		iavf_shutdown_adminq(hw);
2180 		iavf_change_state(adapter, __IAVF_STARTUP);
2181 		goto err;
2182 	}
2183 
2184 	/* aq msg sent, awaiting reply */
2185 	err = iavf_verify_api_ver(adapter);
2186 	if (err) {
2187 		if (err == -EALREADY)
2188 			err = iavf_send_api_ver(adapter);
2189 		else
2190 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2191 				adapter->pf_version.major,
2192 				adapter->pf_version.minor,
2193 				VIRTCHNL_VERSION_MAJOR,
2194 				VIRTCHNL_VERSION_MINOR);
2195 		goto err;
2196 	}
2197 	err = iavf_send_vf_config_msg(adapter);
2198 	if (err) {
2199 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2200 			err);
2201 		goto err;
2202 	}
2203 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2204 	return;
2205 err:
2206 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2207 }
2208 
2209 /**
2210  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2211  * @adapter: board private structure
2212  */
2213 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2214 {
2215 	int i, num_req_queues = adapter->num_req_queues;
2216 	struct iavf_vsi *vsi = &adapter->vsi;
2217 
2218 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2219 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2220 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2221 	}
2222 	if (!adapter->vsi_res) {
2223 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2224 		return -ENODEV;
2225 	}
2226 
2227 	if (num_req_queues &&
2228 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2229 		/* Problem.  The PF gave us fewer queues than what we had
2230 		 * negotiated in our request.  Need a reset to see if we can't
2231 		 * get back to a working state.
2232 		 */
2233 		dev_err(&adapter->pdev->dev,
2234 			"Requested %d queues, but PF only gave us %d.\n",
2235 			num_req_queues,
2236 			adapter->vsi_res->num_queue_pairs);
2237 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
2238 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2239 		iavf_schedule_reset(adapter);
2240 
2241 		return -EAGAIN;
2242 	}
2243 	adapter->num_req_queues = 0;
2244 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2245 
2246 	adapter->vsi.back = adapter;
2247 	adapter->vsi.base_vector = 1;
2248 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
2249 	vsi->netdev = adapter->netdev;
2250 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2251 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2252 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2253 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2254 	} else {
2255 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2256 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 /**
2263  * iavf_init_get_resources - third step of driver startup
2264  * @adapter: board private structure
2265  *
2266  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2267  * finishes driver initialization procedure.
2268  * When success the state is changed to __IAVF_DOWN
2269  * when fails the state is changed to __IAVF_INIT_FAILED
2270  **/
2271 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2272 {
2273 	struct pci_dev *pdev = adapter->pdev;
2274 	struct iavf_hw *hw = &adapter->hw;
2275 	int err;
2276 
2277 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2278 	/* aq msg sent, awaiting reply */
2279 	if (!adapter->vf_res) {
2280 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2281 					  GFP_KERNEL);
2282 		if (!adapter->vf_res) {
2283 			err = -ENOMEM;
2284 			goto err;
2285 		}
2286 	}
2287 	err = iavf_get_vf_config(adapter);
2288 	if (err == -EALREADY) {
2289 		err = iavf_send_vf_config_msg(adapter);
2290 		goto err_alloc;
2291 	} else if (err == -EINVAL) {
2292 		/* We only get -EINVAL if the device is in a very bad
2293 		 * state or if we've been disabled for previous bad
2294 		 * behavior. Either way, we're done now.
2295 		 */
2296 		iavf_shutdown_adminq(hw);
2297 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2298 		return;
2299 	}
2300 	if (err) {
2301 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2302 		goto err_alloc;
2303 	}
2304 
2305 	err = iavf_parse_vf_resource_msg(adapter);
2306 	if (err) {
2307 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2308 			err);
2309 		goto err_alloc;
2310 	}
2311 	/* Some features require additional messages to negotiate extended
2312 	 * capabilities. These are processed in sequence by the
2313 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2314 	 */
2315 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2316 
2317 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2318 	return;
2319 
2320 err_alloc:
2321 	kfree(adapter->vf_res);
2322 	adapter->vf_res = NULL;
2323 err:
2324 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2325 }
2326 
2327 /**
2328  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2329  * @adapter: board private structure
2330  *
2331  * Function processes send of the extended VLAN V2 capability message to the
2332  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2333  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2334  */
2335 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2336 {
2337 	int ret;
2338 
2339 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2340 
2341 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2342 	if (ret && ret == -EOPNOTSUPP) {
2343 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2344 		 * we did not send the capability exchange message and do not
2345 		 * expect a response.
2346 		 */
2347 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2348 	}
2349 
2350 	/* We sent the message, so move on to the next step */
2351 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2352 }
2353 
2354 /**
2355  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2356  * @adapter: board private structure
2357  *
2358  * Function processes receipt of the extended VLAN V2 capability message from
2359  * the PF.
2360  **/
2361 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2362 {
2363 	int ret;
2364 
2365 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2366 
2367 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2368 
2369 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2370 	if (ret)
2371 		goto err;
2372 
2373 	/* We've processed receipt of the VLAN V2 caps message */
2374 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2375 	return;
2376 err:
2377 	/* We didn't receive a reply. Make sure we try sending again when
2378 	 * __IAVF_INIT_FAILED attempts to recover.
2379 	 */
2380 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2381 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2382 }
2383 
2384 /**
2385  * iavf_init_process_extended_caps - Part of driver startup
2386  * @adapter: board private structure
2387  *
2388  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2389  * handles negotiating capabilities for features which require an additional
2390  * message.
2391  *
2392  * Once all extended capabilities exchanges are finished, the driver will
2393  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2394  */
2395 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2396 {
2397 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2398 
2399 	/* Process capability exchange for VLAN V2 */
2400 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2401 		iavf_init_send_offload_vlan_v2_caps(adapter);
2402 		return;
2403 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2404 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2405 		return;
2406 	}
2407 
2408 	/* When we reach here, no further extended capabilities exchanges are
2409 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2410 	 */
2411 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2412 }
2413 
2414 /**
2415  * iavf_init_config_adapter - last part of driver startup
2416  * @adapter: board private structure
2417  *
2418  * After all the supported capabilities are negotiated, then the
2419  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2420  */
2421 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2422 {
2423 	struct net_device *netdev = adapter->netdev;
2424 	struct pci_dev *pdev = adapter->pdev;
2425 	int err;
2426 
2427 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2428 
2429 	if (iavf_process_config(adapter))
2430 		goto err;
2431 
2432 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2433 
2434 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2435 
2436 	netdev->netdev_ops = &iavf_netdev_ops;
2437 	iavf_set_ethtool_ops(netdev);
2438 	netdev->watchdog_timeo = 5 * HZ;
2439 
2440 	/* MTU range: 68 - 9710 */
2441 	netdev->min_mtu = ETH_MIN_MTU;
2442 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2443 
2444 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2445 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2446 			 adapter->hw.mac.addr);
2447 		eth_hw_addr_random(netdev);
2448 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2449 	} else {
2450 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2451 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2452 	}
2453 
2454 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2455 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2456 	err = iavf_init_interrupt_scheme(adapter);
2457 	if (err)
2458 		goto err_sw_init;
2459 	iavf_map_rings_to_vectors(adapter);
2460 	if (adapter->vf_res->vf_cap_flags &
2461 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2462 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2463 
2464 	err = iavf_request_misc_irq(adapter);
2465 	if (err)
2466 		goto err_sw_init;
2467 
2468 	netif_carrier_off(netdev);
2469 	adapter->link_up = false;
2470 
2471 	/* set the semaphore to prevent any callbacks after device registration
2472 	 * up to time when state of driver will be set to __IAVF_DOWN
2473 	 */
2474 	rtnl_lock();
2475 	if (!adapter->netdev_registered) {
2476 		err = register_netdevice(netdev);
2477 		if (err) {
2478 			rtnl_unlock();
2479 			goto err_register;
2480 		}
2481 	}
2482 
2483 	adapter->netdev_registered = true;
2484 
2485 	netif_tx_stop_all_queues(netdev);
2486 	if (CLIENT_ALLOWED(adapter)) {
2487 		err = iavf_lan_add_device(adapter);
2488 		if (err)
2489 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2490 				 err);
2491 	}
2492 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2493 	if (netdev->features & NETIF_F_GRO)
2494 		dev_info(&pdev->dev, "GRO is enabled\n");
2495 
2496 	iavf_change_state(adapter, __IAVF_DOWN);
2497 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2498 	rtnl_unlock();
2499 
2500 	iavf_misc_irq_enable(adapter);
2501 	wake_up(&adapter->down_waitqueue);
2502 
2503 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2504 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2505 	if (!adapter->rss_key || !adapter->rss_lut) {
2506 		err = -ENOMEM;
2507 		goto err_mem;
2508 	}
2509 	if (RSS_AQ(adapter))
2510 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2511 	else
2512 		iavf_init_rss(adapter);
2513 
2514 	if (VLAN_V2_ALLOWED(adapter))
2515 		/* request initial VLAN offload settings */
2516 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2517 
2518 	return;
2519 err_mem:
2520 	iavf_free_rss(adapter);
2521 err_register:
2522 	iavf_free_misc_irq(adapter);
2523 err_sw_init:
2524 	iavf_reset_interrupt_capability(adapter);
2525 err:
2526 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2527 }
2528 
2529 /**
2530  * iavf_watchdog_task - Periodic call-back task
2531  * @work: pointer to work_struct
2532  **/
2533 static void iavf_watchdog_task(struct work_struct *work)
2534 {
2535 	struct iavf_adapter *adapter = container_of(work,
2536 						    struct iavf_adapter,
2537 						    watchdog_task.work);
2538 	struct iavf_hw *hw = &adapter->hw;
2539 	u32 reg_val;
2540 
2541 	if (!mutex_trylock(&adapter->crit_lock)) {
2542 		if (adapter->state == __IAVF_REMOVE)
