1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 #include <net/netdev_lock.h> 6 7 #include "iavf.h" 8 #include "iavf_ptp.h" 9 #include "iavf_prototype.h" 10 /* All iavf tracepoints are defined by the include below, which must 11 * be included exactly once across the whole kernel with 12 * CREATE_TRACE_POINTS defined 13 */ 14 #define CREATE_TRACE_POINTS 15 #include "iavf_trace.h" 16 17 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 18 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 19 static int iavf_close(struct net_device *netdev); 20 static void iavf_init_get_resources(struct iavf_adapter *adapter); 21 static int iavf_check_reset_complete(struct iavf_hw *hw); 22 23 char iavf_driver_name[] = "iavf"; 24 static const char iavf_driver_string[] = 25 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 26 27 static const char iavf_copyright[] = 28 "Copyright (c) 2013 - 2018 Intel Corporation."; 29 30 /* iavf_pci_tbl - PCI Device ID Table 31 * 32 * Wildcard entries (PCI_ANY_ID) should come last 33 * Last entry must be all 0s 34 * 35 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 36 * Class, Class Mask, private data (not used) } 37 */ 38 static const struct pci_device_id iavf_pci_tbl[] = { 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 41 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 42 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 43 /* required last entry */ 44 {0, } 45 }; 46 47 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 48 49 MODULE_ALIAS("i40evf"); 50 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 51 MODULE_IMPORT_NS("LIBETH"); 52 MODULE_IMPORT_NS("LIBIE"); 53 MODULE_LICENSE("GPL v2"); 54 55 static const struct net_device_ops iavf_netdev_ops; 56 57 int iavf_status_to_errno(enum iavf_status status) 58 { 59 switch (status) { 60 case IAVF_SUCCESS: 61 return 0; 62 case IAVF_ERR_PARAM: 63 case IAVF_ERR_MAC_TYPE: 64 case IAVF_ERR_INVALID_MAC_ADDR: 65 case IAVF_ERR_INVALID_LINK_SETTINGS: 66 case IAVF_ERR_INVALID_PD_ID: 67 case IAVF_ERR_INVALID_QP_ID: 68 case IAVF_ERR_INVALID_CQ_ID: 69 case IAVF_ERR_INVALID_CEQ_ID: 70 case IAVF_ERR_INVALID_AEQ_ID: 71 case IAVF_ERR_INVALID_SIZE: 72 case IAVF_ERR_INVALID_ARP_INDEX: 73 case IAVF_ERR_INVALID_FPM_FUNC_ID: 74 case IAVF_ERR_QP_INVALID_MSG_SIZE: 75 case IAVF_ERR_INVALID_FRAG_COUNT: 76 case IAVF_ERR_INVALID_ALIGNMENT: 77 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 78 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 79 case IAVF_ERR_INVALID_VF_ID: 80 case IAVF_ERR_INVALID_HMCFN_ID: 81 case IAVF_ERR_INVALID_PBLE_INDEX: 82 case IAVF_ERR_INVALID_SD_INDEX: 83 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 84 case IAVF_ERR_INVALID_SD_TYPE: 85 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 86 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 87 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 88 return -EINVAL; 89 case IAVF_ERR_NVM: 90 case IAVF_ERR_NVM_CHECKSUM: 91 case IAVF_ERR_PHY: 92 case IAVF_ERR_CONFIG: 93 case IAVF_ERR_UNKNOWN_PHY: 94 case IAVF_ERR_LINK_SETUP: 95 case IAVF_ERR_ADAPTER_STOPPED: 96 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 97 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 98 case IAVF_ERR_RESET_FAILED: 99 case IAVF_ERR_BAD_PTR: 100 case IAVF_ERR_SWFW_SYNC: 101 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 102 case IAVF_ERR_QUEUE_EMPTY: 103 case IAVF_ERR_FLUSHED_QUEUE: 104 case IAVF_ERR_OPCODE_MISMATCH: 105 case IAVF_ERR_CQP_COMPL_ERROR: 106 case IAVF_ERR_BACKING_PAGE_ERROR: 107 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 108 case IAVF_ERR_MEMCPY_FAILED: 109 case IAVF_ERR_SRQ_ENABLED: 110 case IAVF_ERR_ADMIN_QUEUE_ERROR: 111 case IAVF_ERR_ADMIN_QUEUE_FULL: 112 case IAVF_ERR_BAD_RDMA_CQE: 113 case IAVF_ERR_NVM_BLANK_MODE: 114 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 115 case IAVF_ERR_DIAG_TEST_FAILED: 116 case IAVF_ERR_FIRMWARE_API_VERSION: 117 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 118 return -EIO; 119 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 120 return -ENODEV; 121 case IAVF_ERR_NO_AVAILABLE_VSI: 122 case IAVF_ERR_RING_FULL: 123 return -ENOSPC; 124 case IAVF_ERR_NO_MEMORY: 125 return -ENOMEM; 126 case IAVF_ERR_TIMEOUT: 127 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 128 return -ETIMEDOUT; 129 case IAVF_ERR_NOT_IMPLEMENTED: 130 case IAVF_NOT_SUPPORTED: 131 return -EOPNOTSUPP; 132 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 133 return -EALREADY; 134 case IAVF_ERR_NOT_READY: 135 return -EBUSY; 136 case IAVF_ERR_BUF_TOO_SHORT: 137 return -EMSGSIZE; 138 } 139 140 return -EIO; 141 } 142 143 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 144 { 145 switch (v_status) { 146 case VIRTCHNL_STATUS_SUCCESS: 147 return 0; 148 case VIRTCHNL_STATUS_ERR_PARAM: 149 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 150 return -EINVAL; 151 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 152 return -ENOMEM; 153 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 154 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 155 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 156 return -EIO; 157 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 158 return -EOPNOTSUPP; 159 } 160 161 return -EIO; 162 } 163 164 /** 165 * iavf_pdev_to_adapter - go from pci_dev to adapter 166 * @pdev: pci_dev pointer 167 */ 168 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 169 { 170 return netdev_priv(pci_get_drvdata(pdev)); 171 } 172 173 /** 174 * iavf_is_reset_in_progress - Check if a reset is in progress 175 * @adapter: board private structure 176 */ 177 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 178 { 179 if (adapter->state == __IAVF_RESETTING || 180 adapter->flags & (IAVF_FLAG_RESET_PENDING | 181 IAVF_FLAG_RESET_NEEDED)) 182 return true; 183 184 return false; 185 } 186 187 /** 188 * iavf_wait_for_reset - Wait for reset to finish. 189 * @adapter: board private structure 190 * 191 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 192 */ 193 int iavf_wait_for_reset(struct iavf_adapter *adapter) 194 { 195 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 196 !iavf_is_reset_in_progress(adapter), 197 msecs_to_jiffies(5000)); 198 199 /* If ret < 0 then it means wait was interrupted. 200 * If ret == 0 then it means we got a timeout while waiting 201 * for reset to finish. 202 * If ret > 0 it means reset has finished. 203 */ 204 if (ret > 0) 205 return 0; 206 else if (ret < 0) 207 return -EINTR; 208 else 209 return -EBUSY; 210 } 211 212 /** 213 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 * @alignment: what to align the allocation to 218 **/ 219 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 220 struct iavf_dma_mem *mem, 221 u64 size, u32 alignment) 222 { 223 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 224 225 if (!mem) 226 return IAVF_ERR_PARAM; 227 228 mem->size = ALIGN(size, alignment); 229 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 230 (dma_addr_t *)&mem->pa, GFP_KERNEL); 231 if (mem->va) 232 return 0; 233 else 234 return IAVF_ERR_NO_MEMORY; 235 } 236 237 /** 238 * iavf_free_dma_mem - wrapper for DMA memory freeing 239 * @hw: pointer to the HW structure 240 * @mem: ptr to mem struct to free 241 **/ 242 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 243 { 244 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 245 246 if (!mem || !mem->va) 247 return IAVF_ERR_PARAM; 248 dma_free_coherent(&adapter->pdev->dev, mem->size, 249 mem->va, (dma_addr_t)mem->pa); 250 return 0; 251 } 252 253 /** 254 * iavf_allocate_virt_mem - virt memory alloc wrapper 255 * @hw: pointer to the HW structure 256 * @mem: ptr to mem struct to fill out 257 * @size: size of memory requested 258 **/ 259 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 260 struct iavf_virt_mem *mem, u32 size) 261 { 262 if (!mem) 263 return IAVF_ERR_PARAM; 264 265 mem->size = size; 266 mem->va = kzalloc(size, GFP_KERNEL); 267 268 if (mem->va) 269 return 0; 270 else 271 return IAVF_ERR_NO_MEMORY; 272 } 273 274 /** 275 * iavf_free_virt_mem - virt memory free wrapper 276 * @hw: pointer to the HW structure 277 * @mem: ptr to mem struct to free 278 **/ 279 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 280 { 281 kfree(mem->va); 282 } 283 284 /** 285 * iavf_schedule_reset - Set the flags and schedule a reset event 286 * @adapter: board private structure 287 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 288 **/ 289 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 290 { 291 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 292 !(adapter->flags & 293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 294 adapter->flags |= flags; 295 queue_work(adapter->wq, &adapter->reset_task); 296 } 297 } 298 299 /** 300 * iavf_schedule_aq_request - Set the flags and schedule aq request 301 * @adapter: board private structure 302 * @flags: requested aq flags 303 **/ 304 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 305 { 306 adapter->aq_required |= flags; 307 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 308 } 309 310 /** 311 * iavf_tx_timeout - Respond to a Tx Hang 312 * @netdev: network interface device structure 313 * @txqueue: queue number that is timing out 314 **/ 315 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 316 { 317 struct iavf_adapter *adapter = netdev_priv(netdev); 318 319 adapter->tx_timeout_count++; 320 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 321 } 322 323 /** 324 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 325 * @adapter: board private structure 326 **/ 327 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 328 { 329 struct iavf_hw *hw = &adapter->hw; 330 331 if (!adapter->msix_entries) 332 return; 333 334 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 335 336 iavf_flush(hw); 337 338 synchronize_irq(adapter->msix_entries[0].vector); 339 } 340 341 /** 342 * iavf_misc_irq_enable - Enable default interrupt generation settings 343 * @adapter: board private structure 344 **/ 345 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 346 { 347 struct iavf_hw *hw = &adapter->hw; 348 349 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 350 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 351 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 352 353 iavf_flush(hw); 354 } 355 356 /** 357 * iavf_irq_disable - Mask off interrupt generation on the NIC 358 * @adapter: board private structure 359 **/ 360 static void iavf_irq_disable(struct iavf_adapter *adapter) 361 { 362 int i; 363 struct iavf_hw *hw = &adapter->hw; 364 365 if (!adapter->msix_entries) 366 return; 367 368 for (i = 1; i < adapter->num_msix_vectors; i++) { 369 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 370 synchronize_irq(adapter->msix_entries[i].vector); 371 } 372 iavf_flush(hw); 373 } 374 375 /** 376 * iavf_irq_enable_queues - Enable interrupt for all queues 377 * @adapter: board private structure 378 **/ 379 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 380 { 381 struct iavf_hw *hw = &adapter->hw; 382 int i; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 386 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 387 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 388 } 389 } 390 391 /** 392 * iavf_irq_enable - Enable default interrupt generation settings 393 * @adapter: board private structure 394 * @flush: boolean value whether to run rd32() 395 **/ 396 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 397 { 398 struct iavf_hw *hw = &adapter->hw; 399 400 iavf_misc_irq_enable(adapter); 401 iavf_irq_enable_queues(adapter); 402 403 if (flush) 404 iavf_flush(hw); 405 } 406 407 /** 408 * iavf_msix_aq - Interrupt handler for vector 0 409 * @irq: interrupt number 410 * @data: pointer to netdev 411 **/ 412 static irqreturn_t iavf_msix_aq(int irq, void *data) 413 { 414 struct net_device *netdev = data; 415 struct iavf_adapter *adapter = netdev_priv(netdev); 416 struct iavf_hw *hw = &adapter->hw; 417 418 /* handle non-queue interrupts, these reads clear the registers */ 419 rd32(hw, IAVF_VFINT_ICR01); 420 rd32(hw, IAVF_VFINT_ICR0_ENA1); 421 422 if (adapter->state != __IAVF_REMOVE) 423 /* schedule work on the private workqueue */ 424 queue_work(adapter->wq, &adapter->adminq_task); 425 426 return IRQ_HANDLED; 427 } 428 429 /** 430 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 431 * @irq: interrupt number 432 * @data: pointer to a q_vector 433 **/ 434 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 435 { 436 struct iavf_q_vector *q_vector = data; 437 438 if (!q_vector->tx.ring && !q_vector->rx.ring) 439 return IRQ_HANDLED; 440 441 napi_schedule_irqoff(&q_vector->napi); 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * iavf_map_vector_to_rxq - associate irqs with rx queues 448 * @adapter: board private structure 449 * @v_idx: interrupt number 450 * @r_idx: queue number 451 **/ 452 static void 453 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 454 { 455 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 456 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 457 struct iavf_hw *hw = &adapter->hw; 458 459 rx_ring->q_vector = q_vector; 460 rx_ring->next = q_vector->rx.ring; 461 rx_ring->vsi = &adapter->vsi; 462 q_vector->rx.ring = rx_ring; 463 q_vector->rx.count++; 464 q_vector->rx.next_update = jiffies + 1; 465 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 466 q_vector->ring_mask |= BIT(r_idx); 467 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 468 q_vector->rx.current_itr >> 1); 469 q_vector->rx.current_itr = q_vector->rx.target_itr; 470 } 471 472 /** 473 * iavf_map_vector_to_txq - associate irqs with tx queues 474 * @adapter: board private structure 475 * @v_idx: interrupt number 476 * @t_idx: queue number 477 **/ 478 static void 479 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 480 { 481 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 482 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 483 struct iavf_hw *hw = &adapter->hw; 484 485 tx_ring->q_vector = q_vector; 486 tx_ring->next = q_vector->tx.ring; 487 tx_ring->vsi = &adapter->vsi; 488 q_vector->tx.ring = tx_ring; 489 q_vector->tx.count++; 490 q_vector->tx.next_update = jiffies + 1; 491 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 492 q_vector->num_ringpairs++; 493 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 494 q_vector->tx.target_itr >> 1); 495 q_vector->tx.current_itr = q_vector->tx.target_itr; 496 } 497 498 /** 499 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 500 * @adapter: board private structure to initialize 501 * 502 * This function maps descriptor rings to the queue-specific vectors 503 * we were allotted through the MSI-X enabling code. Ideally, we'd have 504 * one vector per ring/queue, but on a constrained vector budget, we 505 * group the rings as "efficiently" as possible. You would add new 506 * mapping configurations in here. 507 **/ 508 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 509 { 510 int rings_remaining = adapter->num_active_queues; 511 int ridx = 0, vidx = 0; 512 int q_vectors; 513 514 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 515 516 for (; ridx < rings_remaining; ridx++) { 517 iavf_map_vector_to_rxq(adapter, vidx, ridx); 518 iavf_map_vector_to_txq(adapter, vidx, ridx); 519 520 /* In the case where we have more queues than vectors, continue 521 * round-robin on vectors until all queues are mapped. 522 */ 523 if (++vidx >= q_vectors) 524 vidx = 0; 525 } 526 527 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 528 } 529 530 /** 531 * iavf_irq_affinity_notify - Callback for affinity changes 532 * @notify: context as to what irq was changed 533 * @mask: the new affinity mask 534 * 535 * This is a callback function used by the irq_set_affinity_notifier function 536 * so that we may register to receive changes to the irq affinity masks. 537 **/ 538 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 539 const cpumask_t *mask) 540 { 541 struct iavf_q_vector *q_vector = 542 container_of(notify, struct iavf_q_vector, affinity_notify); 543 544 cpumask_copy(&q_vector->affinity_mask, mask); 545 } 546 547 /** 548 * iavf_irq_affinity_release - Callback for affinity notifier release 549 * @ref: internal core kernel usage 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * to inform the current notification subscriber that they will no longer 553 * receive notifications. 554 **/ 555 static void iavf_irq_affinity_release(struct kref *ref) {} 556 557 /** 558 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 559 * @adapter: board private structure 560 * @basename: device basename 561 * 562 * Allocates MSI-X vectors for tx and rx handling, and requests 563 * interrupts from the kernel. 564 **/ 565 static int 566 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 567 { 568 unsigned int vector, q_vectors; 569 unsigned int rx_int_idx = 0, tx_int_idx = 0; 570 int irq_num, err; 571 int cpu; 572 573 iavf_irq_disable(adapter); 574 /* Decrement for Other and TCP Timer vectors */ 575 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 576 577 for (vector = 0; vector < q_vectors; vector++) { 578 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 579 580 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 581 582 if (q_vector->tx.ring && q_vector->rx.ring) { 583 snprintf(q_vector->name, sizeof(q_vector->name), 584 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 585 tx_int_idx++; 586 } else if (q_vector->rx.ring) { 587 snprintf(q_vector->name, sizeof(q_vector->name), 588 "iavf-%s-rx-%u", basename, rx_int_idx++); 589 } else if (q_vector->tx.ring) { 590 snprintf(q_vector->name, sizeof(q_vector->name), 591 "iavf-%s-tx-%u", basename, tx_int_idx++); 592 } else { 593 /* skip this unused q_vector */ 594 continue; 595 } 596 err = request_irq(irq_num, 597 iavf_msix_clean_rings, 598 0, 599 q_vector->name, 600 q_vector); 601 if (err) { 602 dev_info(&adapter->pdev->dev, 603 "Request_irq failed, error: %d\n", err); 604 goto free_queue_irqs; 605 } 606 /* register for affinity change notifications */ 607 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 608 q_vector->affinity_notify.release = 609 iavf_irq_affinity_release; 610 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 611 /* Spread the IRQ affinity hints across online CPUs. Note that 612 * get_cpu_mask returns a mask with a permanent lifetime so 613 * it's safe to use as a hint for irq_update_affinity_hint. 614 */ 615 cpu = cpumask_local_spread(q_vector->v_idx, -1); 616 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 617 } 618 619 return 0; 620 621 free_queue_irqs: 622 while (vector) { 623 vector--; 624 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 625 irq_set_affinity_notifier(irq_num, NULL); 626 irq_update_affinity_hint(irq_num, NULL); 627 free_irq(irq_num, &adapter->q_vectors[vector]); 628 } 629 return err; 630 } 631 632 /** 633 * iavf_request_misc_irq - Initialize MSI-X interrupts 634 * @adapter: board private structure 635 * 636 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 637 * vector is only for the admin queue, and stays active even when the netdev 638 * is closed. 639 **/ 640 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 641 { 642 struct net_device *netdev = adapter->netdev; 643 int err; 644 645 snprintf(adapter->misc_vector_name, 646 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 647 dev_name(&adapter->pdev->dev)); 648 err = request_irq(adapter->msix_entries[0].vector, 649 &iavf_msix_aq, 0, 650 adapter->misc_vector_name, netdev); 651 if (err) { 652 dev_err(&adapter->pdev->dev, 653 "request_irq for %s failed: %d\n", 654 adapter->misc_vector_name, err); 655 free_irq(adapter->msix_entries[0].vector, netdev); 656 } 657 return err; 658 } 659 660 /** 661 * iavf_free_traffic_irqs - Free MSI-X interrupts 662 * @adapter: board private structure 663 * 664 * Frees all MSI-X vectors other than 0. 665 **/ 666 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 667 { 668 int vector, irq_num, q_vectors; 669 670 if (!adapter->msix_entries) 671 return; 672 673 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 674 675 for (vector = 0; vector < q_vectors; vector++) { 676 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 677 irq_set_affinity_notifier(irq_num, NULL); 678 irq_update_affinity_hint(irq_num, NULL); 679 free_irq(irq_num, &adapter->q_vectors[vector]); 680 } 681 } 682 683 /** 684 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 685 * @adapter: board private structure 686 * 687 * Frees MSI-X vector 0. 688 **/ 689 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 690 { 691 struct net_device *netdev = adapter->netdev; 692 693 if (!adapter->msix_entries) 694 return; 695 696 free_irq(adapter->msix_entries[0].vector, netdev); 697 } 698 699 /** 700 * iavf_configure_tx - Configure Transmit Unit after Reset 701 * @adapter: board private structure 702 * 703 * Configure the Tx unit of the MAC after a reset. 704 **/ 705 static void iavf_configure_tx(struct iavf_adapter *adapter) 706 { 707 struct iavf_hw *hw = &adapter->hw; 708 int i; 709 710 for (i = 0; i < adapter->num_active_queues; i++) 711 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 712 } 713 714 /** 715 * iavf_select_rx_desc_format - Select Rx descriptor format 716 * @adapter: adapter private structure 717 * 718 * Select what Rx descriptor format based on availability and enabled 719 * features. 720 * 721 * Return: the desired RXDID to select for a given Rx queue, as defined by 722 * enum virtchnl_rxdid_format. 723 */ 724 static u8 iavf_select_rx_desc_format(const struct iavf_adapter *adapter) 725 { 726 u64 rxdids = adapter->supp_rxdids; 727 728 /* If we did not negotiate VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC, we must 729 * stick with the default value of the legacy 32 byte format. 730 */ 731 if (!IAVF_RXDID_ALLOWED(adapter)) 732 return VIRTCHNL_RXDID_1_32B_BASE; 733 734 /* Rx timestamping requires the use of flexible NIC descriptors */ 735 if (iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) { 736 if (rxdids & BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC)) 737 return VIRTCHNL_RXDID_2_FLEX_SQ_NIC; 738 739 pci_warn(adapter->pdev, 740 "Unable to negotiate flexible descriptor format\n"); 741 } 742 743 /* Warn if the PF does not list support for the default legacy 744 * descriptor format. This shouldn't happen, as this is the format 745 * used if VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is not supported. It is 746 * likely caused by a bug in the PF implementation failing to indicate 747 * support for the format. 