1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_lock_timeout - try to lock mutex but give up after timeout 281 * @lock: mutex that should be locked 282 * @msecs: timeout in msecs 283 * 284 * Returns 0 on success, negative on failure 285 **/ 286 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 287 { 288 unsigned int wait, delay = 10; 289 290 for (wait = 0; wait < msecs; wait += delay) { 291 if (mutex_trylock(lock)) 292 return 0; 293 294 msleep(delay); 295 } 296 297 return -1; 298 } 299 300 /** 301 * iavf_schedule_reset - Set the flags and schedule a reset event 302 * @adapter: board private structure 303 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 304 **/ 305 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 306 { 307 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 308 !(adapter->flags & 309 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 310 adapter->flags |= flags; 311 queue_work(adapter->wq, &adapter->reset_task); 312 } 313 } 314 315 /** 316 * iavf_schedule_aq_request - Set the flags and schedule aq request 317 * @adapter: board private structure 318 * @flags: requested aq flags 319 **/ 320 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 321 { 322 adapter->aq_required |= flags; 323 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 324 } 325 326 /** 327 * iavf_tx_timeout - Respond to a Tx Hang 328 * @netdev: network interface device structure 329 * @txqueue: queue number that is timing out 330 **/ 331 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 332 { 333 struct iavf_adapter *adapter = netdev_priv(netdev); 334 335 adapter->tx_timeout_count++; 336 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 337 } 338 339 /** 340 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 if (!adapter->msix_entries) 348 return; 349 350 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 351 352 iavf_flush(hw); 353 354 synchronize_irq(adapter->msix_entries[0].vector); 355 } 356 357 /** 358 * iavf_misc_irq_enable - Enable default interrupt generation settings 359 * @adapter: board private structure 360 **/ 361 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 362 { 363 struct iavf_hw *hw = &adapter->hw; 364 365 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 366 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 367 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 368 369 iavf_flush(hw); 370 } 371 372 /** 373 * iavf_irq_disable - Mask off interrupt generation on the NIC 374 * @adapter: board private structure 375 **/ 376 static void iavf_irq_disable(struct iavf_adapter *adapter) 377 { 378 int i; 379 struct iavf_hw *hw = &adapter->hw; 380 381 if (!adapter->msix_entries) 382 return; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 386 synchronize_irq(adapter->msix_entries[i].vector); 387 } 388 iavf_flush(hw); 389 } 390 391 /** 392 * iavf_irq_enable_queues - Enable interrupt for all queues 393 * @adapter: board private structure 394 **/ 395 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 396 { 397 struct iavf_hw *hw = &adapter->hw; 398 int i; 399 400 for (i = 1; i < adapter->num_msix_vectors; i++) { 401 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 402 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 403 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 404 } 405 } 406 407 /** 408 * iavf_irq_enable - Enable default interrupt generation settings 409 * @adapter: board private structure 410 * @flush: boolean value whether to run rd32() 411 **/ 412 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 413 { 414 struct iavf_hw *hw = &adapter->hw; 415 416 iavf_misc_irq_enable(adapter); 417 iavf_irq_enable_queues(adapter); 418 419 if (flush) 420 iavf_flush(hw); 421 } 422 423 /** 424 * iavf_msix_aq - Interrupt handler for vector 0 425 * @irq: interrupt number 426 * @data: pointer to netdev 427 **/ 428 static irqreturn_t iavf_msix_aq(int irq, void *data) 429 { 430 struct net_device *netdev = data; 431 struct iavf_adapter *adapter = netdev_priv(netdev); 432 struct iavf_hw *hw = &adapter->hw; 433 434 /* handle non-queue interrupts, these reads clear the registers */ 435 rd32(hw, IAVF_VFINT_ICR01); 436 rd32(hw, IAVF_VFINT_ICR0_ENA1); 437 438 if (adapter->state != __IAVF_REMOVE) 439 /* schedule work on the private workqueue */ 440 queue_work(adapter->wq, &adapter->adminq_task); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 447 * @irq: interrupt number 448 * @data: pointer to a q_vector 449 **/ 450 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 451 { 452 struct iavf_q_vector *q_vector = data; 453 454 if (!q_vector->tx.ring && !q_vector->rx.ring) 455 return IRQ_HANDLED; 456 457 napi_schedule_irqoff(&q_vector->napi); 458 459 return IRQ_HANDLED; 460 } 461 462 /** 463 * iavf_map_vector_to_rxq - associate irqs with rx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @r_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 rx_ring->q_vector = q_vector; 476 rx_ring->next = q_vector->rx.ring; 477 rx_ring->vsi = &adapter->vsi; 478 q_vector->rx.ring = rx_ring; 479 q_vector->rx.count++; 480 q_vector->rx.next_update = jiffies + 1; 481 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 482 q_vector->ring_mask |= BIT(r_idx); 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 484 q_vector->rx.current_itr >> 1); 485 q_vector->rx.current_itr = q_vector->rx.target_itr; 486 } 487 488 /** 489 * iavf_map_vector_to_txq - associate irqs with tx queues 490 * @adapter: board private structure 491 * @v_idx: interrupt number 492 * @t_idx: queue number 493 **/ 494 static void 495 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 496 { 497 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 498 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 499 struct iavf_hw *hw = &adapter->hw; 500 501 tx_ring->q_vector = q_vector; 502 tx_ring->next = q_vector->tx.ring; 503 tx_ring->vsi = &adapter->vsi; 504 q_vector->tx.ring = tx_ring; 505 q_vector->tx.count++; 506 q_vector->tx.next_update = jiffies + 1; 507 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 508 q_vector->num_ringpairs++; 509 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 510 q_vector->tx.target_itr >> 1); 511 q_vector->tx.current_itr = q_vector->tx.target_itr; 512 } 513 514 /** 515 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 516 * @adapter: board private structure to initialize 517 * 518 * This function maps descriptor rings to the queue-specific vectors 519 * we were allotted through the MSI-X enabling code. Ideally, we'd have 520 * one vector per ring/queue, but on a constrained vector budget, we 521 * group the rings as "efficiently" as possible. You would add new 522 * mapping configurations in here. 523 **/ 524 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 525 { 526 int rings_remaining = adapter->num_active_queues; 527 int ridx = 0, vidx = 0; 528 int q_vectors; 529 530 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 531 532 for (; ridx < rings_remaining; ridx++) { 533 iavf_map_vector_to_rxq(adapter, vidx, ridx); 534 iavf_map_vector_to_txq(adapter, vidx, ridx); 535 536 /* In the case where we have more queues than vectors, continue 537 * round-robin on vectors until all queues are mapped. 538 */ 539 if (++vidx >= q_vectors) 540 vidx = 0; 541 } 542 543 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 544 } 545 546 /** 547 * iavf_irq_affinity_notify - Callback for affinity changes 548 * @notify: context as to what irq was changed 549 * @mask: the new affinity mask 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * so that we may register to receive changes to the irq affinity masks. 553 **/ 554 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 555 const cpumask_t *mask) 556 { 557 struct iavf_q_vector *q_vector = 558 container_of(notify, struct iavf_q_vector, affinity_notify); 559 560 cpumask_copy(&q_vector->affinity_mask, mask); 561 } 562 563 /** 564 * iavf_irq_affinity_release - Callback for affinity notifier release 565 * @ref: internal core kernel usage 566 * 567 * This is a callback function used by the irq_set_affinity_notifier function 568 * to inform the current notification subscriber that they will no longer 569 * receive notifications. 570 **/ 571 static void iavf_irq_affinity_release(struct kref *ref) {} 572 573 /** 574 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 575 * @adapter: board private structure 576 * @basename: device basename 577 * 578 * Allocates MSI-X vectors for tx and rx handling, and requests 579 * interrupts from the kernel. 580 **/ 581 static int 582 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 583 { 584 unsigned int vector, q_vectors; 585 unsigned int rx_int_idx = 0, tx_int_idx = 0; 586 int irq_num, err; 587 int cpu; 588 589 iavf_irq_disable(adapter); 590 /* Decrement for Other and TCP Timer vectors */ 591 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 592 593 for (vector = 0; vector < q_vectors; vector++) { 594 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 595 596 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 597 598 if (q_vector->tx.ring && q_vector->rx.ring) { 599 snprintf(q_vector->name, sizeof(q_vector->name), 600 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 601 tx_int_idx++; 602 } else if (q_vector->rx.ring) { 603 snprintf(q_vector->name, sizeof(q_vector->name), 604 "iavf-%s-rx-%u", basename, rx_int_idx++); 605 } else if (q_vector->tx.ring) { 606 snprintf(q_vector->name, sizeof(q_vector->name), 607 "iavf-%s-tx-%u", basename, tx_int_idx++); 608 } else { 609 /* skip this unused q_vector */ 610 continue; 611 } 612 err = request_irq(irq_num, 613 iavf_msix_clean_rings, 614 0, 615 q_vector->name, 616 q_vector); 617 if (err) { 618 dev_info(&adapter->pdev->dev, 619 "Request_irq failed, error: %d\n", err); 620 goto free_queue_irqs; 621 } 622 /* register for affinity change notifications */ 623 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 624 q_vector->affinity_notify.release = 625 iavf_irq_affinity_release; 626 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 627 /* Spread the IRQ affinity hints across online CPUs. Note that 628 * get_cpu_mask returns a mask with a permanent lifetime so 629 * it's safe to use as a hint for irq_update_affinity_hint. 630 */ 631 cpu = cpumask_local_spread(q_vector->v_idx, -1); 632 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 633 } 634 635 return 0; 636 637 free_queue_irqs: 638 while (vector) { 639 vector--; 640 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 641 irq_set_affinity_notifier(irq_num, NULL); 642 irq_update_affinity_hint(irq_num, NULL); 643 free_irq(irq_num, &adapter->q_vectors[vector]); 644 } 645 return err; 646 } 647 648 /** 649 * iavf_request_misc_irq - Initialize MSI-X interrupts 650 * @adapter: board private structure 651 * 652 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 653 * vector is only for the admin queue, and stays active even when the netdev 654 * is closed. 655 **/ 656 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 657 { 658 struct net_device *netdev = adapter->netdev; 659 int err; 660 661 snprintf(adapter->misc_vector_name, 662 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 663 dev_name(&adapter->pdev->dev)); 664 err = request_irq(adapter->msix_entries[0].vector, 665 &iavf_msix_aq, 0, 666 adapter->misc_vector_name, netdev); 667 if (err) { 668 dev_err(&adapter->pdev->dev, 669 "request_irq for %s failed: %d\n", 670 adapter->misc_vector_name, err); 671 free_irq(adapter->msix_entries[0].vector, netdev); 672 } 673 return err; 674 } 675 676 /** 677 * iavf_free_traffic_irqs - Free MSI-X interrupts 678 * @adapter: board private structure 679 * 680 * Frees all MSI-X vectors other than 0. 681 **/ 682 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 683 { 684 int vector, irq_num, q_vectors; 685 686 if (!adapter->msix_entries) 687 return; 688 689 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 690 691 for (vector = 0; vector < q_vectors; vector++) { 692 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 693 irq_set_affinity_notifier(irq_num, NULL); 694 irq_update_affinity_hint(irq_num, NULL); 695 free_irq(irq_num, &adapter->q_vectors[vector]); 696 } 697 } 698 699 /** 700 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 701 * @adapter: board private structure 702 * 703 * Frees MSI-X vector 0. 704 **/ 705 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 706 { 707 struct net_device *netdev = adapter->netdev; 708 709 if (!adapter->msix_entries) 710 return; 711 712 free_irq(adapter->msix_entries[0].vector, netdev); 713 } 714 715 /** 716 * iavf_configure_tx - Configure Transmit Unit after Reset 717 * @adapter: board private structure 718 * 719 * Configure the Tx unit of the MAC after a reset. 720 **/ 721 static void iavf_configure_tx(struct iavf_adapter *adapter) 722 { 723 struct iavf_hw *hw = &adapter->hw; 724 int i; 725 726 for (i = 0; i < adapter->num_active_queues; i++) 727 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 728 } 729 730 /** 731 * iavf_configure_rx - Configure Receive Unit after Reset 732 * @adapter: board private structure 733 * 734 * Configure the Rx unit of the MAC after a reset. 