2543 			return;
2544 
2545 		goto restart_watchdog;
2546 	}
2547 
2548 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2549 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2550 
2551 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2552 		adapter->aq_required = 0;
2553 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2554 		mutex_unlock(&adapter->crit_lock);
2555 		queue_work(iavf_wq, &adapter->reset_task);
2556 		return;
2557 	}
2558 
2559 	switch (adapter->state) {
2560 	case __IAVF_STARTUP:
2561 		iavf_startup(adapter);
2562 		mutex_unlock(&adapter->crit_lock);
2563 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2564 				   msecs_to_jiffies(30));
2565 		return;
2566 	case __IAVF_INIT_VERSION_CHECK:
2567 		iavf_init_version_check(adapter);
2568 		mutex_unlock(&adapter->crit_lock);
2569 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2570 				   msecs_to_jiffies(30));
2571 		return;
2572 	case __IAVF_INIT_GET_RESOURCES:
2573 		iavf_init_get_resources(adapter);
2574 		mutex_unlock(&adapter->crit_lock);
2575 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2576 				   msecs_to_jiffies(1));
2577 		return;
2578 	case __IAVF_INIT_EXTENDED_CAPS:
2579 		iavf_init_process_extended_caps(adapter);
2580 		mutex_unlock(&adapter->crit_lock);
2581 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2582 				   msecs_to_jiffies(1));
2583 		return;
2584 	case __IAVF_INIT_CONFIG_ADAPTER:
2585 		iavf_init_config_adapter(adapter);
2586 		mutex_unlock(&adapter->crit_lock);
2587 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2588 				   msecs_to_jiffies(1));
2589 		return;
2590 	case __IAVF_INIT_FAILED:
2591 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2592 			     &adapter->crit_section)) {
2593 			/* Do not update the state and do not reschedule
2594 			 * watchdog task, iavf_remove should handle this state
2595 			 * as it can loop forever
2596 			 */
2597 			mutex_unlock(&adapter->crit_lock);
2598 			return;
2599 		}
2600 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2601 			dev_err(&adapter->pdev->dev,
2602 				"Failed to communicate with PF; waiting before retry\n");
2603 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2604 			iavf_shutdown_adminq(hw);
2605 			mutex_unlock(&adapter->crit_lock);
2606 			queue_delayed_work(iavf_wq,
2607 					   &adapter->watchdog_task, (5 * HZ));
2608 			return;
2609 		}
2610 		/* Try again from failed step*/
2611 		iavf_change_state(adapter, adapter->last_state);
2612 		mutex_unlock(&adapter->crit_lock);
2613 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2614 		return;
2615 	case __IAVF_COMM_FAILED:
2616 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2617 			     &adapter->crit_section)) {
2618 			/* Set state to __IAVF_INIT_FAILED and perform remove
2619 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2620 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2621 			 */
2622 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2623 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2624 			mutex_unlock(&adapter->crit_lock);
2625 			return;
2626 		}
2627 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2628 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2629 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2630 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2631 			/* A chance for redemption! */
2632 			dev_err(&adapter->pdev->dev,
2633 				"Hardware came out of reset. Attempting reinit.\n");
2634 			/* When init task contacts the PF and
2635 			 * gets everything set up again, it'll restart the
2636 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2637 			 */
2638 			iavf_change_state(adapter, __IAVF_STARTUP);
2639 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2640 		}
2641 		adapter->aq_required = 0;
2642 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2643 		mutex_unlock(&adapter->crit_lock);
2644 		queue_delayed_work(iavf_wq,
2645 				   &adapter->watchdog_task,
2646 				   msecs_to_jiffies(10));
2647 		return;
2648 	case __IAVF_RESETTING:
2649 		mutex_unlock(&adapter->crit_lock);
2650 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2651 		return;
2652 	case __IAVF_DOWN:
2653 	case __IAVF_DOWN_PENDING:
2654 	case __IAVF_TESTING:
2655 	case __IAVF_RUNNING:
2656 		if (adapter->current_op) {
2657 			if (!iavf_asq_done(hw)) {
2658 				dev_dbg(&adapter->pdev->dev,
2659 					"Admin queue timeout\n");
2660 				iavf_send_api_ver(adapter);
2661 			}
2662 		} else {
2663 			int ret = iavf_process_aq_command(adapter);
2664 
2665 			/* An error will be returned if no commands were
2666 			 * processed; use this opportunity to update stats
2667 			 * if the error isn't -ENOTSUPP
2668 			 */
2669 			if (ret && ret != -EOPNOTSUPP &&
2670 			    adapter->state == __IAVF_RUNNING)
2671 				iavf_request_stats(adapter);
2672 		}
2673 		if (adapter->state == __IAVF_RUNNING)
2674 			iavf_detect_recover_hung(&adapter->vsi);
2675 		break;
2676 	case __IAVF_REMOVE:
2677 	default:
2678 		mutex_unlock(&adapter->crit_lock);
2679 		return;
2680 	}
2681 
2682 	/* check for hw reset */
2683 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2684 	if (!reg_val) {
2685 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2686 		adapter->aq_required = 0;
2687 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2688 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2689 		queue_work(iavf_wq, &adapter->reset_task);
2690 		mutex_unlock(&adapter->crit_lock);
2691 		queue_delayed_work(iavf_wq,
2692 				   &adapter->watchdog_task, HZ * 2);
2693 		return;
2694 	}
2695 
2696 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2697 	mutex_unlock(&adapter->crit_lock);
2698 restart_watchdog:
2699 	if (adapter->state >= __IAVF_DOWN)
2700 		queue_work(iavf_wq, &adapter->adminq_task);
2701 	if (adapter->aq_required)
2702 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2703 				   msecs_to_jiffies(20));
2704 	else
2705 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2706 }
2707 
2708 static void iavf_disable_vf(struct iavf_adapter *adapter)
2709 {
2710 	struct iavf_mac_filter *f, *ftmp;
2711 	struct iavf_vlan_filter *fv, *fvtmp;
2712 	struct iavf_cloud_filter *cf, *cftmp;
2713 
2714 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2715 
2716 	/* We don't use netif_running() because it may be true prior to
2717 	 * ndo_open() returning, so we can't assume it means all our open
2718 	 * tasks have finished, since we're not holding the rtnl_lock here.
2719 	 */
2720 	if (adapter->state == __IAVF_RUNNING) {
2721 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2722 		netif_carrier_off(adapter->netdev);
2723 		netif_tx_disable(adapter->netdev);
2724 		adapter->link_up = false;
2725 		iavf_napi_disable_all(adapter);
2726 		iavf_irq_disable(adapter);
2727 		iavf_free_traffic_irqs(adapter);
2728 		iavf_free_all_tx_resources(adapter);
2729 		iavf_free_all_rx_resources(adapter);
2730 	}
2731 
2732 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2733 
2734 	/* Delete all of the filters */
2735 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2736 		list_del(&f->list);
2737 		kfree(f);
2738 	}
2739 
2740 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2741 		list_del(&fv->list);
2742 		kfree(fv);
2743 	}
2744 
2745 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2746 
2747 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2748 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2749 		list_del(&cf->list);
2750 		kfree(cf);
2751 		adapter->num_cloud_filters--;
2752 	}
2753 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2754 
2755 	iavf_free_misc_irq(adapter);
2756 	iavf_reset_interrupt_capability(adapter);
2757 	iavf_free_q_vectors(adapter);
2758 	iavf_free_queues(adapter);
2759 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2760 	iavf_shutdown_adminq(&adapter->hw);
2761 	adapter->netdev->flags &= ~IFF_UP;
2762 	mutex_unlock(&adapter->crit_lock);
2763 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2764 	iavf_change_state(adapter, __IAVF_DOWN);
2765 	wake_up(&adapter->down_waitqueue);
2766 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2767 }
2768 
2769 /**
2770  * iavf_reset_task - Call-back task to handle hardware reset
2771  * @work: pointer to work_struct
2772  *
2773  * During reset we need to shut down and reinitialize the admin queue
2774  * before we can use it to communicate with the PF again. We also clear
2775  * and reinit the rings because that context is lost as well.
2776  **/
2777 static void iavf_reset_task(struct work_struct *work)
2778 {
2779 	struct iavf_adapter *adapter = container_of(work,
2780 						      struct iavf_adapter,
2781 						      reset_task);
2782 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2783 	struct net_device *netdev = adapter->netdev;
2784 	struct iavf_hw *hw = &adapter->hw;
2785 	struct iavf_mac_filter *f, *ftmp;
2786 	struct iavf_cloud_filter *cf;
2787 	enum iavf_status status;
2788 	u32 reg_val;
2789 	int i = 0, err;
2790 	bool running;
2791 
2792 	/* When device is being removed it doesn't make sense to run the reset
2793 	 * task, just return in such a case.
2794 	 */
2795 	if (!mutex_trylock(&adapter->crit_lock)) {
2796 		if (adapter->state != __IAVF_REMOVE)
2797 			queue_work(iavf_wq, &adapter->reset_task);
2798 
2799 		return;
2800 	}
2801 
2802 	while (!mutex_trylock(&adapter->client_lock))
2803 		usleep_range(500, 1000);
2804 	if (CLIENT_ENABLED(adapter)) {
2805 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2806 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2807 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2808 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2809 		cancel_delayed_work_sync(&adapter->client_task);
2810 		iavf_notify_client_close(&adapter->vsi, true);
2811 	}
2812 	iavf_misc_irq_disable(adapter);
2813 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2814 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2815 		/* Restart the AQ here. If we have been reset but didn't
2816 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2817 		 */
2818 		iavf_shutdown_adminq(hw);
2819 		iavf_init_adminq(hw);
2820 		iavf_request_reset(adapter);
2821 	}
2822 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2823 
2824 	/* poll until we see the reset actually happen */
2825 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2826 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2827 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2828 		if (!reg_val)
2829 			break;
2830 		usleep_range(5000, 10000);
2831 	}
2832 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2833 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2834 		goto continue_reset; /* act like the reset happened */
2835 	}
2836 
2837 	/* wait until the reset is complete and the PF is responding to us */
2838 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2839 		/* sleep first to make sure a minimum wait time is met */
2840 		msleep(IAVF_RESET_WAIT_MS);
2841 
2842 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2843 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2844 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2845 			break;
2846 	}
2847 
2848 	pci_set_master(adapter->pdev);
2849 	pci_restore_msi_state(adapter->pdev);
2850 
2851 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2852 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2853 			reg_val);
2854 		iavf_disable_vf(adapter);
2855 		mutex_unlock(&adapter->client_lock);
2856 		mutex_unlock(&adapter->crit_lock);
2857 		return; /* Do not attempt to reinit. It's dead, Jim. */
2858 	}
2859 
2860 continue_reset:
2861 	/* We don't use netif_running() because it may be true prior to
2862 	 * ndo_open() returning, so we can't assume it means all our open
2863 	 * tasks have finished, since we're not holding the rtnl_lock here.
