xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140 	if (!(adapter->flags &
141 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 		queue_work(iavf_wq, &adapter->reset_task);
144 	}
145 }
146 
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  * @txqueue: queue number that is timing out
151  **/
152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
153 {
154 	struct iavf_adapter *adapter = netdev_priv(netdev);
155 
156 	adapter->tx_timeout_count++;
157 	iavf_schedule_reset(adapter);
158 }
159 
160 /**
161  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
162  * @adapter: board private structure
163  **/
164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
165 {
166 	struct iavf_hw *hw = &adapter->hw;
167 
168 	if (!adapter->msix_entries)
169 		return;
170 
171 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
172 
173 	iavf_flush(hw);
174 
175 	synchronize_irq(adapter->msix_entries[0].vector);
176 }
177 
178 /**
179  * iavf_misc_irq_enable - Enable default interrupt generation settings
180  * @adapter: board private structure
181  **/
182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
183 {
184 	struct iavf_hw *hw = &adapter->hw;
185 
186 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
187 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
188 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
189 
190 	iavf_flush(hw);
191 }
192 
193 /**
194  * iavf_irq_disable - Mask off interrupt generation on the NIC
195  * @adapter: board private structure
196  **/
197 static void iavf_irq_disable(struct iavf_adapter *adapter)
198 {
199 	int i;
200 	struct iavf_hw *hw = &adapter->hw;
201 
202 	if (!adapter->msix_entries)
203 		return;
204 
205 	for (i = 1; i < adapter->num_msix_vectors; i++) {
206 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
207 		synchronize_irq(adapter->msix_entries[i].vector);
208 	}
209 	iavf_flush(hw);
210 }
211 
212 /**
213  * iavf_irq_enable_queues - Enable interrupt for specified queues
214  * @adapter: board private structure
215  * @mask: bitmap of queues to enable
216  **/
217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
218 {
219 	struct iavf_hw *hw = &adapter->hw;
220 	int i;
221 
222 	for (i = 1; i < adapter->num_msix_vectors; i++) {
223 		if (mask & BIT(i - 1)) {
224 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
225 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
226 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
227 		}
228 	}
229 }
230 
231 /**
232  * iavf_irq_enable - Enable default interrupt generation settings
233  * @adapter: board private structure
234  * @flush: boolean value whether to run rd32()
235  **/
236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
237 {
238 	struct iavf_hw *hw = &adapter->hw;
239 
240 	iavf_misc_irq_enable(adapter);
241 	iavf_irq_enable_queues(adapter, ~0);
242 
243 	if (flush)
244 		iavf_flush(hw);
245 }
246 
247 /**
248  * iavf_msix_aq - Interrupt handler for vector 0
249  * @irq: interrupt number
250  * @data: pointer to netdev
251  **/
252 static irqreturn_t iavf_msix_aq(int irq, void *data)
253 {
254 	struct net_device *netdev = data;
255 	struct iavf_adapter *adapter = netdev_priv(netdev);
256 	struct iavf_hw *hw = &adapter->hw;
257 
258 	/* handle non-queue interrupts, these reads clear the registers */
259 	rd32(hw, IAVF_VFINT_ICR01);
260 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
261 
262 	/* schedule work on the private workqueue */
263 	queue_work(iavf_wq, &adapter->adminq_task);
264 
265 	return IRQ_HANDLED;
266 }
267 
268 /**
269  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
270  * @irq: interrupt number
271  * @data: pointer to a q_vector
272  **/
273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
274 {
275 	struct iavf_q_vector *q_vector = data;
276 
277 	if (!q_vector->tx.ring && !q_vector->rx.ring)
278 		return IRQ_HANDLED;
279 
280 	napi_schedule_irqoff(&q_vector->napi);
281 
282 	return IRQ_HANDLED;
283 }
284 
285 /**
286  * iavf_map_vector_to_rxq - associate irqs with rx queues
287  * @adapter: board private structure
288  * @v_idx: interrupt number
289  * @r_idx: queue number
290  **/
291 static void
292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
293 {
294 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
295 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
296 	struct iavf_hw *hw = &adapter->hw;
297 
298 	rx_ring->q_vector = q_vector;
299 	rx_ring->next = q_vector->rx.ring;
300 	rx_ring->vsi = &adapter->vsi;
301 	q_vector->rx.ring = rx_ring;
302 	q_vector->rx.count++;
303 	q_vector->rx.next_update = jiffies + 1;
304 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
305 	q_vector->ring_mask |= BIT(r_idx);
306 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
307 	     q_vector->rx.current_itr >> 1);
308 	q_vector->rx.current_itr = q_vector->rx.target_itr;
309 }
310 
311 /**
312  * iavf_map_vector_to_txq - associate irqs with tx queues
313  * @adapter: board private structure
314  * @v_idx: interrupt number
315  * @t_idx: queue number
316  **/
317 static void
318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
319 {
320 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
321 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
322 	struct iavf_hw *hw = &adapter->hw;
323 
324 	tx_ring->q_vector = q_vector;
325 	tx_ring->next = q_vector->tx.ring;
326 	tx_ring->vsi = &adapter->vsi;
327 	q_vector->tx.ring = tx_ring;
328 	q_vector->tx.count++;
329 	q_vector->tx.next_update = jiffies + 1;
330 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
331 	q_vector->num_ringpairs++;
332 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
333 	     q_vector->tx.target_itr >> 1);
334 	q_vector->tx.current_itr = q_vector->tx.target_itr;
335 }
336 
337 /**
338  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
339  * @adapter: board private structure to initialize
340  *
341  * This function maps descriptor rings to the queue-specific vectors
342  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
343  * one vector per ring/queue, but on a constrained vector budget, we
344  * group the rings as "efficiently" as possible.  You would add new
345  * mapping configurations in here.
346  **/
347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
348 {
349 	int rings_remaining = adapter->num_active_queues;
350 	int ridx = 0, vidx = 0;
351 	int q_vectors;
352 
353 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
354 
355 	for (; ridx < rings_remaining; ridx++) {
356 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
357 		iavf_map_vector_to_txq(adapter, vidx, ridx);
358 
359 		/* In the case where we have more queues than vectors, continue
360 		 * round-robin on vectors until all queues are mapped.
361 		 */
362 		if (++vidx >= q_vectors)
363 			vidx = 0;
364 	}
365 
366 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
367 }
368 
369 /**
370  * iavf_irq_affinity_notify - Callback for affinity changes
371  * @notify: context as to what irq was changed
372  * @mask: the new affinity mask
373  *
374  * This is a callback function used by the irq_set_affinity_notifier function
375  * so that we may register to receive changes to the irq affinity masks.
376  **/
377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
378 				     const cpumask_t *mask)
379 {
380 	struct iavf_q_vector *q_vector =
381 		container_of(notify, struct iavf_q_vector, affinity_notify);
382 
383 	cpumask_copy(&q_vector->affinity_mask, mask);
384 }
385 
386 /**
387  * iavf_irq_affinity_release - Callback for affinity notifier release
388  * @ref: internal core kernel usage
389  *
390  * This is a callback function used by the irq_set_affinity_notifier function
391  * to inform the current notification subscriber that they will no longer
392  * receive notifications.
393  **/
394 static void iavf_irq_affinity_release(struct kref *ref) {}
395 
396 /**
397  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
398  * @adapter: board private structure
399  * @basename: device basename
400  *
401  * Allocates MSI-X vectors for tx and rx handling, and requests
402  * interrupts from the kernel.
403  **/
404 static int
405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
406 {
407 	unsigned int vector, q_vectors;
408 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
409 	int irq_num, err;
410 	int cpu;
411 
412 	iavf_irq_disable(adapter);
413 	/* Decrement for Other and TCP Timer vectors */
414 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
415 
416 	for (vector = 0; vector < q_vectors; vector++) {
417 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
418 
419 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
420 
421 		if (q_vector->tx.ring && q_vector->rx.ring) {
422 			snprintf(q_vector->name, sizeof(q_vector->name),
423 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
424 			tx_int_idx++;
425 		} else if (q_vector->rx.ring) {
426 			snprintf(q_vector->name, sizeof(q_vector->name),
427 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
428 		} else if (q_vector->tx.ring) {
429 			snprintf(q_vector->name, sizeof(q_vector->name),
430 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
431 		} else {
432 			/* skip this unused q_vector */
433 			continue;
434 		}
435 		err = request_irq(irq_num,
436 				  iavf_msix_clean_rings,
437 				  0,
438 				  q_vector->name,
439 				  q_vector);
440 		if (err) {
441 			dev_info(&adapter->pdev->dev,
442 				 "Request_irq failed, error: %d\n", err);
443 			goto free_queue_irqs;
444 		}
445 		/* register for affinity change notifications */
446 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
447 		q_vector->affinity_notify.release =
448 						   iavf_irq_affinity_release;
449 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
450 		/* Spread the IRQ affinity hints across online CPUs. Note that
451 		 * get_cpu_mask returns a mask with a permanent lifetime so
452 		 * it's safe to use as a hint for irq_set_affinity_hint.
453 		 */
454 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
455 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
456 	}
457 
458 	return 0;
459 
460 free_queue_irqs:
461 	while (vector) {
462 		vector--;
463 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
464 		irq_set_affinity_notifier(irq_num, NULL);
465 		irq_set_affinity_hint(irq_num, NULL);
466 		free_irq(irq_num, &adapter->q_vectors[vector]);
467 	}
468 	return err;
469 }
470 
471 /**
472  * iavf_request_misc_irq - Initialize MSI-X interrupts
473  * @adapter: board private structure
474  *
475  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
476  * vector is only for the admin queue, and stays active even when the netdev
477  * is closed.
478  **/
479 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
480 {
481 	struct net_device *netdev = adapter->netdev;
482 	int err;
483 
484 	snprintf(adapter->misc_vector_name,
485 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
486 		 dev_name(&adapter->pdev->dev));
487 	err = request_irq(adapter->msix_entries[0].vector,
488 			  &iavf_msix_aq, 0,
489 			  adapter->misc_vector_name, netdev);
490 	if (err) {
491 		dev_err(&adapter->pdev->dev,
492 			"request_irq for %s failed: %d\n",
493 			adapter->misc_vector_name, err);
494 		free_irq(adapter->msix_entries[0].vector, netdev);
495 	}
496 	return err;
497 }
498 
499 /**
500  * iavf_free_traffic_irqs - Free MSI-X interrupts
501  * @adapter: board private structure
502  *
503  * Frees all MSI-X vectors other than 0.
504  **/
505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
506 {
507 	int vector, irq_num, q_vectors;
508 
509 	if (!adapter->msix_entries)
510 		return;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (vector = 0; vector < q_vectors; vector++) {
515 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
516 		irq_set_affinity_notifier(irq_num, NULL);
517 		irq_set_affinity_hint(irq_num, NULL);
518 		free_irq(irq_num, &adapter->q_vectors[vector]);
519 	}
520 }
521 
522 /**
523  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
524  * @adapter: board private structure
525  *
526  * Frees MSI-X vector 0.
527  **/
528 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
529 {
530 	struct net_device *netdev = adapter->netdev;
531 
532 	if (!adapter->msix_entries)
533 		return;
534 
535 	free_irq(adapter->msix_entries[0].vector, netdev);
536 }
537 
538 /**
539  * iavf_configure_tx - Configure Transmit Unit after Reset
540  * @adapter: board private structure
541  *
542  * Configure the Tx unit of the MAC after a reset.
543  **/
544 static void iavf_configure_tx(struct iavf_adapter *adapter)
545 {
546 	struct iavf_hw *hw = &adapter->hw;
547 	int i;
548 
549 	for (i = 0; i < adapter->num_active_queues; i++)
550 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
551 }
552 
553 /**
554  * iavf_configure_rx - Configure Receive Unit after Reset
555  * @adapter: board private structure
556  *
557  * Configure the Rx unit of the MAC after a reset.
558  **/
559 static void iavf_configure_rx(struct iavf_adapter *adapter)
560 {
561 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
562 	struct iavf_hw *hw = &adapter->hw;
563 	int i;
564 
565 	/* Legacy Rx will always default to a 2048 buffer size. */
566 #if (PAGE_SIZE < 8192)
567 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
568 		struct net_device *netdev = adapter->netdev;
569 
570 		/* For jumbo frames on systems with 4K pages we have to use
571 		 * an order 1 page, so we might as well increase the size
572 		 * of our Rx buffer to make better use of the available space
573 		 */
574 		rx_buf_len = IAVF_RXBUFFER_3072;
575 
576 		/* We use a 1536 buffer size for configurations with
577 		 * standard Ethernet mtu.  On x86 this gives us enough room
578 		 * for shared info and 192 bytes of padding.
579 		 */
580 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
581 		    (netdev->mtu <= ETH_DATA_LEN))
582 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
583 	}
584 #endif
585 
586 	for (i = 0; i < adapter->num_active_queues; i++) {
587 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
588 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
589 
590 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
591 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
592 		else
593 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
594 	}
595 }
596 
597 /**
598  * iavf_find_vlan - Search filter list for specific vlan filter
599  * @adapter: board private structure
600  * @vlan: vlan tag
601  *
602  * Returns ptr to the filter object or NULL. Must be called while holding the
603  * mac_vlan_list_lock.
604  **/
605 static struct
606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
607 {
608 	struct iavf_vlan_filter *f;
609 
610 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
611 		if (vlan == f->vlan)
612 			return f;
613 	}
614 	return NULL;
615 }
616 
617 /**
618  * iavf_add_vlan - Add a vlan filter to the list
619  * @adapter: board private structure
620  * @vlan: VLAN tag
621  *
622  * Returns ptr to the filter object or NULL when no memory available.