735 **/ 736 static void iavf_configure_rx(struct iavf_adapter *adapter) 737 { 738 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 739 struct iavf_hw *hw = &adapter->hw; 740 int i; 741 742 /* Legacy Rx will always default to a 2048 buffer size. */ 743 #if (PAGE_SIZE < 8192) 744 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 745 struct net_device *netdev = adapter->netdev; 746 747 /* For jumbo frames on systems with 4K pages we have to use 748 * an order 1 page, so we might as well increase the size 749 * of our Rx buffer to make better use of the available space 750 */ 751 rx_buf_len = IAVF_RXBUFFER_3072; 752 753 /* We use a 1536 buffer size for configurations with 754 * standard Ethernet mtu. On x86 this gives us enough room 755 * for shared info and 192 bytes of padding. 756 */ 757 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 758 (netdev->mtu <= ETH_DATA_LEN)) 759 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 760 } 761 #endif 762 763 for (i = 0; i < adapter->num_active_queues; i++) { 764 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 765 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 766 767 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 768 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 769 else 770 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 771 } 772 } 773 774 /** 775 * iavf_find_vlan - Search filter list for specific vlan filter 776 * @adapter: board private structure 777 * @vlan: vlan tag 778 * 779 * Returns ptr to the filter object or NULL. Must be called while holding the 780 * mac_vlan_list_lock. 781 **/ 782 static struct 783 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 784 struct iavf_vlan vlan) 785 { 786 struct iavf_vlan_filter *f; 787 788 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 789 if (f->vlan.vid == vlan.vid && 790 f->vlan.tpid == vlan.tpid) 791 return f; 792 } 793 794 return NULL; 795 } 796 797 /** 798 * iavf_add_vlan - Add a vlan filter to the list 799 * @adapter: board private structure 800 * @vlan: VLAN tag 801 * 802 * Returns ptr to the filter object or NULL when no memory available. 803 **/ 804 static struct 805 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 806 struct iavf_vlan vlan) 807 { 808 struct iavf_vlan_filter *f = NULL; 809 810 spin_lock_bh(&adapter->mac_vlan_list_lock); 811 812 f = iavf_find_vlan(adapter, vlan); 813 if (!f) { 814 f = kzalloc(sizeof(*f), GFP_ATOMIC); 815 if (!f) 816 goto clearout; 817 818 f->vlan = vlan; 819 820 list_add_tail(&f->list, &adapter->vlan_filter_list); 821 f->state = IAVF_VLAN_ADD; 822 adapter->num_vlan_filters++; 823 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 824 } 825 826 clearout: 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 return f; 829 } 830 831 /** 832 * iavf_del_vlan - Remove a vlan filter from the list 833 * @adapter: board private structure 834 * @vlan: VLAN tag 835 **/ 836 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 837 { 838 struct iavf_vlan_filter *f; 839 840 spin_lock_bh(&adapter->mac_vlan_list_lock); 841 842 f = iavf_find_vlan(adapter, vlan); 843 if (f) { 844 f->state = IAVF_VLAN_REMOVE; 845 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 } 850 851 /** 852 * iavf_restore_filters 853 * @adapter: board private structure 854 * 855 * Restore existing non MAC filters when VF netdev comes back up 856 **/ 857 static void iavf_restore_filters(struct iavf_adapter *adapter) 858 { 859 struct iavf_vlan_filter *f; 860 861 /* re-add all VLAN filters */ 862 spin_lock_bh(&adapter->mac_vlan_list_lock); 863 864 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 865 if (f->state == IAVF_VLAN_INACTIVE) 866 f->state = IAVF_VLAN_ADD; 867 } 868 869 spin_unlock_bh(&adapter->mac_vlan_list_lock); 870 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 871 } 872 873 /** 874 * iavf_get_num_vlans_added - get number of VLANs added 875 * @adapter: board private structure 876 */ 877 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 878 { 879 return adapter->num_vlan_filters; 880 } 881 882 /** 883 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 884 * @adapter: board private structure 885 * 886 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 887 * do not impose a limit as that maintains current behavior and for 888 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 889 **/ 890 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 891 { 892 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 893 * never been a limit on the VF driver side 894 */ 895 if (VLAN_ALLOWED(adapter)) 896 return VLAN_N_VID; 897 else if (VLAN_V2_ALLOWED(adapter)) 898 return adapter->vlan_v2_caps.filtering.max_filters; 899 900 return 0; 901 } 902 903 /** 904 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 905 * @adapter: board private structure 906 **/ 907 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 908 { 909 if (iavf_get_num_vlans_added(adapter) < 910 iavf_get_max_vlans_allowed(adapter)) 911 return false; 912 913 return true; 914 } 915 916 /** 917 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 918 * @netdev: network device struct 919 * @proto: unused protocol data 920 * @vid: VLAN tag 921 **/ 922 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 923 __always_unused __be16 proto, u16 vid) 924 { 925 struct iavf_adapter *adapter = netdev_priv(netdev); 926 927 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 928 if (!vid) 929 return 0; 930 931 if (!VLAN_FILTERING_ALLOWED(adapter)) 932 return -EIO; 933 934 if (iavf_max_vlans_added(adapter)) { 935 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 936 iavf_get_max_vlans_allowed(adapter)); 937 return -EIO; 938 } 939 940 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 941 return -ENOMEM; 942 943 return 0; 944 } 945 946 /** 947 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 948 * @netdev: network device struct 949 * @proto: unused protocol data 950 * @vid: VLAN tag 951 **/ 952 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 953 __always_unused __be16 proto, u16 vid) 954 { 955 struct iavf_adapter *adapter = netdev_priv(netdev); 956 957 /* We do not track VLAN 0 filter */ 958 if (!vid) 959 return 0; 960 961 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 962 return 0; 963 } 964 965 /** 966 * iavf_find_filter - Search filter list for specific mac filter 967 * @adapter: board private structure 968 * @macaddr: the MAC address 969 * 970 * Returns ptr to the filter object or NULL. Must be called while holding the 971 * mac_vlan_list_lock. 972 **/ 973 static struct 974 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 975 const u8 *macaddr) 976 { 977 struct iavf_mac_filter *f; 978 979 if (!macaddr) 980 return NULL; 981 982 list_for_each_entry(f, &adapter->mac_filter_list, list) { 983 if (ether_addr_equal(macaddr, f->macaddr)) 984 return f; 985 } 986 return NULL; 987 } 988 989 /** 990 * iavf_add_filter - Add a mac filter to the filter list 991 * @adapter: board private structure 992 * @macaddr: the MAC address 993 * 994 * Returns ptr to the filter object or NULL when no memory available. 995 **/ 996 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 997 const u8 *macaddr) 998 { 999 struct iavf_mac_filter *f; 1000 1001 if (!macaddr) 1002 return NULL; 1003 1004 f = iavf_find_filter(adapter, macaddr); 1005 if (!f) { 1006 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1007 if (!f) 1008 return f; 1009 1010 ether_addr_copy(f->macaddr, macaddr); 1011 1012 list_add_tail(&f->list, &adapter->mac_filter_list); 1013 f->add = true; 1014 f->add_handled = false; 1015 f->is_new_mac = true; 1016 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1017 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1018 } else { 1019 f->remove = false; 1020 } 1021 1022 return f; 1023 } 1024 1025 /** 1026 * iavf_replace_primary_mac - Replace current primary address 1027 * @adapter: board private structure 1028 * @new_mac: new MAC address to be applied 1029 * 1030 * Replace current dev_addr and send request to PF for removal of previous 1031 * primary MAC address filter and addition of new primary MAC filter. 1032 * Return 0 for success, -ENOMEM for failure. 1033 * 1034 * Do not call this with mac_vlan_list_lock! 1035 **/ 1036 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1037 const u8 *new_mac) 1038 { 1039 struct iavf_hw *hw = &adapter->hw; 1040 struct iavf_mac_filter *new_f; 1041 struct iavf_mac_filter *old_f; 1042 1043 spin_lock_bh(&adapter->mac_vlan_list_lock); 1044 1045 new_f = iavf_add_filter(adapter, new_mac); 1046 if (!new_f) { 1047 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1048 return -ENOMEM; 1049 } 1050 1051 old_f = iavf_find_filter(adapter, hw->mac.addr); 1052 if (old_f) { 1053 old_f->is_primary = false; 1054 old_f->remove = true; 1055 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1056 } 1057 /* Always send the request to add if changing primary MAC, 1058 * even if filter is already present on the list 1059 */ 1060 new_f->is_primary = true; 1061 new_f->add = true; 1062 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1063 ether_addr_copy(hw->mac.addr, new_mac); 1064 1065 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1066 1067 /* schedule the watchdog task to immediately process the request */ 1068 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1069 return 0; 1070 } 1071 1072 /** 1073 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1074 * @netdev: network interface device structure 1075 * @macaddr: MAC address to set 1076 * 1077 * Returns true on success, false on failure 1078 */ 1079 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1080 const u8 *macaddr) 1081 { 1082 struct iavf_adapter *adapter = netdev_priv(netdev); 1083 struct iavf_mac_filter *f; 1084 bool ret = false; 1085 1086 spin_lock_bh(&adapter->mac_vlan_list_lock); 1087 1088 f = iavf_find_filter(adapter, macaddr); 1089 1090 if (!f || (!f->add && f->add_handled)) 1091 ret = true; 1092 1093 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1094 1095 return ret; 1096 } 1097 1098 /** 1099 * iavf_set_mac - NDO callback to set port MAC address 1100 * @netdev: network interface device structure 1101 * @p: pointer to an address structure 1102 * 1103 * Returns 0 on success, negative on failure 1104 */ 1105 static int iavf_set_mac(struct net_device *netdev, void *p) 1106 { 1107 struct iavf_adapter *adapter = netdev_priv(netdev); 1108 struct sockaddr *addr = p; 1109 int ret; 1110 1111 if (!is_valid_ether_addr(addr->sa_data)) 1112 return -EADDRNOTAVAIL; 1113 1114 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1115 1116 if (ret) 1117 return ret; 1118 1119 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1120 iavf_is_mac_set_handled(netdev, addr->sa_data), 1121 msecs_to_jiffies(2500)); 1122 1123 /* If ret < 0 then it means wait was interrupted. 1124 * If ret == 0 then it means we got a timeout. 1125 * else it means we got response for set MAC from PF, 1126 * check if netdev MAC was updated to requested MAC, 1127 * if yes then set MAC succeeded otherwise it failed return -EACCES 1128 */ 1129 if (ret < 0) 1130 return ret; 1131 1132 if (!ret) 1133 return -EAGAIN; 1134 1135 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1136 return -EACCES; 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1143 * @netdev: the netdevice 1144 * @addr: address to add 1145 * 1146 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1147 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1148 */ 1149 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1150 { 1151 struct iavf_adapter *adapter = netdev_priv(netdev); 1152 1153 if (iavf_add_filter(adapter, addr)) 1154 return 0; 1155 else 1156 return -ENOMEM; 1157 } 1158 1159 /** 1160 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1161 * @netdev: the netdevice 1162 * @addr: address to add 1163 * 1164 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1165 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1166 */ 1167 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1168 { 1169 struct iavf_adapter *adapter = netdev_priv(netdev); 1170 struct iavf_mac_filter *f; 1171 1172 /* Under some circumstances, we might receive a request to delete 1173 * our own device address from our uc list. Because we store the 1174 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1175 * such requests and not delete our device address from this list. 1176 */ 1177 if (ether_addr_equal(addr, netdev->dev_addr)) 1178 return 0; 1179 1180 f = iavf_find_filter(adapter, addr); 1181 if (f) { 1182 f->remove = true; 1183 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1184 } 1185 return 0; 1186 } 1187 1188 /** 1189 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1190 * @adapter: device specific adapter 1191 */ 1192 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1193 { 1194 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1195 (IFF_PROMISC | IFF_ALLMULTI); 1196 } 1197 1198 /** 1199 * iavf_set_rx_mode - NDO callback to set the netdev filters 1200 * @netdev: network interface device structure 1201 **/ 1202 static void iavf_set_rx_mode(struct net_device *netdev) 1203 { 1204 struct iavf_adapter *adapter = netdev_priv(netdev); 1205 1206 spin_lock_bh(&adapter->mac_vlan_list_lock); 1207 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1208 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1209 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1210 1211 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1212 if (iavf_promiscuous_mode_changed(adapter)) 1213 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1214 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1215 } 1216 1217 /** 1218 * iavf_napi_enable_all - enable NAPI on all queue vectors 1219 * @adapter: board private structure 1220 **/ 1221 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1222 { 1223 int q_idx; 1224 struct iavf_q_vector *q_vector; 1225 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1226 1227 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1228 struct napi_struct *napi; 1229 1230 q_vector = &adapter->q_vectors[q_idx]; 1231 napi = &q_vector->napi; 1232 napi_enable(napi); 1233 } 1234 } 1235 1236 /** 1237 * iavf_napi_disable_all - disable NAPI on all queue vectors 1238 * @adapter: board private structure 1239 **/ 1240 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1241 { 1242 int q_idx; 1243 struct iavf_q_vector *q_vector; 1244 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1245 1246 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1247 q_vector = &adapter->q_vectors[q_idx]; 1248 napi_disable(&q_vector->napi); 1249 } 1250 } 1251 1252 /** 1253 * iavf_configure - set up transmit and receive data structures 1254 * @adapter: board private structure 1255 **/ 1256 static void iavf_configure(struct iavf_adapter *adapter) 1257 { 1258 struct net_device *netdev = adapter->netdev; 1259 int i; 1260 1261 iavf_set_rx_mode(netdev); 1262 1263 iavf_configure_tx(adapter); 1264 iavf_configure_rx(adapter); 1265 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1266 1267 for (i = 0; i < adapter->num_active_queues; i++) { 1268 struct iavf_ring *ring = &adapter->rx_rings[i]; 1269 1270 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1271 } 1272 } 1273 1274 /** 1275 * iavf_up_complete - Finish the last steps of bringing up a connection 1276 * @adapter: board private structure 1277 * 1278 * Expects to be called while holding crit_lock. 1279 **/ 1280 static void iavf_up_complete(struct iavf_adapter *adapter) 1281 { 1282 iavf_change_state(adapter, __IAVF_RUNNING); 1283 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1284 1285 iavf_napi_enable_all(adapter); 1286 1287 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1288 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1289 } 1290 1291 /** 1292 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1293 * yet and mark other to be removed. 1294 * @adapter: board private structure 1295 **/ 1296 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1297 { 1298 struct iavf_vlan_filter *vlf, *vlftmp; 1299 struct iavf_mac_filter *f, *ftmp; 1300 1301 spin_lock_bh(&adapter->mac_vlan_list_lock); 1302 /* clear the sync flag on all filters */ 1303 __dev_uc_unsync(adapter->netdev, NULL); 1304 __dev_mc_unsync(adapter->netdev, NULL); 1305 1306 /* remove all MAC filters */ 1307 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1308 list) { 1309 if (f->add) { 1310 list_del(&f->list); 1311 kfree(f); 1312 } else { 1313 f->remove = true; 1314 } 1315 } 1316 1317 /* disable all VLAN filters */ 1318 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1319 list) 1320 vlf->state = IAVF_VLAN_DISABLE; 1321 1322 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1323 } 1324 1325 /** 1326 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1327 * mark other to be removed. 1328 * @adapter: board private structure 1329 **/ 1330 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1331 { 1332 struct iavf_cloud_filter *cf, *cftmp; 1333 1334 /* remove all cloud filters */ 1335 spin_lock_bh(&adapter->cloud_filter_list_lock); 1336 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1337 list) { 1338 if (cf->add) { 1339 list_del(&cf->list); 1340 kfree(cf); 1341 adapter->num_cloud_filters--; 1342 } else { 1343 cf->del = true; 1344 } 1345 } 1346 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1347 } 1348 1349 /** 1350 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1351 * other to be removed. 1352 * @adapter: board private structure 1353 **/ 1354 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1355 { 1356 struct iavf_fdir_fltr *fdir, *fdirtmp; 1357 1358 /* remove all Flow Director filters */ 1359 spin_lock_bh(&adapter->fdir_fltr_lock); 1360 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 1361 list) { 1362 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1363 list_del(&fdir->list); 1364 kfree(fdir); 1365 adapter->fdir_active_fltr--; 1366 } else { 1367 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1368 } 1369 } 1370 spin_unlock_bh(&adapter->fdir_fltr_lock); 1371 } 1372 1373 /** 1374 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1375 * other to be removed. 1376 * @adapter: board private structure 1377 **/ 1378 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1379 { 1380 struct iavf_adv_rss *rss, *rsstmp; 1381 1382 /* remove all advance RSS configuration */ 1383 spin_lock_bh(&adapter->adv_rss_lock); 1384 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1385 list) { 1386 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1387 list_del(&rss->list); 1388 kfree(rss); 1389 } else { 1390 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1391 } 1392 } 1393 spin_unlock_bh(&adapter->adv_rss_lock); 1394 } 1395 1396 /** 1397 * iavf_down - Shutdown the connection processing 1398 * @adapter: board private structure 1399 * 1400 * Expects to be called while holding crit_lock. 1401 **/ 1402 void iavf_down(struct iavf_adapter *adapter) 1403 { 1404 struct net_device *netdev = adapter->netdev; 1405 1406 if (adapter->state <= __IAVF_DOWN_PENDING) 1407 return; 1408 1409 netif_carrier_off(netdev); 1410 netif_tx_disable(netdev); 1411 adapter->link_up = false; 1412 iavf_napi_disable_all(adapter); 1413 iavf_irq_disable(adapter); 1414 1415 iavf_clear_mac_vlan_filters(adapter); 1416 iavf_clear_cloud_filters(adapter); 1417 iavf_clear_fdir_filters(adapter); 1418 iavf_clear_adv_rss_conf(adapter); 1419 1420 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1421 return; 1422 1423 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1424 /* cancel any current operation */ 1425 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1426 /* Schedule operations to close down the HW. Don't wait 1427 * here for this to complete. The watchdog is still running 1428 * and it will take care of this. 1429 */ 1430 if (!list_empty(&adapter->mac_filter_list)) 1431 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1432 if (!list_empty(&adapter->vlan_filter_list)) 1433 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1434 if (!list_empty(&adapter->cloud_filter_list)) 1435 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1436 if (!list_empty(&adapter->fdir_list_head)) 1437 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1438 if (!list_empty(&adapter->adv_rss_list_head)) 1439 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1440 } 1441 1442 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1443 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1444 } 1445 1446 /** 1447 * iavf_acquire_msix_vectors - Setup the MSIX capability 1448 * @adapter: board private structure 1449 * @vectors: number of vectors to request 1450 * 1451 * Work with the OS to set up the MSIX vectors needed. 1452 * 1453 * Returns 0 on success, negative on failure 1454 **/ 1455 static int 1456 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1457 { 1458 int err, vector_threshold; 1459 1460 /* We'll want at least 3 (vector_threshold): 1461 * 0) Other (Admin Queue and link, mostly) 1462 * 1) TxQ[0] Cleanup 1463 * 2) RxQ[0] Cleanup 1464 */ 1465 vector_threshold = MIN_MSIX_COUNT; 1466 1467 /* The more we get, the more we will assign to Tx/Rx Cleanup 1468 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1469 * Right now, we simply care about how many we'll get; we'll 1470 * set them up later while requesting irq's. 1471 */ 1472 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1473 vector_threshold, vectors); 1474 if (err < 0) { 1475 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1476 kfree(adapter->msix_entries); 1477 adapter->msix_entries = NULL; 1478 return err; 1479 } 1480 1481 /* Adjust for only the vectors we'll use, which is minimum 1482 * of max_msix_q_vectors + NONQ_VECS, or the number of 1483 * vectors we were allocated. 1484 */ 1485 adapter->num_msix_vectors = err; 1486 return 0; 1487 } 1488 1489 /** 1490 * iavf_free_queues - Free memory for all rings 1491 * @adapter: board private structure to initialize 1492 * 1493 * Free all of the memory associated with queue pairs. 1494 **/ 1495 static void iavf_free_queues(struct iavf_adapter *adapter) 1496 { 1497 if (!adapter->vsi_res) 1498 return; 1499 adapter->num_active_queues = 0; 1500 kfree(adapter->tx_rings); 1501 adapter->tx_rings = NULL; 1502 kfree(adapter->rx_rings); 1503 adapter->rx_rings = NULL; 1504 } 1505 1506 /** 1507 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1508 * @adapter: board private structure 1509 * 1510 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1511 * stripped in certain descriptor fields. Instead of checking the offload 1512 * capability bits in the hot path, cache the location the ring specific 1513 * flags. 1514 */ 1515 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1516 { 1517 int i; 1518 1519 for (i = 0; i < adapter->num_active_queues; i++) { 1520 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1521 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1522 1523 /* prevent multiple L2TAG bits being set after VFR */ 1524 tx_ring->flags &= 1525 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1526 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1527 rx_ring->flags &= 1528 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1530 1531 if (VLAN_ALLOWED(adapter)) { 1532 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1533 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1534 } else if (VLAN_V2_ALLOWED(adapter)) { 1535 struct virtchnl_vlan_supported_caps *stripping_support; 1536 struct virtchnl_vlan_supported_caps *insertion_support; 1537 1538 stripping_support = 1539 &adapter->vlan_v2_caps.offloads.stripping_support; 1540 insertion_support = 1541 &adapter->vlan_v2_caps.offloads.insertion_support; 1542 1543 if (stripping_support->outer) { 1544 if (stripping_support->outer & 1545 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1546 rx_ring->flags |= 1547 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1548 else if (stripping_support->outer & 1549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1550 rx_ring->flags |= 1551 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1552 } else if (stripping_support->inner) { 1553 if (stripping_support->inner & 1554 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1555 rx_ring->flags |= 1556 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1557 else if (stripping_support->inner & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1559 rx_ring->flags |= 1560 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1561 } 1562 1563 if (insertion_support->outer) { 1564 if (insertion_support->outer & 1565 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1566 tx_ring->flags |= 1567 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1568 else if (insertion_support->outer & 1569 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1570 tx_ring->flags |= 1571 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1572 } else if (insertion_support->inner) { 1573 if (insertion_support->inner & 1574 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1575 tx_ring->flags |= 1576 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1577 else if (insertion_support->inner & 1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1579 tx_ring->flags |= 1580 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1581 } 1582 } 1583 } 1584 } 1585 1586 /** 1587 * iavf_alloc_queues - Allocate memory for all rings 1588 * @adapter: board private structure to initialize 1589 * 1590 * We allocate one ring per queue at run-time since we don't know the 1591 * number of queues at compile-time. The polling_netdev array is 1592 * intended for Multiqueue, but should work fine with a single queue. 