2864 	 */
2865 	running = adapter->state == __IAVF_RUNNING;
2866 
2867 	if (running) {
2868 		netdev->flags &= ~IFF_UP;
2869 		netif_carrier_off(netdev);
2870 		netif_tx_stop_all_queues(netdev);
2871 		adapter->link_up = false;
2872 		iavf_napi_disable_all(adapter);
2873 	}
2874 	iavf_irq_disable(adapter);
2875 
2876 	iavf_change_state(adapter, __IAVF_RESETTING);
2877 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2878 
2879 	/* free the Tx/Rx rings and descriptors, might be better to just
2880 	 * re-use them sometime in the future
2881 	 */
2882 	iavf_free_all_rx_resources(adapter);
2883 	iavf_free_all_tx_resources(adapter);
2884 
2885 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2886 	/* kill and reinit the admin queue */
2887 	iavf_shutdown_adminq(hw);
2888 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2889 	status = iavf_init_adminq(hw);
2890 	if (status) {
2891 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2892 			 status);
2893 		goto reset_err;
2894 	}
2895 	adapter->aq_required = 0;
2896 
2897 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2898 		err = iavf_reinit_interrupt_scheme(adapter);
2899 		if (err)
2900 			goto reset_err;
2901 	}
2902 
2903 	if (RSS_AQ(adapter)) {
2904 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2905 	} else {
2906 		err = iavf_init_rss(adapter);
2907 		if (err)
2908 			goto reset_err;
2909 	}
2910 
2911 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2912 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2913 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2914 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2915 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2916 	 * been successfully sent and negotiated
2917 	 */
2918 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2919 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2920 
2921 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2922 
2923 	/* Delete filter for the current MAC address, it could have
2924 	 * been changed by the PF via administratively set MAC.
2925 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2926 	 */
2927 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2929 			list_del(&f->list);
2930 			kfree(f);
2931 		}
2932 	}
2933 	/* re-add all MAC filters */
2934 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2935 		f->add = true;
2936 	}
2937 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2938 
2939 	/* check if TCs are running and re-add all cloud filters */
2940 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2941 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2942 	    adapter->num_tc) {
2943 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2944 			cf->add = true;
2945 		}
2946 	}
2947 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2948 
2949 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2950 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2951 	iavf_misc_irq_enable(adapter);
2952 
2953 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2954 
2955 	/* We were running when the reset started, so we need to restore some
2956 	 * state here.
2957 	 */
2958 	if (running) {
2959 		/* allocate transmit descriptors */
2960 		err = iavf_setup_all_tx_resources(adapter);
2961 		if (err)
2962 			goto reset_err;
2963 
2964 		/* allocate receive descriptors */
2965 		err = iavf_setup_all_rx_resources(adapter);
2966 		if (err)
2967 			goto reset_err;
2968 
2969 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2970 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2971 			if (err)
2972 				goto reset_err;
2973 
2974 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2975 		}
2976 
2977 		iavf_configure(adapter);
2978 
2979 		/* iavf_up_complete() will switch device back
2980 		 * to __IAVF_RUNNING
2981 		 */
2982 		iavf_up_complete(adapter);
2983 		netdev->flags |= IFF_UP;
2984 		iavf_irq_enable(adapter, true);
2985 	} else {
2986 		iavf_change_state(adapter, __IAVF_DOWN);
2987 		wake_up(&adapter->down_waitqueue);
2988 	}
2989 	mutex_unlock(&adapter->client_lock);
2990 	mutex_unlock(&adapter->crit_lock);
2991 
2992 	return;
2993 reset_err:
2994 	mutex_unlock(&adapter->client_lock);
2995 	mutex_unlock(&adapter->crit_lock);
2996 	if (running) {
2997 		iavf_change_state(adapter, __IAVF_RUNNING);
2998 		netdev->flags |= IFF_UP;
2999 	}
3000 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3001 	iavf_close(netdev);
3002 }
3003 
3004 /**
3005  * iavf_adminq_task - worker thread to clean the admin queue
3006  * @work: pointer to work_struct containing our data
3007  **/
3008 static void iavf_adminq_task(struct work_struct *work)
3009 {
3010 	struct iavf_adapter *adapter =
3011 		container_of(work, struct iavf_adapter, adminq_task);
3012 	struct iavf_hw *hw = &adapter->hw;
3013 	struct iavf_arq_event_info event;
3014 	enum virtchnl_ops v_op;
3015 	enum iavf_status ret, v_ret;
3016 	u32 val, oldval;
3017 	u16 pending;
3018 
3019 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3020 		goto out;
3021 
3022 	if (!mutex_trylock(&adapter->crit_lock)) {
3023 		if (adapter->state == __IAVF_REMOVE)
3024 			return;
3025 
3026 		queue_work(iavf_wq, &adapter->adminq_task);
3027 		goto out;
3028 	}
3029 
3030 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3031 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3032 	if (!event.msg_buf)
3033 		goto out;
3034 
3035 	do {
3036 		ret = iavf_clean_arq_element(hw, &event, &pending);
3037 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3038 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3039 
3040 		if (ret || !v_op)
3041 			break; /* No event to process or error cleaning ARQ */
3042 
3043 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3044 					 event.msg_len);
3045 		if (pending != 0)
3046 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3047 	} while (pending);
3048 	mutex_unlock(&adapter->crit_lock);
3049 
3050 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3051 		if (adapter->netdev_registered ||
3052 		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3053 			struct net_device *netdev = adapter->netdev;
3054 
3055 			rtnl_lock();
3056 			netdev_update_features(netdev);
3057 			rtnl_unlock();
3058 			/* Request VLAN offload settings */
3059 			if (VLAN_V2_ALLOWED(adapter))
3060 				iavf_set_vlan_offload_features
3061 					(adapter, 0, netdev->features);
3062 
3063 			iavf_set_queue_vlan_tag_loc(adapter);
3064 		}
3065 
3066 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3067 	}
3068 	if ((adapter->flags &
3069 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3070 	    adapter->state == __IAVF_RESETTING)
3071 		goto freedom;
3072 
3073 	/* check for error indications */
3074 	val = rd32(hw, hw->aq.arq.len);
3075 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3076 		goto freedom;
3077 	oldval = val;
3078 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3079 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3080 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3081 	}
3082 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3083 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3084 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3085 	}
3086 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3087 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3088 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3089 	}
3090 	if (oldval != val)
3091 		wr32(hw, hw->aq.arq.len, val);
3092 
3093 	val = rd32(hw, hw->aq.asq.len);
3094 	oldval = val;
3095 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3096 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3097 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3098 	}
3099 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3100 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3101 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3102 	}
3103 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3104 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3105 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3106 	}
3107 	if (oldval != val)
3108 		wr32(hw, hw->aq.asq.len, val);
3109 
3110 freedom:
3111 	kfree(event.msg_buf);
3112 out:
3113 	/* re-enable Admin queue interrupt cause */
3114 	iavf_misc_irq_enable(adapter);
3115 }
3116 
3117 /**
3118  * iavf_client_task - worker thread to perform client work
3119  * @work: pointer to work_struct containing our data
3120  *
3121  * This task handles client interactions. Because client calls can be
3122  * reentrant, we can't handle them in the watchdog.
3123  **/
3124 static void iavf_client_task(struct work_struct *work)
3125 {
3126 	struct iavf_adapter *adapter =
3127 		container_of(work, struct iavf_adapter, client_task.work);
3128 
3129 	/* If we can't get the client bit, just give up. We'll be rescheduled
3130 	 * later.
3131 	 */
3132 
3133 	if (!mutex_trylock(&adapter->client_lock))
3134 		return;
3135 
3136 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3137 		iavf_client_subtask(adapter);
3138 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3139 		goto out;
3140 	}
3141 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3142 		iavf_notify_client_l2_params(&adapter->vsi);
3143 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3144 		goto out;
3145 	}
3146 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3147 		iavf_notify_client_close(&adapter->vsi, false);
3148 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3149 		goto out;
3150 	}
3151 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3152 		iavf_notify_client_open(&adapter->vsi);
3153 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3154 	}
3155 out:
3156 	mutex_unlock(&adapter->client_lock);
3157 }
3158 
3159 /**
3160  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3161  * @adapter: board private structure
3162  *
3163  * Free all transmit software resources
3164  **/
3165 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3166 {
3167 	int i;
3168 
3169 	if (!adapter->tx_rings)
3170 		return;
3171 
3172 	for (i = 0; i < adapter->num_active_queues; i++)
3173 		if (adapter->tx_rings[i].desc)
3174 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3175 }
3176 
3177 /**
3178  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3179  * @adapter: board private structure
3180  *
3181  * If this function returns with an error, then it's possible one or
3182  * more of the rings is populated (while the rest are not).  It is the
3183  * callers duty to clean those orphaned rings.
3184  *
3185  * Return 0 on success, negative on failure
3186  **/
3187 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3188 {
3189 	int i, err = 0;
3190 
3191 	for (i = 0; i < adapter->num_active_queues; i++) {
3192 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3193 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3194 		if (!err)
3195 			continue;
3196 		dev_err(&adapter->pdev->dev,
3197 			"Allocation for Tx Queue %u failed\n", i);
3198 		break;
3199 	}
3200 
3201 	return err;
3202 }
3203 
3204 /**
3205  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3206  * @adapter: board private structure
3207  *
3208  * If this function returns with an error, then it's possible one or
3209  * more of the rings is populated (while the rest are not).  It is the
3210  * callers duty to clean those orphaned rings.