623  **/
624 static struct
625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
626 {
627 	struct iavf_vlan_filter *f = NULL;
628 
629 	spin_lock_bh(&adapter->mac_vlan_list_lock);
630 
631 	f = iavf_find_vlan(adapter, vlan);
632 	if (!f) {
633 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
634 		if (!f)
635 			goto clearout;
636 
637 		f->vlan = vlan;
638 
639 		list_add_tail(&f->list, &adapter->vlan_filter_list);
640 		f->add = true;
641 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
642 	}
643 
644 clearout:
645 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
646 	return f;
647 }
648 
649 /**
650  * iavf_del_vlan - Remove a vlan filter from the list
651  * @adapter: board private structure
652  * @vlan: VLAN tag
653  **/
654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
655 {
656 	struct iavf_vlan_filter *f;
657 
658 	spin_lock_bh(&adapter->mac_vlan_list_lock);
659 
660 	f = iavf_find_vlan(adapter, vlan);
661 	if (f) {
662 		f->remove = true;
663 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
664 	}
665 
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 }
668 
669 /**
670  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
671  * @netdev: network device struct
672  * @proto: unused protocol data
673  * @vid: VLAN tag
674  **/
675 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
676 				__always_unused __be16 proto, u16 vid)
677 {
678 	struct iavf_adapter *adapter = netdev_priv(netdev);
679 
680 	if (!VLAN_ALLOWED(adapter))
681 		return -EIO;
682 	if (iavf_add_vlan(adapter, vid) == NULL)
683 		return -ENOMEM;
684 	return 0;
685 }
686 
687 /**
688  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
689  * @netdev: network device struct
690  * @proto: unused protocol data
691  * @vid: VLAN tag
692  **/
693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
694 				 __always_unused __be16 proto, u16 vid)
695 {
696 	struct iavf_adapter *adapter = netdev_priv(netdev);
697 
698 	if (VLAN_ALLOWED(adapter)) {
699 		iavf_del_vlan(adapter, vid);
700 		return 0;
701 	}
702 	return -EIO;
703 }
704 
705 /**
706  * iavf_find_filter - Search filter list for specific mac filter
707  * @adapter: board private structure
708  * @macaddr: the MAC address
709  *
710  * Returns ptr to the filter object or NULL. Must be called while holding the
711  * mac_vlan_list_lock.
712  **/
713 static struct
714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
715 				  const u8 *macaddr)
716 {
717 	struct iavf_mac_filter *f;
718 
719 	if (!macaddr)
720 		return NULL;
721 
722 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
723 		if (ether_addr_equal(macaddr, f->macaddr))
724 			return f;
725 	}
726 	return NULL;
727 }
728 
729 /**
730  * iavf_add_filter - Add a mac filter to the filter list
731  * @adapter: board private structure
732  * @macaddr: the MAC address
733  *
734  * Returns ptr to the filter object or NULL when no memory available.
735  **/
736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
737 					const u8 *macaddr)
738 {
739 	struct iavf_mac_filter *f;
740 
741 	if (!macaddr)
742 		return NULL;
743 
744 	f = iavf_find_filter(adapter, macaddr);
745 	if (!f) {
746 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
747 		if (!f)
748 			return f;
749 
750 		ether_addr_copy(f->macaddr, macaddr);
751 
752 		list_add_tail(&f->list, &adapter->mac_filter_list);
753 		f->add = true;
754 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
755 	} else {
756 		f->remove = false;
757 	}
758 
759 	return f;
760 }
761 
762 /**
763  * iavf_set_mac - NDO callback to set port mac address
764  * @netdev: network interface device structure
765  * @p: pointer to an address structure
766  *
767  * Returns 0 on success, negative on failure
768  **/
769 static int iavf_set_mac(struct net_device *netdev, void *p)
770 {
771 	struct iavf_adapter *adapter = netdev_priv(netdev);
772 	struct iavf_hw *hw = &adapter->hw;
773 	struct iavf_mac_filter *f;
774 	struct sockaddr *addr = p;
775 
776 	if (!is_valid_ether_addr(addr->sa_data))
777 		return -EADDRNOTAVAIL;
778 
779 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
780 		return 0;
781 
782 	spin_lock_bh(&adapter->mac_vlan_list_lock);
783 
784 	f = iavf_find_filter(adapter, hw->mac.addr);
785 	if (f) {
786 		f->remove = true;
787 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
788 	}
789 
790 	f = iavf_add_filter(adapter, addr->sa_data);
791 
792 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
793 
794 	if (f) {
795 		ether_addr_copy(hw->mac.addr, addr->sa_data);
796 	}
797 
798 	return (f == NULL) ? -ENOMEM : 0;
799 }
800 
801 /**
802  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
803  * @netdev: the netdevice
804  * @addr: address to add
805  *
806  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
807  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
808  */
809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
810 {
811 	struct iavf_adapter *adapter = netdev_priv(netdev);
812 
813 	if (iavf_add_filter(adapter, addr))
814 		return 0;
815 	else
816 		return -ENOMEM;
817 }
818 
819 /**
820  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
821  * @netdev: the netdevice
822  * @addr: address to add
823  *
824  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
825  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
826  */
827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
828 {
829 	struct iavf_adapter *adapter = netdev_priv(netdev);
830 	struct iavf_mac_filter *f;
831 
832 	/* Under some circumstances, we might receive a request to delete
833 	 * our own device address from our uc list. Because we store the
834 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
835 	 * such requests and not delete our device address from this list.
836 	 */
837 	if (ether_addr_equal(addr, netdev->dev_addr))
838 		return 0;
839 
840 	f = iavf_find_filter(adapter, addr);
841 	if (f) {
842 		f->remove = true;
843 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
844 	}
845 	return 0;
846 }
847 
848 /**
849  * iavf_set_rx_mode - NDO callback to set the netdev filters
850  * @netdev: network interface device structure
851  **/
852 static void iavf_set_rx_mode(struct net_device *netdev)
853 {
854 	struct iavf_adapter *adapter = netdev_priv(netdev);
855 
856 	spin_lock_bh(&adapter->mac_vlan_list_lock);
857 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
859 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
860 
861 	if (netdev->flags & IFF_PROMISC &&
862 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
863 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
864 	else if (!(netdev->flags & IFF_PROMISC) &&
865 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
866 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
867 
868 	if (netdev->flags & IFF_ALLMULTI &&
869 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
870 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
871 	else if (!(netdev->flags & IFF_ALLMULTI) &&
872 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
873 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
874 }
875 
876 /**
877  * iavf_napi_enable_all - enable NAPI on all queue vectors
878  * @adapter: board private structure
879  **/
880 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
881 {
882 	int q_idx;
883 	struct iavf_q_vector *q_vector;
884 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
885 
886 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
887 		struct napi_struct *napi;
888 
889 		q_vector = &adapter->q_vectors[q_idx];
890 		napi = &q_vector->napi;
891 		napi_enable(napi);
892 	}
893 }
894 
895 /**
896  * iavf_napi_disable_all - disable NAPI on all queue vectors
897  * @adapter: board private structure
898  **/
899 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
900 {
901 	int q_idx;
902 	struct iavf_q_vector *q_vector;
903 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
904 
905 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
906 		q_vector = &adapter->q_vectors[q_idx];
907 		napi_disable(&q_vector->napi);
908 	}
909 }
910 
911 /**
912  * iavf_configure - set up transmit and receive data structures
913  * @adapter: board private structure
914  **/
915 static void iavf_configure(struct iavf_adapter *adapter)
916 {
917 	struct net_device *netdev = adapter->netdev;
918 	int i;
919 
920 	iavf_set_rx_mode(netdev);
921 
922 	iavf_configure_tx(adapter);
923 	iavf_configure_rx(adapter);
924 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
925 
926 	for (i = 0; i < adapter->num_active_queues; i++) {
927 		struct iavf_ring *ring = &adapter->rx_rings[i];
928 
929 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
930 	}
931 }
932 
933 /**
934  * iavf_up_complete - Finish the last steps of bringing up a connection
935  * @adapter: board private structure
936  *
937  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
938  **/
939 static void iavf_up_complete(struct iavf_adapter *adapter)
940 {
941 	adapter->state = __IAVF_RUNNING;
942 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
943 
944 	iavf_napi_enable_all(adapter);
945 
946 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
947 	if (CLIENT_ENABLED(adapter))
948 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
949 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
950 }
951 
952 /**
953  * iavf_down - Shutdown the connection processing
954  * @adapter: board private structure
955  *
956  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
957  **/
958 void iavf_down(struct iavf_adapter *adapter)
959 {
960 	struct net_device *netdev = adapter->netdev;
961 	struct iavf_vlan_filter *vlf;
962 	struct iavf_mac_filter *f;
963 	struct iavf_cloud_filter *cf;
964 
965 	if (adapter->state <= __IAVF_DOWN_PENDING)
966 		return;
967 
968 	netif_carrier_off(netdev);
969 	netif_tx_disable(netdev);
970 	adapter->link_up = false;
971 	iavf_napi_disable_all(adapter);
972 	iavf_irq_disable(adapter);
973 
974 	spin_lock_bh(&adapter->mac_vlan_list_lock);
975 
976 	/* clear the sync flag on all filters */
977 	__dev_uc_unsync(adapter->netdev, NULL);
978 	__dev_mc_unsync(adapter->netdev, NULL);
979 
980 	/* remove all MAC filters */
981 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
982 		f->remove = true;
983 	}
984 
985 	/* remove all VLAN filters */
986 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
987 		vlf->remove = true;
988 	}
989 
990 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
991 
992 	/* remove all cloud filters */
993 	spin_lock_bh(&adapter->cloud_filter_list_lock);
994 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
995 		cf->del = true;
996 	}
997 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
998 
999 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1000 	    adapter->state != __IAVF_RESETTING) {
1001 		/* cancel any current operation */
1002 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1003 		/* Schedule operations to close down the HW. Don't wait
1004 		 * here for this to complete. The watchdog is still running
1005 		 * and it will take care of this.
1006 		 */
1007 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1009 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1010 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1011 	}
1012 
1013 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1014 }
1015 
1016 /**
1017  * iavf_acquire_msix_vectors - Setup the MSIX capability
1018  * @adapter: board private structure
1019  * @vectors: number of vectors to request
1020  *
1021  * Work with the OS to set up the MSIX vectors needed.
1022  *
1023  * Returns 0 on success, negative on failure
1024  **/
1025 static int
1026 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1027 {
1028 	int err, vector_threshold;
1029 
1030 	/* We'll want at least 3 (vector_threshold):
1031 	 * 0) Other (Admin Queue and link, mostly)
1032 	 * 1) TxQ[0] Cleanup
1033 	 * 2) RxQ[0] Cleanup
1034 	 */
1035 	vector_threshold = MIN_MSIX_COUNT;
1036 
1037 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1038 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1039 	 * Right now, we simply care about how many we'll get; we'll
1040 	 * set them up later while requesting irq's.
1041 	 */
1042 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1043 				    vector_threshold, vectors);
1044 	if (err < 0) {
1045 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1046 		kfree(adapter->msix_entries);
1047 		adapter->msix_entries = NULL;
1048 		return err;
1049 	}
1050 
1051 	/* Adjust for only the vectors we'll use, which is minimum
1052 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1053 	 * vectors we were allocated.
1054 	 */
1055 	adapter->num_msix_vectors = err;
1056 	return 0;
1057 }
1058 
1059 /**
1060  * iavf_free_queues - Free memory for all rings
1061  * @adapter: board private structure to initialize
1062  *
1063  * Free all of the memory associated with queue pairs.
1064  **/
1065 static void iavf_free_queues(struct iavf_adapter *adapter)
1066 {
1067 	if (!adapter->vsi_res)
1068 		return;
1069 	adapter->num_active_queues = 0;
1070 	kfree(adapter->tx_rings);
1071 	adapter->tx_rings = NULL;
1072 	kfree(adapter->rx_rings);
1073 	adapter->rx_rings = NULL;
1074 }
1075 
1076 /**
1077  * iavf_alloc_queues - Allocate memory for all rings
1078  * @adapter: board private structure to initialize
1079  *
1080  * We allocate one ring per queue at run-time since we don't know the
1081  * number of queues at compile-time.  The polling_netdev array is
1082  * intended for Multiqueue, but should work fine with a single queue.
1083  **/
1084 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1085 {
1086 	int i, num_active_queues;
1087 
1088 	/* If we're in reset reallocating queues we don't actually know yet for
1089 	 * certain the PF gave us the number of queues we asked for but we'll
1090 	 * assume it did.  Once basic reset is finished we'll confirm once we
1091 	 * start negotiating config with PF.
1092 	 */
1093 	if (adapter->num_req_queues)
1094 		num_active_queues = adapter->num_req_queues;
1095 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1096 		 adapter->num_tc)
1097 		num_active_queues = adapter->ch_config.total_qps;
1098 	else
1099 		num_active_queues = min_t(int,
1100 					  adapter->vsi_res->num_queue_pairs,
1101 					  (int)(num_online_cpus()));
1102 
1103 
1104 	adapter->tx_rings = kcalloc(num_active_queues,
1105 				    sizeof(struct iavf_ring), GFP_KERNEL);
1106 	if (!adapter->tx_rings)
1107 		goto err_out;
1108 	adapter->rx_rings = kcalloc(num_active_queues,
1109 				    sizeof(struct iavf_ring), GFP_KERNEL);
1110 	if (!adapter->rx_rings)
1111 		goto err_out;
1112 
1113 	for (i = 0; i < num_active_queues; i++) {
1114 		struct iavf_ring *tx_ring;
1115 		struct iavf_ring *rx_ring;
1116 
1117 		tx_ring = &adapter->tx_rings[i];
1118 
1119 		tx_ring->queue_index = i;
1120 		tx_ring->netdev = adapter->netdev;
1121 		tx_ring->dev = &adapter->pdev->dev;
1122 		tx_ring->count = adapter->tx_desc_count;
1123 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1124 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1125 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1126 
1127 		rx_ring = &adapter->rx_rings[i];
1128 		rx_ring->queue_index = i;
1129 		rx_ring->netdev = adapter->netdev;
1130 		rx_ring->dev = &adapter->pdev->dev;
1131 		rx_ring->count = adapter->rx_desc_count;
1132 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1133 	}
1134 
1135 	adapter->num_active_queues = num_active_queues;
1136 
1137 	return 0;
1138 
1139 err_out:
1140 	iavf_free_queues(adapter);
1141 	return -ENOMEM;
1142 }
1143 
1144 /**
1145  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1146  * @adapter: board private structure to initialize
1147  *
1148  * Attempt to configure the interrupts using the best available
1149  * capabilities of the hardware and the kernel.