1593 **/ 1594 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1595 { 1596 int i, num_active_queues; 1597 1598 /* If we're in reset reallocating queues we don't actually know yet for 1599 * certain the PF gave us the number of queues we asked for but we'll 1600 * assume it did. Once basic reset is finished we'll confirm once we 1601 * start negotiating config with PF. 1602 */ 1603 if (adapter->num_req_queues) 1604 num_active_queues = adapter->num_req_queues; 1605 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1606 adapter->num_tc) 1607 num_active_queues = adapter->ch_config.total_qps; 1608 else 1609 num_active_queues = min_t(int, 1610 adapter->vsi_res->num_queue_pairs, 1611 (int)(num_online_cpus())); 1612 1613 1614 adapter->tx_rings = kcalloc(num_active_queues, 1615 sizeof(struct iavf_ring), GFP_KERNEL); 1616 if (!adapter->tx_rings) 1617 goto err_out; 1618 adapter->rx_rings = kcalloc(num_active_queues, 1619 sizeof(struct iavf_ring), GFP_KERNEL); 1620 if (!adapter->rx_rings) 1621 goto err_out; 1622 1623 for (i = 0; i < num_active_queues; i++) { 1624 struct iavf_ring *tx_ring; 1625 struct iavf_ring *rx_ring; 1626 1627 tx_ring = &adapter->tx_rings[i]; 1628 1629 tx_ring->queue_index = i; 1630 tx_ring->netdev = adapter->netdev; 1631 tx_ring->dev = &adapter->pdev->dev; 1632 tx_ring->count = adapter->tx_desc_count; 1633 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1634 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1635 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1636 1637 rx_ring = &adapter->rx_rings[i]; 1638 rx_ring->queue_index = i; 1639 rx_ring->netdev = adapter->netdev; 1640 rx_ring->dev = &adapter->pdev->dev; 1641 rx_ring->count = adapter->rx_desc_count; 1642 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1643 } 1644 1645 adapter->num_active_queues = num_active_queues; 1646 1647 iavf_set_queue_vlan_tag_loc(adapter); 1648 1649 return 0; 1650 1651 err_out: 1652 iavf_free_queues(adapter); 1653 return -ENOMEM; 1654 } 1655 1656 /** 1657 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1658 * @adapter: board private structure to initialize 1659 * 1660 * Attempt to configure the interrupts using the best available 1661 * capabilities of the hardware and the kernel. 1662 **/ 1663 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1664 { 1665 int vector, v_budget; 1666 int pairs = 0; 1667 int err = 0; 1668 1669 if (!adapter->vsi_res) { 1670 err = -EIO; 1671 goto out; 1672 } 1673 pairs = adapter->num_active_queues; 1674 1675 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1676 * us much good if we have more vectors than CPUs. However, we already 1677 * limit the total number of queues by the number of CPUs so we do not 1678 * need any further limiting here. 1679 */ 1680 v_budget = min_t(int, pairs + NONQ_VECS, 1681 (int)adapter->vf_res->max_vectors); 1682 1683 adapter->msix_entries = kcalloc(v_budget, 1684 sizeof(struct msix_entry), GFP_KERNEL); 1685 if (!adapter->msix_entries) { 1686 err = -ENOMEM; 1687 goto out; 1688 } 1689 1690 for (vector = 0; vector < v_budget; vector++) 1691 adapter->msix_entries[vector].entry = vector; 1692 1693 err = iavf_acquire_msix_vectors(adapter, v_budget); 1694 if (!err) 1695 iavf_schedule_finish_config(adapter); 1696 1697 out: 1698 return err; 1699 } 1700 1701 /** 1702 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1703 * @adapter: board private structure 1704 * 1705 * Return 0 on success, negative on failure 1706 **/ 1707 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1708 { 1709 struct iavf_aqc_get_set_rss_key_data *rss_key = 1710 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1711 struct iavf_hw *hw = &adapter->hw; 1712 enum iavf_status status; 1713 1714 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1715 /* bail because we already have a command pending */ 1716 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1717 adapter->current_op); 1718 return -EBUSY; 1719 } 1720 1721 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1722 if (status) { 1723 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1724 iavf_stat_str(hw, status), 1725 iavf_aq_str(hw, hw->aq.asq_last_status)); 1726 return iavf_status_to_errno(status); 1727 1728 } 1729 1730 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1731 adapter->rss_lut, adapter->rss_lut_size); 1732 if (status) { 1733 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1734 iavf_stat_str(hw, status), 1735 iavf_aq_str(hw, hw->aq.asq_last_status)); 1736 return iavf_status_to_errno(status); 1737 } 1738 1739 return 0; 1740 1741 } 1742 1743 /** 1744 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1745 * @adapter: board private structure 1746 * 1747 * Returns 0 on success, negative on failure 1748 **/ 1749 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1750 { 1751 struct iavf_hw *hw = &adapter->hw; 1752 u32 *dw; 1753 u16 i; 1754 1755 dw = (u32 *)adapter->rss_key; 1756 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1757 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1758 1759 dw = (u32 *)adapter->rss_lut; 1760 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1761 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1762 1763 iavf_flush(hw); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * iavf_config_rss - Configure RSS keys and lut 1770 * @adapter: board private structure 1771 * 1772 * Returns 0 on success, negative on failure 1773 **/ 1774 int iavf_config_rss(struct iavf_adapter *adapter) 1775 { 1776 1777 if (RSS_PF(adapter)) { 1778 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1779 IAVF_FLAG_AQ_SET_RSS_KEY; 1780 return 0; 1781 } else if (RSS_AQ(adapter)) { 1782 return iavf_config_rss_aq(adapter); 1783 } else { 1784 return iavf_config_rss_reg(adapter); 1785 } 1786 } 1787 1788 /** 1789 * iavf_fill_rss_lut - Fill the lut with default values 1790 * @adapter: board private structure 1791 **/ 1792 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1793 { 1794 u16 i; 1795 1796 for (i = 0; i < adapter->rss_lut_size; i++) 1797 adapter->rss_lut[i] = i % adapter->num_active_queues; 1798 } 1799 1800 /** 1801 * iavf_init_rss - Prepare for RSS 1802 * @adapter: board private structure 1803 * 1804 * Return 0 on success, negative on failure 1805 **/ 1806 static int iavf_init_rss(struct iavf_adapter *adapter) 1807 { 1808 struct iavf_hw *hw = &adapter->hw; 1809 1810 if (!RSS_PF(adapter)) { 1811 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1812 if (adapter->vf_res->vf_cap_flags & 1813 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1814 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1815 else 1816 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1817 1818 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1819 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1820 } 1821 1822 iavf_fill_rss_lut(adapter); 1823 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1824 1825 return iavf_config_rss(adapter); 1826 } 1827 1828 /** 1829 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1830 * @adapter: board private structure to initialize 1831 * 1832 * We allocate one q_vector per queue interrupt. If allocation fails we 1833 * return -ENOMEM. 1834 **/ 1835 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1836 { 1837 int q_idx = 0, num_q_vectors; 1838 struct iavf_q_vector *q_vector; 1839 1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1841 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1842 GFP_KERNEL); 1843 if (!adapter->q_vectors) 1844 return -ENOMEM; 1845 1846 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1847 q_vector = &adapter->q_vectors[q_idx]; 1848 q_vector->adapter = adapter; 1849 q_vector->vsi = &adapter->vsi; 1850 q_vector->v_idx = q_idx; 1851 q_vector->reg_idx = q_idx; 1852 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1853 netif_napi_add(adapter->netdev, &q_vector->napi, 1854 iavf_napi_poll); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1862 * @adapter: board private structure to initialize 1863 * 1864 * This function frees the memory allocated to the q_vectors. In addition if 1865 * NAPI is enabled it will delete any references to the NAPI struct prior 1866 * to freeing the q_vector. 1867 **/ 1868 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1869 { 1870 int q_idx, num_q_vectors; 1871 1872 if (!adapter->q_vectors) 1873 return; 1874 1875 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1876 1877 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1878 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1879 1880 netif_napi_del(&q_vector->napi); 1881 } 1882 kfree(adapter->q_vectors); 1883 adapter->q_vectors = NULL; 1884 } 1885 1886 /** 1887 * iavf_reset_interrupt_capability - Reset MSIX setup 1888 * @adapter: board private structure 1889 * 1890 **/ 1891 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1892 { 1893 if (!adapter->msix_entries) 1894 return; 1895 1896 pci_disable_msix(adapter->pdev); 1897 kfree(adapter->msix_entries); 1898 adapter->msix_entries = NULL; 1899 } 1900 1901 /** 1902 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1903 * @adapter: board private structure to initialize 1904 * 1905 **/ 1906 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1907 { 1908 int err; 1909 1910 err = iavf_alloc_queues(adapter); 1911 if (err) { 1912 dev_err(&adapter->pdev->dev, 1913 "Unable to allocate memory for queues\n"); 1914 goto err_alloc_queues; 1915 } 1916 1917 err = iavf_set_interrupt_capability(adapter); 1918 if (err) { 1919 dev_err(&adapter->pdev->dev, 1920 "Unable to setup interrupt capabilities\n"); 1921 goto err_set_interrupt; 1922 } 1923 1924 err = iavf_alloc_q_vectors(adapter); 1925 if (err) { 1926 dev_err(&adapter->pdev->dev, 1927 "Unable to allocate memory for queue vectors\n"); 1928 goto err_alloc_q_vectors; 1929 } 1930 1931 /* If we've made it so far while ADq flag being ON, then we haven't 1932 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1933 * resources have been allocated in the reset path. 1934 * Now we can truly claim that ADq is enabled. 1935 */ 1936 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1937 adapter->num_tc) 1938 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1939 adapter->num_tc); 1940 1941 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1942 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1943 adapter->num_active_queues); 1944 1945 return 0; 1946 err_alloc_q_vectors: 1947 iavf_reset_interrupt_capability(adapter); 1948 err_set_interrupt: 1949 iavf_free_queues(adapter); 1950 err_alloc_queues: 1951 return err; 1952 } 1953 1954 /** 1955 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1956 * @adapter: board private structure 1957 **/ 1958 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1959 { 1960 iavf_free_q_vectors(adapter); 1961 iavf_reset_interrupt_capability(adapter); 1962 iavf_free_queues(adapter); 1963 } 1964 1965 /** 1966 * iavf_free_rss - Free memory used by RSS structs 1967 * @adapter: board private structure 1968 **/ 1969 static void iavf_free_rss(struct iavf_adapter *adapter) 1970 { 1971 kfree(adapter->rss_key); 1972 adapter->rss_key = NULL; 1973 1974 kfree(adapter->rss_lut); 1975 adapter->rss_lut = NULL; 1976 } 1977 1978 /** 1979 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1980 * @adapter: board private structure 1981 * @running: true if adapter->state == __IAVF_RUNNING 1982 * 1983 * Returns 0 on success, negative on failure 1984 **/ 1985 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1986 { 1987 struct net_device *netdev = adapter->netdev; 1988 int err; 1989 1990 if (running) 1991 iavf_free_traffic_irqs(adapter); 1992 iavf_free_misc_irq(adapter); 1993 iavf_free_interrupt_scheme(adapter); 1994 1995 err = iavf_init_interrupt_scheme(adapter); 1996 if (err) 1997 goto err; 1998 1999 netif_tx_stop_all_queues(netdev); 2000 2001 err = iavf_request_misc_irq(adapter); 2002 if (err) 2003 goto err; 2004 2005 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2006 2007 iavf_map_rings_to_vectors(adapter); 2008 err: 2009 return err; 2010 } 2011 2012 /** 2013 * iavf_finish_config - do all netdev work that needs RTNL 2014 * @work: our work_struct 2015 * 2016 * Do work that needs both RTNL and crit_lock. 2017 **/ 2018 static void iavf_finish_config(struct work_struct *work) 2019 { 2020 struct iavf_adapter *adapter; 2021 int pairs, err; 2022 2023 adapter = container_of(work, struct iavf_adapter, finish_config); 2024 2025 /* Always take RTNL first to prevent circular lock dependency */ 2026 rtnl_lock(); 2027 mutex_lock(&adapter->crit_lock); 2028 2029 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2030 adapter->netdev->reg_state == NETREG_REGISTERED && 2031 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2032 netdev_update_features(adapter->netdev); 2033 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2034 } 2035 2036 switch (adapter->state) { 2037 case __IAVF_DOWN: 2038 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2039 err = register_netdevice(adapter->netdev); 2040 if (err) { 2041 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2042 err); 2043 2044 /* go back and try again.