748 */ 749 if (!(rxdids & VIRTCHNL_RXDID_1_32B_BASE_M)) 750 netdev_warn(adapter->netdev, "PF does not list support for default Rx descriptor format\n"); 751 752 return VIRTCHNL_RXDID_1_32B_BASE; 753 } 754 755 /** 756 * iavf_configure_rx - Configure Receive Unit after Reset 757 * @adapter: board private structure 758 * 759 * Configure the Rx unit of the MAC after a reset. 760 **/ 761 static void iavf_configure_rx(struct iavf_adapter *adapter) 762 { 763 struct iavf_hw *hw = &adapter->hw; 764 765 adapter->rxdid = iavf_select_rx_desc_format(adapter); 766 767 for (u32 i = 0; i < adapter->num_active_queues; i++) { 768 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 769 adapter->rx_rings[i].rxdid = adapter->rxdid; 770 } 771 } 772 773 /** 774 * iavf_find_vlan - Search filter list for specific vlan filter 775 * @adapter: board private structure 776 * @vlan: vlan tag 777 * 778 * Returns ptr to the filter object or NULL. Must be called while holding the 779 * mac_vlan_list_lock. 780 **/ 781 static struct 782 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 783 struct iavf_vlan vlan) 784 { 785 struct iavf_vlan_filter *f; 786 787 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 788 if (f->vlan.vid == vlan.vid && 789 f->vlan.tpid == vlan.tpid) 790 return f; 791 } 792 793 return NULL; 794 } 795 796 /** 797 * iavf_add_vlan - Add a vlan filter to the list 798 * @adapter: board private structure 799 * @vlan: VLAN tag 800 * 801 * Returns ptr to the filter object or NULL when no memory available. 802 **/ 803 static struct 804 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 805 struct iavf_vlan vlan) 806 { 807 struct iavf_vlan_filter *f = NULL; 808 809 spin_lock_bh(&adapter->mac_vlan_list_lock); 810 811 f = iavf_find_vlan(adapter, vlan); 812 if (!f) { 813 f = kzalloc(sizeof(*f), GFP_ATOMIC); 814 if (!f) 815 goto clearout; 816 817 f->vlan = vlan; 818 819 list_add_tail(&f->list, &adapter->vlan_filter_list); 820 f->state = IAVF_VLAN_ADD; 821 adapter->num_vlan_filters++; 822 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 823 } else if (f->state == IAVF_VLAN_REMOVE) { 824 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 825 * We can safely only change the state here. 826 */ 827 f->state = IAVF_VLAN_ACTIVE; 828 } 829 830 clearout: 831 spin_unlock_bh(&adapter->mac_vlan_list_lock); 832 return f; 833 } 834 835 /** 836 * iavf_del_vlan - Remove a vlan filter from the list 837 * @adapter: board private structure 838 * @vlan: VLAN tag 839 **/ 840 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 841 { 842 struct iavf_vlan_filter *f; 843 844 spin_lock_bh(&adapter->mac_vlan_list_lock); 845 846 f = iavf_find_vlan(adapter, vlan); 847 if (f) { 848 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 849 * Remove it from the list. 850 */ 851 if (f->state == IAVF_VLAN_ADD) { 852 list_del(&f->list); 853 kfree(f); 854 adapter->num_vlan_filters--; 855 } else { 856 f->state = IAVF_VLAN_REMOVE; 857 iavf_schedule_aq_request(adapter, 858 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 859 } 860 } 861 862 spin_unlock_bh(&adapter->mac_vlan_list_lock); 863 } 864 865 /** 866 * iavf_restore_filters 867 * @adapter: board private structure 868 * 869 * Restore existing non MAC filters when VF netdev comes back up 870 **/ 871 static void iavf_restore_filters(struct iavf_adapter *adapter) 872 { 873 struct iavf_vlan_filter *f; 874 875 /* re-add all VLAN filters */ 876 spin_lock_bh(&adapter->mac_vlan_list_lock); 877 878 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 879 if (f->state == IAVF_VLAN_INACTIVE) 880 f->state = IAVF_VLAN_ADD; 881 } 882 883 spin_unlock_bh(&adapter->mac_vlan_list_lock); 884 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 885 } 886 887 /** 888 * iavf_get_num_vlans_added - get number of VLANs added 889 * @adapter: board private structure 890 */ 891 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 892 { 893 return adapter->num_vlan_filters; 894 } 895 896 /** 897 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 898 * @adapter: board private structure 899 * 900 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 901 * do not impose a limit as that maintains current behavior and for 902 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 903 **/ 904 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 905 { 906 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 907 * never been a limit on the VF driver side 908 */ 909 if (VLAN_ALLOWED(adapter)) 910 return VLAN_N_VID; 911 else if (VLAN_V2_ALLOWED(adapter)) 912 return adapter->vlan_v2_caps.filtering.max_filters; 913 914 return 0; 915 } 916 917 /** 918 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 919 * @adapter: board private structure 920 **/ 921 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 922 { 923 if (iavf_get_num_vlans_added(adapter) < 924 iavf_get_max_vlans_allowed(adapter)) 925 return false; 926 927 return true; 928 } 929 930 /** 931 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 932 * @netdev: network device struct 933 * @proto: unused protocol data 934 * @vid: VLAN tag 935 **/ 936 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 937 __always_unused __be16 proto, u16 vid) 938 { 939 struct iavf_adapter *adapter = netdev_priv(netdev); 940 941 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 942 if (!vid) 943 return 0; 944 945 if (!VLAN_FILTERING_ALLOWED(adapter)) 946 return -EIO; 947 948 if (iavf_max_vlans_added(adapter)) { 949 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 950 iavf_get_max_vlans_allowed(adapter)); 951 return -EIO; 952 } 953 954 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 955 return -ENOMEM; 956 957 return 0; 958 } 959 960 /** 961 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 962 * @netdev: network device struct 963 * @proto: unused protocol data 964 * @vid: VLAN tag 965 **/ 966 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 967 __always_unused __be16 proto, u16 vid) 968 { 969 struct iavf_adapter *adapter = netdev_priv(netdev); 970 971 /* We do not track VLAN 0 filter */ 972 if (!vid) 973 return 0; 974 975 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 976 return 0; 977 } 978 979 /** 980 * iavf_find_filter - Search filter list for specific mac filter 981 * @adapter: board private structure 982 * @macaddr: the MAC address 983 * 984 * Returns ptr to the filter object or NULL. Must be called while holding the 985 * mac_vlan_list_lock. 986 **/ 987 static struct 988 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 989 const u8 *macaddr) 990 { 991 struct iavf_mac_filter *f; 992 993 if (!macaddr) 994 return NULL; 995 996 list_for_each_entry(f, &adapter->mac_filter_list, list) { 997 if (ether_addr_equal(macaddr, f->macaddr)) 998 return f; 999 } 1000 return NULL; 1001 } 1002 1003 /** 1004 * iavf_add_filter - Add a mac filter to the filter list 1005 * @adapter: board private structure 1006 * @macaddr: the MAC address 1007 * 1008 * Returns ptr to the filter object or NULL when no memory available. 1009 **/ 1010 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1011 const u8 *macaddr) 1012 { 1013 struct iavf_mac_filter *f; 1014 1015 if (!macaddr) 1016 return NULL; 1017 1018 f = iavf_find_filter(adapter, macaddr); 1019 if (!f) { 1020 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1021 if (!f) 1022 return f; 1023 1024 ether_addr_copy(f->macaddr, macaddr); 1025 1026 list_add_tail(&f->list, &adapter->mac_filter_list); 1027 f->add = true; 1028 f->add_handled = false; 1029 f->is_new_mac = true; 1030 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1031 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1032 } else { 1033 f->remove = false; 1034 } 1035 1036 return f; 1037 } 1038 1039 /** 1040 * iavf_replace_primary_mac - Replace current primary address 1041 * @adapter: board private structure 1042 * @new_mac: new MAC address to be applied 1043 * 1044 * Replace current dev_addr and send request to PF for removal of previous 1045 * primary MAC address filter and addition of new primary MAC filter. 1046 * Return 0 for success, -ENOMEM for failure. 1047 * 1048 * Do not call this with mac_vlan_list_lock! 1049 **/ 1050 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1051 const u8 *new_mac) 1052 { 1053 struct iavf_hw *hw = &adapter->hw; 1054 struct iavf_mac_filter *new_f; 1055 struct iavf_mac_filter *old_f; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 new_f = iavf_add_filter(adapter, new_mac); 1060 if (!new_f) { 1061 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1062 return -ENOMEM; 1063 } 1064 1065 old_f = iavf_find_filter(adapter, hw->mac.addr); 1066 if (old_f) { 1067 old_f->is_primary = false; 1068 old_f->remove = true; 1069 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1070 } 1071 /* Always send the request to add if changing primary MAC, 1072 * even if filter is already present on the list 1073 */ 1074 new_f->is_primary = true; 1075 new_f->add = true; 1076 ether_addr_copy(hw->mac.addr, new_mac); 1077 1078 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1079 1080 /* schedule the watchdog task to immediately process the request */ 1081 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1082 return 0; 1083 } 1084 1085 /** 1086 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1087 * @netdev: network interface device structure 1088 * @macaddr: MAC address to set 1089 * 1090 * Returns true on success, false on failure 1091 */ 1092 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1093 const u8 *macaddr) 1094 { 1095 struct iavf_adapter *adapter = netdev_priv(netdev); 1096 struct iavf_mac_filter *f; 1097 bool ret = false; 1098 1099 spin_lock_bh(&adapter->mac_vlan_list_lock); 1100 1101 f = iavf_find_filter(adapter, macaddr); 1102 1103 if (!f || (!f->add && f->add_handled)) 1104 ret = true; 1105 1106 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * iavf_set_mac - NDO callback to set port MAC address 1113 * @netdev: network interface device structure 1114 * @p: pointer to an address structure 1115 * 1116 * Returns 0 on success, negative on failure 1117 */ 1118 static int iavf_set_mac(struct net_device *netdev, void *p) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct sockaddr *addr = p; 1122 int ret; 1123 1124 if (!is_valid_ether_addr(addr->sa_data)) 1125 return -EADDRNOTAVAIL; 1126 1127 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1128 1129 if (ret) 1130 return ret; 1131 1132 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1133 iavf_is_mac_set_handled(netdev, addr->sa_data), 1134 msecs_to_jiffies(2500)); 1135 1136 /* If ret < 0 then it means wait was interrupted. 1137 * If ret == 0 then it means we got a timeout. 1138 * else it means we got response for set MAC from PF, 1139 * check if netdev MAC was updated to requested MAC, 1140 * if yes then set MAC succeeded otherwise it failed return -EACCES 1141 */ 1142 if (ret < 0) 1143 return ret; 1144 1145 if (!ret) 1146 return -EAGAIN; 1147 1148 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1149 return -EACCES; 1150 1151 return 0; 1152 } 1153 1154 /** 1155 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1156 * @netdev: the netdevice 1157 * @addr: address to add 1158 * 1159 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1160 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1161 */ 1162 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1163 { 1164 struct iavf_adapter *adapter = netdev_priv(netdev); 1165 1166 if (iavf_add_filter(adapter, addr)) 1167 return 0; 1168 else 1169 return -ENOMEM; 1170 } 1171 1172 /** 1173 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1174 * @netdev: the netdevice 1175 * @addr: address to add 1176 * 1177 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1178 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1179 */ 1180 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1181 { 1182 struct iavf_adapter *adapter = netdev_priv(netdev); 1183 struct iavf_mac_filter *f; 1184 1185 /* Under some circumstances, we might receive a request to delete 1186 * our own device address from our uc list. Because we store the 1187 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1188 * such requests and not delete our device address from this list. 1189 */ 1190 if (ether_addr_equal(addr, netdev->dev_addr)) 1191 return 0; 1192 1193 f = iavf_find_filter(adapter, addr); 1194 if (f) { 1195 f->remove = true; 1196 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1197 } 1198 return 0; 1199 } 1200 1201 /** 1202 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1203 * @adapter: device specific adapter 1204 */ 1205 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1206 { 1207 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1208 (IFF_PROMISC | IFF_ALLMULTI); 1209 } 1210 1211 /** 1212 * iavf_set_rx_mode - NDO callback to set the netdev filters 1213 * @netdev: network interface device structure 1214 **/ 1215 static void iavf_set_rx_mode(struct net_device *netdev) 1216 { 1217 struct iavf_adapter *adapter = netdev_priv(netdev); 1218 1219 spin_lock_bh(&adapter->mac_vlan_list_lock); 1220 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1221 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1222 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1223 1224 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1225 if (iavf_promiscuous_mode_changed(adapter)) 1226 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1227 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1228 } 1229 1230 /** 1231 * iavf_napi_enable_all - enable NAPI on all queue vectors 1232 * @adapter: board private structure 1233 **/ 1234 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1235 { 1236 int q_idx; 1237 struct iavf_q_vector *q_vector; 1238 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1239 1240 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1241 struct napi_struct *napi; 1242 1243 q_vector = &adapter->q_vectors[q_idx]; 1244 napi = &q_vector->napi; 1245 napi_enable_locked(napi); 1246 } 1247 } 1248 1249 /** 1250 * iavf_napi_disable_all - disable NAPI on all queue vectors 1251 * @adapter: board private structure 1252 **/ 1253 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1254 { 1255 int q_idx; 1256 struct iavf_q_vector *q_vector; 1257 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1258 1259 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1260 q_vector = &adapter->q_vectors[q_idx]; 1261 napi_disable_locked(&q_vector->napi); 1262 } 1263 } 1264 1265 /** 1266 * iavf_configure - set up transmit and receive data structures 1267 * @adapter: board private structure 1268 **/ 1269 static void iavf_configure(struct iavf_adapter *adapter) 1270 { 1271 struct net_device *netdev = adapter->netdev; 1272 int i; 1273 1274 iavf_set_rx_mode(netdev); 1275 1276 iavf_configure_tx(adapter); 1277 iavf_configure_rx(adapter); 1278 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1279 1280 for (i = 0; i < adapter->num_active_queues; i++) { 1281 struct iavf_ring *ring = &adapter->rx_rings[i]; 1282 1283 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1284 } 1285 } 1286 1287 /** 1288 * iavf_up_complete - Finish the last steps of bringing up a connection 1289 * @adapter: board private structure 1290 */ 1291 static void iavf_up_complete(struct iavf_adapter *adapter) 1292 { 1293 netdev_assert_locked(adapter->netdev); 1294 1295 iavf_change_state(adapter, __IAVF_RUNNING); 1296 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1297 1298 iavf_napi_enable_all(adapter); 1299 1300 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1301 } 1302 1303 /** 1304 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1305 * yet and mark other to be removed. 1306 * @adapter: board private structure 1307 **/ 1308 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1309 { 1310 struct iavf_vlan_filter *vlf, *vlftmp; 1311 struct iavf_mac_filter *f, *ftmp; 1312 1313 spin_lock_bh(&adapter->mac_vlan_list_lock); 1314 /* clear the sync flag on all filters */ 1315 __dev_uc_unsync(adapter->netdev, NULL); 1316 __dev_mc_unsync(adapter->netdev, NULL); 1317 1318 /* remove all MAC filters */ 1319 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1320 list) { 1321 if (f->add) { 1322 list_del(&f->list); 1323 kfree(f); 1324 } else { 1325 f->remove = true; 1326 } 1327 } 1328 1329 /* disable all VLAN filters */ 1330 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1331 list) 1332 vlf->state = IAVF_VLAN_DISABLE; 1333 1334 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1335 } 1336 1337 /** 1338 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1339 * mark other to be removed. 1340 * @adapter: board private structure 1341 **/ 1342 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1343 { 1344 struct iavf_cloud_filter *cf, *cftmp; 1345 1346 /* remove all cloud filters */ 1347 spin_lock_bh(&adapter->cloud_filter_list_lock); 1348 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1349 list) { 1350 if (cf->add) { 1351 list_del(&cf->list); 1352 kfree(cf); 1353 adapter->num_cloud_filters--; 1354 } else { 1355 cf->del = true; 1356 } 1357 } 1358 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1359 } 1360 1361 /** 1362 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1363 * other to be removed. 1364 * @adapter: board private structure 1365 **/ 1366 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1367 { 1368 struct iavf_fdir_fltr *fdir; 1369 1370 /* remove all Flow Director filters */ 1371 spin_lock_bh(&adapter->fdir_fltr_lock); 1372 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1373 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1374 /* Cancel a request, keep filter as inactive */ 1375 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1376 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1377 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1378 /* Disable filters which are active or have a pending 1379 * request to PF to be added 1380 */ 1381 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1382 } 1383 } 1384 spin_unlock_bh(&adapter->fdir_fltr_lock); 1385 } 1386 1387 /** 1388 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1389 * other to be removed. 1390 * @adapter: board private structure 1391 **/ 1392 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1393 { 1394 struct iavf_adv_rss *rss, *rsstmp; 1395 1396 /* remove all advance RSS configuration */ 1397 spin_lock_bh(&adapter->adv_rss_lock); 1398 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1399 list) { 1400 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1401 list_del(&rss->list); 1402 kfree(rss); 1403 } else { 1404 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1405 } 1406 } 1407 spin_unlock_bh(&adapter->adv_rss_lock); 1408 } 1409 1410 /** 1411 * iavf_down - Shutdown the connection processing 1412 * @adapter: board private structure 1413 */ 1414 void iavf_down(struct iavf_adapter *adapter) 1415 { 1416 struct net_device *netdev = adapter->netdev; 1417 1418 netdev_assert_locked(netdev); 1419 1420 if (adapter->state <= __IAVF_DOWN_PENDING) 1421 return; 1422 1423 netif_carrier_off(netdev); 1424 netif_tx_disable(netdev); 1425 adapter->link_up = false; 1426 iavf_napi_disable_all(adapter); 1427 iavf_irq_disable(adapter); 1428 1429 iavf_clear_mac_vlan_filters(adapter); 1430 iavf_clear_cloud_filters(adapter); 1431 iavf_clear_fdir_filters(adapter); 1432 iavf_clear_adv_rss_conf(adapter); 1433 1434 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1435 return; 1436 1437 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1438 /* cancel any current operation */ 1439 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1440 /* Schedule operations to close down the HW. Don't wait 1441 * here for this to complete. The watchdog is still running 1442 * and it will take care of this. 1443 */ 1444 if (!list_empty(&adapter->mac_filter_list)) 1445 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1446 if (!list_empty(&adapter->vlan_filter_list)) 1447 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1448 if (!list_empty(&adapter->cloud_filter_list)) 1449 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1450 if (!list_empty(&adapter->fdir_list_head)) 1451 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1452 if (!list_empty(&adapter->adv_rss_list_head)) 1453 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1454 } 1455 1456 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1457 } 1458 1459 /** 1460 * iavf_acquire_msix_vectors - Setup the MSIX capability 1461 * @adapter: board private structure 1462 * @vectors: number of vectors to request 1463 * 1464 * Work with the OS to set up the MSIX vectors needed. 1465 * 1466 * Returns 0 on success, negative on failure 1467 **/ 1468 static int 1469 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1470 { 1471 int err, vector_threshold; 1472 1473 /* We'll want at least 3 (vector_threshold): 1474 * 0) Other (Admin Queue and link, mostly) 1475 * 1) TxQ[0] Cleanup 1476 * 2) RxQ[0] Cleanup 1477 */ 1478 vector_threshold = MIN_MSIX_COUNT; 1479 1480 /* The more we get, the more we will assign to Tx/Rx Cleanup 1481 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1482 * Right now, we simply care about how many we'll get; we'll 1483 * set them up later while requesting irq's. 1484 */ 1485 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1486 vector_threshold, vectors); 1487 if (err < 0) { 1488 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1489 kfree(adapter->msix_entries); 1490 adapter->msix_entries = NULL; 1491 return err; 1492 } 1493 1494 /* Adjust for only the vectors we'll use, which is minimum 1495 * of max_msix_q_vectors + NONQ_VECS, or the number of 1496 * vectors we were allocated. 1497 */ 1498 adapter->num_msix_vectors = err; 1499 return 0; 1500 } 1501 1502 /** 1503 * iavf_free_queues - Free memory for all rings 1504 * @adapter: board private structure to initialize 1505 * 1506 * Free all of the memory associated with queue pairs. 