xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 
18 char iavf_driver_name[] = "iavf";
19 static const char iavf_driver_string[] =
20 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
21 
22 #define DRV_KERN "-k"
23 
24 #define DRV_VERSION_MAJOR 3
25 #define DRV_VERSION_MINOR 2
26 #define DRV_VERSION_BUILD 3
27 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
28 	     __stringify(DRV_VERSION_MINOR) "." \
29 	     __stringify(DRV_VERSION_BUILD) \
30 	     DRV_KERN
31 const char iavf_driver_version[] = DRV_VERSION;
32 static const char iavf_copyright[] =
33 	"Copyright (c) 2013 - 2018 Intel Corporation.";
34 
35 /* iavf_pci_tbl - PCI Device ID Table
36  *
37  * Wildcard entries (PCI_ANY_ID) should come last
38  * Last entry must be all 0s
39  *
40  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
41  *   Class, Class Mask, private data (not used) }
42  */
43 static const struct pci_device_id iavf_pci_tbl[] = {
44 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
45 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
46 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
47 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
48 	/* required last entry */
49 	{0, }
50 };
51 
52 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
53 
54 MODULE_ALIAS("i40evf");
55 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
56 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
57 MODULE_LICENSE("GPL v2");
58 MODULE_VERSION(DRV_VERSION);
59 
60 static struct workqueue_struct *iavf_wq;
61 
62 /**
63  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
64  * @hw:   pointer to the HW structure
65  * @mem:  ptr to mem struct to fill out
66  * @size: size of memory requested
67  * @alignment: what to align the allocation to
68  **/
69 iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
70 				    struct iavf_dma_mem *mem,
71 				    u64 size, u32 alignment)
72 {
73 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
74 
75 	if (!mem)
76 		return I40E_ERR_PARAM;
77 
78 	mem->size = ALIGN(size, alignment);
79 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
80 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
81 	if (mem->va)
82 		return 0;
83 	else
84 		return I40E_ERR_NO_MEMORY;
85 }
86 
87 /**
88  * iavf_free_dma_mem_d - OS specific memory free for shared code
89  * @hw:   pointer to the HW structure
90  * @mem:  ptr to mem struct to free
91  **/
92 iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, struct iavf_dma_mem *mem)
93 {
94 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
95 
96 	if (!mem || !mem->va)
97 		return I40E_ERR_PARAM;
98 	dma_free_coherent(&adapter->pdev->dev, mem->size,
99 			  mem->va, (dma_addr_t)mem->pa);
100 	return 0;
101 }
102 
103 /**
104  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
105  * @hw:   pointer to the HW structure
106  * @mem:  ptr to mem struct to fill out
107  * @size: size of memory requested
108  **/
109 iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
110 				     struct iavf_virt_mem *mem, u32 size)
111 {
112 	if (!mem)
113 		return I40E_ERR_PARAM;
114 
115 	mem->size = size;
116 	mem->va = kzalloc(size, GFP_KERNEL);
117 
118 	if (mem->va)
119 		return 0;
120 	else
121 		return I40E_ERR_NO_MEMORY;
122 }
123 
124 /**
125  * iavf_free_virt_mem_d - OS specific memory free for shared code
126  * @hw:   pointer to the HW structure
127  * @mem:  ptr to mem struct to free
128  **/
129 iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, struct iavf_virt_mem *mem)
130 {
131 	if (!mem)
132 		return I40E_ERR_PARAM;
133 
134 	/* it's ok to kfree a NULL pointer */
135 	kfree(mem->va);
136 
137 	return 0;
138 }
139 
140 /**
141  * iavf_debug_d - OS dependent version of debug printing
142  * @hw:  pointer to the HW structure
143  * @mask: debug level mask
144  * @fmt_str: printf-type format description
145  **/
146 void iavf_debug_d(void *hw, u32 mask, char *fmt_str, ...)
147 {
148 	char buf[512];
149 	va_list argptr;
150 
151 	if (!(mask & ((struct iavf_hw *)hw)->debug_mask))
152 		return;
153 
154 	va_start(argptr, fmt_str);
155 	vsnprintf(buf, sizeof(buf), fmt_str, argptr);
156 	va_end(argptr);
157 
158 	/* the debug string is already formatted with a newline */
159 	pr_info("%s", buf);
160 }
161 
162 /**
163  * iavf_schedule_reset - Set the flags and schedule a reset event
164  * @adapter: board private structure
165  **/
166 void iavf_schedule_reset(struct iavf_adapter *adapter)
167 {
168 	if (!(adapter->flags &
169 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
170 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
171 		schedule_work(&adapter->reset_task);
172 	}
173 }
174 
175 /**
176  * iavf_tx_timeout - Respond to a Tx Hang
177  * @netdev: network interface device structure
178  **/
179 static void iavf_tx_timeout(struct net_device *netdev)
180 {
181 	struct iavf_adapter *adapter = netdev_priv(netdev);
182 
183 	adapter->tx_timeout_count++;
184 	iavf_schedule_reset(adapter);
185 }
186 
187 /**
188  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
189  * @adapter: board private structure
190  **/
191 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
192 {
193 	struct iavf_hw *hw = &adapter->hw;
194 
195 	if (!adapter->msix_entries)
196 		return;
197 
198 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
199 
200 	iavf_flush(hw);
201 
202 	synchronize_irq(adapter->msix_entries[0].vector);
203 }
204 
205 /**
206  * iavf_misc_irq_enable - Enable default interrupt generation settings
207  * @adapter: board private structure
208  **/
209 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
210 {
211 	struct iavf_hw *hw = &adapter->hw;
212 
213 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
214 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
215 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
216 
217 	iavf_flush(hw);
218 }
219 
220 /**
221  * iavf_irq_disable - Mask off interrupt generation on the NIC
222  * @adapter: board private structure
223  **/
224 static void iavf_irq_disable(struct iavf_adapter *adapter)
225 {
226 	int i;
227 	struct iavf_hw *hw = &adapter->hw;
228 
229 	if (!adapter->msix_entries)
230 		return;
231 
232 	for (i = 1; i < adapter->num_msix_vectors; i++) {
233 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
234 		synchronize_irq(adapter->msix_entries[i].vector);
235 	}
236 	iavf_flush(hw);
237 }
238 
239 /**
240  * iavf_irq_enable_queues - Enable interrupt for specified queues
241  * @adapter: board private structure
242  * @mask: bitmap of queues to enable
243  **/
244 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
245 {
246 	struct iavf_hw *hw = &adapter->hw;
247 	int i;
248 
249 	for (i = 1; i < adapter->num_msix_vectors; i++) {
250 		if (mask & BIT(i - 1)) {
251 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
252 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
253 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
254 		}
255 	}
256 }
257 
258 /**
259  * iavf_irq_enable - Enable default interrupt generation settings
260  * @adapter: board private structure
261  * @flush: boolean value whether to run rd32()
262  **/
263 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
264 {
265 	struct iavf_hw *hw = &adapter->hw;
266 
267 	iavf_misc_irq_enable(adapter);
268 	iavf_irq_enable_queues(adapter, ~0);
269 
270 	if (flush)
271 		iavf_flush(hw);
272 }
273 
274 /**
275  * iavf_msix_aq - Interrupt handler for vector 0
276  * @irq: interrupt number
277  * @data: pointer to netdev
278  **/
279 static irqreturn_t iavf_msix_aq(int irq, void *data)
280 {
281 	struct net_device *netdev = data;
282 	struct iavf_adapter *adapter = netdev_priv(netdev);
283 	struct iavf_hw *hw = &adapter->hw;
284 
285 	/* handle non-queue interrupts, these reads clear the registers */
286 	rd32(hw, IAVF_VFINT_ICR01);
287 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
288 
289 	/* schedule work on the private workqueue */
290 	schedule_work(&adapter->adminq_task);
291 
292 	return IRQ_HANDLED;
293 }
294 
295 /**
296  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
297  * @irq: interrupt number
298  * @data: pointer to a q_vector
299  **/
300 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
301 {
302 	struct iavf_q_vector *q_vector = data;
303 
304 	if (!q_vector->tx.ring && !q_vector->rx.ring)
305 		return IRQ_HANDLED;
306 
307 	napi_schedule_irqoff(&q_vector->napi);
308 
309 	return IRQ_HANDLED;
310 }
311 
312 /**
313  * iavf_map_vector_to_rxq - associate irqs with rx queues
314  * @adapter: board private structure
315  * @v_idx: interrupt number
316  * @r_idx: queue number
317  **/
318 static void
319 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
320 {
321 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
322 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
323 	struct iavf_hw *hw = &adapter->hw;
324 
325 	rx_ring->q_vector = q_vector;
326 	rx_ring->next = q_vector->rx.ring;
327 	rx_ring->vsi = &adapter->vsi;
328 	q_vector->rx.ring = rx_ring;
329 	q_vector->rx.count++;
330 	q_vector->rx.next_update = jiffies + 1;
331 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
332 	q_vector->ring_mask |= BIT(r_idx);
333 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
334 	     q_vector->rx.current_itr);
335 	q_vector->rx.current_itr = q_vector->rx.target_itr;
336 }
337 
338 /**
339  * iavf_map_vector_to_txq - associate irqs with tx queues
340  * @adapter: board private structure
341  * @v_idx: interrupt number
342  * @t_idx: queue number
343  **/
344 static void
345 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
346 {
347 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
348 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
349 	struct iavf_hw *hw = &adapter->hw;
350 
351 	tx_ring->q_vector = q_vector;
352 	tx_ring->next = q_vector->tx.ring;
353 	tx_ring->vsi = &adapter->vsi;
354 	q_vector->tx.ring = tx_ring;
355 	q_vector->tx.count++;
356 	q_vector->tx.next_update = jiffies + 1;
357 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
358 	q_vector->num_ringpairs++;
359 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
360 	     q_vector->tx.target_itr);
361 	q_vector->tx.current_itr = q_vector->tx.target_itr;
362 }
363 
364 /**
365  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
366  * @adapter: board private structure to initialize
367  *
368  * This function maps descriptor rings to the queue-specific vectors
369  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
370  * one vector per ring/queue, but on a constrained vector budget, we
371  * group the rings as "efficiently" as possible.  You would add new
372  * mapping configurations in here.
373  **/
374 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
375 {
376 	int rings_remaining = adapter->num_active_queues;
377 	int ridx = 0, vidx = 0;
378 	int q_vectors;
379 
380 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
381 
382 	for (; ridx < rings_remaining; ridx++) {
383 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
384 		iavf_map_vector_to_txq(adapter, vidx, ridx);
385 
386 		/* In the case where we have more queues than vectors, continue
387 		 * round-robin on vectors until all queues are mapped.
388 		 */
389 		if (++vidx >= q_vectors)
390 			vidx = 0;
391 	}
392 
393 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
394 }
395 
396 /**
397  * iavf_irq_affinity_notify - Callback for affinity changes
398  * @notify: context as to what irq was changed
399  * @mask: the new affinity mask
400  *
401  * This is a callback function used by the irq_set_affinity_notifier function
402  * so that we may register to receive changes to the irq affinity masks.
403  **/
404 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
405 				     const cpumask_t *mask)
406 {
407 	struct iavf_q_vector *q_vector =
408 		container_of(notify, struct iavf_q_vector, affinity_notify);
409 
410 	cpumask_copy(&q_vector->affinity_mask, mask);
411 }
412 
413 /**
414  * iavf_irq_affinity_release - Callback for affinity notifier release
415  * @ref: internal core kernel usage
416  *
417  * This is a callback function used by the irq_set_affinity_notifier function
418  * to inform the current notification subscriber that they will no longer
419  * receive notifications.
420  **/
421 static void iavf_irq_affinity_release(struct kref *ref) {}
422 
423 /**
424  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
425  * @adapter: board private structure
426  * @basename: device basename
427  *
428  * Allocates MSI-X vectors for tx and rx handling, and requests
429  * interrupts from the kernel.
430  **/
431 static int
432 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
433 {
434 	unsigned int vector, q_vectors;
435 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
436 	int irq_num, err;
437 	int cpu;
438 
439 	iavf_irq_disable(adapter);
440 	/* Decrement for Other and TCP Timer vectors */
441 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
442 
443 	for (vector = 0; vector < q_vectors; vector++) {
444 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
445 
446 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
447 
448 		if (q_vector->tx.ring && q_vector->rx.ring) {
449 			snprintf(q_vector->name, sizeof(q_vector->name),
450 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
451 			tx_int_idx++;
452 		} else if (q_vector->rx.ring) {
453 			snprintf(q_vector->name, sizeof(q_vector->name),
454 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
455 		} else if (q_vector->tx.ring) {
456 			snprintf(q_vector->name, sizeof(q_vector->name),
457 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
458 		} else {
459 			/* skip this unused q_vector */
460 			continue;
461 		}
462 		err = request_irq(irq_num,
463 				  iavf_msix_clean_rings,
464 				  0,
465 				  q_vector->name,
466 				  q_vector);
467 		if (err) {
468 			dev_info(&adapter->pdev->dev,
469 				 "Request_irq failed, error: %d\n", err);
470 			goto free_queue_irqs;
471 		}
472 		/* register for affinity change notifications */
473 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
474 		q_vector->affinity_notify.release =
475 						   iavf_irq_affinity_release;
476 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
477 		/* Spread the IRQ affinity hints across online CPUs. Note that
478 		 * get_cpu_mask returns a mask with a permanent lifetime so
479 		 * it's safe to use as a hint for irq_set_affinity_hint.
480 		 */
481 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
482 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
483 	}
484 
485 	return 0;
486 
487 free_queue_irqs:
488 	while (vector) {
489 		vector--;
490 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
491 		irq_set_affinity_notifier(irq_num, NULL);
492 		irq_set_affinity_hint(irq_num, NULL);
493 		free_irq(irq_num, &adapter->q_vectors[vector]);
494 	}
495 	return err;
496 }
497 
498 /**
499  * iavf_request_misc_irq - Initialize MSI-X interrupts
500  * @adapter: board private structure
501  *
502  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
503  * vector is only for the admin queue, and stays active even when the netdev
504  * is closed.
505  **/
506 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
507 {
508 	struct net_device *netdev = adapter->netdev;
509 	int err;
510 
511 	snprintf(adapter->misc_vector_name,
512 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
513 		 dev_name(&adapter->pdev->dev));
514 	err = request_irq(adapter->msix_entries[0].vector,
515 			  &iavf_msix_aq, 0,
516 			  adapter->misc_vector_name, netdev);
517 	if (err) {
518 		dev_err(&adapter->pdev->dev,
519 			"request_irq for %s failed: %d\n",
520 			adapter->misc_vector_name, err);
521 		free_irq(adapter->msix_entries[0].vector, netdev);
522 	}
523 	return err;
524 }
525 
526 /**
527  * iavf_free_traffic_irqs - Free MSI-X interrupts
528  * @adapter: board private structure
529  *
530  * Frees all MSI-X vectors other than 0.
