1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 if (proto == cpu_to_be16(ETH_P_8021Q)) 910 set_bit(vid, adapter->vsi.active_cvlans); 911 else 912 set_bit(vid, adapter->vsi.active_svlans); 913 914 return 0; 915 } 916 917 /** 918 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 919 * @netdev: network device struct 920 * @proto: unused protocol data 921 * @vid: VLAN tag 922 **/ 923 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 924 __always_unused __be16 proto, u16 vid) 925 { 926 struct iavf_adapter *adapter = netdev_priv(netdev); 927 928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 929 if (proto == cpu_to_be16(ETH_P_8021Q)) 930 clear_bit(vid, adapter->vsi.active_cvlans); 931 else 932 clear_bit(vid, adapter->vsi.active_svlans); 933 934 return 0; 935 } 936 937 /** 938 * iavf_find_filter - Search filter list for specific mac filter 939 * @adapter: board private structure 940 * @macaddr: the MAC address 941 * 942 * Returns ptr to the filter object or NULL. Must be called while holding the 943 * mac_vlan_list_lock. 944 **/ 945 static struct 946 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 947 const u8 *macaddr) 948 { 949 struct iavf_mac_filter *f; 950 951 if (!macaddr) 952 return NULL; 953 954 list_for_each_entry(f, &adapter->mac_filter_list, list) { 955 if (ether_addr_equal(macaddr, f->macaddr)) 956 return f; 957 } 958 return NULL; 959 } 960 961 /** 962 * iavf_add_filter - Add a mac filter to the filter list 963 * @adapter: board private structure 964 * @macaddr: the MAC address 965 * 966 * Returns ptr to the filter object or NULL when no memory available. 967 **/ 968 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 969 const u8 *macaddr) 970 { 971 struct iavf_mac_filter *f; 972 973 if (!macaddr) 974 return NULL; 975 976 f = iavf_find_filter(adapter, macaddr); 977 if (!f) { 978 f = kzalloc(sizeof(*f), GFP_ATOMIC); 979 if (!f) 980 return f; 981 982 ether_addr_copy(f->macaddr, macaddr); 983 984 list_add_tail(&f->list, &adapter->mac_filter_list); 985 f->add = true; 986 f->is_new_mac = true; 987 f->is_primary = false; 988 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 989 } else { 990 f->remove = false; 991 } 992 993 return f; 994 } 995 996 /** 997 * iavf_set_mac - NDO callback to set port mac address 998 * @netdev: network interface device structure 999 * @p: pointer to an address structure 1000 * 1001 * Returns 0 on success, negative on failure 1002 **/ 1003 static int iavf_set_mac(struct net_device *netdev, void *p) 1004 { 1005 struct iavf_adapter *adapter = netdev_priv(netdev); 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 struct sockaddr *addr = p; 1009 1010 if (!is_valid_ether_addr(addr->sa_data)) 1011 return -EADDRNOTAVAIL; 1012 1013 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1014 return 0; 1015 1016 spin_lock_bh(&adapter->mac_vlan_list_lock); 1017 1018 f = iavf_find_filter(adapter, hw->mac.addr); 1019 if (f) { 1020 f->remove = true; 1021 f->is_primary = true; 1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1023 } 1024 1025 f = iavf_add_filter(adapter, addr->sa_data); 1026 if (f) { 1027 f->is_primary = true; 1028 ether_addr_copy(hw->mac.addr, addr->sa_data); 1029 } 1030 1031 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1032 1033 /* schedule the watchdog task to immediately process the request */ 1034 if (f) 1035 queue_work(iavf_wq, &adapter->watchdog_task.work); 1036 1037 return (f == NULL) ? -ENOMEM : 0; 1038 } 1039 1040 /** 1041 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1042 * @netdev: the netdevice 1043 * @addr: address to add 1044 * 1045 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1046 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1047 */ 1048 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1049 { 1050 struct iavf_adapter *adapter = netdev_priv(netdev); 1051 1052 if (iavf_add_filter(adapter, addr)) 1053 return 0; 1054 else 1055 return -ENOMEM; 1056 } 1057 1058 /** 1059 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1060 * @netdev: the netdevice 1061 * @addr: address to add 1062 * 1063 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1064 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1065 */ 1066 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1067 { 1068 struct iavf_adapter *adapter = netdev_priv(netdev); 1069 struct iavf_mac_filter *f; 1070 1071 /* Under some circumstances, we might receive a request to delete 1072 * our own device address from our uc list. Because we store the 1073 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1074 * such requests and not delete our device address from this list. 1075 */ 1076 if (ether_addr_equal(addr, netdev->dev_addr)) 1077 return 0; 1078 1079 f = iavf_find_filter(adapter, addr); 1080 if (f) { 1081 f->remove = true; 1082 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1083 } 1084 return 0; 1085 } 1086 1087 /** 1088 * iavf_set_rx_mode - NDO callback to set the netdev filters 1089 * @netdev: network interface device structure 1090 **/ 1091 static void iavf_set_rx_mode(struct net_device *netdev) 1092 { 1093 struct iavf_adapter *adapter = netdev_priv(netdev); 1094 1095 spin_lock_bh(&adapter->mac_vlan_list_lock); 1096 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1097 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1098 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1099 1100 if (netdev->flags & IFF_PROMISC && 1101 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1102 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1103 else if (!(netdev->flags & IFF_PROMISC) && 1104 adapter->flags & IAVF_FLAG_PROMISC_ON) 1105 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1106 1107 if (netdev->flags & IFF_ALLMULTI && 1108 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1109 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1110 else if (!(netdev->flags & IFF_ALLMULTI) && 1111 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1112 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1113 } 1114 1115 /** 1116 * iavf_napi_enable_all - enable NAPI on all queue vectors 1117 * @adapter: board private structure 1118 **/ 1119 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1120 { 1121 int q_idx; 1122 struct iavf_q_vector *q_vector; 1123 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1124 1125 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1126 struct napi_struct *napi; 1127 1128 q_vector = &adapter->q_vectors[q_idx]; 1129 napi = &q_vector->napi; 1130 napi_enable(napi); 1131 } 1132 } 1133 1134 /** 1135 * iavf_napi_disable_all - disable NAPI on all queue vectors 1136 * @adapter: board private structure 1137 **/ 1138 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1139 { 1140 int q_idx; 1141 struct iavf_q_vector *q_vector; 1142 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1143 1144 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1145 q_vector = &adapter->q_vectors[q_idx]; 1146 napi_disable(&q_vector->napi); 1147 } 1148 } 1149 1150 /** 1151 * iavf_configure - set up transmit and receive data structures 1152 * @adapter: board private structure 1153 **/ 1154 static void iavf_configure(struct iavf_adapter *adapter) 1155 { 1156 struct net_device *netdev = adapter->netdev; 1157 int i; 1158 1159 iavf_set_rx_mode(netdev); 1160 1161 iavf_configure_tx(adapter); 1162 iavf_configure_rx(adapter); 1163 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1164 1165 for (i = 0; i < adapter->num_active_queues; i++) { 1166 struct iavf_ring *ring = &adapter->rx_rings[i]; 1167 1168 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1169 } 1170 } 1171 1172 /** 1173 * iavf_up_complete - Finish the last steps of bringing up a connection 1174 * @adapter: board private structure 1175 * 1176 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1177 **/ 1178 static void iavf_up_complete(struct iavf_adapter *adapter) 1179 { 1180 iavf_change_state(adapter, __IAVF_RUNNING); 1181 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1182 1183 iavf_napi_enable_all(adapter); 1184 1185 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1186 if (CLIENT_ENABLED(adapter)) 1187 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1188 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1189 } 1190 1191 /** 1192 * iavf_down - Shutdown the connection processing 1193 * @adapter: board private structure 1194 * 1195 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1196 **/ 1197 void iavf_down(struct iavf_adapter *adapter) 1198 { 1199 struct net_device *netdev = adapter->netdev; 1200 struct iavf_vlan_filter *vlf; 1201 struct iavf_cloud_filter *cf; 1202 struct iavf_fdir_fltr *fdir; 1203 struct iavf_mac_filter *f; 1204 struct iavf_adv_rss *rss; 1205 1206 if (adapter->state <= __IAVF_DOWN_PENDING) 1207 return; 1208 1209 netif_carrier_off(netdev); 1210 netif_tx_disable(netdev); 1211 adapter->link_up = false; 1212 iavf_napi_disable_all(adapter); 1213 iavf_irq_disable(adapter); 1214 1215 spin_lock_bh(&adapter->mac_vlan_list_lock); 1216 1217 /* clear the sync flag on all filters */ 1218 __dev_uc_unsync(adapter->netdev, NULL); 1219 __dev_mc_unsync(adapter->netdev, NULL); 1220 1221 /* remove all MAC filters */ 1222 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1223 f->remove = true; 1224 } 1225 1226 /* remove all VLAN filters */ 1227 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1228 vlf->remove = true; 1229 } 1230 1231 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1232 1233 /* remove all cloud filters */ 1234 spin_lock_bh(&adapter->cloud_filter_list_lock); 1235 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1236 cf->del = true; 1237 } 1238 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1239 1240 /* remove all Flow Director filters */ 1241 spin_lock_bh(&adapter->fdir_fltr_lock); 1242 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1243 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1244 } 1245 spin_unlock_bh(&adapter->fdir_fltr_lock); 1246 1247 /* remove all advance RSS configuration */ 1248 spin_lock_bh(&adapter->adv_rss_lock); 1249 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1250 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1251 spin_unlock_bh(&adapter->adv_rss_lock); 1252 1253 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1254 /* cancel any current operation */ 1255 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1256 /* Schedule operations to close down the HW. Don't wait 1257 * here for this to complete. The watchdog is still running 1258 * and it will take care of this. 1259 */ 1260 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1261 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1262 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1263 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1264 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1265 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1266 } 1267 1268 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1269 } 1270 1271 /** 1272 * iavf_acquire_msix_vectors - Setup the MSIX capability 1273 * @adapter: board private structure 1274 * @vectors: number of vectors to request 1275 * 1276 * Work with the OS to set up the MSIX vectors needed. 1277 * 1278 * Returns 0 on success, negative on failure 1279 **/ 1280 static int 1281 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1282 { 1283 int err, vector_threshold; 1284 1285 /* We'll want at least 3 (vector_threshold): 1286 * 0) Other (Admin Queue and link, mostly) 1287 * 1) TxQ[0] Cleanup 1288 * 2) RxQ[0] Cleanup 1289 */ 1290 vector_threshold = MIN_MSIX_COUNT; 1291 1292 /* The more we get, the more we will assign to Tx/Rx Cleanup 1293 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1294 * Right now, we simply care about how many we'll get; we'll 1295 * set them up later while requesting irq's. 1296 */ 1297 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1298 vector_threshold, vectors); 1299 if (err < 0) { 1300 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1301 kfree(adapter->msix_entries); 1302 adapter->msix_entries = NULL; 1303 return err; 1304 } 1305 1306 /* Adjust for only the vectors we'll use, which is minimum 1307 * of max_msix_q_vectors + NONQ_VECS, or the number of 1308 * vectors we were allocated. 1309 */ 1310 adapter->num_msix_vectors = err; 1311 return 0; 1312 } 1313 1314 /** 1315 * iavf_free_queues - Free memory for all rings 1316 * @adapter: board private structure to initialize 1317 * 1318 * Free all of the memory associated with queue pairs. 1319 **/ 1320 static void iavf_free_queues(struct iavf_adapter *adapter) 1321 { 1322 if (!adapter->vsi_res) 1323 return; 1324 adapter->num_active_queues = 0; 1325 kfree(adapter->tx_rings); 1326 adapter->tx_rings = NULL; 1327 kfree(adapter->rx_rings); 1328 adapter->rx_rings = NULL; 1329 } 1330 1331 /** 1332 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1333 * @adapter: board private structure 1334 * 1335 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1336 * stripped in certain descriptor fields. Instead of checking the offload 1337 * capability bits in the hot path, cache the location the ring specific 1338 * flags. 1339 */ 1340 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1341 { 1342 int i; 1343 1344 for (i = 0; i < adapter->num_active_queues; i++) { 1345 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1346 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1347 1348 /* prevent multiple L2TAG bits being set after VFR */ 1349 tx_ring->flags &= 1350 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1351 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1352 rx_ring->flags &= 1353 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1354 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1355 1356 if (VLAN_ALLOWED(adapter)) { 1357 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1358 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1359 } else if (VLAN_V2_ALLOWED(adapter)) { 1360 struct virtchnl_vlan_supported_caps *stripping_support; 1361 struct virtchnl_vlan_supported_caps *insertion_support; 1362 1363 stripping_support = 1364 &adapter->vlan_v2_caps.offloads.stripping_support; 1365 insertion_support = 1366 &adapter->vlan_v2_caps.offloads.insertion_support; 1367 1368 if (stripping_support->outer) { 1369 if (stripping_support->outer & 1370 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1371 rx_ring->flags |= 1372 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1373 else if (stripping_support->outer & 1374 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1375 rx_ring->flags |= 1376 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1377 } else if (stripping_support->inner) { 1378 if (stripping_support->inner & 1379 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1380 rx_ring->flags |= 1381 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1382 else if (stripping_support->inner & 1383 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1384 rx_ring->flags |= 1385 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1386 } 1387 1388 if (insertion_support->outer) { 1389 if (insertion_support->outer & 1390 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1391 tx_ring->flags |= 1392 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1393 else if (insertion_support->outer & 1394 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1395 tx_ring->flags |= 1396 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1397 } else if (insertion_support->inner) { 1398 if (insertion_support->inner & 1399 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1400 tx_ring->flags |= 1401 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1402 else if (insertion_support->inner & 1403 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1404 tx_ring->flags |= 1405 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1406 } 1407 } 1408 } 1409 } 1410 1411 /** 1412 * iavf_alloc_queues - Allocate memory for all rings 1413 * @adapter: board private structure to initialize 1414 * 1415 * We allocate one ring per queue at run-time since we don't know the 1416 * number of queues at compile-time. The polling_netdev array is 1417 * intended for Multiqueue, but should work fine with a single queue. 