1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_schedule_reset - Set the flags and schedule a reset event 281 * @adapter: board private structure 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 283 **/ 284 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 285 { 286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 287 !(adapter->flags & 288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 289 adapter->flags |= flags; 290 queue_work(adapter->wq, &adapter->reset_task); 291 } 292 } 293 294 /** 295 * iavf_schedule_aq_request - Set the flags and schedule aq request 296 * @adapter: board private structure 297 * @flags: requested aq flags 298 **/ 299 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 300 { 301 adapter->aq_required |= flags; 302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 303 } 304 305 /** 306 * iavf_tx_timeout - Respond to a Tx Hang 307 * @netdev: network interface device structure 308 * @txqueue: queue number that is timing out 309 **/ 310 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 311 { 312 struct iavf_adapter *adapter = netdev_priv(netdev); 313 314 adapter->tx_timeout_count++; 315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 316 } 317 318 /** 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 320 * @adapter: board private structure 321 **/ 322 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 323 { 324 struct iavf_hw *hw = &adapter->hw; 325 326 if (!adapter->msix_entries) 327 return; 328 329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 330 331 iavf_flush(hw); 332 333 synchronize_irq(adapter->msix_entries[0].vector); 334 } 335 336 /** 337 * iavf_misc_irq_enable - Enable default interrupt generation settings 338 * @adapter: board private structure 339 **/ 340 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 341 { 342 struct iavf_hw *hw = &adapter->hw; 343 344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 347 348 iavf_flush(hw); 349 } 350 351 /** 352 * iavf_irq_disable - Mask off interrupt generation on the NIC 353 * @adapter: board private structure 354 **/ 355 static void iavf_irq_disable(struct iavf_adapter *adapter) 356 { 357 int i; 358 struct iavf_hw *hw = &adapter->hw; 359 360 if (!adapter->msix_entries) 361 return; 362 363 for (i = 1; i < adapter->num_msix_vectors; i++) { 364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 365 synchronize_irq(adapter->msix_entries[i].vector); 366 } 367 iavf_flush(hw); 368 } 369 370 /** 371 * iavf_irq_enable_queues - Enable interrupt for all queues 372 * @adapter: board private structure 373 **/ 374 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 375 { 376 struct iavf_hw *hw = &adapter->hw; 377 int i; 378 379 for (i = 1; i < adapter->num_msix_vectors; i++) { 380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 383 } 384 } 385 386 /** 387 * iavf_irq_enable - Enable default interrupt generation settings 388 * @adapter: board private structure 389 * @flush: boolean value whether to run rd32() 390 **/ 391 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 392 { 393 struct iavf_hw *hw = &adapter->hw; 394 395 iavf_misc_irq_enable(adapter); 396 iavf_irq_enable_queues(adapter); 397 398 if (flush) 399 iavf_flush(hw); 400 } 401 402 /** 403 * iavf_msix_aq - Interrupt handler for vector 0 404 * @irq: interrupt number 405 * @data: pointer to netdev 406 **/ 407 static irqreturn_t iavf_msix_aq(int irq, void *data) 408 { 409 struct net_device *netdev = data; 410 struct iavf_adapter *adapter = netdev_priv(netdev); 411 struct iavf_hw *hw = &adapter->hw; 412 413 /* handle non-queue interrupts, these reads clear the registers */ 414 rd32(hw, IAVF_VFINT_ICR01); 415 rd32(hw, IAVF_VFINT_ICR0_ENA1); 416 417 if (adapter->state != __IAVF_REMOVE) 418 /* schedule work on the private workqueue */ 419 queue_work(adapter->wq, &adapter->adminq_task); 420 421 return IRQ_HANDLED; 422 } 423 424 /** 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 426 * @irq: interrupt number 427 * @data: pointer to a q_vector 428 **/ 429 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 430 { 431 struct iavf_q_vector *q_vector = data; 432 433 if (!q_vector->tx.ring && !q_vector->rx.ring) 434 return IRQ_HANDLED; 435 436 napi_schedule_irqoff(&q_vector->napi); 437 438 return IRQ_HANDLED; 439 } 440 441 /** 442 * iavf_map_vector_to_rxq - associate irqs with rx queues 443 * @adapter: board private structure 444 * @v_idx: interrupt number 445 * @r_idx: queue number 446 **/ 447 static void 448 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 449 { 450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 452 struct iavf_hw *hw = &adapter->hw; 453 454 rx_ring->q_vector = q_vector; 455 rx_ring->next = q_vector->rx.ring; 456 rx_ring->vsi = &adapter->vsi; 457 q_vector->rx.ring = rx_ring; 458 q_vector->rx.count++; 459 q_vector->rx.next_update = jiffies + 1; 460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 461 q_vector->ring_mask |= BIT(r_idx); 462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 463 q_vector->rx.current_itr >> 1); 464 q_vector->rx.current_itr = q_vector->rx.target_itr; 465 } 466 467 /** 468 * iavf_map_vector_to_txq - associate irqs with tx queues 469 * @adapter: board private structure 470 * @v_idx: interrupt number 471 * @t_idx: queue number 472 **/ 473 static void 474 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 475 { 476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 478 struct iavf_hw *hw = &adapter->hw; 479 480 tx_ring->q_vector = q_vector; 481 tx_ring->next = q_vector->tx.ring; 482 tx_ring->vsi = &adapter->vsi; 483 q_vector->tx.ring = tx_ring; 484 q_vector->tx.count++; 485 q_vector->tx.next_update = jiffies + 1; 486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 487 q_vector->num_ringpairs++; 488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 489 q_vector->tx.target_itr >> 1); 490 q_vector->tx.current_itr = q_vector->tx.target_itr; 491 } 492 493 /** 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 495 * @adapter: board private structure to initialize 496 * 497 * This function maps descriptor rings to the queue-specific vectors 498 * we were allotted through the MSI-X enabling code. Ideally, we'd have 499 * one vector per ring/queue, but on a constrained vector budget, we 500 * group the rings as "efficiently" as possible. You would add new 501 * mapping configurations in here. 502 **/ 503 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 504 { 505 int rings_remaining = adapter->num_active_queues; 506 int ridx = 0, vidx = 0; 507 int q_vectors; 508 509 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 510 511 for (; ridx < rings_remaining; ridx++) { 512 iavf_map_vector_to_rxq(adapter, vidx, ridx); 513 iavf_map_vector_to_txq(adapter, vidx, ridx); 514 515 /* In the case where we have more queues than vectors, continue 516 * round-robin on vectors until all queues are mapped. 517 */ 518 if (++vidx >= q_vectors) 519 vidx = 0; 520 } 521 522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 523 } 524 525 /** 526 * iavf_irq_affinity_notify - Callback for affinity changes 527 * @notify: context as to what irq was changed 528 * @mask: the new affinity mask 529 * 530 * This is a callback function used by the irq_set_affinity_notifier function 531 * so that we may register to receive changes to the irq affinity masks. 532 **/ 533 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 534 const cpumask_t *mask) 535 { 536 struct iavf_q_vector *q_vector = 537 container_of(notify, struct iavf_q_vector, affinity_notify); 538 539 cpumask_copy(&q_vector->affinity_mask, mask); 540 } 541 542 /** 543 * iavf_irq_affinity_release - Callback for affinity notifier release 544 * @ref: internal core kernel usage 545 * 546 * This is a callback function used by the irq_set_affinity_notifier function 547 * to inform the current notification subscriber that they will no longer 548 * receive notifications. 549 **/ 550 static void iavf_irq_affinity_release(struct kref *ref) {} 551 552 /** 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 554 * @adapter: board private structure 555 * @basename: device basename 556 * 557 * Allocates MSI-X vectors for tx and rx handling, and requests 558 * interrupts from the kernel. 559 **/ 560 static int 561 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 562 { 563 unsigned int vector, q_vectors; 564 unsigned int rx_int_idx = 0, tx_int_idx = 0; 565 int irq_num, err; 566 int cpu; 567 568 iavf_irq_disable(adapter); 569 /* Decrement for Other and TCP Timer vectors */ 570 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 571 572 for (vector = 0; vector < q_vectors; vector++) { 573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 574 575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 576 577 if (q_vector->tx.ring && q_vector->rx.ring) { 578 snprintf(q_vector->name, sizeof(q_vector->name), 579 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 580 tx_int_idx++; 581 } else if (q_vector->rx.ring) { 582 snprintf(q_vector->name, sizeof(q_vector->name), 583 "iavf-%s-rx-%u", basename, rx_int_idx++); 584 } else if (q_vector->tx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-tx-%u", basename, tx_int_idx++); 587 } else { 588 /* skip this unused q_vector */ 589 continue; 590 } 591 err = request_irq(irq_num, 592 iavf_msix_clean_rings, 593 0, 594 q_vector->name, 595 q_vector); 596 if (err) { 597 dev_info(&adapter->pdev->dev, 598 "Request_irq failed, error: %d\n", err); 599 goto free_queue_irqs; 600 } 601 /* register for affinity change notifications */ 602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 603 q_vector->affinity_notify.release = 604 iavf_irq_affinity_release; 605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 606 /* Spread the IRQ affinity hints across online CPUs. Note that 607 * get_cpu_mask returns a mask with a permanent lifetime so 608 * it's safe to use as a hint for irq_update_affinity_hint. 609 */ 610 cpu = cpumask_local_spread(q_vector->v_idx, -1); 611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 612 } 613 614 return 0; 615 616 free_queue_irqs: 617 while (vector) { 618 vector--; 619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 620 irq_set_affinity_notifier(irq_num, NULL); 621 irq_update_affinity_hint(irq_num, NULL); 622 free_irq(irq_num, &adapter->q_vectors[vector]); 623 } 624 return err; 625 } 626 627 /** 628 * iavf_request_misc_irq - Initialize MSI-X interrupts 629 * @adapter: board private structure 630 * 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 632 * vector is only for the admin queue, and stays active even when the netdev 633 * is closed. 634 **/ 635 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 636 { 637 struct net_device *netdev = adapter->netdev; 638 int err; 639 640 snprintf(adapter->misc_vector_name, 641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 642 dev_name(&adapter->pdev->dev)); 643 err = request_irq(adapter->msix_entries[0].vector, 644 &iavf_msix_aq, 0, 645 adapter->misc_vector_name, netdev); 646 if (err) { 647 dev_err(&adapter->pdev->dev, 648 "request_irq for %s failed: %d\n", 649 adapter->misc_vector_name, err); 650 free_irq(adapter->msix_entries[0].vector, netdev); 651 } 652 return err; 653 } 654 655 /** 656 * iavf_free_traffic_irqs - Free MSI-X interrupts 657 * @adapter: board private structure 658 * 659 * Frees all MSI-X vectors other than 0. 660 **/ 661 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 662 { 663 int vector, irq_num, q_vectors; 664 665 if (!adapter->msix_entries) 666 return; 667 668 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 669 670 for (vector = 0; vector < q_vectors; vector++) { 671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 672 irq_set_affinity_notifier(irq_num, NULL); 673 irq_update_affinity_hint(irq_num, NULL); 674 free_irq(irq_num, &adapter->q_vectors[vector]); 675 } 676 } 677 678 /** 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 680 * @adapter: board private structure 681 * 682 * Frees MSI-X vector 0. 683 **/ 684 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 685 { 686 struct net_device *netdev = adapter->netdev; 687 688 if (!adapter->msix_entries) 689 return; 690 691 free_irq(adapter->msix_entries[0].vector, netdev); 692 } 693 694 /** 695 * iavf_configure_tx - Configure Transmit Unit after Reset 696 * @adapter: board private structure 697 * 698 * Configure the Tx unit of the MAC after a reset. 699 **/ 700 static void iavf_configure_tx(struct iavf_adapter *adapter) 701 { 702 struct iavf_hw *hw = &adapter->hw; 703 int i; 704 705 for (i = 0; i < adapter->num_active_queues; i++) 706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 707 } 708 709 /** 710 * iavf_configure_rx - Configure Receive Unit after Reset 711 * @adapter: board private structure 712 * 713 * Configure the Rx unit of the MAC after a reset. 714 **/ 715 static void iavf_configure_rx(struct iavf_adapter *adapter) 716 { 717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 718 struct iavf_hw *hw = &adapter->hw; 719 int i; 720 721 /* Legacy Rx will always default to a 2048 buffer size. */ 722 #if (PAGE_SIZE < 8192) 723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 724 struct net_device *netdev = adapter->netdev; 725 726 /* For jumbo frames on systems with 4K pages we have to use 727 * an order 1 page, so we might as well increase the size 728 * of our Rx buffer to make better use of the available space 729 */ 730 rx_buf_len = IAVF_RXBUFFER_3072; 731 732 /* We use a 1536 buffer size for configurations with 733 * standard Ethernet mtu. On x86 this gives us enough room 734 * for shared info and 192 bytes of padding. 735 */ 736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 737 (netdev->mtu <= ETH_DATA_LEN)) 738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 739 } 740 #endif 741 742 for (i = 0; i < adapter->num_active_queues; i++) { 743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 744 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 745 746 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 748 else 749 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 750 } 751 } 752 753 /** 754 * iavf_find_vlan - Search filter list for specific vlan filter 755 * @adapter: board private structure 756 * @vlan: vlan tag 757 * 758 * Returns ptr to the filter object or NULL. Must be called while holding the 759 * mac_vlan_list_lock. 760 **/ 761 static struct 762 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 763 struct iavf_vlan vlan) 764 { 765 struct iavf_vlan_filter *f; 766 767 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 768 if (f->vlan.vid == vlan.vid && 769 f->vlan.tpid == vlan.tpid) 770 return f; 771 } 772 773 return NULL; 774 } 775 776 /** 777 * iavf_add_vlan - Add a vlan filter to the list 778 * @adapter: board private structure 779 * @vlan: VLAN tag 780 * 781 * Returns ptr to the filter object or NULL when no memory available. 782 **/ 783 static struct 784 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 785 struct iavf_vlan vlan) 786 { 787 struct iavf_vlan_filter *f = NULL; 788 789 spin_lock_bh(&adapter->mac_vlan_list_lock); 790 791 f = iavf_find_vlan(adapter, vlan); 792 if (!f) { 793 f = kzalloc(sizeof(*f), GFP_ATOMIC); 794 if (!f) 795 goto clearout; 796 797 f->vlan = vlan; 798 799 list_add_tail(&f->list, &adapter->vlan_filter_list); 800 f->state = IAVF_VLAN_ADD; 801 adapter->num_vlan_filters++; 802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 803 } 804 805 clearout: 806 spin_unlock_bh(&adapter->mac_vlan_list_lock); 807 return f; 808 } 809 810 /** 811 * iavf_del_vlan - Remove a vlan filter from the list 812 * @adapter: board private structure 813 * @vlan: VLAN tag 814 **/ 815 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 816 { 817 struct iavf_vlan_filter *f; 818 819 spin_lock_bh(&adapter->mac_vlan_list_lock); 820 821 f = iavf_find_vlan(adapter, vlan); 822 if (f) { 823 f->state = IAVF_VLAN_REMOVE; 824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 825 } 826 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 } 829 830 /** 831 * iavf_restore_filters 832 * @adapter: board private structure 833 * 834 * Restore existing non MAC filters when VF netdev comes back up 835 **/ 836 static void iavf_restore_filters(struct iavf_adapter *adapter) 837 { 838 struct iavf_vlan_filter *f; 839 840 /* re-add all VLAN filters */ 841 spin_lock_bh(&adapter->mac_vlan_list_lock); 842 843 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 844 if (f->state == IAVF_VLAN_INACTIVE) 845 f->state = IAVF_VLAN_ADD; 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 850 } 851 852 /** 853 * iavf_get_num_vlans_added - get number of VLANs added 854 * @adapter: board private structure 855 */ 856 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 857 { 858 return adapter->num_vlan_filters; 859 } 860 861 /** 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 863 * @adapter: board private structure 864 * 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 866 * do not impose a limit as that maintains current behavior and for 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 868 **/ 869 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 870 { 871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 872 * never been a limit on the VF driver side 873 */ 874 if (VLAN_ALLOWED(adapter)) 875 return VLAN_N_VID; 876 else if (VLAN_V2_ALLOWED(adapter)) 877 return adapter->vlan_v2_caps.filtering.max_filters; 878 879 return 0; 880 } 881 882 /** 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 884 * @adapter: board private structure 885 **/ 886 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 887 { 888 if (iavf_get_num_vlans_added(adapter) < 889 iavf_get_max_vlans_allowed(adapter)) 890 return false; 891 892 return true; 893 } 894 895 /** 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 897 * @netdev: network device struct 898 * @proto: unused protocol data 899 * @vid: VLAN tag 900 **/ 901 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 902 __always_unused __be16 proto, u16 vid) 903 { 904 struct iavf_adapter *adapter = netdev_priv(netdev); 905 906 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 907 if (!vid) 908 return 0; 909 910 if (!VLAN_FILTERING_ALLOWED(adapter)) 911 return -EIO; 912 913 if (iavf_max_vlans_added(adapter)) { 914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 915 iavf_get_max_vlans_allowed(adapter)); 916 return -EIO; 917 } 918 919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 920 return -ENOMEM; 921 922 return 0; 923 } 924 925 /** 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 927 * @netdev: network device struct 928 * @proto: unused protocol data 929 * @vid: VLAN tag 930 **/ 931 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 932 __always_unused __be16 proto, u16 vid) 933 { 934 struct iavf_adapter *adapter = netdev_priv(netdev); 935 936 /* We do not track VLAN 0 filter */ 937 if (!vid) 938 return 0; 939 940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 941 return 0; 942 } 943 944 /** 945 * iavf_find_filter - Search filter list for specific mac filter 946 * @adapter: board private structure 947 * @macaddr: the MAC address 948 * 949 * Returns ptr to the filter object or NULL. Must be called while holding the 950 * mac_vlan_list_lock. 951 **/ 952 static struct 953 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 954 const u8 *macaddr) 955 { 956 struct iavf_mac_filter *f; 957 958 if (!macaddr) 959 return NULL; 960 961 list_for_each_entry(f, &adapter->mac_filter_list, list) { 962 if (ether_addr_equal(macaddr, f->macaddr)) 963 return f; 964 } 965 return NULL; 966 } 967 968 /** 969 * iavf_add_filter - Add a mac filter to the filter list 970 * @adapter: board private structure 971 * @macaddr: the MAC address 972 * 973 * Returns ptr to the filter object or NULL when no memory available. 