1150  **/
1151 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1152 {
1153 	int vector, v_budget;
1154 	int pairs = 0;
1155 	int err = 0;
1156 
1157 	if (!adapter->vsi_res) {
1158 		err = -EIO;
1159 		goto out;
1160 	}
1161 	pairs = adapter->num_active_queues;
1162 
1163 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1164 	 * us much good if we have more vectors than CPUs. However, we already
1165 	 * limit the total number of queues by the number of CPUs so we do not
1166 	 * need any further limiting here.
1167 	 */
1168 	v_budget = min_t(int, pairs + NONQ_VECS,
1169 			 (int)adapter->vf_res->max_vectors);
1170 
1171 	adapter->msix_entries = kcalloc(v_budget,
1172 					sizeof(struct msix_entry), GFP_KERNEL);
1173 	if (!adapter->msix_entries) {
1174 		err = -ENOMEM;
1175 		goto out;
1176 	}
1177 
1178 	for (vector = 0; vector < v_budget; vector++)
1179 		adapter->msix_entries[vector].entry = vector;
1180 
1181 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1182 
1183 out:
1184 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1185 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1186 	return err;
1187 }
1188 
1189 /**
1190  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1191  * @adapter: board private structure
1192  *
1193  * Return 0 on success, negative on failure
1194  **/
1195 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1196 {
1197 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1198 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1199 	struct iavf_hw *hw = &adapter->hw;
1200 	int ret = 0;
1201 
1202 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1203 		/* bail because we already have a command pending */
1204 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1205 			adapter->current_op);
1206 		return -EBUSY;
1207 	}
1208 
1209 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1210 	if (ret) {
1211 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1212 			iavf_stat_str(hw, ret),
1213 			iavf_aq_str(hw, hw->aq.asq_last_status));
1214 		return ret;
1215 
1216 	}
1217 
1218 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1219 				  adapter->rss_lut, adapter->rss_lut_size);
1220 	if (ret) {
1221 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1222 			iavf_stat_str(hw, ret),
1223 			iavf_aq_str(hw, hw->aq.asq_last_status));
1224 	}
1225 
1226 	return ret;
1227 
1228 }
1229 
1230 /**
1231  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1232  * @adapter: board private structure
1233  *
1234  * Returns 0 on success, negative on failure
1235  **/
1236 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1237 {
1238 	struct iavf_hw *hw = &adapter->hw;
1239 	u32 *dw;
1240 	u16 i;
1241 
1242 	dw = (u32 *)adapter->rss_key;
1243 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1244 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1245 
1246 	dw = (u32 *)adapter->rss_lut;
1247 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1248 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1249 
1250 	iavf_flush(hw);
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * iavf_config_rss - Configure RSS keys and lut
1257  * @adapter: board private structure
1258  *
1259  * Returns 0 on success, negative on failure
1260  **/
1261 int iavf_config_rss(struct iavf_adapter *adapter)
1262 {
1263 
1264 	if (RSS_PF(adapter)) {
1265 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1266 					IAVF_FLAG_AQ_SET_RSS_KEY;
1267 		return 0;
1268 	} else if (RSS_AQ(adapter)) {
1269 		return iavf_config_rss_aq(adapter);
1270 	} else {
1271 		return iavf_config_rss_reg(adapter);
1272 	}
1273 }
1274 
1275 /**
1276  * iavf_fill_rss_lut - Fill the lut with default values
1277  * @adapter: board private structure
1278  **/
1279 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1280 {
1281 	u16 i;
1282 
1283 	for (i = 0; i < adapter->rss_lut_size; i++)
1284 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1285 }
1286 
1287 /**
1288  * iavf_init_rss - Prepare for RSS
1289  * @adapter: board private structure
1290  *
1291  * Return 0 on success, negative on failure
1292  **/
1293 static int iavf_init_rss(struct iavf_adapter *adapter)
1294 {
1295 	struct iavf_hw *hw = &adapter->hw;
1296 	int ret;
1297 
1298 	if (!RSS_PF(adapter)) {
1299 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1300 		if (adapter->vf_res->vf_cap_flags &
1301 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1302 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1303 		else
1304 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1305 
1306 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1307 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1308 	}
1309 
1310 	iavf_fill_rss_lut(adapter);
1311 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1312 	ret = iavf_config_rss(adapter);
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one q_vector per queue interrupt.  If allocation fails we
1322  * return -ENOMEM.
1323  **/
1324 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1325 {
1326 	int q_idx = 0, num_q_vectors;
1327 	struct iavf_q_vector *q_vector;
1328 
1329 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1330 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1331 				     GFP_KERNEL);
1332 	if (!adapter->q_vectors)
1333 		return -ENOMEM;
1334 
1335 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1336 		q_vector = &adapter->q_vectors[q_idx];
1337 		q_vector->adapter = adapter;
1338 		q_vector->vsi = &adapter->vsi;
1339 		q_vector->v_idx = q_idx;
1340 		q_vector->reg_idx = q_idx;
1341 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1342 		netif_napi_add(adapter->netdev, &q_vector->napi,
1343 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1351  * @adapter: board private structure to initialize
1352  *
1353  * This function frees the memory allocated to the q_vectors.  In addition if
1354  * NAPI is enabled it will delete any references to the NAPI struct prior
1355  * to freeing the q_vector.
1356  **/
1357 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1358 {
1359 	int q_idx, num_q_vectors;
1360 	int napi_vectors;
1361 
1362 	if (!adapter->q_vectors)
1363 		return;
1364 
1365 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1366 	napi_vectors = adapter->num_active_queues;
1367 
1368 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1369 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1370 
1371 		if (q_idx < napi_vectors)
1372 			netif_napi_del(&q_vector->napi);
1373 	}
1374 	kfree(adapter->q_vectors);
1375 	adapter->q_vectors = NULL;
1376 }
1377 
1378 /**
1379  * iavf_reset_interrupt_capability - Reset MSIX setup
1380  * @adapter: board private structure
1381  *
1382  **/
1383 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1384 {
1385 	if (!adapter->msix_entries)
1386 		return;
1387 
1388 	pci_disable_msix(adapter->pdev);
1389 	kfree(adapter->msix_entries);
1390 	adapter->msix_entries = NULL;
1391 }
1392 
1393 /**
1394  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1395  * @adapter: board private structure to initialize
1396  *
1397  **/
1398 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1399 {
1400 	int err;
1401 
1402 	err = iavf_alloc_queues(adapter);
1403 	if (err) {
1404 		dev_err(&adapter->pdev->dev,
1405 			"Unable to allocate memory for queues\n");
1406 		goto err_alloc_queues;
1407 	}
1408 
1409 	rtnl_lock();
1410 	err = iavf_set_interrupt_capability(adapter);
1411 	rtnl_unlock();
1412 	if (err) {
1413 		dev_err(&adapter->pdev->dev,
1414 			"Unable to setup interrupt capabilities\n");
1415 		goto err_set_interrupt;
1416 	}
1417 
1418 	err = iavf_alloc_q_vectors(adapter);
1419 	if (err) {
1420 		dev_err(&adapter->pdev->dev,
1421 			"Unable to allocate memory for queue vectors\n");
1422 		goto err_alloc_q_vectors;
1423 	}
1424 
1425 	/* If we've made it so far while ADq flag being ON, then we haven't
1426 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1427 	 * resources have been allocated in the reset path.
1428 	 * Now we can truly claim that ADq is enabled.
1429 	 */
1430 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1431 	    adapter->num_tc)
1432 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1433 			 adapter->num_tc);
1434 
1435 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1436 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1437 		 adapter->num_active_queues);
1438 
1439 	return 0;
1440 err_alloc_q_vectors:
1441 	iavf_reset_interrupt_capability(adapter);
1442 err_set_interrupt:
1443 	iavf_free_queues(adapter);
1444 err_alloc_queues:
1445 	return err;
1446 }
1447 
1448 /**
1449  * iavf_free_rss - Free memory used by RSS structs
1450  * @adapter: board private structure
1451  **/
1452 static void iavf_free_rss(struct iavf_adapter *adapter)
1453 {
1454 	kfree(adapter->rss_key);
1455 	adapter->rss_key = NULL;
1456 
1457 	kfree(adapter->rss_lut);
1458 	adapter->rss_lut = NULL;
1459 }
1460 
1461 /**
1462  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1463  * @adapter: board private structure
1464  *
1465  * Returns 0 on success, negative on failure
1466  **/
1467 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1468 {
1469 	struct net_device *netdev = adapter->netdev;
1470 	int err;
1471 
1472 	if (netif_running(netdev))
1473 		iavf_free_traffic_irqs(adapter);
1474 	iavf_free_misc_irq(adapter);
1475 	iavf_reset_interrupt_capability(adapter);
1476 	iavf_free_q_vectors(adapter);
1477 	iavf_free_queues(adapter);
1478 
1479 	err =  iavf_init_interrupt_scheme(adapter);
1480 	if (err)
1481 		goto err;
1482 
1483 	netif_tx_stop_all_queues(netdev);
1484 
1485 	err = iavf_request_misc_irq(adapter);
1486 	if (err)
1487 		goto err;
1488 
1489 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1490 
1491 	iavf_map_rings_to_vectors(adapter);
1492 
1493 	if (RSS_AQ(adapter))
1494 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1495 	else
1496 		err = iavf_init_rss(adapter);
1497 err:
1498 	return err;
1499 }
1500 
1501 /**
1502  * iavf_process_aq_command - process aq_required flags
1503  * and sends aq command
1504  * @adapter: pointer to iavf adapter structure
1505  *
1506  * Returns 0 on success
1507  * Returns error code if no command was sent
1508  * or error code if the command failed.
1509  **/
1510 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1511 {
1512 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1513 		return iavf_send_vf_config_msg(adapter);
1514 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1515 		iavf_disable_queues(adapter);
1516 		return 0;
1517 	}
1518 
1519 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1520 		iavf_map_queues(adapter);
1521 		return 0;
1522 	}
1523 
1524 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1525 		iavf_add_ether_addrs(adapter);
1526 		return 0;
1527 	}
1528 
1529 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1530 		iavf_add_vlans(adapter);
1531 		return 0;
1532 	}
1533 
1534 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1535 		iavf_del_ether_addrs(adapter);
1536 		return 0;
1537 	}
1538 
1539 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1540 		iavf_del_vlans(adapter);
1541 		return 0;
1542 	}
1543 
1544 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1545 		iavf_enable_vlan_stripping(adapter);
1546 		return 0;
1547 	}
1548 
1549 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1550 		iavf_disable_vlan_stripping(adapter);
1551 		return 0;
1552 	}
1553 
1554 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1555 		iavf_configure_queues(adapter);
1556 		return 0;
1557 	}
1558 
1559 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1560 		iavf_enable_queues(adapter);
1561 		return 0;
1562 	}
1563 
1564 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1565 		/* This message goes straight to the firmware, not the
1566 		 * PF, so we don't have to set current_op as we will
1567 		 * not get a response through the ARQ.
1568 		 */
1569 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1570 		return 0;
1571 	}
1572 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1573 		iavf_get_hena(adapter);
1574 		return 0;
1575 	}
1576 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1577 		iavf_set_hena(adapter);
1578 		return 0;
1579 	}
1580 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1581 		iavf_set_rss_key(adapter);
1582 		return 0;
1583 	}
1584 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1585 		iavf_set_rss_lut(adapter);
1586 		return 0;
1587 	}
1588 
1589 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1590 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1591 				       FLAG_VF_MULTICAST_PROMISC);
1592 		return 0;
1593 	}
1594 
1595 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1596 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1597 		return 0;
1598 	}
1599 
1600 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1601 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1602 		iavf_set_promiscuous(adapter, 0);
1603 		return 0;
1604 	}
1605 
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1607 		iavf_enable_channels(adapter);
1608 		return 0;
1609 	}
1610 
1611 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1612 		iavf_disable_channels(adapter);
1613 		return 0;
1614 	}
1615 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1616 		iavf_add_cloud_filter(adapter);
1617 		return 0;
1618 	}
1619 
1620 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1621 		iavf_del_cloud_filter(adapter);
1622 		return 0;
1623 	}
1624 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1625 		iavf_del_cloud_filter(adapter);
1626 		return 0;
1627 	}
1628 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1629 		iavf_add_cloud_filter(adapter);
1630 		return 0;
1631 	}
1632 	return -EAGAIN;
1633 }
1634 
1635 /**
1636  * iavf_startup - first step of driver startup
1637  * @adapter: board private structure
1638  *
1639  * Function process __IAVF_STARTUP driver state.