1418 **/ 1419 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1420 { 1421 int i, num_active_queues; 1422 1423 /* If we're in reset reallocating queues we don't actually know yet for 1424 * certain the PF gave us the number of queues we asked for but we'll 1425 * assume it did. Once basic reset is finished we'll confirm once we 1426 * start negotiating config with PF. 1427 */ 1428 if (adapter->num_req_queues) 1429 num_active_queues = adapter->num_req_queues; 1430 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1431 adapter->num_tc) 1432 num_active_queues = adapter->ch_config.total_qps; 1433 else 1434 num_active_queues = min_t(int, 1435 adapter->vsi_res->num_queue_pairs, 1436 (int)(num_online_cpus())); 1437 1438 1439 adapter->tx_rings = kcalloc(num_active_queues, 1440 sizeof(struct iavf_ring), GFP_KERNEL); 1441 if (!adapter->tx_rings) 1442 goto err_out; 1443 adapter->rx_rings = kcalloc(num_active_queues, 1444 sizeof(struct iavf_ring), GFP_KERNEL); 1445 if (!adapter->rx_rings) 1446 goto err_out; 1447 1448 for (i = 0; i < num_active_queues; i++) { 1449 struct iavf_ring *tx_ring; 1450 struct iavf_ring *rx_ring; 1451 1452 tx_ring = &adapter->tx_rings[i]; 1453 1454 tx_ring->queue_index = i; 1455 tx_ring->netdev = adapter->netdev; 1456 tx_ring->dev = &adapter->pdev->dev; 1457 tx_ring->count = adapter->tx_desc_count; 1458 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1459 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1460 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1461 1462 rx_ring = &adapter->rx_rings[i]; 1463 rx_ring->queue_index = i; 1464 rx_ring->netdev = adapter->netdev; 1465 rx_ring->dev = &adapter->pdev->dev; 1466 rx_ring->count = adapter->rx_desc_count; 1467 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1468 } 1469 1470 adapter->num_active_queues = num_active_queues; 1471 1472 iavf_set_queue_vlan_tag_loc(adapter); 1473 1474 return 0; 1475 1476 err_out: 1477 iavf_free_queues(adapter); 1478 return -ENOMEM; 1479 } 1480 1481 /** 1482 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1483 * @adapter: board private structure to initialize 1484 * 1485 * Attempt to configure the interrupts using the best available 1486 * capabilities of the hardware and the kernel. 1487 **/ 1488 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1489 { 1490 int vector, v_budget; 1491 int pairs = 0; 1492 int err = 0; 1493 1494 if (!adapter->vsi_res) { 1495 err = -EIO; 1496 goto out; 1497 } 1498 pairs = adapter->num_active_queues; 1499 1500 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1501 * us much good if we have more vectors than CPUs. However, we already 1502 * limit the total number of queues by the number of CPUs so we do not 1503 * need any further limiting here. 1504 */ 1505 v_budget = min_t(int, pairs + NONQ_VECS, 1506 (int)adapter->vf_res->max_vectors); 1507 1508 adapter->msix_entries = kcalloc(v_budget, 1509 sizeof(struct msix_entry), GFP_KERNEL); 1510 if (!adapter->msix_entries) { 1511 err = -ENOMEM; 1512 goto out; 1513 } 1514 1515 for (vector = 0; vector < v_budget; vector++) 1516 adapter->msix_entries[vector].entry = vector; 1517 1518 err = iavf_acquire_msix_vectors(adapter, v_budget); 1519 1520 out: 1521 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1522 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1523 return err; 1524 } 1525 1526 /** 1527 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1528 * @adapter: board private structure 1529 * 1530 * Return 0 on success, negative on failure 1531 **/ 1532 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1533 { 1534 struct iavf_aqc_get_set_rss_key_data *rss_key = 1535 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1536 struct iavf_hw *hw = &adapter->hw; 1537 enum iavf_status status; 1538 1539 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1540 /* bail because we already have a command pending */ 1541 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1542 adapter->current_op); 1543 return -EBUSY; 1544 } 1545 1546 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1547 if (status) { 1548 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1549 iavf_stat_str(hw, status), 1550 iavf_aq_str(hw, hw->aq.asq_last_status)); 1551 return iavf_status_to_errno(status); 1552 1553 } 1554 1555 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1556 adapter->rss_lut, adapter->rss_lut_size); 1557 if (status) { 1558 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1559 iavf_stat_str(hw, status), 1560 iavf_aq_str(hw, hw->aq.asq_last_status)); 1561 return iavf_status_to_errno(status); 1562 } 1563 1564 return 0; 1565 1566 } 1567 1568 /** 1569 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1570 * @adapter: board private structure 1571 * 1572 * Returns 0 on success, negative on failure 1573 **/ 1574 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1575 { 1576 struct iavf_hw *hw = &adapter->hw; 1577 u32 *dw; 1578 u16 i; 1579 1580 dw = (u32 *)adapter->rss_key; 1581 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1582 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1583 1584 dw = (u32 *)adapter->rss_lut; 1585 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1586 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1587 1588 iavf_flush(hw); 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * iavf_config_rss - Configure RSS keys and lut 1595 * @adapter: board private structure 1596 * 1597 * Returns 0 on success, negative on failure 1598 **/ 1599 int iavf_config_rss(struct iavf_adapter *adapter) 1600 { 1601 1602 if (RSS_PF(adapter)) { 1603 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1604 IAVF_FLAG_AQ_SET_RSS_KEY; 1605 return 0; 1606 } else if (RSS_AQ(adapter)) { 1607 return iavf_config_rss_aq(adapter); 1608 } else { 1609 return iavf_config_rss_reg(adapter); 1610 } 1611 } 1612 1613 /** 1614 * iavf_fill_rss_lut - Fill the lut with default values 1615 * @adapter: board private structure 1616 **/ 1617 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1618 { 1619 u16 i; 1620 1621 for (i = 0; i < adapter->rss_lut_size; i++) 1622 adapter->rss_lut[i] = i % adapter->num_active_queues; 1623 } 1624 1625 /** 1626 * iavf_init_rss - Prepare for RSS 1627 * @adapter: board private structure 1628 * 1629 * Return 0 on success, negative on failure 1630 **/ 1631 static int iavf_init_rss(struct iavf_adapter *adapter) 1632 { 1633 struct iavf_hw *hw = &adapter->hw; 1634 1635 if (!RSS_PF(adapter)) { 1636 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1637 if (adapter->vf_res->vf_cap_flags & 1638 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1639 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1640 else 1641 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1642 1643 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1644 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1645 } 1646 1647 iavf_fill_rss_lut(adapter); 1648 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1649 1650 return iavf_config_rss(adapter); 1651 } 1652 1653 /** 1654 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1655 * @adapter: board private structure to initialize 1656 * 1657 * We allocate one q_vector per queue interrupt. If allocation fails we 1658 * return -ENOMEM. 1659 **/ 1660 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1661 { 1662 int q_idx = 0, num_q_vectors; 1663 struct iavf_q_vector *q_vector; 1664 1665 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1666 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1667 GFP_KERNEL); 1668 if (!adapter->q_vectors) 1669 return -ENOMEM; 1670 1671 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1672 q_vector = &adapter->q_vectors[q_idx]; 1673 q_vector->adapter = adapter; 1674 q_vector->vsi = &adapter->vsi; 1675 q_vector->v_idx = q_idx; 1676 q_vector->reg_idx = q_idx; 1677 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1678 netif_napi_add(adapter->netdev, &q_vector->napi, 1679 iavf_napi_poll, NAPI_POLL_WEIGHT); 1680 } 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1687 * @adapter: board private structure to initialize 1688 * 1689 * This function frees the memory allocated to the q_vectors. In addition if 1690 * NAPI is enabled it will delete any references to the NAPI struct prior 1691 * to freeing the q_vector. 1692 **/ 1693 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1694 { 1695 int q_idx, num_q_vectors; 1696 int napi_vectors; 1697 1698 if (!adapter->q_vectors) 1699 return; 1700 1701 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1702 napi_vectors = adapter->num_active_queues; 1703 1704 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1705 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1706 1707 if (q_idx < napi_vectors) 1708 netif_napi_del(&q_vector->napi); 1709 } 1710 kfree(adapter->q_vectors); 1711 adapter->q_vectors = NULL; 1712 } 1713 1714 /** 1715 * iavf_reset_interrupt_capability - Reset MSIX setup 1716 * @adapter: board private structure 1717 * 1718 **/ 1719 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1720 { 1721 if (!adapter->msix_entries) 1722 return; 1723 1724 pci_disable_msix(adapter->pdev); 1725 kfree(adapter->msix_entries); 1726 adapter->msix_entries = NULL; 1727 } 1728 1729 /** 1730 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1731 * @adapter: board private structure to initialize 1732 * 1733 **/ 1734 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1735 { 1736 int err; 1737 1738 err = iavf_alloc_queues(adapter); 1739 if (err) { 1740 dev_err(&adapter->pdev->dev, 1741 "Unable to allocate memory for queues\n"); 1742 goto err_alloc_queues; 1743 } 1744 1745 rtnl_lock(); 1746 err = iavf_set_interrupt_capability(adapter); 1747 rtnl_unlock(); 1748 if (err) { 1749 dev_err(&adapter->pdev->dev, 1750 "Unable to setup interrupt capabilities\n"); 1751 goto err_set_interrupt; 1752 } 1753 1754 err = iavf_alloc_q_vectors(adapter); 1755 if (err) { 1756 dev_err(&adapter->pdev->dev, 1757 "Unable to allocate memory for queue vectors\n"); 1758 goto err_alloc_q_vectors; 1759 } 1760 1761 /* If we've made it so far while ADq flag being ON, then we haven't 1762 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1763 * resources have been allocated in the reset path. 1764 * Now we can truly claim that ADq is enabled. 1765 */ 1766 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1767 adapter->num_tc) 1768 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1769 adapter->num_tc); 1770 1771 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1772 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1773 adapter->num_active_queues); 1774 1775 return 0; 1776 err_alloc_q_vectors: 1777 iavf_reset_interrupt_capability(adapter); 1778 err_set_interrupt: 1779 iavf_free_queues(adapter); 1780 err_alloc_queues: 1781 return err; 1782 } 1783 1784 /** 1785 * iavf_free_rss - Free memory used by RSS structs 1786 * @adapter: board private structure 1787 **/ 1788 static void iavf_free_rss(struct iavf_adapter *adapter) 1789 { 1790 kfree(adapter->rss_key); 1791 adapter->rss_key = NULL; 1792 1793 kfree(adapter->rss_lut); 1794 adapter->rss_lut = NULL; 1795 } 1796 1797 /** 1798 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1799 * @adapter: board private structure 1800 * 1801 * Returns 0 on success, negative on failure 1802 **/ 1803 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1804 { 1805 struct net_device *netdev = adapter->netdev; 1806 int err; 1807 1808 if (netif_running(netdev)) 1809 iavf_free_traffic_irqs(adapter); 1810 iavf_free_misc_irq(adapter); 1811 iavf_reset_interrupt_capability(adapter); 1812 iavf_free_q_vectors(adapter); 1813 iavf_free_queues(adapter); 1814 1815 err = iavf_init_interrupt_scheme(adapter); 1816 if (err) 1817 goto err; 1818 1819 netif_tx_stop_all_queues(netdev); 1820 1821 err = iavf_request_misc_irq(adapter); 1822 if (err) 1823 goto err; 1824 1825 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1826 1827 iavf_map_rings_to_vectors(adapter); 1828 err: 1829 return err; 1830 } 1831 1832 /** 1833 * iavf_process_aq_command - process aq_required flags 1834 * and sends aq command 1835 * @adapter: pointer to iavf adapter structure 1836 * 1837 * Returns 0 on success 1838 * Returns error code if no command was sent 1839 * or error code if the command failed. 1840 **/ 1841 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1842 { 1843 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1844 return iavf_send_vf_config_msg(adapter); 1845 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1846 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1847 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1848 iavf_disable_queues(adapter); 1849 return 0; 1850 } 1851 1852 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1853 iavf_map_queues(adapter); 1854 return 0; 1855 } 1856 1857 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1858 iavf_add_ether_addrs(adapter); 1859 return 0; 1860 } 1861 1862 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1863 iavf_add_vlans(adapter); 1864 return 0; 1865 } 1866 1867 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1868 iavf_del_ether_addrs(adapter); 1869 return 0; 1870 } 1871 1872 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1873 iavf_del_vlans(adapter); 1874 return 0; 1875 } 1876 1877 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1878 iavf_enable_vlan_stripping(adapter); 1879 return 0; 1880 } 1881 1882 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1883 iavf_disable_vlan_stripping(adapter); 1884 return 0; 1885 } 1886 1887 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1888 iavf_configure_queues(adapter); 1889 return 0; 1890 } 1891 1892 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1893 iavf_enable_queues(adapter); 1894 return 0; 1895 } 1896 1897 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1898 /* This message goes straight to the firmware, not the 1899 * PF, so we don't have to set current_op as we will 1900 * not get a response through the ARQ. 1901 */ 1902 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1903 return 0; 1904 } 1905 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1906 iavf_get_hena(adapter); 1907 return 0; 1908 } 1909 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1910 iavf_set_hena(adapter); 1911 return 0; 1912 } 1913 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1914 iavf_set_rss_key(adapter); 1915 return 0; 1916 } 1917 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1918 iavf_set_rss_lut(adapter); 1919 return 0; 1920 } 1921 1922 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 1923 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 1924 FLAG_VF_MULTICAST_PROMISC); 1925 return 0; 1926 } 1927 1928 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 1929 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 1930 return 0; 1931 } 1932 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 1933 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 1934 iavf_set_promiscuous(adapter, 0); 1935 return 0; 1936 } 1937 1938 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 1939 iavf_enable_channels(adapter); 1940 return 0; 1941 } 1942 1943 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 1944 iavf_disable_channels(adapter); 1945 return 0; 1946 } 1947 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1948 iavf_add_cloud_filter(adapter); 1949 return 0; 1950 } 1951 1952 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1953 iavf_del_cloud_filter(adapter); 1954 return 0; 1955 } 1956 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 1957 iavf_del_cloud_filter(adapter); 1958 return 0; 1959 } 1960 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 1961 iavf_add_cloud_filter(adapter); 1962 return 0; 1963 } 1964 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 1965 iavf_add_fdir_filter(adapter); 1966 return IAVF_SUCCESS; 1967 } 1968 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 1969 iavf_del_fdir_filter(adapter); 1970 return IAVF_SUCCESS; 1971 } 1972 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 1973 iavf_add_adv_rss_cfg(adapter); 1974 return 0; 1975 } 1976 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 1977 iavf_del_adv_rss_cfg(adapter); 1978 return 0; 1979 } 1980 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 1981 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1982 return 0; 1983 } 1984 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 1985 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1986 return 0; 1987 } 1988 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 1989 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 1990 return 0; 1991 } 1992 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 1993 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 1994 return 0; 1995 } 1996 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 1997 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 1998 return 0; 1999 } 2000 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2001 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2002 return 0; 2003 } 2004 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2005 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2006 return 0; 2007 } 2008 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2009 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2010 return 0; 2011 } 2012 2013 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2014 iavf_request_stats(adapter); 2015 return 0; 2016 } 2017 2018 return -EAGAIN; 2019 } 2020 2021 /** 2022 * iavf_set_vlan_offload_features - set VLAN offload configuration 2023 * @adapter: board private structure 2024 * @prev_features: previous features used for comparison 2025 * @features: updated features used for configuration 2026 * 2027 * Set the aq_required bit(s) based on the requested features passed in to 2028 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2029 * the watchdog if any changes are requested to expedite the request via 2030 * virtchnl. 