1507 **/ 1508 static void iavf_free_queues(struct iavf_adapter *adapter) 1509 { 1510 if (!adapter->vsi_res) 1511 return; 1512 adapter->num_active_queues = 0; 1513 kfree(adapter->tx_rings); 1514 adapter->tx_rings = NULL; 1515 kfree(adapter->rx_rings); 1516 adapter->rx_rings = NULL; 1517 } 1518 1519 /** 1520 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1521 * @adapter: board private structure 1522 * 1523 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1524 * stripped in certain descriptor fields. Instead of checking the offload 1525 * capability bits in the hot path, cache the location the ring specific 1526 * flags. 1527 */ 1528 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1529 { 1530 int i; 1531 1532 for (i = 0; i < adapter->num_active_queues; i++) { 1533 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1534 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1535 1536 /* prevent multiple L2TAG bits being set after VFR */ 1537 tx_ring->flags &= 1538 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1539 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1540 rx_ring->flags &= 1541 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1542 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1543 1544 if (VLAN_ALLOWED(adapter)) { 1545 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1547 } else if (VLAN_V2_ALLOWED(adapter)) { 1548 struct virtchnl_vlan_supported_caps *stripping_support; 1549 struct virtchnl_vlan_supported_caps *insertion_support; 1550 1551 stripping_support = 1552 &adapter->vlan_v2_caps.offloads.stripping_support; 1553 insertion_support = 1554 &adapter->vlan_v2_caps.offloads.insertion_support; 1555 1556 if (stripping_support->outer) { 1557 if (stripping_support->outer & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1559 rx_ring->flags |= 1560 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1561 else if (stripping_support->outer & 1562 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1563 rx_ring->flags |= 1564 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1565 } else if (stripping_support->inner) { 1566 if (stripping_support->inner & 1567 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1568 rx_ring->flags |= 1569 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1570 else if (stripping_support->inner & 1571 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1572 rx_ring->flags |= 1573 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1574 } 1575 1576 if (insertion_support->outer) { 1577 if (insertion_support->outer & 1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1579 tx_ring->flags |= 1580 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1581 else if (insertion_support->outer & 1582 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1583 tx_ring->flags |= 1584 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1585 } else if (insertion_support->inner) { 1586 if (insertion_support->inner & 1587 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1588 tx_ring->flags |= 1589 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1590 else if (insertion_support->inner & 1591 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1592 tx_ring->flags |= 1593 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1594 } 1595 } 1596 } 1597 } 1598 1599 /** 1600 * iavf_alloc_queues - Allocate memory for all rings 1601 * @adapter: board private structure to initialize 1602 * 1603 * We allocate one ring per queue at run-time since we don't know the 1604 * number of queues at compile-time. The polling_netdev array is 1605 * intended for Multiqueue, but should work fine with a single queue. 1606 **/ 1607 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1608 { 1609 int i, num_active_queues; 1610 1611 /* If we're in reset reallocating queues we don't actually know yet for 1612 * certain the PF gave us the number of queues we asked for but we'll 1613 * assume it did. Once basic reset is finished we'll confirm once we 1614 * start negotiating config with PF. 1615 */ 1616 if (adapter->num_req_queues) 1617 num_active_queues = adapter->num_req_queues; 1618 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1619 adapter->num_tc) 1620 num_active_queues = adapter->ch_config.total_qps; 1621 else 1622 num_active_queues = min_t(int, 1623 adapter->vsi_res->num_queue_pairs, 1624 (int)(num_online_cpus())); 1625 1626 1627 adapter->tx_rings = kcalloc(num_active_queues, 1628 sizeof(struct iavf_ring), GFP_KERNEL); 1629 if (!adapter->tx_rings) 1630 goto err_out; 1631 adapter->rx_rings = kcalloc(num_active_queues, 1632 sizeof(struct iavf_ring), GFP_KERNEL); 1633 if (!adapter->rx_rings) 1634 goto err_out; 1635 1636 for (i = 0; i < num_active_queues; i++) { 1637 struct iavf_ring *tx_ring; 1638 struct iavf_ring *rx_ring; 1639 1640 tx_ring = &adapter->tx_rings[i]; 1641 1642 tx_ring->queue_index = i; 1643 tx_ring->netdev = adapter->netdev; 1644 tx_ring->dev = &adapter->pdev->dev; 1645 tx_ring->count = adapter->tx_desc_count; 1646 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1647 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1648 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1649 1650 rx_ring = &adapter->rx_rings[i]; 1651 rx_ring->queue_index = i; 1652 rx_ring->netdev = adapter->netdev; 1653 rx_ring->count = adapter->rx_desc_count; 1654 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1655 } 1656 1657 adapter->num_active_queues = num_active_queues; 1658 1659 iavf_set_queue_vlan_tag_loc(adapter); 1660 1661 return 0; 1662 1663 err_out: 1664 iavf_free_queues(adapter); 1665 return -ENOMEM; 1666 } 1667 1668 /** 1669 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1670 * @adapter: board private structure to initialize 1671 * 1672 * Attempt to configure the interrupts using the best available 1673 * capabilities of the hardware and the kernel. 1674 **/ 1675 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1676 { 1677 int vector, v_budget; 1678 int pairs = 0; 1679 int err = 0; 1680 1681 if (!adapter->vsi_res) { 1682 err = -EIO; 1683 goto out; 1684 } 1685 pairs = adapter->num_active_queues; 1686 1687 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1688 * us much good if we have more vectors than CPUs. However, we already 1689 * limit the total number of queues by the number of CPUs so we do not 1690 * need any further limiting here. 1691 */ 1692 v_budget = min_t(int, pairs + NONQ_VECS, 1693 (int)adapter->vf_res->max_vectors); 1694 1695 adapter->msix_entries = kcalloc(v_budget, 1696 sizeof(struct msix_entry), GFP_KERNEL); 1697 if (!adapter->msix_entries) { 1698 err = -ENOMEM; 1699 goto out; 1700 } 1701 1702 for (vector = 0; vector < v_budget; vector++) 1703 adapter->msix_entries[vector].entry = vector; 1704 1705 err = iavf_acquire_msix_vectors(adapter, v_budget); 1706 if (!err) 1707 iavf_schedule_finish_config(adapter); 1708 1709 out: 1710 return err; 1711 } 1712 1713 /** 1714 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1715 * @adapter: board private structure 1716 * 1717 * Return 0 on success, negative on failure 1718 **/ 1719 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1720 { 1721 struct iavf_aqc_get_set_rss_key_data *rss_key = 1722 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1723 struct iavf_hw *hw = &adapter->hw; 1724 enum iavf_status status; 1725 1726 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1727 /* bail because we already have a command pending */ 1728 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1729 adapter->current_op); 1730 return -EBUSY; 1731 } 1732 1733 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1734 if (status) { 1735 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1736 iavf_stat_str(hw, status), 1737 iavf_aq_str(hw, hw->aq.asq_last_status)); 1738 return iavf_status_to_errno(status); 1739 1740 } 1741 1742 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1743 adapter->rss_lut, adapter->rss_lut_size); 1744 if (status) { 1745 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1746 iavf_stat_str(hw, status), 1747 iavf_aq_str(hw, hw->aq.asq_last_status)); 1748 return iavf_status_to_errno(status); 1749 } 1750 1751 return 0; 1752 1753 } 1754 1755 /** 1756 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1757 * @adapter: board private structure 1758 * 1759 * Returns 0 on success, negative on failure 1760 **/ 1761 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1762 { 1763 struct iavf_hw *hw = &adapter->hw; 1764 u32 *dw; 1765 u16 i; 1766 1767 dw = (u32 *)adapter->rss_key; 1768 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1769 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1770 1771 dw = (u32 *)adapter->rss_lut; 1772 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1773 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1774 1775 iavf_flush(hw); 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * iavf_config_rss - Configure RSS keys and lut 1782 * @adapter: board private structure 1783 * 1784 * Returns 0 on success, negative on failure 1785 **/ 1786 int iavf_config_rss(struct iavf_adapter *adapter) 1787 { 1788 1789 if (RSS_PF(adapter)) { 1790 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1791 IAVF_FLAG_AQ_SET_RSS_KEY; 1792 return 0; 1793 } else if (RSS_AQ(adapter)) { 1794 return iavf_config_rss_aq(adapter); 1795 } else { 1796 return iavf_config_rss_reg(adapter); 1797 } 1798 } 1799 1800 /** 1801 * iavf_fill_rss_lut - Fill the lut with default values 1802 * @adapter: board private structure 1803 **/ 1804 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1805 { 1806 u16 i; 1807 1808 for (i = 0; i < adapter->rss_lut_size; i++) 1809 adapter->rss_lut[i] = i % adapter->num_active_queues; 1810 } 1811 1812 /** 1813 * iavf_init_rss - Prepare for RSS 1814 * @adapter: board private structure 1815 * 1816 * Return 0 on success, negative on failure 1817 **/ 1818 static int iavf_init_rss(struct iavf_adapter *adapter) 1819 { 1820 struct iavf_hw *hw = &adapter->hw; 1821 1822 if (!RSS_PF(adapter)) { 1823 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1824 if (adapter->vf_res->vf_cap_flags & 1825 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1826 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1827 else 1828 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1829 1830 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1831 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1832 } 1833 1834 iavf_fill_rss_lut(adapter); 1835 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1836 1837 return iavf_config_rss(adapter); 1838 } 1839 1840 /** 1841 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1842 * @adapter: board private structure to initialize 1843 * 1844 * We allocate one q_vector per queue interrupt. If allocation fails we 1845 * return -ENOMEM. 1846 **/ 1847 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1848 { 1849 int q_idx = 0, num_q_vectors; 1850 struct iavf_q_vector *q_vector; 1851 1852 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1853 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1854 GFP_KERNEL); 1855 if (!adapter->q_vectors) 1856 return -ENOMEM; 1857 1858 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1859 q_vector = &adapter->q_vectors[q_idx]; 1860 q_vector->adapter = adapter; 1861 q_vector->vsi = &adapter->vsi; 1862 q_vector->v_idx = q_idx; 1863 q_vector->reg_idx = q_idx; 1864 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1865 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1866 iavf_napi_poll); 1867 } 1868 1869 return 0; 1870 } 1871 1872 /** 1873 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1874 * @adapter: board private structure to initialize 1875 * 1876 * This function frees the memory allocated to the q_vectors. In addition if 1877 * NAPI is enabled it will delete any references to the NAPI struct prior 1878 * to freeing the q_vector. 1879 **/ 1880 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1881 { 1882 int q_idx, num_q_vectors; 1883 1884 if (!adapter->q_vectors) 1885 return; 1886 1887 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1888 1889 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1890 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1891 1892 netif_napi_del_locked(&q_vector->napi); 1893 } 1894 kfree(adapter->q_vectors); 1895 adapter->q_vectors = NULL; 1896 } 1897 1898 /** 1899 * iavf_reset_interrupt_capability - Reset MSIX setup 1900 * @adapter: board private structure 1901 * 1902 **/ 1903 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1904 { 1905 if (!adapter->msix_entries) 1906 return; 1907 1908 pci_disable_msix(adapter->pdev); 1909 kfree(adapter->msix_entries); 1910 adapter->msix_entries = NULL; 1911 } 1912 1913 /** 1914 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1915 * @adapter: board private structure to initialize 1916 * 1917 **/ 1918 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1919 { 1920 int err; 1921 1922 err = iavf_alloc_queues(adapter); 1923 if (err) { 1924 dev_err(&adapter->pdev->dev, 1925 "Unable to allocate memory for queues\n"); 1926 goto err_alloc_queues; 1927 } 1928 1929 err = iavf_set_interrupt_capability(adapter); 1930 if (err) { 1931 dev_err(&adapter->pdev->dev, 1932 "Unable to setup interrupt capabilities\n"); 1933 goto err_set_interrupt; 1934 } 1935 1936 err = iavf_alloc_q_vectors(adapter); 1937 if (err) { 1938 dev_err(&adapter->pdev->dev, 1939 "Unable to allocate memory for queue vectors\n"); 1940 goto err_alloc_q_vectors; 1941 } 1942 1943 /* If we've made it so far while ADq flag being ON, then we haven't 1944 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1945 * resources have been allocated in the reset path. 1946 * Now we can truly claim that ADq is enabled. 1947 */ 1948 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1949 adapter->num_tc) 1950 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1951 adapter->num_tc); 1952 1953 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1954 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1955 adapter->num_active_queues); 1956 1957 return 0; 1958 err_alloc_q_vectors: 1959 iavf_reset_interrupt_capability(adapter); 1960 err_set_interrupt: 1961 iavf_free_queues(adapter); 1962 err_alloc_queues: 1963 return err; 1964 } 1965 1966 /** 1967 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1968 * @adapter: board private structure 1969 **/ 1970 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1971 { 1972 iavf_free_q_vectors(adapter); 1973 iavf_reset_interrupt_capability(adapter); 1974 iavf_free_queues(adapter); 1975 } 1976 1977 /** 1978 * iavf_free_rss - Free memory used by RSS structs 1979 * @adapter: board private structure 1980 **/ 1981 static void iavf_free_rss(struct iavf_adapter *adapter) 1982 { 1983 kfree(adapter->rss_key); 1984 adapter->rss_key = NULL; 1985 1986 kfree(adapter->rss_lut); 1987 adapter->rss_lut = NULL; 1988 } 1989 1990 /** 1991 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1992 * @adapter: board private structure 1993 * @running: true if adapter->state == __IAVF_RUNNING 1994 * 1995 * Returns 0 on success, negative on failure 1996 **/ 1997 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1998 { 1999 struct net_device *netdev = adapter->netdev; 2000 int err; 2001 2002 if (running) 2003 iavf_free_traffic_irqs(adapter); 2004 iavf_free_misc_irq(adapter); 2005 iavf_free_interrupt_scheme(adapter); 2006 2007 err = iavf_init_interrupt_scheme(adapter); 2008 if (err) 2009 goto err; 2010 2011 netif_tx_stop_all_queues(netdev); 2012 2013 err = iavf_request_misc_irq(adapter); 2014 if (err) 2015 goto err; 2016 2017 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2018 2019 iavf_map_rings_to_vectors(adapter); 2020 err: 2021 return err; 2022 } 2023 2024 /** 2025 * iavf_finish_config - do all netdev work that needs RTNL 2026 * @work: our work_struct 2027 * 2028 * Do work that needs RTNL. 2029 */ 2030 static void iavf_finish_config(struct work_struct *work) 2031 { 2032 struct iavf_adapter *adapter; 2033 bool netdev_released = false; 2034 int pairs, err; 2035 2036 adapter = container_of(work, struct iavf_adapter, finish_config); 2037 2038 /* Always take RTNL first to prevent circular lock dependency; 2039 * the dev->lock (== netdev lock) is needed to update the queue number. 2040 */ 2041 rtnl_lock(); 2042 netdev_lock(adapter->netdev); 2043 2044 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2045 adapter->netdev->reg_state == NETREG_REGISTERED && 2046 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2047 netdev_update_features(adapter->netdev); 2048 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2049 } 2050 2051 switch (adapter->state) { 2052 case __IAVF_DOWN: 2053 /* Set the real number of queues when reset occurs while 2054 * state == __IAVF_DOWN 2055 */ 2056 pairs = adapter->num_active_queues; 2057 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2058 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2059 2060 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2061 netdev_unlock(adapter->netdev); 2062 netdev_released = true; 2063 err = register_netdevice(adapter->netdev); 2064 if (err) { 2065 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2066 err); 2067 2068 /* go back and try again.*/ 2069 netdev_lock(adapter->netdev); 2070 iavf_free_rss(adapter); 2071 iavf_free_misc_irq(adapter); 2072 iavf_reset_interrupt_capability(adapter); 2073 iavf_change_state(adapter, 2074 __IAVF_INIT_CONFIG_ADAPTER); 2075 netdev_unlock(adapter->netdev); 2076 goto out; 2077 } 2078 } 2079 break; 2080 case __IAVF_RUNNING: 2081 pairs = adapter->num_active_queues; 2082 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2083 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2084 break; 2085 2086 default: 2087 break; 2088 } 2089 2090 out: 2091 if (!netdev_released) 2092 netdev_unlock(adapter->netdev); 2093 rtnl_unlock(); 2094 } 2095 2096 /** 2097 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2098 * @adapter: board private structure 2099 **/ 2100 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2101 { 2102 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2103 queue_work(adapter->wq, &adapter->finish_config); 2104 } 2105 2106 /** 2107 * iavf_process_aq_command - process aq_required flags 2108 * and sends aq command 2109 * @adapter: pointer to iavf adapter structure 2110 * 2111 * Returns 0 on success 2112 * Returns error code if no command was sent 2113 * or error code if the command failed. 2114 **/ 2115 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2116 { 2117 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2118 return iavf_send_vf_config_msg(adapter); 2119 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2120 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2121 if (adapter->aq_required & IAVF_FLAG_AQ_GET_SUPPORTED_RXDIDS) 2122 return iavf_send_vf_supported_rxdids_msg(adapter); 2123 if (adapter->aq_required & IAVF_FLAG_AQ_GET_PTP_CAPS) 2124 return iavf_send_vf_ptp_caps_msg(adapter); 2125 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2126 iavf_disable_queues(adapter); 2127 return 0; 2128 } 2129 2130 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2131 iavf_map_queues(adapter); 2132 return 0; 2133 } 2134 2135 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2136 iavf_add_ether_addrs(adapter); 2137 return 0; 2138 } 2139 2140 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2141 iavf_add_vlans(adapter); 2142 return 0; 2143 } 2144 2145 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2146 iavf_del_ether_addrs(adapter); 2147 return 0; 2148 } 2149 2150 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2151 iavf_del_vlans(adapter); 2152 return 0; 2153 } 2154 2155 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2156 iavf_enable_vlan_stripping(adapter); 2157 return 0; 2158 } 2159 2160 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2161 iavf_disable_vlan_stripping(adapter); 2162 return 0; 2163 } 2164 2165 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2166 iavf_cfg_queues_bw(adapter); 2167 return 0; 2168 } 2169 2170 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2171 iavf_get_qos_caps(adapter); 2172 return 0; 2173 } 2174 2175 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2176 iavf_cfg_queues_quanta_size(adapter); 2177 return 0; 2178 } 2179 2180 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2181 iavf_configure_queues(adapter); 2182 return 0; 2183 } 2184 2185 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2186 iavf_enable_queues(adapter); 2187 return 0; 2188 } 2189 2190 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2191 /* This message goes straight to the firmware, not the 2192 * PF, so we don't have to set current_op as we will 2193 * not get a response through the ARQ. 2194 */ 2195 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2196 return 0; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2199 iavf_get_hena(adapter); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2203 iavf_set_hena(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2207 iavf_set_rss_key(adapter); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2211 iavf_set_rss_lut(adapter); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2215 iavf_set_rss_hfunc(adapter); 2216 return 0; 2217 } 2218 2219 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2220 iavf_set_promiscuous(adapter); 2221 return 0; 2222 } 2223 2224 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2225 iavf_enable_channels(adapter); 2226 return 0; 2227 } 2228 2229 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2230 iavf_disable_channels(adapter); 2231 return 0; 2232 } 2233 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2234 iavf_add_cloud_filter(adapter); 2235 return 0; 2236 } 2237 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2238 iavf_del_cloud_filter(adapter); 2239 return 0; 2240 } 2241 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2242 iavf_add_fdir_filter(adapter); 2243 return IAVF_SUCCESS; 2244 } 2245 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2246 iavf_del_fdir_filter(adapter); 2247 return IAVF_SUCCESS; 2248 } 2249 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2250 iavf_add_adv_rss_cfg(adapter); 2251 return 0; 2252 } 2253 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2254 iavf_del_adv_rss_cfg(adapter); 2255 return 0; 2256 } 2257 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2258 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2259 return 0; 2260 } 2261 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2262 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2263 return 0; 2264 } 2265 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2266 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2267 return 0; 2268 } 2269 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2270 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2271 return 0; 2272 } 2273 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2274 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2275 return 0; 2276 } 2277 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2278 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2279 return 0; 2280 } 2281 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2282 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2283 return 0; 2284 } 2285 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2286 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2287 return 0; 2288 } 2289 if (adapter->aq_required & IAVF_FLAG_AQ_SEND_PTP_CMD) { 2290 iavf_virtchnl_send_ptp_cmd(adapter); 2291 return IAVF_SUCCESS; 2292 } 2293 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2294 iavf_request_stats(adapter); 2295 return 0; 2296 } 2297 2298 return -EAGAIN; 2299 } 2300 2301 /** 2302 * iavf_set_vlan_offload_features - set VLAN offload configuration 2303 * @adapter: board private structure 2304 * @prev_features: previous features used for comparison 2305 * @features: updated features used for configuration 2306 * 2307 * Set the aq_required bit(s) based on the requested features passed in to 2308 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2309 * the watchdog if any changes are requested to expedite the request via 2310 * virtchnl. 