531  **/
532 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
533 {
534 	int vector, irq_num, q_vectors;
535 
536 	if (!adapter->msix_entries)
537 		return;
538 
539 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
540 
541 	for (vector = 0; vector < q_vectors; vector++) {
542 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
543 		irq_set_affinity_notifier(irq_num, NULL);
544 		irq_set_affinity_hint(irq_num, NULL);
545 		free_irq(irq_num, &adapter->q_vectors[vector]);
546 	}
547 }
548 
549 /**
550  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
551  * @adapter: board private structure
552  *
553  * Frees MSI-X vector 0.
554  **/
555 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
556 {
557 	struct net_device *netdev = adapter->netdev;
558 
559 	if (!adapter->msix_entries)
560 		return;
561 
562 	free_irq(adapter->msix_entries[0].vector, netdev);
563 }
564 
565 /**
566  * iavf_configure_tx - Configure Transmit Unit after Reset
567  * @adapter: board private structure
568  *
569  * Configure the Tx unit of the MAC after a reset.
570  **/
571 static void iavf_configure_tx(struct iavf_adapter *adapter)
572 {
573 	struct iavf_hw *hw = &adapter->hw;
574 	int i;
575 
576 	for (i = 0; i < adapter->num_active_queues; i++)
577 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
578 }
579 
580 /**
581  * iavf_configure_rx - Configure Receive Unit after Reset
582  * @adapter: board private structure
583  *
584  * Configure the Rx unit of the MAC after a reset.
585  **/
586 static void iavf_configure_rx(struct iavf_adapter *adapter)
587 {
588 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
589 	struct iavf_hw *hw = &adapter->hw;
590 	int i;
591 
592 	/* Legacy Rx will always default to a 2048 buffer size. */
593 #if (PAGE_SIZE < 8192)
594 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
595 		struct net_device *netdev = adapter->netdev;
596 
597 		/* For jumbo frames on systems with 4K pages we have to use
598 		 * an order 1 page, so we might as well increase the size
599 		 * of our Rx buffer to make better use of the available space
600 		 */
601 		rx_buf_len = IAVF_RXBUFFER_3072;
602 
603 		/* We use a 1536 buffer size for configurations with
604 		 * standard Ethernet mtu.  On x86 this gives us enough room
605 		 * for shared info and 192 bytes of padding.
606 		 */
607 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
608 		    (netdev->mtu <= ETH_DATA_LEN))
609 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
610 	}
611 #endif
612 
613 	for (i = 0; i < adapter->num_active_queues; i++) {
614 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
615 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
616 
617 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
618 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
619 		else
620 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
621 	}
622 }
623 
624 /**
625  * iavf_find_vlan - Search filter list for specific vlan filter
626  * @adapter: board private structure
627  * @vlan: vlan tag
628  *
629  * Returns ptr to the filter object or NULL. Must be called while holding the
630  * mac_vlan_list_lock.
631  **/
632 static struct
633 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
634 {
635 	struct iavf_vlan_filter *f;
636 
637 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
638 		if (vlan == f->vlan)
639 			return f;
640 	}
641 	return NULL;
642 }
643 
644 /**
645  * iavf_add_vlan - Add a vlan filter to the list
646  * @adapter: board private structure
647  * @vlan: VLAN tag
648  *
649  * Returns ptr to the filter object or NULL when no memory available.
650  **/
651 static struct
652 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
653 {
654 	struct iavf_vlan_filter *f = NULL;
655 
656 	spin_lock_bh(&adapter->mac_vlan_list_lock);
657 
658 	f = iavf_find_vlan(adapter, vlan);
659 	if (!f) {
660 		f = kzalloc(sizeof(*f), GFP_KERNEL);
661 		if (!f)
662 			goto clearout;
663 
664 		f->vlan = vlan;
665 
666 		INIT_LIST_HEAD(&f->list);
667 		list_add(&f->list, &adapter->vlan_filter_list);
668 		f->add = true;
669 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
670 	}
671 
672 clearout:
673 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
674 	return f;
675 }
676 
677 /**
678  * iavf_del_vlan - Remove a vlan filter from the list
679  * @adapter: board private structure
680  * @vlan: VLAN tag
681  **/
682 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
683 {
684 	struct iavf_vlan_filter *f;
685 
686 	spin_lock_bh(&adapter->mac_vlan_list_lock);
687 
688 	f = iavf_find_vlan(adapter, vlan);
689 	if (f) {
690 		f->remove = true;
691 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
692 	}
693 
694 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
695 }
696 
697 /**
698  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
699  * @netdev: network device struct
700  * @proto: unused protocol data
701  * @vid: VLAN tag
702  **/
703 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
704 				__always_unused __be16 proto, u16 vid)
705 {
706 	struct iavf_adapter *adapter = netdev_priv(netdev);
707 
708 	if (!VLAN_ALLOWED(adapter))
709 		return -EIO;
710 	if (iavf_add_vlan(adapter, vid) == NULL)
711 		return -ENOMEM;
712 	return 0;
713 }
714 
715 /**
716  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
717  * @netdev: network device struct
718  * @proto: unused protocol data
719  * @vid: VLAN tag
720  **/
721 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
722 				 __always_unused __be16 proto, u16 vid)
723 {
724 	struct iavf_adapter *adapter = netdev_priv(netdev);
725 
726 	if (VLAN_ALLOWED(adapter)) {
727 		iavf_del_vlan(adapter, vid);
728 		return 0;
729 	}
730 	return -EIO;
731 }
732 
733 /**
734  * iavf_find_filter - Search filter list for specific mac filter
735  * @adapter: board private structure
736  * @macaddr: the MAC address
737  *
738  * Returns ptr to the filter object or NULL. Must be called while holding the
739  * mac_vlan_list_lock.
740  **/
741 static struct
742 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
743 				  const u8 *macaddr)
744 {
745 	struct iavf_mac_filter *f;
746 
747 	if (!macaddr)
748 		return NULL;
749 
750 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
751 		if (ether_addr_equal(macaddr, f->macaddr))
752 			return f;
753 	}
754 	return NULL;
755 }
756 
757 /**
758  * iavf_add_filter - Add a mac filter to the filter list
759  * @adapter: board private structure
760  * @macaddr: the MAC address
761  *
762  * Returns ptr to the filter object or NULL when no memory available.
763  **/
764 static struct
765 iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
766 				 const u8 *macaddr)
767 {
768 	struct iavf_mac_filter *f;
769 
770 	if (!macaddr)
771 		return NULL;
772 
773 	f = iavf_find_filter(adapter, macaddr);
774 	if (!f) {
775 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
776 		if (!f)
777 			return f;
778 
779 		ether_addr_copy(f->macaddr, macaddr);
780 
781 		list_add_tail(&f->list, &adapter->mac_filter_list);
782 		f->add = true;
783 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
784 	} else {
785 		f->remove = false;
786 	}
787 
788 	return f;
789 }
790 
791 /**
792  * iavf_set_mac - NDO callback to set port mac address
793  * @netdev: network interface device structure
794  * @p: pointer to an address structure
795  *
796  * Returns 0 on success, negative on failure
797  **/
798 static int iavf_set_mac(struct net_device *netdev, void *p)
799 {
800 	struct iavf_adapter *adapter = netdev_priv(netdev);
801 	struct iavf_hw *hw = &adapter->hw;
802 	struct iavf_mac_filter *f;
803 	struct sockaddr *addr = p;
804 
805 	if (!is_valid_ether_addr(addr->sa_data))
806 		return -EADDRNOTAVAIL;
807 
808 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
809 		return 0;
810 
811 	if (adapter->flags & IAVF_FLAG_ADDR_SET_BY_PF)
812 		return -EPERM;
813 
814 	spin_lock_bh(&adapter->mac_vlan_list_lock);
815 
816 	f = iavf_find_filter(adapter, hw->mac.addr);
817 	if (f) {
818 		f->remove = true;
819 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
820 	}
821 
822 	f = iavf_add_filter(adapter, addr->sa_data);
823 
824 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
825 
826 	if (f) {
827 		ether_addr_copy(hw->mac.addr, addr->sa_data);
828 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
829 	}
830 
831 	return (f == NULL) ? -ENOMEM : 0;
832 }
833 
834 /**
835  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
836  * @netdev: the netdevice
837  * @addr: address to add
838  *
839  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
840  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
841  */
842 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
843 {
844 	struct iavf_adapter *adapter = netdev_priv(netdev);
845 
846 	if (iavf_add_filter(adapter, addr))
847 		return 0;
848 	else
849 		return -ENOMEM;
850 }
851 
852 /**
853  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
854  * @netdev: the netdevice
855  * @addr: address to add
856  *
857  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
858  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
859  */
860 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
861 {
862 	struct iavf_adapter *adapter = netdev_priv(netdev);
863 	struct iavf_mac_filter *f;
864 
865 	/* Under some circumstances, we might receive a request to delete
866 	 * our own device address from our uc list. Because we store the
867 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
868 	 * such requests and not delete our device address from this list.
869 	 */
870 	if (ether_addr_equal(addr, netdev->dev_addr))
871 		return 0;
872 
873 	f = iavf_find_filter(adapter, addr);
874 	if (f) {
875 		f->remove = true;
876 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
877 	}
878 	return 0;
879 }
880 
881 /**
882  * iavf_set_rx_mode - NDO callback to set the netdev filters
883  * @netdev: network interface device structure
884  **/
885 static void iavf_set_rx_mode(struct net_device *netdev)
886 {
887 	struct iavf_adapter *adapter = netdev_priv(netdev);
888 
889 	spin_lock_bh(&adapter->mac_vlan_list_lock);
890 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
891 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
892 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
893 
894 	if (netdev->flags & IFF_PROMISC &&
895 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
896 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
897 	else if (!(netdev->flags & IFF_PROMISC) &&
898 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
899 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
900 
901 	if (netdev->flags & IFF_ALLMULTI &&
902 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
903 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
904 	else if (!(netdev->flags & IFF_ALLMULTI) &&
905 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
906 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
907 }
908 
909 /**
910  * iavf_napi_enable_all - enable NAPI on all queue vectors
911  * @adapter: board private structure
912  **/
913 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
914 {
915 	int q_idx;
916 	struct iavf_q_vector *q_vector;
917 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
918 
919 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
920 		struct napi_struct *napi;
921 
922 		q_vector = &adapter->q_vectors[q_idx];
923 		napi = &q_vector->napi;
924 		napi_enable(napi);
925 	}
926 }
927 
928 /**
929  * iavf_napi_disable_all - disable NAPI on all queue vectors
930  * @adapter: board private structure
931  **/
932 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
933 {
934 	int q_idx;
935 	struct iavf_q_vector *q_vector;
936 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
937 
938 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
939 		q_vector = &adapter->q_vectors[q_idx];
940 		napi_disable(&q_vector->napi);
941 	}
942 }
943 
944 /**
945  * iavf_configure - set up transmit and receive data structures
946  * @adapter: board private structure
947  **/
948 static void iavf_configure(struct iavf_adapter *adapter)
949 {
950 	struct net_device *netdev = adapter->netdev;
951 	int i;
952 
953 	iavf_set_rx_mode(netdev);
954 
955 	iavf_configure_tx(adapter);
956 	iavf_configure_rx(adapter);
957 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
958 
959 	for (i = 0; i < adapter->num_active_queues; i++) {
960 		struct iavf_ring *ring = &adapter->rx_rings[i];
961 
962 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
963 	}
964 }
965 
966 /**
967  * iavf_up_complete - Finish the last steps of bringing up a connection
968  * @adapter: board private structure
969  *
970  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
971  **/
972 static void iavf_up_complete(struct iavf_adapter *adapter)
973 {
974 	adapter->state = __IAVF_RUNNING;
975 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
976 
977 	iavf_napi_enable_all(adapter);
978 
979 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
980 	if (CLIENT_ENABLED(adapter))
981 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
982 	mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
983 }
984 
985 /**
986  * iavf_down - Shutdown the connection processing
987  * @adapter: board private structure
988  *
989  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
990  **/
991 void iavf_down(struct iavf_adapter *adapter)
992 {
993 	struct net_device *netdev = adapter->netdev;
994 	struct iavf_vlan_filter *vlf;
995 	struct iavf_mac_filter *f;
996 	struct iavf_cloud_filter *cf;
997 
998 	if (adapter->state <= __IAVF_DOWN_PENDING)
999 		return;
1000 
1001 	netif_carrier_off(netdev);
1002 	netif_tx_disable(netdev);
1003 	adapter->link_up = false;
1004 	iavf_napi_disable_all(adapter);
1005 	iavf_irq_disable(adapter);
1006 
1007 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1008 
1009 	/* clear the sync flag on all filters */
1010 	__dev_uc_unsync(adapter->netdev, NULL);
1011 	__dev_mc_unsync(adapter->netdev, NULL);
1012 
1013 	/* remove all MAC filters */
1014 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1015 		f->remove = true;
1016 	}
1017 
1018 	/* remove all VLAN filters */
1019 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1020 		vlf->remove = true;
1021 	}
1022 
1023 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1024 
1025 	/* remove all cloud filters */
1026 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1027 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1028 		cf->del = true;
1029 	}
1030 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1031 
1032 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1033 	    adapter->state != __IAVF_RESETTING) {
1034 		/* cancel any current operation */
1035 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1036 		/* Schedule operations to close down the HW. Don't wait
1037 		 * here for this to complete. The watchdog is still running
1038 		 * and it will take care of this.
1039 		 */
1040 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1041 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1042 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1043 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1044 	}
1045 
1046 	mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
1047 }
1048 
1049 /**
1050  * iavf_acquire_msix_vectors - Setup the MSIX capability
1051  * @adapter: board private structure
1052  * @vectors: number of vectors to request
1053  *
1054  * Work with the OS to set up the MSIX vectors needed.
1055  *
1056  * Returns 0 on success, negative on failure
1057  **/
1058 static int
1059 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1060 {
1061 	int err, vector_threshold;
1062 
1063 	/* We'll want at least 3 (vector_threshold):
1064 	 * 0) Other (Admin Queue and link, mostly)
1065 	 * 1) TxQ[0] Cleanup
1066 	 * 2) RxQ[0] Cleanup
1067 	 */
1068 	vector_threshold = MIN_MSIX_COUNT;
1069 
1070 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1071 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1072 	 * Right now, we simply care about how many we'll get; we'll
1073 	 * set them up later while requesting irq's.