2031 **/ 2032 void 2033 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2034 netdev_features_t prev_features, 2035 netdev_features_t features) 2036 { 2037 bool enable_stripping = true, enable_insertion = true; 2038 u16 vlan_ethertype = 0; 2039 u64 aq_required = 0; 2040 2041 /* keep cases separate because one ethertype for offloads can be 2042 * disabled at the same time as another is disabled, so check for an 2043 * enabled ethertype first, then check for disabled. Default to 2044 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2045 * stripping. 2046 */ 2047 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2048 vlan_ethertype = ETH_P_8021AD; 2049 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2050 vlan_ethertype = ETH_P_8021Q; 2051 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2052 vlan_ethertype = ETH_P_8021AD; 2053 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2054 vlan_ethertype = ETH_P_8021Q; 2055 else 2056 vlan_ethertype = ETH_P_8021Q; 2057 2058 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2059 enable_stripping = false; 2060 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2061 enable_insertion = false; 2062 2063 if (VLAN_ALLOWED(adapter)) { 2064 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2065 * stripping via virtchnl. VLAN insertion can be toggled on the 2066 * netdev, but it doesn't require a virtchnl message 2067 */ 2068 if (enable_stripping) 2069 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2070 else 2071 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2072 2073 } else if (VLAN_V2_ALLOWED(adapter)) { 2074 switch (vlan_ethertype) { 2075 case ETH_P_8021Q: 2076 if (enable_stripping) 2077 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2078 else 2079 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2080 2081 if (enable_insertion) 2082 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2083 else 2084 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2085 break; 2086 case ETH_P_8021AD: 2087 if (enable_stripping) 2088 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2089 else 2090 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2091 2092 if (enable_insertion) 2093 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2094 else 2095 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2096 break; 2097 } 2098 } 2099 2100 if (aq_required) { 2101 adapter->aq_required |= aq_required; 2102 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2103 } 2104 } 2105 2106 /** 2107 * iavf_startup - first step of driver startup 2108 * @adapter: board private structure 2109 * 2110 * Function process __IAVF_STARTUP driver state. 2111 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2112 * when fails the state is changed to __IAVF_INIT_FAILED 2113 **/ 2114 static void iavf_startup(struct iavf_adapter *adapter) 2115 { 2116 struct pci_dev *pdev = adapter->pdev; 2117 struct iavf_hw *hw = &adapter->hw; 2118 enum iavf_status status; 2119 int ret; 2120 2121 WARN_ON(adapter->state != __IAVF_STARTUP); 2122 2123 /* driver loaded, probe complete */ 2124 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2125 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2126 status = iavf_set_mac_type(hw); 2127 if (status) { 2128 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2129 goto err; 2130 } 2131 2132 ret = iavf_check_reset_complete(hw); 2133 if (ret) { 2134 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2135 ret); 2136 goto err; 2137 } 2138 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2139 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2140 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2141 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2142 2143 status = iavf_init_adminq(hw); 2144 if (status) { 2145 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2146 status); 2147 goto err; 2148 } 2149 ret = iavf_send_api_ver(adapter); 2150 if (ret) { 2151 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2152 iavf_shutdown_adminq(hw); 2153 goto err; 2154 } 2155 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2156 return; 2157 err: 2158 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2159 } 2160 2161 /** 2162 * iavf_init_version_check - second step of driver startup 2163 * @adapter: board private structure 2164 * 2165 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2166 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2167 * when fails the state is changed to __IAVF_INIT_FAILED 2168 **/ 2169 static void iavf_init_version_check(struct iavf_adapter *adapter) 2170 { 2171 struct pci_dev *pdev = adapter->pdev; 2172 struct iavf_hw *hw = &adapter->hw; 2173 int err = -EAGAIN; 2174 2175 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2176 2177 if (!iavf_asq_done(hw)) { 2178 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2179 iavf_shutdown_adminq(hw); 2180 iavf_change_state(adapter, __IAVF_STARTUP); 2181 goto err; 2182 } 2183 2184 /* aq msg sent, awaiting reply */ 2185 err = iavf_verify_api_ver(adapter); 2186 if (err) { 2187 if (err == -EALREADY) 2188 err = iavf_send_api_ver(adapter); 2189 else 2190 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2191 adapter->pf_version.major, 2192 adapter->pf_version.minor, 2193 VIRTCHNL_VERSION_MAJOR, 2194 VIRTCHNL_VERSION_MINOR); 2195 goto err; 2196 } 2197 err = iavf_send_vf_config_msg(adapter); 2198 if (err) { 2199 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2200 err); 2201 goto err; 2202 } 2203 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2204 return; 2205 err: 2206 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2207 } 2208 2209 /** 2210 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2211 * @adapter: board private structure 2212 */ 2213 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2214 { 2215 int i, num_req_queues = adapter->num_req_queues; 2216 struct iavf_vsi *vsi = &adapter->vsi; 2217 2218 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2219 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2220 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2221 } 2222 if (!adapter->vsi_res) { 2223 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2224 return -ENODEV; 2225 } 2226 2227 if (num_req_queues && 2228 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2229 /* Problem. The PF gave us fewer queues than what we had 2230 * negotiated in our request. Need a reset to see if we can't 2231 * get back to a working state. 2232 */ 2233 dev_err(&adapter->pdev->dev, 2234 "Requested %d queues, but PF only gave us %d.\n", 2235 num_req_queues, 2236 adapter->vsi_res->num_queue_pairs); 2237 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 2238 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2239 iavf_schedule_reset(adapter); 2240 2241 return -EAGAIN; 2242 } 2243 adapter->num_req_queues = 0; 2244 adapter->vsi.id = adapter->vsi_res->vsi_id; 2245 2246 adapter->vsi.back = adapter; 2247 adapter->vsi.base_vector = 1; 2248 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; 2249 vsi->netdev = adapter->netdev; 2250 vsi->qs_handle = adapter->vsi_res->qset_handle; 2251 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2252 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2253 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2254 } else { 2255 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2256 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2257 } 2258 2259 return 0; 2260 } 2261 2262 /** 2263 * iavf_init_get_resources - third step of driver startup 2264 * @adapter: board private structure 2265 * 2266 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2267 * finishes driver initialization procedure. 2268 * When success the state is changed to __IAVF_DOWN 2269 * when fails the state is changed to __IAVF_INIT_FAILED 2270 **/ 2271 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2272 { 2273 struct pci_dev *pdev = adapter->pdev; 2274 struct iavf_hw *hw = &adapter->hw; 2275 int err; 2276 2277 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2278 /* aq msg sent, awaiting reply */ 2279 if (!adapter->vf_res) { 2280 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2281 GFP_KERNEL); 2282 if (!adapter->vf_res) { 2283 err = -ENOMEM; 2284 goto err; 2285 } 2286 } 2287 err = iavf_get_vf_config(adapter); 2288 if (err == -EALREADY) { 2289 err = iavf_send_vf_config_msg(adapter); 2290 goto err_alloc; 2291 } else if (err == -EINVAL) { 2292 /* We only get -EINVAL if the device is in a very bad 2293 * state or if we've been disabled for previous bad 2294 * behavior. Either way, we're done now. 2295 */ 2296 iavf_shutdown_adminq(hw); 2297 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2298 return; 2299 } 2300 if (err) { 2301 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2302 goto err_alloc; 2303 } 2304 2305 err = iavf_parse_vf_resource_msg(adapter); 2306 if (err) { 2307 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2308 err); 2309 goto err_alloc; 2310 } 2311 /* Some features require additional messages to negotiate extended 2312 * capabilities. These are processed in sequence by the 2313 * __IAVF_INIT_EXTENDED_CAPS driver state. 2314 */ 2315 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2316 2317 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2318 return; 2319 2320 err_alloc: 2321 kfree(adapter->vf_res); 2322 adapter->vf_res = NULL; 2323 err: 2324 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2325 } 2326 2327 /** 2328 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2329 * @adapter: board private structure 2330 * 2331 * Function processes send of the extended VLAN V2 capability message to the 2332 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2333 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2334 */ 2335 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2336 { 2337 int ret; 2338 2339 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2340 2341 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2342 if (ret && ret == -EOPNOTSUPP) { 2343 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2344 * we did not send the capability exchange message and do not 2345 * expect a response. 2346 */ 2347 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2348 } 2349 2350 /* We sent the message, so move on to the next step */ 2351 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2352 } 2353 2354 /** 2355 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2356 * @adapter: board private structure 2357 * 2358 * Function processes receipt of the extended VLAN V2 capability message from 2359 * the PF. 2360 **/ 2361 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2362 { 2363 int ret; 2364 2365 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2366 2367 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2368 2369 ret = iavf_get_vf_vlan_v2_caps(adapter); 2370 if (ret) 2371 goto err; 2372 2373 /* We've processed receipt of the VLAN V2 caps message */ 2374 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2375 return; 2376 err: 2377 /* We didn't receive a reply. Make sure we try sending again when 2378 * __IAVF_INIT_FAILED attempts to recover. 2379 */ 2380 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2381 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2382 } 2383 2384 /** 2385 * iavf_init_process_extended_caps - Part of driver startup 2386 * @adapter: board private structure 2387 * 2388 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2389 * handles negotiating capabilities for features which require an additional 2390 * message. 