974 **/ 975 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 976 const u8 *macaddr) 977 { 978 struct iavf_mac_filter *f; 979 980 if (!macaddr) 981 return NULL; 982 983 f = iavf_find_filter(adapter, macaddr); 984 if (!f) { 985 f = kzalloc(sizeof(*f), GFP_ATOMIC); 986 if (!f) 987 return f; 988 989 ether_addr_copy(f->macaddr, macaddr); 990 991 list_add_tail(&f->list, &adapter->mac_filter_list); 992 f->add = true; 993 f->add_handled = false; 994 f->is_new_mac = true; 995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 997 } else { 998 f->remove = false; 999 } 1000 1001 return f; 1002 } 1003 1004 /** 1005 * iavf_replace_primary_mac - Replace current primary address 1006 * @adapter: board private structure 1007 * @new_mac: new MAC address to be applied 1008 * 1009 * Replace current dev_addr and send request to PF for removal of previous 1010 * primary MAC address filter and addition of new primary MAC filter. 1011 * Return 0 for success, -ENOMEM for failure. 1012 * 1013 * Do not call this with mac_vlan_list_lock! 1014 **/ 1015 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1016 const u8 *new_mac) 1017 { 1018 struct iavf_hw *hw = &adapter->hw; 1019 struct iavf_mac_filter *new_f; 1020 struct iavf_mac_filter *old_f; 1021 1022 spin_lock_bh(&adapter->mac_vlan_list_lock); 1023 1024 new_f = iavf_add_filter(adapter, new_mac); 1025 if (!new_f) { 1026 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1027 return -ENOMEM; 1028 } 1029 1030 old_f = iavf_find_filter(adapter, hw->mac.addr); 1031 if (old_f) { 1032 old_f->is_primary = false; 1033 old_f->remove = true; 1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1035 } 1036 /* Always send the request to add if changing primary MAC, 1037 * even if filter is already present on the list 1038 */ 1039 new_f->is_primary = true; 1040 new_f->add = true; 1041 ether_addr_copy(hw->mac.addr, new_mac); 1042 1043 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1044 1045 /* schedule the watchdog task to immediately process the request */ 1046 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1047 return 0; 1048 } 1049 1050 /** 1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1052 * @netdev: network interface device structure 1053 * @macaddr: MAC address to set 1054 * 1055 * Returns true on success, false on failure 1056 */ 1057 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1058 const u8 *macaddr) 1059 { 1060 struct iavf_adapter *adapter = netdev_priv(netdev); 1061 struct iavf_mac_filter *f; 1062 bool ret = false; 1063 1064 spin_lock_bh(&adapter->mac_vlan_list_lock); 1065 1066 f = iavf_find_filter(adapter, macaddr); 1067 1068 if (!f || (!f->add && f->add_handled)) 1069 ret = true; 1070 1071 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1072 1073 return ret; 1074 } 1075 1076 /** 1077 * iavf_set_mac - NDO callback to set port MAC address 1078 * @netdev: network interface device structure 1079 * @p: pointer to an address structure 1080 * 1081 * Returns 0 on success, negative on failure 1082 */ 1083 static int iavf_set_mac(struct net_device *netdev, void *p) 1084 { 1085 struct iavf_adapter *adapter = netdev_priv(netdev); 1086 struct sockaddr *addr = p; 1087 int ret; 1088 1089 if (!is_valid_ether_addr(addr->sa_data)) 1090 return -EADDRNOTAVAIL; 1091 1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1093 1094 if (ret) 1095 return ret; 1096 1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1098 iavf_is_mac_set_handled(netdev, addr->sa_data), 1099 msecs_to_jiffies(2500)); 1100 1101 /* If ret < 0 then it means wait was interrupted. 1102 * If ret == 0 then it means we got a timeout. 1103 * else it means we got response for set MAC from PF, 1104 * check if netdev MAC was updated to requested MAC, 1105 * if yes then set MAC succeeded otherwise it failed return -EACCES 1106 */ 1107 if (ret < 0) 1108 return ret; 1109 1110 if (!ret) 1111 return -EAGAIN; 1112 1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1114 return -EACCES; 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1121 * @netdev: the netdevice 1122 * @addr: address to add 1123 * 1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1126 */ 1127 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1128 { 1129 struct iavf_adapter *adapter = netdev_priv(netdev); 1130 1131 if (iavf_add_filter(adapter, addr)) 1132 return 0; 1133 else 1134 return -ENOMEM; 1135 } 1136 1137 /** 1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1139 * @netdev: the netdevice 1140 * @addr: address to add 1141 * 1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1144 */ 1145 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1146 { 1147 struct iavf_adapter *adapter = netdev_priv(netdev); 1148 struct iavf_mac_filter *f; 1149 1150 /* Under some circumstances, we might receive a request to delete 1151 * our own device address from our uc list. Because we store the 1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1153 * such requests and not delete our device address from this list. 1154 */ 1155 if (ether_addr_equal(addr, netdev->dev_addr)) 1156 return 0; 1157 1158 f = iavf_find_filter(adapter, addr); 1159 if (f) { 1160 f->remove = true; 1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1162 } 1163 return 0; 1164 } 1165 1166 /** 1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1168 * @adapter: device specific adapter 1169 */ 1170 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1171 { 1172 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1173 (IFF_PROMISC | IFF_ALLMULTI); 1174 } 1175 1176 /** 1177 * iavf_set_rx_mode - NDO callback to set the netdev filters 1178 * @netdev: network interface device structure 1179 **/ 1180 static void iavf_set_rx_mode(struct net_device *netdev) 1181 { 1182 struct iavf_adapter *adapter = netdev_priv(netdev); 1183 1184 spin_lock_bh(&adapter->mac_vlan_list_lock); 1185 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1186 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1187 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1188 1189 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1190 if (iavf_promiscuous_mode_changed(adapter)) 1191 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1192 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1193 } 1194 1195 /** 1196 * iavf_napi_enable_all - enable NAPI on all queue vectors 1197 * @adapter: board private structure 1198 **/ 1199 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1200 { 1201 int q_idx; 1202 struct iavf_q_vector *q_vector; 1203 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1204 1205 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1206 struct napi_struct *napi; 1207 1208 q_vector = &adapter->q_vectors[q_idx]; 1209 napi = &q_vector->napi; 1210 napi_enable(napi); 1211 } 1212 } 1213 1214 /** 1215 * iavf_napi_disable_all - disable NAPI on all queue vectors 1216 * @adapter: board private structure 1217 **/ 1218 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1219 { 1220 int q_idx; 1221 struct iavf_q_vector *q_vector; 1222 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1223 1224 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1225 q_vector = &adapter->q_vectors[q_idx]; 1226 napi_disable(&q_vector->napi); 1227 } 1228 } 1229 1230 /** 1231 * iavf_configure - set up transmit and receive data structures 1232 * @adapter: board private structure 1233 **/ 1234 static void iavf_configure(struct iavf_adapter *adapter) 1235 { 1236 struct net_device *netdev = adapter->netdev; 1237 int i; 1238 1239 iavf_set_rx_mode(netdev); 1240 1241 iavf_configure_tx(adapter); 1242 iavf_configure_rx(adapter); 1243 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1244 1245 for (i = 0; i < adapter->num_active_queues; i++) { 1246 struct iavf_ring *ring = &adapter->rx_rings[i]; 1247 1248 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1249 } 1250 } 1251 1252 /** 1253 * iavf_up_complete - Finish the last steps of bringing up a connection 1254 * @adapter: board private structure 1255 * 1256 * Expects to be called while holding crit_lock. 1257 **/ 1258 static void iavf_up_complete(struct iavf_adapter *adapter) 1259 { 1260 iavf_change_state(adapter, __IAVF_RUNNING); 1261 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1262 1263 iavf_napi_enable_all(adapter); 1264 1265 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1266 } 1267 1268 /** 1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1270 * yet and mark other to be removed. 1271 * @adapter: board private structure 1272 **/ 1273 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1274 { 1275 struct iavf_vlan_filter *vlf, *vlftmp; 1276 struct iavf_mac_filter *f, *ftmp; 1277 1278 spin_lock_bh(&adapter->mac_vlan_list_lock); 1279 /* clear the sync flag on all filters */ 1280 __dev_uc_unsync(adapter->netdev, NULL); 1281 __dev_mc_unsync(adapter->netdev, NULL); 1282 1283 /* remove all MAC filters */ 1284 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1285 list) { 1286 if (f->add) { 1287 list_del(&f->list); 1288 kfree(f); 1289 } else { 1290 f->remove = true; 1291 } 1292 } 1293 1294 /* disable all VLAN filters */ 1295 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1296 list) 1297 vlf->state = IAVF_VLAN_DISABLE; 1298 1299 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1300 } 1301 1302 /** 1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1304 * mark other to be removed. 1305 * @adapter: board private structure 1306 **/ 1307 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1308 { 1309 struct iavf_cloud_filter *cf, *cftmp; 1310 1311 /* remove all cloud filters */ 1312 spin_lock_bh(&adapter->cloud_filter_list_lock); 1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1314 list) { 1315 if (cf->add) { 1316 list_del(&cf->list); 1317 kfree(cf); 1318 adapter->num_cloud_filters--; 1319 } else { 1320 cf->del = true; 1321 } 1322 } 1323 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1324 } 1325 1326 /** 1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1328 * other to be removed. 1329 * @adapter: board private structure 1330 **/ 1331 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1332 { 1333 struct iavf_fdir_fltr *fdir; 1334 1335 /* remove all Flow Director filters */ 1336 spin_lock_bh(&adapter->fdir_fltr_lock); 1337 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1339 /* Cancel a request, keep filter as inactive */ 1340 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1341 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1342 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1343 /* Disable filters which are active or have a pending 1344 * request to PF to be added 1345 */ 1346 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1347 } 1348 } 1349 spin_unlock_bh(&adapter->fdir_fltr_lock); 1350 } 1351 1352 /** 1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1354 * other to be removed. 1355 * @adapter: board private structure 1356 **/ 1357 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1358 { 1359 struct iavf_adv_rss *rss, *rsstmp; 1360 1361 /* remove all advance RSS configuration */ 1362 spin_lock_bh(&adapter->adv_rss_lock); 1363 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1364 list) { 1365 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1366 list_del(&rss->list); 1367 kfree(rss); 1368 } else { 1369 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1370 } 1371 } 1372 spin_unlock_bh(&adapter->adv_rss_lock); 1373 } 1374 1375 /** 1376 * iavf_down - Shutdown the connection processing 1377 * @adapter: board private structure 1378 * 1379 * Expects to be called while holding crit_lock. 1380 **/ 1381 void iavf_down(struct iavf_adapter *adapter) 1382 { 1383 struct net_device *netdev = adapter->netdev; 1384 1385 if (adapter->state <= __IAVF_DOWN_PENDING) 1386 return; 1387 1388 netif_carrier_off(netdev); 1389 netif_tx_disable(netdev); 1390 adapter->link_up = false; 1391 iavf_napi_disable_all(adapter); 1392 iavf_irq_disable(adapter); 1393 1394 iavf_clear_mac_vlan_filters(adapter); 1395 iavf_clear_cloud_filters(adapter); 1396 iavf_clear_fdir_filters(adapter); 1397 iavf_clear_adv_rss_conf(adapter); 1398 1399 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1400 return; 1401 1402 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1403 /* cancel any current operation */ 1404 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1405 /* Schedule operations to close down the HW. Don't wait 1406 * here for this to complete. The watchdog is still running 1407 * and it will take care of this. 1408 */ 1409 if (!list_empty(&adapter->mac_filter_list)) 1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1411 if (!list_empty(&adapter->vlan_filter_list)) 1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1413 if (!list_empty(&adapter->cloud_filter_list)) 1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1415 if (!list_empty(&adapter->fdir_list_head)) 1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1417 if (!list_empty(&adapter->adv_rss_list_head)) 1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1419 } 1420 1421 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1422 } 1423 1424 /** 1425 * iavf_acquire_msix_vectors - Setup the MSIX capability 1426 * @adapter: board private structure 1427 * @vectors: number of vectors to request 1428 * 1429 * Work with the OS to set up the MSIX vectors needed. 1430 * 1431 * Returns 0 on success, negative on failure 1432 **/ 1433 static int 1434 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1435 { 1436 int err, vector_threshold; 1437 1438 /* We'll want at least 3 (vector_threshold): 1439 * 0) Other (Admin Queue and link, mostly) 1440 * 1) TxQ[0] Cleanup 1441 * 2) RxQ[0] Cleanup 1442 */ 1443 vector_threshold = MIN_MSIX_COUNT; 1444 1445 /* The more we get, the more we will assign to Tx/Rx Cleanup 1446 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1447 * Right now, we simply care about how many we'll get; we'll 1448 * set them up later while requesting irq's. 1449 */ 1450 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1451 vector_threshold, vectors); 1452 if (err < 0) { 1453 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1454 kfree(adapter->msix_entries); 1455 adapter->msix_entries = NULL; 1456 return err; 1457 } 1458 1459 /* Adjust for only the vectors we'll use, which is minimum 1460 * of max_msix_q_vectors + NONQ_VECS, or the number of 1461 * vectors we were allocated. 1462 */ 1463 adapter->num_msix_vectors = err; 1464 return 0; 1465 } 1466 1467 /** 1468 * iavf_free_queues - Free memory for all rings 1469 * @adapter: board private structure to initialize 1470 * 1471 * Free all of the memory associated with queue pairs. 1472 **/ 1473 static void iavf_free_queues(struct iavf_adapter *adapter) 1474 { 1475 if (!adapter->vsi_res) 1476 return; 1477 adapter->num_active_queues = 0; 1478 kfree(adapter->tx_rings); 1479 adapter->tx_rings = NULL; 1480 kfree(adapter->rx_rings); 1481 adapter->rx_rings = NULL; 1482 } 1483 1484 /** 1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1486 * @adapter: board private structure 1487 * 1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1489 * stripped in certain descriptor fields. Instead of checking the offload 1490 * capability bits in the hot path, cache the location the ring specific 1491 * flags. 1492 */ 1493 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1494 { 1495 int i; 1496 1497 for (i = 0; i < adapter->num_active_queues; i++) { 1498 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1499 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1500 1501 /* prevent multiple L2TAG bits being set after VFR */ 1502 tx_ring->flags &= 1503 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1504 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1505 rx_ring->flags &= 1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1507 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1508 1509 if (VLAN_ALLOWED(adapter)) { 1510 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1511 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1512 } else if (VLAN_V2_ALLOWED(adapter)) { 1513 struct virtchnl_vlan_supported_caps *stripping_support; 1514 struct virtchnl_vlan_supported_caps *insertion_support; 1515 1516 stripping_support = 1517 &adapter->vlan_v2_caps.offloads.stripping_support; 1518 insertion_support = 1519 &adapter->vlan_v2_caps.offloads.insertion_support; 1520 1521 if (stripping_support->outer) { 1522 if (stripping_support->outer & 1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1524 rx_ring->flags |= 1525 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1526 else if (stripping_support->outer & 1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1528 rx_ring->flags |= 1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1530 } else if (stripping_support->inner) { 1531 if (stripping_support->inner & 1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1533 rx_ring->flags |= 1534 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 else if (stripping_support->inner & 1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1537 rx_ring->flags |= 1538 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1539 } 1540 1541 if (insertion_support->outer) { 1542 if (insertion_support->outer & 1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1544 tx_ring->flags |= 1545 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 else if (insertion_support->outer & 1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1548 tx_ring->flags |= 1549 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1550 } else if (insertion_support->inner) { 1551 if (insertion_support->inner & 1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1553 tx_ring->flags |= 1554 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1555 else if (insertion_support->inner & 1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1557 tx_ring->flags |= 1558 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1559 } 1560 } 1561 } 1562 } 1563 1564 /** 1565 * iavf_alloc_queues - Allocate memory for all rings 1566 * @adapter: board private structure to initialize 1567 * 1568 * We allocate one ring per queue at run-time since we don't know the 1569 * number of queues at compile-time. The polling_netdev array is 1570 * intended for Multiqueue, but should work fine with a single queue. 