1074 	 */
1075 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1076 				    vector_threshold, vectors);
1077 	if (err < 0) {
1078 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1079 		kfree(adapter->msix_entries);
1080 		adapter->msix_entries = NULL;
1081 		return err;
1082 	}
1083 
1084 	/* Adjust for only the vectors we'll use, which is minimum
1085 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1086 	 * vectors we were allocated.
1087 	 */
1088 	adapter->num_msix_vectors = err;
1089 	return 0;
1090 }
1091 
1092 /**
1093  * iavf_free_queues - Free memory for all rings
1094  * @adapter: board private structure to initialize
1095  *
1096  * Free all of the memory associated with queue pairs.
1097  **/
1098 static void iavf_free_queues(struct iavf_adapter *adapter)
1099 {
1100 	if (!adapter->vsi_res)
1101 		return;
1102 	adapter->num_active_queues = 0;
1103 	kfree(adapter->tx_rings);
1104 	adapter->tx_rings = NULL;
1105 	kfree(adapter->rx_rings);
1106 	adapter->rx_rings = NULL;
1107 }
1108 
1109 /**
1110  * iavf_alloc_queues - Allocate memory for all rings
1111  * @adapter: board private structure to initialize
1112  *
1113  * We allocate one ring per queue at run-time since we don't know the
1114  * number of queues at compile-time.  The polling_netdev array is
1115  * intended for Multiqueue, but should work fine with a single queue.
1116  **/
1117 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1118 {
1119 	int i, num_active_queues;
1120 
1121 	/* If we're in reset reallocating queues we don't actually know yet for
1122 	 * certain the PF gave us the number of queues we asked for but we'll
1123 	 * assume it did.  Once basic reset is finished we'll confirm once we
1124 	 * start negotiating config with PF.
1125 	 */
1126 	if (adapter->num_req_queues)
1127 		num_active_queues = adapter->num_req_queues;
1128 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1129 		 adapter->num_tc)
1130 		num_active_queues = adapter->ch_config.total_qps;
1131 	else
1132 		num_active_queues = min_t(int,
1133 					  adapter->vsi_res->num_queue_pairs,
1134 					  (int)(num_online_cpus()));
1135 
1136 
1137 	adapter->tx_rings = kcalloc(num_active_queues,
1138 				    sizeof(struct iavf_ring), GFP_KERNEL);
1139 	if (!adapter->tx_rings)
1140 		goto err_out;
1141 	adapter->rx_rings = kcalloc(num_active_queues,
1142 				    sizeof(struct iavf_ring), GFP_KERNEL);
1143 	if (!adapter->rx_rings)
1144 		goto err_out;
1145 
1146 	for (i = 0; i < num_active_queues; i++) {
1147 		struct iavf_ring *tx_ring;
1148 		struct iavf_ring *rx_ring;
1149 
1150 		tx_ring = &adapter->tx_rings[i];
1151 
1152 		tx_ring->queue_index = i;
1153 		tx_ring->netdev = adapter->netdev;
1154 		tx_ring->dev = &adapter->pdev->dev;
1155 		tx_ring->count = adapter->tx_desc_count;
1156 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1157 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1158 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1159 
1160 		rx_ring = &adapter->rx_rings[i];
1161 		rx_ring->queue_index = i;
1162 		rx_ring->netdev = adapter->netdev;
1163 		rx_ring->dev = &adapter->pdev->dev;
1164 		rx_ring->count = adapter->rx_desc_count;
1165 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1166 	}
1167 
1168 	adapter->num_active_queues = num_active_queues;
1169 
1170 	return 0;
1171 
1172 err_out:
1173 	iavf_free_queues(adapter);
1174 	return -ENOMEM;
1175 }
1176 
1177 /**
1178  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1179  * @adapter: board private structure to initialize
1180  *
1181  * Attempt to configure the interrupts using the best available
1182  * capabilities of the hardware and the kernel.
1183  **/
1184 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1185 {
1186 	int vector, v_budget;
1187 	int pairs = 0;
1188 	int err = 0;
1189 
1190 	if (!adapter->vsi_res) {
1191 		err = -EIO;
1192 		goto out;
1193 	}
1194 	pairs = adapter->num_active_queues;
1195 
1196 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1197 	 * us much good if we have more vectors than CPUs. However, we already
1198 	 * limit the total number of queues by the number of CPUs so we do not
1199 	 * need any further limiting here.
1200 	 */
1201 	v_budget = min_t(int, pairs + NONQ_VECS,
1202 			 (int)adapter->vf_res->max_vectors);
1203 
1204 	adapter->msix_entries = kcalloc(v_budget,
1205 					sizeof(struct msix_entry), GFP_KERNEL);
1206 	if (!adapter->msix_entries) {
1207 		err = -ENOMEM;
1208 		goto out;
1209 	}
1210 
1211 	for (vector = 0; vector < v_budget; vector++)
1212 		adapter->msix_entries[vector].entry = vector;
1213 
1214 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1215 
1216 out:
1217 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1218 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1219 	return err;
1220 }
1221 
1222 /**
1223  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1224  * @adapter: board private structure
1225  *
1226  * Return 0 on success, negative on failure
1227  **/
1228 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1229 {
1230 	struct i40e_aqc_get_set_rss_key_data *rss_key =
1231 		(struct i40e_aqc_get_set_rss_key_data *)adapter->rss_key;
1232 	struct iavf_hw *hw = &adapter->hw;
1233 	int ret = 0;
1234 
1235 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1236 		/* bail because we already have a command pending */
1237 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1238 			adapter->current_op);
1239 		return -EBUSY;
1240 	}
1241 
1242 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1243 	if (ret) {
1244 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1245 			iavf_stat_str(hw, ret),
1246 			iavf_aq_str(hw, hw->aq.asq_last_status));
1247 		return ret;
1248 
1249 	}
1250 
1251 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1252 				  adapter->rss_lut, adapter->rss_lut_size);
1253 	if (ret) {
1254 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1255 			iavf_stat_str(hw, ret),
1256 			iavf_aq_str(hw, hw->aq.asq_last_status));
1257 	}
1258 
1259 	return ret;
1260 
1261 }
1262 
1263 /**
1264  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1265  * @adapter: board private structure
1266  *
1267  * Returns 0 on success, negative on failure
1268  **/
1269 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1270 {
1271 	struct iavf_hw *hw = &adapter->hw;
1272 	u32 *dw;
1273 	u16 i;
1274 
1275 	dw = (u32 *)adapter->rss_key;
1276 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1277 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1278 
1279 	dw = (u32 *)adapter->rss_lut;
1280 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1281 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1282 
1283 	iavf_flush(hw);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * iavf_config_rss - Configure RSS keys and lut
1290  * @adapter: board private structure
1291  *
1292  * Returns 0 on success, negative on failure
1293  **/
1294 int iavf_config_rss(struct iavf_adapter *adapter)
1295 {
1296 
1297 	if (RSS_PF(adapter)) {
1298 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1299 					IAVF_FLAG_AQ_SET_RSS_KEY;
1300 		return 0;
1301 	} else if (RSS_AQ(adapter)) {
1302 		return iavf_config_rss_aq(adapter);
1303 	} else {
1304 		return iavf_config_rss_reg(adapter);
1305 	}
1306 }
1307 
1308 /**
1309  * iavf_fill_rss_lut - Fill the lut with default values
1310  * @adapter: board private structure
1311  **/
1312 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1313 {
1314 	u16 i;
1315 
1316 	for (i = 0; i < adapter->rss_lut_size; i++)
1317 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1318 }
1319 
1320 /**
1321  * iavf_init_rss - Prepare for RSS
1322  * @adapter: board private structure
1323  *
1324  * Return 0 on success, negative on failure
1325  **/
1326 static int iavf_init_rss(struct iavf_adapter *adapter)
1327 {
1328 	struct iavf_hw *hw = &adapter->hw;
1329 	int ret;
1330 
1331 	if (!RSS_PF(adapter)) {
1332 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1333 		if (adapter->vf_res->vf_cap_flags &
1334 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1335 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1336 		else
1337 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1338 
1339 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1340 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1341 	}
1342 
1343 	iavf_fill_rss_lut(adapter);
1344 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1345 	ret = iavf_config_rss(adapter);
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1352  * @adapter: board private structure to initialize
1353  *
1354  * We allocate one q_vector per queue interrupt.  If allocation fails we
1355  * return -ENOMEM.
1356  **/
1357 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1358 {
1359 	int q_idx = 0, num_q_vectors;
1360 	struct iavf_q_vector *q_vector;
1361 
1362 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1363 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1364 				     GFP_KERNEL);
1365 	if (!adapter->q_vectors)
1366 		return -ENOMEM;
1367 
1368 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1369 		q_vector = &adapter->q_vectors[q_idx];
1370 		q_vector->adapter = adapter;
1371 		q_vector->vsi = &adapter->vsi;
1372 		q_vector->v_idx = q_idx;
1373 		q_vector->reg_idx = q_idx;
1374 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1375 		netif_napi_add(adapter->netdev, &q_vector->napi,
1376 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /**
1383  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1384  * @adapter: board private structure to initialize
1385  *
1386  * This function frees the memory allocated to the q_vectors.  In addition if
1387  * NAPI is enabled it will delete any references to the NAPI struct prior
1388  * to freeing the q_vector.
1389  **/
1390 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1391 {
1392 	int q_idx, num_q_vectors;
1393 	int napi_vectors;
1394 
1395 	if (!adapter->q_vectors)
1396 		return;
1397 
1398 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1399 	napi_vectors = adapter->num_active_queues;
1400 
1401 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1402 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1403 
1404 		if (q_idx < napi_vectors)
1405 			netif_napi_del(&q_vector->napi);
1406 	}
1407 	kfree(adapter->q_vectors);
1408 	adapter->q_vectors = NULL;
1409 }
1410 
1411 /**
1412  * iavf_reset_interrupt_capability - Reset MSIX setup
1413  * @adapter: board private structure
1414  *
1415  **/
1416 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1417 {
1418 	if (!adapter->msix_entries)
1419 		return;
1420 
1421 	pci_disable_msix(adapter->pdev);
1422 	kfree(adapter->msix_entries);
1423 	adapter->msix_entries = NULL;
1424 }
1425 
1426 /**
1427  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1428  * @adapter: board private structure to initialize
1429  *
1430  **/
1431 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1432 {
1433 	int err;
1434 
1435 	err = iavf_alloc_queues(adapter);
1436 	if (err) {
1437 		dev_err(&adapter->pdev->dev,
1438 			"Unable to allocate memory for queues\n");
1439 		goto err_alloc_queues;
1440 	}
1441 
1442 	rtnl_lock();
1443 	err = iavf_set_interrupt_capability(adapter);
1444 	rtnl_unlock();
1445 	if (err) {
1446 		dev_err(&adapter->pdev->dev,
1447 			"Unable to setup interrupt capabilities\n");
1448 		goto err_set_interrupt;
1449 	}
1450 
1451 	err = iavf_alloc_q_vectors(adapter);
1452 	if (err) {
1453 		dev_err(&adapter->pdev->dev,
1454 			"Unable to allocate memory for queue vectors\n");
1455 		goto err_alloc_q_vectors;
1456 	}
1457 
1458 	/* If we've made it so far while ADq flag being ON, then we haven't
1459 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1460 	 * resources have been allocated in the reset path.
1461 	 * Now we can truly claim that ADq is enabled.
1462 	 */
1463 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1464 	    adapter->num_tc)
1465 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1466 			 adapter->num_tc);
1467 
1468 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1469 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1470 		 adapter->num_active_queues);
1471 
1472 	return 0;
1473 err_alloc_q_vectors:
1474 	iavf_reset_interrupt_capability(adapter);
1475 err_set_interrupt:
1476 	iavf_free_queues(adapter);
1477 err_alloc_queues:
1478 	return err;
1479 }
1480 
1481 /**
1482  * iavf_free_rss - Free memory used by RSS structs
1483  * @adapter: board private structure
1484  **/
1485 static void iavf_free_rss(struct iavf_adapter *adapter)
1486 {
1487 	kfree(adapter->rss_key);
1488 	adapter->rss_key = NULL;
1489 
1490 	kfree(adapter->rss_lut);
1491 	adapter->rss_lut = NULL;
1492 }
1493 
1494 /**
1495  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1496  * @adapter: board private structure
1497  *
1498  * Returns 0 on success, negative on failure
1499  **/
1500 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1501 {
1502 	struct net_device *netdev = adapter->netdev;
1503 	int err;
1504 
1505 	if (netif_running(netdev))
1506 		iavf_free_traffic_irqs(adapter);
1507 	iavf_free_misc_irq(adapter);
1508 	iavf_reset_interrupt_capability(adapter);
1509 	iavf_free_q_vectors(adapter);
1510 	iavf_free_queues(adapter);
1511 
1512 	err =  iavf_init_interrupt_scheme(adapter);
1513 	if (err)
1514 		goto err;
1515 
1516 	netif_tx_stop_all_queues(netdev);
1517 
1518 	err = iavf_request_misc_irq(adapter);
1519 	if (err)
1520 		goto err;
1521 
1522 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1523 
1524 	iavf_map_rings_to_vectors(adapter);
1525 
1526 	if (RSS_AQ(adapter))
1527 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1528 	else
1529 		err = iavf_init_rss(adapter);
1530 err:
1531 	return err;
1532 }
1533 
1534 /**
1535  * iavf_watchdog_timer - Periodic call-back timer
1536  * @data: pointer to adapter disguised as unsigned long
1537  **/
1538 static void iavf_watchdog_timer(struct timer_list *t)
1539 {
1540 	struct iavf_adapter *adapter = from_timer(adapter, t,
1541 						    watchdog_timer);
1542 
1543 	schedule_work(&adapter->watchdog_task);
1544 	/* timer will be rescheduled in watchdog task */
1545 }
1546 
1547 /**
1548  * iavf_watchdog_task - Periodic call-back task
1549  * @work: pointer to work_struct
1550  **/
1551 static void iavf_watchdog_task(struct work_struct *work)
1552 {
1553 	struct iavf_adapter *adapter = container_of(work,
1554 						      struct iavf_adapter,
1555 						      watchdog_task);
1556 	struct iavf_hw *hw = &adapter->hw;
1557 	u32 reg_val;
1558 
1559 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1560 		goto restart_watchdog;
1561 
1562 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
1563 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1564 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1565 		if ((reg_val == VIRTCHNL_VFR_VFACTIVE) ||
1566 		    (reg_val == VIRTCHNL_VFR_COMPLETED)) {
1567 			/* A chance for redemption! */
1568 			dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n");
1569 			adapter->state = __IAVF_STARTUP;
1570 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1571 			schedule_delayed_work(&adapter->init_task, 10);
1572 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1573 				  &adapter->crit_section);
1574 			/* Don't reschedule the watchdog, since we've restarted
1575 			 * the init task. When init_task contacts the PF and
1576 			 * gets everything set up again, it'll restart the
1577 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1578 			 */
1579 			return;
1580 		}
1581 		adapter->aq_required = 0;
1582 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1583 		goto watchdog_done;
1584 	}
1585 
1586 	if ((adapter->state < __IAVF_DOWN) ||
1587 	    (adapter->flags & IAVF_FLAG_RESET_PENDING))
1588 		goto watchdog_done;
1589 
1590 	/* check for reset */
1591 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1592 	if (!(adapter->flags & IAVF_FLAG_RESET_PENDING) && !reg_val) {
1593 		adapter->state = __IAVF_RESETTING;
1594 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1595 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1596 		schedule_work(&adapter->reset_task);
1597 		adapter->aq_required = 0;
1598 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1599 		goto watchdog_done;
1600 	}
1601 
1602 	/* Process admin queue tasks. After init, everything gets done
1603 	 * here so we don't race on the admin queue.