2311 **/ 2312 static void 2313 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2314 netdev_features_t prev_features, 2315 netdev_features_t features) 2316 { 2317 bool enable_stripping = true, enable_insertion = true; 2318 u16 vlan_ethertype = 0; 2319 u64 aq_required = 0; 2320 2321 /* keep cases separate because one ethertype for offloads can be 2322 * disabled at the same time as another is disabled, so check for an 2323 * enabled ethertype first, then check for disabled. Default to 2324 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2325 * stripping. 2326 */ 2327 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2328 vlan_ethertype = ETH_P_8021AD; 2329 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2330 vlan_ethertype = ETH_P_8021Q; 2331 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2332 vlan_ethertype = ETH_P_8021AD; 2333 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2334 vlan_ethertype = ETH_P_8021Q; 2335 else 2336 vlan_ethertype = ETH_P_8021Q; 2337 2338 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2339 enable_stripping = false; 2340 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2341 enable_insertion = false; 2342 2343 if (VLAN_ALLOWED(adapter)) { 2344 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2345 * stripping via virtchnl. VLAN insertion can be toggled on the 2346 * netdev, but it doesn't require a virtchnl message 2347 */ 2348 if (enable_stripping) 2349 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2350 else 2351 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2352 2353 } else if (VLAN_V2_ALLOWED(adapter)) { 2354 switch (vlan_ethertype) { 2355 case ETH_P_8021Q: 2356 if (enable_stripping) 2357 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2358 else 2359 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2360 2361 if (enable_insertion) 2362 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2363 else 2364 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2365 break; 2366 case ETH_P_8021AD: 2367 if (enable_stripping) 2368 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2369 else 2370 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2371 2372 if (enable_insertion) 2373 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2374 else 2375 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2376 break; 2377 } 2378 } 2379 2380 if (aq_required) 2381 iavf_schedule_aq_request(adapter, aq_required); 2382 } 2383 2384 /** 2385 * iavf_startup - first step of driver startup 2386 * @adapter: board private structure 2387 * 2388 * Function process __IAVF_STARTUP driver state. 2389 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2390 * when fails the state is changed to __IAVF_INIT_FAILED 2391 **/ 2392 static void iavf_startup(struct iavf_adapter *adapter) 2393 { 2394 struct pci_dev *pdev = adapter->pdev; 2395 struct iavf_hw *hw = &adapter->hw; 2396 enum iavf_status status; 2397 int ret; 2398 2399 WARN_ON(adapter->state != __IAVF_STARTUP); 2400 2401 /* driver loaded, probe complete */ 2402 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2403 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2404 2405 ret = iavf_check_reset_complete(hw); 2406 if (ret) { 2407 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2408 ret); 2409 goto err; 2410 } 2411 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2412 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2413 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2414 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2415 2416 status = iavf_init_adminq(hw); 2417 if (status) { 2418 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2419 status); 2420 goto err; 2421 } 2422 ret = iavf_send_api_ver(adapter); 2423 if (ret) { 2424 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2425 iavf_shutdown_adminq(hw); 2426 goto err; 2427 } 2428 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2429 return; 2430 err: 2431 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2432 } 2433 2434 /** 2435 * iavf_init_version_check - second step of driver startup 2436 * @adapter: board private structure 2437 * 2438 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2439 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2440 * when fails the state is changed to __IAVF_INIT_FAILED 2441 **/ 2442 static void iavf_init_version_check(struct iavf_adapter *adapter) 2443 { 2444 struct pci_dev *pdev = adapter->pdev; 2445 struct iavf_hw *hw = &adapter->hw; 2446 int err = -EAGAIN; 2447 2448 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2449 2450 if (!iavf_asq_done(hw)) { 2451 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2452 iavf_shutdown_adminq(hw); 2453 iavf_change_state(adapter, __IAVF_STARTUP); 2454 goto err; 2455 } 2456 2457 /* aq msg sent, awaiting reply */ 2458 err = iavf_verify_api_ver(adapter); 2459 if (err) { 2460 if (err == -EALREADY) 2461 err = iavf_send_api_ver(adapter); 2462 else 2463 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2464 adapter->pf_version.major, 2465 adapter->pf_version.minor, 2466 VIRTCHNL_VERSION_MAJOR, 2467 VIRTCHNL_VERSION_MINOR); 2468 goto err; 2469 } 2470 err = iavf_send_vf_config_msg(adapter); 2471 if (err) { 2472 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2473 err); 2474 goto err; 2475 } 2476 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2477 return; 2478 err: 2479 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2480 } 2481 2482 /** 2483 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2484 * @adapter: board private structure 2485 */ 2486 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2487 { 2488 int i, num_req_queues = adapter->num_req_queues; 2489 struct iavf_vsi *vsi = &adapter->vsi; 2490 2491 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2492 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2493 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2494 } 2495 if (!adapter->vsi_res) { 2496 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2497 return -ENODEV; 2498 } 2499 2500 if (num_req_queues && 2501 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2502 /* Problem. The PF gave us fewer queues than what we had 2503 * negotiated in our request. Need a reset to see if we can't 2504 * get back to a working state. 2505 */ 2506 dev_err(&adapter->pdev->dev, 2507 "Requested %d queues, but PF only gave us %d.\n", 2508 num_req_queues, 2509 adapter->vsi_res->num_queue_pairs); 2510 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2511 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2512 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2513 2514 return -EAGAIN; 2515 } 2516 adapter->num_req_queues = 0; 2517 adapter->vsi.id = adapter->vsi_res->vsi_id; 2518 2519 adapter->vsi.back = adapter; 2520 adapter->vsi.base_vector = 1; 2521 vsi->netdev = adapter->netdev; 2522 vsi->qs_handle = adapter->vsi_res->qset_handle; 2523 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2524 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2525 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2526 } else { 2527 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2528 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2529 } 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * iavf_init_get_resources - third step of driver startup 2536 * @adapter: board private structure 2537 * 2538 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2539 * finishes driver initialization procedure. 2540 * When success the state is changed to __IAVF_DOWN 2541 * when fails the state is changed to __IAVF_INIT_FAILED 2542 **/ 2543 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2544 { 2545 struct pci_dev *pdev = adapter->pdev; 2546 struct iavf_hw *hw = &adapter->hw; 2547 int err; 2548 2549 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2550 /* aq msg sent, awaiting reply */ 2551 if (!adapter->vf_res) { 2552 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2553 GFP_KERNEL); 2554 if (!adapter->vf_res) { 2555 err = -ENOMEM; 2556 goto err; 2557 } 2558 } 2559 err = iavf_get_vf_config(adapter); 2560 if (err == -EALREADY) { 2561 err = iavf_send_vf_config_msg(adapter); 2562 goto err; 2563 } else if (err == -EINVAL) { 2564 /* We only get -EINVAL if the device is in a very bad 2565 * state or if we've been disabled for previous bad 2566 * behavior. Either way, we're done now. 2567 */ 2568 iavf_shutdown_adminq(hw); 2569 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2570 return; 2571 } 2572 if (err) { 2573 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2574 goto err_alloc; 2575 } 2576 2577 err = iavf_parse_vf_resource_msg(adapter); 2578 if (err) { 2579 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2580 err); 2581 goto err_alloc; 2582 } 2583 /* Some features require additional messages to negotiate extended 2584 * capabilities. These are processed in sequence by the 2585 * __IAVF_INIT_EXTENDED_CAPS driver state. 2586 */ 2587 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2588 2589 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2590 return; 2591 2592 err_alloc: 2593 kfree(adapter->vf_res); 2594 adapter->vf_res = NULL; 2595 err: 2596 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2597 } 2598 2599 /** 2600 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2601 * @adapter: board private structure 2602 * 2603 * Function processes send of the extended VLAN V2 capability message to the 2604 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2605 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2606 */ 2607 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2608 { 2609 int ret; 2610 2611 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2612 2613 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2614 if (ret && ret == -EOPNOTSUPP) { 2615 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2616 * we did not send the capability exchange message and do not 2617 * expect a response. 2618 */ 2619 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2620 } 2621 2622 /* We sent the message, so move on to the next step */ 2623 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2624 } 2625 2626 /** 2627 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2628 * @adapter: board private structure 2629 * 2630 * Function processes receipt of the extended VLAN V2 capability message from 2631 * the PF. 2632 **/ 2633 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2634 { 2635 int ret; 2636 2637 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2638 2639 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2640 2641 ret = iavf_get_vf_vlan_v2_caps(adapter); 2642 if (ret) 2643 goto err; 2644 2645 /* We've processed receipt of the VLAN V2 caps message */ 2646 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2647 return; 2648 err: 2649 /* We didn't receive a reply. Make sure we try sending again when 2650 * __IAVF_INIT_FAILED attempts to recover. 2651 */ 2652 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2653 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2654 } 2655 2656 /** 2657 * iavf_init_send_supported_rxdids - part of querying for supported RXDID 2658 * formats 2659 * @adapter: board private structure 2660 * 2661 * Function processes send of the request for supported RXDIDs to the PF. 2662 * Must clear IAVF_EXTENDED_CAP_RECV_RXDID if the message is not sent, e.g. 2663 * due to the PF not negotiating VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. 2664 */ 2665 static void iavf_init_send_supported_rxdids(struct iavf_adapter *adapter) 2666 { 2667 int ret; 2668 2669 ret = iavf_send_vf_supported_rxdids_msg(adapter); 2670 if (ret == -EOPNOTSUPP) { 2671 /* PF does not support VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. In this 2672 * case, we did not send the capability exchange message and 2673 * do not expect a response. 2674 */ 2675 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2676 } 2677 2678 /* We sent the message, so move on to the next step */ 2679 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_RXDID; 2680 } 2681 2682 /** 2683 * iavf_init_recv_supported_rxdids - part of querying for supported RXDID 2684 * formats 2685 * @adapter: board private structure 2686 * 2687 * Function processes receipt of the supported RXDIDs message from the PF. 2688 **/ 2689 static void iavf_init_recv_supported_rxdids(struct iavf_adapter *adapter) 2690 { 2691 int ret; 2692 2693 memset(&adapter->supp_rxdids, 0, sizeof(adapter->supp_rxdids)); 2694 2695 ret = iavf_get_vf_supported_rxdids(adapter); 2696 if (ret) 2697 goto err; 2698 2699 /* We've processed the PF response to the 2700 * VIRTCHNL_OP_GET_SUPPORTED_RXDIDS message we sent previously. 2701 */ 2702 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2703 return; 2704 2705 err: 2706 /* We didn't receive a reply. Make sure we try sending again when 2707 * __IAVF_INIT_FAILED attempts to recover. 2708 */ 2709 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_RXDID; 2710 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2711 } 2712 2713 /** 2714 * iavf_init_send_ptp_caps - part of querying for extended PTP capabilities 2715 * @adapter: board private structure 2716 * 2717 * Function processes send of the request for 1588 PTP capabilities to the PF. 2718 * Must clear IAVF_EXTENDED_CAP_SEND_PTP if the message is not sent, e.g. 2719 * due to the PF not negotiating VIRTCHNL_VF_PTP_CAP 2720 */ 2721 static void iavf_init_send_ptp_caps(struct iavf_adapter *adapter) 2722 { 2723 if (iavf_send_vf_ptp_caps_msg(adapter) == -EOPNOTSUPP) { 2724 /* PF does not support VIRTCHNL_VF_PTP_CAP. In this case, we 2725 * did not send the capability exchange message and do not 2726 * expect a response. 2727 */ 2728 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2729 } 2730 2731 /* We sent the message, so move on to the next step */ 2732 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_PTP; 2733 } 2734 2735 /** 2736 * iavf_init_recv_ptp_caps - part of querying for supported PTP capabilities 2737 * @adapter: board private structure 2738 * 2739 * Function processes receipt of the PTP capabilities supported on this VF. 2740 **/ 2741 static void iavf_init_recv_ptp_caps(struct iavf_adapter *adapter) 2742 { 2743 memset(&adapter->ptp.hw_caps, 0, sizeof(adapter->ptp.hw_caps)); 2744 2745 if (iavf_get_vf_ptp_caps(adapter)) 2746 goto err; 2747 2748 /* We've processed the PF response to the VIRTCHNL_OP_1588_PTP_GET_CAPS 2749 * message we sent previously. 2750 */ 2751 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2752 return; 2753 2754 err: 2755 /* We didn't receive a reply. Make sure we try sending again when 2756 * __IAVF_INIT_FAILED attempts to recover. 2757 */ 2758 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_PTP; 2759 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2760 } 2761 2762 /** 2763 * iavf_init_process_extended_caps - Part of driver startup 2764 * @adapter: board private structure 2765 * 2766 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2767 * handles negotiating capabilities for features which require an additional 2768 * message. 2769 * 2770 * Once all extended capabilities exchanges are finished, the driver will 2771 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2772 */ 2773 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2774 { 2775 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2776 2777 /* Process capability exchange for VLAN V2 */ 2778 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2779 iavf_init_send_offload_vlan_v2_caps(adapter); 2780 return; 2781 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2782 iavf_init_recv_offload_vlan_v2_caps(adapter); 2783 return; 2784 } 2785 2786 /* Process capability exchange for RXDID formats */ 2787 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID) { 2788 iavf_init_send_supported_rxdids(adapter); 2789 return; 2790 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID) { 2791 iavf_init_recv_supported_rxdids(adapter); 2792 return; 2793 } 2794 2795 /* Process capability exchange for PTP features */ 2796 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP) { 2797 iavf_init_send_ptp_caps(adapter); 2798 return; 2799 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP) { 2800 iavf_init_recv_ptp_caps(adapter); 2801 return; 2802 } 2803 2804 /* When we reach here, no further extended capabilities exchanges are 2805 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2806 */ 2807 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2808 } 2809 2810 /** 2811 * iavf_init_config_adapter - last part of driver startup 2812 * @adapter: board private structure 2813 * 2814 * After all the supported capabilities are negotiated, then the 2815 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2816 */ 2817 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2818 { 2819 struct net_device *netdev = adapter->netdev; 2820 struct pci_dev *pdev = adapter->pdev; 2821 int err; 2822 2823 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2824 2825 if (iavf_process_config(adapter)) 2826 goto err; 2827 2828 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2829 2830 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2831 2832 netdev->netdev_ops = &iavf_netdev_ops; 2833 iavf_set_ethtool_ops(netdev); 2834 netdev->watchdog_timeo = 5 * HZ; 2835 2836 netdev->min_mtu = ETH_MIN_MTU; 2837 netdev->max_mtu = LIBIE_MAX_MTU; 2838 2839 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2840 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2841 adapter->hw.mac.addr); 2842 eth_hw_addr_random(netdev); 2843 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2844 } else { 2845 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2846 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2847 } 2848 2849 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2850 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2851 err = iavf_init_interrupt_scheme(adapter); 2852 if (err) 2853 goto err_sw_init; 2854 iavf_map_rings_to_vectors(adapter); 2855 if (adapter->vf_res->vf_cap_flags & 2856 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2857 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2858 2859 err = iavf_request_misc_irq(adapter); 2860 if (err) 2861 goto err_sw_init; 2862 2863 netif_carrier_off(netdev); 2864 adapter->link_up = false; 2865 netif_tx_stop_all_queues(netdev); 2866 2867 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2868 if (netdev->features & NETIF_F_GRO) 2869 dev_info(&pdev->dev, "GRO is enabled\n"); 2870 2871 iavf_change_state(adapter, __IAVF_DOWN); 2872 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2873 2874 iavf_misc_irq_enable(adapter); 2875 wake_up(&adapter->down_waitqueue); 2876 2877 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2878 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2879 if (!adapter->rss_key || !adapter->rss_lut) { 2880 err = -ENOMEM; 2881 goto err_mem; 2882 } 2883 if (RSS_AQ(adapter)) 2884 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2885 else 2886 iavf_init_rss(adapter); 2887 2888 if (VLAN_V2_ALLOWED(adapter)) 2889 /* request initial VLAN offload settings */ 2890 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2891 2892 if (QOS_ALLOWED(adapter)) 2893 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2894 2895 /* Setup initial PTP configuration */ 2896 iavf_ptp_init(adapter); 2897 2898 iavf_schedule_finish_config(adapter); 2899 return; 2900 2901 err_mem: 2902 iavf_free_rss(adapter); 2903 iavf_free_misc_irq(adapter); 2904 err_sw_init: 2905 iavf_reset_interrupt_capability(adapter); 2906 err: 2907 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2908 } 2909 2910 static const int IAVF_NO_RESCHED = -1; 2911 2912 /* return: msec delay for requeueing itself */ 2913 static int iavf_watchdog_step(struct iavf_adapter *adapter) 2914 { 2915 struct iavf_hw *hw = &adapter->hw; 2916 u32 reg_val; 2917 2918 netdev_assert_locked(adapter->netdev); 2919 2920 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2921 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2922 2923 switch (adapter->state) { 2924 case __IAVF_STARTUP: 2925 iavf_startup(adapter); 2926 return 30; 2927 case __IAVF_INIT_VERSION_CHECK: 2928 iavf_init_version_check(adapter); 2929 return 30; 2930 case __IAVF_INIT_GET_RESOURCES: 2931 iavf_init_get_resources(adapter); 2932 return 1; 2933 case __IAVF_INIT_EXTENDED_CAPS: 2934 iavf_init_process_extended_caps(adapter); 2935 return 1; 2936 case __IAVF_INIT_CONFIG_ADAPTER: 2937 iavf_init_config_adapter(adapter); 2938 return 1; 2939 case __IAVF_INIT_FAILED: 2940 if (test_bit(__IAVF_IN_REMOVE_TASK, 2941 &adapter->crit_section)) { 2942 /* Do not update the state and do not reschedule 2943 * watchdog task, iavf_remove should handle this state 2944 * as it can loop forever 2945 */ 2946 return IAVF_NO_RESCHED; 2947 } 2948 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2949 dev_err(&adapter->pdev->dev, 2950 "Failed to communicate with PF; waiting before retry\n"); 2951 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2952 iavf_shutdown_adminq(hw); 2953 return 5000; 2954 } 2955 /* Try again from failed step*/ 2956 iavf_change_state(adapter, adapter->last_state); 2957 return 1000; 2958 case __IAVF_COMM_FAILED: 2959 if (test_bit(__IAVF_IN_REMOVE_TASK, 2960 &adapter->crit_section)) { 2961 /* Set state to __IAVF_INIT_FAILED and perform remove 2962 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2963 * doesn't bring the state back to __IAVF_COMM_FAILED. 