1571 **/ 1572 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1573 { 1574 int i, num_active_queues; 1575 1576 /* If we're in reset reallocating queues we don't actually know yet for 1577 * certain the PF gave us the number of queues we asked for but we'll 1578 * assume it did. Once basic reset is finished we'll confirm once we 1579 * start negotiating config with PF. 1580 */ 1581 if (adapter->num_req_queues) 1582 num_active_queues = adapter->num_req_queues; 1583 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1584 adapter->num_tc) 1585 num_active_queues = adapter->ch_config.total_qps; 1586 else 1587 num_active_queues = min_t(int, 1588 adapter->vsi_res->num_queue_pairs, 1589 (int)(num_online_cpus())); 1590 1591 1592 adapter->tx_rings = kcalloc(num_active_queues, 1593 sizeof(struct iavf_ring), GFP_KERNEL); 1594 if (!adapter->tx_rings) 1595 goto err_out; 1596 adapter->rx_rings = kcalloc(num_active_queues, 1597 sizeof(struct iavf_ring), GFP_KERNEL); 1598 if (!adapter->rx_rings) 1599 goto err_out; 1600 1601 for (i = 0; i < num_active_queues; i++) { 1602 struct iavf_ring *tx_ring; 1603 struct iavf_ring *rx_ring; 1604 1605 tx_ring = &adapter->tx_rings[i]; 1606 1607 tx_ring->queue_index = i; 1608 tx_ring->netdev = adapter->netdev; 1609 tx_ring->dev = &adapter->pdev->dev; 1610 tx_ring->count = adapter->tx_desc_count; 1611 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1612 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1613 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1614 1615 rx_ring = &adapter->rx_rings[i]; 1616 rx_ring->queue_index = i; 1617 rx_ring->netdev = adapter->netdev; 1618 rx_ring->dev = &adapter->pdev->dev; 1619 rx_ring->count = adapter->rx_desc_count; 1620 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1621 } 1622 1623 adapter->num_active_queues = num_active_queues; 1624 1625 iavf_set_queue_vlan_tag_loc(adapter); 1626 1627 return 0; 1628 1629 err_out: 1630 iavf_free_queues(adapter); 1631 return -ENOMEM; 1632 } 1633 1634 /** 1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1636 * @adapter: board private structure to initialize 1637 * 1638 * Attempt to configure the interrupts using the best available 1639 * capabilities of the hardware and the kernel. 1640 **/ 1641 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1642 { 1643 int vector, v_budget; 1644 int pairs = 0; 1645 int err = 0; 1646 1647 if (!adapter->vsi_res) { 1648 err = -EIO; 1649 goto out; 1650 } 1651 pairs = adapter->num_active_queues; 1652 1653 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1654 * us much good if we have more vectors than CPUs. However, we already 1655 * limit the total number of queues by the number of CPUs so we do not 1656 * need any further limiting here. 1657 */ 1658 v_budget = min_t(int, pairs + NONQ_VECS, 1659 (int)adapter->vf_res->max_vectors); 1660 1661 adapter->msix_entries = kcalloc(v_budget, 1662 sizeof(struct msix_entry), GFP_KERNEL); 1663 if (!adapter->msix_entries) { 1664 err = -ENOMEM; 1665 goto out; 1666 } 1667 1668 for (vector = 0; vector < v_budget; vector++) 1669 adapter->msix_entries[vector].entry = vector; 1670 1671 err = iavf_acquire_msix_vectors(adapter, v_budget); 1672 if (!err) 1673 iavf_schedule_finish_config(adapter); 1674 1675 out: 1676 return err; 1677 } 1678 1679 /** 1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1681 * @adapter: board private structure 1682 * 1683 * Return 0 on success, negative on failure 1684 **/ 1685 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1686 { 1687 struct iavf_aqc_get_set_rss_key_data *rss_key = 1688 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1689 struct iavf_hw *hw = &adapter->hw; 1690 enum iavf_status status; 1691 1692 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1693 /* bail because we already have a command pending */ 1694 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1695 adapter->current_op); 1696 return -EBUSY; 1697 } 1698 1699 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1700 if (status) { 1701 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1702 iavf_stat_str(hw, status), 1703 iavf_aq_str(hw, hw->aq.asq_last_status)); 1704 return iavf_status_to_errno(status); 1705 1706 } 1707 1708 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1709 adapter->rss_lut, adapter->rss_lut_size); 1710 if (status) { 1711 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1712 iavf_stat_str(hw, status), 1713 iavf_aq_str(hw, hw->aq.asq_last_status)); 1714 return iavf_status_to_errno(status); 1715 } 1716 1717 return 0; 1718 1719 } 1720 1721 /** 1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1723 * @adapter: board private structure 1724 * 1725 * Returns 0 on success, negative on failure 1726 **/ 1727 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1728 { 1729 struct iavf_hw *hw = &adapter->hw; 1730 u32 *dw; 1731 u16 i; 1732 1733 dw = (u32 *)adapter->rss_key; 1734 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1735 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1736 1737 dw = (u32 *)adapter->rss_lut; 1738 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1739 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1740 1741 iavf_flush(hw); 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * iavf_config_rss - Configure RSS keys and lut 1748 * @adapter: board private structure 1749 * 1750 * Returns 0 on success, negative on failure 1751 **/ 1752 int iavf_config_rss(struct iavf_adapter *adapter) 1753 { 1754 1755 if (RSS_PF(adapter)) { 1756 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1757 IAVF_FLAG_AQ_SET_RSS_KEY; 1758 return 0; 1759 } else if (RSS_AQ(adapter)) { 1760 return iavf_config_rss_aq(adapter); 1761 } else { 1762 return iavf_config_rss_reg(adapter); 1763 } 1764 } 1765 1766 /** 1767 * iavf_fill_rss_lut - Fill the lut with default values 1768 * @adapter: board private structure 1769 **/ 1770 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1771 { 1772 u16 i; 1773 1774 for (i = 0; i < adapter->rss_lut_size; i++) 1775 adapter->rss_lut[i] = i % adapter->num_active_queues; 1776 } 1777 1778 /** 1779 * iavf_init_rss - Prepare for RSS 1780 * @adapter: board private structure 1781 * 1782 * Return 0 on success, negative on failure 1783 **/ 1784 static int iavf_init_rss(struct iavf_adapter *adapter) 1785 { 1786 struct iavf_hw *hw = &adapter->hw; 1787 1788 if (!RSS_PF(adapter)) { 1789 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1790 if (adapter->vf_res->vf_cap_flags & 1791 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1792 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1793 else 1794 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1795 1796 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1797 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1798 } 1799 1800 iavf_fill_rss_lut(adapter); 1801 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1802 1803 return iavf_config_rss(adapter); 1804 } 1805 1806 /** 1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1808 * @adapter: board private structure to initialize 1809 * 1810 * We allocate one q_vector per queue interrupt. If allocation fails we 1811 * return -ENOMEM. 1812 **/ 1813 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1814 { 1815 int q_idx = 0, num_q_vectors; 1816 struct iavf_q_vector *q_vector; 1817 1818 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1819 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1820 GFP_KERNEL); 1821 if (!adapter->q_vectors) 1822 return -ENOMEM; 1823 1824 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1825 q_vector = &adapter->q_vectors[q_idx]; 1826 q_vector->adapter = adapter; 1827 q_vector->vsi = &adapter->vsi; 1828 q_vector->v_idx = q_idx; 1829 q_vector->reg_idx = q_idx; 1830 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1831 netif_napi_add(adapter->netdev, &q_vector->napi, 1832 iavf_napi_poll); 1833 } 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1840 * @adapter: board private structure to initialize 1841 * 1842 * This function frees the memory allocated to the q_vectors. In addition if 1843 * NAPI is enabled it will delete any references to the NAPI struct prior 1844 * to freeing the q_vector. 1845 **/ 1846 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1847 { 1848 int q_idx, num_q_vectors; 1849 1850 if (!adapter->q_vectors) 1851 return; 1852 1853 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1854 1855 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1856 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1857 1858 netif_napi_del(&q_vector->napi); 1859 } 1860 kfree(adapter->q_vectors); 1861 adapter->q_vectors = NULL; 1862 } 1863 1864 /** 1865 * iavf_reset_interrupt_capability - Reset MSIX setup 1866 * @adapter: board private structure 1867 * 1868 **/ 1869 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1870 { 1871 if (!adapter->msix_entries) 1872 return; 1873 1874 pci_disable_msix(adapter->pdev); 1875 kfree(adapter->msix_entries); 1876 adapter->msix_entries = NULL; 1877 } 1878 1879 /** 1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1881 * @adapter: board private structure to initialize 1882 * 1883 **/ 1884 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1885 { 1886 int err; 1887 1888 err = iavf_alloc_queues(adapter); 1889 if (err) { 1890 dev_err(&adapter->pdev->dev, 1891 "Unable to allocate memory for queues\n"); 1892 goto err_alloc_queues; 1893 } 1894 1895 err = iavf_set_interrupt_capability(adapter); 1896 if (err) { 1897 dev_err(&adapter->pdev->dev, 1898 "Unable to setup interrupt capabilities\n"); 1899 goto err_set_interrupt; 1900 } 1901 1902 err = iavf_alloc_q_vectors(adapter); 1903 if (err) { 1904 dev_err(&adapter->pdev->dev, 1905 "Unable to allocate memory for queue vectors\n"); 1906 goto err_alloc_q_vectors; 1907 } 1908 1909 /* If we've made it so far while ADq flag being ON, then we haven't 1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1911 * resources have been allocated in the reset path. 1912 * Now we can truly claim that ADq is enabled. 1913 */ 1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1915 adapter->num_tc) 1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1917 adapter->num_tc); 1918 1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1921 adapter->num_active_queues); 1922 1923 return 0; 1924 err_alloc_q_vectors: 1925 iavf_reset_interrupt_capability(adapter); 1926 err_set_interrupt: 1927 iavf_free_queues(adapter); 1928 err_alloc_queues: 1929 return err; 1930 } 1931 1932 /** 1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1934 * @adapter: board private structure 1935 **/ 1936 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1937 { 1938 iavf_free_q_vectors(adapter); 1939 iavf_reset_interrupt_capability(adapter); 1940 iavf_free_queues(adapter); 1941 } 1942 1943 /** 1944 * iavf_free_rss - Free memory used by RSS structs 1945 * @adapter: board private structure 1946 **/ 1947 static void iavf_free_rss(struct iavf_adapter *adapter) 1948 { 1949 kfree(adapter->rss_key); 1950 adapter->rss_key = NULL; 1951 1952 kfree(adapter->rss_lut); 1953 adapter->rss_lut = NULL; 1954 } 1955 1956 /** 1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1958 * @adapter: board private structure 1959 * @running: true if adapter->state == __IAVF_RUNNING 1960 * 1961 * Returns 0 on success, negative on failure 1962 **/ 1963 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1964 { 1965 struct net_device *netdev = adapter->netdev; 1966 int err; 1967 1968 if (running) 1969 iavf_free_traffic_irqs(adapter); 1970 iavf_free_misc_irq(adapter); 1971 iavf_free_interrupt_scheme(adapter); 1972 1973 err = iavf_init_interrupt_scheme(adapter); 1974 if (err) 1975 goto err; 1976 1977 netif_tx_stop_all_queues(netdev); 1978 1979 err = iavf_request_misc_irq(adapter); 1980 if (err) 1981 goto err; 1982 1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1984 1985 iavf_map_rings_to_vectors(adapter); 1986 err: 1987 return err; 1988 } 1989 1990 /** 1991 * iavf_finish_config - do all netdev work that needs RTNL 1992 * @work: our work_struct 1993 * 1994 * Do work that needs both RTNL and crit_lock. 1995 **/ 1996 static void iavf_finish_config(struct work_struct *work) 1997 { 1998 struct iavf_adapter *adapter; 1999 int pairs, err; 2000 2001 adapter = container_of(work, struct iavf_adapter, finish_config); 2002 2003 /* Always take RTNL first to prevent circular lock dependency */ 2004 rtnl_lock(); 2005 mutex_lock(&adapter->crit_lock); 2006 2007 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2008 adapter->netdev->reg_state == NETREG_REGISTERED && 2009 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2010 netdev_update_features(adapter->netdev); 2011 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2012 } 2013 2014 switch (adapter->state) { 2015 case __IAVF_DOWN: 2016 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2017 err = register_netdevice(adapter->netdev); 2018 if (err) { 2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2020 err); 2021 2022 /* go back and try again.*/ 2023 iavf_free_rss(adapter); 2024 iavf_free_misc_irq(adapter); 2025 iavf_reset_interrupt_capability(adapter); 2026 iavf_change_state(adapter, 2027 __IAVF_INIT_CONFIG_ADAPTER); 2028 goto out; 2029 } 2030 } 2031 2032 /* Set the real number of queues when reset occurs while 2033 * state == __IAVF_DOWN 2034 */ 2035 fallthrough; 2036 case __IAVF_RUNNING: 2037 pairs = adapter->num_active_queues; 2038 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2039 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2040 break; 2041 2042 default: 2043 break; 2044 } 2045 2046 out: 2047 mutex_unlock(&adapter->crit_lock); 2048 rtnl_unlock(); 2049 } 2050 2051 /** 2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2053 * @adapter: board private structure 2054 **/ 2055 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2056 { 2057 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2058 queue_work(adapter->wq, &adapter->finish_config); 2059 } 2060 2061 /** 2062 * iavf_process_aq_command - process aq_required flags 2063 * and sends aq command 2064 * @adapter: pointer to iavf adapter structure 2065 * 2066 * Returns 0 on success 2067 * Returns error code if no command was sent 2068 * or error code if the command failed. 2069 **/ 2070 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2071 { 2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2073 return iavf_send_vf_config_msg(adapter); 2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2075 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2076 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2077 iavf_disable_queues(adapter); 2078 return 0; 2079 } 2080 2081 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2082 iavf_map_queues(adapter); 2083 return 0; 2084 } 2085 2086 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2087 iavf_add_ether_addrs(adapter); 2088 return 0; 2089 } 2090 2091 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2092 iavf_add_vlans(adapter); 2093 return 0; 2094 } 2095 2096 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2097 iavf_del_ether_addrs(adapter); 2098 return 0; 2099 } 2100 2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2102 iavf_del_vlans(adapter); 2103 return 0; 2104 } 2105 2106 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2107 iavf_enable_vlan_stripping(adapter); 2108 return 0; 2109 } 2110 2111 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2112 iavf_disable_vlan_stripping(adapter); 2113 return 0; 2114 } 2115 2116 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2117 iavf_configure_queues(adapter); 2118 return 0; 2119 } 2120 2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2122 iavf_enable_queues(adapter); 2123 return 0; 2124 } 2125 2126 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2127 /* This message goes straight to the firmware, not the 2128 * PF, so we don't have to set current_op as we will 2129 * not get a response through the ARQ. 2130 */ 2131 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2132 return 0; 2133 } 2134 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2135 iavf_get_hena(adapter); 2136 return 0; 2137 } 2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2139 iavf_set_hena(adapter); 2140 return 0; 2141 } 2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2143 iavf_set_rss_key(adapter); 2144 return 0; 2145 } 2146 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2147 iavf_set_rss_lut(adapter); 2148 return 0; 2149 } 2150 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2151 iavf_set_rss_hfunc(adapter); 2152 return 0; 2153 } 2154 2155 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2156 iavf_set_promiscuous(adapter); 2157 return 0; 2158 } 2159 2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2161 iavf_enable_channels(adapter); 2162 return 0; 2163 } 2164 2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2166 iavf_disable_channels(adapter); 2167 return 0; 2168 } 2169 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2170 iavf_add_cloud_filter(adapter); 2171 return 0; 2172 } 2173 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2174 iavf_del_cloud_filter(adapter); 2175 return 0; 2176 } 2177 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2178 iavf_add_fdir_filter(adapter); 2179 return IAVF_SUCCESS; 2180 } 2181 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2182 iavf_del_fdir_filter(adapter); 2183 return IAVF_SUCCESS; 2184 } 2185 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2186 iavf_add_adv_rss_cfg(adapter); 2187 return 0; 2188 } 2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2190 iavf_del_adv_rss_cfg(adapter); 2191 return 0; 2192 } 2193 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2194 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2195 return 0; 2196 } 2197 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2198 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2199 return 0; 2200 } 2201 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2202 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2203 return 0; 2204 } 2205 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2206 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2207 return 0; 2208 } 2209 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2210 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2211 return 0; 2212 } 2213 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2214 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2215 return 0; 2216 } 2217 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2218 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2219 return 0; 2220 } 2221 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2222 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2223 return 0; 2224 } 2225 2226 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2227 iavf_request_stats(adapter); 2228 return 0; 2229 } 2230 2231 return -EAGAIN; 2232 } 2233 2234 /** 2235 * iavf_set_vlan_offload_features - set VLAN offload configuration 2236 * @adapter: board private structure 2237 * @prev_features: previous features used for comparison 2238 * @features: updated features used for configuration 2239 * 2240 * Set the aq_required bit(s) based on the requested features passed in to 2241 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2242 * the watchdog if any changes are requested to expedite the request via 2243 * virtchnl. 2244 **/ 2245 static void 2246 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2247 netdev_features_t prev_features, 2248 netdev_features_t features) 2249 { 2250 bool enable_stripping = true, enable_insertion = true; 2251 u16 vlan_ethertype = 0; 2252 u64 aq_required = 0; 2253 2254 /* keep cases separate because one ethertype for offloads can be 2255 * disabled at the same time as another is disabled, so check for an 2256 * enabled ethertype first, then check for disabled. Default to 2257 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2258 * stripping. 