1604 	 */
1605 	if (adapter->current_op) {
1606 		if (!iavf_asq_done(hw)) {
1607 			dev_dbg(&adapter->pdev->dev, "Admin queue timeout\n");
1608 			iavf_send_api_ver(adapter);
1609 		}
1610 		goto watchdog_done;
1611 	}
1612 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) {
1613 		iavf_send_vf_config_msg(adapter);
1614 		goto watchdog_done;
1615 	}
1616 
1617 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1618 		iavf_disable_queues(adapter);
1619 		goto watchdog_done;
1620 	}
1621 
1622 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1623 		iavf_map_queues(adapter);
1624 		goto watchdog_done;
1625 	}
1626 
1627 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1628 		iavf_add_ether_addrs(adapter);
1629 		goto watchdog_done;
1630 	}
1631 
1632 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1633 		iavf_add_vlans(adapter);
1634 		goto watchdog_done;
1635 	}
1636 
1637 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1638 		iavf_del_ether_addrs(adapter);
1639 		goto watchdog_done;
1640 	}
1641 
1642 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1643 		iavf_del_vlans(adapter);
1644 		goto watchdog_done;
1645 	}
1646 
1647 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1648 		iavf_enable_vlan_stripping(adapter);
1649 		goto watchdog_done;
1650 	}
1651 
1652 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1653 		iavf_disable_vlan_stripping(adapter);
1654 		goto watchdog_done;
1655 	}
1656 
1657 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1658 		iavf_configure_queues(adapter);
1659 		goto watchdog_done;
1660 	}
1661 
1662 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1663 		iavf_enable_queues(adapter);
1664 		goto watchdog_done;
1665 	}
1666 
1667 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1668 		/* This message goes straight to the firmware, not the
1669 		 * PF, so we don't have to set current_op as we will
1670 		 * not get a response through the ARQ.
1671 		 */
1672 		iavf_init_rss(adapter);
1673 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1674 		goto watchdog_done;
1675 	}
1676 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1677 		iavf_get_hena(adapter);
1678 		goto watchdog_done;
1679 	}
1680 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1681 		iavf_set_hena(adapter);
1682 		goto watchdog_done;
1683 	}
1684 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1685 		iavf_set_rss_key(adapter);
1686 		goto watchdog_done;
1687 	}
1688 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1689 		iavf_set_rss_lut(adapter);
1690 		goto watchdog_done;
1691 	}
1692 
1693 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1694 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1695 				       FLAG_VF_MULTICAST_PROMISC);
1696 		goto watchdog_done;
1697 	}
1698 
1699 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1700 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1701 		goto watchdog_done;
1702 	}
1703 
1704 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1705 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1706 		iavf_set_promiscuous(adapter, 0);
1707 		goto watchdog_done;
1708 	}
1709 
1710 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1711 		iavf_enable_channels(adapter);
1712 		goto watchdog_done;
1713 	}
1714 
1715 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1716 		iavf_disable_channels(adapter);
1717 		goto watchdog_done;
1718 	}
1719 
1720 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1721 		iavf_add_cloud_filter(adapter);
1722 		goto watchdog_done;
1723 	}
1724 
1725 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1726 		iavf_del_cloud_filter(adapter);
1727 		goto watchdog_done;
1728 	}
1729 
1730 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1731 
1732 	if (adapter->state == __IAVF_RUNNING)
1733 		iavf_request_stats(adapter);
1734 watchdog_done:
1735 	if (adapter->state == __IAVF_RUNNING)
1736 		iavf_detect_recover_hung(&adapter->vsi);
1737 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1738 restart_watchdog:
1739 	if (adapter->state == __IAVF_REMOVE)
1740 		return;
1741 	if (adapter->aq_required)
1742 		mod_timer(&adapter->watchdog_timer,
1743 			  jiffies + msecs_to_jiffies(20));
1744 	else
1745 		mod_timer(&adapter->watchdog_timer, jiffies + (HZ * 2));
1746 	schedule_work(&adapter->adminq_task);
1747 }
1748 
1749 static void iavf_disable_vf(struct iavf_adapter *adapter)
1750 {
1751 	struct iavf_mac_filter *f, *ftmp;
1752 	struct iavf_vlan_filter *fv, *fvtmp;
1753 	struct iavf_cloud_filter *cf, *cftmp;
1754 
1755 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1756 
1757 	/* We don't use netif_running() because it may be true prior to
1758 	 * ndo_open() returning, so we can't assume it means all our open
1759 	 * tasks have finished, since we're not holding the rtnl_lock here.
1760 	 */
1761 	if (adapter->state == __IAVF_RUNNING) {
1762 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1763 		netif_carrier_off(adapter->netdev);
1764 		netif_tx_disable(adapter->netdev);
1765 		adapter->link_up = false;
1766 		iavf_napi_disable_all(adapter);
1767 		iavf_irq_disable(adapter);
1768 		iavf_free_traffic_irqs(adapter);
1769 		iavf_free_all_tx_resources(adapter);
1770 		iavf_free_all_rx_resources(adapter);
1771 	}
1772 
1773 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1774 
1775 	/* Delete all of the filters */
1776 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
1777 		list_del(&f->list);
1778 		kfree(f);
1779 	}
1780 
1781 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
1782 		list_del(&fv->list);
1783 		kfree(fv);
1784 	}
1785 
1786 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1787 
1788 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1789 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
1790 		list_del(&cf->list);
1791 		kfree(cf);
1792 		adapter->num_cloud_filters--;
1793 	}
1794 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1795 
1796 	iavf_free_misc_irq(adapter);
1797 	iavf_reset_interrupt_capability(adapter);
1798 	iavf_free_queues(adapter);
1799 	iavf_free_q_vectors(adapter);
1800 	kfree(adapter->vf_res);
1801 	iavf_shutdown_adminq(&adapter->hw);
1802 	adapter->netdev->flags &= ~IFF_UP;
1803 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1804 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1805 	adapter->state = __IAVF_DOWN;
1806 	wake_up(&adapter->down_waitqueue);
1807 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
1808 }
1809 
1810 #define IAVF_RESET_WAIT_MS 10
1811 #define IAVF_RESET_WAIT_COUNT 500
1812 /**
1813  * iavf_reset_task - Call-back task to handle hardware reset
1814  * @work: pointer to work_struct
1815  *
1816  * During reset we need to shut down and reinitialize the admin queue
1817  * before we can use it to communicate with the PF again. We also clear
1818  * and reinit the rings because that context is lost as well.
1819  **/
1820 static void iavf_reset_task(struct work_struct *work)
1821 {
1822 	struct iavf_adapter *adapter = container_of(work,
1823 						      struct iavf_adapter,
1824 						      reset_task);
1825 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
1826 	struct net_device *netdev = adapter->netdev;
1827 	struct iavf_hw *hw = &adapter->hw;
1828 	struct iavf_vlan_filter *vlf;
1829 	struct iavf_cloud_filter *cf;
1830 	struct iavf_mac_filter *f;
1831 	u32 reg_val;
1832 	int i = 0, err;
1833 	bool running;
1834 
1835 	/* When device is being removed it doesn't make sense to run the reset
1836 	 * task, just return in such a case.
1837 	 */
1838 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
1839 		return;
1840 
1841 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
1842 				&adapter->crit_section))
1843 		usleep_range(500, 1000);
1844 	if (CLIENT_ENABLED(adapter)) {
1845 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
1846 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
1847 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
1848 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
1849 		cancel_delayed_work_sync(&adapter->client_task);
1850 		iavf_notify_client_close(&adapter->vsi, true);
1851 	}
1852 	iavf_misc_irq_disable(adapter);
1853 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
1854 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
1855 		/* Restart the AQ here. If we have been reset but didn't
1856 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
1857 		 */
1858 		iavf_shutdown_adminq(hw);
1859 		iavf_init_adminq(hw);
1860 		iavf_request_reset(adapter);
1861 	}
1862 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
1863 
1864 	/* poll until we see the reset actually happen */
1865 	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
1866 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
1867 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1868 		if (!reg_val)
1869 			break;
1870 		usleep_range(5000, 10000);
1871 	}
1872 	if (i == IAVF_RESET_WAIT_COUNT) {
1873 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
1874 		goto continue_reset; /* act like the reset happened */
1875 	}
1876 
1877 	/* wait until the reset is complete and the PF is responding to us */
1878 	for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
1879 		/* sleep first to make sure a minimum wait time is met */
1880 		msleep(IAVF_RESET_WAIT_MS);
1881 
1882 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1883 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1884 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
1885 			break;
1886 	}
1887 
1888 	pci_set_master(adapter->pdev);
1889 
1890 	if (i == IAVF_RESET_WAIT_COUNT) {
1891 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
1892 			reg_val);
1893 		iavf_disable_vf(adapter);
1894 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
1895 		return; /* Do not attempt to reinit. It's dead, Jim. */
1896 	}
1897 
1898 continue_reset:
1899 	/* We don't use netif_running() because it may be true prior to
1900 	 * ndo_open() returning, so we can't assume it means all our open
1901 	 * tasks have finished, since we're not holding the rtnl_lock here.
1902 	 */
1903 	running = ((adapter->state == __IAVF_RUNNING) ||
1904 		   (adapter->state == __IAVF_RESETTING));
1905 
1906 	if (running) {
1907 		netif_carrier_off(netdev);
1908 		netif_tx_stop_all_queues(netdev);
1909 		adapter->link_up = false;
1910 		iavf_napi_disable_all(adapter);
1911 	}
1912 	iavf_irq_disable(adapter);
1913 
1914 	adapter->state = __IAVF_RESETTING;
1915 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1916 
1917 	/* free the Tx/Rx rings and descriptors, might be better to just
1918 	 * re-use them sometime in the future
1919 	 */
1920 	iavf_free_all_rx_resources(adapter);
1921 	iavf_free_all_tx_resources(adapter);
1922 
1923 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
1924 	/* kill and reinit the admin queue */
1925 	iavf_shutdown_adminq(hw);
1926 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1927 	err = iavf_init_adminq(hw);
1928 	if (err)
1929 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
1930 			 err);
1931 	adapter->aq_required = 0;
1932 
1933 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
1934 		err = iavf_reinit_interrupt_scheme(adapter);
1935 		if (err)
1936 			goto reset_err;
1937 	}
1938 
1939 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
1940 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
1941 
1942 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1943 
1944 	/* re-add all MAC filters */
1945 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1946 		f->add = true;
1947 	}
1948 	/* re-add all VLAN filters */
1949 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1950 		vlf->add = true;
1951 	}
1952 
1953 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1954 
1955 	/* check if TCs are running and re-add all cloud filters */
1956 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1957 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1958 	    adapter->num_tc) {
1959 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1960 			cf->add = true;
1961 		}
1962 	}
1963 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1964 
1965 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1966 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
1967 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
1968 	iavf_misc_irq_enable(adapter);
1969 
1970 	mod_timer(&adapter->watchdog_timer, jiffies + 2);
1971 
1972 	/* We were running when the reset started, so we need to restore some
1973 	 * state here.
1974 	 */
1975 	if (running) {
1976 		/* allocate transmit descriptors */
1977 		err = iavf_setup_all_tx_resources(adapter);
1978 		if (err)
1979 			goto reset_err;
1980 
1981 		/* allocate receive descriptors */
1982 		err = iavf_setup_all_rx_resources(adapter);
1983 		if (err)
1984 			goto reset_err;
1985 
1986 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
1987 			err = iavf_request_traffic_irqs(adapter, netdev->name);
1988 			if (err)
1989 				goto reset_err;
1990 
1991 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1992 		}
1993 
1994 		iavf_configure(adapter);
1995 
1996 		iavf_up_complete(adapter);
1997 
1998 		iavf_irq_enable(adapter, true);
1999 	} else {
2000 		adapter->state = __IAVF_DOWN;
2001 		wake_up(&adapter->down_waitqueue);
2002 	}
2003 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2004 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2005 
2006 	return;
2007 reset_err:
2008 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2009 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2010 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2011 	iavf_close(netdev);
2012 }
2013 
2014 /**
2015  * iavf_adminq_task - worker thread to clean the admin queue
2016  * @work: pointer to work_struct containing our data
2017  **/
2018 static void iavf_adminq_task(struct work_struct *work)
2019 {
2020 	struct iavf_adapter *adapter =
2021 		container_of(work, struct iavf_adapter, adminq_task);
2022 	struct iavf_hw *hw = &adapter->hw;
2023 	struct i40e_arq_event_info event;
2024 	enum virtchnl_ops v_op;
2025 	iavf_status ret, v_ret;
2026 	u32 val, oldval;
2027 	u16 pending;
2028 
2029 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2030 		goto out;
2031 
2032 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2033 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2034 	if (!event.msg_buf)
2035 		goto out;
2036 
2037 	do {
2038 		ret = iavf_clean_arq_element(hw, &event, &pending);
2039 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2040 		v_ret = (iavf_status)le32_to_cpu(event.desc.cookie_low);
2041 
2042 		if (ret || !v_op)
2043 			break; /* No event to process or error cleaning ARQ */
2044 
2045 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2046 					 event.msg_len);
2047 		if (pending != 0)
2048 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2049 	} while (pending);
2050 
2051 	if ((adapter->flags &
2052 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2053 	    adapter->state == __IAVF_RESETTING)
2054 		goto freedom;
2055 
2056 	/* check for error indications */
2057 	val = rd32(hw, hw->aq.arq.len);
2058 	if (val == 0xdeadbeef) /* indicates device in reset */
2059 		goto freedom;
2060 	oldval = val;
2061 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2062 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2063 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2064 	}
2065 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2066 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2067 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2068 	}
2069 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2070 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2071 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2072 	}
2073 	if (oldval != val)
2074 		wr32(hw, hw->aq.arq.len, val);
2075 
2076 	val = rd32(hw, hw->aq.asq.len);
2077 	oldval = val;
2078 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2079 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2080 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2081 	}
2082 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2083 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2084 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2085 	}
2086 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2087 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2088 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2089 	}
2090 	if (oldval != val)
2091 		wr32(hw, hw->aq.asq.len, val);
2092 
2093 freedom:
2094 	kfree(event.msg_buf);
2095 out:
2096 	/* re-enable Admin queue interrupt cause */
2097 	iavf_misc_irq_enable(adapter);
2098 }
2099 
2100 /**
2101  * iavf_client_task - worker thread to perform client work
2102  * @work: pointer to work_struct containing our data
2103  *
2104  * This task handles client interactions. Because client calls can be
2105  * reentrant, we can't handle them in the watchdog.