*/ 2045 iavf_free_rss(adapter); 2046 iavf_free_misc_irq(adapter); 2047 iavf_reset_interrupt_capability(adapter); 2048 iavf_change_state(adapter, 2049 __IAVF_INIT_CONFIG_ADAPTER); 2050 goto out; 2051 } 2052 } 2053 2054 /* Set the real number of queues when reset occurs while 2055 * state == __IAVF_DOWN 2056 */ 2057 fallthrough; 2058 case __IAVF_RUNNING: 2059 pairs = adapter->num_active_queues; 2060 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2061 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2062 break; 2063 2064 default: 2065 break; 2066 } 2067 2068 out: 2069 mutex_unlock(&adapter->crit_lock); 2070 rtnl_unlock(); 2071 } 2072 2073 /** 2074 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2075 * @adapter: board private structure 2076 **/ 2077 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2078 { 2079 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2080 queue_work(adapter->wq, &adapter->finish_config); 2081 } 2082 2083 /** 2084 * iavf_process_aq_command - process aq_required flags 2085 * and sends aq command 2086 * @adapter: pointer to iavf adapter structure 2087 * 2088 * Returns 0 on success 2089 * Returns error code if no command was sent 2090 * or error code if the command failed. 2091 **/ 2092 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2093 { 2094 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2095 return iavf_send_vf_config_msg(adapter); 2096 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2097 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2098 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2099 iavf_disable_queues(adapter); 2100 return 0; 2101 } 2102 2103 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2104 iavf_map_queues(adapter); 2105 return 0; 2106 } 2107 2108 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2109 iavf_add_ether_addrs(adapter); 2110 return 0; 2111 } 2112 2113 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2114 iavf_add_vlans(adapter); 2115 return 0; 2116 } 2117 2118 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2119 iavf_del_ether_addrs(adapter); 2120 return 0; 2121 } 2122 2123 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2124 iavf_del_vlans(adapter); 2125 return 0; 2126 } 2127 2128 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2129 iavf_enable_vlan_stripping(adapter); 2130 return 0; 2131 } 2132 2133 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2134 iavf_disable_vlan_stripping(adapter); 2135 return 0; 2136 } 2137 2138 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2139 iavf_configure_queues(adapter); 2140 return 0; 2141 } 2142 2143 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2144 iavf_enable_queues(adapter); 2145 return 0; 2146 } 2147 2148 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2149 /* This message goes straight to the firmware, not the 2150 * PF, so we don't have to set current_op as we will 2151 * not get a response through the ARQ. 2152 */ 2153 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2154 return 0; 2155 } 2156 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2157 iavf_get_hena(adapter); 2158 return 0; 2159 } 2160 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2161 iavf_set_hena(adapter); 2162 return 0; 2163 } 2164 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2165 iavf_set_rss_key(adapter); 2166 return 0; 2167 } 2168 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2169 iavf_set_rss_lut(adapter); 2170 return 0; 2171 } 2172 2173 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2174 iavf_set_promiscuous(adapter); 2175 return 0; 2176 } 2177 2178 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2179 iavf_enable_channels(adapter); 2180 return 0; 2181 } 2182 2183 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2184 iavf_disable_channels(adapter); 2185 return 0; 2186 } 2187 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2188 iavf_add_cloud_filter(adapter); 2189 return 0; 2190 } 2191 2192 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2193 iavf_del_cloud_filter(adapter); 2194 return 0; 2195 } 2196 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2197 iavf_del_cloud_filter(adapter); 2198 return 0; 2199 } 2200 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2201 iavf_add_cloud_filter(adapter); 2202 return 0; 2203 } 2204 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2205 iavf_add_fdir_filter(adapter); 2206 return IAVF_SUCCESS; 2207 } 2208 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2209 iavf_del_fdir_filter(adapter); 2210 return IAVF_SUCCESS; 2211 } 2212 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2213 iavf_add_adv_rss_cfg(adapter); 2214 return 0; 2215 } 2216 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2217 iavf_del_adv_rss_cfg(adapter); 2218 return 0; 2219 } 2220 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2221 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2222 return 0; 2223 } 2224 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2225 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2226 return 0; 2227 } 2228 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2229 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2230 return 0; 2231 } 2232 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2233 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2234 return 0; 2235 } 2236 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2237 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2238 return 0; 2239 } 2240 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2241 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2242 return 0; 2243 } 2244 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2245 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2246 return 0; 2247 } 2248 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2249 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2250 return 0; 2251 } 2252 2253 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2254 iavf_request_stats(adapter); 2255 return 0; 2256 } 2257 2258 return -EAGAIN; 2259 } 2260 2261 /** 2262 * iavf_set_vlan_offload_features - set VLAN offload configuration 2263 * @adapter: board private structure 2264 * @prev_features: previous features used for comparison 2265 * @features: updated features used for configuration 2266 * 2267 * Set the aq_required bit(s) based on the requested features passed in to 2268 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2269 * the watchdog if any changes are requested to expedite the request via 2270 * virtchnl. 2271 **/ 2272 static void 2273 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2274 netdev_features_t prev_features, 2275 netdev_features_t features) 2276 { 2277 bool enable_stripping = true, enable_insertion = true; 2278 u16 vlan_ethertype = 0; 2279 u64 aq_required = 0; 2280 2281 /* keep cases separate because one ethertype for offloads can be 2282 * disabled at the same time as another is disabled, so check for an 2283 * enabled ethertype first, then check for disabled. Default to 2284 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2285 * stripping. 2286 */ 2287 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2288 vlan_ethertype = ETH_P_8021AD; 2289 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2290 vlan_ethertype = ETH_P_8021Q; 2291 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2292 vlan_ethertype = ETH_P_8021AD; 2293 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2294 vlan_ethertype = ETH_P_8021Q; 2295 else 2296 vlan_ethertype = ETH_P_8021Q; 2297 2298 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2299 enable_stripping = false; 2300 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2301 enable_insertion = false; 2302 2303 if (VLAN_ALLOWED(adapter)) { 2304 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2305 * stripping via virtchnl. VLAN insertion can be toggled on the 2306 * netdev, but it doesn't require a virtchnl message 2307 */ 2308 if (enable_stripping) 2309 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2310 else 2311 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2312 2313 } else if (VLAN_V2_ALLOWED(adapter)) { 2314 switch (vlan_ethertype) { 2315 case ETH_P_8021Q: 2316 if (enable_stripping) 2317 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2318 else 2319 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2320 2321 if (enable_insertion) 2322 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2323 else 2324 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2325 break; 2326 case ETH_P_8021AD: 2327 if (enable_stripping) 2328 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2329 else 2330 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2331 2332 if (enable_insertion) 2333 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2334 else 2335 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2336 break; 2337 } 2338 } 2339 2340 if (aq_required) { 2341 adapter->aq_required |= aq_required; 2342 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2343 } 2344 } 2345 2346 /** 2347 * iavf_startup - first step of driver startup 2348 * @adapter: board private structure 2349 * 2350 * Function process __IAVF_STARTUP driver state. 2351 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2352 * when fails the state is changed to __IAVF_INIT_FAILED 2353 **/ 2354 static void iavf_startup(struct iavf_adapter *adapter) 2355 { 2356 struct pci_dev *pdev = adapter->pdev; 2357 struct iavf_hw *hw = &adapter->hw; 2358 enum iavf_status status; 2359 int ret; 2360 2361 WARN_ON(adapter->state != __IAVF_STARTUP); 2362 2363 /* driver loaded, probe complete */ 2364 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2365 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2366 2367 ret = iavf_check_reset_complete(hw); 2368 if (ret) { 2369 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2370 ret); 2371 goto err; 2372 } 2373 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2374 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2375 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2376 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2377 2378 status = iavf_init_adminq(hw); 2379 if (status) { 2380 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2381 status); 2382 goto err; 2383 } 2384 ret = iavf_send_api_ver(adapter); 2385 if (ret) { 2386 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2387 iavf_shutdown_adminq(hw); 2388 goto err; 2389 } 2390 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2391 return; 2392 err: 2393 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2394 } 2395 2396 /** 2397 * iavf_init_version_check - second step of driver startup 2398 * @adapter: board private structure 2399 * 2400 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2401 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2402 * when fails the state is changed to __IAVF_INIT_FAILED 2403 **/ 2404 static void iavf_init_version_check(struct iavf_adapter *adapter) 2405 { 2406 struct pci_dev *pdev = adapter->pdev; 2407 struct iavf_hw *hw = &adapter->hw; 2408 int err = -EAGAIN; 2409 2410 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2411 2412 if (!iavf_asq_done(hw)) { 2413 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2414 iavf_shutdown_adminq(hw); 2415 iavf_change_state(adapter, __IAVF_STARTUP); 2416 goto err; 2417 } 2418 2419 /* aq msg sent, awaiting reply */ 2420 err = iavf_verify_api_ver(adapter); 2421 if (err) { 2422 if (err == -EALREADY) 2423 err = iavf_send_api_ver(adapter); 2424 else 2425 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2426 adapter->pf_version.major, 2427 adapter->pf_version.minor, 2428 VIRTCHNL_VERSION_MAJOR, 2429 VIRTCHNL_VERSION_MINOR); 2430 goto err; 2431 } 2432 err = iavf_send_vf_config_msg(adapter); 2433 if (err) { 2434 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2435 err); 2436 goto err; 2437 } 2438 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2439 return; 2440 err: 2441 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2442 } 2443 2444 /** 2445 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2446 * @adapter: board private structure 2447 */ 2448 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2449 { 2450 int i, num_req_queues = adapter->num_req_queues; 2451 struct iavf_vsi *vsi = &adapter->vsi; 2452 2453 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2454 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2455 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2456 } 2457 if (!adapter->vsi_res) { 2458 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2459 return -ENODEV; 2460 } 2461 2462 if (num_req_queues && 2463 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2464 /* Problem. The PF gave us fewer queues than what we had 2465 * negotiated in our request. Need a reset to see if we can't 2466 * get back to a working state. 2467 */ 2468 dev_err(&adapter->pdev->dev, 2469 "Requested %d queues, but PF only gave us %d.