2259 */ 2260 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2261 vlan_ethertype = ETH_P_8021AD; 2262 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2263 vlan_ethertype = ETH_P_8021Q; 2264 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2265 vlan_ethertype = ETH_P_8021AD; 2266 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2267 vlan_ethertype = ETH_P_8021Q; 2268 else 2269 vlan_ethertype = ETH_P_8021Q; 2270 2271 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2272 enable_stripping = false; 2273 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2274 enable_insertion = false; 2275 2276 if (VLAN_ALLOWED(adapter)) { 2277 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2278 * stripping via virtchnl. VLAN insertion can be toggled on the 2279 * netdev, but it doesn't require a virtchnl message 2280 */ 2281 if (enable_stripping) 2282 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2283 else 2284 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2285 2286 } else if (VLAN_V2_ALLOWED(adapter)) { 2287 switch (vlan_ethertype) { 2288 case ETH_P_8021Q: 2289 if (enable_stripping) 2290 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2291 else 2292 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2293 2294 if (enable_insertion) 2295 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2296 else 2297 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2298 break; 2299 case ETH_P_8021AD: 2300 if (enable_stripping) 2301 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2302 else 2303 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2304 2305 if (enable_insertion) 2306 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2307 else 2308 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2309 break; 2310 } 2311 } 2312 2313 if (aq_required) 2314 iavf_schedule_aq_request(adapter, aq_required); 2315 } 2316 2317 /** 2318 * iavf_startup - first step of driver startup 2319 * @adapter: board private structure 2320 * 2321 * Function process __IAVF_STARTUP driver state. 2322 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2323 * when fails the state is changed to __IAVF_INIT_FAILED 2324 **/ 2325 static void iavf_startup(struct iavf_adapter *adapter) 2326 { 2327 struct pci_dev *pdev = adapter->pdev; 2328 struct iavf_hw *hw = &adapter->hw; 2329 enum iavf_status status; 2330 int ret; 2331 2332 WARN_ON(adapter->state != __IAVF_STARTUP); 2333 2334 /* driver loaded, probe complete */ 2335 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2336 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2337 2338 ret = iavf_check_reset_complete(hw); 2339 if (ret) { 2340 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2341 ret); 2342 goto err; 2343 } 2344 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2345 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2346 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2347 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2348 2349 status = iavf_init_adminq(hw); 2350 if (status) { 2351 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2352 status); 2353 goto err; 2354 } 2355 ret = iavf_send_api_ver(adapter); 2356 if (ret) { 2357 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2358 iavf_shutdown_adminq(hw); 2359 goto err; 2360 } 2361 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2362 return; 2363 err: 2364 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2365 } 2366 2367 /** 2368 * iavf_init_version_check - second step of driver startup 2369 * @adapter: board private structure 2370 * 2371 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2372 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2373 * when fails the state is changed to __IAVF_INIT_FAILED 2374 **/ 2375 static void iavf_init_version_check(struct iavf_adapter *adapter) 2376 { 2377 struct pci_dev *pdev = adapter->pdev; 2378 struct iavf_hw *hw = &adapter->hw; 2379 int err = -EAGAIN; 2380 2381 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2382 2383 if (!iavf_asq_done(hw)) { 2384 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2385 iavf_shutdown_adminq(hw); 2386 iavf_change_state(adapter, __IAVF_STARTUP); 2387 goto err; 2388 } 2389 2390 /* aq msg sent, awaiting reply */ 2391 err = iavf_verify_api_ver(adapter); 2392 if (err) { 2393 if (err == -EALREADY) 2394 err = iavf_send_api_ver(adapter); 2395 else 2396 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2397 adapter->pf_version.major, 2398 adapter->pf_version.minor, 2399 VIRTCHNL_VERSION_MAJOR, 2400 VIRTCHNL_VERSION_MINOR); 2401 goto err; 2402 } 2403 err = iavf_send_vf_config_msg(adapter); 2404 if (err) { 2405 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2406 err); 2407 goto err; 2408 } 2409 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2410 return; 2411 err: 2412 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2413 } 2414 2415 /** 2416 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2417 * @adapter: board private structure 2418 */ 2419 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2420 { 2421 int i, num_req_queues = adapter->num_req_queues; 2422 struct iavf_vsi *vsi = &adapter->vsi; 2423 2424 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2425 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2426 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2427 } 2428 if (!adapter->vsi_res) { 2429 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2430 return -ENODEV; 2431 } 2432 2433 if (num_req_queues && 2434 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2435 /* Problem. The PF gave us fewer queues than what we had 2436 * negotiated in our request. Need a reset to see if we can't 2437 * get back to a working state. 2438 */ 2439 dev_err(&adapter->pdev->dev, 2440 "Requested %d queues, but PF only gave us %d.\n", 2441 num_req_queues, 2442 adapter->vsi_res->num_queue_pairs); 2443 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2444 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2445 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2446 2447 return -EAGAIN; 2448 } 2449 adapter->num_req_queues = 0; 2450 adapter->vsi.id = adapter->vsi_res->vsi_id; 2451 2452 adapter->vsi.back = adapter; 2453 adapter->vsi.base_vector = 1; 2454 vsi->netdev = adapter->netdev; 2455 vsi->qs_handle = adapter->vsi_res->qset_handle; 2456 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2457 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2458 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2459 } else { 2460 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2461 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2462 } 2463 2464 return 0; 2465 } 2466 2467 /** 2468 * iavf_init_get_resources - third step of driver startup 2469 * @adapter: board private structure 2470 * 2471 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2472 * finishes driver initialization procedure. 2473 * When success the state is changed to __IAVF_DOWN 2474 * when fails the state is changed to __IAVF_INIT_FAILED 2475 **/ 2476 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2477 { 2478 struct pci_dev *pdev = adapter->pdev; 2479 struct iavf_hw *hw = &adapter->hw; 2480 int err; 2481 2482 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2483 /* aq msg sent, awaiting reply */ 2484 if (!adapter->vf_res) { 2485 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2486 GFP_KERNEL); 2487 if (!adapter->vf_res) { 2488 err = -ENOMEM; 2489 goto err; 2490 } 2491 } 2492 err = iavf_get_vf_config(adapter); 2493 if (err == -EALREADY) { 2494 err = iavf_send_vf_config_msg(adapter); 2495 goto err; 2496 } else if (err == -EINVAL) { 2497 /* We only get -EINVAL if the device is in a very bad 2498 * state or if we've been disabled for previous bad 2499 * behavior. Either way, we're done now. 2500 */ 2501 iavf_shutdown_adminq(hw); 2502 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2503 return; 2504 } 2505 if (err) { 2506 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2507 goto err_alloc; 2508 } 2509 2510 err = iavf_parse_vf_resource_msg(adapter); 2511 if (err) { 2512 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2513 err); 2514 goto err_alloc; 2515 } 2516 /* Some features require additional messages to negotiate extended 2517 * capabilities. These are processed in sequence by the 2518 * __IAVF_INIT_EXTENDED_CAPS driver state. 2519 */ 2520 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2521 2522 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2523 return; 2524 2525 err_alloc: 2526 kfree(adapter->vf_res); 2527 adapter->vf_res = NULL; 2528 err: 2529 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2530 } 2531 2532 /** 2533 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2534 * @adapter: board private structure 2535 * 2536 * Function processes send of the extended VLAN V2 capability message to the 2537 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2538 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2539 */ 2540 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2541 { 2542 int ret; 2543 2544 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2545 2546 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2547 if (ret && ret == -EOPNOTSUPP) { 2548 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2549 * we did not send the capability exchange message and do not 2550 * expect a response. 2551 */ 2552 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2553 } 2554 2555 /* We sent the message, so move on to the next step */ 2556 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2557 } 2558 2559 /** 2560 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2561 * @adapter: board private structure 2562 * 2563 * Function processes receipt of the extended VLAN V2 capability message from 2564 * the PF. 2565 **/ 2566 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2567 { 2568 int ret; 2569 2570 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2571 2572 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2573 2574 ret = iavf_get_vf_vlan_v2_caps(adapter); 2575 if (ret) 2576 goto err; 2577 2578 /* We've processed receipt of the VLAN V2 caps message */ 2579 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2580 return; 2581 err: 2582 /* We didn't receive a reply. Make sure we try sending again when 2583 * __IAVF_INIT_FAILED attempts to recover. 2584 */ 2585 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2586 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2587 } 2588 2589 /** 2590 * iavf_init_process_extended_caps - Part of driver startup 2591 * @adapter: board private structure 2592 * 2593 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2594 * handles negotiating capabilities for features which require an additional 2595 * message. 2596 * 2597 * Once all extended capabilities exchanges are finished, the driver will 2598 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2599 */ 2600 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2601 { 2602 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2603 2604 /* Process capability exchange for VLAN V2 */ 2605 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2606 iavf_init_send_offload_vlan_v2_caps(adapter); 2607 return; 2608 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2609 iavf_init_recv_offload_vlan_v2_caps(adapter); 2610 return; 2611 } 2612 2613 /* When we reach here, no further extended capabilities exchanges are 2614 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2615 */ 2616 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2617 } 2618 2619 /** 2620 * iavf_init_config_adapter - last part of driver startup 2621 * @adapter: board private structure 2622 * 2623 * After all the supported capabilities are negotiated, then the 2624 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2625 */ 2626 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2627 { 2628 struct net_device *netdev = adapter->netdev; 2629 struct pci_dev *pdev = adapter->pdev; 2630 int err; 2631 2632 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2633 2634 if (iavf_process_config(adapter)) 2635 goto err; 2636 2637 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2638 2639 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2640 2641 netdev->netdev_ops = &iavf_netdev_ops; 2642 iavf_set_ethtool_ops(netdev); 2643 netdev->watchdog_timeo = 5 * HZ; 2644 2645 /* MTU range: 68 - 9710 */ 2646 netdev->min_mtu = ETH_MIN_MTU; 2647 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2648 2649 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2650 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2651 adapter->hw.mac.addr); 2652 eth_hw_addr_random(netdev); 2653 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2654 } else { 2655 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2656 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2657 } 2658 2659 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2660 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2661 err = iavf_init_interrupt_scheme(adapter); 2662 if (err) 2663 goto err_sw_init; 2664 iavf_map_rings_to_vectors(adapter); 2665 if (adapter->vf_res->vf_cap_flags & 2666 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2667 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2668 2669 err = iavf_request_misc_irq(adapter); 2670 if (err) 2671 goto err_sw_init; 2672 2673 netif_carrier_off(netdev); 2674 adapter->link_up = false; 2675 netif_tx_stop_all_queues(netdev); 2676 2677 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2678 if (netdev->features & NETIF_F_GRO) 2679 dev_info(&pdev->dev, "GRO is enabled\n"); 2680 2681 iavf_change_state(adapter, __IAVF_DOWN); 2682 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2683 2684 iavf_misc_irq_enable(adapter); 2685 wake_up(&adapter->down_waitqueue); 2686 2687 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2688 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2689 if (!adapter->rss_key || !adapter->rss_lut) { 2690 err = -ENOMEM; 2691 goto err_mem; 2692 } 2693 if (RSS_AQ(adapter)) 2694 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2695 else 2696 iavf_init_rss(adapter); 2697 2698 if (VLAN_V2_ALLOWED(adapter)) 2699 /* request initial VLAN offload settings */ 2700 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2701 2702 iavf_schedule_finish_config(adapter); 2703 return; 2704 2705 err_mem: 2706 iavf_free_rss(adapter); 2707 iavf_free_misc_irq(adapter); 2708 err_sw_init: 2709 iavf_reset_interrupt_capability(adapter); 2710 err: 2711 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2712 } 2713 2714 /** 2715 * iavf_watchdog_task - Periodic call-back task 2716 * @work: pointer to work_struct 2717 **/ 2718 static void iavf_watchdog_task(struct work_struct *work) 2719 { 2720 struct iavf_adapter *adapter = container_of(work, 2721 struct iavf_adapter, 2722 watchdog_task.work); 2723 struct iavf_hw *hw = &adapter->hw; 2724 u32 reg_val; 2725 2726 if (!mutex_trylock(&adapter->crit_lock)) { 2727 if (adapter->state == __IAVF_REMOVE) 2728 return; 2729 2730 goto restart_watchdog; 2731 } 2732 2733 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2734 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2735 2736 switch (adapter->state) { 2737 case __IAVF_STARTUP: 2738 iavf_startup(adapter); 2739 mutex_unlock(&adapter->crit_lock); 2740 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2741 msecs_to_jiffies(30)); 2742 return; 2743 case __IAVF_INIT_VERSION_CHECK: 2744 iavf_init_version_check(adapter); 2745 mutex_unlock(&adapter->crit_lock); 2746 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2747 msecs_to_jiffies(30)); 2748 return; 2749 case __IAVF_INIT_GET_RESOURCES: 2750 iavf_init_get_resources(adapter); 2751 mutex_unlock(&adapter->crit_lock); 2752 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2753 msecs_to_jiffies(1)); 2754 return; 2755 case __IAVF_INIT_EXTENDED_CAPS: 2756 iavf_init_process_extended_caps(adapter); 2757 mutex_unlock(&adapter->crit_lock); 2758 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2759 msecs_to_jiffies(1)); 2760 return; 2761 case __IAVF_INIT_CONFIG_ADAPTER: 2762 iavf_init_config_adapter(adapter); 2763 mutex_unlock(&adapter->crit_lock); 2764 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2765 msecs_to_jiffies(1)); 2766 return; 2767 case __IAVF_INIT_FAILED: 2768 if (test_bit(__IAVF_IN_REMOVE_TASK, 2769 &adapter->crit_section)) { 2770 /* Do not update the state and do not reschedule 2771 * watchdog task, iavf_remove should handle this state 2772 * as it can loop forever 2773 */ 2774 mutex_unlock(&adapter->crit_lock); 2775 return; 2776 } 2777 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2778 dev_err(&adapter->pdev->dev, 2779 "Failed to communicate with PF; waiting before retry\n"); 2780 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2781 iavf_shutdown_adminq(hw); 2782 mutex_unlock(&adapter->crit_lock); 2783 queue_delayed_work(adapter->wq, 2784 &adapter->watchdog_task, (5 * HZ)); 2785 return; 2786 } 2787 /* Try again from failed step*/ 2788 iavf_change_state(adapter, adapter->last_state); 2789 mutex_unlock(&adapter->crit_lock); 2790 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2791 return; 2792 case __IAVF_COMM_FAILED: 2793 if (test_bit(__IAVF_IN_REMOVE_TASK, 2794 &adapter->crit_section)) { 2795 /* Set state to __IAVF_INIT_FAILED and perform remove 2796 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2797 * doesn't bring the state back to __IAVF_COMM_FAILED. 2798 */ 2799 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2800 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2801 mutex_unlock(&adapter->crit_lock); 2802 return; 2803 } 2804 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2805 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2806 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2807 reg_val == VIRTCHNL_VFR_COMPLETED) { 2808 /* A chance for redemption! */ 2809 dev_err(&adapter->pdev->dev, 2810 "Hardware came out of reset. Attempting reinit.\n"); 2811 /* When init task contacts the PF and 2812 * gets everything set up again, it'll restart the 2813 * watchdog for us. Down, boy. Sit. Stay. Woof. 2814 */ 2815 iavf_change_state(adapter, __IAVF_STARTUP); 2816 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2817 } 2818 adapter->aq_required = 0; 2819 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2820 mutex_unlock(&adapter->crit_lock); 2821 queue_delayed_work(adapter->wq, 2822 &adapter->watchdog_task, 2823 msecs_to_jiffies(10)); 2824 return; 2825 case __IAVF_RESETTING: 2826 mutex_unlock(&adapter->crit_lock); 2827 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2828 HZ * 2); 2829 return; 2830 case __IAVF_DOWN: 2831 case __IAVF_DOWN_PENDING: 2832 case __IAVF_TESTING: 2833 case __IAVF_RUNNING: 2834 if (adapter->current_op) { 2835 if (!iavf_asq_done(hw)) { 2836 dev_dbg(&adapter->pdev->dev, 2837 "Admin queue timeout\n"); 2838 iavf_send_api_ver(adapter); 2839 } 2840 } else { 2841 int ret = iavf_process_aq_command(adapter); 2842 2843 /* An error will be returned if no commands were 2844 * processed; use this opportunity to update stats 2845 * if the error isn't -ENOTSUPP 2846 */ 2847 if (ret && ret != -EOPNOTSUPP && 2848 adapter->state == __IAVF_RUNNING) 2849 iavf_request_stats(adapter); 2850 } 2851 if (adapter->state == __IAVF_RUNNING) 2852 iavf_detect_recover_hung(&adapter->vsi); 2853 break; 2854 case __IAVF_REMOVE: 2855 default: 2856 mutex_unlock(&adapter->crit_lock); 2857 return; 2858 } 2859 2860 /* check for hw reset */ 2861 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2862 if (!reg_val) { 2863 adapter->aq_required = 0; 2864 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2865 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2866 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2867 mutex_unlock(&adapter->crit_lock); 2868 queue_delayed_work(adapter->wq, 2869 &adapter->watchdog_task, HZ * 2); 2870 return; 2871 } 2872 2873 mutex_unlock(&adapter->crit_lock); 2874 restart_watchdog: 2875 if (adapter->state >= __IAVF_DOWN) 2876 queue_work(adapter->wq, &adapter->adminq_task); 2877 if (adapter->aq_required) 2878 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2879 msecs_to_jiffies(20)); 2880 else 2881 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2882 HZ * 2); 2883 } 2884 2885 /** 2886 * iavf_disable_vf - disable VF 2887 * @adapter: board private structure 2888 * 2889 * Set communication failed flag and free all resources. 