2964 */ 2965 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2966 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2967 return IAVF_NO_RESCHED; 2968 } 2969 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2970 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2971 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2972 reg_val == VIRTCHNL_VFR_COMPLETED) { 2973 /* A chance for redemption! */ 2974 dev_err(&adapter->pdev->dev, 2975 "Hardware came out of reset. Attempting reinit.\n"); 2976 /* When init task contacts the PF and 2977 * gets everything set up again, it'll restart the 2978 * watchdog for us. Down, boy. Sit. Stay. Woof. 2979 */ 2980 iavf_change_state(adapter, __IAVF_STARTUP); 2981 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2982 } 2983 adapter->aq_required = 0; 2984 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2985 return 10; 2986 case __IAVF_RESETTING: 2987 return 2000; 2988 case __IAVF_DOWN: 2989 case __IAVF_DOWN_PENDING: 2990 case __IAVF_TESTING: 2991 case __IAVF_RUNNING: 2992 if (adapter->current_op) { 2993 if (!iavf_asq_done(hw)) { 2994 dev_dbg(&adapter->pdev->dev, 2995 "Admin queue timeout\n"); 2996 iavf_send_api_ver(adapter); 2997 } 2998 } else { 2999 int ret = iavf_process_aq_command(adapter); 3000 3001 /* An error will be returned if no commands were 3002 * processed; use this opportunity to update stats 3003 * if the error isn't -ENOTSUPP 3004 */ 3005 if (ret && ret != -EOPNOTSUPP && 3006 adapter->state == __IAVF_RUNNING) 3007 iavf_request_stats(adapter); 3008 } 3009 if (adapter->state == __IAVF_RUNNING) 3010 iavf_detect_recover_hung(&adapter->vsi); 3011 break; 3012 case __IAVF_REMOVE: 3013 default: 3014 return IAVF_NO_RESCHED; 3015 } 3016 3017 /* check for hw reset */ 3018 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3019 if (!reg_val) { 3020 adapter->aq_required = 0; 3021 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3022 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 3023 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 3024 } 3025 3026 return adapter->aq_required ? 20 : 2000; 3027 } 3028 3029 static void iavf_watchdog_task(struct work_struct *work) 3030 { 3031 struct iavf_adapter *adapter = container_of(work, 3032 struct iavf_adapter, 3033 watchdog_task.work); 3034 struct net_device *netdev = adapter->netdev; 3035 int msec_delay; 3036 3037 netdev_lock(netdev); 3038 msec_delay = iavf_watchdog_step(adapter); 3039 /* note that we schedule a different task */ 3040 if (adapter->state >= __IAVF_DOWN) 3041 queue_work(adapter->wq, &adapter->adminq_task); 3042 3043 if (msec_delay != IAVF_NO_RESCHED) 3044 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3045 msecs_to_jiffies(msec_delay)); 3046 netdev_unlock(netdev); 3047 } 3048 3049 /** 3050 * iavf_disable_vf - disable VF 3051 * @adapter: board private structure 3052 * 3053 * Set communication failed flag and free all resources. 3054 */ 3055 static void iavf_disable_vf(struct iavf_adapter *adapter) 3056 { 3057 struct iavf_mac_filter *f, *ftmp; 3058 struct iavf_vlan_filter *fv, *fvtmp; 3059 struct iavf_cloud_filter *cf, *cftmp; 3060 3061 netdev_assert_locked(adapter->netdev); 3062 3063 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3064 3065 /* We don't use netif_running() because it may be true prior to 3066 * ndo_open() returning, so we can't assume it means all our open 3067 * tasks have finished, since we're not holding the rtnl_lock here. 3068 */ 3069 if (adapter->state == __IAVF_RUNNING) { 3070 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3071 netif_carrier_off(adapter->netdev); 3072 netif_tx_disable(adapter->netdev); 3073 adapter->link_up = false; 3074 iavf_napi_disable_all(adapter); 3075 iavf_irq_disable(adapter); 3076 iavf_free_traffic_irqs(adapter); 3077 iavf_free_all_tx_resources(adapter); 3078 iavf_free_all_rx_resources(adapter); 3079 } 3080 3081 spin_lock_bh(&adapter->mac_vlan_list_lock); 3082 3083 /* Delete all of the filters */ 3084 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3085 list_del(&f->list); 3086 kfree(f); 3087 } 3088 3089 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 3090 list_del(&fv->list); 3091 kfree(fv); 3092 } 3093 adapter->num_vlan_filters = 0; 3094 3095 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3096 3097 spin_lock_bh(&adapter->cloud_filter_list_lock); 3098 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3099 list_del(&cf->list); 3100 kfree(cf); 3101 adapter->num_cloud_filters--; 3102 } 3103 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3104 3105 iavf_free_misc_irq(adapter); 3106 iavf_free_interrupt_scheme(adapter); 3107 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 3108 iavf_shutdown_adminq(&adapter->hw); 3109 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3110 iavf_change_state(adapter, __IAVF_DOWN); 3111 wake_up(&adapter->down_waitqueue); 3112 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 3113 } 3114 3115 /** 3116 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 3117 * @adapter: board private structure 3118 * 3119 * After a reset, the shaper parameters of queues need to be replayed again. 3120 * Since the net_shaper object inside TX rings persists across reset, 3121 * set the update flag for all queues so that the virtchnl message is triggered 3122 * for all queues. 3123 **/ 3124 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 3125 { 3126 int i, num = 0; 3127 3128 for (i = 0; i < adapter->num_active_queues; i++) 3129 if (adapter->tx_rings[i].q_shaper.bw_min || 3130 adapter->tx_rings[i].q_shaper.bw_max) { 3131 adapter->tx_rings[i].q_shaper_update = true; 3132 num++; 3133 } 3134 3135 if (num) 3136 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3137 } 3138 3139 /** 3140 * iavf_reset_task - Call-back task to handle hardware reset 3141 * @work: pointer to work_struct 3142 * 3143 * During reset we need to shut down and reinitialize the admin queue 3144 * before we can use it to communicate with the PF again. We also clear 3145 * and reinit the rings because that context is lost as well. 3146 **/ 3147 static void iavf_reset_task(struct work_struct *work) 3148 { 3149 struct iavf_adapter *adapter = container_of(work, 3150 struct iavf_adapter, 3151 reset_task); 3152 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3153 struct net_device *netdev = adapter->netdev; 3154 struct iavf_hw *hw = &adapter->hw; 3155 struct iavf_mac_filter *f, *ftmp; 3156 struct iavf_cloud_filter *cf; 3157 enum iavf_status status; 3158 u32 reg_val; 3159 int i = 0, err; 3160 bool running; 3161 3162 netdev_lock(netdev); 3163 3164 iavf_misc_irq_disable(adapter); 3165 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3166 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3167 /* Restart the AQ here. If we have been reset but didn't 3168 * detect it, or if the PF had to reinit, our AQ will be hosed. 3169 */ 3170 iavf_shutdown_adminq(hw); 3171 iavf_init_adminq(hw); 3172 iavf_request_reset(adapter); 3173 } 3174 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3175 3176 /* poll until we see the reset actually happen */ 3177 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3178 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3179 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3180 if (!reg_val) 3181 break; 3182 usleep_range(5000, 10000); 3183 } 3184 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3185 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3186 goto continue_reset; /* act like the reset happened */ 3187 } 3188 3189 /* wait until the reset is complete and the PF is responding to us */ 3190 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3191 /* sleep first to make sure a minimum wait time is met */ 3192 msleep(IAVF_RESET_WAIT_MS); 3193 3194 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3195 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3196 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3197 break; 3198 } 3199 3200 pci_set_master(adapter->pdev); 3201 pci_restore_msi_state(adapter->pdev); 3202 3203 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3204 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3205 reg_val); 3206 iavf_disable_vf(adapter); 3207 netdev_unlock(netdev); 3208 return; /* Do not attempt to reinit. It's dead, Jim. */ 3209 } 3210 3211 continue_reset: 3212 /* We don't use netif_running() because it may be true prior to 3213 * ndo_open() returning, so we can't assume it means all our open 3214 * tasks have finished, since we're not holding the rtnl_lock here. 3215 */ 3216 running = adapter->state == __IAVF_RUNNING; 3217 3218 if (running) { 3219 netif_carrier_off(netdev); 3220 netif_tx_stop_all_queues(netdev); 3221 adapter->link_up = false; 3222 iavf_napi_disable_all(adapter); 3223 } 3224 iavf_irq_disable(adapter); 3225 3226 iavf_change_state(adapter, __IAVF_RESETTING); 3227 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3228 3229 /* free the Tx/Rx rings and descriptors, might be better to just 3230 * re-use them sometime in the future 3231 */ 3232 iavf_free_all_rx_resources(adapter); 3233 iavf_free_all_tx_resources(adapter); 3234 3235 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3236 /* kill and reinit the admin queue */ 3237 iavf_shutdown_adminq(hw); 3238 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3239 status = iavf_init_adminq(hw); 3240 if (status) { 3241 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3242 status); 3243 goto reset_err; 3244 } 3245 adapter->aq_required = 0; 3246 3247 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3248 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3249 err = iavf_reinit_interrupt_scheme(adapter, running); 3250 if (err) 3251 goto reset_err; 3252 } 3253 3254 if (RSS_AQ(adapter)) { 3255 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3256 } else { 3257 err = iavf_init_rss(adapter); 3258 if (err) 3259 goto reset_err; 3260 } 3261 3262 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3263 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3264 3265 /* Certain capabilities require an extended negotiation process using 3266 * extra messages that must be processed after getting the VF 3267 * configuration. The related checks such as VLAN_V2_ALLOWED() are not 3268 * reliable here, since the configuration has not yet been negotiated. 3269 * 3270 * Always set these flags, since them related VIRTCHNL messages won't 3271 * be sent until after VIRTCHNL_OP_GET_VF_RESOURCES. 3272 */ 3273 adapter->aq_required |= IAVF_FLAG_AQ_EXTENDED_CAPS; 3274 3275 spin_lock_bh(&adapter->mac_vlan_list_lock); 3276 3277 /* Delete filter for the current MAC address, it could have 3278 * been changed by the PF via administratively set MAC. 3279 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3280 */ 3281 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3282 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3283 list_del(&f->list); 3284 kfree(f); 3285 } 3286 } 3287 /* re-add all MAC filters */ 3288 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3289 f->add = true; 3290 } 3291 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3292 3293 /* check if TCs are running and re-add all cloud filters */ 3294 spin_lock_bh(&adapter->cloud_filter_list_lock); 3295 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3296 adapter->num_tc) { 3297 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3298 cf->add = true; 3299 } 3300 } 3301 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3302 3303 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3304 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3305 iavf_misc_irq_enable(adapter); 3306 3307 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3308 3309 /* We were running when the reset started, so we need to restore some 3310 * state here. 3311 */ 3312 if (running) { 3313 /* allocate transmit descriptors */ 3314 err = iavf_setup_all_tx_resources(adapter); 3315 if (err) 3316 goto reset_err; 3317 3318 /* allocate receive descriptors */ 3319 err = iavf_setup_all_rx_resources(adapter); 3320 if (err) 3321 goto reset_err; 3322 3323 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3324 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3325 err = iavf_request_traffic_irqs(adapter, netdev->name); 3326 if (err) 3327 goto reset_err; 3328 3329 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3330 } 3331 3332 iavf_configure(adapter); 3333 3334 /* iavf_up_complete() will switch device back 3335 * to __IAVF_RUNNING 3336 */ 3337 iavf_up_complete(adapter); 3338 3339 iavf_irq_enable(adapter, true); 3340 3341 iavf_reconfig_qs_bw(adapter); 3342 } else { 3343 iavf_change_state(adapter, __IAVF_DOWN); 3344 wake_up(&adapter->down_waitqueue); 3345 } 3346 3347 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3348 3349 wake_up(&adapter->reset_waitqueue); 3350 netdev_unlock(netdev); 3351 3352 return; 3353 reset_err: 3354 if (running) { 3355 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3356 iavf_free_traffic_irqs(adapter); 3357 } 3358 iavf_disable_vf(adapter); 3359 3360 netdev_unlock(netdev); 3361 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3362 } 3363 3364 /** 3365 * iavf_adminq_task - worker thread to clean the admin queue 3366 * @work: pointer to work_struct containing our data 3367 **/ 3368 static void iavf_adminq_task(struct work_struct *work) 3369 { 3370 struct iavf_adapter *adapter = 3371 container_of(work, struct iavf_adapter, adminq_task); 3372 struct net_device *netdev = adapter->netdev; 3373 struct iavf_hw *hw = &adapter->hw; 3374 struct iavf_arq_event_info event; 3375 enum virtchnl_ops v_op; 3376 enum iavf_status ret, v_ret; 3377 u32 val, oldval; 3378 u16 pending; 3379 3380 netdev_lock(netdev); 3381 3382 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3383 goto unlock; 3384 3385 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3386 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3387 if (!event.msg_buf) 3388 goto unlock; 3389 3390 do { 3391 ret = iavf_clean_arq_element(hw, &event, &pending); 3392 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3393 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3394 3395 if (ret || !v_op) 3396 break; /* No event to process or error cleaning ARQ */ 3397 3398 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3399 event.msg_len); 3400 if (pending != 0) 3401 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3402 } while (pending); 3403 3404 if (iavf_is_reset_in_progress(adapter)) 3405 goto freedom; 3406 3407 /* check for error indications */ 3408 val = rd32(hw, IAVF_VF_ARQLEN1); 3409 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3410 goto freedom; 3411 oldval = val; 3412 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3413 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3414 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3415 } 3416 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3417 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3418 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3419 } 3420 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3421 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3422 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3423 } 3424 if (oldval != val) 3425 wr32(hw, IAVF_VF_ARQLEN1, val); 3426 3427 val = rd32(hw, IAVF_VF_ATQLEN1); 3428 oldval = val; 3429 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3430 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3431 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3432 } 3433 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3434 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3435 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3436 } 3437 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3438 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3439 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3440 } 3441 if (oldval != val) 3442 wr32(hw, IAVF_VF_ATQLEN1, val); 3443 3444 freedom: 3445 kfree(event.msg_buf); 3446 unlock: 3447 netdev_unlock(netdev); 3448 /* re-enable Admin queue interrupt cause */ 3449 iavf_misc_irq_enable(adapter); 3450 } 3451 3452 /** 3453 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3454 * @adapter: board private structure 3455 * 3456 * Free all transmit software resources 3457 **/ 3458 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3459 { 3460 int i; 3461 3462 if (!adapter->tx_rings) 3463 return; 3464 3465 for (i = 0; i < adapter->num_active_queues; i++) 3466 if (adapter->tx_rings[i].desc) 3467 iavf_free_tx_resources(&adapter->tx_rings[i]); 3468 } 3469 3470 /** 3471 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3472 * @adapter: board private structure 3473 * 3474 * If this function returns with an error, then it's possible one or 3475 * more of the rings is populated (while the rest are not). It is the 3476 * callers duty to clean those orphaned rings. 3477 * 3478 * Return 0 on success, negative on failure 3479 **/ 3480 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3481 { 3482 int i, err = 0; 3483 3484 for (i = 0; i < adapter->num_active_queues; i++) { 3485 adapter->tx_rings[i].count = adapter->tx_desc_count; 3486 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3487 if (!err) 3488 continue; 3489 dev_err(&adapter->pdev->dev, 3490 "Allocation for Tx Queue %u failed\n", i); 3491 break; 3492 } 3493 3494 return err; 3495 } 3496 3497 /** 3498 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3499 * @adapter: board private structure 3500 * 3501 * If this function returns with an error, then it's possible one or 3502 * more of the rings is populated (while the rest are not). It is the 3503 * callers duty to clean those orphaned rings. 3504 * 3505 * Return 0 on success, negative on failure 3506 **/ 3507 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3508 { 3509 int i, err = 0; 3510 3511 for (i = 0; i < adapter->num_active_queues; i++) { 3512 adapter->rx_rings[i].count = adapter->rx_desc_count; 3513 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3514 if (!err) 3515 continue; 3516 dev_err(&adapter->pdev->dev, 3517 "Allocation for Rx Queue %u failed\n", i); 3518 break; 3519 } 3520 return err; 3521 } 3522 3523 /** 3524 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3525 * @adapter: board private structure 3526 * 3527 * Free all receive software resources 3528 **/ 3529 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3530 { 3531 int i; 3532 3533 if (!adapter->rx_rings) 3534 return; 3535 3536 for (i = 0; i < adapter->num_active_queues; i++) 3537 if (adapter->rx_rings[i].desc) 3538 iavf_free_rx_resources(&adapter->rx_rings[i]); 3539 } 3540 3541 /** 3542 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3543 * @adapter: board private structure 3544 * @max_tx_rate: max Tx bw for a tc 3545 **/ 3546 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3547 u64 max_tx_rate) 3548 { 3549 int speed = 0, ret = 0; 3550 3551 if (ADV_LINK_SUPPORT(adapter)) { 3552 if (adapter->link_speed_mbps < U32_MAX) { 3553 speed = adapter->link_speed_mbps; 3554 goto validate_bw; 3555 } else { 3556 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3557 return -EINVAL; 3558 } 3559 } 3560 3561 switch (adapter->link_speed) { 3562 case VIRTCHNL_LINK_SPEED_40GB: 3563 speed = SPEED_40000; 3564 break; 3565 case VIRTCHNL_LINK_SPEED_25GB: 3566 speed = SPEED_25000; 3567 break; 3568 case VIRTCHNL_LINK_SPEED_20GB: 3569 speed = SPEED_20000; 3570 break; 3571 case VIRTCHNL_LINK_SPEED_10GB: 3572 speed = SPEED_10000; 3573 break; 3574 case VIRTCHNL_LINK_SPEED_5GB: 3575 speed = SPEED_5000; 3576 break; 3577 case VIRTCHNL_LINK_SPEED_2_5GB: 3578 speed = SPEED_2500; 3579 break; 3580 case VIRTCHNL_LINK_SPEED_1GB: 3581 speed = SPEED_1000; 3582 break; 3583 case VIRTCHNL_LINK_SPEED_100MB: 3584 speed = SPEED_100; 3585 break; 3586 default: 3587 break; 3588 } 3589 3590 validate_bw: 3591 if (max_tx_rate > speed) { 3592 dev_err(&adapter->pdev->dev, 3593 "Invalid tx rate specified\n"); 3594 ret = -EINVAL; 3595 } 3596 3597 return ret; 3598 } 3599 3600 /** 3601 * iavf_validate_ch_config - validate queue mapping info 3602 * @adapter: board private structure 3603 * @mqprio_qopt: queue parameters 3604 * 3605 * This function validates if the config provided by the user to 3606 * configure queue channels is valid or not. Returns 0 on a valid 3607 * config. 