2106  **/
2107 static void iavf_client_task(struct work_struct *work)
2108 {
2109 	struct iavf_adapter *adapter =
2110 		container_of(work, struct iavf_adapter, client_task.work);
2111 
2112 	/* If we can't get the client bit, just give up. We'll be rescheduled
2113 	 * later.
2114 	 */
2115 
2116 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2117 		return;
2118 
2119 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2120 		iavf_client_subtask(adapter);
2121 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2122 		goto out;
2123 	}
2124 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2125 		iavf_notify_client_l2_params(&adapter->vsi);
2126 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2127 		goto out;
2128 	}
2129 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2130 		iavf_notify_client_close(&adapter->vsi, false);
2131 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2132 		goto out;
2133 	}
2134 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2135 		iavf_notify_client_open(&adapter->vsi);
2136 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2137 	}
2138 out:
2139 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2140 }
2141 
2142 /**
2143  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2144  * @adapter: board private structure
2145  *
2146  * Free all transmit software resources
2147  **/
2148 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2149 {
2150 	int i;
2151 
2152 	if (!adapter->tx_rings)
2153 		return;
2154 
2155 	for (i = 0; i < adapter->num_active_queues; i++)
2156 		if (adapter->tx_rings[i].desc)
2157 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2158 }
2159 
2160 /**
2161  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2162  * @adapter: board private structure
2163  *
2164  * If this function returns with an error, then it's possible one or
2165  * more of the rings is populated (while the rest are not).  It is the
2166  * callers duty to clean those orphaned rings.
2167  *
2168  * Return 0 on success, negative on failure
2169  **/
2170 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2171 {
2172 	int i, err = 0;
2173 
2174 	for (i = 0; i < adapter->num_active_queues; i++) {
2175 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2176 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2177 		if (!err)
2178 			continue;
2179 		dev_err(&adapter->pdev->dev,
2180 			"Allocation for Tx Queue %u failed\n", i);
2181 		break;
2182 	}
2183 
2184 	return err;
2185 }
2186 
2187 /**
2188  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2189  * @adapter: board private structure
2190  *
2191  * If this function returns with an error, then it's possible one or
2192  * more of the rings is populated (while the rest are not).  It is the
2193  * callers duty to clean those orphaned rings.
2194  *
2195  * Return 0 on success, negative on failure
2196  **/
2197 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2198 {
2199 	int i, err = 0;
2200 
2201 	for (i = 0; i < adapter->num_active_queues; i++) {
2202 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2203 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2204 		if (!err)
2205 			continue;
2206 		dev_err(&adapter->pdev->dev,
2207 			"Allocation for Rx Queue %u failed\n", i);
2208 		break;
2209 	}
2210 	return err;
2211 }
2212 
2213 /**
2214  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2215  * @adapter: board private structure
2216  *
2217  * Free all receive software resources
2218  **/
2219 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2220 {
2221 	int i;
2222 
2223 	if (!adapter->rx_rings)
2224 		return;
2225 
2226 	for (i = 0; i < adapter->num_active_queues; i++)
2227 		if (adapter->rx_rings[i].desc)
2228 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2229 }
2230 
2231 /**
2232  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2233  * @adapter: board private structure
2234  * @max_tx_rate: max Tx bw for a tc
2235  **/
2236 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2237 				      u64 max_tx_rate)
2238 {
2239 	int speed = 0, ret = 0;
2240 
2241 	switch (adapter->link_speed) {
2242 	case I40E_LINK_SPEED_40GB:
2243 		speed = 40000;
2244 		break;
2245 	case I40E_LINK_SPEED_25GB:
2246 		speed = 25000;
2247 		break;
2248 	case I40E_LINK_SPEED_20GB:
2249 		speed = 20000;
2250 		break;
2251 	case I40E_LINK_SPEED_10GB:
2252 		speed = 10000;
2253 		break;
2254 	case I40E_LINK_SPEED_1GB:
2255 		speed = 1000;
2256 		break;
2257 	case I40E_LINK_SPEED_100MB:
2258 		speed = 100;
2259 		break;
2260 	default:
2261 		break;
2262 	}
2263 
2264 	if (max_tx_rate > speed) {
2265 		dev_err(&adapter->pdev->dev,
2266 			"Invalid tx rate specified\n");
2267 		ret = -EINVAL;
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 /**
2274  * iavf_validate_channel_config - validate queue mapping info
2275  * @adapter: board private structure
2276  * @mqprio_qopt: queue parameters
2277  *
2278  * This function validates if the config provided by the user to
2279  * configure queue channels is valid or not. Returns 0 on a valid
2280  * config.
2281  **/
2282 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2283 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2284 {
2285 	u64 total_max_rate = 0;
2286 	int i, num_qps = 0;
2287 	u64 tx_rate = 0;
2288 	int ret = 0;
2289 
2290 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2291 	    mqprio_qopt->qopt.num_tc < 1)
2292 		return -EINVAL;
2293 
2294 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2295 		if (!mqprio_qopt->qopt.count[i] ||
2296 		    mqprio_qopt->qopt.offset[i] != num_qps)
2297 			return -EINVAL;
2298 		if (mqprio_qopt->min_rate[i]) {
2299 			dev_err(&adapter->pdev->dev,
2300 				"Invalid min tx rate (greater than 0) specified\n");
2301 			return -EINVAL;
2302 		}
2303 		/*convert to Mbps */
2304 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2305 				  IAVF_MBPS_DIVISOR);
2306 		total_max_rate += tx_rate;
2307 		num_qps += mqprio_qopt->qopt.count[i];
2308 	}
2309 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2310 		return -EINVAL;
2311 
2312 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2313 	return ret;
2314 }
2315 
2316 /**
2317  * iavf_del_all_cloud_filters - delete all cloud filters
2318  * on the traffic classes
2319  **/
2320 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2321 {
2322 	struct iavf_cloud_filter *cf, *cftmp;
2323 
2324 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2325 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2326 				 list) {
2327 		list_del(&cf->list);
2328 		kfree(cf);
2329 		adapter->num_cloud_filters--;
2330 	}
2331 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2332 }
2333 
2334 /**
2335  * __iavf_setup_tc - configure multiple traffic classes
2336  * @netdev: network interface device structure
2337  * @type_date: tc offload data
2338  *
2339  * This function processes the config information provided by the
2340  * user to configure traffic classes/queue channels and packages the
2341  * information to request the PF to setup traffic classes.
2342  *
2343  * Returns 0 on success.
2344  **/
2345 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2346 {
2347 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2348 	struct iavf_adapter *adapter = netdev_priv(netdev);
2349 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2350 	u8 num_tc = 0, total_qps = 0;
2351 	int ret = 0, netdev_tc = 0;
2352 	u64 max_tx_rate;
2353 	u16 mode;
2354 	int i;
2355 
2356 	num_tc = mqprio_qopt->qopt.num_tc;
2357 	mode = mqprio_qopt->mode;
2358 
2359 	/* delete queue_channel */
2360 	if (!mqprio_qopt->qopt.hw) {
2361 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2362 			/* reset the tc configuration */
2363 			netdev_reset_tc(netdev);
2364 			adapter->num_tc = 0;
2365 			netif_tx_stop_all_queues(netdev);
2366 			netif_tx_disable(netdev);
2367 			iavf_del_all_cloud_filters(adapter);
2368 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2369 			goto exit;
2370 		} else {
2371 			return -EINVAL;
2372 		}
2373 	}
2374 
2375 	/* add queue channel */
2376 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2377 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2378 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2379 			return -EOPNOTSUPP;
2380 		}
2381 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2382 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2383 			return -EINVAL;
2384 		}
2385 
2386 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2387 		if (ret)
2388 			return ret;
2389 		/* Return if same TC config is requested */
2390 		if (adapter->num_tc == num_tc)
2391 			return 0;
2392 		adapter->num_tc = num_tc;
2393 
2394 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2395 			if (i < num_tc) {
2396 				adapter->ch_config.ch_info[i].count =
2397 					mqprio_qopt->qopt.count[i];
2398 				adapter->ch_config.ch_info[i].offset =
2399 					mqprio_qopt->qopt.offset[i];
2400 				total_qps += mqprio_qopt->qopt.count[i];
2401 				max_tx_rate = mqprio_qopt->max_rate[i];
2402 				/* convert to Mbps */
2403 				max_tx_rate = div_u64(max_tx_rate,
2404 						      IAVF_MBPS_DIVISOR);
2405 				adapter->ch_config.ch_info[i].max_tx_rate =
2406 					max_tx_rate;
2407 			} else {
2408 				adapter->ch_config.ch_info[i].count = 1;
2409 				adapter->ch_config.ch_info[i].offset = 0;
2410 			}
2411 		}
2412 		adapter->ch_config.total_qps = total_qps;
2413 		netif_tx_stop_all_queues(netdev);
2414 		netif_tx_disable(netdev);
2415 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2416 		netdev_reset_tc(netdev);
2417 		/* Report the tc mapping up the stack */
2418 		netdev_set_num_tc(adapter->netdev, num_tc);
2419 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2420 			u16 qcount = mqprio_qopt->qopt.count[i];
2421 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2422 
2423 			if (i < num_tc)
2424 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2425 						    qoffset);
2426 		}
2427 	}
2428 exit:
2429 	return ret;
2430 }
2431 
2432 /**
2433  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2434  * @adapter: board private structure
2435  * @cls_flower: pointer to struct tc_cls_flower_offload
2436  * @filter: pointer to cloud filter structure
2437  */
2438 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2439 				 struct tc_cls_flower_offload *f,
2440 				 struct iavf_cloud_filter *filter)
2441 {
2442 	struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f);
2443 	struct flow_dissector *dissector = rule->match.dissector;
2444 	u16 n_proto_mask = 0;
2445 	u16 n_proto_key = 0;
2446 	u8 field_flags = 0;
2447 	u16 addr_type = 0;
2448 	u16 n_proto = 0;
2449 	int i = 0;
2450 	struct virtchnl_filter *vf = &filter->f;
2451 
2452 	if (dissector->used_keys &
2453 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2454 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2455 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2456 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2457 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2458 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2459 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2460 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2461 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2462 			dissector->used_keys);
2463 		return -EOPNOTSUPP;
2464 	}
2465 
2466 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2467 		struct flow_match_enc_keyid match;
2468 
2469 		flow_rule_match_enc_keyid(rule, &match);
2470 		if (match.mask->keyid != 0)
2471 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2472 	}
2473 
2474 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2475 		struct flow_match_basic match;
2476 
2477 		flow_rule_match_basic(rule, &match);
2478 		n_proto_key = ntohs(match.key->n_proto);
2479 		n_proto_mask = ntohs(match.mask->n_proto);
2480 
2481 		if (n_proto_key == ETH_P_ALL) {
2482 			n_proto_key = 0;
2483 			n_proto_mask = 0;
2484 		}
2485 		n_proto = n_proto_key & n_proto_mask;
2486 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2487 			return -EINVAL;
2488 		if (n_proto == ETH_P_IPV6) {
2489 			/* specify flow type as TCP IPv6 */
2490 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2491 		}
2492 
2493 		if (match.key->ip_proto != IPPROTO_TCP) {
2494 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2495 			return -EINVAL;
2496 		}
2497 	}
2498 
2499 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2500 		struct flow_match_eth_addrs match;
2501 
2502 		flow_rule_match_eth_addrs(rule, &match);
2503 
2504 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2505 		if (!is_zero_ether_addr(match.mask->dst)) {
2506 			if (is_broadcast_ether_addr(match.mask->dst)) {
2507 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2508 			} else {
2509 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2510 					match.mask->dst);
2511 				return I40E_ERR_CONFIG;
2512 			}
2513 		}
2514 
2515 		if (!is_zero_ether_addr(match.mask->src)) {
2516 			if (is_broadcast_ether_addr(match.mask->src)) {
2517 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2518 			} else {
2519 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2520 					match.mask->src);
2521 				return I40E_ERR_CONFIG;
2522 			}
2523 		}
2524 
2525 		if (!is_zero_ether_addr(match.key->dst))
2526 			if (is_valid_ether_addr(match.key->dst) ||
2527 			    is_multicast_ether_addr(match.key->dst)) {
2528 				/* set the mask if a valid dst_mac address */
2529 				for (i = 0; i < ETH_ALEN; i++)
2530 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2531 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2532 						match.key->dst);
2533 			}
2534 
2535 		if (!is_zero_ether_addr(match.key->src))
2536 			if (is_valid_ether_addr(match.key->src) ||
2537 			    is_multicast_ether_addr(match.key->src)) {
2538 				/* set the mask if a valid dst_mac address */
2539 				for (i = 0; i < ETH_ALEN; i++)
2540 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2541 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2542 						match.key->src);
2543 		}
2544 	}
2545 
2546 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2547 		struct flow_match_vlan match;
2548 
2549 		flow_rule_match_vlan(rule, &match);
2550 		if (match.mask->vlan_id) {
2551 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2552 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2553 			} else {
2554 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2555 					match.mask->vlan_id);
2556 				return I40E_ERR_CONFIG;
2557 			}
2558 		}
2559 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2560 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2561 	}
2562 
2563 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2564 		struct flow_match_control match;
2565 
2566 		flow_rule_match_control(rule, &match);
2567 		addr_type = match.key->addr_type;
2568 	}
2569 
2570 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2571 		struct flow_match_ipv4_addrs match;
2572 
2573 		flow_rule_match_ipv4_addrs(rule, &match);
2574 		if (match.mask->dst) {
2575 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2576 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2577 			} else {
2578 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2579 					be32_to_cpu(match.mask->dst));
2580 				return I40E_ERR_CONFIG;
2581 			}
2582 		}
2583 
2584 		if (match.mask->src) {
2585 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2586 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2587 			} else {
2588 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2589 					be32_to_cpu(match.mask->dst));
2590 				return I40E_ERR_CONFIG;
2591 			}
2592 		}
2593 
2594 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2595 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2596 			return I40E_ERR_CONFIG;
2597 		}
2598 		if (match.key->dst) {
2599 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2600 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2601 		}