2391 * 2392 * Once all extended capabilities exchanges are finished, the driver will 2393 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2394 */ 2395 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2396 { 2397 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2398 2399 /* Process capability exchange for VLAN V2 */ 2400 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2401 iavf_init_send_offload_vlan_v2_caps(adapter); 2402 return; 2403 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2404 iavf_init_recv_offload_vlan_v2_caps(adapter); 2405 return; 2406 } 2407 2408 /* When we reach here, no further extended capabilities exchanges are 2409 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2410 */ 2411 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2412 } 2413 2414 /** 2415 * iavf_init_config_adapter - last part of driver startup 2416 * @adapter: board private structure 2417 * 2418 * After all the supported capabilities are negotiated, then the 2419 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2420 */ 2421 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2422 { 2423 struct net_device *netdev = adapter->netdev; 2424 struct pci_dev *pdev = adapter->pdev; 2425 int err; 2426 2427 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2428 2429 if (iavf_process_config(adapter)) 2430 goto err; 2431 2432 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2433 2434 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2435 2436 netdev->netdev_ops = &iavf_netdev_ops; 2437 iavf_set_ethtool_ops(netdev); 2438 netdev->watchdog_timeo = 5 * HZ; 2439 2440 /* MTU range: 68 - 9710 */ 2441 netdev->min_mtu = ETH_MIN_MTU; 2442 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2443 2444 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2445 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2446 adapter->hw.mac.addr); 2447 eth_hw_addr_random(netdev); 2448 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2449 } else { 2450 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2451 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2452 } 2453 2454 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2455 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2456 err = iavf_init_interrupt_scheme(adapter); 2457 if (err) 2458 goto err_sw_init; 2459 iavf_map_rings_to_vectors(adapter); 2460 if (adapter->vf_res->vf_cap_flags & 2461 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2462 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2463 2464 err = iavf_request_misc_irq(adapter); 2465 if (err) 2466 goto err_sw_init; 2467 2468 netif_carrier_off(netdev); 2469 adapter->link_up = false; 2470 2471 /* set the semaphore to prevent any callbacks after device registration 2472 * up to time when state of driver will be set to __IAVF_DOWN 2473 */ 2474 rtnl_lock(); 2475 if (!adapter->netdev_registered) { 2476 err = register_netdevice(netdev); 2477 if (err) { 2478 rtnl_unlock(); 2479 goto err_register; 2480 } 2481 } 2482 2483 adapter->netdev_registered = true; 2484 2485 netif_tx_stop_all_queues(netdev); 2486 if (CLIENT_ALLOWED(adapter)) { 2487 err = iavf_lan_add_device(adapter); 2488 if (err) 2489 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2490 err); 2491 } 2492 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2493 if (netdev->features & NETIF_F_GRO) 2494 dev_info(&pdev->dev, "GRO is enabled\n"); 2495 2496 iavf_change_state(adapter, __IAVF_DOWN); 2497 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2498 rtnl_unlock(); 2499 2500 iavf_misc_irq_enable(adapter); 2501 wake_up(&adapter->down_waitqueue); 2502 2503 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2504 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2505 if (!adapter->rss_key || !adapter->rss_lut) { 2506 err = -ENOMEM; 2507 goto err_mem; 2508 } 2509 if (RSS_AQ(adapter)) 2510 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2511 else 2512 iavf_init_rss(adapter); 2513 2514 if (VLAN_V2_ALLOWED(adapter)) 2515 /* request initial VLAN offload settings */ 2516 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2517 2518 return; 2519 err_mem: 2520 iavf_free_rss(adapter); 2521 err_register: 2522 iavf_free_misc_irq(adapter); 2523 err_sw_init: 2524 iavf_reset_interrupt_capability(adapter); 2525 err: 2526 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2527 } 2528 2529 /** 2530 * iavf_watchdog_task - Periodic call-back task 2531 * @work: pointer to work_struct 2532 **/ 2533 static void iavf_watchdog_task(struct work_struct *work) 2534 { 2535 struct iavf_adapter *adapter = container_of(work, 2536 struct iavf_adapter, 2537 watchdog_task.work); 2538 struct iavf_hw *hw = &adapter->hw; 2539 u32 reg_val; 2540 2541 if (!mutex_trylock(&adapter->crit_lock)) { 2542 if (adapter->state == __IAVF_REMOVE) 2543 return; 2544 2545 goto restart_watchdog; 2546 } 2547 2548 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2549 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2550 2551 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2552 adapter->aq_required = 0; 2553 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2554 mutex_unlock(&adapter->crit_lock); 2555 queue_work(iavf_wq, &adapter->reset_task); 2556 return; 2557 } 2558 2559 switch (adapter->state) { 2560 case __IAVF_STARTUP: 2561 iavf_startup(adapter); 2562 mutex_unlock(&adapter->crit_lock); 2563 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2564 msecs_to_jiffies(30)); 2565 return; 2566 case __IAVF_INIT_VERSION_CHECK: 2567 iavf_init_version_check(adapter); 2568 mutex_unlock(&adapter->crit_lock); 2569 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2570 msecs_to_jiffies(30)); 2571 return; 2572 case __IAVF_INIT_GET_RESOURCES: 2573 iavf_init_get_resources(adapter); 2574 mutex_unlock(&adapter->crit_lock); 2575 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2576 msecs_to_jiffies(1)); 2577 return; 2578 case __IAVF_INIT_EXTENDED_CAPS: 2579 iavf_init_process_extended_caps(adapter); 2580 mutex_unlock(&adapter->crit_lock); 2581 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2582 msecs_to_jiffies(1)); 2583 return; 2584 case __IAVF_INIT_CONFIG_ADAPTER: 2585 iavf_init_config_adapter(adapter); 2586 mutex_unlock(&adapter->crit_lock); 2587 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2588 msecs_to_jiffies(1)); 2589 return; 2590 case __IAVF_INIT_FAILED: 2591 if (test_bit(__IAVF_IN_REMOVE_TASK, 2592 &adapter->crit_section)) { 2593 /* Do not update the state and do not reschedule 2594 * watchdog task, iavf_remove should handle this state 2595 * as it can loop forever 2596 */ 2597 mutex_unlock(&adapter->crit_lock); 2598 return; 2599 } 2600 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2601 dev_err(&adapter->pdev->dev, 2602 "Failed to communicate with PF; waiting before retry\n"); 2603 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2604 iavf_shutdown_adminq(hw); 2605 mutex_unlock(&adapter->crit_lock); 2606 queue_delayed_work(iavf_wq, 2607 &adapter->watchdog_task, (5 * HZ)); 2608 return; 2609 } 2610 /* Try again from failed step*/ 2611 iavf_change_state(adapter, adapter->last_state); 2612 mutex_unlock(&adapter->crit_lock); 2613 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2614 return; 2615 case __IAVF_COMM_FAILED: 2616 if (test_bit(__IAVF_IN_REMOVE_TASK, 2617 &adapter->crit_section)) { 2618 /* Set state to __IAVF_INIT_FAILED and perform remove 2619 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2620 * doesn't bring the state back to __IAVF_COMM_FAILED. 2621 */ 2622 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2623 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2624 mutex_unlock(&adapter->crit_lock); 2625 return; 2626 } 2627 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2628 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2629 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2630 reg_val == VIRTCHNL_VFR_COMPLETED) { 2631 /* A chance for redemption! */ 2632 dev_err(&adapter->pdev->dev, 2633 "Hardware came out of reset. Attempting reinit.\n"); 2634 /* When init task contacts the PF and 2635 * gets everything set up again, it'll restart the 2636 * watchdog for us. Down, boy. Sit. Stay. Woof. 2637 */ 2638 iavf_change_state(adapter, __IAVF_STARTUP); 2639 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2640 } 2641 adapter->aq_required = 0; 2642 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2643 mutex_unlock(&adapter->crit_lock); 2644 queue_delayed_work(iavf_wq, 2645 &adapter->watchdog_task, 2646 msecs_to_jiffies(10)); 2647 return; 2648 case __IAVF_RESETTING: 2649 mutex_unlock(&adapter->crit_lock); 2650 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2651 return; 2652 case __IAVF_DOWN: 2653 case __IAVF_DOWN_PENDING: 2654 case __IAVF_TESTING: 2655 case __IAVF_RUNNING: 2656 if (adapter->current_op) { 2657 if (!iavf_asq_done(hw)) { 2658 dev_dbg(&adapter->pdev->dev, 2659 "Admin queue timeout\n"); 2660 iavf_send_api_ver(adapter); 2661 } 2662 } else { 2663 int ret = iavf_process_aq_command(adapter); 2664 2665 /* An error will be returned if no commands were 2666 * processed; use this opportunity to update stats 2667 * if the error isn't -ENOTSUPP 2668 */ 2669 if (ret && ret != -EOPNOTSUPP && 2670 adapter->state == __IAVF_RUNNING) 2671 iavf_request_stats(adapter); 2672 } 2673 if (adapter->state == __IAVF_RUNNING) 2674 iavf_detect_recover_hung(&adapter->vsi); 2675 break; 2676 case __IAVF_REMOVE: 2677 default: 2678 mutex_unlock(&adapter->crit_lock); 2679 return; 2680 } 2681 2682 /* check for hw reset */ 2683 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2684 if (!reg_val) { 2685 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2686 adapter->aq_required = 0; 2687 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2688 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2689 queue_work(iavf_wq, &adapter->reset_task); 2690 mutex_unlock(&adapter->crit_lock); 2691 queue_delayed_work(iavf_wq, 2692 &adapter->watchdog_task, HZ * 2); 2693 return; 2694 } 2695 2696 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2697 mutex_unlock(&adapter->crit_lock); 2698 restart_watchdog: 2699 if (adapter->state >= __IAVF_DOWN) 2700 queue_work(iavf_wq, &adapter->adminq_task); 2701 if (adapter->aq_required) 2702 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2703 msecs_to_jiffies(20)); 2704 else 2705 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2706 } 2707 2708 static void iavf_disable_vf(struct iavf_adapter *adapter) 2709 { 2710 struct iavf_mac_filter *f, *ftmp; 2711 struct iavf_vlan_filter *fv, *fvtmp; 2712 struct iavf_cloud_filter *cf, *cftmp; 2713 2714 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2715 2716 /* We don't use netif_running() because it may be true prior to 2717 * ndo_open() returning, so we can't assume it means all our open 2718 * tasks have finished, since we're not holding the rtnl_lock here. 2719 */ 2720 if (adapter->state == __IAVF_RUNNING) { 2721 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2722 netif_carrier_off(adapter->netdev); 2723 netif_tx_disable(adapter->netdev); 2724 adapter->link_up = false; 2725 iavf_napi_disable_all(adapter); 2726 iavf_irq_disable(adapter); 2727 iavf_free_traffic_irqs(adapter); 2728 iavf_free_all_tx_resources(adapter); 2729 iavf_free_all_rx_resources(adapter); 2730 } 2731 2732 spin_lock_bh(&adapter->mac_vlan_list_lock); 2733 2734 /* Delete all of the filters */ 2735 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2736 list_del(&f->list); 2737 kfree(f); 2738 } 2739 2740 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2741 list_del(&fv->list); 2742 kfree(fv); 2743 } 2744 2745 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2746 2747 spin_lock_bh(&adapter->cloud_filter_list_lock); 2748 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2749 list_del(&cf->list); 2750 kfree(cf); 2751 adapter->num_cloud_filters--; 2752 } 2753 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2754 2755 iavf_free_misc_irq(adapter); 2756 iavf_reset_interrupt_capability(adapter); 2757 iavf_free_q_vectors(adapter); 2758 iavf_free_queues(adapter); 2759 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2760 iavf_shutdown_adminq(&adapter->hw); 2761 adapter->netdev->flags &= ~IFF_UP; 2762 mutex_unlock(&adapter->crit_lock); 2763 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2764 iavf_change_state(adapter, __IAVF_DOWN); 2765 wake_up(&adapter->down_waitqueue); 2766 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2767 } 2768 2769 /** 2770 * iavf_reset_task - Call-back task to handle hardware reset 2771 * @work: pointer to work_struct 2772 * 2773 * During reset we need to shut down and reinitialize the admin queue 2774 * before we can use it to communicate with the PF again. We also clear 2775 * and reinit the rings because that context is lost as well. 2776 **/ 2777 static void iavf_reset_task(struct work_struct *work) 2778 { 2779 struct iavf_adapter *adapter = container_of(work, 2780 struct iavf_adapter, 2781 reset_task); 2782 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2783 struct net_device *netdev = adapter->netdev; 2784 struct iavf_hw *hw = &adapter->hw; 2785 struct iavf_mac_filter *f, *ftmp; 2786 struct iavf_cloud_filter *cf; 2787 enum iavf_status status; 2788 u32 reg_val; 2789 int i = 0, err; 2790 bool running; 2791 2792 /* When device is being removed it doesn't make sense to run the reset 2793 * task, just return in such a case. 2794 */ 2795 if (!mutex_trylock(&adapter->crit_lock)) { 2796 if (adapter->state != __IAVF_REMOVE) 2797 queue_work(iavf_wq, &adapter->reset_task); 2798 2799 return; 2800 } 2801 2802 while (!mutex_trylock(&adapter->client_lock)) 2803 usleep_range(500, 1000); 2804 if (CLIENT_ENABLED(adapter)) { 2805 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2806 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2807 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2808 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2809 cancel_delayed_work_sync(&adapter->client_task); 2810 iavf_notify_client_close(&adapter->vsi, true); 2811 } 2812 iavf_misc_irq_disable(adapter); 2813 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2814 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2815 /* Restart the AQ here. If we have been reset but didn't 2816 * detect it, or if the PF had to reinit, our AQ will be hosed. 2817 */ 2818 iavf_shutdown_adminq(hw); 2819 iavf_init_adminq(hw); 2820 iavf_request_reset(adapter); 2821 } 2822 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2823 2824 /* poll until we see the reset actually happen */ 2825 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2826 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2827 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2828 if (!reg_val) 2829 break; 2830 usleep_range(5000, 10000); 2831 } 2832 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2833 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2834 goto continue_reset; /* act like the reset happened */ 2835 } 2836 2837 /* wait until the reset is complete and the PF is responding to us */ 2838 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2839 /* sleep first to make sure a minimum wait time is met */ 2840 msleep(IAVF_RESET_WAIT_MS); 2841 2842 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2843 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2844 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2845 break; 2846 } 2847 2848 pci_set_master(adapter->pdev); 2849 pci_restore_msi_state(adapter->pdev); 2850 2851 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2852 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2853 reg_val); 2854 iavf_disable_vf(adapter); 2855 mutex_unlock(&adapter->client_lock); 2856 mutex_unlock(&adapter->crit_lock); 2857 return; /* Do not attempt to reinit. It's dead, Jim. */ 2858 } 2859 2860 continue_reset: 2861 /* We don't use netif_running() because it may be true prior to 2862 * ndo_open() returning, so we can't assume it means all our open 2863 * tasks have finished, since we're not holding the rtnl_lock here. 2864 */ 2865 running = adapter->state == __IAVF_RUNNING; 2866 2867 if (running) { 2868 netdev->flags &= ~IFF_UP; 2869 netif_carrier_off(netdev); 2870 netif_tx_stop_all_queues(netdev); 2871 adapter->link_up = false; 2872 iavf_napi_disable_all(adapter); 2873 } 2874 iavf_irq_disable(adapter); 2875 2876 iavf_change_state(adapter, __IAVF_RESETTING); 2877 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2878 2879 /* free the Tx/Rx rings and descriptors, might be better to just 2880 * re-use them sometime in the future 2881 */ 2882 iavf_free_all_rx_resources(adapter); 2883 iavf_free_all_tx_resources(adapter); 2884 2885 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2886 /* kill and reinit the admin queue */ 2887 iavf_shutdown_adminq(hw); 2888 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2889 status = iavf_init_adminq(hw); 2890 if (status) { 2891 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2892 status); 2893 goto reset_err; 2894 } 2895 adapter->aq_required = 0; 2896 2897 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2898 err = iavf_reinit_interrupt_scheme(adapter); 2899 if (err) 2900 goto reset_err; 2901 } 2902 2903 if (RSS_AQ(adapter)) { 2904 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2905 } else { 2906 err = iavf_init_rss(adapter); 2907 if (err) 2908 goto reset_err; 2909 } 2910 2911 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 2912 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 2913 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 2914 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 2915 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 2916 * been successfully sent and negotiated 2917 */ 2918 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 2919 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 2920 2921 spin_lock_bh(&adapter->mac_vlan_list_lock); 2922 2923 /* Delete filter for the