\n", 2470 num_req_queues, 2471 adapter->vsi_res->num_queue_pairs); 2472 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2473 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2474 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2475 2476 return -EAGAIN; 2477 } 2478 adapter->num_req_queues = 0; 2479 adapter->vsi.id = adapter->vsi_res->vsi_id; 2480 2481 adapter->vsi.back = adapter; 2482 adapter->vsi.base_vector = 1; 2483 vsi->netdev = adapter->netdev; 2484 vsi->qs_handle = adapter->vsi_res->qset_handle; 2485 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2486 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2487 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2488 } else { 2489 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2490 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2491 } 2492 2493 return 0; 2494 } 2495 2496 /** 2497 * iavf_init_get_resources - third step of driver startup 2498 * @adapter: board private structure 2499 * 2500 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2501 * finishes driver initialization procedure. 2502 * When success the state is changed to __IAVF_DOWN 2503 * when fails the state is changed to __IAVF_INIT_FAILED 2504 **/ 2505 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2506 { 2507 struct pci_dev *pdev = adapter->pdev; 2508 struct iavf_hw *hw = &adapter->hw; 2509 int err; 2510 2511 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2512 /* aq msg sent, awaiting reply */ 2513 if (!adapter->vf_res) { 2514 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2515 GFP_KERNEL); 2516 if (!adapter->vf_res) { 2517 err = -ENOMEM; 2518 goto err; 2519 } 2520 } 2521 err = iavf_get_vf_config(adapter); 2522 if (err == -EALREADY) { 2523 err = iavf_send_vf_config_msg(adapter); 2524 goto err; 2525 } else if (err == -EINVAL) { 2526 /* We only get -EINVAL if the device is in a very bad 2527 * state or if we've been disabled for previous bad 2528 * behavior. Either way, we're done now. 2529 */ 2530 iavf_shutdown_adminq(hw); 2531 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2532 return; 2533 } 2534 if (err) { 2535 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2536 goto err_alloc; 2537 } 2538 2539 err = iavf_parse_vf_resource_msg(adapter); 2540 if (err) { 2541 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2542 err); 2543 goto err_alloc; 2544 } 2545 /* Some features require additional messages to negotiate extended 2546 * capabilities. These are processed in sequence by the 2547 * __IAVF_INIT_EXTENDED_CAPS driver state. 2548 */ 2549 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2550 2551 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2552 return; 2553 2554 err_alloc: 2555 kfree(adapter->vf_res); 2556 adapter->vf_res = NULL; 2557 err: 2558 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2559 } 2560 2561 /** 2562 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2563 * @adapter: board private structure 2564 * 2565 * Function processes send of the extended VLAN V2 capability message to the 2566 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2567 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2568 */ 2569 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2570 { 2571 int ret; 2572 2573 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2574 2575 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2576 if (ret && ret == -EOPNOTSUPP) { 2577 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2578 * we did not send the capability exchange message and do not 2579 * expect a response. 2580 */ 2581 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2582 } 2583 2584 /* We sent the message, so move on to the next step */ 2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2586 } 2587 2588 /** 2589 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2590 * @adapter: board private structure 2591 * 2592 * Function processes receipt of the extended VLAN V2 capability message from 2593 * the PF. 2594 **/ 2595 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2596 { 2597 int ret; 2598 2599 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2600 2601 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2602 2603 ret = iavf_get_vf_vlan_v2_caps(adapter); 2604 if (ret) 2605 goto err; 2606 2607 /* We've processed receipt of the VLAN V2 caps message */ 2608 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2609 return; 2610 err: 2611 /* We didn't receive a reply. Make sure we try sending again when 2612 * __IAVF_INIT_FAILED attempts to recover. 2613 */ 2614 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2615 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2616 } 2617 2618 /** 2619 * iavf_init_process_extended_caps - Part of driver startup 2620 * @adapter: board private structure 2621 * 2622 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2623 * handles negotiating capabilities for features which require an additional 2624 * message. 2625 * 2626 * Once all extended capabilities exchanges are finished, the driver will 2627 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2628 */ 2629 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2630 { 2631 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2632 2633 /* Process capability exchange for VLAN V2 */ 2634 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2635 iavf_init_send_offload_vlan_v2_caps(adapter); 2636 return; 2637 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2638 iavf_init_recv_offload_vlan_v2_caps(adapter); 2639 return; 2640 } 2641 2642 /* When we reach here, no further extended capabilities exchanges are 2643 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2644 */ 2645 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2646 } 2647 2648 /** 2649 * iavf_init_config_adapter - last part of driver startup 2650 * @adapter: board private structure 2651 * 2652 * After all the supported capabilities are negotiated, then the 2653 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2654 */ 2655 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2656 { 2657 struct net_device *netdev = adapter->netdev; 2658 struct pci_dev *pdev = adapter->pdev; 2659 int err; 2660 2661 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2662 2663 if (iavf_process_config(adapter)) 2664 goto err; 2665 2666 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2667 2668 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2669 2670 netdev->netdev_ops = &iavf_netdev_ops; 2671 iavf_set_ethtool_ops(netdev); 2672 netdev->watchdog_timeo = 5 * HZ; 2673 2674 /* MTU range: 68 - 9710 */ 2675 netdev->min_mtu = ETH_MIN_MTU; 2676 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2677 2678 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2679 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2680 adapter->hw.mac.addr); 2681 eth_hw_addr_random(netdev); 2682 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2683 } else { 2684 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2685 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2686 } 2687 2688 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2689 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2690 err = iavf_init_interrupt_scheme(adapter); 2691 if (err) 2692 goto err_sw_init; 2693 iavf_map_rings_to_vectors(adapter); 2694 if (adapter->vf_res->vf_cap_flags & 2695 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2696 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2697 2698 err = iavf_request_misc_irq(adapter); 2699 if (err) 2700 goto err_sw_init; 2701 2702 netif_carrier_off(netdev); 2703 adapter->link_up = false; 2704 netif_tx_stop_all_queues(netdev); 2705 2706 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2707 if (netdev->features & NETIF_F_GRO) 2708 dev_info(&pdev->dev, "GRO is enabled\n"); 2709 2710 iavf_change_state(adapter, __IAVF_DOWN); 2711 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2712 2713 iavf_misc_irq_enable(adapter); 2714 wake_up(&adapter->down_waitqueue); 2715 2716 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2717 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2718 if (!adapter->rss_key || !adapter->rss_lut) { 2719 err = -ENOMEM; 2720 goto err_mem; 2721 } 2722 if (RSS_AQ(adapter)) 2723 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2724 else 2725 iavf_init_rss(adapter); 2726 2727 if (VLAN_V2_ALLOWED(adapter)) 2728 /* request initial VLAN offload settings */ 2729 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2730 2731 iavf_schedule_finish_config(adapter); 2732 return; 2733 2734 err_mem: 2735 iavf_free_rss(adapter); 2736 iavf_free_misc_irq(adapter); 2737 err_sw_init: 2738 iavf_reset_interrupt_capability(adapter); 2739 err: 2740 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2741 } 2742 2743 /** 2744 * iavf_watchdog_task - Periodic call-back task 2745 * @work: pointer to work_struct 2746 **/ 2747 static void iavf_watchdog_task(struct work_struct *work) 2748 { 2749 struct iavf_adapter *adapter = container_of(work, 2750 struct iavf_adapter, 2751 watchdog_task.work); 2752 struct iavf_hw *hw = &adapter->hw; 2753 u32 reg_val; 2754 2755 if (!mutex_trylock(&adapter->crit_lock)) { 2756 if (adapter->state == __IAVF_REMOVE) 2757 return; 2758 2759 goto restart_watchdog; 2760 } 2761 2762 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2763 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2764 2765 switch (adapter->state) { 2766 case __IAVF_STARTUP: 2767 iavf_startup(adapter); 2768 mutex_unlock(&adapter->crit_lock); 2769 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2770 msecs_to_jiffies(30)); 2771 return; 2772 case __IAVF_INIT_VERSION_CHECK: 2773 iavf_init_version_check(adapter); 2774 mutex_unlock(&adapter->crit_lock); 2775 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2776 msecs_to_jiffies(30)); 2777 return; 2778 case __IAVF_INIT_GET_RESOURCES: 2779 iavf_init_get_resources(adapter); 2780 mutex_unlock(&adapter->crit_lock); 2781 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2782 msecs_to_jiffies(1)); 2783 return; 2784 case __IAVF_INIT_EXTENDED_CAPS: 2785 iavf_init_process_extended_caps(adapter); 2786 mutex_unlock(&adapter->crit_lock); 2787 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2788 msecs_to_jiffies(1)); 2789 return; 2790 case __IAVF_INIT_CONFIG_ADAPTER: 2791 iavf_init_config_adapter(adapter); 2792 mutex_unlock(&adapter->crit_lock); 2793 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2794 msecs_to_jiffies(1)); 2795 return; 2796 case __IAVF_INIT_FAILED: 2797 if (test_bit(__IAVF_IN_REMOVE_TASK, 2798 &adapter->crit_section)) { 2799 /* Do not update the state and do not reschedule 2800 * watchdog task, iavf_remove should handle this state 2801 * as it can loop forever 2802 */ 2803 mutex_unlock(&adapter->crit_lock); 2804 return; 2805 } 2806 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2807 dev_err(&adapter->pdev->dev, 2808 "Failed to communicate with PF; waiting before retry\n"); 2809 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2810 iavf_shutdown_adminq(hw); 2811 mutex_unlock(&adapter->crit_lock); 2812 queue_delayed_work(adapter->wq, 2813 &adapter->watchdog_task, (5 * HZ)); 2814 return; 2815 } 2816 /* Try again from failed step*/ 2817 iavf_change_state(adapter, adapter->last_state); 2818 mutex_unlock(&adapter->crit_lock); 2819 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2820 return; 2821 case __IAVF_COMM_FAILED: 2822 if (test_bit(__IAVF_IN_REMOVE_TASK, 2823 &adapter->crit_section)) { 2824 /* Set state to __IAVF_INIT_FAILED and perform remove 2825 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2826 * doesn't bring the state back to __IAVF_COMM_FAILED. 2827 */ 2828 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2829 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2830 mutex_unlock(&adapter->crit_lock); 2831 return; 2832 } 2833 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2834 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2835 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2836 reg_val == VIRTCHNL_VFR_COMPLETED) { 2837 /* A chance for redemption! */ 2838 dev_err(&adapter->pdev->dev, 2839 "Hardware came out of reset. Attempting reinit.