3211  *
3212  * Return 0 on success, negative on failure
3213  **/
3214 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3215 {
3216 	int i, err = 0;
3217 
3218 	for (i = 0; i < adapter->num_active_queues; i++) {
3219 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3220 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3221 		if (!err)
3222 			continue;
3223 		dev_err(&adapter->pdev->dev,
3224 			"Allocation for Rx Queue %u failed\n", i);
3225 		break;
3226 	}
3227 	return err;
3228 }
3229 
3230 /**
3231  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3232  * @adapter: board private structure
3233  *
3234  * Free all receive software resources
3235  **/
3236 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3237 {
3238 	int i;
3239 
3240 	if (!adapter->rx_rings)
3241 		return;
3242 
3243 	for (i = 0; i < adapter->num_active_queues; i++)
3244 		if (adapter->rx_rings[i].desc)
3245 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3246 }
3247 
3248 /**
3249  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3250  * @adapter: board private structure
3251  * @max_tx_rate: max Tx bw for a tc
3252  **/
3253 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3254 				      u64 max_tx_rate)
3255 {
3256 	int speed = 0, ret = 0;
3257 
3258 	if (ADV_LINK_SUPPORT(adapter)) {
3259 		if (adapter->link_speed_mbps < U32_MAX) {
3260 			speed = adapter->link_speed_mbps;
3261 			goto validate_bw;
3262 		} else {
3263 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3264 			return -EINVAL;
3265 		}
3266 	}
3267 
3268 	switch (adapter->link_speed) {
3269 	case VIRTCHNL_LINK_SPEED_40GB:
3270 		speed = SPEED_40000;
3271 		break;
3272 	case VIRTCHNL_LINK_SPEED_25GB:
3273 		speed = SPEED_25000;
3274 		break;
3275 	case VIRTCHNL_LINK_SPEED_20GB:
3276 		speed = SPEED_20000;
3277 		break;
3278 	case VIRTCHNL_LINK_SPEED_10GB:
3279 		speed = SPEED_10000;
3280 		break;
3281 	case VIRTCHNL_LINK_SPEED_5GB:
3282 		speed = SPEED_5000;
3283 		break;
3284 	case VIRTCHNL_LINK_SPEED_2_5GB:
3285 		speed = SPEED_2500;
3286 		break;
3287 	case VIRTCHNL_LINK_SPEED_1GB:
3288 		speed = SPEED_1000;
3289 		break;
3290 	case VIRTCHNL_LINK_SPEED_100MB:
3291 		speed = SPEED_100;
3292 		break;
3293 	default:
3294 		break;
3295 	}
3296 
3297 validate_bw:
3298 	if (max_tx_rate > speed) {
3299 		dev_err(&adapter->pdev->dev,
3300 			"Invalid tx rate specified\n");
3301 		ret = -EINVAL;
3302 	}
3303 
3304 	return ret;
3305 }
3306 
3307 /**
3308  * iavf_validate_ch_config - validate queue mapping info
3309  * @adapter: board private structure
3310  * @mqprio_qopt: queue parameters
3311  *
3312  * This function validates if the config provided by the user to
3313  * configure queue channels is valid or not. Returns 0 on a valid
3314  * config.
3315  **/
3316 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3317 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3318 {
3319 	u64 total_max_rate = 0;
3320 	int i, num_qps = 0;
3321 	u64 tx_rate = 0;
3322 	int ret = 0;
3323 
3324 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3325 	    mqprio_qopt->qopt.num_tc < 1)
3326 		return -EINVAL;
3327 
3328 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3329 		if (!mqprio_qopt->qopt.count[i] ||
3330 		    mqprio_qopt->qopt.offset[i] != num_qps)
3331 			return -EINVAL;
3332 		if (mqprio_qopt->min_rate[i]) {
3333 			dev_err(&adapter->pdev->dev,
3334 				"Invalid min tx rate (greater than 0) specified\n");
3335 			return -EINVAL;
3336 		}
3337 		/*convert to Mbps */
3338 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3339 				  IAVF_MBPS_DIVISOR);
3340 		total_max_rate += tx_rate;
3341 		num_qps += mqprio_qopt->qopt.count[i];
3342 	}
3343 	if (num_qps > adapter->num_active_queues) {
3344 		dev_err(&adapter->pdev->dev,
3345 			"Cannot support requested number of queues\n");
3346 		return -EINVAL;
3347 	}
3348 
3349 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3350 	return ret;
3351 }
3352 
3353 /**
3354  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3355  * @adapter: board private structure
3356  **/
3357 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3358 {
3359 	struct iavf_cloud_filter *cf, *cftmp;
3360 
3361 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3362 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3363 				 list) {
3364 		list_del(&cf->list);
3365 		kfree(cf);
3366 		adapter->num_cloud_filters--;
3367 	}
3368 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3369 }
3370 
3371 /**
3372  * __iavf_setup_tc - configure multiple traffic classes
3373  * @netdev: network interface device structure
3374  * @type_data: tc offload data
3375  *
3376  * This function processes the config information provided by the
3377  * user to configure traffic classes/queue channels and packages the
3378  * information to request the PF to setup traffic classes.
3379  *
3380  * Returns 0 on success.
3381  **/
3382 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3383 {
3384 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3385 	struct iavf_adapter *adapter = netdev_priv(netdev);
3386 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3387 	u8 num_tc = 0, total_qps = 0;
3388 	int ret = 0, netdev_tc = 0;
3389 	u64 max_tx_rate;
3390 	u16 mode;
3391 	int i;
3392 
3393 	num_tc = mqprio_qopt->qopt.num_tc;
3394 	mode = mqprio_qopt->mode;
3395 
3396 	/* delete queue_channel */
3397 	if (!mqprio_qopt->qopt.hw) {
3398 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3399 			/* reset the tc configuration */
3400 			netdev_reset_tc(netdev);
3401 			adapter->num_tc = 0;
3402 			netif_tx_stop_all_queues(netdev);
3403 			netif_tx_disable(netdev);
3404 			iavf_del_all_cloud_filters(adapter);
3405 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3406 			goto exit;
3407 		} else {
3408 			return -EINVAL;
3409 		}
3410 	}
3411 
3412 	/* add queue channel */
3413 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3414 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3415 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3416 			return -EOPNOTSUPP;
3417 		}
3418 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3419 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3420 			return -EINVAL;
3421 		}
3422 
3423 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3424 		if (ret)
3425 			return ret;
3426 		/* Return if same TC config is requested */
3427 		if (adapter->num_tc == num_tc)
3428 			return 0;
3429 		adapter->num_tc = num_tc;
3430 
3431 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3432 			if (i < num_tc) {
3433 				adapter->ch_config.ch_info[i].count =
3434 					mqprio_qopt->qopt.count[i];
3435 				adapter->ch_config.ch_info[i].offset =
3436 					mqprio_qopt->qopt.offset[i];
3437 				total_qps += mqprio_qopt->qopt.count[i];
3438 				max_tx_rate = mqprio_qopt->max_rate[i];
3439 				/* convert to Mbps */
3440 				max_tx_rate = div_u64(max_tx_rate,
3441 						      IAVF_MBPS_DIVISOR);
3442 				adapter->ch_config.ch_info[i].max_tx_rate =
3443 					max_tx_rate;
3444 			} else {
3445 				adapter->ch_config.ch_info[i].count = 1;
3446 				adapter->ch_config.ch_info[i].offset = 0;
3447 			}
3448 		}
3449 		adapter->ch_config.total_qps = total_qps;
3450 		netif_tx_stop_all_queues(netdev);
3451 		netif_tx_disable(netdev);
3452 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3453 		netdev_reset_tc(netdev);
3454 		/* Report the tc mapping up the stack */
3455 		netdev_set_num_tc(adapter->netdev, num_tc);
3456 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3457 			u16 qcount = mqprio_qopt->qopt.count[i];
3458 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3459 
3460 			if (i < num_tc)
3461 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3462 						    qoffset);
3463 		}
3464 	}
3465 exit:
3466 	return ret;
3467 }
3468 
3469 /**
3470  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3471  * @adapter: board private structure
3472  * @f: pointer to struct flow_cls_offload
3473  * @filter: pointer to cloud filter structure
3474  */
3475 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3476 				 struct flow_cls_offload *f,
3477 				 struct iavf_cloud_filter *filter)
3478 {
3479 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3480 	struct flow_dissector *dissector = rule->match.dissector;
3481 	u16 n_proto_mask = 0;
3482 	u16 n_proto_key = 0;
3483 	u8 field_flags = 0;
3484 	u16 addr_type = 0;
3485 	u16 n_proto = 0;
3486 	int i = 0;
3487 	struct virtchnl_filter *vf = &filter->f;
3488 
3489 	if (dissector->used_keys &
3490 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3491 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3492 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3493 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3494 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3495 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3496 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3497 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3498 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3499 			dissector->used_keys);
3500 		return -EOPNOTSUPP;
3501 	}
3502 
3503 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3504 		struct flow_match_enc_keyid match;
3505 
3506 		flow_rule_match_enc_keyid(rule, &match);
3507 		if (match.mask->keyid != 0)
3508 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3509 	}
3510 
3511 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3512 		struct flow_match_basic match;
3513 
3514 		flow_rule_match_basic(rule, &match);
3515 		n_proto_key = ntohs(match.key->n_proto);
3516 		n_proto_mask = ntohs(match.mask->n_proto);
3517 
3518 		if (n_proto_key == ETH_P_ALL) {
3519 			n_proto_key = 0;
3520 			n_proto_mask = 0;
3521 		}
3522 		n_proto = n_proto_key & n_proto_mask;
3523 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3524 			return -EINVAL;
3525 		if (n_proto == ETH_P_IPV6) {
3526 			/* specify flow type as TCP IPv6 */
3527 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3528 		}
3529 
3530 		if (match.key->ip_proto != IPPROTO_TCP) {
3531 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3532 			return -EINVAL;
3533 		}
3534 	}
3535 
3536 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3537 		struct flow_match_eth_addrs match;
3538 
3539 		flow_rule_match_eth_addrs(rule, &match);
3540 
3541 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3542 		if (!is_zero_ether_addr(match.mask->dst)) {
3543 			if (is_broadcast_ether_addr(match.mask->dst)) {
3544 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3545 			} else {
3546 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3547 					match.mask->dst);
3548 				return -EINVAL;
3549 			}
3550 		}
3551 
3552 		if (!is_zero_ether_addr(match.mask->src)) {
3553 			if (is_broadcast_ether_addr(match.mask->src)) {
3554 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3555 			} else {
3556 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3557 					match.mask->src);
3558 				return -EINVAL;
3559 			}
3560 		}
3561 
3562 		if (!is_zero_ether_addr(match.key->dst))
3563 			if (is_valid_ether_addr(match.key->dst) ||
3564 			    is_multicast_ether_addr(match.key->dst)) {
3565 				/* set the mask if a valid dst_mac address */
3566 				for (i = 0; i < ETH_ALEN; i++)
3567 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3568 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3569 						match.key->dst);
3570 			}
3571 
3572 		if (!is_zero_ether_addr(match.key->src))