2602 		if (match.key->src) {
2603 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2604 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2605 		}
2606 	}
2607 
2608 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2609 		struct flow_match_ipv6_addrs match;
2610 
2611 		flow_rule_match_ipv6_addrs(rule, &match);
2612 
2613 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2614 		if (ipv6_addr_any(&match.mask->dst)) {
2615 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2616 				IPV6_ADDR_ANY);
2617 			return I40E_ERR_CONFIG;
2618 		}
2619 
2620 		/* src and dest IPv6 address should not be LOOPBACK
2621 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2622 		 */
2623 		if (ipv6_addr_loopback(&match.key->dst) ||
2624 		    ipv6_addr_loopback(&match.key->src)) {
2625 			dev_err(&adapter->pdev->dev,
2626 				"ipv6 addr should not be loopback\n");
2627 			return I40E_ERR_CONFIG;
2628 		}
2629 		if (!ipv6_addr_any(&match.mask->dst) ||
2630 		    !ipv6_addr_any(&match.mask->src))
2631 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2632 
2633 		for (i = 0; i < 4; i++)
2634 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2635 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2636 		       sizeof(vf->data.tcp_spec.dst_ip));
2637 		for (i = 0; i < 4; i++)
2638 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2639 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2640 		       sizeof(vf->data.tcp_spec.src_ip));
2641 	}
2642 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2643 		struct flow_match_ports match;
2644 
2645 		flow_rule_match_ports(rule, &match);
2646 		if (match.mask->src) {
2647 			if (match.mask->src == cpu_to_be16(0xffff)) {
2648 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2649 			} else {
2650 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2651 					be16_to_cpu(match.mask->src));
2652 				return I40E_ERR_CONFIG;
2653 			}
2654 		}
2655 
2656 		if (match.mask->dst) {
2657 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2658 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2659 			} else {
2660 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2661 					be16_to_cpu(match.mask->dst));
2662 				return I40E_ERR_CONFIG;
2663 			}
2664 		}
2665 		if (match.key->dst) {
2666 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2667 			vf->data.tcp_spec.dst_port = match.key->dst;
2668 		}
2669 
2670 		if (match.key->src) {
2671 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2672 			vf->data.tcp_spec.src_port = match.key->src;
2673 		}
2674 	}
2675 	vf->field_flags = field_flags;
2676 
2677 	return 0;
2678 }
2679 
2680 /**
2681  * iavf_handle_tclass - Forward to a traffic class on the device
2682  * @adapter: board private structure
2683  * @tc: traffic class index on the device
2684  * @filter: pointer to cloud filter structure
2685  */
2686 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2687 			      struct iavf_cloud_filter *filter)
2688 {
2689 	if (tc == 0)
2690 		return 0;
2691 	if (tc < adapter->num_tc) {
2692 		if (!filter->f.data.tcp_spec.dst_port) {
2693 			dev_err(&adapter->pdev->dev,
2694 				"Specify destination port to redirect to traffic class other than TC0\n");
2695 			return -EINVAL;
2696 		}
2697 	}
2698 	/* redirect to a traffic class on the same device */
2699 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2700 	filter->f.action_meta = tc;
2701 	return 0;
2702 }
2703 
2704 /**
2705  * iavf_configure_clsflower - Add tc flower filters
2706  * @adapter: board private structure
2707  * @cls_flower: Pointer to struct tc_cls_flower_offload
2708  */
2709 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2710 				    struct tc_cls_flower_offload *cls_flower)
2711 {
2712 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2713 	struct iavf_cloud_filter *filter = NULL;
2714 	int err = -EINVAL, count = 50;
2715 
2716 	if (tc < 0) {
2717 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2718 		return -EINVAL;
2719 	}
2720 
2721 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2722 	if (!filter)
2723 		return -ENOMEM;
2724 
2725 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2726 				&adapter->crit_section)) {
2727 		if (--count == 0)
2728 			goto err;
2729 		udelay(1);
2730 	}
2731 
2732 	filter->cookie = cls_flower->cookie;
2733 
2734 	/* set the mask to all zeroes to begin with */
2735 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2736 	/* start out with flow type and eth type IPv4 to begin with */
2737 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2738 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2739 	if (err < 0)
2740 		goto err;
2741 
2742 	err = iavf_handle_tclass(adapter, tc, filter);
2743 	if (err < 0)
2744 		goto err;
2745 
2746 	/* add filter to the list */
2747 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2748 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
2749 	adapter->num_cloud_filters++;
2750 	filter->add = true;
2751 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2752 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2753 err:
2754 	if (err)
2755 		kfree(filter);
2756 
2757 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2758 	return err;
2759 }
2760 
2761 /* iavf_find_cf - Find the cloud filter in the list
2762  * @adapter: Board private structure
2763  * @cookie: filter specific cookie
2764  *
2765  * Returns ptr to the filter object or NULL. Must be called while holding the
2766  * cloud_filter_list_lock.
2767  */
2768 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
2769 					      unsigned long *cookie)
2770 {
2771 	struct iavf_cloud_filter *filter = NULL;
2772 
2773 	if (!cookie)
2774 		return NULL;
2775 
2776 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
2777 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
2778 			return filter;
2779 	}
2780 	return NULL;
2781 }
2782 
2783 /**
2784  * iavf_delete_clsflower - Remove tc flower filters
2785  * @adapter: board private structure
2786  * @cls_flower: Pointer to struct tc_cls_flower_offload
2787  */
2788 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
2789 				 struct tc_cls_flower_offload *cls_flower)
2790 {
2791 	struct iavf_cloud_filter *filter = NULL;
2792 	int err = 0;
2793 
2794 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2795 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
2796 	if (filter) {
2797 		filter->del = true;
2798 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
2799 	} else {
2800 		err = -EINVAL;
2801 	}
2802 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2803 
2804 	return err;
2805 }
2806 
2807 /**
2808  * iavf_setup_tc_cls_flower - flower classifier offloads
2809  * @netdev: net device to configure
2810  * @type_data: offload data
2811  */
2812 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
2813 				    struct tc_cls_flower_offload *cls_flower)
2814 {
2815 	if (cls_flower->common.chain_index)
2816 		return -EOPNOTSUPP;
2817 
2818 	switch (cls_flower->command) {
2819 	case TC_CLSFLOWER_REPLACE:
2820 		return iavf_configure_clsflower(adapter, cls_flower);
2821 	case TC_CLSFLOWER_DESTROY:
2822 		return iavf_delete_clsflower(adapter, cls_flower);
2823 	case TC_CLSFLOWER_STATS:
2824 		return -EOPNOTSUPP;
2825 	default:
2826 		return -EOPNOTSUPP;
2827 	}
2828 }
2829 
2830 /**
2831  * iavf_setup_tc_block_cb - block callback for tc
2832  * @type: type of offload
2833  * @type_data: offload data
2834  * @cb_priv:
2835  *
2836  * This function is the block callback for traffic classes
2837  **/
2838 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2839 				  void *cb_priv)
2840 {
2841 	switch (type) {
2842 	case TC_SETUP_CLSFLOWER:
2843 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
2844 	default:
2845 		return -EOPNOTSUPP;
2846 	}
2847 }
2848 
2849 /**
2850  * iavf_setup_tc_block - register callbacks for tc
2851  * @netdev: network interface device structure
2852  * @f: tc offload data
2853  *
2854  * This function registers block callbacks for tc
2855  * offloads
2856  **/
2857 static int iavf_setup_tc_block(struct net_device *dev,
2858 			       struct tc_block_offload *f)
2859 {
2860 	struct iavf_adapter *adapter = netdev_priv(dev);
2861 
2862 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2863 		return -EOPNOTSUPP;
2864 
2865 	switch (f->command) {
2866 	case TC_BLOCK_BIND:
2867 		return tcf_block_cb_register(f->block, iavf_setup_tc_block_cb,
2868 					     adapter, adapter, f->extack);
2869 	case TC_BLOCK_UNBIND:
2870 		tcf_block_cb_unregister(f->block, iavf_setup_tc_block_cb,
2871 					adapter);
2872 		return 0;
2873 	default:
2874 		return -EOPNOTSUPP;
2875 	}
2876 }
2877 
2878 /**
2879  * iavf_setup_tc - configure multiple traffic classes
2880  * @netdev: network interface device structure
2881  * @type: type of offload
2882  * @type_date: tc offload data
2883  *
2884  * This function is the callback to ndo_setup_tc in the
2885  * netdev_ops.
2886  *
2887  * Returns 0 on success
2888  **/
2889 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
2890 			 void *type_data)
2891 {
2892 	switch (type) {
2893 	case TC_SETUP_QDISC_MQPRIO:
2894 		return __iavf_setup_tc(netdev, type_data);
2895 	case TC_SETUP_BLOCK:
2896 		return iavf_setup_tc_block(netdev, type_data);
2897 	default:
2898 		return -EOPNOTSUPP;
2899 	}
2900 }
2901 
2902 /**
2903  * iavf_open - Called when a network interface is made active
2904  * @netdev: network interface device structure
2905  *
2906  * Returns 0 on success, negative value on failure
2907  *
2908  * The open entry point is called when a network interface is made
2909  * active by the system (IFF_UP).  At this point all resources needed
2910  * for transmit and receive operations are allocated, the interrupt
2911  * handler is registered with the OS, the watchdog timer is started,
2912  * and the stack is notified that the interface is ready.
2913  **/
2914 static int iavf_open(struct net_device *netdev)
2915 {
2916 	struct iavf_adapter *adapter = netdev_priv(netdev);
2917 	int err;
2918 
2919 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
2920 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
2921 		return -EIO;
2922 	}
2923 
2924 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2925 				&adapter->crit_section))
2926 		usleep_range(500, 1000);
2927 
2928 	if (adapter->state != __IAVF_DOWN) {
2929 		err = -EBUSY;
2930 		goto err_unlock;
2931 	}
2932 
2933 	/* allocate transmit descriptors */
2934 	err = iavf_setup_all_tx_resources(adapter);
2935 	if (err)
2936 		goto err_setup_tx;
2937 
2938 	/* allocate receive descriptors */
2939 	err = iavf_setup_all_rx_resources(adapter);
2940 	if (err)
2941 		goto err_setup_rx;
2942 
2943 	/* clear any pending interrupts, may auto mask */
2944 	err = iavf_request_traffic_irqs(adapter, netdev->name);
2945 	if (err)
2946 		goto err_req_irq;
2947 
2948 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2949 
2950 	iavf_add_filter(adapter, adapter->hw.mac.addr);
2951 
2952 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2953 
2954 	iavf_configure(adapter);
2955 
2956 	iavf_up_complete(adapter);
2957 
2958 	iavf_irq_enable(adapter, true);
2959 
2960 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2961 
2962 	return 0;
2963 
2964 err_req_irq:
2965 	iavf_down(adapter);
2966 	iavf_free_traffic_irqs(adapter);
2967 err_setup_rx:
2968 	iavf_free_all_rx_resources(adapter);
2969 err_setup_tx:
2970 	iavf_free_all_tx_resources(adapter);
2971 err_unlock:
2972 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2973 
2974 	return err;
2975 }
2976 
2977 /**
2978  * iavf_close - Disables a network interface
2979  * @netdev: network interface device structure
2980  *
2981  * Returns 0, this is not allowed to fail
2982  *
2983  * The close entry point is called when an interface is de-activated
2984  * by the OS.  The hardware is still under the drivers control, but
2985  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
2986  * are freed, along with all transmit and receive resources.
2987  **/
2988 static int iavf_close(struct net_device *netdev)
2989 {
2990 	struct iavf_adapter *adapter = netdev_priv(netdev);
2991 	int status;
2992 
2993 	if (adapter->state <= __IAVF_DOWN_PENDING)
2994 		return 0;
2995 
2996 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2997 				&adapter->crit_section))
2998 		usleep_range(500, 1000);
2999 
3000 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3001 	if (CLIENT_ENABLED(adapter))
3002 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3003 
3004 	iavf_down(adapter);
3005 	adapter->state = __IAVF_DOWN_PENDING;
3006 	iavf_free_traffic_irqs(adapter);
3007 
3008 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3009 
3010 	/* We explicitly don't free resources here because the hardware is
3011 	 * still active and can DMA into memory. Resources are cleared in
3012 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3013 	 * driver that the rings have been stopped.
3014 	 *
3015 	 * Also, we wait for state to transition to __IAVF_DOWN before
3016 	 * returning. State change occurs in iavf_virtchnl_completion() after
3017 	 * VF resources are released (which occurs after PF driver processes and
3018 	 * responds to admin queue commands).
3019 	 */
3020 
3021 	status = wait_event_timeout(adapter->down_waitqueue,
3022 				    adapter->state == __IAVF_DOWN,
3023 				    msecs_to_jiffies(200));
3024 	if (!status)
3025 		netdev_warn(netdev, "Device resources not yet released\n");
3026 	return 0;
3027 }
3028 
3029 /**
3030  * iavf_change_mtu - Change the Maximum Transfer Unit
3031  * @netdev: network interface device structure
3032  * @new_mtu: new value for maximum frame size
3033  *
3034  * Returns 0 on success, negative on failure
3035  **/
3036 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3037 {
3038 	struct iavf_adapter *adapter = netdev_priv(netdev);
3039 
3040 	netdev->mtu = new_mtu;
3041 	if (CLIENT_ENABLED(adapter)) {
3042 		iavf_notify_client_l2_params(&adapter->vsi);
3043 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3044 	}
3045 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3046 	schedule_work(&adapter->reset_task);
3047 
3048 	return 0;
3049 }
3050 
3051 /**
3052  * iavf_set_features - set the netdev feature flags
3053  * @netdev: ptr to the netdev being adjusted
3054  * @features: the feature set that the stack is suggesting
3055  * Note: expects to be called while under rtnl_lock()
3056  **/
3057 static int iavf_set_features(struct net_device *netdev,
3058 			     netdev_features_t features)
3059 {
3060 	struct iavf_adapter *adapter = netdev_priv(netdev);
3061 
3062 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3063 	 * of VLAN offload
3064 	 */
3065 	if (!VLAN_ALLOWED(adapter)) {
3066 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3067 			return -EINVAL;
3068 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3069 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3070 			adapter->aq_required |=
3071 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3072 		else
3073 			adapter->aq_required |=
3074 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  * iavf_features_check - Validate encapsulated packet conforms to limits
3082  * @skb: skb buff
3083  * @dev: This physical port's netdev
3084  * @features: Offload features that the stack believes apply
3085  **/
3086 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3087 					     struct net_device *dev,
3088 					     netdev_features_t features)
3089 {
3090 	size_t len;
3091 
3092 	/* No point in doing any of this if neither checksum nor GSO are
3093 	 * being requested for this frame.  We can rule out both by just
3094 	 * checking for CHECKSUM_PARTIAL
3095 	 */
3096 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3097 		return features;
3098 
3099 	/* We cannot support GSO if the MSS is going to be less than
3100 	 * 64 bytes.  If it is then we need to drop support for GSO.