\n"); 2840 /* When init task contacts the PF and 2841 * gets everything set up again, it'll restart the 2842 * watchdog for us. Down, boy. Sit. Stay. Woof. 2843 */ 2844 iavf_change_state(adapter, __IAVF_STARTUP); 2845 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2846 } 2847 adapter->aq_required = 0; 2848 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2849 mutex_unlock(&adapter->crit_lock); 2850 queue_delayed_work(adapter->wq, 2851 &adapter->watchdog_task, 2852 msecs_to_jiffies(10)); 2853 return; 2854 case __IAVF_RESETTING: 2855 mutex_unlock(&adapter->crit_lock); 2856 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2857 HZ * 2); 2858 return; 2859 case __IAVF_DOWN: 2860 case __IAVF_DOWN_PENDING: 2861 case __IAVF_TESTING: 2862 case __IAVF_RUNNING: 2863 if (adapter->current_op) { 2864 if (!iavf_asq_done(hw)) { 2865 dev_dbg(&adapter->pdev->dev, 2866 "Admin queue timeout\n"); 2867 iavf_send_api_ver(adapter); 2868 } 2869 } else { 2870 int ret = iavf_process_aq_command(adapter); 2871 2872 /* An error will be returned if no commands were 2873 * processed; use this opportunity to update stats 2874 * if the error isn't -ENOTSUPP 2875 */ 2876 if (ret && ret != -EOPNOTSUPP && 2877 adapter->state == __IAVF_RUNNING) 2878 iavf_request_stats(adapter); 2879 } 2880 if (adapter->state == __IAVF_RUNNING) 2881 iavf_detect_recover_hung(&adapter->vsi); 2882 break; 2883 case __IAVF_REMOVE: 2884 default: 2885 mutex_unlock(&adapter->crit_lock); 2886 return; 2887 } 2888 2889 /* check for hw reset */ 2890 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2891 if (!reg_val) { 2892 adapter->aq_required = 0; 2893 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2894 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2895 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2896 mutex_unlock(&adapter->crit_lock); 2897 queue_delayed_work(adapter->wq, 2898 &adapter->watchdog_task, HZ * 2); 2899 return; 2900 } 2901 2902 mutex_unlock(&adapter->crit_lock); 2903 restart_watchdog: 2904 if (adapter->state >= __IAVF_DOWN) 2905 queue_work(adapter->wq, &adapter->adminq_task); 2906 if (adapter->aq_required) 2907 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2908 msecs_to_jiffies(20)); 2909 else 2910 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2911 HZ * 2); 2912 } 2913 2914 /** 2915 * iavf_disable_vf - disable VF 2916 * @adapter: board private structure 2917 * 2918 * Set communication failed flag and free all resources. 2919 * NOTE: This function is expected to be called with crit_lock being held. 2920 **/ 2921 static void iavf_disable_vf(struct iavf_adapter *adapter) 2922 { 2923 struct iavf_mac_filter *f, *ftmp; 2924 struct iavf_vlan_filter *fv, *fvtmp; 2925 struct iavf_cloud_filter *cf, *cftmp; 2926 2927 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2928 2929 /* We don't use netif_running() because it may be true prior to 2930 * ndo_open() returning, so we can't assume it means all our open 2931 * tasks have finished, since we're not holding the rtnl_lock here. 2932 */ 2933 if (adapter->state == __IAVF_RUNNING) { 2934 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2935 netif_carrier_off(adapter->netdev); 2936 netif_tx_disable(adapter->netdev); 2937 adapter->link_up = false; 2938 iavf_napi_disable_all(adapter); 2939 iavf_irq_disable(adapter); 2940 iavf_free_traffic_irqs(adapter); 2941 iavf_free_all_tx_resources(adapter); 2942 iavf_free_all_rx_resources(adapter); 2943 } 2944 2945 spin_lock_bh(&adapter->mac_vlan_list_lock); 2946 2947 /* Delete all of the filters */ 2948 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2949 list_del(&f->list); 2950 kfree(f); 2951 } 2952 2953 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2954 list_del(&fv->list); 2955 kfree(fv); 2956 } 2957 adapter->num_vlan_filters = 0; 2958 2959 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2960 2961 spin_lock_bh(&adapter->cloud_filter_list_lock); 2962 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2963 list_del(&cf->list); 2964 kfree(cf); 2965 adapter->num_cloud_filters--; 2966 } 2967 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2968 2969 iavf_free_misc_irq(adapter); 2970 iavf_free_interrupt_scheme(adapter); 2971 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2972 iavf_shutdown_adminq(&adapter->hw); 2973 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2974 iavf_change_state(adapter, __IAVF_DOWN); 2975 wake_up(&adapter->down_waitqueue); 2976 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2977 } 2978 2979 /** 2980 * iavf_reset_task - Call-back task to handle hardware reset 2981 * @work: pointer to work_struct 2982 * 2983 * During reset we need to shut down and reinitialize the admin queue 2984 * before we can use it to communicate with the PF again. We also clear 2985 * and reinit the rings because that context is lost as well. 2986 **/ 2987 static void iavf_reset_task(struct work_struct *work) 2988 { 2989 struct iavf_adapter *adapter = container_of(work, 2990 struct iavf_adapter, 2991 reset_task); 2992 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2993 struct net_device *netdev = adapter->netdev; 2994 struct iavf_hw *hw = &adapter->hw; 2995 struct iavf_mac_filter *f, *ftmp; 2996 struct iavf_cloud_filter *cf; 2997 enum iavf_status status; 2998 u32 reg_val; 2999 int i = 0, err; 3000 bool running; 3001 3002 /* When device is being removed it doesn't make sense to run the reset 3003 * task, just return in such a case. 3004 */ 3005 if (!mutex_trylock(&adapter->crit_lock)) { 3006 if (adapter->state != __IAVF_REMOVE) 3007 queue_work(adapter->wq, &adapter->reset_task); 3008 3009 return; 3010 } 3011 3012 iavf_misc_irq_disable(adapter); 3013 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3014 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3015 /* Restart the AQ here. If we have been reset but didn't 3016 * detect it, or if the PF had to reinit, our AQ will be hosed. 3017 */ 3018 iavf_shutdown_adminq(hw); 3019 iavf_init_adminq(hw); 3020 iavf_request_reset(adapter); 3021 } 3022 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3023 3024 /* poll until we see the reset actually happen */ 3025 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3026 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3027 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3028 if (!reg_val) 3029 break; 3030 usleep_range(5000, 10000); 3031 } 3032 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3033 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3034 goto continue_reset; /* act like the reset happened */ 3035 } 3036 3037 /* wait until the reset is complete and the PF is responding to us */ 3038 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3039 /* sleep first to make sure a minimum wait time is met */ 3040 msleep(IAVF_RESET_WAIT_MS); 3041 3042 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3043 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3044 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3045 break; 3046 } 3047 3048 pci_set_master(adapter->pdev); 3049 pci_restore_msi_state(adapter->pdev); 3050 3051 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3052 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3053 reg_val); 3054 iavf_disable_vf(adapter); 3055 mutex_unlock(&adapter->crit_lock); 3056 return; /* Do not attempt to reinit. It's dead, Jim. */ 3057 } 3058 3059 continue_reset: 3060 /* We don't use netif_running() because it may be true prior to 3061 * ndo_open() returning, so we can't assume it means all our open 3062 * tasks have finished, since we're not holding the rtnl_lock here. 3063 */ 3064 running = adapter->state == __IAVF_RUNNING; 3065 3066 if (running) { 3067 netif_carrier_off(netdev); 3068 netif_tx_stop_all_queues(netdev); 3069 adapter->link_up = false; 3070 iavf_napi_disable_all(adapter); 3071 } 3072 iavf_irq_disable(adapter); 3073 3074 iavf_change_state(adapter, __IAVF_RESETTING); 3075 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3076 3077 /* free the Tx/Rx rings and descriptors, might be better to just 3078 * re-use them sometime in the future 3079 */ 3080 iavf_free_all_rx_resources(adapter); 3081 iavf_free_all_tx_resources(adapter); 3082 3083 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3084 /* kill and reinit the admin queue */ 3085 iavf_shutdown_adminq(hw); 3086 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3087 status = iavf_init_adminq(hw); 3088 if (status) { 3089 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3090 status); 3091 goto reset_err; 3092 } 3093 adapter->aq_required = 0; 3094 3095 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3096 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3097 err = iavf_reinit_interrupt_scheme(adapter, running); 3098 if (err) 3099 goto reset_err; 3100 } 3101 3102 if (RSS_AQ(adapter)) { 3103 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3104 } else { 3105 err = iavf_init_rss(adapter); 3106 if (err) 3107 goto reset_err; 3108 } 3109 3110 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3111 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3112 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3113 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3114 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3115 * been successfully sent and negotiated 3116 */ 3117 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3118 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3119 3120 spin_lock_bh(&adapter->mac_vlan_list_lock); 3121 3122 /* Delete filter for the current MAC address, it could have 3123 * been changed by the PF via administratively set MAC. 3124 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3125 */ 3126 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3127 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3128 list_del(&f->list); 3129 kfree(f); 3130 } 3131 } 3132 /* re-add all MAC filters */ 3133 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3134 f->add = true; 3135 } 3136 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3137 3138 /* check if TCs are running and re-add all cloud filters */ 3139 spin_lock_bh(&adapter->cloud_filter_list_lock); 3140 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3141 adapter->num_tc) { 3142 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3143 cf->add = true; 3144 } 3145 } 3146 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3147 3148 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3149 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3150 iavf_misc_irq_enable(adapter); 3151 3152 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3153 3154 /* We were running when the reset started, so we need to restore some 3155 * state here. 3156 */ 3157 if (running) { 3158 /* allocate transmit descriptors */ 3159 err = iavf_setup_all_tx_resources(adapter); 3160 if (err) 3161 goto reset_err; 3162 3163 /* allocate receive descriptors */ 3164 err = iavf_setup_all_rx_resources(adapter); 3165 if (err) 3166 goto reset_err; 3167 3168 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3169 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3170 err = iavf_request_traffic_irqs(adapter, netdev->name); 3171 if (err) 3172 goto reset_err; 3173 3174 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3175 } 3176 3177 iavf_configure(adapter); 3178 3179 /* iavf_up_complete() will switch device back 3180 * to __IAVF_RUNNING 3181 */ 3182 iavf_up_complete(adapter); 3183 3184 iavf_irq_enable(adapter, true); 3185 } else { 3186 iavf_change_state(adapter, __IAVF_DOWN); 3187 wake_up(&adapter->down_waitqueue); 3188 } 3189 3190 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3191 3192 wake_up(&adapter->reset_waitqueue); 3193 mutex_unlock(&adapter->crit_lock); 3194 3195 return; 3196 reset_err: 3197 if (running) { 3198 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3199 iavf_free_traffic_irqs(adapter); 3200 } 3201 iavf_disable_vf(adapter); 3202 3203 mutex_unlock(&adapter->crit_lock); 3204 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3205 } 3206 3207 /** 3208 * iavf_adminq_task - worker thread to clean the admin queue 3209 * @work: pointer to work_struct containing our data 3210 **/ 3211 static void iavf_adminq_task(struct work_struct *work) 3212 { 3213 struct iavf_adapter *adapter = 3214 container_of(work, struct iavf_adapter, adminq_task); 3215 struct iavf_hw *hw = &adapter->hw; 3216 struct iavf_arq_event_info event; 3217 enum virtchnl_ops v_op; 3218 enum iavf_status ret, v_ret; 3219 u32 val, oldval; 3220 u16 pending; 3221 3222 if (!mutex_trylock(&adapter->crit_lock)) { 3223 if (adapter->state == __IAVF_REMOVE) 3224 return; 3225 3226 queue_work(adapter->wq, &adapter->adminq_task); 3227 goto out; 3228 } 3229 3230 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3231 goto unlock; 3232 3233 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3234 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3235 if (!event.msg_buf) 3236 goto unlock; 3237 3238 do { 3239 ret = iavf_clean_arq_element(hw, &event, &pending); 3240 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3241 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3242 3243 if (ret || !v_op) 3244 break; /* No event to process or error cleaning ARQ */ 3245 3246 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3247 event.msg_len); 3248 if (pending != 0) 3249 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3250 } while (pending); 3251 3252 if (iavf_is_reset_in_progress(adapter)) 3253 goto freedom; 3254 3255 /* check for error indications */ 3256 val = rd32(hw, hw->aq.arq.len); 3257 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3258 goto freedom; 3259 oldval = val; 3260 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3261 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3262 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3263 } 3264 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3265 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3266 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3267 } 3268 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3269 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3270 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3271 } 3272 if (oldval != val) 3273 wr32(hw, hw->aq.arq.len, val); 3274 3275 val = rd32(hw, hw->aq.asq.len); 3276 oldval = val; 3277 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3278 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3279 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3280 } 3281 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3282 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3283 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3284 } 3285 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3286 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3287 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3288 } 3289 if (oldval != val) 3290 wr32(hw, hw->aq.asq.len, val); 3291 3292 freedom: 3293 kfree(event.msg_buf); 3294 unlock: 3295 mutex_unlock(&adapter->crit_lock); 3296 out: 3297 /* re-enable Admin queue interrupt cause */ 3298 iavf_misc_irq_enable(adapter); 3299 } 3300 3301 /** 3302 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3303 * @adapter: board private structure 3304 * 3305 * Free all transmit software resources 3306 **/ 3307 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3308 { 3309 int i; 3310 3311 if (!adapter->tx_rings) 3312 return; 3313 3314 for (i = 0; i < adapter->num_active_queues; i++) 3315 if (adapter->tx_rings[i].desc) 3316 iavf_free_tx_resources(&adapter->tx_rings[i]); 3317 } 3318 3319 /** 3320 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3321 * @adapter: board private structure 3322 * 3323 * If this function returns with an error, then it's possible one or 3324 * more of the rings is populated (while the rest are not). It is the 3325 * callers duty to clean those orphaned rings. 