3573 			if (is_valid_ether_addr(match.key->src) ||
3574 			    is_multicast_ether_addr(match.key->src)) {
3575 				/* set the mask if a valid dst_mac address */
3576 				for (i = 0; i < ETH_ALEN; i++)
3577 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3578 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3579 						match.key->src);
3580 		}
3581 	}
3582 
3583 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3584 		struct flow_match_vlan match;
3585 
3586 		flow_rule_match_vlan(rule, &match);
3587 		if (match.mask->vlan_id) {
3588 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3589 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3590 			} else {
3591 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3592 					match.mask->vlan_id);
3593 				return -EINVAL;
3594 			}
3595 		}
3596 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3597 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3598 	}
3599 
3600 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3601 		struct flow_match_control match;
3602 
3603 		flow_rule_match_control(rule, &match);
3604 		addr_type = match.key->addr_type;
3605 	}
3606 
3607 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3608 		struct flow_match_ipv4_addrs match;
3609 
3610 		flow_rule_match_ipv4_addrs(rule, &match);
3611 		if (match.mask->dst) {
3612 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3613 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3614 			} else {
3615 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3616 					be32_to_cpu(match.mask->dst));
3617 				return -EINVAL;
3618 			}
3619 		}
3620 
3621 		if (match.mask->src) {
3622 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3623 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3624 			} else {
3625 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3626 					be32_to_cpu(match.mask->dst));
3627 				return -EINVAL;
3628 			}
3629 		}
3630 
3631 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3632 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3633 			return -EINVAL;
3634 		}
3635 		if (match.key->dst) {
3636 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3637 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3638 		}
3639 		if (match.key->src) {
3640 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3641 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3642 		}
3643 	}
3644 
3645 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3646 		struct flow_match_ipv6_addrs match;
3647 
3648 		flow_rule_match_ipv6_addrs(rule, &match);
3649 
3650 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3651 		if (ipv6_addr_any(&match.mask->dst)) {
3652 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3653 				IPV6_ADDR_ANY);
3654 			return -EINVAL;
3655 		}
3656 
3657 		/* src and dest IPv6 address should not be LOOPBACK
3658 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3659 		 */
3660 		if (ipv6_addr_loopback(&match.key->dst) ||
3661 		    ipv6_addr_loopback(&match.key->src)) {
3662 			dev_err(&adapter->pdev->dev,
3663 				"ipv6 addr should not be loopback\n");
3664 			return -EINVAL;
3665 		}
3666 		if (!ipv6_addr_any(&match.mask->dst) ||
3667 		    !ipv6_addr_any(&match.mask->src))
3668 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3669 
3670 		for (i = 0; i < 4; i++)
3671 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3672 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3673 		       sizeof(vf->data.tcp_spec.dst_ip));
3674 		for (i = 0; i < 4; i++)
3675 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3676 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3677 		       sizeof(vf->data.tcp_spec.src_ip));
3678 	}
3679 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3680 		struct flow_match_ports match;
3681 
3682 		flow_rule_match_ports(rule, &match);
3683 		if (match.mask->src) {
3684 			if (match.mask->src == cpu_to_be16(0xffff)) {
3685 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3686 			} else {
3687 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3688 					be16_to_cpu(match.mask->src));
3689 				return -EINVAL;
3690 			}
3691 		}
3692 
3693 		if (match.mask->dst) {
3694 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3695 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3696 			} else {
3697 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3698 					be16_to_cpu(match.mask->dst));
3699 				return -EINVAL;
3700 			}
3701 		}
3702 		if (match.key->dst) {
3703 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3704 			vf->data.tcp_spec.dst_port = match.key->dst;
3705 		}
3706 
3707 		if (match.key->src) {
3708 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3709 			vf->data.tcp_spec.src_port = match.key->src;
3710 		}
3711 	}
3712 	vf->field_flags = field_flags;
3713 
3714 	return 0;
3715 }
3716 
3717 /**
3718  * iavf_handle_tclass - Forward to a traffic class on the device
3719  * @adapter: board private structure
3720  * @tc: traffic class index on the device
3721  * @filter: pointer to cloud filter structure
3722  */
3723 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3724 			      struct iavf_cloud_filter *filter)
3725 {
3726 	if (tc == 0)
3727 		return 0;
3728 	if (tc < adapter->num_tc) {
3729 		if (!filter->f.data.tcp_spec.dst_port) {
3730 			dev_err(&adapter->pdev->dev,
3731 				"Specify destination port to redirect to traffic class other than TC0\n");
3732 			return -EINVAL;
3733 		}
3734 	}
3735 	/* redirect to a traffic class on the same device */
3736 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3737 	filter->f.action_meta = tc;
3738 	return 0;
3739 }
3740 
3741 /**
3742  * iavf_configure_clsflower - Add tc flower filters
3743  * @adapter: board private structure
3744  * @cls_flower: Pointer to struct flow_cls_offload
3745  */
3746 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3747 				    struct flow_cls_offload *cls_flower)
3748 {
3749 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3750 	struct iavf_cloud_filter *filter = NULL;
3751 	int err = -EINVAL, count = 50;
3752 
3753 	if (tc < 0) {
3754 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3755 		return -EINVAL;
3756 	}
3757 
3758 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3759 	if (!filter)
3760 		return -ENOMEM;
3761 
3762 	while (!mutex_trylock(&adapter->crit_lock)) {
3763 		if (--count == 0) {
3764 			kfree(filter);
3765 			return err;
3766 		}
3767 		udelay(1);
3768 	}
3769 
3770 	filter->cookie = cls_flower->cookie;
3771 
3772 	/* set the mask to all zeroes to begin with */
3773 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3774 	/* start out with flow type and eth type IPv4 to begin with */
3775 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3776 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3777 	if (err)
3778 		goto err;
3779 
3780 	err = iavf_handle_tclass(adapter, tc, filter);
3781 	if (err)
3782 		goto err;
3783 
3784 	/* add filter to the list */
3785 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3786 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3787 	adapter->num_cloud_filters++;
3788 	filter->add = true;
3789 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3790 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3791 err:
3792 	if (err)
3793 		kfree(filter);
3794 
3795 	mutex_unlock(&adapter->crit_lock);
3796 	return err;
3797 }
3798 
3799 /* iavf_find_cf - Find the cloud filter in the list
3800  * @adapter: Board private structure
3801  * @cookie: filter specific cookie
3802  *
3803  * Returns ptr to the filter object or NULL. Must be called while holding the
3804  * cloud_filter_list_lock.
3805  */
3806 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3807 					      unsigned long *cookie)
3808 {
3809 	struct iavf_cloud_filter *filter = NULL;
3810 
3811 	if (!cookie)
3812 		return NULL;
3813 
3814 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3815 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3816 			return filter;
3817 	}
3818 	return NULL;
3819 }
3820 
3821 /**
3822  * iavf_delete_clsflower - Remove tc flower filters
3823  * @adapter: board private structure
3824  * @cls_flower: Pointer to struct flow_cls_offload
3825  */
3826 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3827 				 struct flow_cls_offload *cls_flower)
3828 {
3829 	struct iavf_cloud_filter *filter = NULL;
3830 	int err = 0;
3831 
3832 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3833 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3834 	if (filter) {
3835 		filter->del = true;
3836 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3837 	} else {
3838 		err = -EINVAL;
3839 	}
3840 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3841 
3842 	return err;
3843 }
3844 
3845 /**
3846  * iavf_setup_tc_cls_flower - flower classifier offloads
3847  * @adapter: board private structure
3848  * @cls_flower: pointer to flow_cls_offload struct with flow info
3849  */
3850 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3851 				    struct flow_cls_offload *cls_flower)
3852 {
3853 	switch (cls_flower->command) {
3854 	case FLOW_CLS_REPLACE:
3855 		return iavf_configure_clsflower(adapter, cls_flower);
3856 	case FLOW_CLS_DESTROY:
3857 		return iavf_delete_clsflower(adapter, cls_flower);
3858 	case FLOW_CLS_STATS:
3859 		return -EOPNOTSUPP;
3860 	default:
3861 		return -EOPNOTSUPP;
3862 	}
3863 }
3864 
3865 /**
3866  * iavf_setup_tc_block_cb - block callback for tc
3867  * @type: type of offload
3868  * @type_data: offload data
3869  * @cb_priv:
3870  *
3871  * This function is the block callback for traffic classes
3872  **/
3873 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3874 				  void *cb_priv)
3875 {
3876 	struct iavf_adapter *adapter = cb_priv;
3877 
3878 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3879 		return -EOPNOTSUPP;
3880 
3881 	switch (type) {
3882 	case TC_SETUP_CLSFLOWER:
3883 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3884 	default:
3885 		return -EOPNOTSUPP;
3886 	}
3887 }
3888 
3889 static LIST_HEAD(iavf_block_cb_list);
3890 
3891 /**
3892  * iavf_setup_tc - configure multiple traffic classes
3893  * @netdev: network interface device structure
3894  * @type: type of offload
3895  * @type_data: tc offload data
3896  *
3897  * This function is the callback to ndo_setup_tc in the
3898  * netdev_ops.
3899  *
3900  * Returns 0 on success
3901  **/
3902 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3903 			 void *type_data)
3904 {
3905 	struct iavf_adapter *adapter = netdev_priv(netdev);
3906 
3907 	switch (type) {
3908 	case TC_SETUP_QDISC_MQPRIO:
3909 		return __iavf_setup_tc(netdev, type_data);
3910 	case TC_SETUP_BLOCK:
3911 		return flow_block_cb_setup_simple(type_data,
3912 						  &iavf_block_cb_list,
3913 						  iavf_setup_tc_block_cb,
3914 						  adapter, adapter, true);
3915 	default:
3916 		return -EOPNOTSUPP;
3917 	}
3918 }
3919 
3920 /**
3921  * iavf_open - Called when a network interface is made active
3922  * @netdev: network interface device structure
3923  *
3924  * Returns 0 on success, negative value on failure
3925  *
3926  * The open entry point is called when a network interface is made
3927  * active by the system (IFF_UP).  At this point all resources needed
3928  * for transmit and receive operations are allocated, the interrupt
3929  * handler is registered with the OS, the watchdog is started,
3930  * and the stack is notified that the interface is ready.