1640  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1641  * when fails it returns -EAGAIN
1642  **/
1643 static int iavf_startup(struct iavf_adapter *adapter)
1644 {
1645 	struct pci_dev *pdev = adapter->pdev;
1646 	struct iavf_hw *hw = &adapter->hw;
1647 	int err;
1648 
1649 	WARN_ON(adapter->state != __IAVF_STARTUP);
1650 
1651 	/* driver loaded, probe complete */
1652 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1653 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1654 	err = iavf_set_mac_type(hw);
1655 	if (err) {
1656 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1657 		goto err;
1658 	}
1659 
1660 	err = iavf_check_reset_complete(hw);
1661 	if (err) {
1662 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1663 			 err);
1664 		goto err;
1665 	}
1666 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1667 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1668 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1670 
1671 	err = iavf_init_adminq(hw);
1672 	if (err) {
1673 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1674 		goto err;
1675 	}
1676 	err = iavf_send_api_ver(adapter);
1677 	if (err) {
1678 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1679 		iavf_shutdown_adminq(hw);
1680 		goto err;
1681 	}
1682 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1683 err:
1684 	return err;
1685 }
1686 
1687 /**
1688  * iavf_init_version_check - second step of driver startup
1689  * @adapter: board private structure
1690  *
1691  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1692  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1693  * when fails it returns -EAGAIN
1694  **/
1695 static int iavf_init_version_check(struct iavf_adapter *adapter)
1696 {
1697 	struct pci_dev *pdev = adapter->pdev;
1698 	struct iavf_hw *hw = &adapter->hw;
1699 	int err = -EAGAIN;
1700 
1701 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1702 
1703 	if (!iavf_asq_done(hw)) {
1704 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1705 		iavf_shutdown_adminq(hw);
1706 		adapter->state = __IAVF_STARTUP;
1707 		goto err;
1708 	}
1709 
1710 	/* aq msg sent, awaiting reply */
1711 	err = iavf_verify_api_ver(adapter);
1712 	if (err) {
1713 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1714 			err = iavf_send_api_ver(adapter);
1715 		else
1716 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1717 				adapter->pf_version.major,
1718 				adapter->pf_version.minor,
1719 				VIRTCHNL_VERSION_MAJOR,
1720 				VIRTCHNL_VERSION_MINOR);
1721 		goto err;
1722 	}
1723 	err = iavf_send_vf_config_msg(adapter);
1724 	if (err) {
1725 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1726 			err);
1727 		goto err;
1728 	}
1729 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1730 
1731 err:
1732 	return err;
1733 }
1734 
1735 /**
1736  * iavf_init_get_resources - third step of driver startup
1737  * @adapter: board private structure
1738  *
1739  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1740  * finishes driver initialization procedure.
1741  * When success the state is changed to __IAVF_DOWN
1742  * when fails it returns -EAGAIN
1743  **/
1744 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1745 {
1746 	struct net_device *netdev = adapter->netdev;
1747 	struct pci_dev *pdev = adapter->pdev;
1748 	struct iavf_hw *hw = &adapter->hw;
1749 	int err;
1750 
1751 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1752 	/* aq msg sent, awaiting reply */
1753 	if (!adapter->vf_res) {
1754 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1755 					  GFP_KERNEL);
1756 		if (!adapter->vf_res) {
1757 			err = -ENOMEM;
1758 			goto err;
1759 		}
1760 	}
1761 	err = iavf_get_vf_config(adapter);
1762 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1763 		err = iavf_send_vf_config_msg(adapter);
1764 		goto err;
1765 	} else if (err == IAVF_ERR_PARAM) {
1766 		/* We only get ERR_PARAM if the device is in a very bad
1767 		 * state or if we've been disabled for previous bad
1768 		 * behavior. Either way, we're done now.
1769 		 */
1770 		iavf_shutdown_adminq(hw);
1771 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1772 		return 0;
1773 	}
1774 	if (err) {
1775 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1776 		goto err_alloc;
1777 	}
1778 
1779 	if (iavf_process_config(adapter))
1780 		goto err_alloc;
1781 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1782 
1783 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1784 
1785 	netdev->netdev_ops = &iavf_netdev_ops;
1786 	iavf_set_ethtool_ops(netdev);
1787 	netdev->watchdog_timeo = 5 * HZ;
1788 
1789 	/* MTU range: 68 - 9710 */
1790 	netdev->min_mtu = ETH_MIN_MTU;
1791 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1792 
1793 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1794 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1795 			 adapter->hw.mac.addr);
1796 		eth_hw_addr_random(netdev);
1797 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1798 	} else {
1799 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1800 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1801 	}
1802 
1803 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1804 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1805 	err = iavf_init_interrupt_scheme(adapter);
1806 	if (err)
1807 		goto err_sw_init;
1808 	iavf_map_rings_to_vectors(adapter);
1809 	if (adapter->vf_res->vf_cap_flags &
1810 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1811 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1812 
1813 	err = iavf_request_misc_irq(adapter);
1814 	if (err)
1815 		goto err_sw_init;
1816 
1817 	netif_carrier_off(netdev);
1818 	adapter->link_up = false;
1819 
1820 	/* set the semaphore to prevent any callbacks after device registration
1821 	 * up to time when state of driver will be set to __IAVF_DOWN
1822 	 */
1823 	rtnl_lock();
1824 	if (!adapter->netdev_registered) {
1825 		err = register_netdevice(netdev);
1826 		if (err) {
1827 			rtnl_unlock();
1828 			goto err_register;
1829 		}
1830 	}
1831 
1832 	adapter->netdev_registered = true;
1833 
1834 	netif_tx_stop_all_queues(netdev);
1835 	if (CLIENT_ALLOWED(adapter)) {
1836 		err = iavf_lan_add_device(adapter);
1837 		if (err)
1838 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839 				 err);
1840 	}
1841 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1842 	if (netdev->features & NETIF_F_GRO)
1843 		dev_info(&pdev->dev, "GRO is enabled\n");
1844 
1845 	adapter->state = __IAVF_DOWN;
1846 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1847 	rtnl_unlock();
1848 
1849 	iavf_misc_irq_enable(adapter);
1850 	wake_up(&adapter->down_waitqueue);
1851 
1852 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1853 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1854 	if (!adapter->rss_key || !adapter->rss_lut) {
1855 		err = -ENOMEM;
1856 		goto err_mem;
1857 	}
1858 	if (RSS_AQ(adapter))
1859 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1860 	else
1861 		iavf_init_rss(adapter);
1862 
1863 	return err;
1864 err_mem:
1865 	iavf_free_rss(adapter);
1866 err_register:
1867 	iavf_free_misc_irq(adapter);
1868 err_sw_init:
1869 	iavf_reset_interrupt_capability(adapter);
1870 err_alloc:
1871 	kfree(adapter->vf_res);
1872 	adapter->vf_res = NULL;
1873 err:
1874 	return err;
1875 }
1876 
1877 /**
1878  * iavf_watchdog_task - Periodic call-back task
1879  * @work: pointer to work_struct
1880  **/
1881 static void iavf_watchdog_task(struct work_struct *work)
1882 {
1883 	struct iavf_adapter *adapter = container_of(work,
1884 						    struct iavf_adapter,
1885 						    watchdog_task.work);
1886 	struct iavf_hw *hw = &adapter->hw;
1887 	u32 reg_val;
1888 
1889 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1890 		goto restart_watchdog;
1891 
1892 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1893 		adapter->state = __IAVF_COMM_FAILED;
1894 
1895 	switch (adapter->state) {
1896 	case __IAVF_COMM_FAILED:
1897 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1898 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1899 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1900 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1901 			/* A chance for redemption! */
1902 			dev_err(&adapter->pdev->dev,
1903 				"Hardware came out of reset. Attempting reinit.\n");
1904 			adapter->state = __IAVF_STARTUP;
1905 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1906 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1907 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1908 				  &adapter->crit_section);
1909 			/* Don't reschedule the watchdog, since we've restarted
1910 			 * the init task. When init_task contacts the PF and
1911 			 * gets everything set up again, it'll restart the
1912 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1913 			 */
1914 			return;
1915 		}
1916 		adapter->aq_required = 0;
1917 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1918 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 			  &adapter->crit_section);
1920 		queue_delayed_work(iavf_wq,
1921 				   &adapter->watchdog_task,
1922 				   msecs_to_jiffies(10));
1923 		goto watchdog_done;
1924 	case __IAVF_RESETTING:
1925 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1926 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1927 		return;
1928 	case __IAVF_DOWN:
1929 	case __IAVF_DOWN_PENDING:
1930 	case __IAVF_TESTING:
1931 	case __IAVF_RUNNING:
1932 		if (adapter->current_op) {
1933 			if (!iavf_asq_done(hw)) {
1934 				dev_dbg(&adapter->pdev->dev,
1935 					"Admin queue timeout\n");
1936 				iavf_send_api_ver(adapter);
1937 			}
1938 		} else {
1939 			/* An error will be returned if no commands were
1940 			 * processed; use this opportunity to update stats
1941 			 */
1942 			if (iavf_process_aq_command(adapter) &&
1943 			    adapter->state == __IAVF_RUNNING)
1944 				iavf_request_stats(adapter);
1945 		}
1946 		break;
1947 	case __IAVF_REMOVE:
1948 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1949 		return;
1950 	default:
1951 		goto restart_watchdog;
1952 	}
1953 
1954 		/* check for hw reset */
1955 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1956 	if (!reg_val) {
1957 		adapter->state = __IAVF_RESETTING;
1958 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1959 		adapter->aq_required = 0;
1960 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1961 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1962 		queue_work(iavf_wq, &adapter->reset_task);
1963 		goto watchdog_done;
1964 	}
1965 
1966 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1967 watchdog_done:
1968 	if (adapter->state == __IAVF_RUNNING ||
1969 	    adapter->state == __IAVF_COMM_FAILED)
1970 		iavf_detect_recover_hung(&adapter->vsi);
1971 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1972 restart_watchdog:
1973 	if (adapter->aq_required)
1974 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1975 				   msecs_to_jiffies(20));
1976 	else
1977 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1978 	queue_work(iavf_wq, &adapter->adminq_task);
1979 }
1980 
1981 static void iavf_disable_vf(struct iavf_adapter *adapter)
1982 {
1983 	struct iavf_mac_filter *f, *ftmp;
1984 	struct iavf_vlan_filter *fv, *fvtmp;
1985 	struct iavf_cloud_filter *cf, *cftmp;
1986 
1987 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1988 
1989 	/* We don't use netif_running() because it may be true prior to
1990 	 * ndo_open() returning, so we can't assume it means all our open
1991 	 * tasks have finished, since we're not holding the rtnl_lock here.
1992 	 */
1993 	if (adapter->state == __IAVF_RUNNING) {
1994 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1995 		netif_carrier_off(adapter->netdev);
1996 		netif_tx_disable(adapter->netdev);
1997 		adapter->link_up = false;
1998 		iavf_napi_disable_all(adapter);
1999 		iavf_irq_disable(adapter);
2000 		iavf_free_traffic_irqs(adapter);
2001 		iavf_free_all_tx_resources(adapter);
2002 		iavf_free_all_rx_resources(adapter);
2003 	}
2004 
2005 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2006 
2007 	/* Delete all of the filters */
2008 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2009 		list_del(&f->list);
2010 		kfree(f);
2011 	}
2012 
2013 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2014 		list_del(&fv->list);
2015 		kfree(fv);
2016 	}
2017 
2018 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2019 
2020 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2021 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2022 		list_del(&cf->list);
2023 		kfree(cf);
2024 		adapter->num_cloud_filters--;
2025 	}
2026 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2027 
2028 	iavf_free_misc_irq(adapter);
2029 	iavf_reset_interrupt_capability(adapter);
2030 	iavf_free_queues(adapter);
2031 	iavf_free_q_vectors(adapter);
2032 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2033 	iavf_shutdown_adminq(&adapter->hw);
2034 	adapter->netdev->flags &= ~IFF_UP;
2035 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2036 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2037 	adapter->state = __IAVF_DOWN;
2038 	wake_up(&adapter->down_waitqueue);
2039 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2040 }
2041 
2042 /**
2043  * iavf_reset_task - Call-back task to handle hardware reset
2044  * @work: pointer to work_struct
2045  *
2046  * During reset we need to shut down and reinitialize the admin queue
2047  * before we can use it to communicate with the PF again. We also clear
2048  * and reinit the rings because that context is lost as well.
2049  **/
2050 static void iavf_reset_task(struct work_struct *work)
2051 {
2052 	struct iavf_adapter *adapter = container_of(work,
2053 						      struct iavf_adapter,
2054 						      reset_task);
2055 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2056 	struct net_device *netdev = adapter->netdev;
2057 	struct iavf_hw *hw = &adapter->hw;
2058 	struct iavf_mac_filter *f, *ftmp;
2059 	struct iavf_vlan_filter *vlf;
2060 	struct iavf_cloud_filter *cf;
2061 	u32 reg_val;
2062 	int i = 0, err;
2063 	bool running;
2064 
2065 	/* When device is being removed it doesn't make sense to run the reset
2066 	 * task, just return in such a case.
2067 	 */
2068 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2069 		return;
2070 
2071 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2072 				&adapter->crit_section))
2073 		usleep_range(500, 1000);
2074 	if (CLIENT_ENABLED(adapter)) {
2075 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2076 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2077 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2078 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2079 		cancel_delayed_work_sync(&adapter->client_task);
2080 		iavf_notify_client_close(&adapter->vsi, true);
2081 	}
2082 	iavf_misc_irq_disable(adapter);
2083 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2084 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2085 		/* Restart the AQ here. If we have been reset but didn't
2086 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2087 		 */
2088 		iavf_shutdown_adminq(hw);
2089 		iavf_init_adminq(hw);
2090 		iavf_request_reset(adapter);
2091 	}
2092 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2093 
2094 	/* poll until we see the reset actually happen */
2095 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2096 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2097 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2098 		if (!reg_val)
2099 			break;
2100 		usleep_range(5000, 10000);
2101 	}
2102 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2103 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2104 		goto continue_reset; /* act like the reset happened */
2105 	}
2106 
2107 	/* wait until the reset is complete and the PF is responding to us */
2108 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2109 		/* sleep first to make sure a minimum wait time is met */
2110 		msleep(IAVF_RESET_WAIT_MS);
2111 
2112 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2113 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2114 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2115 			break;
2116 	}
2117 
2118 	pci_set_master(adapter->pdev);
2119 
2120 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2121 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2122 			reg_val);
2123 		iavf_disable_vf(adapter);
2124 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2125 		return; /* Do not attempt to reinit. It's dead, Jim. */
2126 	}
2127 
2128 continue_reset:
2129 	/* We don't use netif_running() because it may be true prior to
2130 	 * ndo_open() returning, so we can't assume it means all our open
2131 	 * tasks have finished, since we're not holding the rtnl_lock here.