current MAC address, it could have 2924 * been changed by the PF via administratively set MAC. 2925 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 2926 */ 2927 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2928 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 2929 list_del(&f->list); 2930 kfree(f); 2931 } 2932 } 2933 /* re-add all MAC filters */ 2934 list_for_each_entry(f, &adapter->mac_filter_list, list) { 2935 f->add = true; 2936 } 2937 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2938 2939 /* check if TCs are running and re-add all cloud filters */ 2940 spin_lock_bh(&adapter->cloud_filter_list_lock); 2941 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 2942 adapter->num_tc) { 2943 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 2944 cf->add = true; 2945 } 2946 } 2947 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2948 2949 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 2950 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 2951 iavf_misc_irq_enable(adapter); 2952 2953 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 2954 2955 /* We were running when the reset started, so we need to restore some 2956 * state here. 2957 */ 2958 if (running) { 2959 /* allocate transmit descriptors */ 2960 err = iavf_setup_all_tx_resources(adapter); 2961 if (err) 2962 goto reset_err; 2963 2964 /* allocate receive descriptors */ 2965 err = iavf_setup_all_rx_resources(adapter); 2966 if (err) 2967 goto reset_err; 2968 2969 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { 2970 err = iavf_request_traffic_irqs(adapter, netdev->name); 2971 if (err) 2972 goto reset_err; 2973 2974 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 2975 } 2976 2977 iavf_configure(adapter); 2978 2979 /* iavf_up_complete() will switch device back 2980 * to __IAVF_RUNNING 2981 */ 2982 iavf_up_complete(adapter); 2983 netdev->flags |= IFF_UP; 2984 iavf_irq_enable(adapter, true); 2985 } else { 2986 iavf_change_state(adapter, __IAVF_DOWN); 2987 wake_up(&adapter->down_waitqueue); 2988 } 2989 mutex_unlock(&adapter->client_lock); 2990 mutex_unlock(&adapter->crit_lock); 2991 2992 return; 2993 reset_err: 2994 mutex_unlock(&adapter->client_lock); 2995 mutex_unlock(&adapter->crit_lock); 2996 if (running) { 2997 iavf_change_state(adapter, __IAVF_RUNNING); 2998 netdev->flags |= IFF_UP; 2999 } 3000 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3001 iavf_close(netdev); 3002 } 3003 3004 /** 3005 * iavf_adminq_task - worker thread to clean the admin queue 3006 * @work: pointer to work_struct containing our data 3007 **/ 3008 static void iavf_adminq_task(struct work_struct *work) 3009 { 3010 struct iavf_adapter *adapter = 3011 container_of(work, struct iavf_adapter, adminq_task); 3012 struct iavf_hw *hw = &adapter->hw; 3013 struct iavf_arq_event_info event; 3014 enum virtchnl_ops v_op; 3015 enum iavf_status ret, v_ret; 3016 u32 val, oldval; 3017 u16 pending; 3018 3019 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3020 goto out; 3021 3022 if (!mutex_trylock(&adapter->crit_lock)) { 3023 if (adapter->state == __IAVF_REMOVE) 3024 return; 3025 3026 queue_work(iavf_wq, &adapter->adminq_task); 3027 goto out; 3028 } 3029 3030 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3031 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3032 if (!event.msg_buf) 3033 goto out; 3034 3035 do { 3036 ret = iavf_clean_arq_element(hw, &event, &pending); 3037 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3038 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3039 3040 if (ret || !v_op) 3041 break; /* No event to process or error cleaning ARQ */ 3042 3043 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3044 event.msg_len); 3045 if (pending != 0) 3046 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3047 } while (pending); 3048 mutex_unlock(&adapter->crit_lock); 3049 3050 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3051 if (adapter->netdev_registered || 3052 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3053 struct net_device *netdev = adapter->netdev; 3054 3055 rtnl_lock(); 3056 netdev_update_features(netdev); 3057 rtnl_unlock(); 3058 /* Request VLAN offload settings */ 3059 if (VLAN_V2_ALLOWED(adapter)) 3060 iavf_set_vlan_offload_features 3061 (adapter, 0, netdev->features); 3062 3063 iavf_set_queue_vlan_tag_loc(adapter); 3064 } 3065 3066 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3067 } 3068 if ((adapter->flags & 3069 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3070 adapter->state == __IAVF_RESETTING) 3071 goto freedom; 3072 3073 /* check for error indications */ 3074 val = rd32(hw, hw->aq.arq.len); 3075 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3076 goto freedom; 3077 oldval = val; 3078 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3079 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3080 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3081 } 3082 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3083 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3084 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3085 } 3086 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3087 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3088 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3089 } 3090 if (oldval != val) 3091 wr32(hw, hw->aq.arq.len, val); 3092 3093 val = rd32(hw, hw->aq.asq.len); 3094 oldval = val; 3095 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3096 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3097 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3098 } 3099 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3100 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3101 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3102 } 3103 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3104 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3105 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3106 } 3107 if (oldval != val) 3108 wr32(hw, hw->aq.asq.len, val); 3109 3110 freedom: 3111 kfree(event.msg_buf); 3112 out: 3113 /* re-enable Admin queue interrupt cause */ 3114 iavf_misc_irq_enable(adapter); 3115 } 3116 3117 /** 3118 * iavf_client_task - worker thread to perform client work 3119 * @work: pointer to work_struct containing our data 3120 * 3121 * This task handles client interactions. Because client calls can be 3122 * reentrant, we can't handle them in the watchdog. 3123 **/ 3124 static void iavf_client_task(struct work_struct *work) 3125 { 3126 struct iavf_adapter *adapter = 3127 container_of(work, struct iavf_adapter, client_task.work); 3128 3129 /* If we can't get the client bit, just give up. We'll be rescheduled 3130 * later. 3131 */ 3132 3133 if (!mutex_trylock(&adapter->client_lock)) 3134 return; 3135 3136 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3137 iavf_client_subtask(adapter); 3138 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3139 goto out; 3140 } 3141 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3142 iavf_notify_client_l2_params(&adapter->vsi); 3143 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3144 goto out; 3145 } 3146 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3147 iavf_notify_client_close(&adapter->vsi, false); 3148 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3149 goto out; 3150 } 3151 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3152 iavf_notify_client_open(&adapter->vsi); 3153 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3154 } 3155 out: 3156 mutex_unlock(&adapter->client_lock); 3157 } 3158 3159 /** 3160 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3161 * @adapter: board private structure 3162 * 3163 * Free all transmit software resources 3164 **/ 3165 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3166 { 3167 int i; 3168 3169 if (!adapter->tx_rings) 3170 return; 3171 3172 for (i = 0; i < adapter->num_active_queues; i++) 3173 if (adapter->tx_rings[i].desc) 3174 iavf_free_tx_resources(&adapter->tx_rings[i]); 3175 } 3176 3177 /** 3178 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3179 * @adapter: board private structure 3180 * 3181 * If this function returns with an error, then it's possible one or 3182 * more of the rings is populated (while the rest are not). It is the 3183 * callers duty to clean those orphaned rings. 3184 * 3185 * Return 0 on success, negative on failure 3186 **/ 3187 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3188 { 3189 int i, err = 0; 3190 3191 for (i = 0; i < adapter->num_active_queues; i++) { 3192 adapter->tx_rings[i].count = adapter->tx_desc_count; 3193 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3194 if (!err) 3195 continue; 3196 dev_err(&adapter->pdev->dev, 3197 "Allocation for Tx Queue %u failed\n", i); 3198 break; 3199 } 3200 3201 return err; 3202 } 3203 3204 /** 3205 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3206 * @adapter: board private structure 3207 * 3208 * If this function returns with an error, then it's possible one or 3209 * more of the rings is populated (while the rest are not). It is the 3210 * callers duty to clean those orphaned rings. 3211 * 3212 * Return 0 on success, negative on failure 3213 **/ 3214 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3215 { 3216 int i, err = 0; 3217 3218 for (i = 0; i < adapter->num_active_queues; i++) { 3219 adapter->rx_rings[i].count = adapter->rx_desc_count; 3220 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3221 if (!err) 3222 continue; 3223 dev_err(&adapter->pdev->dev, 3224 "Allocation for Rx Queue %u failed\n", i); 3225 break; 3226 } 3227 return err; 3228 } 3229 3230 /** 3231 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3232 * @adapter: board private structure 3233 * 3234 * Free all receive software resources 3235 **/ 3236 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3237 { 3238 int i; 3239 3240 if (!adapter->rx_rings) 3241 return; 3242 3243 for (i = 0; i < adapter->num_active_queues; i++) 3244 if (adapter->rx_rings[i].desc) 3245 iavf_free_rx_resources(&adapter->rx_rings[i]); 3246 } 3247 3248 /** 3249 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3250 * @adapter: board private structure 3251 * @max_tx_rate: max Tx bw for a tc 3252 **/ 3253 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3254 u64 max_tx_rate) 3255 { 3256 int speed = 0, ret = 0; 3257 3258 if (ADV_LINK_SUPPORT(adapter)) { 3259 if (adapter->link_speed_mbps < U32_MAX) { 3260 speed = adapter->link_speed_mbps; 3261 goto validate_bw; 3262 } else { 3263 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3264 return -EINVAL; 3265 } 3266 } 3267 3268 switch (adapter->link_speed) { 3269 case VIRTCHNL_LINK_SPEED_40GB: 3270 speed = SPEED_40000; 3271 break; 3272 case VIRTCHNL_LINK_SPEED_25GB: 3273 speed = SPEED_25000; 3274 break; 3275 case VIRTCHNL_LINK_SPEED_20GB: 3276 speed = SPEED_20000; 3277 break; 3278 case VIRTCHNL_LINK_SPEED_10GB: 3279 speed = SPEED_10000; 3280 break; 3281 case VIRTCHNL_LINK_SPEED_5GB: 3282 speed = SPEED_5000; 3283 break; 3284 case VIRTCHNL_LINK_SPEED_2_5GB: 3285 speed = SPEED_2500; 3286 break; 3287 case VIRTCHNL_LINK_SPEED_1GB: 3288 speed = SPEED_1000; 3289 break; 3290 case VIRTCHNL_LINK_SPEED_100MB: 3291 speed = SPEED_100; 3292 break; 3293 default: 3294 break; 3295 } 3296 3297 validate_bw: 3298 if (max_tx_rate > speed) { 3299 dev_err(&adapter->pdev->dev, 3300 "Invalid tx rate specified\n"); 3301 ret = -EINVAL; 3302 } 3303 3304 return ret; 3305 } 3306 3307 /** 3308 * iavf_validate_ch_config - validate queue mapping info 3309 * @adapter: board private structure 3310 * @mqprio_qopt: queue parameters 3311 * 3312 * This function validates if the config provided by the user to 3313 * configure queue channels is valid or not. Returns 0 on a valid 3314 * config. 3315 **/ 3316 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3317 struct tc_mqprio_qopt_offload *mqprio_qopt) 3318 { 3319 u64 total_max_rate = 0; 3320 int i, num_qps = 0; 3321 u64 tx_rate = 0; 3322 int ret = 0; 3323 3324 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3325 mqprio_qopt->qopt.num_tc < 1) 3326 return -EINVAL; 3327 3328 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3329 if (!mqprio_qopt->qopt.count[i] || 3330 mqprio_qopt->qopt.offset[i] != num_qps) 3331 return -EINVAL; 3332 if (mqprio_qopt->min_rate[i]) { 3333 dev_err(&adapter->pdev->dev, 3334 "Invalid min tx rate (greater than 0) specified\n"); 3335 return -EINVAL; 3336 } 3337 /*convert to Mbps */ 3338 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3339 IAVF_MBPS_DIVISOR); 3340 total_max_rate += tx_rate; 3341 num_qps += mqprio_qopt->qopt.count[i]; 3342 } 3343 if (num_qps > adapter->num_active_queues) { 3344 dev_err(&adapter->pdev->dev, 3345 "Cannot support requested number of queues\n"); 3346 return -EINVAL; 3347 } 3348 3349 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3350 return ret; 3351 } 3352 3353 /** 3354 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3355 * @adapter: board private structure 3356 **/ 3357 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3358 { 3359 struct iavf_cloud_filter *cf, *cftmp; 3360 3361 spin_lock_bh(&adapter->cloud_filter_list_lock); 3362 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3363 list) { 3364 list_del(&cf->list); 3365 kfree(cf); 3366 adapter->num_cloud_filters--; 3367 } 3368 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3369 } 3370 3371 /** 3372 * __iavf_setup_tc - configure multiple traffic classes 3373 * @netdev: network interface device structure 3374 * @type_data: tc offload data 3375 * 3376 * This function processes the config information provided by the 3377 * user to configure traffic classes/queue channels and packages the 3378 * information to request the PF to setup traffic classes. 3379 * 3380 * Returns 0 on success. 