3931  **/
3932 static int iavf_open(struct net_device *netdev)
3933 {
3934 	struct iavf_adapter *adapter = netdev_priv(netdev);
3935 	int err;
3936 
3937 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3938 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3939 		return -EIO;
3940 	}
3941 
3942 	while (!mutex_trylock(&adapter->crit_lock))
3943 		usleep_range(500, 1000);
3944 
3945 	if (adapter->state != __IAVF_DOWN) {
3946 		err = -EBUSY;
3947 		goto err_unlock;
3948 	}
3949 
3950 	if (adapter->state == __IAVF_RUNNING &&
3951 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3952 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3953 		err = 0;
3954 		goto err_unlock;
3955 	}
3956 
3957 	/* allocate transmit descriptors */
3958 	err = iavf_setup_all_tx_resources(adapter);
3959 	if (err)
3960 		goto err_setup_tx;
3961 
3962 	/* allocate receive descriptors */
3963 	err = iavf_setup_all_rx_resources(adapter);
3964 	if (err)
3965 		goto err_setup_rx;
3966 
3967 	/* clear any pending interrupts, may auto mask */
3968 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3969 	if (err)
3970 		goto err_req_irq;
3971 
3972 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3973 
3974 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3975 
3976 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3977 
3978 	/* Restore VLAN filters that were removed with IFF_DOWN */
3979 	iavf_restore_filters(adapter);
3980 
3981 	iavf_configure(adapter);
3982 
3983 	iavf_up_complete(adapter);
3984 
3985 	iavf_irq_enable(adapter, true);
3986 
3987 	mutex_unlock(&adapter->crit_lock);
3988 
3989 	return 0;
3990 
3991 err_req_irq:
3992 	iavf_down(adapter);
3993 	iavf_free_traffic_irqs(adapter);
3994 err_setup_rx:
3995 	iavf_free_all_rx_resources(adapter);
3996 err_setup_tx:
3997 	iavf_free_all_tx_resources(adapter);
3998 err_unlock:
3999 	mutex_unlock(&adapter->crit_lock);
4000 
4001 	return err;
4002 }
4003 
4004 /**
4005  * iavf_close - Disables a network interface
4006  * @netdev: network interface device structure
4007  *
4008  * Returns 0, this is not allowed to fail
4009  *
4010  * The close entry point is called when an interface is de-activated
4011  * by the OS.  The hardware is still under the drivers control, but
4012  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4013  * are freed, along with all transmit and receive resources.
4014  **/
4015 static int iavf_close(struct net_device *netdev)
4016 {
4017 	struct iavf_adapter *adapter = netdev_priv(netdev);
4018 	int status;
4019 
4020 	mutex_lock(&adapter->crit_lock);
4021 
4022 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4023 		mutex_unlock(&adapter->crit_lock);
4024 		return 0;
4025 	}
4026 
4027 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4028 	if (CLIENT_ENABLED(adapter))
4029 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4030 
4031 	iavf_down(adapter);
4032 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4033 	iavf_free_traffic_irqs(adapter);
4034 
4035 	mutex_unlock(&adapter->crit_lock);
4036 
4037 	/* We explicitly don't free resources here because the hardware is
4038 	 * still active and can DMA into memory. Resources are cleared in
4039 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4040 	 * driver that the rings have been stopped.
4041 	 *
4042 	 * Also, we wait for state to transition to __IAVF_DOWN before
4043 	 * returning. State change occurs in iavf_virtchnl_completion() after
4044 	 * VF resources are released (which occurs after PF driver processes and
4045 	 * responds to admin queue commands).
4046 	 */
4047 
4048 	status = wait_event_timeout(adapter->down_waitqueue,
4049 				    adapter->state == __IAVF_DOWN,
4050 				    msecs_to_jiffies(500));
4051 	if (!status)
4052 		netdev_warn(netdev, "Device resources not yet released\n");
4053 	return 0;
4054 }
4055 
4056 /**
4057  * iavf_change_mtu - Change the Maximum Transfer Unit
4058  * @netdev: network interface device structure
4059  * @new_mtu: new value for maximum frame size
4060  *
4061  * Returns 0 on success, negative on failure
4062  **/
4063 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4064 {
4065 	struct iavf_adapter *adapter = netdev_priv(netdev);
4066 
4067 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4068 		   netdev->mtu, new_mtu);
4069 	netdev->mtu = new_mtu;
4070 	if (CLIENT_ENABLED(adapter)) {
4071 		iavf_notify_client_l2_params(&adapter->vsi);
4072 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4073 	}
4074 
4075 	if (netif_running(netdev)) {
4076 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4077 		queue_work(iavf_wq, &adapter->reset_task);
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4084 					 NETIF_F_HW_VLAN_CTAG_TX | \
4085 					 NETIF_F_HW_VLAN_STAG_RX | \
4086 					 NETIF_F_HW_VLAN_STAG_TX)
4087 
4088 /**
4089  * iavf_set_features - set the netdev feature flags
4090  * @netdev: ptr to the netdev being adjusted
4091  * @features: the feature set that the stack is suggesting
4092  * Note: expects to be called while under rtnl_lock()
4093  **/
4094 static int iavf_set_features(struct net_device *netdev,
4095 			     netdev_features_t features)
4096 {
4097 	struct iavf_adapter *adapter = netdev_priv(netdev);
4098 
4099 	/* trigger update on any VLAN feature change */
4100 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4101 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4102 		iavf_set_vlan_offload_features(adapter, netdev->features,
4103 					       features);
4104 
4105 	return 0;
4106 }
4107 
4108 /**
4109  * iavf_features_check - Validate encapsulated packet conforms to limits
4110  * @skb: skb buff
4111  * @dev: This physical port's netdev
4112  * @features: Offload features that the stack believes apply
4113  **/
4114 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4115 					     struct net_device *dev,
4116 					     netdev_features_t features)
4117 {
4118 	size_t len;
4119 
4120 	/* No point in doing any of this if neither checksum nor GSO are
4121 	 * being requested for this frame.  We can rule out both by just
4122 	 * checking for CHECKSUM_PARTIAL
4123 	 */
4124 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4125 		return features;
4126 
4127 	/* We cannot support GSO if the MSS is going to be less than
4128 	 * 64 bytes.  If it is then we need to drop support for GSO.
4129 	 */
4130 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4131 		features &= ~NETIF_F_GSO_MASK;
4132 
4133 	/* MACLEN can support at most 63 words */
4134 	len = skb_network_header(skb) - skb->data;
4135 	if (len & ~(63 * 2))
4136 		goto out_err;
4137 
4138 	/* IPLEN and EIPLEN can support at most 127 dwords */
4139 	len = skb_transport_header(skb) - skb_network_header(skb);
4140 	if (len & ~(127 * 4))
4141 		goto out_err;
4142 
4143 	if (skb->encapsulation) {
4144 		/* L4TUNLEN can support 127 words */
4145 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4146 		if (len & ~(127 * 2))
4147 			goto out_err;
4148 
4149 		/* IPLEN can support at most 127 dwords */
4150 		len = skb_inner_transport_header(skb) -
4151 		      skb_inner_network_header(skb);
4152 		if (len & ~(127 * 4))
4153 			goto out_err;
4154 	}
4155 
4156 	/* No need to validate L4LEN as TCP is the only protocol with a
4157 	 * a flexible value and we support all possible values supported
4158 	 * by TCP, which is at most 15 dwords
4159 	 */
4160 
4161 	return features;
4162 out_err:
4163 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4164 }
4165 
4166 /**
4167  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4168  * @adapter: board private structure
4169  *
4170  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4171  * were negotiated determine the VLAN features that can be toggled on and off.
4172  **/
4173 static netdev_features_t
4174 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4175 {
4176 	netdev_features_t hw_features = 0;
4177 
4178 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4179 		return hw_features;
4180 
4181 	/* Enable VLAN features if supported */
4182 	if (VLAN_ALLOWED(adapter)) {
4183 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4184 				NETIF_F_HW_VLAN_CTAG_RX);
4185 	} else if (VLAN_V2_ALLOWED(adapter)) {
4186 		struct virtchnl_vlan_caps *vlan_v2_caps =
4187 			&adapter->vlan_v2_caps;
4188 		struct virtchnl_vlan_supported_caps *stripping_support =
4189 			&vlan_v2_caps->offloads.stripping_support;
4190 		struct virtchnl_vlan_supported_caps *insertion_support =
4191 			&vlan_v2_caps->offloads.insertion_support;
4192 
4193 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4194 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4195 			if (stripping_support->outer &
4196 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4197 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4198 			if (stripping_support->outer &
4199 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4200 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4201 		} else if (stripping_support->inner !=
4202 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4203 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4204 			if (stripping_support->inner &
4205 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4206 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4207 		}
4208 
4209 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4210 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4211 			if (insertion_support->outer &
4212 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4213 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4214 			if (insertion_support->outer &
4215 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4216 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4217 		} else if (insertion_support->inner &&
4218 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4219 			if (insertion_support->inner &
4220 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4221 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4222 		}
4223 	}
4224 
4225 	return hw_features;
4226 }
4227 
4228 /**
4229  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4230  * @adapter: board private structure
4231  *
4232  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4233  * were negotiated determine the VLAN features that are enabled by default.