3101 	 */
3102 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3103 		features &= ~NETIF_F_GSO_MASK;
3104 
3105 	/* MACLEN can support at most 63 words */
3106 	len = skb_network_header(skb) - skb->data;
3107 	if (len & ~(63 * 2))
3108 		goto out_err;
3109 
3110 	/* IPLEN and EIPLEN can support at most 127 dwords */
3111 	len = skb_transport_header(skb) - skb_network_header(skb);
3112 	if (len & ~(127 * 4))
3113 		goto out_err;
3114 
3115 	if (skb->encapsulation) {
3116 		/* L4TUNLEN can support 127 words */
3117 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3118 		if (len & ~(127 * 2))
3119 			goto out_err;
3120 
3121 		/* IPLEN can support at most 127 dwords */
3122 		len = skb_inner_transport_header(skb) -
3123 		      skb_inner_network_header(skb);
3124 		if (len & ~(127 * 4))
3125 			goto out_err;
3126 	}
3127 
3128 	/* No need to validate L4LEN as TCP is the only protocol with a
3129 	 * a flexible value and we support all possible values supported
3130 	 * by TCP, which is at most 15 dwords
3131 	 */
3132 
3133 	return features;
3134 out_err:
3135 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3136 }
3137 
3138 /**
3139  * iavf_fix_features - fix up the netdev feature bits
3140  * @netdev: our net device
3141  * @features: desired feature bits
3142  *
3143  * Returns fixed-up features bits
3144  **/
3145 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3146 					   netdev_features_t features)
3147 {
3148 	struct iavf_adapter *adapter = netdev_priv(netdev);
3149 
3150 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3151 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3152 			      NETIF_F_HW_VLAN_CTAG_RX |
3153 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3154 
3155 	return features;
3156 }
3157 
3158 static const struct net_device_ops iavf_netdev_ops = {
3159 	.ndo_open		= iavf_open,
3160 	.ndo_stop		= iavf_close,
3161 	.ndo_start_xmit		= iavf_xmit_frame,
3162 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3163 	.ndo_validate_addr	= eth_validate_addr,
3164 	.ndo_set_mac_address	= iavf_set_mac,
3165 	.ndo_change_mtu		= iavf_change_mtu,
3166 	.ndo_tx_timeout		= iavf_tx_timeout,
3167 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3168 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3169 	.ndo_features_check	= iavf_features_check,
3170 	.ndo_fix_features	= iavf_fix_features,
3171 	.ndo_set_features	= iavf_set_features,
3172 	.ndo_setup_tc		= iavf_setup_tc,
3173 };
3174 
3175 /**
3176  * iavf_check_reset_complete - check that VF reset is complete
3177  * @hw: pointer to hw struct
3178  *
3179  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3180  **/
3181 static int iavf_check_reset_complete(struct iavf_hw *hw)
3182 {
3183 	u32 rstat;
3184 	int i;
3185 
3186 	for (i = 0; i < 100; i++) {
3187 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3188 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3189 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3190 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3191 			return 0;
3192 		usleep_range(10, 20);
3193 	}
3194 	return -EBUSY;
3195 }
3196 
3197 /**
3198  * iavf_process_config - Process the config information we got from the PF
3199  * @adapter: board private structure
3200  *
3201  * Verify that we have a valid config struct, and set up our netdev features
3202  * and our VSI struct.
3203  **/
3204 int iavf_process_config(struct iavf_adapter *adapter)
3205 {
3206 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3207 	int i, num_req_queues = adapter->num_req_queues;
3208 	struct net_device *netdev = adapter->netdev;
3209 	struct iavf_vsi *vsi = &adapter->vsi;
3210 	netdev_features_t hw_enc_features;
3211 	netdev_features_t hw_features;
3212 
3213 	/* got VF config message back from PF, now we can parse it */
3214 	for (i = 0; i < vfres->num_vsis; i++) {
3215 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3216 			adapter->vsi_res = &vfres->vsi_res[i];
3217 	}
3218 	if (!adapter->vsi_res) {
3219 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3220 		return -ENODEV;
3221 	}
3222 
3223 	if (num_req_queues &&
3224 	    num_req_queues != adapter->vsi_res->num_queue_pairs) {
3225 		/* Problem.  The PF gave us fewer queues than what we had
3226 		 * negotiated in our request.  Need a reset to see if we can't
3227 		 * get back to a working state.
3228 		 */
3229 		dev_err(&adapter->pdev->dev,
3230 			"Requested %d queues, but PF only gave us %d.\n",
3231 			num_req_queues,
3232 			adapter->vsi_res->num_queue_pairs);
3233 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3234 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3235 		iavf_schedule_reset(adapter);
3236 		return -ENODEV;
3237 	}
3238 	adapter->num_req_queues = 0;
3239 
3240 	hw_enc_features = NETIF_F_SG			|
3241 			  NETIF_F_IP_CSUM		|
3242 			  NETIF_F_IPV6_CSUM		|
3243 			  NETIF_F_HIGHDMA		|
3244 			  NETIF_F_SOFT_FEATURES	|
3245 			  NETIF_F_TSO			|
3246 			  NETIF_F_TSO_ECN		|
3247 			  NETIF_F_TSO6			|
3248 			  NETIF_F_SCTP_CRC		|
3249 			  NETIF_F_RXHASH		|
3250 			  NETIF_F_RXCSUM		|
3251 			  0;
3252 
3253 	/* advertise to stack only if offloads for encapsulated packets is
3254 	 * supported
3255 	 */
3256 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3257 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3258 				   NETIF_F_GSO_GRE		|
3259 				   NETIF_F_GSO_GRE_CSUM		|
3260 				   NETIF_F_GSO_IPXIP4		|
3261 				   NETIF_F_GSO_IPXIP6		|
3262 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3263 				   NETIF_F_GSO_PARTIAL		|
3264 				   0;
3265 
3266 		if (!(vfres->vf_cap_flags &
3267 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3268 			netdev->gso_partial_features |=
3269 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3270 
3271 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3272 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3273 		netdev->hw_enc_features |= hw_enc_features;
3274 	}
3275 	/* record features VLANs can make use of */
3276 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3277 
3278 	/* Write features and hw_features separately to avoid polluting
3279 	 * with, or dropping, features that are set when we registered.
3280 	 */
3281 	hw_features = hw_enc_features;
3282 
3283 	/* Enable VLAN features if supported */
3284 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3285 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3286 				NETIF_F_HW_VLAN_CTAG_RX);
3287 	/* Enable cloud filter if ADQ is supported */
3288 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3289 		hw_features |= NETIF_F_HW_TC;
3290 
3291 	netdev->hw_features |= hw_features;
3292 
3293 	netdev->features |= hw_features;
3294 
3295 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3296 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3297 
3298 	netdev->priv_flags |= IFF_UNICAST_FLT;
3299 
3300 	/* Do not turn on offloads when they are requested to be turned off.
3301 	 * TSO needs minimum 576 bytes to work correctly.
3302 	 */
3303 	if (netdev->wanted_features) {
3304 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3305 		    netdev->mtu < 576)
3306 			netdev->features &= ~NETIF_F_TSO;
3307 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3308 		    netdev->mtu < 576)
3309 			netdev->features &= ~NETIF_F_TSO6;
3310 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3311 			netdev->features &= ~NETIF_F_TSO_ECN;
3312 		if (!(netdev->wanted_features & NETIF_F_GRO))
3313 			netdev->features &= ~NETIF_F_GRO;
3314 		if (!(netdev->wanted_features & NETIF_F_GSO))
3315 			netdev->features &= ~NETIF_F_GSO;
3316 	}
3317 
3318 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3319 
3320 	adapter->vsi.back = adapter;
3321 	adapter->vsi.base_vector = 1;
3322 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3323 	vsi->netdev = adapter->netdev;
3324 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3325 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3326 		adapter->rss_key_size = vfres->rss_key_size;
3327 		adapter->rss_lut_size = vfres->rss_lut_size;
3328 	} else {
3329 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3330 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 /**
3337  * iavf_init_task - worker thread to perform delayed initialization
3338  * @work: pointer to work_struct containing our data
3339  *
3340  * This task completes the work that was begun in probe. Due to the nature
3341  * of VF-PF communications, we may need to wait tens of milliseconds to get
3342  * responses back from the PF. Rather than busy-wait in probe and bog down the
3343  * whole system, we'll do it in a task so we can sleep.
3344  * This task only runs during driver init. Once we've established
3345  * communications with the PF driver and set up our netdev, the watchdog
3346  * takes over.
3347  **/
3348 static void iavf_init_task(struct work_struct *work)
3349 {
3350 	struct iavf_adapter *adapter = container_of(work,
3351 						      struct iavf_adapter,
3352 						      init_task.work);
3353 	struct net_device *netdev = adapter->netdev;
3354 	struct iavf_hw *hw = &adapter->hw;
3355 	struct pci_dev *pdev = adapter->pdev;
3356 	int err, bufsz;
3357 
3358 	switch (adapter->state) {
3359 	case __IAVF_STARTUP:
3360 		/* driver loaded, probe complete */
3361 		adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
3362 		adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3363 		err = iavf_set_mac_type(hw);
3364 		if (err) {
3365 			dev_err(&pdev->dev, "Failed to set MAC type (%d)\n",
3366 				err);
3367 			goto err;
3368 		}
3369 		err = iavf_check_reset_complete(hw);
3370 		if (err) {
3371 			dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
3372 				 err);
3373 			goto err;
3374 		}
3375 		hw->aq.num_arq_entries = IAVF_AQ_LEN;
3376 		hw->aq.num_asq_entries = IAVF_AQ_LEN;
3377 		hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
3378 		hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
3379 
3380 		err = iavf_init_adminq(hw);
3381 		if (err) {
3382 			dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
3383 				err);
3384 			goto err;
3385 		}
3386 		err = iavf_send_api_ver(adapter);
3387 		if (err) {
3388 			dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
3389 			iavf_shutdown_adminq(hw);
3390 			goto err;
3391 		}
3392 		adapter->state = __IAVF_INIT_VERSION_CHECK;
3393 		goto restart;
3394 	case __IAVF_INIT_VERSION_CHECK:
3395 		if (!iavf_asq_done(hw)) {
3396 			dev_err(&pdev->dev, "Admin queue command never completed\n");
3397 			iavf_shutdown_adminq(hw);
3398 			adapter->state = __IAVF_STARTUP;
3399 			goto err;
3400 		}
3401 
3402 		/* aq msg sent, awaiting reply */
3403 		err = iavf_verify_api_ver(adapter);
3404 		if (err) {
3405 			if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK)
3406 				err = iavf_send_api_ver(adapter);
3407 			else
3408 				dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
3409 					adapter->pf_version.major,
3410 					adapter->pf_version.minor,
3411 					VIRTCHNL_VERSION_MAJOR,
3412 					VIRTCHNL_VERSION_MINOR);
3413 			goto err;
3414 		}
3415 		err = iavf_send_vf_config_msg(adapter);
3416 		if (err) {
3417 			dev_err(&pdev->dev, "Unable to send config request (%d)\n",
3418 				err);
3419 			goto err;
3420 		}
3421 		adapter->state = __IAVF_INIT_GET_RESOURCES;
3422 		goto restart;
3423 	case __IAVF_INIT_GET_RESOURCES:
3424 		/* aq msg sent, awaiting reply */
3425 		if (!adapter->vf_res) {
3426 			bufsz = sizeof(struct virtchnl_vf_resource) +
3427 				(IAVF_MAX_VF_VSI *
3428 				 sizeof(struct virtchnl_vsi_resource));
3429 			adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
3430 			if (!adapter->vf_res)
3431 				goto err;
3432 		}
3433 		err = iavf_get_vf_config(adapter);
3434 		if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK) {
3435 			err = iavf_send_vf_config_msg(adapter);
3436 			goto err;
3437 		} else if (err == I40E_ERR_PARAM) {
3438 			/* We only get ERR_PARAM if the device is in a very bad
3439 			 * state or if we've been disabled for previous bad
3440 			 * behavior. Either way, we're done now.