2132 	 */
2133 	running = ((adapter->state == __IAVF_RUNNING) ||
2134 		   (adapter->state == __IAVF_RESETTING));
2135 
2136 	if (running) {
2137 		netif_carrier_off(netdev);
2138 		netif_tx_stop_all_queues(netdev);
2139 		adapter->link_up = false;
2140 		iavf_napi_disable_all(adapter);
2141 	}
2142 	iavf_irq_disable(adapter);
2143 
2144 	adapter->state = __IAVF_RESETTING;
2145 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2146 
2147 	/* free the Tx/Rx rings and descriptors, might be better to just
2148 	 * re-use them sometime in the future
2149 	 */
2150 	iavf_free_all_rx_resources(adapter);
2151 	iavf_free_all_tx_resources(adapter);
2152 
2153 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2154 	/* kill and reinit the admin queue */
2155 	iavf_shutdown_adminq(hw);
2156 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2157 	err = iavf_init_adminq(hw);
2158 	if (err)
2159 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2160 			 err);
2161 	adapter->aq_required = 0;
2162 
2163 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2164 		err = iavf_reinit_interrupt_scheme(adapter);
2165 		if (err)
2166 			goto reset_err;
2167 	}
2168 
2169 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2170 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2171 
2172 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2173 
2174 	/* Delete filter for the current MAC address, it could have
2175 	 * been changed by the PF via administratively set MAC.
2176 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2177 	 */
2178 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2179 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2180 			list_del(&f->list);
2181 			kfree(f);
2182 		}
2183 	}
2184 	/* re-add all MAC filters */
2185 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186 		f->add = true;
2187 	}
2188 	/* re-add all VLAN filters */
2189 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190 		vlf->add = true;
2191 	}
2192 
2193 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194 
2195 	/* check if TCs are running and re-add all cloud filters */
2196 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2197 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198 	    adapter->num_tc) {
2199 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200 			cf->add = true;
2201 		}
2202 	}
2203 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204 
2205 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208 	iavf_misc_irq_enable(adapter);
2209 
2210 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211 
2212 	/* We were running when the reset started, so we need to restore some
2213 	 * state here.
2214 	 */
2215 	if (running) {
2216 		/* allocate transmit descriptors */
2217 		err = iavf_setup_all_tx_resources(adapter);
2218 		if (err)
2219 			goto reset_err;
2220 
2221 		/* allocate receive descriptors */
2222 		err = iavf_setup_all_rx_resources(adapter);
2223 		if (err)
2224 			goto reset_err;
2225 
2226 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2228 			if (err)
2229 				goto reset_err;
2230 
2231 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232 		}
2233 
2234 		iavf_configure(adapter);
2235 
2236 		iavf_up_complete(adapter);
2237 
2238 		iavf_irq_enable(adapter, true);
2239 	} else {
2240 		adapter->state = __IAVF_DOWN;
2241 		wake_up(&adapter->down_waitqueue);
2242 	}
2243 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245 
2246 	return;
2247 reset_err:
2248 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251 	iavf_close(netdev);
2252 }
2253 
2254 /**
2255  * iavf_adminq_task - worker thread to clean the admin queue
2256  * @work: pointer to work_struct containing our data
2257  **/
2258 static void iavf_adminq_task(struct work_struct *work)
2259 {
2260 	struct iavf_adapter *adapter =
2261 		container_of(work, struct iavf_adapter, adminq_task);
2262 	struct iavf_hw *hw = &adapter->hw;
2263 	struct iavf_arq_event_info event;
2264 	enum virtchnl_ops v_op;
2265 	enum iavf_status ret, v_ret;
2266 	u32 val, oldval;
2267 	u16 pending;
2268 
2269 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270 		goto out;
2271 
2272 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274 	if (!event.msg_buf)
2275 		goto out;
2276 
2277 	do {
2278 		ret = iavf_clean_arq_element(hw, &event, &pending);
2279 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281 
2282 		if (ret || !v_op)
2283 			break; /* No event to process or error cleaning ARQ */
2284 
2285 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286 					 event.msg_len);
2287 		if (pending != 0)
2288 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289 	} while (pending);
2290 
2291 	if ((adapter->flags &
2292 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293 	    adapter->state == __IAVF_RESETTING)
2294 		goto freedom;
2295 
2296 	/* check for error indications */
2297 	val = rd32(hw, hw->aq.arq.len);
2298 	if (val == 0xdeadbeef) /* indicates device in reset */
2299 		goto freedom;
2300 	oldval = val;
2301 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304 	}
2305 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308 	}
2309 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312 	}
2313 	if (oldval != val)
2314 		wr32(hw, hw->aq.arq.len, val);
2315 
2316 	val = rd32(hw, hw->aq.asq.len);
2317 	oldval = val;
2318 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321 	}
2322 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325 	}
2326 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329 	}
2330 	if (oldval != val)
2331 		wr32(hw, hw->aq.asq.len, val);
2332 
2333 freedom:
2334 	kfree(event.msg_buf);
2335 out:
2336 	/* re-enable Admin queue interrupt cause */
2337 	iavf_misc_irq_enable(adapter);
2338 }
2339 
2340 /**
2341  * iavf_client_task - worker thread to perform client work
2342  * @work: pointer to work_struct containing our data
2343  *
2344  * This task handles client interactions. Because client calls can be
2345  * reentrant, we can't handle them in the watchdog.
2346  **/
2347 static void iavf_client_task(struct work_struct *work)
2348 {
2349 	struct iavf_adapter *adapter =
2350 		container_of(work, struct iavf_adapter, client_task.work);
2351 
2352 	/* If we can't get the client bit, just give up. We'll be rescheduled
2353 	 * later.
2354 	 */
2355 
2356 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357 		return;
2358 
2359 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360 		iavf_client_subtask(adapter);
2361 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362 		goto out;
2363 	}
2364 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365 		iavf_notify_client_l2_params(&adapter->vsi);
2366 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367 		goto out;
2368 	}
2369 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370 		iavf_notify_client_close(&adapter->vsi, false);
2371 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372 		goto out;
2373 	}
2374 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375 		iavf_notify_client_open(&adapter->vsi);
2376 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377 	}
2378 out:
2379 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380 }
2381 
2382 /**
2383  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384  * @adapter: board private structure
2385  *
2386  * Free all transmit software resources
2387  **/
2388 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389 {
2390 	int i;
2391 
2392 	if (!adapter->tx_rings)
2393 		return;
2394 
2395 	for (i = 0; i < adapter->num_active_queues; i++)
2396 		if (adapter->tx_rings[i].desc)
2397 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2398 }
2399 
2400 /**
2401  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402  * @adapter: board private structure
2403  *
2404  * If this function returns with an error, then it's possible one or
2405  * more of the rings is populated (while the rest are not).  It is the
2406  * callers duty to clean those orphaned rings.
2407  *
2408  * Return 0 on success, negative on failure
2409  **/
2410 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411 {
2412 	int i, err = 0;
2413 
2414 	for (i = 0; i < adapter->num_active_queues; i++) {
2415 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2416 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417 		if (!err)
2418 			continue;
2419 		dev_err(&adapter->pdev->dev,
2420 			"Allocation for Tx Queue %u failed\n", i);
2421 		break;
2422 	}
2423 
2424 	return err;
2425 }
2426 
2427 /**
2428  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429  * @adapter: board private structure
2430  *
2431  * If this function returns with an error, then it's possible one or
2432  * more of the rings is populated (while the rest are not).  It is the
2433  * callers duty to clean those orphaned rings.
2434  *
2435  * Return 0 on success, negative on failure
2436  **/
2437 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438 {
2439 	int i, err = 0;
2440 
2441 	for (i = 0; i < adapter->num_active_queues; i++) {
2442 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2443 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444 		if (!err)
2445 			continue;
2446 		dev_err(&adapter->pdev->dev,
2447 			"Allocation for Rx Queue %u failed\n", i);
2448 		break;
2449 	}
2450 	return err;
2451 }
2452 
2453 /**
2454  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455  * @adapter: board private structure
2456  *
2457  * Free all receive software resources
2458  **/
2459 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460 {
2461 	int i;
2462 
2463 	if (!adapter->rx_rings)
2464 		return;
2465 
2466 	for (i = 0; i < adapter->num_active_queues; i++)
2467 		if (adapter->rx_rings[i].desc)
2468 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2469 }
2470 
2471 /**
2472  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473  * @adapter: board private structure
2474  * @max_tx_rate: max Tx bw for a tc
2475  **/
2476 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477 				      u64 max_tx_rate)
2478 {
2479 	int speed = 0, ret = 0;
2480 
2481 	if (ADV_LINK_SUPPORT(adapter)) {
2482 		if (adapter->link_speed_mbps < U32_MAX) {
2483 			speed = adapter->link_speed_mbps;
2484 			goto validate_bw;
2485 		} else {
2486 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2487 			return -EINVAL;
2488 		}
2489 	}
2490 
2491 	switch (adapter->link_speed) {
2492 	case VIRTCHNL_LINK_SPEED_40GB:
2493 		speed = SPEED_40000;
2494 		break;
2495 	case VIRTCHNL_LINK_SPEED_25GB:
2496 		speed = SPEED_25000;
2497 		break;
2498 	case VIRTCHNL_LINK_SPEED_20GB:
2499 		speed = SPEED_20000;
2500 		break;
2501 	case VIRTCHNL_LINK_SPEED_10GB:
2502 		speed = SPEED_10000;
2503 		break;
2504 	case VIRTCHNL_LINK_SPEED_5GB:
2505 		speed = SPEED_5000;
2506 		break;
2507 	case VIRTCHNL_LINK_SPEED_2_5GB:
2508 		speed = SPEED_2500;
2509 		break;
2510 	case VIRTCHNL_LINK_SPEED_1GB:
2511 		speed = SPEED_1000;
2512 		break;
2513 	case VIRTCHNL_LINK_SPEED_100MB:
2514 		speed = SPEED_100;
2515 		break;
2516 	default:
2517 		break;
2518 	}
2519 
2520 validate_bw:
2521 	if (max_tx_rate > speed) {
2522 		dev_err(&adapter->pdev->dev,
2523 			"Invalid tx rate specified\n");
2524 		ret = -EINVAL;
2525 	}
2526 
2527 	return ret;
2528 }
2529 
2530 /**
2531  * iavf_validate_channel_config - validate queue mapping info
2532  * @adapter: board private structure
2533  * @mqprio_qopt: queue parameters
2534  *
2535  * This function validates if the config provided by the user to
2536  * configure queue channels is valid or not. Returns 0 on a valid
2537  * config.
2538  **/
2539 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2540 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2541 {
2542 	u64 total_max_rate = 0;
2543 	int i, num_qps = 0;
2544 	u64 tx_rate = 0;
2545 	int ret = 0;
2546 
2547 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2548 	    mqprio_qopt->qopt.num_tc < 1)
2549 		return -EINVAL;
2550 
2551 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2552 		if (!mqprio_qopt->qopt.count[i] ||
2553 		    mqprio_qopt->qopt.offset[i] != num_qps)
2554 			return -EINVAL;
2555 		if (mqprio_qopt->min_rate[i]) {
2556 			dev_err(&adapter->pdev->dev,
2557 				"Invalid min tx rate (greater than 0) specified\n");
2558 			return -EINVAL;
2559 		}
2560 		/*convert to Mbps */
2561 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2562 				  IAVF_MBPS_DIVISOR);
2563 		total_max_rate += tx_rate;
2564 		num_qps += mqprio_qopt->qopt.count[i];
2565 	}
2566 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2567 		return -EINVAL;
2568 
2569 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2570 	return ret;
2571 }
2572 
2573 /**
2574  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2575  * @adapter: board private structure
2576  **/
2577 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2578 {
2579 	struct iavf_cloud_filter *cf, *cftmp;
2580 
2581 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2582 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2583 				 list) {
2584 		list_del(&cf->list);
2585 		kfree(cf);
2586 		adapter->num_cloud_filters--;
2587 	}
2588 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2589 }
2590 
2591 /**
2592  * __iavf_setup_tc - configure multiple traffic classes
2593  * @netdev: network interface device structure
2594  * @type_data: tc offload data
2595  *
2596  * This function processes the config information provided by the
2597  * user to configure traffic classes/queue channels and packages the
2598  * information to request the PF to setup traffic classes.
2599  *
2600  * Returns 0 on success.