4234  **/
4235 static netdev_features_t
4236 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4237 {
4238 	netdev_features_t features = 0;
4239 
4240 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4241 		return features;
4242 
4243 	if (VLAN_ALLOWED(adapter)) {
4244 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4245 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4246 	} else if (VLAN_V2_ALLOWED(adapter)) {
4247 		struct virtchnl_vlan_caps *vlan_v2_caps =
4248 			&adapter->vlan_v2_caps;
4249 		struct virtchnl_vlan_supported_caps *filtering_support =
4250 			&vlan_v2_caps->filtering.filtering_support;
4251 		struct virtchnl_vlan_supported_caps *stripping_support =
4252 			&vlan_v2_caps->offloads.stripping_support;
4253 		struct virtchnl_vlan_supported_caps *insertion_support =
4254 			&vlan_v2_caps->offloads.insertion_support;
4255 		u32 ethertype_init;
4256 
4257 		/* give priority to outer stripping and don't support both outer
4258 		 * and inner stripping
4259 		 */
4260 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4261 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4262 			if (stripping_support->outer &
4263 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4264 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4265 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4266 			else if (stripping_support->outer &
4267 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4268 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4269 				features |= NETIF_F_HW_VLAN_STAG_RX;
4270 		} else if (stripping_support->inner !=
4271 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4272 			if (stripping_support->inner &
4273 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4274 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4275 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4276 		}
4277 
4278 		/* give priority to outer insertion and don't support both outer
4279 		 * and inner insertion
4280 		 */
4281 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4282 			if (insertion_support->outer &
4283 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4284 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4285 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4286 			else if (insertion_support->outer &
4287 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4288 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4289 				features |= NETIF_F_HW_VLAN_STAG_TX;
4290 		} else if (insertion_support->inner !=
4291 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4292 			if (insertion_support->inner &
4293 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4294 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4295 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4296 		}
4297 
4298 		/* give priority to outer filtering and don't bother if both
4299 		 * outer and inner filtering are enabled
4300 		 */
4301 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4302 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4303 			if (filtering_support->outer &
4304 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4305 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4306 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4307 			if (filtering_support->outer &
4308 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4309 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4310 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4311 		} else if (filtering_support->inner !=
4312 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4313 			if (filtering_support->inner &
4314 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4315 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4316 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4317 			if (filtering_support->inner &
4318 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4319 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4320 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4321 		}
4322 	}
4323 
4324 	return features;
4325 }
4326 
4327 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4328 	(!(((requested) & (feature_bit)) && \
4329 	   !((allowed) & (feature_bit))))
4330 
4331 /**
4332  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4333  * @adapter: board private structure
4334  * @requested_features: stack requested NETDEV features
4335  **/
4336 static netdev_features_t
4337 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4338 			      netdev_features_t requested_features)
4339 {
4340 	netdev_features_t allowed_features;
4341 
4342 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4343 		iavf_get_netdev_vlan_features(adapter);
4344 
4345 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4346 					      allowed_features,
4347 					      NETIF_F_HW_VLAN_CTAG_TX))
4348 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4349 
4350 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4351 					      allowed_features,
4352 					      NETIF_F_HW_VLAN_CTAG_RX))
4353 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4354 
4355 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4356 					      allowed_features,
4357 					      NETIF_F_HW_VLAN_STAG_TX))
4358 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4359 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4360 					      allowed_features,
4361 					      NETIF_F_HW_VLAN_STAG_RX))
4362 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4363 
4364 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4365 					      allowed_features,
4366 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4367 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4368 
4369 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4370 					      allowed_features,
4371 					      NETIF_F_HW_VLAN_STAG_FILTER))
4372 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4373 
4374 	if ((requested_features &
4375 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4376 	    (requested_features &
4377 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4378 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4379 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4380 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4381 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4382 					NETIF_F_HW_VLAN_STAG_TX);
4383 	}
4384 
4385 	return requested_features;
4386 }
4387 
4388 /**
4389  * iavf_fix_features - fix up the netdev feature bits
4390  * @netdev: our net device
4391  * @features: desired feature bits
4392  *
4393  * Returns fixed-up features bits
4394  **/
4395 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4396 					   netdev_features_t features)
4397 {
4398 	struct iavf_adapter *adapter = netdev_priv(netdev);
4399 
4400 	return iavf_fix_netdev_vlan_features(adapter, features);
4401 }
4402 
4403 static const struct net_device_ops iavf_netdev_ops = {
4404 	.ndo_open		= iavf_open,
4405 	.ndo_stop		= iavf_close,
4406 	.ndo_start_xmit		= iavf_xmit_frame,
4407 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4408 	.ndo_validate_addr	= eth_validate_addr,
4409 	.ndo_set_mac_address	= iavf_set_mac,
4410 	.ndo_change_mtu		= iavf_change_mtu,
4411 	.ndo_tx_timeout		= iavf_tx_timeout,
4412 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4413 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4414 	.ndo_features_check	= iavf_features_check,
4415 	.ndo_fix_features	= iavf_fix_features,
4416 	.ndo_set_features	= iavf_set_features,
4417 	.ndo_setup_tc		= iavf_setup_tc,
4418 };
4419 
4420 /**
4421  * iavf_check_reset_complete - check that VF reset is complete
4422  * @hw: pointer to hw struct
4423  *
4424  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4425  **/
4426 static int iavf_check_reset_complete(struct iavf_hw *hw)
4427 {
4428 	u32 rstat;
4429 	int i;
4430 
4431 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4432 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4433 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4434 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4435 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4436 			return 0;
4437 		usleep_range(10, 20);
4438 	}
4439 	return -EBUSY;
4440 }
4441 
4442 /**
4443  * iavf_process_config - Process the config information we got from the PF
4444  * @adapter: board private structure
4445  *
4446  * Verify that we have a valid config struct, and set up our netdev features
4447  * and our VSI struct.
4448  **/
4449 int iavf_process_config(struct iavf_adapter *adapter)
4450 {
4451 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4452 	netdev_features_t hw_vlan_features, vlan_features;
4453 	struct net_device *netdev = adapter->netdev;
4454 	netdev_features_t hw_enc_features;
4455 	netdev_features_t hw_features;
4456 
4457 	hw_enc_features = NETIF_F_SG			|
4458 			  NETIF_F_IP_CSUM		|
4459 			  NETIF_F_IPV6_CSUM		|
4460 			  NETIF_F_HIGHDMA		|
4461 			  NETIF_F_SOFT_FEATURES	|
4462 			  NETIF_F_TSO			|
4463 			  NETIF_F_TSO_ECN		|
4464 			  NETIF_F_TSO6			|
4465 			  NETIF_F_SCTP_CRC		|
4466 			  NETIF_F_RXHASH		|
4467 			  NETIF_F_RXCSUM		|
4468 			  0;
4469 
4470 	/* advertise to stack only if offloads for encapsulated packets is
4471 	 * supported
4472 	 */
4473 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4474 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4475 				   NETIF_F_GSO_GRE		|
4476 				   NETIF_F_GSO_GRE_CSUM		|
4477 				   NETIF_F_GSO_IPXIP4		|
4478 				   NETIF_F_GSO_IPXIP6		|
4479 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4480 				   NETIF_F_GSO_PARTIAL		|
4481 				   0;
4482 
4483 		if (!(vfres->vf_cap_flags &
4484 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4485 			netdev->gso_partial_features |=
4486 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4487 
4488 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4489 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4490 		netdev->hw_enc_features |= hw_enc_features;
4491 	}
4492 	/* record features VLANs can make use of */
4493 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4494 
4495 	/* Write features and hw_features separately to avoid polluting
4496 	 * with, or dropping, features that are set when we registered.
4497 	 */
4498 	hw_features = hw_enc_features;
4499 
4500 	/* get HW VLAN features that can be toggled */
4501 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4502 
4503 	/* Enable cloud filter if ADQ is supported */
4504 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4505 		hw_features |= NETIF_F_HW_TC;
4506 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4507 		hw_features |= NETIF_F_GSO_UDP_L4;
4508 
4509 	netdev->hw_features |= hw_features | hw_vlan_features;
4510 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4511 
4512 	netdev->features |= hw_features | vlan_features;
4513 
4514 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4515 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4516 
4517 	netdev->priv_flags |= IFF_UNICAST_FLT;
4518 
4519 	/* Do not turn on offloads when they are requested to be turned off.
4520 	 * TSO needs minimum 576 bytes to work correctly.
4521 	 */
4522 	if (netdev->wanted_features) {
4523 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4524 		    netdev->mtu < 576)
4525 			netdev->features &= ~NETIF_F_TSO;
4526 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4527 		    netdev->mtu < 576)
4528 			netdev->features &= ~NETIF_F_TSO6;
4529 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4530 			netdev->features &= ~NETIF_F_TSO_ECN;
4531 		if (!(netdev->wanted_features & NETIF_F_GRO))
4532 			netdev->features &= ~NETIF_F_GRO;
4533 		if (!(netdev->wanted_features & NETIF_F_GSO))
4534 			netdev->features &= ~NETIF_F_GSO;
4535 	}
4536 
4537 	return 0;
4538 }
4539 
4540 /**
4541  * iavf_shutdown - Shutdown the device in preparation for a reboot
4542  * @pdev: pci device structure
4543  **/
4544 static void iavf_shutdown(struct pci_dev *pdev)
4545 {
4546 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4547 	struct net_device *netdev = adapter->netdev;
4548 
4549 	netif_device_detach(netdev);
4550 
4551 	if (netif_running(netdev))
4552 		iavf_close(netdev);
4553 
4554 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4555 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4556 	/* Prevent the watchdog from running. */
4557 	iavf_change_state(adapter, __IAVF_REMOVE);
4558 	adapter->aq_required = 0;
4559 	mutex_unlock(&adapter->crit_lock);
4560 
4561 #ifdef CONFIG_PM
4562 	pci_save_state(pdev);
4563 
4564 #endif
4565 	pci_disable_device(pdev);
4566 }
4567 
4568 /**
4569  * iavf_probe - Device Initialization Routine
4570  * @pdev: PCI device information struct
4571  * @ent: entry in iavf_pci_tbl
4572  *
4573  * Returns 0 on success, negative on failure
4574  *
4575  * iavf_probe initializes an adapter identified by a pci_dev structure.
4576  * The OS initialization, configuring of the adapter private structure,
4577  * and a hardware reset occur.