3441 			 */
3442 			iavf_shutdown_adminq(hw);
3443 			dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
3444 			return;
3445 		}
3446 		if (err) {
3447 			dev_err(&pdev->dev, "Unable to get VF config (%d)\n",
3448 				err);
3449 			goto err_alloc;
3450 		}
3451 		adapter->state = __IAVF_INIT_SW;
3452 		break;
3453 	default:
3454 		goto err_alloc;
3455 	}
3456 
3457 	if (iavf_process_config(adapter))
3458 		goto err_alloc;
3459 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3460 
3461 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
3462 
3463 	netdev->netdev_ops = &iavf_netdev_ops;
3464 	iavf_set_ethtool_ops(netdev);
3465 	netdev->watchdog_timeo = 5 * HZ;
3466 
3467 	/* MTU range: 68 - 9710 */
3468 	netdev->min_mtu = ETH_MIN_MTU;
3469 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
3470 
3471 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
3472 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
3473 			 adapter->hw.mac.addr);
3474 		eth_hw_addr_random(netdev);
3475 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
3476 	} else {
3477 		adapter->flags |= IAVF_FLAG_ADDR_SET_BY_PF;
3478 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
3479 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
3480 	}
3481 
3482 	timer_setup(&adapter->watchdog_timer, iavf_watchdog_timer, 0);
3483 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
3484 
3485 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
3486 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
3487 	err = iavf_init_interrupt_scheme(adapter);
3488 	if (err)
3489 		goto err_sw_init;
3490 	iavf_map_rings_to_vectors(adapter);
3491 	if (adapter->vf_res->vf_cap_flags &
3492 	    VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
3493 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
3494 
3495 	err = iavf_request_misc_irq(adapter);
3496 	if (err)
3497 		goto err_sw_init;
3498 
3499 	netif_carrier_off(netdev);
3500 	adapter->link_up = false;
3501 
3502 	if (!adapter->netdev_registered) {
3503 		err = register_netdev(netdev);
3504 		if (err)
3505 			goto err_register;
3506 	}
3507 
3508 	adapter->netdev_registered = true;
3509 
3510 	netif_tx_stop_all_queues(netdev);
3511 	if (CLIENT_ALLOWED(adapter)) {
3512 		err = iavf_lan_add_device(adapter);
3513 		if (err)
3514 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
3515 				 err);
3516 	}
3517 
3518 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
3519 	if (netdev->features & NETIF_F_GRO)
3520 		dev_info(&pdev->dev, "GRO is enabled\n");
3521 
3522 	adapter->state = __IAVF_DOWN;
3523 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3524 	iavf_misc_irq_enable(adapter);
3525 	wake_up(&adapter->down_waitqueue);
3526 
3527 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
3528 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
3529 	if (!adapter->rss_key || !adapter->rss_lut)
3530 		goto err_mem;
3531 
3532 	if (RSS_AQ(adapter)) {
3533 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3534 		mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
3535 	} else {
3536 		iavf_init_rss(adapter);
3537 	}
3538 	return;
3539 restart:
3540 	schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(30));
3541 	return;
3542 err_mem:
3543 	iavf_free_rss(adapter);
3544 err_register:
3545 	iavf_free_misc_irq(adapter);
3546 err_sw_init:
3547 	iavf_reset_interrupt_capability(adapter);
3548 err_alloc:
3549 	kfree(adapter->vf_res);
3550 	adapter->vf_res = NULL;
3551 err:
3552 	/* Things went into the weeds, so try again later */
3553 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3554 		dev_err(&pdev->dev, "Failed to communicate with PF; waiting before retry\n");
3555 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3556 		iavf_shutdown_adminq(hw);
3557 		adapter->state = __IAVF_STARTUP;
3558 		schedule_delayed_work(&adapter->init_task, HZ * 5);
3559 		return;
3560 	}
3561 	schedule_delayed_work(&adapter->init_task, HZ);
3562 }
3563 
3564 /**
3565  * iavf_shutdown - Shutdown the device in preparation for a reboot
3566  * @pdev: pci device structure
3567  **/
3568 static void iavf_shutdown(struct pci_dev *pdev)
3569 {
3570 	struct net_device *netdev = pci_get_drvdata(pdev);
3571 	struct iavf_adapter *adapter = netdev_priv(netdev);
3572 
3573 	netif_device_detach(netdev);
3574 
3575 	if (netif_running(netdev))
3576 		iavf_close(netdev);
3577 
3578 	/* Prevent the watchdog from running. */
3579 	adapter->state = __IAVF_REMOVE;
3580 	adapter->aq_required = 0;
3581 
3582 #ifdef CONFIG_PM
3583 	pci_save_state(pdev);
3584 
3585 #endif
3586 	pci_disable_device(pdev);
3587 }
3588 
3589 /**
3590  * iavf_probe - Device Initialization Routine
3591  * @pdev: PCI device information struct
3592  * @ent: entry in iavf_pci_tbl
3593  *
3594  * Returns 0 on success, negative on failure
3595  *
3596  * iavf_probe initializes an adapter identified by a pci_dev structure.
3597  * The OS initialization, configuring of the adapter private structure,
3598  * and a hardware reset occur.
3599  **/
3600 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3601 {
3602 	struct net_device *netdev;
3603 	struct iavf_adapter *adapter = NULL;
3604 	struct iavf_hw *hw = NULL;
3605 	int err;
3606 
3607 	err = pci_enable_device(pdev);
3608 	if (err)
3609 		return err;
3610 
3611 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3612 	if (err) {
3613 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3614 		if (err) {
3615 			dev_err(&pdev->dev,
3616 				"DMA configuration failed: 0x%x\n", err);
3617 			goto err_dma;
3618 		}
3619 	}
3620 
3621 	err = pci_request_regions(pdev, iavf_driver_name);
3622 	if (err) {
3623 		dev_err(&pdev->dev,
3624 			"pci_request_regions failed 0x%x\n", err);
3625 		goto err_pci_reg;
3626 	}
3627 
3628 	pci_enable_pcie_error_reporting(pdev);
3629 
3630 	pci_set_master(pdev);
3631 
3632 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3633 				   IAVF_MAX_REQ_QUEUES);
3634 	if (!netdev) {
3635 		err = -ENOMEM;
3636 		goto err_alloc_etherdev;
3637 	}
3638 
3639 	SET_NETDEV_DEV(netdev, &pdev->dev);
3640 
3641 	pci_set_drvdata(pdev, netdev);
3642 	adapter = netdev_priv(netdev);
3643 
3644 	adapter->netdev = netdev;
3645 	adapter->pdev = pdev;
3646 
3647 	hw = &adapter->hw;
3648 	hw->back = adapter;
3649 
3650 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3651 	adapter->state = __IAVF_STARTUP;
3652 
3653 	/* Call save state here because it relies on the adapter struct. */
3654 	pci_save_state(pdev);
3655 
3656 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3657 			      pci_resource_len(pdev, 0));
3658 	if (!hw->hw_addr) {
3659 		err = -EIO;
3660 		goto err_ioremap;
3661 	}
3662 	hw->vendor_id = pdev->vendor;
3663 	hw->device_id = pdev->device;
3664 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3665 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3666 	hw->subsystem_device_id = pdev->subsystem_device;
3667 	hw->bus.device = PCI_SLOT(pdev->devfn);
3668 	hw->bus.func = PCI_FUNC(pdev->devfn);
3669 	hw->bus.bus_id = pdev->bus->number;
3670 
3671 	/* set up the locks for the AQ, do this only once in probe
3672 	 * and destroy them only once in remove
3673 	 */
3674 	mutex_init(&hw->aq.asq_mutex);
3675 	mutex_init(&hw->aq.arq_mutex);
3676 
3677 	spin_lock_init(&adapter->mac_vlan_list_lock);
3678 	spin_lock_init(&adapter->cloud_filter_list_lock);
3679 
3680 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3681 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3682 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3683 
3684 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3685 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3686 	INIT_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3687 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3688 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3689 	schedule_delayed_work(&adapter->init_task,
3690 			      msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3691 
3692 	/* Setup the wait queue for indicating transition to down status */
3693 	init_waitqueue_head(&adapter->down_waitqueue);
3694 
3695 	return 0;
3696 
3697 err_ioremap:
3698 	free_netdev(netdev);
3699 err_alloc_etherdev:
3700 	pci_release_regions(pdev);
3701 err_pci_reg:
3702 err_dma:
3703 	pci_disable_device(pdev);
3704 	return err;
3705 }
3706 
3707 #ifdef CONFIG_PM
3708 /**
3709  * iavf_suspend - Power management suspend routine
3710  * @pdev: PCI device information struct
3711  * @state: unused
3712  *
3713  * Called when the system (VM) is entering sleep/suspend.
3714  **/
3715 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3716 {
3717 	struct net_device *netdev = pci_get_drvdata(pdev);
3718 	struct iavf_adapter *adapter = netdev_priv(netdev);
3719 	int retval = 0;
3720 
3721 	netif_device_detach(netdev);
3722 
3723 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3724 				&adapter->crit_section))
3725 		usleep_range(500, 1000);
3726 
3727 	if (netif_running(netdev)) {
3728 		rtnl_lock();
3729 		iavf_down(adapter);
3730 		rtnl_unlock();
3731 	}
3732 	iavf_free_misc_irq(adapter);
3733 	iavf_reset_interrupt_capability(adapter);
3734 
3735 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3736 
3737 	retval = pci_save_state(pdev);
3738 	if (retval)
3739 		return retval;
3740 
3741 	pci_disable_device(pdev);
3742 
3743 	return 0;
3744 }
3745 
3746 /**
3747  * iavf_resume - Power management resume routine
3748  * @pdev: PCI device information struct
3749  *
3750  * Called when the system (VM) is resumed from sleep/suspend.
3751  **/
3752 static int iavf_resume(struct pci_dev *pdev)
3753 {
3754 	struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3755 	struct net_device *netdev = adapter->netdev;
3756 	u32 err;
3757 
3758 	pci_set_power_state(pdev, PCI_D0);
3759 	pci_restore_state(pdev);
3760 	/* pci_restore_state clears dev->state_saved so call
3761 	 * pci_save_state to restore it.
3762 	 */
3763 	pci_save_state(pdev);
3764 
3765 	err = pci_enable_device_mem(pdev);
3766 	if (err) {
3767 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3768 		return err;
3769 	}
3770 	pci_set_master(pdev);
3771 
3772 	rtnl_lock();
3773 	err = iavf_set_interrupt_capability(adapter);
3774 	if (err) {
3775 		rtnl_unlock();
3776 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3777 		return err;
3778 	}
3779 	err = iavf_request_misc_irq(adapter);
3780 	rtnl_unlock();
3781 	if (err) {
3782 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3783 		return err;
3784 	}
3785 
3786 	schedule_work(&adapter->reset_task);
3787 
3788 	netif_device_attach(netdev);
3789 
3790 	return err;
3791 }
3792 
3793 #endif /* CONFIG_PM */
3794 /**
3795  * iavf_remove - Device Removal Routine
3796  * @pdev: PCI device information struct
3797  *
3798  * iavf_remove is called by the PCI subsystem to alert the driver
3799  * that it should release a PCI device.  The could be caused by a
3800  * Hot-Plug event, or because the driver is going to be removed from
3801  * memory.
3802  **/
3803 static void iavf_remove(struct pci_dev *pdev)
3804 {
3805 	struct net_device *netdev = pci_get_drvdata(pdev);
3806 	struct iavf_adapter *adapter = netdev_priv(netdev);
3807 	struct iavf_vlan_filter *vlf, *vlftmp;
3808 	struct iavf_mac_filter *f, *ftmp;
3809 	struct iavf_cloud_filter *cf, *cftmp;
3810 	struct iavf_hw *hw = &adapter->hw;
3811 	int err;
3812 	/* Indicate we are in remove and not to run reset_task */
3813 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3814 	cancel_delayed_work_sync(&adapter->init_task);
3815 	cancel_work_sync(&adapter->reset_task);
3816 	cancel_delayed_work_sync(&adapter->client_task);
3817 	if (adapter->netdev_registered) {
3818 		unregister_netdev(netdev);
3819 		adapter->netdev_registered = false;
3820 	}
3821 	if (CLIENT_ALLOWED(adapter)) {
3822 		err = iavf_lan_del_device(adapter);
3823 		if (err)
3824 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3825 				 err);
3826 	}
3827 
3828 	/* Shut down all the garbage mashers on the detention level */
3829 	adapter->state = __IAVF_REMOVE;
3830 	adapter->aq_required = 0;
3831 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3832 	iavf_request_reset(adapter);
3833 	msleep(50);
3834 	/* If the FW isn't responding, kick it once, but only once. */
3835 	if (!iavf_asq_done(hw)) {
3836 		iavf_request_reset(adapter);
3837 		msleep(50);
3838 	}
3839 	iavf_free_all_tx_resources(adapter);
3840 	iavf_free_all_rx_resources(adapter);
3841 	iavf_misc_irq_disable(adapter);
3842 	iavf_free_misc_irq(adapter);
3843 	iavf_reset_interrupt_capability(adapter);
3844 	iavf_free_q_vectors(adapter);
3845 
3846 	if (adapter->watchdog_timer.function)
3847 		del_timer_sync(&adapter->watchdog_timer);
3848 
3849 	cancel_work_sync(&adapter->adminq_task);
3850 
3851 	iavf_free_rss(adapter);
3852 
3853 	if (hw->aq.asq.count)
3854 		iavf_shutdown_adminq(hw);
3855 
3856 	/* destroy the locks only once, here */
3857 	mutex_destroy(&hw->aq.arq_mutex);
3858 	mutex_destroy(&hw->aq.asq_mutex);
3859 
3860 	iounmap(hw->hw_addr);
3861 	pci_release_regions(pdev);
3862 	iavf_free_all_tx_resources(adapter);
3863 	iavf_free_all_rx_resources(adapter);
3864 	iavf_free_queues(adapter);
3865 	kfree(adapter->vf_res);
3866 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3867 	/* If we got removed before an up/down sequence, we've got a filter
3868 	 * hanging out there that we need to get rid of.
3869 	 */
3870 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3871 		list_del(&f->list);
3872 		kfree(f);
3873 	}
3874 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3875 				 list) {
3876 		list_del(&vlf->list);
3877 		kfree(vlf);
3878 	}
3879 
3880 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3881 
3882 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3883 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3884 		list_del(&cf->list);
3885 		kfree(cf);
3886 	}
3887 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3888 
3889 	free_netdev(netdev);
3890 
3891 	pci_disable_pcie_error_reporting(pdev);
3892 
3893 	pci_disable_device(pdev);
3894 }
3895 
3896 static struct pci_driver iavf_driver = {
3897 	.name     = iavf_driver_name,
3898 	.id_table = iavf_pci_tbl,
3899 	.probe    = iavf_probe,
3900 	.remove   = iavf_remove,
3901 #ifdef CONFIG_PM
3902 	.suspend  = iavf_suspend,
3903 	.resume   = iavf_resume,
3904 #endif
3905 	.shutdown = iavf_shutdown,
3906 };
3907 
3908 /**
3909  * iavf_init_module - Driver Registration Routine
3910  *
3911  * iavf_init_module is the first routine called when the driver is
3912  * loaded. All it does is register with the PCI subsystem.
3913  **/
3914 static int __init iavf_init_module(void)
3915 {
3916 	int ret;
3917 
3918 	pr_info("iavf: %s - version %s\n", iavf_driver_string,
3919 		iavf_driver_version);
3920 
3921 	pr_info("%s\n", iavf_copyright);
3922 
3923 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3924 				  iavf_driver_name);
3925 	if (!iavf_wq) {
3926 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3927 		return -ENOMEM;
3928 	}
3929 	ret = pci_register_driver(&iavf_driver);
3930 	return ret;
3931 }
3932 
3933 module_init(iavf_init_module);
3934 
3935 /**
3936  * iavf_exit_module - Driver Exit Cleanup Routine
3937  *
3938  * iavf_exit_module is called just before the driver is removed
3939  * from memory.
3940  **/
3941 static void __exit iavf_exit_module(void)
3942 {
3943 	pci_unregister_driver(&iavf_driver);
3944 	destroy_workqueue(iavf_wq);
3945 }
3946 
3947 module_exit(iavf_exit_module);
3948 
3949 /* iavf_main.c */
3950