3381 **/ 3382 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3383 { 3384 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3385 struct iavf_adapter *adapter = netdev_priv(netdev); 3386 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3387 u8 num_tc = 0, total_qps = 0; 3388 int ret = 0, netdev_tc = 0; 3389 u64 max_tx_rate; 3390 u16 mode; 3391 int i; 3392 3393 num_tc = mqprio_qopt->qopt.num_tc; 3394 mode = mqprio_qopt->mode; 3395 3396 /* delete queue_channel */ 3397 if (!mqprio_qopt->qopt.hw) { 3398 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3399 /* reset the tc configuration */ 3400 netdev_reset_tc(netdev); 3401 adapter->num_tc = 0; 3402 netif_tx_stop_all_queues(netdev); 3403 netif_tx_disable(netdev); 3404 iavf_del_all_cloud_filters(adapter); 3405 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3406 goto exit; 3407 } else { 3408 return -EINVAL; 3409 } 3410 } 3411 3412 /* add queue channel */ 3413 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3414 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3415 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3416 return -EOPNOTSUPP; 3417 } 3418 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3419 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3420 return -EINVAL; 3421 } 3422 3423 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3424 if (ret) 3425 return ret; 3426 /* Return if same TC config is requested */ 3427 if (adapter->num_tc == num_tc) 3428 return 0; 3429 adapter->num_tc = num_tc; 3430 3431 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3432 if (i < num_tc) { 3433 adapter->ch_config.ch_info[i].count = 3434 mqprio_qopt->qopt.count[i]; 3435 adapter->ch_config.ch_info[i].offset = 3436 mqprio_qopt->qopt.offset[i]; 3437 total_qps += mqprio_qopt->qopt.count[i]; 3438 max_tx_rate = mqprio_qopt->max_rate[i]; 3439 /* convert to Mbps */ 3440 max_tx_rate = div_u64(max_tx_rate, 3441 IAVF_MBPS_DIVISOR); 3442 adapter->ch_config.ch_info[i].max_tx_rate = 3443 max_tx_rate; 3444 } else { 3445 adapter->ch_config.ch_info[i].count = 1; 3446 adapter->ch_config.ch_info[i].offset = 0; 3447 } 3448 } 3449 adapter->ch_config.total_qps = total_qps; 3450 netif_tx_stop_all_queues(netdev); 3451 netif_tx_disable(netdev); 3452 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3453 netdev_reset_tc(netdev); 3454 /* Report the tc mapping up the stack */ 3455 netdev_set_num_tc(adapter->netdev, num_tc); 3456 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3457 u16 qcount = mqprio_qopt->qopt.count[i]; 3458 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3459 3460 if (i < num_tc) 3461 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3462 qoffset); 3463 } 3464 } 3465 exit: 3466 return ret; 3467 } 3468 3469 /** 3470 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3471 * @adapter: board private structure 3472 * @f: pointer to struct flow_cls_offload 3473 * @filter: pointer to cloud filter structure 3474 */ 3475 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3476 struct flow_cls_offload *f, 3477 struct iavf_cloud_filter *filter) 3478 { 3479 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3480 struct flow_dissector *dissector = rule->match.dissector; 3481 u16 n_proto_mask = 0; 3482 u16 n_proto_key = 0; 3483 u8 field_flags = 0; 3484 u16 addr_type = 0; 3485 u16 n_proto = 0; 3486 int i = 0; 3487 struct virtchnl_filter *vf = &filter->f; 3488 3489 if (dissector->used_keys & 3490 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3491 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3492 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3493 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3494 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3495 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3496 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3497 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3498 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3499 dissector->used_keys); 3500 return -EOPNOTSUPP; 3501 } 3502 3503 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3504 struct flow_match_enc_keyid match; 3505 3506 flow_rule_match_enc_keyid(rule, &match); 3507 if (match.mask->keyid != 0) 3508 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3509 } 3510 3511 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3512 struct flow_match_basic match; 3513 3514 flow_rule_match_basic(rule, &match); 3515 n_proto_key = ntohs(match.key->n_proto); 3516 n_proto_mask = ntohs(match.mask->n_proto); 3517 3518 if (n_proto_key == ETH_P_ALL) { 3519 n_proto_key = 0; 3520 n_proto_mask = 0; 3521 } 3522 n_proto = n_proto_key & n_proto_mask; 3523 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3524 return -EINVAL; 3525 if (n_proto == ETH_P_IPV6) { 3526 /* specify flow type as TCP IPv6 */ 3527 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3528 } 3529 3530 if (match.key->ip_proto != IPPROTO_TCP) { 3531 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3532 return -EINVAL; 3533 } 3534 } 3535 3536 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3537 struct flow_match_eth_addrs match; 3538 3539 flow_rule_match_eth_addrs(rule, &match); 3540 3541 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3542 if (!is_zero_ether_addr(match.mask->dst)) { 3543 if (is_broadcast_ether_addr(match.mask->dst)) { 3544 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3545 } else { 3546 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3547 match.mask->dst); 3548 return -EINVAL; 3549 } 3550 } 3551 3552 if (!is_zero_ether_addr(match.mask->src)) { 3553 if (is_broadcast_ether_addr(match.mask->src)) { 3554 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3555 } else { 3556 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3557 match.mask->src); 3558 return -EINVAL; 3559 } 3560 } 3561 3562 if (!is_zero_ether_addr(match.key->dst)) 3563 if (is_valid_ether_addr(match.key->dst) || 3564 is_multicast_ether_addr(match.key->dst)) { 3565 /* set the mask if a valid dst_mac address */ 3566 for (i = 0; i < ETH_ALEN; i++) 3567 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3568 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3569 match.key->dst); 3570 } 3571 3572 if (!is_zero_ether_addr(match.key->src)) 3573 if (is_valid_ether_addr(match.key->src) || 3574 is_multicast_ether_addr(match.key->src)) { 3575 /* set the mask if a valid dst_mac address */ 3576 for (i = 0; i < ETH_ALEN; i++) 3577 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3578 ether_addr_copy(vf->data.tcp_spec.src_mac, 3579 match.key->src); 3580 } 3581 } 3582 3583 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3584 struct flow_match_vlan match; 3585 3586 flow_rule_match_vlan(rule, &match); 3587 if (match.mask->vlan_id) { 3588 if (match.mask->vlan_id == VLAN_VID_MASK) { 3589 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3590 } else { 3591 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3592 match.mask->vlan_id); 3593 return -EINVAL; 3594 } 3595 } 3596 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3597 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3598 } 3599 3600 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3601 struct flow_match_control match; 3602 3603 flow_rule_match_control(rule, &match); 3604 addr_type = match.key->addr_type; 3605 } 3606 3607 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3608 struct flow_match_ipv4_addrs match; 3609 3610 flow_rule_match_ipv4_addrs(rule, &match); 3611 if (match.mask->dst) { 3612 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3613 field_flags |= IAVF_CLOUD_FIELD_IIP; 3614 } else { 3615 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3616 be32_to_cpu(match.mask->dst)); 3617 return -EINVAL; 3618 } 3619 } 3620 3621 if (match.mask->src) { 3622 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3623 field_flags |= IAVF_CLOUD_FIELD_IIP; 3624 } else { 3625 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3626 be32_to_cpu(match.mask->dst)); 3627 return -EINVAL; 3628 } 3629 } 3630 3631 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3632 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3633 return -EINVAL; 3634 } 3635 if (match.key->dst) { 3636 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3637 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3638 } 3639 if (match.key->src) { 3640 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3641 vf->data.tcp_spec.src_ip[0] = match.key->src; 3642 } 3643 } 3644 3645 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3646 struct flow_match_ipv6_addrs match; 3647 3648 flow_rule_match_ipv6_addrs(rule, &match); 3649 3650 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3651 if (ipv6_addr_any(&match.mask->dst)) { 3652 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3653 IPV6_ADDR_ANY); 3654 return -EINVAL; 3655 } 3656 3657 /* src and dest IPv6 address should not be LOOPBACK 3658 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3659 */ 3660 if (ipv6_addr_loopback(&match.key->dst) || 3661 ipv6_addr_loopback(&match.key->src)) { 3662 dev_err(&adapter->pdev->dev, 3663 "ipv6 addr should not be loopback\n"); 3664 return -EINVAL; 3665 } 3666 if (!ipv6_addr_any(&match.mask->dst) || 3667 !ipv6_addr_any(&match.mask->src)) 3668 field_flags |= IAVF_CLOUD_FIELD_IIP; 3669 3670 for (i = 0; i < 4; i++) 3671 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3672 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3673 sizeof(vf->data.tcp_spec.dst_ip)); 3674 for (i = 0; i < 4; i++) 3675 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3676 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3677 sizeof(vf->data.tcp_spec.src_ip)); 3678 } 3679 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3680 struct flow_match_ports match; 3681 3682 flow_rule_match_ports(rule, &match); 3683 if (match.mask->src) { 3684 if (match.mask->src == cpu_to_be16(0xffff)) { 3685 field_flags |= IAVF_CLOUD_FIELD_IIP; 3686 } else { 3687 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3688 be16_to_cpu(match.mask->src)); 3689 return -EINVAL; 3690 } 3691 } 3692 3693 if (match.mask->dst) { 3694 if (match.mask->dst == cpu_to_be16(0xffff)) { 3695 field_flags |= IAVF_CLOUD_FIELD_IIP; 3696 } else { 3697 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3698 be16_to_cpu(match.mask->dst)); 3699 return -EINVAL; 3700 } 3701 } 3702 if (match.key->dst) { 3703 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3704 vf->data.tcp_spec.dst_port = match.key->dst; 3705 } 3706 3707 if (match.key->src) { 3708 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3709 vf->data.tcp_spec.src_port = match.key->src; 3710 } 3711 } 3712 vf->field_flags = field_flags; 3713 3714 return 0; 3715 } 3716 3717 /** 3718 * iavf_handle_tclass - Forward to a traffic class on the device 3719 * @adapter: board private structure 3720 * @tc: traffic class index on the device 3721 * @filter: pointer to cloud filter structure 3722 */ 3723 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3724 struct iavf_cloud_filter *filter) 3725 { 3726 if (tc == 0) 3727 return 0; 3728 if (tc < adapter->num_tc) { 3729 if (!filter->f.data.tcp_spec.dst_port) { 3730 dev_err(&adapter->pdev->dev, 3731 "Specify destination port to redirect to traffic class other than TC0\n"); 3732 return -EINVAL; 3733 } 3734 } 3735 /* redirect to a traffic class on the same device */ 3736 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3737 filter->f.action_meta = tc; 3738 return 0; 3739 } 3740 3741 /** 3742 * iavf_configure_clsflower - Add tc flower filters 3743 * @adapter: board private structure 3744 * @cls_flower: Pointer to struct flow_cls_offload 3745 */ 3746 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3747 struct flow_cls_offload *cls_flower) 3748 { 3749 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3750 struct iavf_cloud_filter *filter = NULL; 3751 int err = -EINVAL, count = 50; 3752 3753 if (tc < 0) { 3754 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3755 return -EINVAL; 3756 } 3757 3758 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3759 if (!filter) 3760 return -ENOMEM; 3761 3762 while (!mutex_trylock(&adapter->crit_lock)) { 3763 if (--count == 0) { 3764 kfree(filter); 3765 return err; 3766 } 3767 udelay(1); 3768 } 3769 3770 filter->cookie = cls_flower->cookie; 3771 3772 /* set the mask to all zeroes to begin with */ 3773 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3774 /* start out with flow type and eth type IPv4 to begin with */ 3775 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3776 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3777 if (err) 3778 goto err; 3779 3780 err = iavf_handle_tclass(adapter, tc, filter); 3781 if (err) 3782 goto err; 3783 3784 /* add filter to the list */ 3785 spin_lock_bh(&adapter->cloud_filter_list_lock); 3786 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3787 adapter->num_cloud_filters++; 3788 filter->add = true; 3789 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3790 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3791 err: 3792 if (err) 3793 kfree(filter); 3794 3795 mutex_unlock(&adapter->crit_lock); 3796 return err; 3797 } 3798 3799 /* iavf_find_cf - Find the cloud filter in the list 3800 * @adapter: Board private structure 3801 * @cookie: filter specific cookie 3802 * 3803 * Returns ptr to the filter object or NULL. Must be called while holding the 3804 * cloud_filter_list_lock. 3805 */ 3806 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3807 unsigned long *cookie) 3808 { 3809 struct iavf_cloud_filter *filter = NULL; 3810 3811 if (!cookie) 3812 return NULL; 3813 3814 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3815 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3816 return filter; 3817 } 3818 return NULL; 3819 } 3820 3821 /** 3822 * iavf_delete_clsflower - Remove tc flower filters 3823 * @adapter: board private structure 3824 * @cls_flower: Pointer to struct flow_cls_offload 3825 */ 3826 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3827 struct flow_cls_offload *cls_flower) 3828 { 3829 struct iavf_cloud_filter *filter = NULL; 3830 int err = 0; 3831 3832 spin_lock_bh(&adapter->cloud_filter_list_lock); 3833 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3834 if (filter) { 3835 filter->del = true; 3836 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3837 } else { 3838 err = -EINVAL; 3839 } 3840 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3841 3842 return err; 3843 } 3844 3845 /** 3846 * iavf_setup_tc_cls_flower - flower classifier offloads 3847 * @adapter: board private structure 3848 * @cls_flower: pointer to flow_cls_offload struct with flow info 3849 */ 3850 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 3851 struct flow_cls_offload *cls_flower) 3852 { 3853 switch (cls_flower->command) { 3854 case FLOW_CLS_REPLACE: 3855 return iavf_configure_clsflower(adapter, cls_flower); 3856 case FLOW_CLS_DESTROY: 3857 return iavf_delete_clsflower(adapter, cls_flower); 3858 case FLOW_CLS_STATS: 3859 return -EOPNOTSUPP; 3860 default: 3861 return -EOPNOTSUPP; 3862 } 3863 } 3864 3865 /** 3866 * iavf_setup_tc_block_cb - block callback for tc 3867 * @type: type of offload 3868 * @type_data: offload data 3869 * @cb_priv: 3870 * 3871 * This function is the block callback for traffic classes 3872 **/ 3873 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3874 void *cb_priv) 3875 { 3876 struct iavf_adapter *adapter = cb_priv; 3877 3878 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 3879 return -EOPNOTSUPP; 3880 3881 switch (type) { 3882 case TC_SETUP_CLSFLOWER: 3883 return iavf_setup_tc_cls_flower(cb_priv, type_data); 3884 default: 3885 return -EOPNOTSUPP; 3886 } 3887 } 3888 3889 static LIST_HEAD(iavf_block_cb_list); 3890 3891 /** 3892 * iavf_setup_tc - configure multiple traffic classes 3893 * @netdev: network interface device structure 3894 * @type: type of offload 3895 * @type_data: tc offload data 3896 * 3897 * This function is the callback to ndo_setup_tc in the 3898 * netdev_ops. 3899 * 3900 * Returns 0 on success 3901 **/ 3902 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 3903 void *type_data) 3904 { 3905 struct iavf_adapter *adapter = netdev_priv(netdev); 3906 3907 switch (type) { 3908 case TC_SETUP_QDISC_MQPRIO: 3909 return __iavf_setup_tc(netdev, type_data); 3910 case TC_SETUP_BLOCK: 3911 return flow_block_cb_setup_simple(type_data, 3912 &iavf_block_cb_list, 3913 iavf_setup_tc_block_cb, 3914 adapter, adapter, true); 3915 default: 3916 return -EOPNOTSUPP; 3917 } 3918 } 3919 3920 /** 3921 * iavf_open - Called when a network interface is made active 3922 * @netdev: network interface device structure 3923 * 3924 * Returns 0 on success, negative value on failure 3925 * 3926 * The open entry point is called when a network interface is made 3927 * active by the system (IFF_UP). At this point all resources needed 3928 * for transmit and receive operations are allocated, the interrupt 3929 * handler is registered with the OS, the watchdog is started, 3930 * and the stack is notified that the interface is ready. 