2601  **/
2602 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2603 {
2604 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2605 	struct iavf_adapter *adapter = netdev_priv(netdev);
2606 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2607 	u8 num_tc = 0, total_qps = 0;
2608 	int ret = 0, netdev_tc = 0;
2609 	u64 max_tx_rate;
2610 	u16 mode;
2611 	int i;
2612 
2613 	num_tc = mqprio_qopt->qopt.num_tc;
2614 	mode = mqprio_qopt->mode;
2615 
2616 	/* delete queue_channel */
2617 	if (!mqprio_qopt->qopt.hw) {
2618 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2619 			/* reset the tc configuration */
2620 			netdev_reset_tc(netdev);
2621 			adapter->num_tc = 0;
2622 			netif_tx_stop_all_queues(netdev);
2623 			netif_tx_disable(netdev);
2624 			iavf_del_all_cloud_filters(adapter);
2625 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2626 			goto exit;
2627 		} else {
2628 			return -EINVAL;
2629 		}
2630 	}
2631 
2632 	/* add queue channel */
2633 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2634 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2635 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2636 			return -EOPNOTSUPP;
2637 		}
2638 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2639 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2640 			return -EINVAL;
2641 		}
2642 
2643 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2644 		if (ret)
2645 			return ret;
2646 		/* Return if same TC config is requested */
2647 		if (adapter->num_tc == num_tc)
2648 			return 0;
2649 		adapter->num_tc = num_tc;
2650 
2651 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2652 			if (i < num_tc) {
2653 				adapter->ch_config.ch_info[i].count =
2654 					mqprio_qopt->qopt.count[i];
2655 				adapter->ch_config.ch_info[i].offset =
2656 					mqprio_qopt->qopt.offset[i];
2657 				total_qps += mqprio_qopt->qopt.count[i];
2658 				max_tx_rate = mqprio_qopt->max_rate[i];
2659 				/* convert to Mbps */
2660 				max_tx_rate = div_u64(max_tx_rate,
2661 						      IAVF_MBPS_DIVISOR);
2662 				adapter->ch_config.ch_info[i].max_tx_rate =
2663 					max_tx_rate;
2664 			} else {
2665 				adapter->ch_config.ch_info[i].count = 1;
2666 				adapter->ch_config.ch_info[i].offset = 0;
2667 			}
2668 		}
2669 		adapter->ch_config.total_qps = total_qps;
2670 		netif_tx_stop_all_queues(netdev);
2671 		netif_tx_disable(netdev);
2672 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2673 		netdev_reset_tc(netdev);
2674 		/* Report the tc mapping up the stack */
2675 		netdev_set_num_tc(adapter->netdev, num_tc);
2676 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2677 			u16 qcount = mqprio_qopt->qopt.count[i];
2678 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2679 
2680 			if (i < num_tc)
2681 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2682 						    qoffset);
2683 		}
2684 	}
2685 exit:
2686 	return ret;
2687 }
2688 
2689 /**
2690  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2691  * @adapter: board private structure
2692  * @f: pointer to struct flow_cls_offload
2693  * @filter: pointer to cloud filter structure
2694  */
2695 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2696 				 struct flow_cls_offload *f,
2697 				 struct iavf_cloud_filter *filter)
2698 {
2699 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2700 	struct flow_dissector *dissector = rule->match.dissector;
2701 	u16 n_proto_mask = 0;
2702 	u16 n_proto_key = 0;
2703 	u8 field_flags = 0;
2704 	u16 addr_type = 0;
2705 	u16 n_proto = 0;
2706 	int i = 0;
2707 	struct virtchnl_filter *vf = &filter->f;
2708 
2709 	if (dissector->used_keys &
2710 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2711 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2712 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2713 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2714 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2715 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2716 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2717 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2718 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2719 			dissector->used_keys);
2720 		return -EOPNOTSUPP;
2721 	}
2722 
2723 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2724 		struct flow_match_enc_keyid match;
2725 
2726 		flow_rule_match_enc_keyid(rule, &match);
2727 		if (match.mask->keyid != 0)
2728 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2729 	}
2730 
2731 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2732 		struct flow_match_basic match;
2733 
2734 		flow_rule_match_basic(rule, &match);
2735 		n_proto_key = ntohs(match.key->n_proto);
2736 		n_proto_mask = ntohs(match.mask->n_proto);
2737 
2738 		if (n_proto_key == ETH_P_ALL) {
2739 			n_proto_key = 0;
2740 			n_proto_mask = 0;
2741 		}
2742 		n_proto = n_proto_key & n_proto_mask;
2743 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2744 			return -EINVAL;
2745 		if (n_proto == ETH_P_IPV6) {
2746 			/* specify flow type as TCP IPv6 */
2747 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2748 		}
2749 
2750 		if (match.key->ip_proto != IPPROTO_TCP) {
2751 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2752 			return -EINVAL;
2753 		}
2754 	}
2755 
2756 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2757 		struct flow_match_eth_addrs match;
2758 
2759 		flow_rule_match_eth_addrs(rule, &match);
2760 
2761 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2762 		if (!is_zero_ether_addr(match.mask->dst)) {
2763 			if (is_broadcast_ether_addr(match.mask->dst)) {
2764 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2765 			} else {
2766 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2767 					match.mask->dst);
2768 				return IAVF_ERR_CONFIG;
2769 			}
2770 		}
2771 
2772 		if (!is_zero_ether_addr(match.mask->src)) {
2773 			if (is_broadcast_ether_addr(match.mask->src)) {
2774 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2775 			} else {
2776 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2777 					match.mask->src);
2778 				return IAVF_ERR_CONFIG;
2779 			}
2780 		}
2781 
2782 		if (!is_zero_ether_addr(match.key->dst))
2783 			if (is_valid_ether_addr(match.key->dst) ||
2784 			    is_multicast_ether_addr(match.key->dst)) {
2785 				/* set the mask if a valid dst_mac address */
2786 				for (i = 0; i < ETH_ALEN; i++)
2787 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2788 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2789 						match.key->dst);
2790 			}
2791 
2792 		if (!is_zero_ether_addr(match.key->src))
2793 			if (is_valid_ether_addr(match.key->src) ||
2794 			    is_multicast_ether_addr(match.key->src)) {
2795 				/* set the mask if a valid dst_mac address */
2796 				for (i = 0; i < ETH_ALEN; i++)
2797 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2798 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2799 						match.key->src);
2800 		}
2801 	}
2802 
2803 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2804 		struct flow_match_vlan match;
2805 
2806 		flow_rule_match_vlan(rule, &match);
2807 		if (match.mask->vlan_id) {
2808 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2809 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2810 			} else {
2811 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2812 					match.mask->vlan_id);
2813 				return IAVF_ERR_CONFIG;
2814 			}
2815 		}
2816 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2817 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2818 	}
2819 
2820 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2821 		struct flow_match_control match;
2822 
2823 		flow_rule_match_control(rule, &match);
2824 		addr_type = match.key->addr_type;
2825 	}
2826 
2827 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2828 		struct flow_match_ipv4_addrs match;
2829 
2830 		flow_rule_match_ipv4_addrs(rule, &match);
2831 		if (match.mask->dst) {
2832 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2833 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2834 			} else {
2835 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2836 					be32_to_cpu(match.mask->dst));
2837 				return IAVF_ERR_CONFIG;
2838 			}
2839 		}
2840 
2841 		if (match.mask->src) {
2842 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2843 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2844 			} else {
2845 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2846 					be32_to_cpu(match.mask->dst));
2847 				return IAVF_ERR_CONFIG;
2848 			}
2849 		}
2850 
2851 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2852 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2853 			return IAVF_ERR_CONFIG;
2854 		}
2855 		if (match.key->dst) {
2856 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2857 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2858 		}
2859 		if (match.key->src) {
2860 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2861 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2862 		}
2863 	}
2864 
2865 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2866 		struct flow_match_ipv6_addrs match;
2867 
2868 		flow_rule_match_ipv6_addrs(rule, &match);
2869 
2870 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2871 		if (ipv6_addr_any(&match.mask->dst)) {
2872 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2873 				IPV6_ADDR_ANY);
2874 			return IAVF_ERR_CONFIG;
2875 		}
2876 
2877 		/* src and dest IPv6 address should not be LOOPBACK
2878 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2879 		 */
2880 		if (ipv6_addr_loopback(&match.key->dst) ||
2881 		    ipv6_addr_loopback(&match.key->src)) {
2882 			dev_err(&adapter->pdev->dev,
2883 				"ipv6 addr should not be loopback\n");
2884 			return IAVF_ERR_CONFIG;
2885 		}
2886 		if (!ipv6_addr_any(&match.mask->dst) ||
2887 		    !ipv6_addr_any(&match.mask->src))
2888 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2889 
2890 		for (i = 0; i < 4; i++)
2891 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2892 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2893 		       sizeof(vf->data.tcp_spec.dst_ip));
2894 		for (i = 0; i < 4; i++)
2895 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2896 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2897 		       sizeof(vf->data.tcp_spec.src_ip));
2898 	}
2899 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2900 		struct flow_match_ports match;
2901 
2902 		flow_rule_match_ports(rule, &match);
2903 		if (match.mask->src) {
2904 			if (match.mask->src == cpu_to_be16(0xffff)) {
2905 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2906 			} else {
2907 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2908 					be16_to_cpu(match.mask->src));
2909 				return IAVF_ERR_CONFIG;
2910 			}
2911 		}
2912 
2913 		if (match.mask->dst) {
2914 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2915 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2916 			} else {
2917 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2918 					be16_to_cpu(match.mask->dst));
2919 				return IAVF_ERR_CONFIG;
2920 			}
2921 		}
2922 		if (match.key->dst) {
2923 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2924 			vf->data.tcp_spec.dst_port = match.key->dst;
2925 		}
2926 
2927 		if (match.key->src) {
2928 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2929 			vf->data.tcp_spec.src_port = match.key->src;
2930 		}
2931 	}
2932 	vf->field_flags = field_flags;
2933 
2934 	return 0;
2935 }
2936 
2937 /**
2938  * iavf_handle_tclass - Forward to a traffic class on the device
2939  * @adapter: board private structure
2940  * @tc: traffic class index on the device
2941  * @filter: pointer to cloud filter structure
2942  */
2943 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2944 			      struct iavf_cloud_filter *filter)
2945 {
2946 	if (tc == 0)
2947 		return 0;
2948 	if (tc < adapter->num_tc) {
2949 		if (!filter->f.data.tcp_spec.dst_port) {
2950 			dev_err(&adapter->pdev->dev,
2951 				"Specify destination port to redirect to traffic class other than TC0\n");
2952 			return -EINVAL;
2953 		}
2954 	}
2955 	/* redirect to a traffic class on the same device */
2956 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2957 	filter->f.action_meta = tc;
2958 	return 0;
2959 }
2960 
2961 /**
2962  * iavf_configure_clsflower - Add tc flower filters
2963  * @adapter: board private structure
2964  * @cls_flower: Pointer to struct flow_cls_offload
2965  */
2966 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2967 				    struct flow_cls_offload *cls_flower)
2968 {
2969 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2970 	struct iavf_cloud_filter *filter = NULL;
2971 	int err = -EINVAL, count = 50;
2972 
2973 	if (tc < 0) {
2974 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2975 		return -EINVAL;
2976 	}
2977 
2978 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2979 	if (!filter)
2980 		return -ENOMEM;
2981 
2982 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2983 				&adapter->crit_section)) {
2984 		if (--count == 0)
2985 			goto err;
2986 		udelay(1);
2987 	}
2988 
2989 	filter->cookie = cls_flower->cookie;
2990 
2991 	/* set the mask to all zeroes to begin with */
2992 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2993 	/* start out with flow type and eth type IPv4 to begin with */
2994 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2995 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2996 	if (err < 0)
2997 		goto err;
2998 
2999 	err = iavf_handle_tclass(adapter, tc, filter);
3000 	if (err < 0)
3001 		goto err;
3002 
3003 	/* add filter to the list */
3004 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3005 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3006 	adapter->num_cloud_filters++;
3007 	filter->add = true;
3008 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3009 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3010 err:
3011 	if (err)
3012 		kfree(filter);
3013 
3014 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3015 	return err;
3016 }
3017 
3018 /* iavf_find_cf - Find the cloud filter in the list
3019  * @adapter: Board private structure
3020  * @cookie: filter specific cookie
3021  *
3022  * Returns ptr to the filter object or NULL. Must be called while holding the
3023  * cloud_filter_list_lock.
3024  */
3025 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3026 					      unsigned long *cookie)
3027 {
3028 	struct iavf_cloud_filter *filter = NULL;
3029 
3030 	if (!cookie)
3031 		return NULL;
3032 
3033 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3034 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3035 			return filter;
3036 	}
3037 	return NULL;
3038 }
3039 
3040 /**
3041  * iavf_delete_clsflower - Remove tc flower filters
3042  * @adapter: board private structure
3043  * @cls_flower: Pointer to struct flow_cls_offload
3044  */
3045 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3046 				 struct flow_cls_offload *cls_flower)
3047 {
3048 	struct iavf_cloud_filter *filter = NULL;
3049 	int err = 0;
3050 
3051 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3052 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3053 	if (filter) {
3054 		filter->del = true;
3055 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3056 	} else {
3057 		err = -EINVAL;
3058 	}
3059 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3060 
3061 	return err;
3062 }
3063 
3064 /**
3065  * iavf_setup_tc_cls_flower - flower classifier offloads
3066  * @adapter: board private structure
3067  * @cls_flower: pointer to flow_cls_offload struct with flow info
3068  */
3069 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3070 				    struct flow_cls_offload *cls_flower)
3071 {
3072 	switch (cls_flower->command) {
3073 	case FLOW_CLS_REPLACE:
3074 		return iavf_configure_clsflower(adapter, cls_flower);
3075 	case FLOW_CLS_DESTROY:
3076 		return iavf_delete_clsflower(adapter, cls_flower);
3077 	case FLOW_CLS_STATS:
3078 		return -EOPNOTSUPP;
3079 	default:
3080 		return -EOPNOTSUPP;
3081 	}
3082 }
3083 
3084 /**
3085  * iavf_setup_tc_block_cb - block callback for tc
3086  * @type: type of offload
3087  * @type_data: offload data
3088  * @cb_priv:
3089  *
3090  * This function is the block callback for traffic classes
3091  **/
3092 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3093 				  void *cb_priv)
3094 {
3095 	struct iavf_adapter *adapter = cb_priv;
3096 
3097 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3098 		return -EOPNOTSUPP;
3099 
3100 	switch (type) {
3101 	case TC_SETUP_CLSFLOWER:
3102 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3103 	default:
3104 		return -EOPNOTSUPP;
3105 	}
3106 }
3107 
3108 static LIST_HEAD(iavf_block_cb_list);
3109 
3110 /**
3111  * iavf_setup_tc - configure multiple traffic classes
3112  * @netdev: network interface device structure
3113  * @type: type of offload
3114  * @type_data: tc offload data
3115  *
3116  * This function is the callback to ndo_setup_tc in the
3117  * netdev_ops.