3608 **/ 3609 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3610 struct tc_mqprio_qopt_offload *mqprio_qopt) 3611 { 3612 u64 total_max_rate = 0; 3613 u32 tx_rate_rem = 0; 3614 int i, num_qps = 0; 3615 u64 tx_rate = 0; 3616 int ret = 0; 3617 3618 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3619 mqprio_qopt->qopt.num_tc < 1) 3620 return -EINVAL; 3621 3622 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3623 if (!mqprio_qopt->qopt.count[i] || 3624 mqprio_qopt->qopt.offset[i] != num_qps) 3625 return -EINVAL; 3626 if (mqprio_qopt->min_rate[i]) { 3627 dev_err(&adapter->pdev->dev, 3628 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3629 i); 3630 return -EINVAL; 3631 } 3632 3633 /* convert to Mbps */ 3634 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3635 IAVF_MBPS_DIVISOR); 3636 3637 if (mqprio_qopt->max_rate[i] && 3638 tx_rate < IAVF_MBPS_QUANTA) { 3639 dev_err(&adapter->pdev->dev, 3640 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3641 i, IAVF_MBPS_QUANTA); 3642 return -EINVAL; 3643 } 3644 3645 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3646 3647 if (tx_rate_rem != 0) { 3648 dev_err(&adapter->pdev->dev, 3649 "Invalid max tx rate for TC%d, not divisible by %d\n", 3650 i, IAVF_MBPS_QUANTA); 3651 return -EINVAL; 3652 } 3653 3654 total_max_rate += tx_rate; 3655 num_qps += mqprio_qopt->qopt.count[i]; 3656 } 3657 if (num_qps > adapter->num_active_queues) { 3658 dev_err(&adapter->pdev->dev, 3659 "Cannot support requested number of queues\n"); 3660 return -EINVAL; 3661 } 3662 3663 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3664 return ret; 3665 } 3666 3667 /** 3668 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3669 * @adapter: board private structure 3670 **/ 3671 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3672 { 3673 struct iavf_cloud_filter *cf, *cftmp; 3674 3675 spin_lock_bh(&adapter->cloud_filter_list_lock); 3676 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3677 list) { 3678 list_del(&cf->list); 3679 kfree(cf); 3680 adapter->num_cloud_filters--; 3681 } 3682 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3683 } 3684 3685 /** 3686 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3687 * TC config already configured on this adapter. 3688 * @adapter: board private structure 3689 * @mqprio_qopt: TC config received from kernel. 3690 * 3691 * This function compares the TC config received from the kernel 3692 * with the config already configured on the adapter. 3693 * 3694 * Return: True if configuration is same, false otherwise. 3695 **/ 3696 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3697 struct tc_mqprio_qopt *mqprio_qopt) 3698 { 3699 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3700 int i; 3701 3702 if (adapter->num_tc != mqprio_qopt->num_tc) 3703 return false; 3704 3705 for (i = 0; i < adapter->num_tc; i++) { 3706 if (ch[i].count != mqprio_qopt->count[i] || 3707 ch[i].offset != mqprio_qopt->offset[i]) 3708 return false; 3709 } 3710 return true; 3711 } 3712 3713 /** 3714 * __iavf_setup_tc - configure multiple traffic classes 3715 * @netdev: network interface device structure 3716 * @type_data: tc offload data 3717 * 3718 * This function processes the config information provided by the 3719 * user to configure traffic classes/queue channels and packages the 3720 * information to request the PF to setup traffic classes. 3721 * 3722 * Returns 0 on success. 3723 **/ 3724 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3725 { 3726 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3727 struct iavf_adapter *adapter = netdev_priv(netdev); 3728 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3729 u8 num_tc = 0, total_qps = 0; 3730 int ret = 0, netdev_tc = 0; 3731 u64 max_tx_rate; 3732 u16 mode; 3733 int i; 3734 3735 num_tc = mqprio_qopt->qopt.num_tc; 3736 mode = mqprio_qopt->mode; 3737 3738 /* delete queue_channel */ 3739 if (!mqprio_qopt->qopt.hw) { 3740 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3741 /* reset the tc configuration */ 3742 netdev_reset_tc(netdev); 3743 adapter->num_tc = 0; 3744 netif_tx_stop_all_queues(netdev); 3745 netif_tx_disable(netdev); 3746 iavf_del_all_cloud_filters(adapter); 3747 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3748 total_qps = adapter->orig_num_active_queues; 3749 goto exit; 3750 } else { 3751 return -EINVAL; 3752 } 3753 } 3754 3755 /* add queue channel */ 3756 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3757 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3758 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3759 return -EOPNOTSUPP; 3760 } 3761 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3762 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3763 return -EINVAL; 3764 } 3765 3766 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3767 if (ret) 3768 return ret; 3769 /* Return if same TC config is requested */ 3770 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3771 return 0; 3772 adapter->num_tc = num_tc; 3773 3774 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3775 if (i < num_tc) { 3776 adapter->ch_config.ch_info[i].count = 3777 mqprio_qopt->qopt.count[i]; 3778 adapter->ch_config.ch_info[i].offset = 3779 mqprio_qopt->qopt.offset[i]; 3780 total_qps += mqprio_qopt->qopt.count[i]; 3781 max_tx_rate = mqprio_qopt->max_rate[i]; 3782 /* convert to Mbps */ 3783 max_tx_rate = div_u64(max_tx_rate, 3784 IAVF_MBPS_DIVISOR); 3785 adapter->ch_config.ch_info[i].max_tx_rate = 3786 max_tx_rate; 3787 } else { 3788 adapter->ch_config.ch_info[i].count = 1; 3789 adapter->ch_config.ch_info[i].offset = 0; 3790 } 3791 } 3792 3793 /* Take snapshot of original config such as "num_active_queues" 3794 * It is used later when delete ADQ flow is exercised, so that 3795 * once delete ADQ flow completes, VF shall go back to its 3796 * original queue configuration 3797 */ 3798 3799 adapter->orig_num_active_queues = adapter->num_active_queues; 3800 3801 /* Store queue info based on TC so that VF gets configured 3802 * with correct number of queues when VF completes ADQ config 3803 * flow 3804 */ 3805 adapter->ch_config.total_qps = total_qps; 3806 3807 netif_tx_stop_all_queues(netdev); 3808 netif_tx_disable(netdev); 3809 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3810 netdev_reset_tc(netdev); 3811 /* Report the tc mapping up the stack */ 3812 netdev_set_num_tc(adapter->netdev, num_tc); 3813 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3814 u16 qcount = mqprio_qopt->qopt.count[i]; 3815 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3816 3817 if (i < num_tc) 3818 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3819 qoffset); 3820 } 3821 } 3822 exit: 3823 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3824 return 0; 3825 3826 netif_set_real_num_rx_queues(netdev, total_qps); 3827 netif_set_real_num_tx_queues(netdev, total_qps); 3828 3829 return ret; 3830 } 3831 3832 /** 3833 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3834 * @adapter: board private structure 3835 * @f: pointer to struct flow_cls_offload 3836 * @filter: pointer to cloud filter structure 3837 */ 3838 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3839 struct flow_cls_offload *f, 3840 struct iavf_cloud_filter *filter) 3841 { 3842 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3843 struct flow_dissector *dissector = rule->match.dissector; 3844 u16 n_proto_mask = 0; 3845 u16 n_proto_key = 0; 3846 u8 field_flags = 0; 3847 u16 addr_type = 0; 3848 u16 n_proto = 0; 3849 int i = 0; 3850 struct virtchnl_filter *vf = &filter->f; 3851 3852 if (dissector->used_keys & 3853 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3854 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3855 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3856 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3857 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3858 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3859 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3860 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3861 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3862 dissector->used_keys); 3863 return -EOPNOTSUPP; 3864 } 3865 3866 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3867 struct flow_match_enc_keyid match; 3868 3869 flow_rule_match_enc_keyid(rule, &match); 3870 if (match.mask->keyid != 0) 3871 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3872 } 3873 3874 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3875 struct flow_match_basic match; 3876 3877 flow_rule_match_basic(rule, &match); 3878 n_proto_key = ntohs(match.key->n_proto); 3879 n_proto_mask = ntohs(match.mask->n_proto); 3880 3881 if (n_proto_key == ETH_P_ALL) { 3882 n_proto_key = 0; 3883 n_proto_mask = 0; 3884 } 3885 n_proto = n_proto_key & n_proto_mask; 3886 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3887 return -EINVAL; 3888 if (n_proto == ETH_P_IPV6) { 3889 /* specify flow type as TCP IPv6 */ 3890 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3891 } 3892 3893 if (match.key->ip_proto != IPPROTO_TCP) { 3894 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3895 return -EINVAL; 3896 } 3897 } 3898 3899 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3900 struct flow_match_eth_addrs match; 3901 3902 flow_rule_match_eth_addrs(rule, &match); 3903 3904 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3905 if (!is_zero_ether_addr(match.mask->dst)) { 3906 if (is_broadcast_ether_addr(match.mask->dst)) { 3907 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3908 } else { 3909 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3910 match.mask->dst); 3911 return -EINVAL; 3912 } 3913 } 3914 3915 if (!is_zero_ether_addr(match.mask->src)) { 3916 if (is_broadcast_ether_addr(match.mask->src)) { 3917 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3918 } else { 3919 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3920 match.mask->src); 3921 return -EINVAL; 3922 } 3923 } 3924 3925 if (!is_zero_ether_addr(match.key->dst)) 3926 if (is_valid_ether_addr(match.key->dst) || 3927 is_multicast_ether_addr(match.key->dst)) { 3928 /* set the mask if a valid dst_mac address */ 3929 for (i = 0; i < ETH_ALEN; i++) 3930 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3931 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3932 match.key->dst); 3933 } 3934 3935 if (!is_zero_ether_addr(match.key->src)) 3936 if (is_valid_ether_addr(match.key->src) || 3937 is_multicast_ether_addr(match.key->src)) { 3938 /* set the mask if a valid dst_mac address */ 3939 for (i = 0; i < ETH_ALEN; i++) 3940 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3941 ether_addr_copy(vf->data.tcp_spec.src_mac, 3942 match.key->src); 3943 } 3944 } 3945 3946 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3947 struct flow_match_vlan match; 3948 3949 flow_rule_match_vlan(rule, &match); 3950 if (match.mask->vlan_id) { 3951 if (match.mask->vlan_id == VLAN_VID_MASK) { 3952 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3953 } else { 3954 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3955 match.mask->vlan_id); 3956 return -EINVAL; 3957 } 3958 } 3959 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3960 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3961 } 3962 3963 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3964 struct flow_match_control match; 3965 3966 flow_rule_match_control(rule, &match); 3967 addr_type = match.key->addr_type; 3968 3969 if (flow_rule_has_control_flags(match.mask->flags, 3970 f->common.extack)) 3971 return -EOPNOTSUPP; 3972 } 3973 3974 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3975 struct flow_match_ipv4_addrs match; 3976 3977 flow_rule_match_ipv4_addrs(rule, &match); 3978 if (match.mask->dst) { 3979 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3980 field_flags |= IAVF_CLOUD_FIELD_IIP; 3981 } else { 3982 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3983 be32_to_cpu(match.mask->dst)); 3984 return -EINVAL; 3985 } 3986 } 3987 3988 if (match.mask->src) { 3989 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3990 field_flags |= IAVF_CLOUD_FIELD_IIP; 3991 } else { 3992 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3993 be32_to_cpu(match.mask->src)); 3994 return -EINVAL; 3995 } 3996 } 3997 3998 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3999 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 4000 return -EINVAL; 4001 } 4002 if (match.key->dst) { 4003 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 4004 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 4005 } 4006 if (match.key->src) { 4007 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 4008 vf->data.tcp_spec.src_ip[0] = match.key->src; 4009 } 4010 } 4011 4012 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 4013 struct flow_match_ipv6_addrs match; 4014 4015 flow_rule_match_ipv6_addrs(rule, &match); 4016 4017 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 4018 if (ipv6_addr_any(&match.mask->dst)) { 4019 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 4020 IPV6_ADDR_ANY); 4021 return -EINVAL; 4022 } 4023 4024 /* src and dest IPv6 address should not be LOOPBACK 4025 * (0:0:0:0:0:0:0:1) which can be represented as ::1 4026 */ 4027 if (ipv6_addr_loopback(&match.key->dst) || 4028 ipv6_addr_loopback(&match.key->src)) { 4029 dev_err(&adapter->pdev->dev, 4030 "ipv6 addr should not be loopback\n"); 4031 return -EINVAL; 4032 } 4033 if (!ipv6_addr_any(&match.mask->dst) || 4034 !ipv6_addr_any(&match.mask->src)) 4035 field_flags |= IAVF_CLOUD_FIELD_IIP; 4036 4037 for (i = 0; i < 4; i++) 4038 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 4039 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 4040 sizeof(vf->data.tcp_spec.dst_ip)); 4041 for (i = 0; i < 4; i++) 4042 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 4043 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 4044 sizeof(vf->data.tcp_spec.src_ip)); 4045 } 4046 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 4047 struct flow_match_ports match; 4048 4049 flow_rule_match_ports(rule, &match); 4050 if (match.mask->src) { 4051 if (match.mask->src == cpu_to_be16(0xffff)) { 4052 field_flags |= IAVF_CLOUD_FIELD_IIP; 4053 } else { 4054 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 4055 be16_to_cpu(match.mask->src)); 4056 return -EINVAL; 4057 } 4058 } 4059 4060 if (match.mask->dst) { 4061 if (match.mask->dst == cpu_to_be16(0xffff)) { 4062 field_flags |= IAVF_CLOUD_FIELD_IIP; 4063 } else { 4064 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 4065 be16_to_cpu(match.mask->dst)); 4066 return -EINVAL; 4067 } 4068 } 4069 if (match.key->dst) { 4070 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 4071 vf->data.tcp_spec.dst_port = match.key->dst; 4072 } 4073 4074 if (match.key->src) { 4075 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 4076 vf->data.tcp_spec.src_port = match.key->src; 4077 } 4078 } 4079 vf->field_flags = field_flags; 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * iavf_handle_tclass - Forward to a traffic class on the device 4086 * @adapter: board private structure 4087 * @tc: traffic class index on the device 4088 * @filter: pointer to cloud filter structure 4089 */ 4090 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 4091 struct iavf_cloud_filter *filter) 4092 { 4093 if (tc == 0) 4094 return 0; 4095 if (tc < adapter->num_tc) { 4096 if (!filter->f.data.tcp_spec.dst_port) { 4097 dev_err(&adapter->pdev->dev, 4098 "Specify destination port to redirect to traffic class other than TC0\n"); 4099 return -EINVAL; 4100 } 4101 } 4102 /* redirect to a traffic class on the same device */ 4103 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 4104 filter->f.action_meta = tc; 4105 return 0; 4106 } 4107 4108 /** 4109 * iavf_find_cf - Find the cloud filter in the list 4110 * @adapter: Board private structure 4111 * @cookie: filter specific cookie 4112 * 4113 * Returns ptr to the filter object or NULL. Must be called while holding the 4114 * cloud_filter_list_lock. 4115 */ 4116 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4117 unsigned long *cookie) 4118 { 4119 struct iavf_cloud_filter *filter = NULL; 4120 4121 if (!cookie) 4122 return NULL; 4123 4124 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4125 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4126 return filter; 4127 } 4128 return NULL; 4129 } 4130 4131 /** 4132 * iavf_configure_clsflower - Add tc flower filters 4133 * @adapter: board private structure 4134 * @cls_flower: Pointer to struct flow_cls_offload 4135 */ 4136 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4137 struct flow_cls_offload *cls_flower) 4138 { 4139 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4140 struct iavf_cloud_filter *filter; 4141 int err; 4142 4143 if (tc < 0) { 4144 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4145 return -EINVAL; 4146 } 4147 4148 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4149 if (!filter) 4150 return -ENOMEM; 4151 filter->cookie = cls_flower->cookie; 4152 4153 netdev_lock(adapter->netdev); 4154 4155 /* bail out here if filter already exists */ 4156 spin_lock_bh(&adapter->cloud_filter_list_lock); 4157 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4158 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4159 err = -EEXIST; 4160 goto spin_unlock; 4161 } 4162 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4163 4164 /* set the mask to all zeroes to begin with */ 4165 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4166 /* start out with flow type and eth type IPv4 to begin with */ 4167 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4168 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4169 if (err) 4170 goto err; 4171 4172 err = iavf_handle_tclass(adapter, tc, filter); 4173 if (err) 4174 goto err; 4175 4176 /* add filter to the list */ 4177 spin_lock_bh(&adapter->cloud_filter_list_lock); 4178 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4179 adapter->num_cloud_filters++; 4180 filter->add = true; 4181 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4182 spin_unlock: 4183 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4184 err: 4185 if (err) 4186 kfree(filter); 4187 4188 netdev_unlock(adapter->netdev); 4189 return err; 4190 } 4191 4192 /** 4193 * iavf_delete_clsflower - Remove tc flower filters 4194 * @adapter: board private structure 4195 * @cls_flower: Pointer to struct flow_cls_offload 4196 */ 4197 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4198 struct flow_cls_offload *cls_flower) 4199 { 4200 struct iavf_cloud_filter *filter = NULL; 4201 int err = 0; 4202 4203 spin_lock_bh(&adapter->cloud_filter_list_lock); 4204 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4205 if (filter) { 4206 filter->del = true; 4207 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4208 } else { 4209 err = -EINVAL; 4210 } 4211 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4212 4213 return err; 4214 } 4215 4216 /** 4217 * iavf_setup_tc_cls_flower - flower classifier offloads 4218 * @adapter: pointer to iavf adapter structure 4219 * @cls_flower: pointer to flow_cls_offload struct with flow info 4220 */ 4221 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4222 struct flow_cls_offload *cls_flower) 4223 { 4224 switch (cls_flower->command) { 4225 case FLOW_CLS_REPLACE: 4226 return iavf_configure_clsflower(adapter, cls_flower); 4227 case FLOW_CLS_DESTROY: 4228 return iavf_delete_clsflower(adapter, cls_flower); 4229 case FLOW_CLS_STATS: 4230 return -EOPNOTSUPP; 4231 default: 4232 return -EOPNOTSUPP; 4233 } 4234 } 4235 4236 /** 4237 * iavf_add_cls_u32 - Add U32 classifier offloads 4238 * @adapter: pointer to iavf adapter structure 4239 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4240 * 4241 * Return: 0 on success or negative errno on failure. 4242 */ 4243 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4244 struct tc_cls_u32_offload *cls_u32) 4245 { 4246 struct netlink_ext_ack *extack = cls_u32->common.extack; 4247 struct virtchnl_fdir_rule *rule_cfg; 4248 struct virtchnl_filter_action *vact; 4249 struct virtchnl_proto_hdrs *hdrs; 4250 struct ethhdr *spec_h, *mask_h; 4251 const struct tc_action *act; 4252 struct iavf_fdir_fltr *fltr; 4253 struct tcf_exts *exts; 4254 unsigned int q_index; 4255 int i, status = 0; 4256 int off_base = 0; 4257 4258 if (cls_u32->knode.link_handle) { 4259 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4260 return -EOPNOTSUPP; 4261 } 4262 4263 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4264 if (!fltr) 4265 return -ENOMEM; 4266 4267 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4268 hdrs = &rule_cfg->proto_hdrs; 4269 hdrs->count = 0; 4270 4271 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4272 switch (ntohs(cls_u32->common.protocol)) { 4273 case ETH_P_802_3: 4274 break; 4275 case ETH_P_IP: 4276 spec_h = (struct ethhdr *)hdrs->raw.spec; 4277 mask_h = (struct ethhdr *)hdrs->raw.mask; 4278 spec_h->h_proto = htons(ETH_P_IP); 4279 mask_h->h_proto = htons(0xFFFF); 4280 off_base += ETH_HLEN; 4281 break; 4282 default: 4283 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4284 status = -EOPNOTSUPP; 4285 goto free_alloc; 4286 } 4287 4288 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4289 __be32 val, mask; 4290 int off; 4291 4292 off = off_base + cls_u32->knode.sel->keys[i].off; 4293 val = cls_u32->knode.sel->keys[i].val; 4294 mask = cls_u32->knode.sel->keys[i].mask; 4295 4296 if (off >= sizeof(hdrs->raw.spec)) { 4297 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4298 status = -EINVAL; 4299 goto free_alloc; 4300 } 4301 4302 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4303 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4304 hdrs->raw.pkt_len = off + sizeof(val); 4305 } 4306 4307 /* Only one action is allowed */ 4308 rule_cfg->action_set.count = 1; 4309 vact = &rule_cfg->action_set.actions[0]; 4310 exts = cls_u32->knode.exts; 4311 4312 tcf_exts_for_each_action(i, act, exts) { 4313 /* FDIR queue */ 4314 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4315 q_index = tcf_skbedit_rx_queue_mapping(act); 4316 if (q_index >= adapter->num_active_queues) { 4317 status = -EINVAL; 4318 goto free_alloc; 4319 } 4320 4321 vact->type = VIRTCHNL_ACTION_QUEUE; 4322 vact->act_conf.queue.index = q_index; 4323 break; 4324 } 4325 4326 /* Drop */ 4327 if (is_tcf_gact_shot(act)) { 4328 vact->type = VIRTCHNL_ACTION_DROP; 4329 break; 4330 } 4331 4332 /* Unsupported action */ 4333 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4334 status = -EOPNOTSUPP; 4335 goto free_alloc; 4336 } 4337 4338 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4339 fltr->cls_u32_handle = cls_u32->knode.handle; 4340 return iavf_fdir_add_fltr(adapter, fltr); 4341 4342 free_alloc: 4343 kfree(fltr); 4344 return status; 4345 } 4346 4347 /** 4348 * iavf_del_cls_u32 - Delete U32 classifier offloads 4349 * @adapter: pointer to iavf adapter structure 4350 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4351 * 4352 * Return: 0 on success or negative errno on failure. 4353 */ 4354 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4355 struct tc_cls_u32_offload *cls_u32) 4356 { 4357 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4358 } 4359 4360 /** 4361 * iavf_setup_tc_cls_u32 - U32 filter offloads 4362 * @adapter: pointer to iavf adapter structure 4363 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4364 * 4365 * Return: 0 on success or negative errno on failure. 