2890 * NOTE: This function is expected to be called with crit_lock being held. 2891 **/ 2892 static void iavf_disable_vf(struct iavf_adapter *adapter) 2893 { 2894 struct iavf_mac_filter *f, *ftmp; 2895 struct iavf_vlan_filter *fv, *fvtmp; 2896 struct iavf_cloud_filter *cf, *cftmp; 2897 2898 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2899 2900 /* We don't use netif_running() because it may be true prior to 2901 * ndo_open() returning, so we can't assume it means all our open 2902 * tasks have finished, since we're not holding the rtnl_lock here. 2903 */ 2904 if (adapter->state == __IAVF_RUNNING) { 2905 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2906 netif_carrier_off(adapter->netdev); 2907 netif_tx_disable(adapter->netdev); 2908 adapter->link_up = false; 2909 iavf_napi_disable_all(adapter); 2910 iavf_irq_disable(adapter); 2911 iavf_free_traffic_irqs(adapter); 2912 iavf_free_all_tx_resources(adapter); 2913 iavf_free_all_rx_resources(adapter); 2914 } 2915 2916 spin_lock_bh(&adapter->mac_vlan_list_lock); 2917 2918 /* Delete all of the filters */ 2919 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2920 list_del(&f->list); 2921 kfree(f); 2922 } 2923 2924 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2925 list_del(&fv->list); 2926 kfree(fv); 2927 } 2928 adapter->num_vlan_filters = 0; 2929 2930 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2931 2932 spin_lock_bh(&adapter->cloud_filter_list_lock); 2933 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2934 list_del(&cf->list); 2935 kfree(cf); 2936 adapter->num_cloud_filters--; 2937 } 2938 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2939 2940 iavf_free_misc_irq(adapter); 2941 iavf_free_interrupt_scheme(adapter); 2942 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2943 iavf_shutdown_adminq(&adapter->hw); 2944 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2945 iavf_change_state(adapter, __IAVF_DOWN); 2946 wake_up(&adapter->down_waitqueue); 2947 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2948 } 2949 2950 /** 2951 * iavf_reset_task - Call-back task to handle hardware reset 2952 * @work: pointer to work_struct 2953 * 2954 * During reset we need to shut down and reinitialize the admin queue 2955 * before we can use it to communicate with the PF again. We also clear 2956 * and reinit the rings because that context is lost as well. 2957 **/ 2958 static void iavf_reset_task(struct work_struct *work) 2959 { 2960 struct iavf_adapter *adapter = container_of(work, 2961 struct iavf_adapter, 2962 reset_task); 2963 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2964 struct net_device *netdev = adapter->netdev; 2965 struct iavf_hw *hw = &adapter->hw; 2966 struct iavf_mac_filter *f, *ftmp; 2967 struct iavf_cloud_filter *cf; 2968 enum iavf_status status; 2969 u32 reg_val; 2970 int i = 0, err; 2971 bool running; 2972 2973 /* When device is being removed it doesn't make sense to run the reset 2974 * task, just return in such a case. 2975 */ 2976 if (!mutex_trylock(&adapter->crit_lock)) { 2977 if (adapter->state != __IAVF_REMOVE) 2978 queue_work(adapter->wq, &adapter->reset_task); 2979 2980 return; 2981 } 2982 2983 iavf_misc_irq_disable(adapter); 2984 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2985 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2986 /* Restart the AQ here. If we have been reset but didn't 2987 * detect it, or if the PF had to reinit, our AQ will be hosed. 2988 */ 2989 iavf_shutdown_adminq(hw); 2990 iavf_init_adminq(hw); 2991 iavf_request_reset(adapter); 2992 } 2993 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2994 2995 /* poll until we see the reset actually happen */ 2996 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2997 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2998 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2999 if (!reg_val) 3000 break; 3001 usleep_range(5000, 10000); 3002 } 3003 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3004 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3005 goto continue_reset; /* act like the reset happened */ 3006 } 3007 3008 /* wait until the reset is complete and the PF is responding to us */ 3009 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3010 /* sleep first to make sure a minimum wait time is met */ 3011 msleep(IAVF_RESET_WAIT_MS); 3012 3013 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3014 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3015 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3016 break; 3017 } 3018 3019 pci_set_master(adapter->pdev); 3020 pci_restore_msi_state(adapter->pdev); 3021 3022 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3023 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3024 reg_val); 3025 iavf_disable_vf(adapter); 3026 mutex_unlock(&adapter->crit_lock); 3027 return; /* Do not attempt to reinit. It's dead, Jim. */ 3028 } 3029 3030 continue_reset: 3031 /* We don't use netif_running() because it may be true prior to 3032 * ndo_open() returning, so we can't assume it means all our open 3033 * tasks have finished, since we're not holding the rtnl_lock here. 3034 */ 3035 running = adapter->state == __IAVF_RUNNING; 3036 3037 if (running) { 3038 netif_carrier_off(netdev); 3039 netif_tx_stop_all_queues(netdev); 3040 adapter->link_up = false; 3041 iavf_napi_disable_all(adapter); 3042 } 3043 iavf_irq_disable(adapter); 3044 3045 iavf_change_state(adapter, __IAVF_RESETTING); 3046 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3047 3048 /* free the Tx/Rx rings and descriptors, might be better to just 3049 * re-use them sometime in the future 3050 */ 3051 iavf_free_all_rx_resources(adapter); 3052 iavf_free_all_tx_resources(adapter); 3053 3054 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3055 /* kill and reinit the admin queue */ 3056 iavf_shutdown_adminq(hw); 3057 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3058 status = iavf_init_adminq(hw); 3059 if (status) { 3060 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3061 status); 3062 goto reset_err; 3063 } 3064 adapter->aq_required = 0; 3065 3066 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3067 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3068 err = iavf_reinit_interrupt_scheme(adapter, running); 3069 if (err) 3070 goto reset_err; 3071 } 3072 3073 if (RSS_AQ(adapter)) { 3074 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3075 } else { 3076 err = iavf_init_rss(adapter); 3077 if (err) 3078 goto reset_err; 3079 } 3080 3081 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3082 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3083 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3084 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3085 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3086 * been successfully sent and negotiated 3087 */ 3088 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3089 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3090 3091 spin_lock_bh(&adapter->mac_vlan_list_lock); 3092 3093 /* Delete filter for the current MAC address, it could have 3094 * been changed by the PF via administratively set MAC. 3095 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3096 */ 3097 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3098 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3099 list_del(&f->list); 3100 kfree(f); 3101 } 3102 } 3103 /* re-add all MAC filters */ 3104 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3105 f->add = true; 3106 } 3107 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3108 3109 /* check if TCs are running and re-add all cloud filters */ 3110 spin_lock_bh(&adapter->cloud_filter_list_lock); 3111 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3112 adapter->num_tc) { 3113 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3114 cf->add = true; 3115 } 3116 } 3117 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3118 3119 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3120 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3121 iavf_misc_irq_enable(adapter); 3122 3123 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3124 3125 /* We were running when the reset started, so we need to restore some 3126 * state here. 3127 */ 3128 if (running) { 3129 /* allocate transmit descriptors */ 3130 err = iavf_setup_all_tx_resources(adapter); 3131 if (err) 3132 goto reset_err; 3133 3134 /* allocate receive descriptors */ 3135 err = iavf_setup_all_rx_resources(adapter); 3136 if (err) 3137 goto reset_err; 3138 3139 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3140 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3141 err = iavf_request_traffic_irqs(adapter, netdev->name); 3142 if (err) 3143 goto reset_err; 3144 3145 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3146 } 3147 3148 iavf_configure(adapter); 3149 3150 /* iavf_up_complete() will switch device back 3151 * to __IAVF_RUNNING 3152 */ 3153 iavf_up_complete(adapter); 3154 3155 iavf_irq_enable(adapter, true); 3156 } else { 3157 iavf_change_state(adapter, __IAVF_DOWN); 3158 wake_up(&adapter->down_waitqueue); 3159 } 3160 3161 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3162 3163 wake_up(&adapter->reset_waitqueue); 3164 mutex_unlock(&adapter->crit_lock); 3165 3166 return; 3167 reset_err: 3168 if (running) { 3169 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3170 iavf_free_traffic_irqs(adapter); 3171 } 3172 iavf_disable_vf(adapter); 3173 3174 mutex_unlock(&adapter->crit_lock); 3175 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3176 } 3177 3178 /** 3179 * iavf_adminq_task - worker thread to clean the admin queue 3180 * @work: pointer to work_struct containing our data 3181 **/ 3182 static void iavf_adminq_task(struct work_struct *work) 3183 { 3184 struct iavf_adapter *adapter = 3185 container_of(work, struct iavf_adapter, adminq_task); 3186 struct iavf_hw *hw = &adapter->hw; 3187 struct iavf_arq_event_info event; 3188 enum virtchnl_ops v_op; 3189 enum iavf_status ret, v_ret; 3190 u32 val, oldval; 3191 u16 pending; 3192 3193 if (!mutex_trylock(&adapter->crit_lock)) { 3194 if (adapter->state == __IAVF_REMOVE) 3195 return; 3196 3197 queue_work(adapter->wq, &adapter->adminq_task); 3198 goto out; 3199 } 3200 3201 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3202 goto unlock; 3203 3204 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3205 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3206 if (!event.msg_buf) 3207 goto unlock; 3208 3209 do { 3210 ret = iavf_clean_arq_element(hw, &event, &pending); 3211 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3212 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3213 3214 if (ret || !v_op) 3215 break; /* No event to process or error cleaning ARQ */ 3216 3217 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3218 event.msg_len); 3219 if (pending != 0) 3220 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3221 } while (pending); 3222 3223 if (iavf_is_reset_in_progress(adapter)) 3224 goto freedom; 3225 3226 /* check for error indications */ 3227 val = rd32(hw, IAVF_VF_ARQLEN1); 3228 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3229 goto freedom; 3230 oldval = val; 3231 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3232 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3233 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3234 } 3235 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3236 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3237 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3238 } 3239 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3240 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3241 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3242 } 3243 if (oldval != val) 3244 wr32(hw, IAVF_VF_ARQLEN1, val); 3245 3246 val = rd32(hw, IAVF_VF_ATQLEN1); 3247 oldval = val; 3248 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3249 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3250 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3251 } 3252 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3253 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3254 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3255 } 3256 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3257 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3258 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3259 } 3260 if (oldval != val) 3261 wr32(hw, IAVF_VF_ATQLEN1, val); 3262 3263 freedom: 3264 kfree(event.msg_buf); 3265 unlock: 3266 mutex_unlock(&adapter->crit_lock); 3267 out: 3268 /* re-enable Admin queue interrupt cause */ 3269 iavf_misc_irq_enable(adapter); 3270 } 3271 3272 /** 3273 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3274 * @adapter: board private structure 3275 * 3276 * Free all transmit software resources 3277 **/ 3278 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3279 { 3280 int i; 3281 3282 if (!adapter->tx_rings) 3283 return; 3284 3285 for (i = 0; i < adapter->num_active_queues; i++) 3286 if (adapter->tx_rings[i].desc) 3287 iavf_free_tx_resources(&adapter->tx_rings[i]); 3288 } 3289 3290 /** 3291 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3292 * @adapter: board private structure 3293 * 3294 * If this function returns with an error, then it's possible one or 3295 * more of the rings is populated (while the rest are not). It is the 3296 * callers duty to clean those orphaned rings. 3297 * 3298 * Return 0 on success, negative on failure 3299 **/ 3300 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3301 { 3302 int i, err = 0; 3303 3304 for (i = 0; i < adapter->num_active_queues; i++) { 3305 adapter->tx_rings[i].count = adapter->tx_desc_count; 3306 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3307 if (!err) 3308 continue; 3309 dev_err(&adapter->pdev->dev, 3310 "Allocation for Tx Queue %u failed\n", i); 3311 break; 3312 } 3313 3314 return err; 3315 } 3316 3317 /** 3318 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3319 * @adapter: board private structure 3320 * 3321 * If this function returns with an error, then it's possible one or 3322 * more of the rings is populated (while the rest are not). It is the 3323 * callers duty to clean those orphaned rings. 3324 * 3325 * Return 0 on success, negative on failure 3326 **/ 3327 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3328 { 3329 int i, err = 0; 3330 3331 for (i = 0; i < adapter->num_active_queues; i++) { 3332 adapter->rx_rings[i].count = adapter->rx_desc_count; 3333 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3334 if (!err) 3335 continue; 3336 dev_err(&adapter->pdev->dev, 3337 "Allocation for Rx Queue %u failed\n", i); 3338 break; 3339 } 3340 return err; 3341 } 3342 3343 /** 3344 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3345 * @adapter: board private structure 3346 * 3347 * Free all receive software resources 3348 **/ 3349 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3350 { 3351 int i; 3352 3353 if (!adapter->rx_rings) 3354 return; 3355 3356 for (i = 0; i < adapter->num_active_queues; i++) 3357 if (adapter->rx_rings[i].desc) 3358 iavf_free_rx_resources(&adapter->rx_rings[i]); 3359 } 3360 3361 /** 3362 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3363 * @adapter: board private structure 3364 * @max_tx_rate: max Tx bw for a tc 3365 **/ 3366 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3367 u64 max_tx_rate) 3368 { 3369 int speed = 0, ret = 0; 3370 3371 if (ADV_LINK_SUPPORT(adapter)) { 3372 if (adapter->link_speed_mbps < U32_MAX) { 3373 speed = adapter->link_speed_mbps; 3374 goto validate_bw; 3375 } else { 3376 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3377 return -EINVAL; 3378 } 3379 } 3380 3381 switch (adapter->link_speed) { 3382 case VIRTCHNL_LINK_SPEED_40GB: 3383 speed = SPEED_40000; 3384 break; 3385 case VIRTCHNL_LINK_SPEED_25GB: 3386 speed = SPEED_25000; 3387 break; 3388 case VIRTCHNL_LINK_SPEED_20GB: 3389 speed = SPEED_20000; 3390 break; 3391 case VIRTCHNL_LINK_SPEED_10GB: 3392 speed = SPEED_10000; 3393 break; 3394 case VIRTCHNL_LINK_SPEED_5GB: 3395 speed = SPEED_5000; 3396 break; 3397 case VIRTCHNL_LINK_SPEED_2_5GB: 3398 speed = SPEED_2500; 3399 break; 3400 case VIRTCHNL_LINK_SPEED_1GB: 3401 speed = SPEED_1000; 3402 break; 3403 case VIRTCHNL_LINK_SPEED_100MB: 3404 speed = SPEED_100; 3405 break; 3406 default: 3407 break; 3408 } 3409 3410 validate_bw: 3411 if (max_tx_rate > speed) { 3412 dev_err(&adapter->pdev->dev, 3413 "Invalid tx rate specified\n"); 3414 ret = -EINVAL; 3415 } 3416 3417 return ret; 3418 } 3419 3420 /** 3421 * iavf_validate_ch_config - validate queue mapping info 3422 * @adapter: board private structure 3423 * @mqprio_qopt: queue parameters 3424 * 3425 * This function validates if the config provided by the user to 3426 * configure queue channels is valid or not. Returns 0 on a valid 3427 * config. 3428 **/ 3429 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3430 struct tc_mqprio_qopt_offload *mqprio_qopt) 3431 { 3432 u64 total_max_rate = 0; 3433 u32 tx_rate_rem = 0; 3434 int i, num_qps = 0; 3435 u64 tx_rate = 0; 3436 int ret = 0; 3437 3438 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3439 mqprio_qopt->qopt.num_tc < 1) 3440 return -EINVAL; 3441 3442 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3443 if (!mqprio_qopt->qopt.count[i] || 3444 mqprio_qopt->qopt.offset[i] != num_qps) 3445 return -EINVAL; 3446 if (mqprio_qopt->min_rate[i]) { 3447 dev_err(&adapter->pdev->dev, 3448 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3449 i); 3450 return -EINVAL; 3451 } 3452 3453 /* convert to Mbps */ 3454 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3455 IAVF_MBPS_DIVISOR); 3456 3457 if (mqprio_qopt->max_rate[i] && 3458 tx_rate < IAVF_MBPS_QUANTA) { 3459 dev_err(&adapter->pdev->dev, 3460 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3461 i, IAVF_MBPS_QUANTA); 3462 return -EINVAL; 3463 } 3464 3465 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3466 3467 if (tx_rate_rem != 0) { 3468 dev_err(&adapter->pdev->dev, 3469 "Invalid max tx rate for TC%d, not divisible by %d\n", 3470 i, IAVF_MBPS_QUANTA); 3471 return -EINVAL; 3472 } 3473 3474 total_max_rate += tx_rate; 3475 num_qps += mqprio_qopt->qopt.count[i]; 3476 } 3477 if (num_qps > adapter->num_active_queues) { 3478 dev_err(&adapter->pdev->dev, 3479 "Cannot support requested number of queues\n"); 3480 return -EINVAL; 3481 } 3482 3483 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3484 return ret; 3485 } 3486 3487 /** 3488 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3489 * @adapter: board private structure 3490 **/ 3491 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3492 { 3493 struct iavf_cloud_filter *cf, *cftmp; 3494 3495 spin_lock_bh(&adapter->cloud_filter_list_lock); 3496 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3497 list) { 3498 list_del(&cf->list); 3499 kfree(cf); 3500 adapter->num_cloud_filters--; 3501 } 3502 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3503 } 3504 3505 /** 3506 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3507 * TC config already configured on this adapter. 