3118  *
3119  * Returns 0 on success
3120  **/
3121 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3122 			 void *type_data)
3123 {
3124 	struct iavf_adapter *adapter = netdev_priv(netdev);
3125 
3126 	switch (type) {
3127 	case TC_SETUP_QDISC_MQPRIO:
3128 		return __iavf_setup_tc(netdev, type_data);
3129 	case TC_SETUP_BLOCK:
3130 		return flow_block_cb_setup_simple(type_data,
3131 						  &iavf_block_cb_list,
3132 						  iavf_setup_tc_block_cb,
3133 						  adapter, adapter, true);
3134 	default:
3135 		return -EOPNOTSUPP;
3136 	}
3137 }
3138 
3139 /**
3140  * iavf_open - Called when a network interface is made active
3141  * @netdev: network interface device structure
3142  *
3143  * Returns 0 on success, negative value on failure
3144  *
3145  * The open entry point is called when a network interface is made
3146  * active by the system (IFF_UP).  At this point all resources needed
3147  * for transmit and receive operations are allocated, the interrupt
3148  * handler is registered with the OS, the watchdog is started,
3149  * and the stack is notified that the interface is ready.
3150  **/
3151 static int iavf_open(struct net_device *netdev)
3152 {
3153 	struct iavf_adapter *adapter = netdev_priv(netdev);
3154 	int err;
3155 
3156 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3157 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3158 		return -EIO;
3159 	}
3160 
3161 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3162 				&adapter->crit_section))
3163 		usleep_range(500, 1000);
3164 
3165 	if (adapter->state != __IAVF_DOWN) {
3166 		err = -EBUSY;
3167 		goto err_unlock;
3168 	}
3169 
3170 	/* allocate transmit descriptors */
3171 	err = iavf_setup_all_tx_resources(adapter);
3172 	if (err)
3173 		goto err_setup_tx;
3174 
3175 	/* allocate receive descriptors */
3176 	err = iavf_setup_all_rx_resources(adapter);
3177 	if (err)
3178 		goto err_setup_rx;
3179 
3180 	/* clear any pending interrupts, may auto mask */
3181 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3182 	if (err)
3183 		goto err_req_irq;
3184 
3185 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3186 
3187 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3188 
3189 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3190 
3191 	iavf_configure(adapter);
3192 
3193 	iavf_up_complete(adapter);
3194 
3195 	iavf_irq_enable(adapter, true);
3196 
3197 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3198 
3199 	return 0;
3200 
3201 err_req_irq:
3202 	iavf_down(adapter);
3203 	iavf_free_traffic_irqs(adapter);
3204 err_setup_rx:
3205 	iavf_free_all_rx_resources(adapter);
3206 err_setup_tx:
3207 	iavf_free_all_tx_resources(adapter);
3208 err_unlock:
3209 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3210 
3211 	return err;
3212 }
3213 
3214 /**
3215  * iavf_close - Disables a network interface
3216  * @netdev: network interface device structure
3217  *
3218  * Returns 0, this is not allowed to fail
3219  *
3220  * The close entry point is called when an interface is de-activated
3221  * by the OS.  The hardware is still under the drivers control, but
3222  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3223  * are freed, along with all transmit and receive resources.
3224  **/
3225 static int iavf_close(struct net_device *netdev)
3226 {
3227 	struct iavf_adapter *adapter = netdev_priv(netdev);
3228 	int status;
3229 
3230 	if (adapter->state <= __IAVF_DOWN_PENDING)
3231 		return 0;
3232 
3233 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3234 				&adapter->crit_section))
3235 		usleep_range(500, 1000);
3236 
3237 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3238 	if (CLIENT_ENABLED(adapter))
3239 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3240 
3241 	iavf_down(adapter);
3242 	adapter->state = __IAVF_DOWN_PENDING;
3243 	iavf_free_traffic_irqs(adapter);
3244 
3245 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3246 
3247 	/* We explicitly don't free resources here because the hardware is
3248 	 * still active and can DMA into memory. Resources are cleared in
3249 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3250 	 * driver that the rings have been stopped.
3251 	 *
3252 	 * Also, we wait for state to transition to __IAVF_DOWN before
3253 	 * returning. State change occurs in iavf_virtchnl_completion() after
3254 	 * VF resources are released (which occurs after PF driver processes and
3255 	 * responds to admin queue commands).
3256 	 */
3257 
3258 	status = wait_event_timeout(adapter->down_waitqueue,
3259 				    adapter->state == __IAVF_DOWN,
3260 				    msecs_to_jiffies(500));
3261 	if (!status)
3262 		netdev_warn(netdev, "Device resources not yet released\n");
3263 	return 0;
3264 }
3265 
3266 /**
3267  * iavf_change_mtu - Change the Maximum Transfer Unit
3268  * @netdev: network interface device structure
3269  * @new_mtu: new value for maximum frame size
3270  *
3271  * Returns 0 on success, negative on failure
3272  **/
3273 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3274 {
3275 	struct iavf_adapter *adapter = netdev_priv(netdev);
3276 
3277 	netdev->mtu = new_mtu;
3278 	if (CLIENT_ENABLED(adapter)) {
3279 		iavf_notify_client_l2_params(&adapter->vsi);
3280 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3281 	}
3282 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3283 	queue_work(iavf_wq, &adapter->reset_task);
3284 
3285 	return 0;
3286 }
3287 
3288 /**
3289  * iavf_set_features - set the netdev feature flags
3290  * @netdev: ptr to the netdev being adjusted
3291  * @features: the feature set that the stack is suggesting
3292  * Note: expects to be called while under rtnl_lock()
3293  **/
3294 static int iavf_set_features(struct net_device *netdev,
3295 			     netdev_features_t features)
3296 {
3297 	struct iavf_adapter *adapter = netdev_priv(netdev);
3298 
3299 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3300 	 * of VLAN offload
3301 	 */
3302 	if (!VLAN_ALLOWED(adapter)) {
3303 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3304 			return -EINVAL;
3305 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3306 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3307 			adapter->aq_required |=
3308 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3309 		else
3310 			adapter->aq_required |=
3311 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 /**
3318  * iavf_features_check - Validate encapsulated packet conforms to limits
3319  * @skb: skb buff
3320  * @dev: This physical port's netdev
3321  * @features: Offload features that the stack believes apply
3322  **/
3323 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3324 					     struct net_device *dev,
3325 					     netdev_features_t features)
3326 {
3327 	size_t len;
3328 
3329 	/* No point in doing any of this if neither checksum nor GSO are
3330 	 * being requested for this frame.  We can rule out both by just
3331 	 * checking for CHECKSUM_PARTIAL
3332 	 */
3333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 		return features;
3335 
3336 	/* We cannot support GSO if the MSS is going to be less than
3337 	 * 64 bytes.  If it is then we need to drop support for GSO.
3338 	 */
3339 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3340 		features &= ~NETIF_F_GSO_MASK;
3341 
3342 	/* MACLEN can support at most 63 words */
3343 	len = skb_network_header(skb) - skb->data;
3344 	if (len & ~(63 * 2))
3345 		goto out_err;
3346 
3347 	/* IPLEN and EIPLEN can support at most 127 dwords */
3348 	len = skb_transport_header(skb) - skb_network_header(skb);
3349 	if (len & ~(127 * 4))
3350 		goto out_err;
3351 
3352 	if (skb->encapsulation) {
3353 		/* L4TUNLEN can support 127 words */
3354 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3355 		if (len & ~(127 * 2))
3356 			goto out_err;
3357 
3358 		/* IPLEN can support at most 127 dwords */
3359 		len = skb_inner_transport_header(skb) -
3360 		      skb_inner_network_header(skb);
3361 		if (len & ~(127 * 4))
3362 			goto out_err;
3363 	}
3364 
3365 	/* No need to validate L4LEN as TCP is the only protocol with a
3366 	 * a flexible value and we support all possible values supported
3367 	 * by TCP, which is at most 15 dwords
3368 	 */
3369 
3370 	return features;
3371 out_err:
3372 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3373 }
3374 
3375 /**
3376  * iavf_fix_features - fix up the netdev feature bits
3377  * @netdev: our net device
3378  * @features: desired feature bits
3379  *
3380  * Returns fixed-up features bits
3381  **/
3382 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3383 					   netdev_features_t features)
3384 {
3385 	struct iavf_adapter *adapter = netdev_priv(netdev);
3386 
3387 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3388 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3389 			      NETIF_F_HW_VLAN_CTAG_RX |
3390 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3391 
3392 	return features;
3393 }
3394 
3395 static const struct net_device_ops iavf_netdev_ops = {
3396 	.ndo_open		= iavf_open,
3397 	.ndo_stop		= iavf_close,
3398 	.ndo_start_xmit		= iavf_xmit_frame,
3399 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3400 	.ndo_validate_addr	= eth_validate_addr,
3401 	.ndo_set_mac_address	= iavf_set_mac,
3402 	.ndo_change_mtu		= iavf_change_mtu,
3403 	.ndo_tx_timeout		= iavf_tx_timeout,
3404 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3405 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3406 	.ndo_features_check	= iavf_features_check,
3407 	.ndo_fix_features	= iavf_fix_features,
3408 	.ndo_set_features	= iavf_set_features,
3409 	.ndo_setup_tc		= iavf_setup_tc,
3410 };
3411 
3412 /**
3413  * iavf_check_reset_complete - check that VF reset is complete
3414  * @hw: pointer to hw struct
3415  *
3416  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3417  **/
3418 static int iavf_check_reset_complete(struct iavf_hw *hw)
3419 {
3420 	u32 rstat;
3421 	int i;
3422 
3423 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3424 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3425 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3426 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3427 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3428 			return 0;
3429 		usleep_range(10, 20);
3430 	}
3431 	return -EBUSY;
3432 }
3433 
3434 /**
3435  * iavf_process_config - Process the config information we got from the PF
3436  * @adapter: board private structure
3437  *
3438  * Verify that we have a valid config struct, and set up our netdev features
3439  * and our VSI struct.
3440  **/
3441 int iavf_process_config(struct iavf_adapter *adapter)
3442 {
3443 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3444 	int i, num_req_queues = adapter->num_req_queues;
3445 	struct net_device *netdev = adapter->netdev;
3446 	struct iavf_vsi *vsi = &adapter->vsi;
3447 	netdev_features_t hw_enc_features;
3448 	netdev_features_t hw_features;
3449 
3450 	/* got VF config message back from PF, now we can parse it */
3451 	for (i = 0; i < vfres->num_vsis; i++) {
3452 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3453 			adapter->vsi_res = &vfres->vsi_res[i];
3454 	}
3455 	if (!adapter->vsi_res) {
3456 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3457 		return -ENODEV;
3458 	}
3459 
3460 	if (num_req_queues &&
3461 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3462 		/* Problem.  The PF gave us fewer queues than what we had
3463 		 * negotiated in our request.  Need a reset to see if we can't
3464 		 * get back to a working state.
3465 		 */
3466 		dev_err(&adapter->pdev->dev,
3467 			"Requested %d queues, but PF only gave us %d.\n",
3468 			num_req_queues,
3469 			adapter->vsi_res->num_queue_pairs);
3470 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3471 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3472 		iavf_schedule_reset(adapter);
3473 		return -ENODEV;
3474 	}
3475 	adapter->num_req_queues = 0;
3476 
3477 	hw_enc_features = NETIF_F_SG			|
3478 			  NETIF_F_IP_CSUM		|
3479 			  NETIF_F_IPV6_CSUM		|
3480 			  NETIF_F_HIGHDMA		|
3481 			  NETIF_F_SOFT_FEATURES	|
3482 			  NETIF_F_TSO			|
3483 			  NETIF_F_TSO_ECN		|
3484 			  NETIF_F_TSO6			|
3485 			  NETIF_F_SCTP_CRC		|
3486 			  NETIF_F_RXHASH		|
3487 			  NETIF_F_RXCSUM		|
3488 			  0;
3489 
3490 	/* advertise to stack only if offloads for encapsulated packets is
3491 	 * supported
3492 	 */
3493 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3494 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3495 				   NETIF_F_GSO_GRE		|
3496 				   NETIF_F_GSO_GRE_CSUM		|
3497 				   NETIF_F_GSO_IPXIP4		|
3498 				   NETIF_F_GSO_IPXIP6		|
3499 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3500 				   NETIF_F_GSO_PARTIAL		|
3501 				   0;
3502 
3503 		if (!(vfres->vf_cap_flags &
3504 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3505 			netdev->gso_partial_features |=
3506 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3507 
3508 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3509 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3510 		netdev->hw_enc_features |= hw_enc_features;
3511 	}
3512 	/* record features VLANs can make use of */
3513 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3514 
3515 	/* Write features and hw_features separately to avoid polluting
3516 	 * with, or dropping, features that are set when we registered.
3517 	 */
3518 	hw_features = hw_enc_features;
3519 
3520 	/* Enable VLAN features if supported */
3521 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3522 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3523 				NETIF_F_HW_VLAN_CTAG_RX);
3524 	/* Enable cloud filter if ADQ is supported */
3525 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3526 		hw_features |= NETIF_F_HW_TC;
3527 
3528 	netdev->hw_features |= hw_features;
3529 
3530 	netdev->features |= hw_features;
3531 
3532 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3533 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3534 
3535 	netdev->priv_flags |= IFF_UNICAST_FLT;
3536 
3537 	/* Do not turn on offloads when they are requested to be turned off.
3538 	 * TSO needs minimum 576 bytes to work correctly.
3539 	 */
3540 	if (netdev->wanted_features) {
3541 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3542 		    netdev->mtu < 576)
3543 			netdev->features &= ~NETIF_F_TSO;
3544 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3545 		    netdev->mtu < 576)
3546 			netdev->features &= ~NETIF_F_TSO6;
3547 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3548 			netdev->features &= ~NETIF_F_TSO_ECN;
3549 		if (!(netdev->wanted_features & NETIF_F_GRO))
3550 			netdev->features &= ~NETIF_F_GRO;
3551 		if (!(netdev->wanted_features & NETIF_F_GSO))
3552 			netdev->features &= ~NETIF_F_GSO;
3553 	}
3554 
3555 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3556 
3557 	adapter->vsi.back = adapter;
3558 	adapter->vsi.base_vector = 1;
3559 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3560 	vsi->netdev = adapter->netdev;
3561 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3562 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3563 		adapter->rss_key_size = vfres->rss_key_size;
3564 		adapter->rss_lut_size = vfres->rss_lut_size;
3565 	} else {
3566 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3567 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 /**
3574  * iavf_init_task - worker thread to perform delayed initialization
3575  * @work: pointer to work_struct containing our data
3576  *
3577  * This task completes the work that was begun in probe. Due to the nature
3578  * of VF-PF communications, we may need to wait tens of milliseconds to get
3579  * responses back from the PF. Rather than busy-wait in probe and bog down the
3580  * whole system, we'll do it in a task so we can sleep.