4366 */ 4367 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4368 struct tc_cls_u32_offload *cls_u32) 4369 { 4370 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4371 return -EOPNOTSUPP; 4372 4373 switch (cls_u32->command) { 4374 case TC_CLSU32_NEW_KNODE: 4375 case TC_CLSU32_REPLACE_KNODE: 4376 return iavf_add_cls_u32(adapter, cls_u32); 4377 case TC_CLSU32_DELETE_KNODE: 4378 return iavf_del_cls_u32(adapter, cls_u32); 4379 default: 4380 return -EOPNOTSUPP; 4381 } 4382 } 4383 4384 /** 4385 * iavf_setup_tc_block_cb - block callback for tc 4386 * @type: type of offload 4387 * @type_data: offload data 4388 * @cb_priv: 4389 * 4390 * This function is the block callback for traffic classes 4391 **/ 4392 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4393 void *cb_priv) 4394 { 4395 struct iavf_adapter *adapter = cb_priv; 4396 4397 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4398 return -EOPNOTSUPP; 4399 4400 switch (type) { 4401 case TC_SETUP_CLSFLOWER: 4402 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4403 case TC_SETUP_CLSU32: 4404 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4405 default: 4406 return -EOPNOTSUPP; 4407 } 4408 } 4409 4410 static LIST_HEAD(iavf_block_cb_list); 4411 4412 /** 4413 * iavf_setup_tc - configure multiple traffic classes 4414 * @netdev: network interface device structure 4415 * @type: type of offload 4416 * @type_data: tc offload data 4417 * 4418 * This function is the callback to ndo_setup_tc in the 4419 * netdev_ops. 4420 * 4421 * Returns 0 on success 4422 **/ 4423 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4424 void *type_data) 4425 { 4426 struct iavf_adapter *adapter = netdev_priv(netdev); 4427 4428 switch (type) { 4429 case TC_SETUP_QDISC_MQPRIO: 4430 return __iavf_setup_tc(netdev, type_data); 4431 case TC_SETUP_BLOCK: 4432 return flow_block_cb_setup_simple(type_data, 4433 &iavf_block_cb_list, 4434 iavf_setup_tc_block_cb, 4435 adapter, adapter, true); 4436 default: 4437 return -EOPNOTSUPP; 4438 } 4439 } 4440 4441 /** 4442 * iavf_restore_fdir_filters 4443 * @adapter: board private structure 4444 * 4445 * Restore existing FDIR filters when VF netdev comes back up. 4446 **/ 4447 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4448 { 4449 struct iavf_fdir_fltr *f; 4450 4451 spin_lock_bh(&adapter->fdir_fltr_lock); 4452 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4453 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4454 /* Cancel a request, keep filter as active */ 4455 f->state = IAVF_FDIR_FLTR_ACTIVE; 4456 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4457 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4458 /* Add filters which are inactive or have a pending 4459 * request to PF to be deleted 4460 */ 4461 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4462 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4463 } 4464 } 4465 spin_unlock_bh(&adapter->fdir_fltr_lock); 4466 } 4467 4468 /** 4469 * iavf_open - Called when a network interface is made active 4470 * @netdev: network interface device structure 4471 * 4472 * Returns 0 on success, negative value on failure 4473 * 4474 * The open entry point is called when a network interface is made 4475 * active by the system (IFF_UP). At this point all resources needed 4476 * for transmit and receive operations are allocated, the interrupt 4477 * handler is registered with the OS, the watchdog is started, 4478 * and the stack is notified that the interface is ready. 4479 **/ 4480 static int iavf_open(struct net_device *netdev) 4481 { 4482 struct iavf_adapter *adapter = netdev_priv(netdev); 4483 int err; 4484 4485 netdev_assert_locked(netdev); 4486 4487 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4488 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4489 return -EIO; 4490 } 4491 4492 if (adapter->state != __IAVF_DOWN) 4493 return -EBUSY; 4494 4495 if (adapter->state == __IAVF_RUNNING && 4496 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4497 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4498 return 0; 4499 } 4500 4501 /* allocate transmit descriptors */ 4502 err = iavf_setup_all_tx_resources(adapter); 4503 if (err) 4504 goto err_setup_tx; 4505 4506 /* allocate receive descriptors */ 4507 err = iavf_setup_all_rx_resources(adapter); 4508 if (err) 4509 goto err_setup_rx; 4510 4511 /* clear any pending interrupts, may auto mask */ 4512 err = iavf_request_traffic_irqs(adapter, netdev->name); 4513 if (err) 4514 goto err_req_irq; 4515 4516 spin_lock_bh(&adapter->mac_vlan_list_lock); 4517 iavf_add_filter(adapter, adapter->hw.mac.addr); 4518 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4519 4520 /* Restore filters that were removed with IFF_DOWN */ 4521 iavf_restore_filters(adapter); 4522 iavf_restore_fdir_filters(adapter); 4523 4524 iavf_configure(adapter); 4525 4526 iavf_up_complete(adapter); 4527 4528 iavf_irq_enable(adapter, true); 4529 4530 return 0; 4531 4532 err_req_irq: 4533 iavf_down(adapter); 4534 iavf_free_traffic_irqs(adapter); 4535 err_setup_rx: 4536 iavf_free_all_rx_resources(adapter); 4537 err_setup_tx: 4538 iavf_free_all_tx_resources(adapter); 4539 4540 return err; 4541 } 4542 4543 /** 4544 * iavf_close - Disables a network interface 4545 * @netdev: network interface device structure 4546 * 4547 * Returns 0, this is not allowed to fail 4548 * 4549 * The close entry point is called when an interface is de-activated 4550 * by the OS. The hardware is still under the drivers control, but 4551 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4552 * are freed, along with all transmit and receive resources. 4553 **/ 4554 static int iavf_close(struct net_device *netdev) 4555 { 4556 struct iavf_adapter *adapter = netdev_priv(netdev); 4557 u64 aq_to_restore; 4558 int status; 4559 4560 netdev_assert_locked(netdev); 4561 4562 if (adapter->state <= __IAVF_DOWN_PENDING) 4563 return 0; 4564 4565 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4566 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4567 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4568 * deadlock with adminq_task() until iavf_close timeouts. We must send 4569 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4570 * disable queues possible for vf. Give only necessary flags to 4571 * iavf_down and save other to set them right before iavf_close() 4572 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4573 * iavf will be in DOWN state. 4574 */ 4575 aq_to_restore = adapter->aq_required; 4576 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4577 4578 /* Remove flags which we do not want to send after close or we want to 4579 * send before disable queues. 4580 */ 4581 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4582 IAVF_FLAG_AQ_ENABLE_QUEUES | 4583 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4584 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4585 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4586 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4587 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4588 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4589 4590 iavf_down(adapter); 4591 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4592 iavf_free_traffic_irqs(adapter); 4593 4594 netdev_unlock(netdev); 4595 4596 /* We explicitly don't free resources here because the hardware is 4597 * still active and can DMA into memory. Resources are cleared in 4598 * iavf_virtchnl_completion() after we get confirmation from the PF 4599 * driver that the rings have been stopped. 4600 * 4601 * Also, we wait for state to transition to __IAVF_DOWN before 4602 * returning. State change occurs in iavf_virtchnl_completion() after 4603 * VF resources are released (which occurs after PF driver processes and 4604 * responds to admin queue commands). 4605 */ 4606 4607 status = wait_event_timeout(adapter->down_waitqueue, 4608 adapter->state == __IAVF_DOWN, 4609 msecs_to_jiffies(500)); 4610 if (!status) 4611 netdev_warn(netdev, "Device resources not yet released\n"); 4612 netdev_lock(netdev); 4613 4614 adapter->aq_required |= aq_to_restore; 4615 4616 return 0; 4617 } 4618 4619 /** 4620 * iavf_change_mtu - Change the Maximum Transfer Unit 4621 * @netdev: network interface device structure 4622 * @new_mtu: new value for maximum frame size 4623 * 4624 * Returns 0 on success, negative on failure 4625 **/ 4626 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4627 { 4628 struct iavf_adapter *adapter = netdev_priv(netdev); 4629 int ret = 0; 4630 4631 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4632 netdev->mtu, new_mtu); 4633 WRITE_ONCE(netdev->mtu, new_mtu); 4634 4635 if (netif_running(netdev)) { 4636 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4637 ret = iavf_wait_for_reset(adapter); 4638 if (ret < 0) 4639 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4640 else if (ret) 4641 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4642 } 4643 4644 return ret; 4645 } 4646 4647 /** 4648 * iavf_disable_fdir - disable Flow Director and clear existing filters 4649 * @adapter: board private structure 4650 **/ 4651 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4652 { 4653 struct iavf_fdir_fltr *fdir, *fdirtmp; 4654 bool del_filters = false; 4655 4656 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4657 4658 /* remove all Flow Director filters */ 4659 spin_lock_bh(&adapter->fdir_fltr_lock); 4660 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4661 list) { 4662 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4663 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4664 /* Delete filters not registered in PF */ 4665 list_del(&fdir->list); 4666 iavf_dec_fdir_active_fltr(adapter, fdir); 4667 kfree(fdir); 4668 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4669 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4670 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4671 /* Filters registered in PF, schedule their deletion */ 4672 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4673 del_filters = true; 4674 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4675 /* Request to delete filter already sent to PF, change 4676 * state to DEL_PENDING to delete filter after PF's 4677 * response, not set as INACTIVE 4678 */ 4679 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4680 } 4681 } 4682 spin_unlock_bh(&adapter->fdir_fltr_lock); 4683 4684 if (del_filters) { 4685 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4686 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4687 } 4688 } 4689 4690 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4691 NETIF_F_HW_VLAN_CTAG_TX | \ 4692 NETIF_F_HW_VLAN_STAG_RX | \ 4693 NETIF_F_HW_VLAN_STAG_TX) 4694 4695 /** 4696 * iavf_set_features - set the netdev feature flags 4697 * @netdev: ptr to the netdev being adjusted 4698 * @features: the feature set that the stack is suggesting 4699 * Note: expects to be called while under rtnl_lock() 4700 **/ 4701 static int iavf_set_features(struct net_device *netdev, 4702 netdev_features_t features) 4703 { 4704 struct iavf_adapter *adapter = netdev_priv(netdev); 4705 4706 /* trigger update on any VLAN feature change */ 4707 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4708 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4709 iavf_set_vlan_offload_features(adapter, netdev->features, 4710 features); 4711 if (CRC_OFFLOAD_ALLOWED(adapter) && 4712 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4713 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4714 4715 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4716 if (features & NETIF_F_NTUPLE) 4717 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4718 else 4719 iavf_disable_fdir(adapter); 4720 } 4721 4722 return 0; 4723 } 4724 4725 /** 4726 * iavf_features_check - Validate encapsulated packet conforms to limits 4727 * @skb: skb buff 4728 * @dev: This physical port's netdev 4729 * @features: Offload features that the stack believes apply 4730 **/ 4731 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4732 struct net_device *dev, 4733 netdev_features_t features) 4734 { 4735 size_t len; 4736 4737 /* No point in doing any of this if neither checksum nor GSO are 4738 * being requested for this frame. We can rule out both by just 4739 * checking for CHECKSUM_PARTIAL 4740 */ 4741 if (skb->ip_summed != CHECKSUM_PARTIAL) 4742 return features; 4743 4744 /* We cannot support GSO if the MSS is going to be less than 4745 * 64 bytes. If it is then we need to drop support for GSO. 4746 */ 4747 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4748 features &= ~NETIF_F_GSO_MASK; 4749 4750 /* MACLEN can support at most 63 words */ 4751 len = skb_network_offset(skb); 4752 if (len & ~(63 * 2)) 4753 goto out_err; 4754 4755 /* IPLEN and EIPLEN can support at most 127 dwords */ 4756 len = skb_network_header_len(skb); 4757 if (len & ~(127 * 4)) 4758 goto out_err; 4759 4760 if (skb->encapsulation) { 4761 /* L4TUNLEN can support 127 words */ 4762 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4763 if (len & ~(127 * 2)) 4764 goto out_err; 4765 4766 /* IPLEN can support at most 127 dwords */ 4767 len = skb_inner_transport_header(skb) - 4768 skb_inner_network_header(skb); 4769 if (len & ~(127 * 4)) 4770 goto out_err; 4771 } 4772 4773 /* No need to validate L4LEN as TCP is the only protocol with a 4774 * flexible value and we support all possible values supported 4775 * by TCP, which is at most 15 dwords 4776 */ 4777 4778 return features; 4779 out_err: 4780 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4781 } 4782 4783 /** 4784 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4785 * @adapter: board private structure 4786 * 4787 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4788 * were negotiated determine the VLAN features that can be toggled on and off. 4789 **/ 4790 static netdev_features_t 4791 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4792 { 4793 netdev_features_t hw_features = 0; 4794 4795 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4796 return hw_features; 4797 4798 /* Enable VLAN features if supported */ 4799 if (VLAN_ALLOWED(adapter)) { 4800 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4801 NETIF_F_HW_VLAN_CTAG_RX); 4802 } else if (VLAN_V2_ALLOWED(adapter)) { 4803 struct virtchnl_vlan_caps *vlan_v2_caps = 4804 &adapter->vlan_v2_caps; 4805 struct virtchnl_vlan_supported_caps *stripping_support = 4806 &vlan_v2_caps->offloads.stripping_support; 4807 struct virtchnl_vlan_supported_caps *insertion_support = 4808 &vlan_v2_caps->offloads.insertion_support; 4809 4810 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4811 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4812 if (stripping_support->outer & 4813 VIRTCHNL_VLAN_ETHERTYPE_8100) 4814 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4815 if (stripping_support->outer & 4816 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4817 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4818 } else if (stripping_support->inner != 4819 VIRTCHNL_VLAN_UNSUPPORTED && 4820 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4821 if (stripping_support->inner & 4822 VIRTCHNL_VLAN_ETHERTYPE_8100) 4823 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4824 } 4825 4826 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4827 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4828 if (insertion_support->outer & 4829 VIRTCHNL_VLAN_ETHERTYPE_8100) 4830 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4831 if (insertion_support->outer & 4832 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4833 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4834 } else if (insertion_support->inner && 4835 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4836 if (insertion_support->inner & 4837 VIRTCHNL_VLAN_ETHERTYPE_8100) 4838 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4839 } 4840 } 4841 4842 if (CRC_OFFLOAD_ALLOWED(adapter)) 4843 hw_features |= NETIF_F_RXFCS; 4844 4845 return hw_features; 4846 } 4847 4848 /** 4849 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4850 * @adapter: board private structure 4851 * 4852 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4853 * were negotiated determine the VLAN features that are enabled by default. 4854 **/ 4855 static netdev_features_t 4856 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4857 { 4858 netdev_features_t features = 0; 4859 4860 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4861 return features; 4862 4863 if (VLAN_ALLOWED(adapter)) { 4864 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4865 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4866 } else if (VLAN_V2_ALLOWED(adapter)) { 4867 struct virtchnl_vlan_caps *vlan_v2_caps = 4868 &adapter->vlan_v2_caps; 4869 struct virtchnl_vlan_supported_caps *filtering_support = 4870 &vlan_v2_caps->filtering.filtering_support; 4871 struct virtchnl_vlan_supported_caps *stripping_support = 4872 &vlan_v2_caps->offloads.stripping_support; 4873 struct virtchnl_vlan_supported_caps *insertion_support = 4874 &vlan_v2_caps->offloads.insertion_support; 4875 u32 ethertype_init; 4876 4877 /* give priority to outer stripping and don't support both outer 4878 * and inner stripping 4879 */ 4880 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4881 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4882 if (stripping_support->outer & 4883 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4884 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4885 features |= NETIF_F_HW_VLAN_CTAG_RX; 4886 else if (stripping_support->outer & 4887 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4888 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4889 features |= NETIF_F_HW_VLAN_STAG_RX; 4890 } else if (stripping_support->inner != 4891 VIRTCHNL_VLAN_UNSUPPORTED) { 4892 if (stripping_support->inner & 4893 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4894 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4895 features |= NETIF_F_HW_VLAN_CTAG_RX; 4896 } 4897 4898 /* give priority to outer insertion and don't support both outer 4899 * and inner insertion 4900 */ 4901 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4902 if (insertion_support->outer & 4903 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4904 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4905 features |= NETIF_F_HW_VLAN_CTAG_TX; 4906 else if (insertion_support->outer & 4907 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4908 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4909 features |= NETIF_F_HW_VLAN_STAG_TX; 4910 } else if (insertion_support->inner != 4911 VIRTCHNL_VLAN_UNSUPPORTED) { 4912 if (insertion_support->inner & 4913 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4914 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4915 features |= NETIF_F_HW_VLAN_CTAG_TX; 4916 } 4917 4918 /* give priority to outer filtering and don't bother if both 4919 * outer and inner filtering are enabled 4920 */ 4921 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4922 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4923 if (filtering_support->outer & 4924 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4925 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4926 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4927 if (filtering_support->outer & 4928 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4929 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4930 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4931 } else if (filtering_support->inner != 4932 VIRTCHNL_VLAN_UNSUPPORTED) { 4933 if (filtering_support->inner & 4934 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4935 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4936 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4937 if (filtering_support->inner & 4938 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4939 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4940 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4941 } 4942 } 4943 4944 return features; 4945 } 4946 4947 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4948 (!(((requested) & (feature_bit)) && \ 4949 !((allowed) & (feature_bit)))) 4950 4951 /** 4952 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4953 * @adapter: board private structure 4954 * @requested_features: stack requested NETDEV features 4955 **/ 4956 static netdev_features_t 4957 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4958 netdev_features_t requested_features) 4959 { 4960 netdev_features_t allowed_features; 4961 4962 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4963 iavf_get_netdev_vlan_features(adapter); 4964 4965 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4966 allowed_features, 4967 NETIF_F_HW_VLAN_CTAG_TX)) 4968 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4969 4970 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4971 allowed_features, 4972 NETIF_F_HW_VLAN_CTAG_RX)) 4973 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4974 4975 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4976 allowed_features, 4977 NETIF_F_HW_VLAN_STAG_TX)) 4978 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4979 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4980 allowed_features, 4981 NETIF_F_HW_VLAN_STAG_RX)) 4982 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4983 4984 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4985 allowed_features, 4986 NETIF_F_HW_VLAN_CTAG_FILTER)) 4987 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4988 4989 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4990 allowed_features, 4991 NETIF_F_HW_VLAN_STAG_FILTER)) 4992 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4993 4994 if ((requested_features & 4995 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4996 (requested_features & 4997 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4998 adapter->vlan_v2_caps.offloads.ethertype_match == 4999 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 5000 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5001 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5002 NETIF_F_HW_VLAN_STAG_TX); 5003 } 5004 5005 return requested_features; 5006 } 5007 5008 /** 5009 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 5010 * @adapter: board private structure 5011 * @requested_features: stack requested NETDEV features 5012 * 5013 * Returns fixed-up features bits 5014 **/ 5015 static netdev_features_t 5016 iavf_fix_strip_features(struct iavf_adapter *adapter, 5017 netdev_features_t requested_features) 5018 { 5019 struct net_device *netdev = adapter->netdev; 5020 bool crc_offload_req, is_vlan_strip; 5021 netdev_features_t vlan_strip; 5022 int num_non_zero_vlan; 5023 5024 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 5025 (requested_features & NETIF_F_RXFCS); 5026 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 5027 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 5028 is_vlan_strip = requested_features & vlan_strip; 5029 5030 if (!crc_offload_req) 5031 return requested_features; 5032 5033 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 5034 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5035 requested_features &= ~vlan_strip; 5036 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5037 return requested_features; 5038 } 5039 5040 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5041 requested_features &= ~vlan_strip; 5042 if (!