3508 * @adapter: board private structure 3509 * @mqprio_qopt: TC config received from kernel. 3510 * 3511 * This function compares the TC config received from the kernel 3512 * with the config already configured on the adapter. 3513 * 3514 * Return: True if configuration is same, false otherwise. 3515 **/ 3516 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3517 struct tc_mqprio_qopt *mqprio_qopt) 3518 { 3519 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3520 int i; 3521 3522 if (adapter->num_tc != mqprio_qopt->num_tc) 3523 return false; 3524 3525 for (i = 0; i < adapter->num_tc; i++) { 3526 if (ch[i].count != mqprio_qopt->count[i] || 3527 ch[i].offset != mqprio_qopt->offset[i]) 3528 return false; 3529 } 3530 return true; 3531 } 3532 3533 /** 3534 * __iavf_setup_tc - configure multiple traffic classes 3535 * @netdev: network interface device structure 3536 * @type_data: tc offload data 3537 * 3538 * This function processes the config information provided by the 3539 * user to configure traffic classes/queue channels and packages the 3540 * information to request the PF to setup traffic classes. 3541 * 3542 * Returns 0 on success. 3543 **/ 3544 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3545 { 3546 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3547 struct iavf_adapter *adapter = netdev_priv(netdev); 3548 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3549 u8 num_tc = 0, total_qps = 0; 3550 int ret = 0, netdev_tc = 0; 3551 u64 max_tx_rate; 3552 u16 mode; 3553 int i; 3554 3555 num_tc = mqprio_qopt->qopt.num_tc; 3556 mode = mqprio_qopt->mode; 3557 3558 /* delete queue_channel */ 3559 if (!mqprio_qopt->qopt.hw) { 3560 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3561 /* reset the tc configuration */ 3562 netdev_reset_tc(netdev); 3563 adapter->num_tc = 0; 3564 netif_tx_stop_all_queues(netdev); 3565 netif_tx_disable(netdev); 3566 iavf_del_all_cloud_filters(adapter); 3567 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3568 total_qps = adapter->orig_num_active_queues; 3569 goto exit; 3570 } else { 3571 return -EINVAL; 3572 } 3573 } 3574 3575 /* add queue channel */ 3576 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3577 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3578 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3579 return -EOPNOTSUPP; 3580 } 3581 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3582 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3583 return -EINVAL; 3584 } 3585 3586 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3587 if (ret) 3588 return ret; 3589 /* Return if same TC config is requested */ 3590 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3591 return 0; 3592 adapter->num_tc = num_tc; 3593 3594 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3595 if (i < num_tc) { 3596 adapter->ch_config.ch_info[i].count = 3597 mqprio_qopt->qopt.count[i]; 3598 adapter->ch_config.ch_info[i].offset = 3599 mqprio_qopt->qopt.offset[i]; 3600 total_qps += mqprio_qopt->qopt.count[i]; 3601 max_tx_rate = mqprio_qopt->max_rate[i]; 3602 /* convert to Mbps */ 3603 max_tx_rate = div_u64(max_tx_rate, 3604 IAVF_MBPS_DIVISOR); 3605 adapter->ch_config.ch_info[i].max_tx_rate = 3606 max_tx_rate; 3607 } else { 3608 adapter->ch_config.ch_info[i].count = 1; 3609 adapter->ch_config.ch_info[i].offset = 0; 3610 } 3611 } 3612 3613 /* Take snapshot of original config such as "num_active_queues" 3614 * It is used later when delete ADQ flow is exercised, so that 3615 * once delete ADQ flow completes, VF shall go back to its 3616 * original queue configuration 3617 */ 3618 3619 adapter->orig_num_active_queues = adapter->num_active_queues; 3620 3621 /* Store queue info based on TC so that VF gets configured 3622 * with correct number of queues when VF completes ADQ config 3623 * flow 3624 */ 3625 adapter->ch_config.total_qps = total_qps; 3626 3627 netif_tx_stop_all_queues(netdev); 3628 netif_tx_disable(netdev); 3629 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3630 netdev_reset_tc(netdev); 3631 /* Report the tc mapping up the stack */ 3632 netdev_set_num_tc(adapter->netdev, num_tc); 3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3634 u16 qcount = mqprio_qopt->qopt.count[i]; 3635 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3636 3637 if (i < num_tc) 3638 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3639 qoffset); 3640 } 3641 } 3642 exit: 3643 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3644 return 0; 3645 3646 netif_set_real_num_rx_queues(netdev, total_qps); 3647 netif_set_real_num_tx_queues(netdev, total_qps); 3648 3649 return ret; 3650 } 3651 3652 /** 3653 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3654 * @adapter: board private structure 3655 * @f: pointer to struct flow_cls_offload 3656 * @filter: pointer to cloud filter structure 3657 */ 3658 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3659 struct flow_cls_offload *f, 3660 struct iavf_cloud_filter *filter) 3661 { 3662 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3663 struct flow_dissector *dissector = rule->match.dissector; 3664 u16 n_proto_mask = 0; 3665 u16 n_proto_key = 0; 3666 u8 field_flags = 0; 3667 u16 addr_type = 0; 3668 u16 n_proto = 0; 3669 int i = 0; 3670 struct virtchnl_filter *vf = &filter->f; 3671 3672 if (dissector->used_keys & 3673 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3674 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3675 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3676 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3677 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3678 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3679 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3680 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3681 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3682 dissector->used_keys); 3683 return -EOPNOTSUPP; 3684 } 3685 3686 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3687 struct flow_match_enc_keyid match; 3688 3689 flow_rule_match_enc_keyid(rule, &match); 3690 if (match.mask->keyid != 0) 3691 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3692 } 3693 3694 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3695 struct flow_match_basic match; 3696 3697 flow_rule_match_basic(rule, &match); 3698 n_proto_key = ntohs(match.key->n_proto); 3699 n_proto_mask = ntohs(match.mask->n_proto); 3700 3701 if (n_proto_key == ETH_P_ALL) { 3702 n_proto_key = 0; 3703 n_proto_mask = 0; 3704 } 3705 n_proto = n_proto_key & n_proto_mask; 3706 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3707 return -EINVAL; 3708 if (n_proto == ETH_P_IPV6) { 3709 /* specify flow type as TCP IPv6 */ 3710 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3711 } 3712 3713 if (match.key->ip_proto != IPPROTO_TCP) { 3714 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3715 return -EINVAL; 3716 } 3717 } 3718 3719 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3720 struct flow_match_eth_addrs match; 3721 3722 flow_rule_match_eth_addrs(rule, &match); 3723 3724 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3725 if (!is_zero_ether_addr(match.mask->dst)) { 3726 if (is_broadcast_ether_addr(match.mask->dst)) { 3727 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3728 } else { 3729 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3730 match.mask->dst); 3731 return -EINVAL; 3732 } 3733 } 3734 3735 if (!is_zero_ether_addr(match.mask->src)) { 3736 if (is_broadcast_ether_addr(match.mask->src)) { 3737 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3738 } else { 3739 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3740 match.mask->src); 3741 return -EINVAL; 3742 } 3743 } 3744 3745 if (!is_zero_ether_addr(match.key->dst)) 3746 if (is_valid_ether_addr(match.key->dst) || 3747 is_multicast_ether_addr(match.key->dst)) { 3748 /* set the mask if a valid dst_mac address */ 3749 for (i = 0; i < ETH_ALEN; i++) 3750 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3751 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3752 match.key->dst); 3753 } 3754 3755 if (!is_zero_ether_addr(match.key->src)) 3756 if (is_valid_ether_addr(match.key->src) || 3757 is_multicast_ether_addr(match.key->src)) { 3758 /* set the mask if a valid dst_mac address */ 3759 for (i = 0; i < ETH_ALEN; i++) 3760 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3761 ether_addr_copy(vf->data.tcp_spec.src_mac, 3762 match.key->src); 3763 } 3764 } 3765 3766 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3767 struct flow_match_vlan match; 3768 3769 flow_rule_match_vlan(rule, &match); 3770 if (match.mask->vlan_id) { 3771 if (match.mask->vlan_id == VLAN_VID_MASK) { 3772 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3773 } else { 3774 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3775 match.mask->vlan_id); 3776 return -EINVAL; 3777 } 3778 } 3779 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3780 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3781 } 3782 3783 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3784 struct flow_match_control match; 3785 3786 flow_rule_match_control(rule, &match); 3787 addr_type = match.key->addr_type; 3788 } 3789 3790 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3791 struct flow_match_ipv4_addrs match; 3792 3793 flow_rule_match_ipv4_addrs(rule, &match); 3794 if (match.mask->dst) { 3795 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3796 field_flags |= IAVF_CLOUD_FIELD_IIP; 3797 } else { 3798 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3799 be32_to_cpu(match.mask->dst)); 3800 return -EINVAL; 3801 } 3802 } 3803 3804 if (match.mask->src) { 3805 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3806 field_flags |= IAVF_CLOUD_FIELD_IIP; 3807 } else { 3808 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3809 be32_to_cpu(match.mask->src)); 3810 return -EINVAL; 3811 } 3812 } 3813 3814 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3815 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3816 return -EINVAL; 3817 } 3818 if (match.key->dst) { 3819 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3820 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3821 } 3822 if (match.key->src) { 3823 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3824 vf->data.tcp_spec.src_ip[0] = match.key->src; 3825 } 3826 } 3827 3828 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3829 struct flow_match_ipv6_addrs match; 3830 3831 flow_rule_match_ipv6_addrs(rule, &match); 3832 3833 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3834 if (ipv6_addr_any(&match.mask->dst)) { 3835 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3836 IPV6_ADDR_ANY); 3837 return -EINVAL; 3838 } 3839 3840 /* src and dest IPv6 address should not be LOOPBACK 3841 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3842 */ 3843 if (ipv6_addr_loopback(&match.key->dst) || 3844 ipv6_addr_loopback(&match.key->src)) { 3845 dev_err(&adapter->pdev->dev, 3846 "ipv6 addr should not be loopback\n"); 3847 return -EINVAL; 3848 } 3849 if (!ipv6_addr_any(&match.mask->dst) || 3850 !ipv6_addr_any(&match.mask->src)) 3851 field_flags |= IAVF_CLOUD_FIELD_IIP; 3852 3853 for (i = 0; i < 4; i++) 3854 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3855 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3856 sizeof(vf->data.tcp_spec.dst_ip)); 3857 for (i = 0; i < 4; i++) 3858 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3859 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3860 sizeof(vf->data.tcp_spec.src_ip)); 3861 } 3862 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3863 struct flow_match_ports match; 3864 3865 flow_rule_match_ports(rule, &match); 3866 if (match.mask->src) { 3867 if (match.mask->src == cpu_to_be16(0xffff)) { 3868 field_flags |= IAVF_CLOUD_FIELD_IIP; 3869 } else { 3870 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3871 be16_to_cpu(match.mask->src)); 3872 return -EINVAL; 3873 } 3874 } 3875 3876 if (match.mask->dst) { 3877 if (match.mask->dst == cpu_to_be16(0xffff)) { 3878 field_flags |= IAVF_CLOUD_FIELD_IIP; 3879 } else { 3880 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3881 be16_to_cpu(match.mask->dst)); 3882 return -EINVAL; 3883 } 3884 } 3885 if (match.key->dst) { 3886 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3887 vf->data.tcp_spec.dst_port = match.key->dst; 3888 } 3889 3890 if (match.key->src) { 3891 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3892 vf->data.tcp_spec.src_port = match.key->src; 3893 } 3894 } 3895 vf->field_flags = field_flags; 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * iavf_handle_tclass - Forward to a traffic class on the device 3902 * @adapter: board private structure 3903 * @tc: traffic class index on the device 3904 * @filter: pointer to cloud filter structure 3905 */ 3906 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3907 struct iavf_cloud_filter *filter) 3908 { 3909 if (tc == 0) 3910 return 0; 3911 if (tc < adapter->num_tc) { 3912 if (!filter->f.data.tcp_spec.dst_port) { 3913 dev_err(&adapter->pdev->dev, 3914 "Specify destination port to redirect to traffic class other than TC0\n"); 3915 return -EINVAL; 3916 } 3917 } 3918 /* redirect to a traffic class on the same device */ 3919 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3920 filter->f.action_meta = tc; 3921 return 0; 3922 } 3923 3924 /** 3925 * iavf_find_cf - Find the cloud filter in the list 3926 * @adapter: Board private structure 3927 * @cookie: filter specific cookie 3928 * 3929 * Returns ptr to the filter object or NULL. Must be called while holding the 3930 * cloud_filter_list_lock. 3931 */ 3932 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3933 unsigned long *cookie) 3934 { 3935 struct iavf_cloud_filter *filter = NULL; 3936 3937 if (!cookie) 3938 return NULL; 3939 3940 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3941 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3942 return filter; 3943 } 3944 return NULL; 3945 } 3946 3947 /** 3948 * iavf_configure_clsflower - Add tc flower filters 3949 * @adapter: board private structure 3950 * @cls_flower: Pointer to struct flow_cls_offload 3951 */ 3952 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3953 struct flow_cls_offload *cls_flower) 3954 { 3955 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3956 struct iavf_cloud_filter *filter = NULL; 3957 int err = -EINVAL, count = 50; 3958 3959 if (tc < 0) { 3960 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3961 return -EINVAL; 3962 } 3963 3964 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3965 if (!filter) 3966 return -ENOMEM; 3967 3968 while (!mutex_trylock(&adapter->crit_lock)) { 3969 if (--count == 0) { 3970 kfree(filter); 3971 return err; 3972 } 3973 udelay(1); 3974 } 3975 3976 filter->cookie = cls_flower->cookie; 3977 3978 /* bail out here if filter already exists */ 3979 spin_lock_bh(&adapter->cloud_filter_list_lock); 3980 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3981 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3982 err = -EEXIST; 3983 goto spin_unlock; 3984 } 3985 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3986 3987 /* set the mask to all zeroes to begin with */ 3988 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3989 /* start out with flow type and eth type IPv4 to begin with */ 3990 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3991 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3992 if (err) 3993 goto err; 3994 3995 err = iavf_handle_tclass(adapter, tc, filter); 3996 if (err) 3997 goto err; 3998 3999 /* add filter to the list */ 4000 spin_lock_bh(&adapter->cloud_filter_list_lock); 4001 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4002 adapter->num_cloud_filters++; 4003 filter->add = true; 4004 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4005 spin_unlock: 4006 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4007 err: 4008 if (err) 4009 kfree(filter); 4010 4011 mutex_unlock(&adapter->crit_lock); 4012 return err; 4013 } 4014 4015 /** 4016 * iavf_delete_clsflower - Remove tc flower filters 4017 * @adapter: board private structure 4018 * @cls_flower: Pointer to struct flow_cls_offload 4019 */ 4020 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4021 struct flow_cls_offload *cls_flower) 4022 { 4023 struct iavf_cloud_filter *filter = NULL; 4024 int err = 0; 4025 4026 spin_lock_bh(&adapter->cloud_filter_list_lock); 4027 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4028 if (filter) { 4029 filter->del = true; 4030 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4031 } else { 4032 err = -EINVAL; 4033 } 4034 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4035 4036 return err; 4037 } 4038 4039 /** 4040 * iavf_setup_tc_cls_flower - flower classifier offloads 4041 * @adapter: board private structure 4042 * @cls_flower: pointer to flow_cls_offload struct with flow info 4043 */ 4044 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4045 struct flow_cls_offload *cls_flower) 4046 { 4047 switch (cls_flower->command) { 4048 case FLOW_CLS_REPLACE: 4049 return iavf_configure_clsflower(adapter, cls_flower); 4050 case FLOW_CLS_DESTROY: 4051 return iavf_delete_clsflower(adapter, cls_flower); 4052 case FLOW_CLS_STATS: 4053 return -EOPNOTSUPP; 4054 default: 4055 return -EOPNOTSUPP; 4056 } 4057 } 4058 4059 /** 4060 * iavf_setup_tc_block_cb - block callback for tc 4061 * @type: type of offload 4062 * @type_data: offload data 4063 * @cb_priv: 4064 * 4065 * This function is the block callback for traffic classes 4066 **/ 4067 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4068 void *cb_priv) 4069 { 4070 struct iavf_adapter *adapter = cb_priv; 4071 4072 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4073 return -EOPNOTSUPP; 4074 4075 switch (type) { 4076 case TC_SETUP_CLSFLOWER: 4077 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4078 default: 4079 return -EOPNOTSUPP; 4080 } 4081 } 4082 4083 static LIST_HEAD(iavf_block_cb_list); 4084 4085 /** 4086 * iavf_setup_tc - configure multiple traffic classes 4087 * @netdev: network interface device structure 4088 * @type: type of offload 4089 * @type_data: tc offload data 4090 * 4091 * This function is the callback to ndo_setup_tc in the 4092 * netdev_ops. 4093 * 4094 * Returns 0 on success 4095 **/ 4096 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4097 void *type_data) 4098 { 4099 struct iavf_adapter *adapter = netdev_priv(netdev); 4100 4101 switch (type) { 4102 case TC_SETUP_QDISC_MQPRIO: 4103 return __iavf_setup_tc(netdev, type_data); 4104 case TC_SETUP_BLOCK: 4105 return flow_block_cb_setup_simple(type_data, 4106 &iavf_block_cb_list, 4107 iavf_setup_tc_block_cb, 4108 adapter, adapter, true); 4109 default: 4110 return -EOPNOTSUPP; 4111 } 4112 } 4113 4114 /** 4115 * iavf_restore_fdir_filters 4116 * @adapter: board private structure 4117 * 4118 * Restore existing FDIR filters when VF netdev comes back up. 4119 **/ 4120 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4121 { 4122 struct iavf_fdir_fltr *f; 4123 4124 spin_lock_bh(&adapter->fdir_fltr_lock); 4125 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4126 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4127 /* Cancel a request, keep filter as active */ 4128 f->state = IAVF_FDIR_FLTR_ACTIVE; 4129 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4130 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4131 /* Add filters which are inactive or have a pending 4132 * request to PF to be deleted 4133 */ 4134 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4135 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4136 } 4137 } 4138 spin_unlock_bh(&adapter->fdir_fltr_lock); 4139 } 4140 4141 /** 4142 * iavf_open - Called when a network interface is made active 4143 * @netdev: network interface device structure 4144 * 4145 * Returns 0 on success, negative value on failure 4146 * 4147 * The open entry point is called when a network interface is made 4148 * active by the system (IFF_UP). At this point all resources needed 4149 * for transmit and receive operations are allocated, the interrupt 4150 * handler is registered with the OS, the watchdog is started, 4151 * and the stack is notified that the interface is ready. 