3581  * This task only runs during driver init. Once we've established
3582  * communications with the PF driver and set up our netdev, the watchdog
3583  * takes over.
3584  **/
3585 static void iavf_init_task(struct work_struct *work)
3586 {
3587 	struct iavf_adapter *adapter = container_of(work,
3588 						    struct iavf_adapter,
3589 						    init_task.work);
3590 	struct iavf_hw *hw = &adapter->hw;
3591 
3592 	switch (adapter->state) {
3593 	case __IAVF_STARTUP:
3594 		if (iavf_startup(adapter) < 0)
3595 			goto init_failed;
3596 		break;
3597 	case __IAVF_INIT_VERSION_CHECK:
3598 		if (iavf_init_version_check(adapter) < 0)
3599 			goto init_failed;
3600 		break;
3601 	case __IAVF_INIT_GET_RESOURCES:
3602 		if (iavf_init_get_resources(adapter) < 0)
3603 			goto init_failed;
3604 		return;
3605 	default:
3606 		goto init_failed;
3607 	}
3608 
3609 	queue_delayed_work(iavf_wq, &adapter->init_task,
3610 			   msecs_to_jiffies(30));
3611 	return;
3612 init_failed:
3613 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3614 		dev_err(&adapter->pdev->dev,
3615 			"Failed to communicate with PF; waiting before retry\n");
3616 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3617 		iavf_shutdown_adminq(hw);
3618 		adapter->state = __IAVF_STARTUP;
3619 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3620 		return;
3621 	}
3622 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3623 }
3624 
3625 /**
3626  * iavf_shutdown - Shutdown the device in preparation for a reboot
3627  * @pdev: pci device structure
3628  **/
3629 static void iavf_shutdown(struct pci_dev *pdev)
3630 {
3631 	struct net_device *netdev = pci_get_drvdata(pdev);
3632 	struct iavf_adapter *adapter = netdev_priv(netdev);
3633 
3634 	netif_device_detach(netdev);
3635 
3636 	if (netif_running(netdev))
3637 		iavf_close(netdev);
3638 
3639 	/* Prevent the watchdog from running. */
3640 	adapter->state = __IAVF_REMOVE;
3641 	adapter->aq_required = 0;
3642 
3643 #ifdef CONFIG_PM
3644 	pci_save_state(pdev);
3645 
3646 #endif
3647 	pci_disable_device(pdev);
3648 }
3649 
3650 /**
3651  * iavf_probe - Device Initialization Routine
3652  * @pdev: PCI device information struct
3653  * @ent: entry in iavf_pci_tbl
3654  *
3655  * Returns 0 on success, negative on failure
3656  *
3657  * iavf_probe initializes an adapter identified by a pci_dev structure.
3658  * The OS initialization, configuring of the adapter private structure,
3659  * and a hardware reset occur.
3660  **/
3661 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3662 {
3663 	struct net_device *netdev;
3664 	struct iavf_adapter *adapter = NULL;
3665 	struct iavf_hw *hw = NULL;
3666 	int err;
3667 
3668 	err = pci_enable_device(pdev);
3669 	if (err)
3670 		return err;
3671 
3672 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3673 	if (err) {
3674 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3675 		if (err) {
3676 			dev_err(&pdev->dev,
3677 				"DMA configuration failed: 0x%x\n", err);
3678 			goto err_dma;
3679 		}
3680 	}
3681 
3682 	err = pci_request_regions(pdev, iavf_driver_name);
3683 	if (err) {
3684 		dev_err(&pdev->dev,
3685 			"pci_request_regions failed 0x%x\n", err);
3686 		goto err_pci_reg;
3687 	}
3688 
3689 	pci_enable_pcie_error_reporting(pdev);
3690 
3691 	pci_set_master(pdev);
3692 
3693 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3694 				   IAVF_MAX_REQ_QUEUES);
3695 	if (!netdev) {
3696 		err = -ENOMEM;
3697 		goto err_alloc_etherdev;
3698 	}
3699 
3700 	SET_NETDEV_DEV(netdev, &pdev->dev);
3701 
3702 	pci_set_drvdata(pdev, netdev);
3703 	adapter = netdev_priv(netdev);
3704 
3705 	adapter->netdev = netdev;
3706 	adapter->pdev = pdev;
3707 
3708 	hw = &adapter->hw;
3709 	hw->back = adapter;
3710 
3711 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3712 	adapter->state = __IAVF_STARTUP;
3713 
3714 	/* Call save state here because it relies on the adapter struct. */
3715 	pci_save_state(pdev);
3716 
3717 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3718 			      pci_resource_len(pdev, 0));
3719 	if (!hw->hw_addr) {
3720 		err = -EIO;
3721 		goto err_ioremap;
3722 	}
3723 	hw->vendor_id = pdev->vendor;
3724 	hw->device_id = pdev->device;
3725 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3726 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3727 	hw->subsystem_device_id = pdev->subsystem_device;
3728 	hw->bus.device = PCI_SLOT(pdev->devfn);
3729 	hw->bus.func = PCI_FUNC(pdev->devfn);
3730 	hw->bus.bus_id = pdev->bus->number;
3731 
3732 	/* set up the locks for the AQ, do this only once in probe
3733 	 * and destroy them only once in remove
3734 	 */
3735 	mutex_init(&hw->aq.asq_mutex);
3736 	mutex_init(&hw->aq.arq_mutex);
3737 
3738 	spin_lock_init(&adapter->mac_vlan_list_lock);
3739 	spin_lock_init(&adapter->cloud_filter_list_lock);
3740 
3741 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3742 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3743 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3744 
3745 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3746 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3747 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3748 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3749 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3750 	queue_delayed_work(iavf_wq, &adapter->init_task,
3751 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3752 
3753 	/* Setup the wait queue for indicating transition to down status */
3754 	init_waitqueue_head(&adapter->down_waitqueue);
3755 
3756 	return 0;
3757 
3758 err_ioremap:
3759 	free_netdev(netdev);
3760 err_alloc_etherdev:
3761 	pci_release_regions(pdev);
3762 err_pci_reg:
3763 err_dma:
3764 	pci_disable_device(pdev);
3765 	return err;
3766 }
3767 
3768 /**
3769  * iavf_suspend - Power management suspend routine
3770  * @dev_d: device info pointer
3771  *
3772  * Called when the system (VM) is entering sleep/suspend.
3773  **/
3774 static int __maybe_unused iavf_suspend(struct device *dev_d)
3775 {
3776 	struct net_device *netdev = dev_get_drvdata(dev_d);
3777 	struct iavf_adapter *adapter = netdev_priv(netdev);
3778 
3779 	netif_device_detach(netdev);
3780 
3781 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3782 				&adapter->crit_section))
3783 		usleep_range(500, 1000);
3784 
3785 	if (netif_running(netdev)) {
3786 		rtnl_lock();
3787 		iavf_down(adapter);
3788 		rtnl_unlock();
3789 	}
3790 	iavf_free_misc_irq(adapter);
3791 	iavf_reset_interrupt_capability(adapter);
3792 
3793 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3794 
3795 	return 0;
3796 }
3797 
3798 /**
3799  * iavf_resume - Power management resume routine
3800  * @dev_d: device info pointer
3801  *
3802  * Called when the system (VM) is resumed from sleep/suspend.
3803  **/
3804 static int __maybe_unused iavf_resume(struct device *dev_d)
3805 {
3806 	struct pci_dev *pdev = to_pci_dev(dev_d);
3807 	struct net_device *netdev = pci_get_drvdata(pdev);
3808 	struct iavf_adapter *adapter = netdev_priv(netdev);
3809 	u32 err;
3810 
3811 	pci_set_master(pdev);
3812 
3813 	rtnl_lock();
3814 	err = iavf_set_interrupt_capability(adapter);
3815 	if (err) {
3816 		rtnl_unlock();
3817 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3818 		return err;
3819 	}
3820 	err = iavf_request_misc_irq(adapter);
3821 	rtnl_unlock();
3822 	if (err) {
3823 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3824 		return err;
3825 	}
3826 
3827 	queue_work(iavf_wq, &adapter->reset_task);
3828 
3829 	netif_device_attach(netdev);
3830 
3831 	return err;
3832 }
3833 
3834 /**
3835  * iavf_remove - Device Removal Routine
3836  * @pdev: PCI device information struct
3837  *
3838  * iavf_remove is called by the PCI subsystem to alert the driver
3839  * that it should release a PCI device.  The could be caused by a
3840  * Hot-Plug event, or because the driver is going to be removed from
3841  * memory.
3842  **/
3843 static void iavf_remove(struct pci_dev *pdev)
3844 {
3845 	struct net_device *netdev = pci_get_drvdata(pdev);
3846 	struct iavf_adapter *adapter = netdev_priv(netdev);
3847 	struct iavf_vlan_filter *vlf, *vlftmp;
3848 	struct iavf_mac_filter *f, *ftmp;
3849 	struct iavf_cloud_filter *cf, *cftmp;
3850 	struct iavf_hw *hw = &adapter->hw;
3851 	int err;
3852 	/* Indicate we are in remove and not to run reset_task */
3853 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3854 	cancel_delayed_work_sync(&adapter->init_task);
3855 	cancel_work_sync(&adapter->reset_task);
3856 	cancel_delayed_work_sync(&adapter->client_task);
3857 	if (adapter->netdev_registered) {
3858 		unregister_netdev(netdev);
3859 		adapter->netdev_registered = false;
3860 	}
3861 	if (CLIENT_ALLOWED(adapter)) {
3862 		err = iavf_lan_del_device(adapter);
3863 		if (err)
3864 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3865 				 err);
3866 	}
3867 
3868 	/* Shut down all the garbage mashers on the detention level */
3869 	adapter->state = __IAVF_REMOVE;
3870 	adapter->aq_required = 0;
3871 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3872 	iavf_request_reset(adapter);
3873 	msleep(50);
3874 	/* If the FW isn't responding, kick it once, but only once. */
3875 	if (!iavf_asq_done(hw)) {
3876 		iavf_request_reset(adapter);
3877 		msleep(50);
3878 	}
3879 	iavf_free_all_tx_resources(adapter);
3880 	iavf_free_all_rx_resources(adapter);
3881 	iavf_misc_irq_disable(adapter);
3882 	iavf_free_misc_irq(adapter);
3883 	iavf_reset_interrupt_capability(adapter);
3884 	iavf_free_q_vectors(adapter);
3885 
3886 	cancel_delayed_work_sync(&adapter->watchdog_task);
3887 
3888 	cancel_work_sync(&adapter->adminq_task);
3889 
3890 	iavf_free_rss(adapter);
3891 
3892 	if (hw->aq.asq.count)
3893 		iavf_shutdown_adminq(hw);
3894 
3895 	/* destroy the locks only once, here */
3896 	mutex_destroy(&hw->aq.arq_mutex);
3897 	mutex_destroy(&hw->aq.asq_mutex);
3898 
3899 	iounmap(hw->hw_addr);
3900 	pci_release_regions(pdev);
3901 	iavf_free_all_tx_resources(adapter);
3902 	iavf_free_all_rx_resources(adapter);
3903 	iavf_free_queues(adapter);
3904 	kfree(adapter->vf_res);
3905 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3906 	/* If we got removed before an up/down sequence, we've got a filter
3907 	 * hanging out there that we need to get rid of.
3908 	 */
3909 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3910 		list_del(&f->list);
3911 		kfree(f);
3912 	}
3913 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3914 				 list) {
3915 		list_del(&vlf->list);
3916 		kfree(vlf);
3917 	}
3918 
3919 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3920 
3921 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3922 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3923 		list_del(&cf->list);
3924 		kfree(cf);
3925 	}
3926 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3927 
3928 	free_netdev(netdev);
3929 
3930 	pci_disable_pcie_error_reporting(pdev);
3931 
3932 	pci_disable_device(pdev);
3933 }
3934 
3935 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3936 
3937 static struct pci_driver iavf_driver = {
3938 	.name      = iavf_driver_name,
3939 	.id_table  = iavf_pci_tbl,
3940 	.probe     = iavf_probe,
3941 	.remove    = iavf_remove,
3942 	.driver.pm = &iavf_pm_ops,
3943 	.shutdown  = iavf_shutdown,
3944 };
3945 
3946 /**
3947  * iavf_init_module - Driver Registration Routine
3948  *
3949  * iavf_init_module is the first routine called when the driver is
3950  * loaded. All it does is register with the PCI subsystem.
3951  **/
3952 static int __init iavf_init_module(void)
3953 {
3954 	int ret;
3955 
3956 	pr_info("iavf: %s\n", iavf_driver_string);
3957 
3958 	pr_info("%s\n", iavf_copyright);
3959 
3960 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3961 				  iavf_driver_name);
3962 	if (!iavf_wq) {
3963 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3964 		return -ENOMEM;
3965 	}
3966 	ret = pci_register_driver(&iavf_driver);
3967 	return ret;
3968 }
3969 
3970 module_init(iavf_init_module);
3971 
3972 /**
3973  * iavf_exit_module - Driver Exit Cleanup Routine
3974  *
3975  * iavf_exit_module is called just before the driver is removed
3976  * from memory.
3977  **/
3978 static void __exit iavf_exit_module(void)
3979 {
3980 	pci_unregister_driver(&iavf_driver);
3981 	destroy_workqueue(iavf_wq);
3982 }
3983 
3984 module_exit(iavf_exit_module);
3985 
3986 /* iavf_main.c */
3987