(netdev->features & vlan_strip)) 5043 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 5044 5045 return requested_features; 5046 } 5047 5048 if (num_non_zero_vlan && is_vlan_strip && 5049 !(netdev->features & NETIF_F_RXFCS)) { 5050 requested_features &= ~NETIF_F_RXFCS; 5051 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 5052 } 5053 5054 return requested_features; 5055 } 5056 5057 /** 5058 * iavf_fix_features - fix up the netdev feature bits 5059 * @netdev: our net device 5060 * @features: desired feature bits 5061 * 5062 * Returns fixed-up features bits 5063 **/ 5064 static netdev_features_t iavf_fix_features(struct net_device *netdev, 5065 netdev_features_t features) 5066 { 5067 struct iavf_adapter *adapter = netdev_priv(netdev); 5068 5069 features = iavf_fix_netdev_vlan_features(adapter, features); 5070 5071 if (!FDIR_FLTR_SUPPORT(adapter)) 5072 features &= ~NETIF_F_NTUPLE; 5073 5074 return iavf_fix_strip_features(adapter, features); 5075 } 5076 5077 static int iavf_hwstamp_get(struct net_device *netdev, 5078 struct kernel_hwtstamp_config *config) 5079 { 5080 struct iavf_adapter *adapter = netdev_priv(netdev); 5081 5082 *config = adapter->ptp.hwtstamp_config; 5083 5084 return 0; 5085 } 5086 5087 static int iavf_hwstamp_set(struct net_device *netdev, 5088 struct kernel_hwtstamp_config *config, 5089 struct netlink_ext_ack *extack) 5090 { 5091 struct iavf_adapter *adapter = netdev_priv(netdev); 5092 5093 return iavf_ptp_set_ts_config(adapter, config, extack); 5094 } 5095 5096 static int 5097 iavf_verify_shaper(struct net_shaper_binding *binding, 5098 const struct net_shaper *shaper, 5099 struct netlink_ext_ack *extack) 5100 { 5101 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5102 u64 vf_max; 5103 5104 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5105 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5106 if (vf_max && shaper->bw_max > vf_max) { 5107 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5108 shaper->bw_max, shaper->handle.id, 5109 vf_max); 5110 return -EINVAL; 5111 } 5112 } 5113 return 0; 5114 } 5115 5116 static int 5117 iavf_shaper_set(struct net_shaper_binding *binding, 5118 const struct net_shaper *shaper, 5119 struct netlink_ext_ack *extack) 5120 { 5121 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5122 const struct net_shaper_handle *handle = &shaper->handle; 5123 struct iavf_ring *tx_ring; 5124 int ret; 5125 5126 netdev_assert_locked(adapter->netdev); 5127 5128 if (handle->id >= adapter->num_active_queues) 5129 return 0; 5130 5131 ret = iavf_verify_shaper(binding, shaper, extack); 5132 if (ret) 5133 return ret; 5134 5135 tx_ring = &adapter->tx_rings[handle->id]; 5136 5137 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5138 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5139 tx_ring->q_shaper_update = true; 5140 5141 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5142 5143 return 0; 5144 } 5145 5146 static int iavf_shaper_del(struct net_shaper_binding *binding, 5147 const struct net_shaper_handle *handle, 5148 struct netlink_ext_ack *extack) 5149 { 5150 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5151 struct iavf_ring *tx_ring; 5152 5153 netdev_assert_locked(adapter->netdev); 5154 5155 if (handle->id >= adapter->num_active_queues) 5156 return 0; 5157 5158 tx_ring = &adapter->tx_rings[handle->id]; 5159 tx_ring->q_shaper.bw_min = 0; 5160 tx_ring->q_shaper.bw_max = 0; 5161 tx_ring->q_shaper_update = true; 5162 5163 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5164 5165 return 0; 5166 } 5167 5168 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5169 enum net_shaper_scope scope, 5170 unsigned long *flags) 5171 { 5172 if (scope != NET_SHAPER_SCOPE_QUEUE) 5173 return; 5174 5175 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5176 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5177 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5178 } 5179 5180 static const struct net_shaper_ops iavf_shaper_ops = { 5181 .set = iavf_shaper_set, 5182 .delete = iavf_shaper_del, 5183 .capabilities = iavf_shaper_cap, 5184 }; 5185 5186 static const struct net_device_ops iavf_netdev_ops = { 5187 .ndo_open = iavf_open, 5188 .ndo_stop = iavf_close, 5189 .ndo_start_xmit = iavf_xmit_frame, 5190 .ndo_set_rx_mode = iavf_set_rx_mode, 5191 .ndo_validate_addr = eth_validate_addr, 5192 .ndo_set_mac_address = iavf_set_mac, 5193 .ndo_change_mtu = iavf_change_mtu, 5194 .ndo_tx_timeout = iavf_tx_timeout, 5195 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5196 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5197 .ndo_features_check = iavf_features_check, 5198 .ndo_fix_features = iavf_fix_features, 5199 .ndo_set_features = iavf_set_features, 5200 .ndo_setup_tc = iavf_setup_tc, 5201 .net_shaper_ops = &iavf_shaper_ops, 5202 .ndo_hwtstamp_get = iavf_hwstamp_get, 5203 .ndo_hwtstamp_set = iavf_hwstamp_set, 5204 }; 5205 5206 /** 5207 * iavf_check_reset_complete - check that VF reset is complete 5208 * @hw: pointer to hw struct 5209 * 5210 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5211 **/ 5212 static int iavf_check_reset_complete(struct iavf_hw *hw) 5213 { 5214 u32 rstat; 5215 int i; 5216 5217 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5218 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5219 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5220 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5221 (rstat == VIRTCHNL_VFR_COMPLETED)) 5222 return 0; 5223 msleep(IAVF_RESET_WAIT_MS); 5224 } 5225 return -EBUSY; 5226 } 5227 5228 /** 5229 * iavf_process_config - Process the config information we got from the PF 5230 * @adapter: board private structure 5231 * 5232 * Verify that we have a valid config struct, and set up our netdev features 5233 * and our VSI struct. 5234 **/ 5235 int iavf_process_config(struct iavf_adapter *adapter) 5236 { 5237 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5238 netdev_features_t hw_vlan_features, vlan_features; 5239 struct net_device *netdev = adapter->netdev; 5240 netdev_features_t hw_enc_features; 5241 netdev_features_t hw_features; 5242 5243 hw_enc_features = NETIF_F_SG | 5244 NETIF_F_IP_CSUM | 5245 NETIF_F_IPV6_CSUM | 5246 NETIF_F_HIGHDMA | 5247 NETIF_F_SOFT_FEATURES | 5248 NETIF_F_TSO | 5249 NETIF_F_TSO_ECN | 5250 NETIF_F_TSO6 | 5251 NETIF_F_SCTP_CRC | 5252 NETIF_F_RXHASH | 5253 NETIF_F_RXCSUM | 5254 0; 5255 5256 /* advertise to stack only if offloads for encapsulated packets is 5257 * supported 5258 */ 5259 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5260 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5261 NETIF_F_GSO_GRE | 5262 NETIF_F_GSO_GRE_CSUM | 5263 NETIF_F_GSO_IPXIP4 | 5264 NETIF_F_GSO_IPXIP6 | 5265 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5266 NETIF_F_GSO_PARTIAL | 5267 0; 5268 5269 if (!(vfres->vf_cap_flags & 5270 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5271 netdev->gso_partial_features |= 5272 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5273 5274 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5275 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5276 netdev->hw_enc_features |= hw_enc_features; 5277 } 5278 /* record features VLANs can make use of */ 5279 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5280 5281 /* Write features and hw_features separately to avoid polluting 5282 * with, or dropping, features that are set when we registered. 5283 */ 5284 hw_features = hw_enc_features; 5285 5286 /* get HW VLAN features that can be toggled */ 5287 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5288 5289 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5290 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5291 TC_U32_SUPPORT(adapter)) 5292 hw_features |= NETIF_F_HW_TC; 5293 5294 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5295 hw_features |= NETIF_F_GSO_UDP_L4; 5296 5297 netdev->hw_features |= hw_features | hw_vlan_features; 5298 vlan_features = iavf_get_netdev_vlan_features(adapter); 5299 5300 netdev->features |= hw_features | vlan_features; 5301 5302 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5303 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5304 5305 if (FDIR_FLTR_SUPPORT(adapter)) { 5306 netdev->hw_features |= NETIF_F_NTUPLE; 5307 netdev->features |= NETIF_F_NTUPLE; 5308 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5309 } 5310 5311 netdev->priv_flags |= IFF_UNICAST_FLT; 5312 5313 /* Do not turn on offloads when they are requested to be turned off. 5314 * TSO needs minimum 576 bytes to work correctly. 5315 */ 5316 if (netdev->wanted_features) { 5317 if (!(netdev->wanted_features & NETIF_F_TSO) || 5318 netdev->mtu < 576) 5319 netdev->features &= ~NETIF_F_TSO; 5320 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5321 netdev->mtu < 576) 5322 netdev->features &= ~NETIF_F_TSO6; 5323 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5324 netdev->features &= ~NETIF_F_TSO_ECN; 5325 if (!(netdev->wanted_features & NETIF_F_GRO)) 5326 netdev->features &= ~NETIF_F_GRO; 5327 if (!(netdev->wanted_features & NETIF_F_GSO)) 5328 netdev->features &= ~NETIF_F_GSO; 5329 } 5330 5331 return 0; 5332 } 5333 5334 /** 5335 * iavf_probe - Device Initialization Routine 5336 * @pdev: PCI device information struct 5337 * @ent: entry in iavf_pci_tbl 5338 * 5339 * Returns 0 on success, negative on failure 5340 * 5341 * iavf_probe initializes an adapter identified by a pci_dev structure. 5342 * The OS initialization, configuring of the adapter private structure, 5343 * and a hardware reset occur. 5344 **/ 5345 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5346 { 5347 struct net_device *netdev; 5348 struct iavf_adapter *adapter = NULL; 5349 struct iavf_hw *hw = NULL; 5350 int err, len; 5351 5352 err = pci_enable_device(pdev); 5353 if (err) 5354 return err; 5355 5356 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5357 if (err) { 5358 dev_err(&pdev->dev, 5359 "DMA configuration failed: 0x%x\n", err); 5360 goto err_dma; 5361 } 5362 5363 err = pci_request_regions(pdev, iavf_driver_name); 5364 if (err) { 5365 dev_err(&pdev->dev, 5366 "pci_request_regions failed 0x%x\n", err); 5367 goto err_pci_reg; 5368 } 5369 5370 pci_set_master(pdev); 5371 5372 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5373 IAVF_MAX_REQ_QUEUES); 5374 if (!netdev) { 5375 err = -ENOMEM; 5376 goto err_alloc_etherdev; 5377 } 5378 5379 SET_NETDEV_DEV(netdev, &pdev->dev); 5380 5381 pci_set_drvdata(pdev, netdev); 5382 adapter = netdev_priv(netdev); 5383 5384 adapter->netdev = netdev; 5385 adapter->pdev = pdev; 5386 5387 hw = &adapter->hw; 5388 hw->back = adapter; 5389 5390 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5391 iavf_driver_name); 5392 if (!adapter->wq) { 5393 err = -ENOMEM; 5394 goto err_alloc_wq; 5395 } 5396 5397 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5398 iavf_change_state(adapter, __IAVF_STARTUP); 5399 5400 /* Call save state here because it relies on the adapter struct. */ 5401 pci_save_state(pdev); 5402 5403 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5404 pci_resource_len(pdev, 0)); 5405 if (!hw->hw_addr) { 5406 err = -EIO; 5407 goto err_ioremap; 5408 } 5409 hw->vendor_id = pdev->vendor; 5410 hw->device_id = pdev->device; 5411 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5412 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5413 hw->subsystem_device_id = pdev->subsystem_device; 5414 hw->bus.device = PCI_SLOT(pdev->devfn); 5415 hw->bus.func = PCI_FUNC(pdev->devfn); 5416 hw->bus.bus_id = pdev->bus->number; 5417 5418 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5419 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5420 if (!adapter->qos_caps) { 5421 err = -ENOMEM; 5422 goto err_alloc_qos_cap; 5423 } 5424 5425 mutex_init(&hw->aq.asq_mutex); 5426 mutex_init(&hw->aq.arq_mutex); 5427 5428 spin_lock_init(&adapter->mac_vlan_list_lock); 5429 spin_lock_init(&adapter->cloud_filter_list_lock); 5430 spin_lock_init(&adapter->fdir_fltr_lock); 5431 spin_lock_init(&adapter->adv_rss_lock); 5432 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5433 5434 INIT_LIST_HEAD(&adapter->mac_filter_list); 5435 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5436 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5437 INIT_LIST_HEAD(&adapter->fdir_list_head); 5438 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5439 5440 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5441 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5442 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5443 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5444 5445 /* Setup the wait queue for indicating transition to down status */ 5446 init_waitqueue_head(&adapter->down_waitqueue); 5447 5448 /* Setup the wait queue for indicating transition to running state */ 5449 init_waitqueue_head(&adapter->reset_waitqueue); 5450 5451 /* Setup the wait queue for indicating virtchannel events */ 5452 init_waitqueue_head(&adapter->vc_waitqueue); 5453 5454 INIT_LIST_HEAD(&adapter->ptp.aq_cmds); 5455 init_waitqueue_head(&adapter->ptp.phc_time_waitqueue); 5456 mutex_init(&adapter->ptp.aq_cmd_lock); 5457 5458 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5459 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5460 /* Initialization goes on in the work. Do not add more of it below. */ 5461 return 0; 5462 5463 err_alloc_qos_cap: 5464 iounmap(hw->hw_addr); 5465 err_ioremap: 5466 destroy_workqueue(adapter->wq); 5467 err_alloc_wq: 5468 free_netdev(netdev); 5469 err_alloc_etherdev: 5470 pci_release_regions(pdev); 5471 err_pci_reg: 5472 err_dma: 5473 pci_disable_device(pdev); 5474 return err; 5475 } 5476 5477 /** 5478 * iavf_suspend - Power management suspend routine 5479 * @dev_d: device info pointer 5480 * 5481 * Called when the system (VM) is entering sleep/suspend. 5482 **/ 5483 static int iavf_suspend(struct device *dev_d) 5484 { 5485 struct net_device *netdev = dev_get_drvdata(dev_d); 5486 struct iavf_adapter *adapter = netdev_priv(netdev); 5487 bool running; 5488 5489 netif_device_detach(netdev); 5490 5491 running = netif_running(netdev); 5492 if (running) 5493 rtnl_lock(); 5494 netdev_lock(netdev); 5495 5496 if (running) 5497 iavf_down(adapter); 5498 5499 iavf_free_misc_irq(adapter); 5500 iavf_reset_interrupt_capability(adapter); 5501 5502 netdev_unlock(netdev); 5503 if (running) 5504 rtnl_unlock(); 5505 5506 return 0; 5507 } 5508 5509 /** 5510 * iavf_resume - Power management resume routine 5511 * @dev_d: device info pointer 5512 * 5513 * Called when the system (VM) is resumed from sleep/suspend. 5514 **/ 5515 static int iavf_resume(struct device *dev_d) 5516 { 5517 struct pci_dev *pdev = to_pci_dev(dev_d); 5518 struct iavf_adapter *adapter; 5519 u32 err; 5520 5521 adapter = iavf_pdev_to_adapter(pdev); 5522 5523 pci_set_master(pdev); 5524 5525 rtnl_lock(); 5526 err = iavf_set_interrupt_capability(adapter); 5527 if (err) { 5528 rtnl_unlock(); 5529 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5530 return err; 5531 } 5532 err = iavf_request_misc_irq(adapter); 5533 rtnl_unlock(); 5534 if (err) { 5535 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5536 return err; 5537 } 5538 5539 queue_work(adapter->wq, &adapter->reset_task); 5540 5541 netif_device_attach(adapter->netdev); 5542 5543 return err; 5544 } 5545 5546 /** 5547 * iavf_remove - Device Removal Routine 5548 * @pdev: PCI device information struct 5549 * 5550 * iavf_remove is called by the PCI subsystem to alert the driver 5551 * that it should release a PCI device. The could be caused by a 5552 * Hot-Plug event, or because the driver is going to be removed from 5553 * memory. 5554 **/ 5555 static void iavf_remove(struct pci_dev *pdev) 5556 { 5557 struct iavf_fdir_fltr *fdir, *fdirtmp; 5558 struct iavf_vlan_filter *vlf, *vlftmp; 5559 struct iavf_cloud_filter *cf, *cftmp; 5560 struct iavf_adv_rss *rss, *rsstmp; 5561 struct iavf_mac_filter *f, *ftmp; 5562 struct iavf_adapter *adapter; 5563 struct net_device *netdev; 5564 struct iavf_hw *hw; 5565 5566 /* Don't proceed with remove if netdev is already freed */ 5567 netdev = pci_get_drvdata(pdev); 5568 if (!netdev) 5569 return; 5570 5571 adapter = iavf_pdev_to_adapter(pdev); 5572 hw = &adapter->hw; 5573 5574 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5575 return; 5576 5577 /* Wait until port initialization is complete. 5578 * There are flows where register/unregister netdev may race. 5579 */ 5580 while (1) { 5581 netdev_lock(netdev); 5582 if (adapter->state == __IAVF_RUNNING || 5583 adapter->state == __IAVF_DOWN || 5584 adapter->state == __IAVF_INIT_FAILED) { 5585 netdev_unlock(netdev); 5586 break; 5587 } 5588 /* Simply return if we already went through iavf_shutdown */ 5589 if (adapter->state == __IAVF_REMOVE) { 5590 netdev_unlock(netdev); 5591 return; 5592 } 5593 5594 netdev_unlock(netdev); 5595 usleep_range(500, 1000); 5596 } 5597 cancel_delayed_work_sync(&adapter->watchdog_task); 5598 cancel_work_sync(&adapter->finish_config); 5599 5600 if (netdev->reg_state == NETREG_REGISTERED) 5601 unregister_netdev(netdev); 5602 5603 netdev_lock(netdev); 5604 dev_info(&adapter->pdev->dev, "Removing device\n"); 5605 iavf_change_state(adapter, __IAVF_REMOVE); 5606 5607 iavf_request_reset(adapter); 5608 msleep(50); 5609 /* If the FW isn't responding, kick it once, but only once. */ 5610 if (!iavf_asq_done(hw)) { 5611 iavf_request_reset(adapter); 5612 msleep(50); 5613 } 5614 5615 iavf_ptp_release(adapter); 5616 5617 iavf_misc_irq_disable(adapter); 5618 /* Shut down all the garbage mashers on the detention level */ 5619 netdev_unlock(netdev); 5620 cancel_work_sync(&adapter->reset_task); 5621 cancel_delayed_work_sync(&adapter->watchdog_task); 5622 cancel_work_sync(&adapter->adminq_task); 5623 netdev_lock(netdev); 5624 5625 adapter->aq_required = 0; 5626 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5627 5628 iavf_free_all_tx_resources(adapter); 5629 iavf_free_all_rx_resources(adapter); 5630 iavf_free_misc_irq(adapter); 5631 iavf_free_interrupt_scheme(adapter); 5632 5633 iavf_free_rss(adapter); 5634 5635 if (hw->aq.asq.count) 5636 iavf_shutdown_adminq(hw); 5637 5638 /* destroy the locks only once, here */ 5639 mutex_destroy(&hw->aq.arq_mutex); 5640 mutex_destroy(&hw->aq.asq_mutex); 5641 netdev_unlock(netdev); 5642 5643 iounmap(hw->hw_addr); 5644 pci_release_regions(pdev); 5645 kfree(adapter->vf_res); 5646 spin_lock_bh(&adapter->mac_vlan_list_lock); 5647 /* If we got removed before an up/down sequence, we've got a filter 5648 * hanging out there that we need to get rid of. 5649 */ 5650 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5651 list_del(&f->list); 5652 kfree(f); 5653 } 5654 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5655 list) { 5656 list_del(&vlf->list); 5657 kfree(vlf); 5658 } 5659 5660 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5661 5662 spin_lock_bh(&adapter->cloud_filter_list_lock); 5663 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5664 list_del(&cf->list); 5665 kfree(cf); 5666 } 5667 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5668 5669 spin_lock_bh(&adapter->fdir_fltr_lock); 5670 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5671 list_del(&fdir->list); 5672 kfree(fdir); 5673 } 5674 spin_unlock_bh(&adapter->fdir_fltr_lock); 5675 5676 spin_lock_bh(&adapter->adv_rss_lock); 5677 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5678 list) { 5679 list_del(&rss->list); 5680 kfree(rss); 5681 } 5682 spin_unlock_bh(&adapter->adv_rss_lock); 5683 5684 destroy_workqueue(adapter->wq); 5685 5686 pci_set_drvdata(pdev, NULL); 5687 5688 free_netdev(netdev); 5689 5690 pci_disable_device(pdev); 5691 } 5692 5693 /** 5694 * iavf_shutdown - Shutdown the device in preparation for a reboot 5695 * @pdev: pci device structure 5696 **/ 5697 static void iavf_shutdown(struct pci_dev *pdev) 5698 { 5699 iavf_remove(pdev); 5700 5701 if (system_state == SYSTEM_POWER_OFF) 5702 pci_set_power_state(pdev, PCI_D3hot); 5703 } 5704 5705 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5706 5707 static struct pci_driver iavf_driver = { 5708 .name = iavf_driver_name, 5709 .id_table = iavf_pci_tbl, 5710 .probe = iavf_probe, 5711 .remove = iavf_remove, 5712 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5713 .shutdown = iavf_shutdown, 5714 }; 5715 5716 /** 5717 * iavf_init_module - Driver Registration Routine 5718 * 5719 * iavf_init_module is the first routine called when the driver is 5720 * loaded. All it does is register with the PCI subsystem. 5721 **/ 5722 static int __init iavf_init_module(void) 5723 { 5724 pr_info("iavf: %s\n", iavf_driver_string); 5725 5726 pr_info("%s\n", iavf_copyright); 5727 5728 return pci_register_driver(&iavf_driver); 5729 } 5730 5731 module_init(iavf_init_module); 5732 5733 /** 5734 * iavf_exit_module - Driver Exit Cleanup Routine 5735 * 5736 * iavf_exit_module is called just before the driver is removed 5737 * from memory. 5738 **/ 5739 static void __exit iavf_exit_module(void) 5740 { 5741 pci_unregister_driver(&iavf_driver); 5742 } 5743 5744 module_exit(iavf_exit_module); 5745 5746 /* iavf_main.c */ 5747