4152 **/ 4153 static int iavf_open(struct net_device *netdev) 4154 { 4155 struct iavf_adapter *adapter = netdev_priv(netdev); 4156 int err; 4157 4158 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4159 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4160 return -EIO; 4161 } 4162 4163 while (!mutex_trylock(&adapter->crit_lock)) { 4164 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4165 * is already taken and iavf_open is called from an upper 4166 * device's notifier reacting on NETDEV_REGISTER event. 4167 * We have to leave here to avoid dead lock. 4168 */ 4169 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4170 return -EBUSY; 4171 4172 usleep_range(500, 1000); 4173 } 4174 4175 if (adapter->state != __IAVF_DOWN) { 4176 err = -EBUSY; 4177 goto err_unlock; 4178 } 4179 4180 if (adapter->state == __IAVF_RUNNING && 4181 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4182 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4183 err = 0; 4184 goto err_unlock; 4185 } 4186 4187 /* allocate transmit descriptors */ 4188 err = iavf_setup_all_tx_resources(adapter); 4189 if (err) 4190 goto err_setup_tx; 4191 4192 /* allocate receive descriptors */ 4193 err = iavf_setup_all_rx_resources(adapter); 4194 if (err) 4195 goto err_setup_rx; 4196 4197 /* clear any pending interrupts, may auto mask */ 4198 err = iavf_request_traffic_irqs(adapter, netdev->name); 4199 if (err) 4200 goto err_req_irq; 4201 4202 spin_lock_bh(&adapter->mac_vlan_list_lock); 4203 4204 iavf_add_filter(adapter, adapter->hw.mac.addr); 4205 4206 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4207 4208 /* Restore filters that were removed with IFF_DOWN */ 4209 iavf_restore_filters(adapter); 4210 iavf_restore_fdir_filters(adapter); 4211 4212 iavf_configure(adapter); 4213 4214 iavf_up_complete(adapter); 4215 4216 iavf_irq_enable(adapter, true); 4217 4218 mutex_unlock(&adapter->crit_lock); 4219 4220 return 0; 4221 4222 err_req_irq: 4223 iavf_down(adapter); 4224 iavf_free_traffic_irqs(adapter); 4225 err_setup_rx: 4226 iavf_free_all_rx_resources(adapter); 4227 err_setup_tx: 4228 iavf_free_all_tx_resources(adapter); 4229 err_unlock: 4230 mutex_unlock(&adapter->crit_lock); 4231 4232 return err; 4233 } 4234 4235 /** 4236 * iavf_close - Disables a network interface 4237 * @netdev: network interface device structure 4238 * 4239 * Returns 0, this is not allowed to fail 4240 * 4241 * The close entry point is called when an interface is de-activated 4242 * by the OS. The hardware is still under the drivers control, but 4243 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4244 * are freed, along with all transmit and receive resources. 4245 **/ 4246 static int iavf_close(struct net_device *netdev) 4247 { 4248 struct iavf_adapter *adapter = netdev_priv(netdev); 4249 u64 aq_to_restore; 4250 int status; 4251 4252 mutex_lock(&adapter->crit_lock); 4253 4254 if (adapter->state <= __IAVF_DOWN_PENDING) { 4255 mutex_unlock(&adapter->crit_lock); 4256 return 0; 4257 } 4258 4259 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4260 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4261 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4262 * deadlock with adminq_task() until iavf_close timeouts. We must send 4263 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4264 * disable queues possible for vf. Give only necessary flags to 4265 * iavf_down and save other to set them right before iavf_close() 4266 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4267 * iavf will be in DOWN state. 4268 */ 4269 aq_to_restore = adapter->aq_required; 4270 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4271 4272 /* Remove flags which we do not want to send after close or we want to 4273 * send before disable queues. 4274 */ 4275 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4276 IAVF_FLAG_AQ_ENABLE_QUEUES | 4277 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4278 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4279 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4280 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4281 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4282 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4283 4284 iavf_down(adapter); 4285 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4286 iavf_free_traffic_irqs(adapter); 4287 4288 mutex_unlock(&adapter->crit_lock); 4289 4290 /* We explicitly don't free resources here because the hardware is 4291 * still active and can DMA into memory. Resources are cleared in 4292 * iavf_virtchnl_completion() after we get confirmation from the PF 4293 * driver that the rings have been stopped. 4294 * 4295 * Also, we wait for state to transition to __IAVF_DOWN before 4296 * returning. State change occurs in iavf_virtchnl_completion() after 4297 * VF resources are released (which occurs after PF driver processes and 4298 * responds to admin queue commands). 4299 */ 4300 4301 status = wait_event_timeout(adapter->down_waitqueue, 4302 adapter->state == __IAVF_DOWN, 4303 msecs_to_jiffies(500)); 4304 if (!status) 4305 netdev_warn(netdev, "Device resources not yet released\n"); 4306 4307 mutex_lock(&adapter->crit_lock); 4308 adapter->aq_required |= aq_to_restore; 4309 mutex_unlock(&adapter->crit_lock); 4310 return 0; 4311 } 4312 4313 /** 4314 * iavf_change_mtu - Change the Maximum Transfer Unit 4315 * @netdev: network interface device structure 4316 * @new_mtu: new value for maximum frame size 4317 * 4318 * Returns 0 on success, negative on failure 4319 **/ 4320 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4321 { 4322 struct iavf_adapter *adapter = netdev_priv(netdev); 4323 int ret = 0; 4324 4325 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4326 netdev->mtu, new_mtu); 4327 netdev->mtu = new_mtu; 4328 4329 if (netif_running(netdev)) { 4330 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4331 ret = iavf_wait_for_reset(adapter); 4332 if (ret < 0) 4333 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4334 else if (ret) 4335 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4336 } 4337 4338 return ret; 4339 } 4340 4341 /** 4342 * iavf_disable_fdir - disable Flow Director and clear existing filters 4343 * @adapter: board private structure 4344 **/ 4345 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4346 { 4347 struct iavf_fdir_fltr *fdir, *fdirtmp; 4348 bool del_filters = false; 4349 4350 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4351 4352 /* remove all Flow Director filters */ 4353 spin_lock_bh(&adapter->fdir_fltr_lock); 4354 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4355 list) { 4356 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4357 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4358 /* Delete filters not registered in PF */ 4359 list_del(&fdir->list); 4360 kfree(fdir); 4361 adapter->fdir_active_fltr--; 4362 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4363 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4364 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4365 /* Filters registered in PF, schedule their deletion */ 4366 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4367 del_filters = true; 4368 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4369 /* Request to delete filter already sent to PF, change 4370 * state to DEL_PENDING to delete filter after PF's 4371 * response, not set as INACTIVE 4372 */ 4373 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4374 } 4375 } 4376 spin_unlock_bh(&adapter->fdir_fltr_lock); 4377 4378 if (del_filters) { 4379 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4380 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4381 } 4382 } 4383 4384 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4385 NETIF_F_HW_VLAN_CTAG_TX | \ 4386 NETIF_F_HW_VLAN_STAG_RX | \ 4387 NETIF_F_HW_VLAN_STAG_TX) 4388 4389 /** 4390 * iavf_set_features - set the netdev feature flags 4391 * @netdev: ptr to the netdev being adjusted 4392 * @features: the feature set that the stack is suggesting 4393 * Note: expects to be called while under rtnl_lock() 4394 **/ 4395 static int iavf_set_features(struct net_device *netdev, 4396 netdev_features_t features) 4397 { 4398 struct iavf_adapter *adapter = netdev_priv(netdev); 4399 4400 /* trigger update on any VLAN feature change */ 4401 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4402 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4403 iavf_set_vlan_offload_features(adapter, netdev->features, 4404 features); 4405 if (CRC_OFFLOAD_ALLOWED(adapter) && 4406 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4407 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4408 4409 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4410 if (features & NETIF_F_NTUPLE) 4411 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4412 else 4413 iavf_disable_fdir(adapter); 4414 } 4415 4416 return 0; 4417 } 4418 4419 /** 4420 * iavf_features_check - Validate encapsulated packet conforms to limits 4421 * @skb: skb buff 4422 * @dev: This physical port's netdev 4423 * @features: Offload features that the stack believes apply 4424 **/ 4425 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4426 struct net_device *dev, 4427 netdev_features_t features) 4428 { 4429 size_t len; 4430 4431 /* No point in doing any of this if neither checksum nor GSO are 4432 * being requested for this frame. We can rule out both by just 4433 * checking for CHECKSUM_PARTIAL 4434 */ 4435 if (skb->ip_summed != CHECKSUM_PARTIAL) 4436 return features; 4437 4438 /* We cannot support GSO if the MSS is going to be less than 4439 * 64 bytes. If it is then we need to drop support for GSO. 4440 */ 4441 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4442 features &= ~NETIF_F_GSO_MASK; 4443 4444 /* MACLEN can support at most 63 words */ 4445 len = skb_network_offset(skb); 4446 if (len & ~(63 * 2)) 4447 goto out_err; 4448 4449 /* IPLEN and EIPLEN can support at most 127 dwords */ 4450 len = skb_network_header_len(skb); 4451 if (len & ~(127 * 4)) 4452 goto out_err; 4453 4454 if (skb->encapsulation) { 4455 /* L4TUNLEN can support 127 words */ 4456 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4457 if (len & ~(127 * 2)) 4458 goto out_err; 4459 4460 /* IPLEN can support at most 127 dwords */ 4461 len = skb_inner_transport_header(skb) - 4462 skb_inner_network_header(skb); 4463 if (len & ~(127 * 4)) 4464 goto out_err; 4465 } 4466 4467 /* No need to validate L4LEN as TCP is the only protocol with a 4468 * flexible value and we support all possible values supported 4469 * by TCP, which is at most 15 dwords 4470 */ 4471 4472 return features; 4473 out_err: 4474 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4475 } 4476 4477 /** 4478 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4479 * @adapter: board private structure 4480 * 4481 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4482 * were negotiated determine the VLAN features that can be toggled on and off. 4483 **/ 4484 static netdev_features_t 4485 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4486 { 4487 netdev_features_t hw_features = 0; 4488 4489 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4490 return hw_features; 4491 4492 /* Enable VLAN features if supported */ 4493 if (VLAN_ALLOWED(adapter)) { 4494 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4495 NETIF_F_HW_VLAN_CTAG_RX); 4496 } else if (VLAN_V2_ALLOWED(adapter)) { 4497 struct virtchnl_vlan_caps *vlan_v2_caps = 4498 &adapter->vlan_v2_caps; 4499 struct virtchnl_vlan_supported_caps *stripping_support = 4500 &vlan_v2_caps->offloads.stripping_support; 4501 struct virtchnl_vlan_supported_caps *insertion_support = 4502 &vlan_v2_caps->offloads.insertion_support; 4503 4504 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4505 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4506 if (stripping_support->outer & 4507 VIRTCHNL_VLAN_ETHERTYPE_8100) 4508 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4509 if (stripping_support->outer & 4510 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4511 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4512 } else if (stripping_support->inner != 4513 VIRTCHNL_VLAN_UNSUPPORTED && 4514 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4515 if (stripping_support->inner & 4516 VIRTCHNL_VLAN_ETHERTYPE_8100) 4517 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4518 } 4519 4520 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4521 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4522 if (insertion_support->outer & 4523 VIRTCHNL_VLAN_ETHERTYPE_8100) 4524 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4525 if (insertion_support->outer & 4526 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4527 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4528 } else if (insertion_support->inner && 4529 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4530 if (insertion_support->inner & 4531 VIRTCHNL_VLAN_ETHERTYPE_8100) 4532 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4533 } 4534 } 4535 4536 if (CRC_OFFLOAD_ALLOWED(adapter)) 4537 hw_features |= NETIF_F_RXFCS; 4538 4539 return hw_features; 4540 } 4541 4542 /** 4543 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4544 * @adapter: board private structure 4545 * 4546 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4547 * were negotiated determine the VLAN features that are enabled by default. 4548 **/ 4549 static netdev_features_t 4550 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4551 { 4552 netdev_features_t features = 0; 4553 4554 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4555 return features; 4556 4557 if (VLAN_ALLOWED(adapter)) { 4558 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4559 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4560 } else if (VLAN_V2_ALLOWED(adapter)) { 4561 struct virtchnl_vlan_caps *vlan_v2_caps = 4562 &adapter->vlan_v2_caps; 4563 struct virtchnl_vlan_supported_caps *filtering_support = 4564 &vlan_v2_caps->filtering.filtering_support; 4565 struct virtchnl_vlan_supported_caps *stripping_support = 4566 &vlan_v2_caps->offloads.stripping_support; 4567 struct virtchnl_vlan_supported_caps *insertion_support = 4568 &vlan_v2_caps->offloads.insertion_support; 4569 u32 ethertype_init; 4570 4571 /* give priority to outer stripping and don't support both outer 4572 * and inner stripping 4573 */ 4574 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4575 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4576 if (stripping_support->outer & 4577 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4578 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4579 features |= NETIF_F_HW_VLAN_CTAG_RX; 4580 else if (stripping_support->outer & 4581 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4582 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4583 features |= NETIF_F_HW_VLAN_STAG_RX; 4584 } else if (stripping_support->inner != 4585 VIRTCHNL_VLAN_UNSUPPORTED) { 4586 if (stripping_support->inner & 4587 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4588 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4589 features |= NETIF_F_HW_VLAN_CTAG_RX; 4590 } 4591 4592 /* give priority to outer insertion and don't support both outer 4593 * and inner insertion 4594 */ 4595 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4596 if (insertion_support->outer & 4597 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4598 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4599 features |= NETIF_F_HW_VLAN_CTAG_TX; 4600 else if (insertion_support->outer & 4601 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4602 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4603 features |= NETIF_F_HW_VLAN_STAG_TX; 4604 } else if (insertion_support->inner != 4605 VIRTCHNL_VLAN_UNSUPPORTED) { 4606 if (insertion_support->inner & 4607 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4608 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4609 features |= NETIF_F_HW_VLAN_CTAG_TX; 4610 } 4611 4612 /* give priority to outer filtering and don't bother if both 4613 * outer and inner filtering are enabled 4614 */ 4615 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4616 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4617 if (filtering_support->outer & 4618 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4619 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4620 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4621 if (filtering_support->outer & 4622 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4623 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4624 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4625 } else if (filtering_support->inner != 4626 VIRTCHNL_VLAN_UNSUPPORTED) { 4627 if (filtering_support->inner & 4628 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4629 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4630 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4631 if (filtering_support->inner & 4632 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4633 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4634 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4635 } 4636 } 4637 4638 return features; 4639 } 4640 4641 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4642 (!(((requested) & (feature_bit)) && \ 4643 !