3931 **/ 3932 static int iavf_open(struct net_device *netdev) 3933 { 3934 struct iavf_adapter *adapter = netdev_priv(netdev); 3935 int err; 3936 3937 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 3938 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 3939 return -EIO; 3940 } 3941 3942 while (!mutex_trylock(&adapter->crit_lock)) 3943 usleep_range(500, 1000); 3944 3945 if (adapter->state != __IAVF_DOWN) { 3946 err = -EBUSY; 3947 goto err_unlock; 3948 } 3949 3950 if (adapter->state == __IAVF_RUNNING && 3951 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 3952 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 3953 err = 0; 3954 goto err_unlock; 3955 } 3956 3957 /* allocate transmit descriptors */ 3958 err = iavf_setup_all_tx_resources(adapter); 3959 if (err) 3960 goto err_setup_tx; 3961 3962 /* allocate receive descriptors */ 3963 err = iavf_setup_all_rx_resources(adapter); 3964 if (err) 3965 goto err_setup_rx; 3966 3967 /* clear any pending interrupts, may auto mask */ 3968 err = iavf_request_traffic_irqs(adapter, netdev->name); 3969 if (err) 3970 goto err_req_irq; 3971 3972 spin_lock_bh(&adapter->mac_vlan_list_lock); 3973 3974 iavf_add_filter(adapter, adapter->hw.mac.addr); 3975 3976 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3977 3978 /* Restore VLAN filters that were removed with IFF_DOWN */ 3979 iavf_restore_filters(adapter); 3980 3981 iavf_configure(adapter); 3982 3983 iavf_up_complete(adapter); 3984 3985 iavf_irq_enable(adapter, true); 3986 3987 mutex_unlock(&adapter->crit_lock); 3988 3989 return 0; 3990 3991 err_req_irq: 3992 iavf_down(adapter); 3993 iavf_free_traffic_irqs(adapter); 3994 err_setup_rx: 3995 iavf_free_all_rx_resources(adapter); 3996 err_setup_tx: 3997 iavf_free_all_tx_resources(adapter); 3998 err_unlock: 3999 mutex_unlock(&adapter->crit_lock); 4000 4001 return err; 4002 } 4003 4004 /** 4005 * iavf_close - Disables a network interface 4006 * @netdev: network interface device structure 4007 * 4008 * Returns 0, this is not allowed to fail 4009 * 4010 * The close entry point is called when an interface is de-activated 4011 * by the OS. The hardware is still under the drivers control, but 4012 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4013 * are freed, along with all transmit and receive resources. 4014 **/ 4015 static int iavf_close(struct net_device *netdev) 4016 { 4017 struct iavf_adapter *adapter = netdev_priv(netdev); 4018 int status; 4019 4020 mutex_lock(&adapter->crit_lock); 4021 4022 if (adapter->state <= __IAVF_DOWN_PENDING) { 4023 mutex_unlock(&adapter->crit_lock); 4024 return 0; 4025 } 4026 4027 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4028 if (CLIENT_ENABLED(adapter)) 4029 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4030 4031 iavf_down(adapter); 4032 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4033 iavf_free_traffic_irqs(adapter); 4034 4035 mutex_unlock(&adapter->crit_lock); 4036 4037 /* We explicitly don't free resources here because the hardware is 4038 * still active and can DMA into memory. Resources are cleared in 4039 * iavf_virtchnl_completion() after we get confirmation from the PF 4040 * driver that the rings have been stopped. 4041 * 4042 * Also, we wait for state to transition to __IAVF_DOWN before 4043 * returning. State change occurs in iavf_virtchnl_completion() after 4044 * VF resources are released (which occurs after PF driver processes and 4045 * responds to admin queue commands). 4046 */ 4047 4048 status = wait_event_timeout(adapter->down_waitqueue, 4049 adapter->state == __IAVF_DOWN, 4050 msecs_to_jiffies(500)); 4051 if (!status) 4052 netdev_warn(netdev, "Device resources not yet released\n"); 4053 return 0; 4054 } 4055 4056 /** 4057 * iavf_change_mtu - Change the Maximum Transfer Unit 4058 * @netdev: network interface device structure 4059 * @new_mtu: new value for maximum frame size 4060 * 4061 * Returns 0 on success, negative on failure 4062 **/ 4063 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4064 { 4065 struct iavf_adapter *adapter = netdev_priv(netdev); 4066 4067 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4068 netdev->mtu, new_mtu); 4069 netdev->mtu = new_mtu; 4070 if (CLIENT_ENABLED(adapter)) { 4071 iavf_notify_client_l2_params(&adapter->vsi); 4072 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4073 } 4074 4075 if (netif_running(netdev)) { 4076 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4077 queue_work(iavf_wq, &adapter->reset_task); 4078 } 4079 4080 return 0; 4081 } 4082 4083 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4084 NETIF_F_HW_VLAN_CTAG_TX | \ 4085 NETIF_F_HW_VLAN_STAG_RX | \ 4086 NETIF_F_HW_VLAN_STAG_TX) 4087 4088 /** 4089 * iavf_set_features - set the netdev feature flags 4090 * @netdev: ptr to the netdev being adjusted 4091 * @features: the feature set that the stack is suggesting 4092 * Note: expects to be called while under rtnl_lock() 4093 **/ 4094 static int iavf_set_features(struct net_device *netdev, 4095 netdev_features_t features) 4096 { 4097 struct iavf_adapter *adapter = netdev_priv(netdev); 4098 4099 /* trigger update on any VLAN feature change */ 4100 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4101 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4102 iavf_set_vlan_offload_features(adapter, netdev->features, 4103 features); 4104 4105 return 0; 4106 } 4107 4108 /** 4109 * iavf_features_check - Validate encapsulated packet conforms to limits 4110 * @skb: skb buff 4111 * @dev: This physical port's netdev 4112 * @features: Offload features that the stack believes apply 4113 **/ 4114 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4115 struct net_device *dev, 4116 netdev_features_t features) 4117 { 4118 size_t len; 4119 4120 /* No point in doing any of this if neither checksum nor GSO are 4121 * being requested for this frame. We can rule out both by just 4122 * checking for CHECKSUM_PARTIAL 4123 */ 4124 if (skb->ip_summed != CHECKSUM_PARTIAL) 4125 return features; 4126 4127 /* We cannot support GSO if the MSS is going to be less than 4128 * 64 bytes. If it is then we need to drop support for GSO. 4129 */ 4130 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4131 features &= ~NETIF_F_GSO_MASK; 4132 4133 /* MACLEN can support at most 63 words */ 4134 len = skb_network_header(skb) - skb->data; 4135 if (len & ~(63 * 2)) 4136 goto out_err; 4137 4138 /* IPLEN and EIPLEN can support at most 127 dwords */ 4139 len = skb_transport_header(skb) - skb_network_header(skb); 4140 if (len & ~(127 * 4)) 4141 goto out_err; 4142 4143 if (skb->encapsulation) { 4144 /* L4TUNLEN can support 127 words */ 4145 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4146 if (len & ~(127 * 2)) 4147 goto out_err; 4148 4149 /* IPLEN can support at most 127 dwords */ 4150 len = skb_inner_transport_header(skb) - 4151 skb_inner_network_header(skb); 4152 if (len & ~(127 * 4)) 4153 goto out_err; 4154 } 4155 4156 /* No need to validate L4LEN as TCP is the only protocol with a 4157 * a flexible value and we support all possible values supported 4158 * by TCP, which is at most 15 dwords 4159 */ 4160 4161 return features; 4162 out_err: 4163 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4164 } 4165 4166 /** 4167 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4168 * @adapter: board private structure 4169 * 4170 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4171 * were negotiated determine the VLAN features that can be toggled on and off. 4172 **/ 4173 static netdev_features_t 4174 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4175 { 4176 netdev_features_t hw_features = 0; 4177 4178 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4179 return hw_features; 4180 4181 /* Enable VLAN features if supported */ 4182 if (VLAN_ALLOWED(adapter)) { 4183 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4184 NETIF_F_HW_VLAN_CTAG_RX); 4185 } else if (VLAN_V2_ALLOWED(adapter)) { 4186 struct virtchnl_vlan_caps *vlan_v2_caps = 4187 &adapter->vlan_v2_caps; 4188 struct virtchnl_vlan_supported_caps *stripping_support = 4189 &vlan_v2_caps->offloads.stripping_support; 4190 struct virtchnl_vlan_supported_caps *insertion_support = 4191 &vlan_v2_caps->offloads.insertion_support; 4192 4193 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4194 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4195 if (stripping_support->outer & 4196 VIRTCHNL_VLAN_ETHERTYPE_8100) 4197 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4198 if (stripping_support->outer & 4199 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4200 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4201 } else if (stripping_support->inner != 4202 VIRTCHNL_VLAN_UNSUPPORTED && 4203 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4204 if (stripping_support->inner & 4205 VIRTCHNL_VLAN_ETHERTYPE_8100) 4206 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4207 } 4208 4209 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4210 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4211 if (insertion_support->outer & 4212 VIRTCHNL_VLAN_ETHERTYPE_8100) 4213 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4214 if (insertion_support->outer & 4215 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4216 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4217 } else if (insertion_support->inner && 4218 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4219 if (insertion_support->inner & 4220 VIRTCHNL_VLAN_ETHERTYPE_8100) 4221 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4222 } 4223 } 4224 4225 return hw_features; 4226 } 4227 4228 /** 4229 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4230 * @adapter: board private structure 4231 * 4232 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4233 * were negotiated determine the VLAN features that are enabled by default. 4234 **/ 4235 static netdev_features_t 4236 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4237 { 4238 netdev_features_t features = 0; 4239 4240 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4241 return features; 4242 4243 if (VLAN_ALLOWED(adapter)) { 4244 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4245 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4246 } else if (VLAN_V2_ALLOWED(adapter)) { 4247 struct virtchnl_vlan_caps *vlan_v2_caps = 4248 &adapter->vlan_v2_caps; 4249 struct virtchnl_vlan_supported_caps *filtering_support = 4250 &vlan_v2_caps->filtering.filtering_support; 4251 struct virtchnl_vlan_supported_caps *stripping_support = 4252 &vlan_v2_caps->offloads.stripping_support; 4253 struct virtchnl_vlan_supported_caps *insertion_support = 4254 &vlan_v2_caps->offloads.insertion_support; 4255 u32 ethertype_init; 4256 4257 /* give priority to outer stripping and don't support both outer 4258 * and inner stripping 4259 */ 4260 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4261 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4262 if (stripping_support->outer & 4263 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4264 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4265 features |= NETIF_F_HW_VLAN_CTAG_RX; 4266 else if (stripping_support->outer & 4267 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4268 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4269 features |= NETIF_F_HW_VLAN_STAG_RX; 4270 } else if (stripping_support->inner != 4271 VIRTCHNL_VLAN_UNSUPPORTED) { 4272 if (stripping_support->inner & 4273 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4274 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4275 features |= NETIF_F_HW_VLAN_CTAG_RX; 4276 } 4277 4278 /* give priority to outer insertion and don't support both outer 4279 * and inner insertion 4280 */ 4281 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4282 if (insertion_support->outer & 4283 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4284 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4285 features |= NETIF_F_HW_VLAN_CTAG_TX; 4286 else if (insertion_support->outer & 4287 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4288 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4289 features |= NETIF_F_HW_VLAN_STAG_TX; 4290 } else if (insertion_support->inner != 4291 VIRTCHNL_VLAN_UNSUPPORTED) { 4292 if (insertion_support->inner & 4293 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4294 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4295 features |= NETIF_F_HW_VLAN_CTAG_TX; 4296 } 4297 4298 /* give priority to outer filtering and don't bother if both 4299 * outer and inner filtering are enabled 4300 */ 4301 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4302 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4303 if (filtering_support->outer & 4304 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4305 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4306 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4307 if (filtering_support->outer & 4308 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4309 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4310 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4311 } else if (filtering_support->inner != 4312 VIRTCHNL_VLAN_UNSUPPORTED) { 4313 if (filtering_support->inner & 4314 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4315 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4316 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4317 if (filtering_support->inner & 4318 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4319 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4320 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4321 } 4322 } 4323 4324 return features; 4325 } 4326 4327 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4328 (!(((requested) & (feature_bit)) && \ 4329 !((allowed) & (feature_bit)))) 4330 4331 /** 4332 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4333 * @adapter: board private structure 4334 * @requested_features: stack requested NETDEV features 4335 **/ 4336 static netdev_features_t 4337 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4338 netdev_features_t requested_features) 4339 { 4340 netdev_features_t allowed_features; 4341 4342 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4343 iavf_get_netdev_vlan_features(adapter); 4344 4345 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4346 allowed_features, 4347 NETIF_F_HW_VLAN_CTAG_TX)) 4348 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4349 4350 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4351 allowed_features, 4352 NETIF_F_HW_VLAN_CTAG_RX)) 4353 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4354 4355 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4356 allowed_features, 4357 NETIF_F_HW_VLAN_STAG_TX)) 4358 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4359 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4360 allowed_features, 4361 NETIF_F_HW_VLAN_STAG_RX)) 4362 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4363 4364 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4365 allowed_features, 4366 NETIF_F_HW_VLAN_CTAG_FILTER)) 4367 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4368 4369 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4370 allowed_features, 4371 NETIF_F_HW_VLAN_STAG_FILTER)) 4372 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4373 4374 if ((requested_features & 4375 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4376 (requested_features & 4377 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4378 adapter->vlan_v2_caps.offloads.ethertype_match == 4379 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4380 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4381 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4382 NETIF_F_HW_VLAN_STAG_TX); 4383 } 4384 4385 return requested_features; 4386 } 4387 4388 /** 4389 * iavf_fix_features - fix up the netdev feature bits 4390 * @netdev: our net device 4391 * @features: desired feature bits 4392 * 4393 * Returns fixed-up features bits 4394 **/ 4395 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4396 netdev_features_t features) 4397 { 4398 struct iavf_adapter *adapter = netdev_priv(netdev); 4399 4400 return iavf_fix_netdev_vlan_features(adapter, features); 4401 } 4402 4403 static const struct net_device_ops iavf_netdev_ops = { 4404 .ndo_open = iavf_open, 4405 .ndo_stop = iavf_close, 4406 .ndo_start_xmit = iavf_xmit_frame, 4407 .ndo_set_rx_mode = iavf_set_rx_mode, 4408 .ndo_validate_addr = eth_validate_addr, 4409 .ndo_set_mac_address = iavf_set_mac, 4410 .ndo_change_mtu = iavf_change_mtu, 4411 .ndo_tx_timeout = iavf_tx_timeout, 4412 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4413 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4414 .ndo_features_check = iavf_features_check, 4415 .ndo_fix_features = iavf_fix_features, 4416 .ndo_set_features = iavf_set_features, 4417 .ndo_setup_tc = iavf_setup_tc, 4418 }; 4419 4420 /** 4421 * iavf_check_reset_complete - check that VF reset is complete 4422 * @hw: pointer to hw struct 4423 * 4424 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4425 **/ 4426 static int iavf_check_reset_complete(struct iavf_hw *hw) 4427 { 4428 u32 rstat; 4429 int i; 4430 4431 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4432 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4433 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4434 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4435 (rstat == VIRTCHNL_VFR_COMPLETED)) 4436 return 0; 4437 usleep_range(10, 20); 4438 } 4439 return -EBUSY; 4440 } 4441 4442 /** 4443 * iavf_process_config - Process the config information we got from the PF 4444 * @adapter: board private structure 4445 * 4446 * Verify that we have a valid config struct, and set up our netdev features 4447 * and our VSI struct. 