4578  **/
4579 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4580 {
4581 	struct net_device *netdev;
4582 	struct iavf_adapter *adapter = NULL;
4583 	struct iavf_hw *hw = NULL;
4584 	int err;
4585 
4586 	err = pci_enable_device(pdev);
4587 	if (err)
4588 		return err;
4589 
4590 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4591 	if (err) {
4592 		dev_err(&pdev->dev,
4593 			"DMA configuration failed: 0x%x\n", err);
4594 		goto err_dma;
4595 	}
4596 
4597 	err = pci_request_regions(pdev, iavf_driver_name);
4598 	if (err) {
4599 		dev_err(&pdev->dev,
4600 			"pci_request_regions failed 0x%x\n", err);
4601 		goto err_pci_reg;
4602 	}
4603 
4604 	pci_enable_pcie_error_reporting(pdev);
4605 
4606 	pci_set_master(pdev);
4607 
4608 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4609 				   IAVF_MAX_REQ_QUEUES);
4610 	if (!netdev) {
4611 		err = -ENOMEM;
4612 		goto err_alloc_etherdev;
4613 	}
4614 
4615 	SET_NETDEV_DEV(netdev, &pdev->dev);
4616 
4617 	pci_set_drvdata(pdev, netdev);
4618 	adapter = netdev_priv(netdev);
4619 
4620 	adapter->netdev = netdev;
4621 	adapter->pdev = pdev;
4622 
4623 	hw = &adapter->hw;
4624 	hw->back = adapter;
4625 
4626 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4627 	iavf_change_state(adapter, __IAVF_STARTUP);
4628 
4629 	/* Call save state here because it relies on the adapter struct. */
4630 	pci_save_state(pdev);
4631 
4632 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4633 			      pci_resource_len(pdev, 0));
4634 	if (!hw->hw_addr) {
4635 		err = -EIO;
4636 		goto err_ioremap;
4637 	}
4638 	hw->vendor_id = pdev->vendor;
4639 	hw->device_id = pdev->device;
4640 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4641 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4642 	hw->subsystem_device_id = pdev->subsystem_device;
4643 	hw->bus.device = PCI_SLOT(pdev->devfn);
4644 	hw->bus.func = PCI_FUNC(pdev->devfn);
4645 	hw->bus.bus_id = pdev->bus->number;
4646 
4647 	/* set up the locks for the AQ, do this only once in probe
4648 	 * and destroy them only once in remove
4649 	 */
4650 	mutex_init(&adapter->crit_lock);
4651 	mutex_init(&adapter->client_lock);
4652 	mutex_init(&hw->aq.asq_mutex);
4653 	mutex_init(&hw->aq.arq_mutex);
4654 
4655 	spin_lock_init(&adapter->mac_vlan_list_lock);
4656 	spin_lock_init(&adapter->cloud_filter_list_lock);
4657 	spin_lock_init(&adapter->fdir_fltr_lock);
4658 	spin_lock_init(&adapter->adv_rss_lock);
4659 
4660 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4661 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4662 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4663 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4664 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4665 
4666 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4667 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4668 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4669 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4670 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4671 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4672 
4673 	/* Setup the wait queue for indicating transition to down status */
4674 	init_waitqueue_head(&adapter->down_waitqueue);
4675 
4676 	return 0;
4677 
4678 err_ioremap:
4679 	free_netdev(netdev);
4680 err_alloc_etherdev:
4681 	pci_disable_pcie_error_reporting(pdev);
4682 	pci_release_regions(pdev);
4683 err_pci_reg:
4684 err_dma:
4685 	pci_disable_device(pdev);
4686 	return err;
4687 }
4688 
4689 /**
4690  * iavf_suspend - Power management suspend routine
4691  * @dev_d: device info pointer
4692  *
4693  * Called when the system (VM) is entering sleep/suspend.
4694  **/
4695 static int __maybe_unused iavf_suspend(struct device *dev_d)
4696 {
4697 	struct net_device *netdev = dev_get_drvdata(dev_d);
4698 	struct iavf_adapter *adapter = netdev_priv(netdev);
4699 
4700 	netif_device_detach(netdev);
4701 
4702 	while (!mutex_trylock(&adapter->crit_lock))
4703 		usleep_range(500, 1000);
4704 
4705 	if (netif_running(netdev)) {
4706 		rtnl_lock();
4707 		iavf_down(adapter);
4708 		rtnl_unlock();
4709 	}
4710 	iavf_free_misc_irq(adapter);
4711 	iavf_reset_interrupt_capability(adapter);
4712 
4713 	mutex_unlock(&adapter->crit_lock);
4714 
4715 	return 0;
4716 }
4717 
4718 /**
4719  * iavf_resume - Power management resume routine
4720  * @dev_d: device info pointer
4721  *
4722  * Called when the system (VM) is resumed from sleep/suspend.
4723  **/
4724 static int __maybe_unused iavf_resume(struct device *dev_d)
4725 {
4726 	struct pci_dev *pdev = to_pci_dev(dev_d);
4727 	struct iavf_adapter *adapter;
4728 	u32 err;
4729 
4730 	adapter = iavf_pdev_to_adapter(pdev);
4731 
4732 	pci_set_master(pdev);
4733 
4734 	rtnl_lock();
4735 	err = iavf_set_interrupt_capability(adapter);
4736 	if (err) {
4737 		rtnl_unlock();
4738 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4739 		return err;
4740 	}
4741 	err = iavf_request_misc_irq(adapter);
4742 	rtnl_unlock();
4743 	if (err) {
4744 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4745 		return err;
4746 	}
4747 
4748 	queue_work(iavf_wq, &adapter->reset_task);
4749 
4750 	netif_device_attach(adapter->netdev);
4751 
4752 	return err;
4753 }
4754 
4755 /**
4756  * iavf_remove - Device Removal Routine
4757  * @pdev: PCI device information struct
4758  *
4759  * iavf_remove is called by the PCI subsystem to alert the driver
4760  * that it should release a PCI device.  The could be caused by a
4761  * Hot-Plug event, or because the driver is going to be removed from
4762  * memory.
4763  **/
4764 static void iavf_remove(struct pci_dev *pdev)
4765 {
4766 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4767 	struct net_device *netdev = adapter->netdev;
4768 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4769 	struct iavf_vlan_filter *vlf, *vlftmp;
4770 	struct iavf_adv_rss *rss, *rsstmp;
4771 	struct iavf_mac_filter *f, *ftmp;
4772 	struct iavf_cloud_filter *cf, *cftmp;
4773 	struct iavf_hw *hw = &adapter->hw;
4774 	int err;
4775 
4776 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4777 	/* Wait until port initialization is complete.
4778 	 * There are flows where register/unregister netdev may race.
4779 	 */
4780 	while (1) {
4781 		mutex_lock(&adapter->crit_lock);
4782 		if (adapter->state == __IAVF_RUNNING ||
4783 		    adapter->state == __IAVF_DOWN ||
4784 		    adapter->state == __IAVF_INIT_FAILED) {
4785 			mutex_unlock(&adapter->crit_lock);
4786 			break;
4787 		}
4788 
4789 		mutex_unlock(&adapter->crit_lock);
4790 		usleep_range(500, 1000);
4791 	}
4792 	cancel_delayed_work_sync(&adapter->watchdog_task);
4793 
4794 	if (adapter->netdev_registered) {
4795 		rtnl_lock();
4796 		unregister_netdevice(netdev);
4797 		adapter->netdev_registered = false;
4798 		rtnl_unlock();
4799 	}
4800 	if (CLIENT_ALLOWED(adapter)) {
4801 		err = iavf_lan_del_device(adapter);
4802 		if (err)
4803 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4804 				 err);
4805 	}
4806 
4807 	mutex_lock(&adapter->crit_lock);
4808 	dev_info(&adapter->pdev->dev, "Remove device\n");
4809 	iavf_change_state(adapter, __IAVF_REMOVE);
4810 
4811 	iavf_request_reset(adapter);
4812 	msleep(50);
4813 	/* If the FW isn't responding, kick it once, but only once. */
4814 	if (!iavf_asq_done(hw)) {
4815 		iavf_request_reset(adapter);
4816 		msleep(50);
4817 	}
4818 
4819 	iavf_misc_irq_disable(adapter);
4820 	/* Shut down all the garbage mashers on the detention level */
4821 	cancel_work_sync(&adapter->reset_task);
4822 	cancel_delayed_work_sync(&adapter->watchdog_task);
4823 	cancel_work_sync(&adapter->adminq_task);
4824 	cancel_delayed_work_sync(&adapter->client_task);
4825 
4826 	adapter->aq_required = 0;
4827 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4828 
4829 	iavf_free_all_tx_resources(adapter);
4830 	iavf_free_all_rx_resources(adapter);
4831 	iavf_free_misc_irq(adapter);
4832 
4833 	iavf_reset_interrupt_capability(adapter);
4834 	iavf_free_q_vectors(adapter);
4835 
4836 	iavf_free_rss(adapter);
4837 
4838 	if (hw->aq.asq.count)
4839 		iavf_shutdown_adminq(hw);
4840 
4841 	/* destroy the locks only once, here */
4842 	mutex_destroy(&hw->aq.arq_mutex);
4843 	mutex_destroy(&hw->aq.asq_mutex);
4844 	mutex_destroy(&adapter->client_lock);
4845 	mutex_unlock(&adapter->crit_lock);
4846 	mutex_destroy(&adapter->crit_lock);
4847 
4848 	iounmap(hw->hw_addr);
4849 	pci_release_regions(pdev);
4850 	iavf_free_queues(adapter);
4851 	kfree(adapter->vf_res);
4852 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4853 	/* If we got removed before an up/down sequence, we've got a filter
4854 	 * hanging out there that we need to get rid of.
4855 	 */
4856 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4857 		list_del(&f->list);
4858 		kfree(f);
4859 	}
4860 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4861 				 list) {
4862 		list_del(&vlf->list);
4863 		kfree(vlf);
4864 	}
4865 
4866 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4867 
4868 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4869 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4870 		list_del(&cf->list);
4871 		kfree(cf);
4872 	}
4873 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4874 
4875 	spin_lock_bh(&adapter->fdir_fltr_lock);
4876 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4877 		list_del(&fdir->list);
4878 		kfree(fdir);
4879 	}
4880 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4881 
4882 	spin_lock_bh(&adapter->adv_rss_lock);
4883 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4884 				 list) {
4885 		list_del(&rss->list);
4886 		kfree(rss);
4887 	}
4888 	spin_unlock_bh(&adapter->adv_rss_lock);
4889 
4890 	free_netdev(netdev);
4891 
4892 	pci_disable_pcie_error_reporting(pdev);
4893 
4894 	pci_disable_device(pdev);
4895 }
4896 
4897 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4898 
4899 static struct pci_driver iavf_driver = {
4900 	.name      = iavf_driver_name,
4901 	.id_table  = iavf_pci_tbl,
4902 	.probe     = iavf_probe,
4903 	.remove    = iavf_remove,
4904 	.driver.pm = &iavf_pm_ops,
4905 	.shutdown  = iavf_shutdown,
4906 };
4907 
4908 /**
4909  * iavf_init_module - Driver Registration Routine
4910  *
4911  * iavf_init_module is the first routine called when the driver is
4912  * loaded. All it does is register with the PCI subsystem.
4913  **/
4914 static int __init iavf_init_module(void)
4915 {
4916 	pr_info("iavf: %s\n", iavf_driver_string);
4917 
4918 	pr_info("%s\n", iavf_copyright);
4919 
4920 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4921 				  iavf_driver_name);
4922 	if (!iavf_wq) {
4923 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4924 		return -ENOMEM;
4925 	}
4926 	return pci_register_driver(&iavf_driver);
4927 }
4928 
4929 module_init(iavf_init_module);
4930 
4931 /**
4932  * iavf_exit_module - Driver Exit Cleanup Routine
4933  *
4934  * iavf_exit_module is called just before the driver is removed
4935  * from memory.
4936  **/
4937 static void __exit iavf_exit_module(void)
4938 {
4939 	pci_unregister_driver(&iavf_driver);
4940 	destroy_workqueue(iavf_wq);
4941 }
4942 
4943 module_exit(iavf_exit_module);
4944 
4945 /* iavf_main.c */
4946