((allowed) & (feature_bit)))) 4644 4645 /** 4646 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4647 * @adapter: board private structure 4648 * @requested_features: stack requested NETDEV features 4649 **/ 4650 static netdev_features_t 4651 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4652 netdev_features_t requested_features) 4653 { 4654 netdev_features_t allowed_features; 4655 4656 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4657 iavf_get_netdev_vlan_features(adapter); 4658 4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4660 allowed_features, 4661 NETIF_F_HW_VLAN_CTAG_TX)) 4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4663 4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4665 allowed_features, 4666 NETIF_F_HW_VLAN_CTAG_RX)) 4667 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4668 4669 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4670 allowed_features, 4671 NETIF_F_HW_VLAN_STAG_TX)) 4672 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4673 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4674 allowed_features, 4675 NETIF_F_HW_VLAN_STAG_RX)) 4676 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4677 4678 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4679 allowed_features, 4680 NETIF_F_HW_VLAN_CTAG_FILTER)) 4681 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4682 4683 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4684 allowed_features, 4685 NETIF_F_HW_VLAN_STAG_FILTER)) 4686 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4687 4688 if ((requested_features & 4689 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4690 (requested_features & 4691 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4692 adapter->vlan_v2_caps.offloads.ethertype_match == 4693 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4694 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4695 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4696 NETIF_F_HW_VLAN_STAG_TX); 4697 } 4698 4699 return requested_features; 4700 } 4701 4702 /** 4703 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4704 * @adapter: board private structure 4705 * @requested_features: stack requested NETDEV features 4706 * 4707 * Returns fixed-up features bits 4708 **/ 4709 static netdev_features_t 4710 iavf_fix_strip_features(struct iavf_adapter *adapter, 4711 netdev_features_t requested_features) 4712 { 4713 struct net_device *netdev = adapter->netdev; 4714 bool crc_offload_req, is_vlan_strip; 4715 netdev_features_t vlan_strip; 4716 int num_non_zero_vlan; 4717 4718 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4719 (requested_features & NETIF_F_RXFCS); 4720 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4721 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4722 is_vlan_strip = requested_features & vlan_strip; 4723 4724 if (!crc_offload_req) 4725 return requested_features; 4726 4727 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4728 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4729 requested_features &= ~vlan_strip; 4730 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4731 return requested_features; 4732 } 4733 4734 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4735 requested_features &= ~vlan_strip; 4736 if (!(netdev->features & vlan_strip)) 4737 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4738 4739 return requested_features; 4740 } 4741 4742 if (num_non_zero_vlan && is_vlan_strip && 4743 !(netdev->features & NETIF_F_RXFCS)) { 4744 requested_features &= ~NETIF_F_RXFCS; 4745 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4746 } 4747 4748 return requested_features; 4749 } 4750 4751 /** 4752 * iavf_fix_features - fix up the netdev feature bits 4753 * @netdev: our net device 4754 * @features: desired feature bits 4755 * 4756 * Returns fixed-up features bits 4757 **/ 4758 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4759 netdev_features_t features) 4760 { 4761 struct iavf_adapter *adapter = netdev_priv(netdev); 4762 4763 features = iavf_fix_netdev_vlan_features(adapter, features); 4764 4765 if (!FDIR_FLTR_SUPPORT(adapter)) 4766 features &= ~NETIF_F_NTUPLE; 4767 4768 return iavf_fix_strip_features(adapter, features); 4769 } 4770 4771 static const struct net_device_ops iavf_netdev_ops = { 4772 .ndo_open = iavf_open, 4773 .ndo_stop = iavf_close, 4774 .ndo_start_xmit = iavf_xmit_frame, 4775 .ndo_set_rx_mode = iavf_set_rx_mode, 4776 .ndo_validate_addr = eth_validate_addr, 4777 .ndo_set_mac_address = iavf_set_mac, 4778 .ndo_change_mtu = iavf_change_mtu, 4779 .ndo_tx_timeout = iavf_tx_timeout, 4780 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4781 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4782 .ndo_features_check = iavf_features_check, 4783 .ndo_fix_features = iavf_fix_features, 4784 .ndo_set_features = iavf_set_features, 4785 .ndo_setup_tc = iavf_setup_tc, 4786 }; 4787 4788 /** 4789 * iavf_check_reset_complete - check that VF reset is complete 4790 * @hw: pointer to hw struct 4791 * 4792 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4793 **/ 4794 static int iavf_check_reset_complete(struct iavf_hw *hw) 4795 { 4796 u32 rstat; 4797 int i; 4798 4799 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4800 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4801 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4802 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4803 (rstat == VIRTCHNL_VFR_COMPLETED)) 4804 return 0; 4805 msleep(IAVF_RESET_WAIT_MS); 4806 } 4807 return -EBUSY; 4808 } 4809 4810 /** 4811 * iavf_process_config - Process the config information we got from the PF 4812 * @adapter: board private structure 4813 * 4814 * Verify that we have a valid config struct, and set up our netdev features 4815 * and our VSI struct. 4816 **/ 4817 int iavf_process_config(struct iavf_adapter *adapter) 4818 { 4819 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4820 netdev_features_t hw_vlan_features, vlan_features; 4821 struct net_device *netdev = adapter->netdev; 4822 netdev_features_t hw_enc_features; 4823 netdev_features_t hw_features; 4824 4825 hw_enc_features = NETIF_F_SG | 4826 NETIF_F_IP_CSUM | 4827 NETIF_F_IPV6_CSUM | 4828 NETIF_F_HIGHDMA | 4829 NETIF_F_SOFT_FEATURES | 4830 NETIF_F_TSO | 4831 NETIF_F_TSO_ECN | 4832 NETIF_F_TSO6 | 4833 NETIF_F_SCTP_CRC | 4834 NETIF_F_RXHASH | 4835 NETIF_F_RXCSUM | 4836 0; 4837 4838 /* advertise to stack only if offloads for encapsulated packets is 4839 * supported 4840 */ 4841 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4842 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4843 NETIF_F_GSO_GRE | 4844 NETIF_F_GSO_GRE_CSUM | 4845 NETIF_F_GSO_IPXIP4 | 4846 NETIF_F_GSO_IPXIP6 | 4847 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4848 NETIF_F_GSO_PARTIAL | 4849 0; 4850 4851 if (!(vfres->vf_cap_flags & 4852 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4853 netdev->gso_partial_features |= 4854 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4855 4856 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4857 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4858 netdev->hw_enc_features |= hw_enc_features; 4859 } 4860 /* record features VLANs can make use of */ 4861 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4862 4863 /* Write features and hw_features separately to avoid polluting 4864 * with, or dropping, features that are set when we registered. 4865 */ 4866 hw_features = hw_enc_features; 4867 4868 /* get HW VLAN features that can be toggled */ 4869 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4870 4871 /* Enable cloud filter if ADQ is supported */ 4872 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4873 hw_features |= NETIF_F_HW_TC; 4874 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4875 hw_features |= NETIF_F_GSO_UDP_L4; 4876 4877 netdev->hw_features |= hw_features | hw_vlan_features; 4878 vlan_features = iavf_get_netdev_vlan_features(adapter); 4879 4880 netdev->features |= hw_features | vlan_features; 4881 4882 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4883 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4884 4885 if (FDIR_FLTR_SUPPORT(adapter)) { 4886 netdev->hw_features |= NETIF_F_NTUPLE; 4887 netdev->features |= NETIF_F_NTUPLE; 4888 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4889 } 4890 4891 netdev->priv_flags |= IFF_UNICAST_FLT; 4892 4893 /* Do not turn on offloads when they are requested to be turned off. 4894 * TSO needs minimum 576 bytes to work correctly. 4895 */ 4896 if (netdev->wanted_features) { 4897 if (!(netdev->wanted_features & NETIF_F_TSO) || 4898 netdev->mtu < 576) 4899 netdev->features &= ~NETIF_F_TSO; 4900 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4901 netdev->mtu < 576) 4902 netdev->features &= ~NETIF_F_TSO6; 4903 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4904 netdev->features &= ~NETIF_F_TSO_ECN; 4905 if (!(netdev->wanted_features & NETIF_F_GRO)) 4906 netdev->features &= ~NETIF_F_GRO; 4907 if (!(netdev->wanted_features & NETIF_F_GSO)) 4908 netdev->features &= ~NETIF_F_GSO; 4909 } 4910 4911 return 0; 4912 } 4913 4914 /** 4915 * iavf_probe - Device Initialization Routine 4916 * @pdev: PCI device information struct 4917 * @ent: entry in iavf_pci_tbl 4918 * 4919 * Returns 0 on success, negative on failure 4920 * 4921 * iavf_probe initializes an adapter identified by a pci_dev structure. 4922 * The OS initialization, configuring of the adapter private structure, 4923 * and a hardware reset occur. 4924 **/ 4925 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4926 { 4927 struct net_device *netdev; 4928 struct iavf_adapter *adapter = NULL; 4929 struct iavf_hw *hw = NULL; 4930 int err; 4931 4932 err = pci_enable_device(pdev); 4933 if (err) 4934 return err; 4935 4936 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4937 if (err) { 4938 dev_err(&pdev->dev, 4939 "DMA configuration failed: 0x%x\n", err); 4940 goto err_dma; 4941 } 4942 4943 err = pci_request_regions(pdev, iavf_driver_name); 4944 if (err) { 4945 dev_err(&pdev->dev, 4946 "pci_request_regions failed 0x%x\n", err); 4947 goto err_pci_reg; 4948 } 4949 4950 pci_set_master(pdev); 4951 4952 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4953 IAVF_MAX_REQ_QUEUES); 4954 if (!netdev) { 4955 err = -ENOMEM; 4956 goto err_alloc_etherdev; 4957 } 4958 4959 SET_NETDEV_DEV(netdev, &pdev->dev); 4960 4961 pci_set_drvdata(pdev, netdev); 4962 adapter = netdev_priv(netdev); 4963 4964 adapter->netdev = netdev; 4965 adapter->pdev = pdev; 4966 4967 hw = &adapter->hw; 4968 hw->back = adapter; 4969 4970 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4971 iavf_driver_name); 4972 if (!adapter->wq) { 4973 err = -ENOMEM; 4974 goto err_alloc_wq; 4975 } 4976 4977 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4978 iavf_change_state(adapter, __IAVF_STARTUP); 4979 4980 /* Call save state here because it relies on the adapter struct. */ 4981 pci_save_state(pdev); 4982 4983 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4984 pci_resource_len(pdev, 0)); 4985 if (!hw->hw_addr) { 4986 err = -EIO; 4987 goto err_ioremap; 4988 } 4989 hw->vendor_id = pdev->vendor; 4990 hw->device_id = pdev->device; 4991 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4992 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4993 hw->subsystem_device_id = pdev->subsystem_device; 4994 hw->bus.device = PCI_SLOT(pdev->devfn); 4995 hw->bus.func = PCI_FUNC(pdev->devfn); 4996 hw->bus.bus_id = pdev->bus->number; 4997 4998 /* set up the locks for the AQ, do this only once in probe 4999 * and destroy them only once in remove 5000 */ 5001 mutex_init(&adapter->crit_lock); 5002 mutex_init(&hw->aq.asq_mutex); 5003 mutex_init(&hw->aq.arq_mutex); 5004 5005 spin_lock_init(&adapter->mac_vlan_list_lock); 5006 spin_lock_init(&adapter->cloud_filter_list_lock); 5007 spin_lock_init(&adapter->fdir_fltr_lock); 5008 spin_lock_init(&adapter->adv_rss_lock); 5009 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5010 5011 INIT_LIST_HEAD(&adapter->mac_filter_list); 5012 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5013 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5014 INIT_LIST_HEAD(&adapter->fdir_list_head); 5015 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5016 5017 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5018 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5019 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5020 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5021 5022 /* Setup the wait queue for indicating transition to down status */ 5023 init_waitqueue_head(&adapter->down_waitqueue); 5024 5025 /* Setup the wait queue for indicating transition to running state */ 5026 init_waitqueue_head(&adapter->reset_waitqueue); 5027 5028 /* Setup the wait queue for indicating virtchannel events */ 5029 init_waitqueue_head(&adapter->vc_waitqueue); 5030 5031 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5032 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5033 /* Initialization goes on in the work. Do not add more of it below. */ 5034 return 0; 5035 5036 err_ioremap: 5037 destroy_workqueue(adapter->wq); 5038 err_alloc_wq: 5039 free_netdev(netdev); 5040 err_alloc_etherdev: 5041 pci_release_regions(pdev); 5042 err_pci_reg: 5043 err_dma: 5044 pci_disable_device(pdev); 5045 return err; 5046 } 5047 5048 /** 5049 * iavf_suspend - Power management suspend routine 5050 * @dev_d: device info pointer 5051 * 5052 * Called when the system (VM) is entering sleep/suspend. 5053 **/ 5054 static int __maybe_unused iavf_suspend(struct device *dev_d) 5055 { 5056 struct net_device *netdev = dev_get_drvdata(dev_d); 5057 struct iavf_adapter *adapter = netdev_priv(netdev); 5058 5059 netif_device_detach(netdev); 5060 5061 mutex_lock(&adapter->crit_lock); 5062 5063 if (netif_running(netdev)) { 5064 rtnl_lock(); 5065 iavf_down(adapter); 5066 rtnl_unlock(); 5067 } 5068 iavf_free_misc_irq(adapter); 5069 iavf_reset_interrupt_capability(adapter); 5070 5071 mutex_unlock(&adapter->crit_lock); 5072 5073 return 0; 5074 } 5075 5076 /** 5077 * iavf_resume - Power management resume routine 5078 * @dev_d: device info pointer 5079 * 5080 * Called when the system (VM) is resumed from sleep/suspend. 5081 **/ 5082 static int __maybe_unused iavf_resume(struct device *dev_d) 5083 { 5084 struct pci_dev *pdev = to_pci_dev(dev_d); 5085 struct iavf_adapter *adapter; 5086 u32 err; 5087 5088 adapter = iavf_pdev_to_adapter(pdev); 5089 5090 pci_set_master(pdev); 5091 5092 rtnl_lock(); 5093 err = iavf_set_interrupt_capability(adapter); 5094 if (err) { 5095 rtnl_unlock(); 5096 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5097 return err; 5098 } 5099 err = iavf_request_misc_irq(adapter); 5100 rtnl_unlock(); 5101 if (err) { 5102 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5103 return err; 5104 } 5105 5106 queue_work(adapter->wq, &adapter->reset_task); 5107 5108 netif_device_attach(adapter->netdev); 5109 5110 return err; 5111 } 5112 5113 /** 5114 * iavf_remove - Device Removal Routine 5115 * @pdev: PCI device information struct 5116 * 5117 * iavf_remove is called by the PCI subsystem to alert the driver 5118 * that it should release a PCI device. The could be caused by a 5119 * Hot-Plug event, or because the driver is going to be removed from 5120 * memory. 5121 **/ 5122 static void iavf_remove(struct pci_dev *pdev) 5123 { 5124 struct iavf_fdir_fltr *fdir, *fdirtmp; 5125 struct iavf_vlan_filter *vlf, *vlftmp; 5126 struct iavf_cloud_filter *cf, *cftmp; 5127 struct iavf_adv_rss *rss, *rsstmp; 5128 struct iavf_mac_filter *f, *ftmp; 5129 struct iavf_adapter *adapter; 5130 struct net_device *netdev; 5131 struct iavf_hw *hw; 5132 5133 /* Don't proceed with remove if netdev is already freed */ 5134 netdev = pci_get_drvdata(pdev); 5135 if (!netdev) 5136 return; 5137 5138 adapter = iavf_pdev_to_adapter(pdev); 5139 hw = &adapter->hw; 5140 5141 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5142 return; 5143 5144 /* Wait until port initialization is complete. 5145 * There are flows where register/unregister netdev may race. 5146 */ 5147 while (1) { 5148 mutex_lock(&adapter->crit_lock); 5149 if (adapter->state == __IAVF_RUNNING || 5150 adapter->state == __IAVF_DOWN || 5151 adapter->state == __IAVF_INIT_FAILED) { 5152 mutex_unlock(&adapter->crit_lock); 5153 break; 5154 } 5155 /* Simply return if we already went through iavf_shutdown */ 5156 if (adapter->state == __IAVF_REMOVE) { 5157 mutex_unlock(&adapter->crit_lock); 5158 return; 5159 } 5160 5161 mutex_unlock(&adapter->crit_lock); 5162 usleep_range(500, 1000); 5163 } 5164 cancel_delayed_work_sync(&adapter->watchdog_task); 5165 cancel_work_sync(&adapter->finish_config); 5166 5167 if (netdev->reg_state == NETREG_REGISTERED) 5168 unregister_netdev(netdev); 5169 5170 mutex_lock(&adapter->crit_lock); 5171 dev_info(&adapter->pdev->dev, "Removing device\n"); 5172 iavf_change_state(adapter, __IAVF_REMOVE); 5173 5174 iavf_request_reset(adapter); 5175 msleep(50); 5176 /* If the FW isn't responding, kick it once, but only once. */ 5177 if (!iavf_asq_done(hw)) { 5178 iavf_request_reset(adapter); 5179 msleep(50); 5180 } 5181 5182 iavf_misc_irq_disable(adapter); 5183 /* Shut down all the garbage mashers on the detention level */ 5184 cancel_work_sync(&adapter->reset_task); 5185 cancel_delayed_work_sync(&adapter->watchdog_task); 5186 cancel_work_sync(&adapter->adminq_task); 5187 5188 adapter->aq_required = 0; 5189 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5190 5191 iavf_free_all_tx_resources(adapter); 5192 iavf_free_all_rx_resources(adapter); 5193 iavf_free_misc_irq(adapter); 5194 iavf_free_interrupt_scheme(adapter); 5195 5196 iavf_free_rss(adapter); 5197 5198 if (hw->aq.asq.count) 5199 iavf_shutdown_adminq(hw); 5200 5201 /* destroy the locks only once, here */ 5202 mutex_destroy(&hw->aq.arq_mutex); 5203 mutex_destroy(&hw->aq.asq_mutex); 5204 mutex_unlock(&adapter->crit_lock); 5205 mutex_destroy(&adapter->crit_lock); 5206 5207 iounmap(hw->hw_addr); 5208 pci_release_regions(pdev); 5209 kfree(adapter->vf_res); 5210 spin_lock_bh(&adapter->mac_vlan_list_lock); 5211 /* If we got removed before an up/down sequence, we've got a filter 5212 * hanging out there that we need to get rid of. 5213 */ 5214 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5215 list_del(&f->list); 5216 kfree(f); 5217 } 5218 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5219 list) { 5220 list_del(&vlf->list); 5221 kfree(vlf); 5222 } 5223 5224 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5225 5226 spin_lock_bh(&adapter->cloud_filter_list_lock); 5227 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5228 list_del(&cf->list); 5229 kfree(cf); 5230 } 5231 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5232 5233 spin_lock_bh(&adapter->fdir_fltr_lock); 5234 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5235 list_del(&fdir->list); 5236 kfree(fdir); 5237 } 5238 spin_unlock_bh(&adapter->fdir_fltr_lock); 5239 5240 spin_lock_bh(&adapter->adv_rss_lock); 5241 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5242 list) { 5243 list_del(&rss->list); 5244 kfree(rss); 5245 } 5246 spin_unlock_bh(&adapter->adv_rss_lock); 5247 5248 destroy_workqueue(adapter->wq); 5249 5250 pci_set_drvdata(pdev, NULL); 5251 5252 free_netdev(netdev); 5253 5254 pci_disable_device(pdev); 5255 } 5256 5257 /** 5258 * iavf_shutdown - Shutdown the device in preparation for a reboot 5259 * @pdev: pci device structure 5260 **/ 5261 static void iavf_shutdown(struct pci_dev *pdev) 5262 { 5263 iavf_remove(pdev); 5264 5265 if (system_state == SYSTEM_POWER_OFF) 5266 pci_set_power_state(pdev, PCI_D3hot); 5267 } 5268 5269 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5270 5271 static struct pci_driver iavf_driver = { 5272 .name = iavf_driver_name, 5273 .id_table = iavf_pci_tbl, 5274 .probe = iavf_probe, 5275 .remove = iavf_remove, 5276 .driver.pm = &iavf_pm_ops, 5277 .shutdown = iavf_shutdown, 5278 }; 5279 5280 /** 5281 * iavf_init_module - Driver Registration Routine 5282 * 5283 * iavf_init_module is the first routine called when the driver is 5284 * loaded. All it does is register with the PCI subsystem. 5285 **/ 5286 static int __init iavf_init_module(void) 5287 { 5288 pr_info("iavf: %s\n", iavf_driver_string); 5289 5290 pr_info("%s\n", iavf_copyright); 5291 5292 return pci_register_driver(&iavf_driver); 5293 } 5294 5295 module_init(iavf_init_module); 5296 5297 /** 5298 * iavf_exit_module - Driver Exit Cleanup Routine 5299 * 5300 * iavf_exit_module is called just before the driver is removed 5301 * from memory. 5302 **/ 5303 static void __exit iavf_exit_module(void) 5304 { 5305 pci_unregister_driver(&iavf_driver); 5306 } 5307 5308 module_exit(iavf_exit_module); 5309 5310 /* iavf_main.c */ 5311