4448 **/ 4449 int iavf_process_config(struct iavf_adapter *adapter) 4450 { 4451 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4452 netdev_features_t hw_vlan_features, vlan_features; 4453 struct net_device *netdev = adapter->netdev; 4454 netdev_features_t hw_enc_features; 4455 netdev_features_t hw_features; 4456 4457 hw_enc_features = NETIF_F_SG | 4458 NETIF_F_IP_CSUM | 4459 NETIF_F_IPV6_CSUM | 4460 NETIF_F_HIGHDMA | 4461 NETIF_F_SOFT_FEATURES | 4462 NETIF_F_TSO | 4463 NETIF_F_TSO_ECN | 4464 NETIF_F_TSO6 | 4465 NETIF_F_SCTP_CRC | 4466 NETIF_F_RXHASH | 4467 NETIF_F_RXCSUM | 4468 0; 4469 4470 /* advertise to stack only if offloads for encapsulated packets is 4471 * supported 4472 */ 4473 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4474 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4475 NETIF_F_GSO_GRE | 4476 NETIF_F_GSO_GRE_CSUM | 4477 NETIF_F_GSO_IPXIP4 | 4478 NETIF_F_GSO_IPXIP6 | 4479 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4480 NETIF_F_GSO_PARTIAL | 4481 0; 4482 4483 if (!(vfres->vf_cap_flags & 4484 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4485 netdev->gso_partial_features |= 4486 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4487 4488 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4489 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4490 netdev->hw_enc_features |= hw_enc_features; 4491 } 4492 /* record features VLANs can make use of */ 4493 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4494 4495 /* Write features and hw_features separately to avoid polluting 4496 * with, or dropping, features that are set when we registered. 4497 */ 4498 hw_features = hw_enc_features; 4499 4500 /* get HW VLAN features that can be toggled */ 4501 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4502 4503 /* Enable cloud filter if ADQ is supported */ 4504 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4505 hw_features |= NETIF_F_HW_TC; 4506 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4507 hw_features |= NETIF_F_GSO_UDP_L4; 4508 4509 netdev->hw_features |= hw_features | hw_vlan_features; 4510 vlan_features = iavf_get_netdev_vlan_features(adapter); 4511 4512 netdev->features |= hw_features | vlan_features; 4513 4514 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4515 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4516 4517 netdev->priv_flags |= IFF_UNICAST_FLT; 4518 4519 /* Do not turn on offloads when they are requested to be turned off. 4520 * TSO needs minimum 576 bytes to work correctly. 4521 */ 4522 if (netdev->wanted_features) { 4523 if (!(netdev->wanted_features & NETIF_F_TSO) || 4524 netdev->mtu < 576) 4525 netdev->features &= ~NETIF_F_TSO; 4526 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4527 netdev->mtu < 576) 4528 netdev->features &= ~NETIF_F_TSO6; 4529 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4530 netdev->features &= ~NETIF_F_TSO_ECN; 4531 if (!(netdev->wanted_features & NETIF_F_GRO)) 4532 netdev->features &= ~NETIF_F_GRO; 4533 if (!(netdev->wanted_features & NETIF_F_GSO)) 4534 netdev->features &= ~NETIF_F_GSO; 4535 } 4536 4537 return 0; 4538 } 4539 4540 /** 4541 * iavf_shutdown - Shutdown the device in preparation for a reboot 4542 * @pdev: pci device structure 4543 **/ 4544 static void iavf_shutdown(struct pci_dev *pdev) 4545 { 4546 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4547 struct net_device *netdev = adapter->netdev; 4548 4549 netif_device_detach(netdev); 4550 4551 if (netif_running(netdev)) 4552 iavf_close(netdev); 4553 4554 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4555 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4556 /* Prevent the watchdog from running. */ 4557 iavf_change_state(adapter, __IAVF_REMOVE); 4558 adapter->aq_required = 0; 4559 mutex_unlock(&adapter->crit_lock); 4560 4561 #ifdef CONFIG_PM 4562 pci_save_state(pdev); 4563 4564 #endif 4565 pci_disable_device(pdev); 4566 } 4567 4568 /** 4569 * iavf_probe - Device Initialization Routine 4570 * @pdev: PCI device information struct 4571 * @ent: entry in iavf_pci_tbl 4572 * 4573 * Returns 0 on success, negative on failure 4574 * 4575 * iavf_probe initializes an adapter identified by a pci_dev structure. 4576 * The OS initialization, configuring of the adapter private structure, 4577 * and a hardware reset occur. 4578 **/ 4579 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4580 { 4581 struct net_device *netdev; 4582 struct iavf_adapter *adapter = NULL; 4583 struct iavf_hw *hw = NULL; 4584 int err; 4585 4586 err = pci_enable_device(pdev); 4587 if (err) 4588 return err; 4589 4590 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4591 if (err) { 4592 dev_err(&pdev->dev, 4593 "DMA configuration failed: 0x%x\n", err); 4594 goto err_dma; 4595 } 4596 4597 err = pci_request_regions(pdev, iavf_driver_name); 4598 if (err) { 4599 dev_err(&pdev->dev, 4600 "pci_request_regions failed 0x%x\n", err); 4601 goto err_pci_reg; 4602 } 4603 4604 pci_enable_pcie_error_reporting(pdev); 4605 4606 pci_set_master(pdev); 4607 4608 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4609 IAVF_MAX_REQ_QUEUES); 4610 if (!netdev) { 4611 err = -ENOMEM; 4612 goto err_alloc_etherdev; 4613 } 4614 4615 SET_NETDEV_DEV(netdev, &pdev->dev); 4616 4617 pci_set_drvdata(pdev, netdev); 4618 adapter = netdev_priv(netdev); 4619 4620 adapter->netdev = netdev; 4621 adapter->pdev = pdev; 4622 4623 hw = &adapter->hw; 4624 hw->back = adapter; 4625 4626 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4627 iavf_change_state(adapter, __IAVF_STARTUP); 4628 4629 /* Call save state here because it relies on the adapter struct. */ 4630 pci_save_state(pdev); 4631 4632 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4633 pci_resource_len(pdev, 0)); 4634 if (!hw->hw_addr) { 4635 err = -EIO; 4636 goto err_ioremap; 4637 } 4638 hw->vendor_id = pdev->vendor; 4639 hw->device_id = pdev->device; 4640 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4641 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4642 hw->subsystem_device_id = pdev->subsystem_device; 4643 hw->bus.device = PCI_SLOT(pdev->devfn); 4644 hw->bus.func = PCI_FUNC(pdev->devfn); 4645 hw->bus.bus_id = pdev->bus->number; 4646 4647 /* set up the locks for the AQ, do this only once in probe 4648 * and destroy them only once in remove 4649 */ 4650 mutex_init(&adapter->crit_lock); 4651 mutex_init(&adapter->client_lock); 4652 mutex_init(&hw->aq.asq_mutex); 4653 mutex_init(&hw->aq.arq_mutex); 4654 4655 spin_lock_init(&adapter->mac_vlan_list_lock); 4656 spin_lock_init(&adapter->cloud_filter_list_lock); 4657 spin_lock_init(&adapter->fdir_fltr_lock); 4658 spin_lock_init(&adapter->adv_rss_lock); 4659 4660 INIT_LIST_HEAD(&adapter->mac_filter_list); 4661 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4662 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4663 INIT_LIST_HEAD(&adapter->fdir_list_head); 4664 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4665 4666 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4667 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4668 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4669 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4670 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4671 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4672 4673 /* Setup the wait queue for indicating transition to down status */ 4674 init_waitqueue_head(&adapter->down_waitqueue); 4675 4676 return 0; 4677 4678 err_ioremap: 4679 free_netdev(netdev); 4680 err_alloc_etherdev: 4681 pci_disable_pcie_error_reporting(pdev); 4682 pci_release_regions(pdev); 4683 err_pci_reg: 4684 err_dma: 4685 pci_disable_device(pdev); 4686 return err; 4687 } 4688 4689 /** 4690 * iavf_suspend - Power management suspend routine 4691 * @dev_d: device info pointer 4692 * 4693 * Called when the system (VM) is entering sleep/suspend. 4694 **/ 4695 static int __maybe_unused iavf_suspend(struct device *dev_d) 4696 { 4697 struct net_device *netdev = dev_get_drvdata(dev_d); 4698 struct iavf_adapter *adapter = netdev_priv(netdev); 4699 4700 netif_device_detach(netdev); 4701 4702 while (!mutex_trylock(&adapter->crit_lock)) 4703 usleep_range(500, 1000); 4704 4705 if (netif_running(netdev)) { 4706 rtnl_lock(); 4707 iavf_down(adapter); 4708 rtnl_unlock(); 4709 } 4710 iavf_free_misc_irq(adapter); 4711 iavf_reset_interrupt_capability(adapter); 4712 4713 mutex_unlock(&adapter->crit_lock); 4714 4715 return 0; 4716 } 4717 4718 /** 4719 * iavf_resume - Power management resume routine 4720 * @dev_d: device info pointer 4721 * 4722 * Called when the system (VM) is resumed from sleep/suspend. 4723 **/ 4724 static int __maybe_unused iavf_resume(struct device *dev_d) 4725 { 4726 struct pci_dev *pdev = to_pci_dev(dev_d); 4727 struct iavf_adapter *adapter; 4728 u32 err; 4729 4730 adapter = iavf_pdev_to_adapter(pdev); 4731 4732 pci_set_master(pdev); 4733 4734 rtnl_lock(); 4735 err = iavf_set_interrupt_capability(adapter); 4736 if (err) { 4737 rtnl_unlock(); 4738 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 4739 return err; 4740 } 4741 err = iavf_request_misc_irq(adapter); 4742 rtnl_unlock(); 4743 if (err) { 4744 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 4745 return err; 4746 } 4747 4748 queue_work(iavf_wq, &adapter->reset_task); 4749 4750 netif_device_attach(adapter->netdev); 4751 4752 return err; 4753 } 4754 4755 /** 4756 * iavf_remove - Device Removal Routine 4757 * @pdev: PCI device information struct 4758 * 4759 * iavf_remove is called by the PCI subsystem to alert the driver 4760 * that it should release a PCI device. The could be caused by a 4761 * Hot-Plug event, or because the driver is going to be removed from 4762 * memory. 4763 **/ 4764 static void iavf_remove(struct pci_dev *pdev) 4765 { 4766 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4767 struct net_device *netdev = adapter->netdev; 4768 struct iavf_fdir_fltr *fdir, *fdirtmp; 4769 struct iavf_vlan_filter *vlf, *vlftmp; 4770 struct iavf_adv_rss *rss, *rsstmp; 4771 struct iavf_mac_filter *f, *ftmp; 4772 struct iavf_cloud_filter *cf, *cftmp; 4773 struct iavf_hw *hw = &adapter->hw; 4774 int err; 4775 4776 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 4777 /* Wait until port initialization is complete. 4778 * There are flows where register/unregister netdev may race. 4779 */ 4780 while (1) { 4781 mutex_lock(&adapter->crit_lock); 4782 if (adapter->state == __IAVF_RUNNING || 4783 adapter->state == __IAVF_DOWN || 4784 adapter->state == __IAVF_INIT_FAILED) { 4785 mutex_unlock(&adapter->crit_lock); 4786 break; 4787 } 4788 4789 mutex_unlock(&adapter->crit_lock); 4790 usleep_range(500, 1000); 4791 } 4792 cancel_delayed_work_sync(&adapter->watchdog_task); 4793 4794 if (adapter->netdev_registered) { 4795 rtnl_lock(); 4796 unregister_netdevice(netdev); 4797 adapter->netdev_registered = false; 4798 rtnl_unlock(); 4799 } 4800 if (CLIENT_ALLOWED(adapter)) { 4801 err = iavf_lan_del_device(adapter); 4802 if (err) 4803 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 4804 err); 4805 } 4806 4807 mutex_lock(&adapter->crit_lock); 4808 dev_info(&adapter->pdev->dev, "Remove device\n"); 4809 iavf_change_state(adapter, __IAVF_REMOVE); 4810 4811 iavf_request_reset(adapter); 4812 msleep(50); 4813 /* If the FW isn't responding, kick it once, but only once. */ 4814 if (!iavf_asq_done(hw)) { 4815 iavf_request_reset(adapter); 4816 msleep(50); 4817 } 4818 4819 iavf_misc_irq_disable(adapter); 4820 /* Shut down all the garbage mashers on the detention level */ 4821 cancel_work_sync(&adapter->reset_task); 4822 cancel_delayed_work_sync(&adapter->watchdog_task); 4823 cancel_work_sync(&adapter->adminq_task); 4824 cancel_delayed_work_sync(&adapter->client_task); 4825 4826 adapter->aq_required = 0; 4827 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 4828 4829 iavf_free_all_tx_resources(adapter); 4830 iavf_free_all_rx_resources(adapter); 4831 iavf_free_misc_irq(adapter); 4832 4833 iavf_reset_interrupt_capability(adapter); 4834 iavf_free_q_vectors(adapter); 4835 4836 iavf_free_rss(adapter); 4837 4838 if (hw->aq.asq.count) 4839 iavf_shutdown_adminq(hw); 4840 4841 /* destroy the locks only once, here */ 4842 mutex_destroy(&hw->aq.arq_mutex); 4843 mutex_destroy(&hw->aq.asq_mutex); 4844 mutex_destroy(&adapter->client_lock); 4845 mutex_unlock(&adapter->crit_lock); 4846 mutex_destroy(&adapter->crit_lock); 4847 4848 iounmap(hw->hw_addr); 4849 pci_release_regions(pdev); 4850 iavf_free_queues(adapter); 4851 kfree(adapter->vf_res); 4852 spin_lock_bh(&adapter->mac_vlan_list_lock); 4853 /* If we got removed before an up/down sequence, we've got a filter 4854 * hanging out there that we need to get rid of. 4855 */ 4856 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 4857 list_del(&f->list); 4858 kfree(f); 4859 } 4860 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 4861 list) { 4862 list_del(&vlf->list); 4863 kfree(vlf); 4864 } 4865 4866 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4867 4868 spin_lock_bh(&adapter->cloud_filter_list_lock); 4869 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 4870 list_del(&cf->list); 4871 kfree(cf); 4872 } 4873 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4874 4875 spin_lock_bh(&adapter->fdir_fltr_lock); 4876 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 4877 list_del(&fdir->list); 4878 kfree(fdir); 4879 } 4880 spin_unlock_bh(&adapter->fdir_fltr_lock); 4881 4882 spin_lock_bh(&adapter->adv_rss_lock); 4883 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 4884 list) { 4885 list_del(&rss->list); 4886 kfree(rss); 4887 } 4888 spin_unlock_bh(&adapter->adv_rss_lock); 4889 4890 free_netdev(netdev); 4891 4892 pci_disable_pcie_error_reporting(pdev); 4893 4894 pci_disable_device(pdev); 4895 } 4896 4897 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 4898 4899 static struct pci_driver iavf_driver = { 4900 .name = iavf_driver_name, 4901 .id_table = iavf_pci_tbl, 4902 .probe = iavf_probe, 4903 .remove = iavf_remove, 4904 .driver.pm = &iavf_pm_ops, 4905 .shutdown = iavf_shutdown, 4906 }; 4907 4908 /** 4909 * iavf_init_module - Driver Registration Routine 4910 * 4911 * iavf_init_module is the first routine called when the driver is 4912 * loaded. All it does is register with the PCI subsystem. 4913 **/ 4914 static int __init iavf_init_module(void) 4915 { 4916 pr_info("iavf: %s\n", iavf_driver_string); 4917 4918 pr_info("%s\n", iavf_copyright); 4919 4920 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 4921 iavf_driver_name); 4922 if (!iavf_wq) { 4923 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 4924 return -ENOMEM; 4925 } 4926 return pci_register_driver(&iavf_driver); 4927 } 4928 4929 module_init(iavf_init_module); 4930 4931 /** 4932 * iavf_exit_module - Driver Exit Cleanup Routine 4933 * 4934 * iavf_exit_module is called just before the driver is removed 4935 * from memory. 4936 **/ 4937 static void __exit iavf_exit_module(void) 4938 { 4939 pci_unregister_driver(&iavf_driver); 4940 destroy_workqueue(iavf_wq); 4941 } 4942 4943 module_exit(iavf_exit_module); 4944 4945 /* iavf_main.c */ 4946