3326 * 3327 * Return 0 on success, negative on failure 3328 **/ 3329 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3330 { 3331 int i, err = 0; 3332 3333 for (i = 0; i < adapter->num_active_queues; i++) { 3334 adapter->tx_rings[i].count = adapter->tx_desc_count; 3335 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3336 if (!err) 3337 continue; 3338 dev_err(&adapter->pdev->dev, 3339 "Allocation for Tx Queue %u failed\n", i); 3340 break; 3341 } 3342 3343 return err; 3344 } 3345 3346 /** 3347 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3348 * @adapter: board private structure 3349 * 3350 * If this function returns with an error, then it's possible one or 3351 * more of the rings is populated (while the rest are not). It is the 3352 * callers duty to clean those orphaned rings. 3353 * 3354 * Return 0 on success, negative on failure 3355 **/ 3356 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3357 { 3358 int i, err = 0; 3359 3360 for (i = 0; i < adapter->num_active_queues; i++) { 3361 adapter->rx_rings[i].count = adapter->rx_desc_count; 3362 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3363 if (!err) 3364 continue; 3365 dev_err(&adapter->pdev->dev, 3366 "Allocation for Rx Queue %u failed\n", i); 3367 break; 3368 } 3369 return err; 3370 } 3371 3372 /** 3373 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3374 * @adapter: board private structure 3375 * 3376 * Free all receive software resources 3377 **/ 3378 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3379 { 3380 int i; 3381 3382 if (!adapter->rx_rings) 3383 return; 3384 3385 for (i = 0; i < adapter->num_active_queues; i++) 3386 if (adapter->rx_rings[i].desc) 3387 iavf_free_rx_resources(&adapter->rx_rings[i]); 3388 } 3389 3390 /** 3391 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3392 * @adapter: board private structure 3393 * @max_tx_rate: max Tx bw for a tc 3394 **/ 3395 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3396 u64 max_tx_rate) 3397 { 3398 int speed = 0, ret = 0; 3399 3400 if (ADV_LINK_SUPPORT(adapter)) { 3401 if (adapter->link_speed_mbps < U32_MAX) { 3402 speed = adapter->link_speed_mbps; 3403 goto validate_bw; 3404 } else { 3405 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3406 return -EINVAL; 3407 } 3408 } 3409 3410 switch (adapter->link_speed) { 3411 case VIRTCHNL_LINK_SPEED_40GB: 3412 speed = SPEED_40000; 3413 break; 3414 case VIRTCHNL_LINK_SPEED_25GB: 3415 speed = SPEED_25000; 3416 break; 3417 case VIRTCHNL_LINK_SPEED_20GB: 3418 speed = SPEED_20000; 3419 break; 3420 case VIRTCHNL_LINK_SPEED_10GB: 3421 speed = SPEED_10000; 3422 break; 3423 case VIRTCHNL_LINK_SPEED_5GB: 3424 speed = SPEED_5000; 3425 break; 3426 case VIRTCHNL_LINK_SPEED_2_5GB: 3427 speed = SPEED_2500; 3428 break; 3429 case VIRTCHNL_LINK_SPEED_1GB: 3430 speed = SPEED_1000; 3431 break; 3432 case VIRTCHNL_LINK_SPEED_100MB: 3433 speed = SPEED_100; 3434 break; 3435 default: 3436 break; 3437 } 3438 3439 validate_bw: 3440 if (max_tx_rate > speed) { 3441 dev_err(&adapter->pdev->dev, 3442 "Invalid tx rate specified\n"); 3443 ret = -EINVAL; 3444 } 3445 3446 return ret; 3447 } 3448 3449 /** 3450 * iavf_validate_ch_config - validate queue mapping info 3451 * @adapter: board private structure 3452 * @mqprio_qopt: queue parameters 3453 * 3454 * This function validates if the config provided by the user to 3455 * configure queue channels is valid or not. Returns 0 on a valid 3456 * config. 3457 **/ 3458 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3459 struct tc_mqprio_qopt_offload *mqprio_qopt) 3460 { 3461 u64 total_max_rate = 0; 3462 u32 tx_rate_rem = 0; 3463 int i, num_qps = 0; 3464 u64 tx_rate = 0; 3465 int ret = 0; 3466 3467 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3468 mqprio_qopt->qopt.num_tc < 1) 3469 return -EINVAL; 3470 3471 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3472 if (!mqprio_qopt->qopt.count[i] || 3473 mqprio_qopt->qopt.offset[i] != num_qps) 3474 return -EINVAL; 3475 if (mqprio_qopt->min_rate[i]) { 3476 dev_err(&adapter->pdev->dev, 3477 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3478 i); 3479 return -EINVAL; 3480 } 3481 3482 /* convert to Mbps */ 3483 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3484 IAVF_MBPS_DIVISOR); 3485 3486 if (mqprio_qopt->max_rate[i] && 3487 tx_rate < IAVF_MBPS_QUANTA) { 3488 dev_err(&adapter->pdev->dev, 3489 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3490 i, IAVF_MBPS_QUANTA); 3491 return -EINVAL; 3492 } 3493 3494 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3495 3496 if (tx_rate_rem != 0) { 3497 dev_err(&adapter->pdev->dev, 3498 "Invalid max tx rate for TC%d, not divisible by %d\n", 3499 i, IAVF_MBPS_QUANTA); 3500 return -EINVAL; 3501 } 3502 3503 total_max_rate += tx_rate; 3504 num_qps += mqprio_qopt->qopt.count[i]; 3505 } 3506 if (num_qps > adapter->num_active_queues) { 3507 dev_err(&adapter->pdev->dev, 3508 "Cannot support requested number of queues\n"); 3509 return -EINVAL; 3510 } 3511 3512 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3513 return ret; 3514 } 3515 3516 /** 3517 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3518 * @adapter: board private structure 3519 **/ 3520 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3521 { 3522 struct iavf_cloud_filter *cf, *cftmp; 3523 3524 spin_lock_bh(&adapter->cloud_filter_list_lock); 3525 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3526 list) { 3527 list_del(&cf->list); 3528 kfree(cf); 3529 adapter->num_cloud_filters--; 3530 } 3531 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3532 } 3533 3534 /** 3535 * __iavf_setup_tc - configure multiple traffic classes 3536 * @netdev: network interface device structure 3537 * @type_data: tc offload data 3538 * 3539 * This function processes the config information provided by the 3540 * user to configure traffic classes/queue channels and packages the 3541 * information to request the PF to setup traffic classes. 3542 * 3543 * Returns 0 on success. 3544 **/ 3545 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3546 { 3547 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3548 struct iavf_adapter *adapter = netdev_priv(netdev); 3549 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3550 u8 num_tc = 0, total_qps = 0; 3551 int ret = 0, netdev_tc = 0; 3552 u64 max_tx_rate; 3553 u16 mode; 3554 int i; 3555 3556 num_tc = mqprio_qopt->qopt.num_tc; 3557 mode = mqprio_qopt->mode; 3558 3559 /* delete queue_channel */ 3560 if (!mqprio_qopt->qopt.hw) { 3561 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3562 /* reset the tc configuration */ 3563 netdev_reset_tc(netdev); 3564 adapter->num_tc = 0; 3565 netif_tx_stop_all_queues(netdev); 3566 netif_tx_disable(netdev); 3567 iavf_del_all_cloud_filters(adapter); 3568 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3569 total_qps = adapter->orig_num_active_queues; 3570 goto exit; 3571 } else { 3572 return -EINVAL; 3573 } 3574 } 3575 3576 /* add queue channel */ 3577 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3578 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3579 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3580 return -EOPNOTSUPP; 3581 } 3582 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3583 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3584 return -EINVAL; 3585 } 3586 3587 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3588 if (ret) 3589 return ret; 3590 /* Return if same TC config is requested */ 3591 if (adapter->num_tc == num_tc) 3592 return 0; 3593 adapter->num_tc = num_tc; 3594 3595 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3596 if (i < num_tc) { 3597 adapter->ch_config.ch_info[i].count = 3598 mqprio_qopt->qopt.count[i]; 3599 adapter->ch_config.ch_info[i].offset = 3600 mqprio_qopt->qopt.offset[i]; 3601 total_qps += mqprio_qopt->qopt.count[i]; 3602 max_tx_rate = mqprio_qopt->max_rate[i]; 3603 /* convert to Mbps */ 3604 max_tx_rate = div_u64(max_tx_rate, 3605 IAVF_MBPS_DIVISOR); 3606 adapter->ch_config.ch_info[i].max_tx_rate = 3607 max_tx_rate; 3608 } else { 3609 adapter->ch_config.ch_info[i].count = 1; 3610 adapter->ch_config.ch_info[i].offset = 0; 3611 } 3612 } 3613 3614 /* Take snapshot of original config such as "num_active_queues" 3615 * It is used later when delete ADQ flow is exercised, so that 3616 * once delete ADQ flow completes, VF shall go back to its 3617 * original queue configuration 3618 */ 3619 3620 adapter->orig_num_active_queues = adapter->num_active_queues; 3621 3622 /* Store queue info based on TC so that VF gets configured 3623 * with correct number of queues when VF completes ADQ config 3624 * flow 3625 */ 3626 adapter->ch_config.total_qps = total_qps; 3627 3628 netif_tx_stop_all_queues(netdev); 3629 netif_tx_disable(netdev); 3630 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3631 netdev_reset_tc(netdev); 3632 /* Report the tc mapping up the stack */ 3633 netdev_set_num_tc(adapter->netdev, num_tc); 3634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3635 u16 qcount = mqprio_qopt->qopt.count[i]; 3636 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3637 3638 if (i < num_tc) 3639 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3640 qoffset); 3641 } 3642 } 3643 exit: 3644 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3645 return 0; 3646 3647 netif_set_real_num_rx_queues(netdev, total_qps); 3648 netif_set_real_num_tx_queues(netdev, total_qps); 3649 3650 return ret; 3651 } 3652 3653 /** 3654 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3655 * @adapter: board private structure 3656 * @f: pointer to struct flow_cls_offload 3657 * @filter: pointer to cloud filter structure 3658 */ 3659 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3660 struct flow_cls_offload *f, 3661 struct iavf_cloud_filter *filter) 3662 { 3663 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3664 struct flow_dissector *dissector = rule->match.dissector; 3665 u16 n_proto_mask = 0; 3666 u16 n_proto_key = 0; 3667 u8 field_flags = 0; 3668 u16 addr_type = 0; 3669 u16 n_proto = 0; 3670 int i = 0; 3671 struct virtchnl_filter *vf = &filter->f; 3672 3673 if (dissector->used_keys & 3674 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3675 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3676 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3677 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3678 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3679 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3680 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3681 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3682 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3683 dissector->used_keys); 3684 return -EOPNOTSUPP; 3685 } 3686 3687 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3688 struct flow_match_enc_keyid match; 3689 3690 flow_rule_match_enc_keyid(rule, &match); 3691 if (match.mask->keyid != 0) 3692 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3693 } 3694 3695 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3696 struct flow_match_basic match; 3697 3698 flow_rule_match_basic(rule, &match); 3699 n_proto_key = ntohs(match.key->n_proto); 3700 n_proto_mask = ntohs(match.mask->n_proto); 3701 3702 if (n_proto_key == ETH_P_ALL) { 3703 n_proto_key = 0; 3704 n_proto_mask = 0; 3705 } 3706 n_proto = n_proto_key & n_proto_mask; 3707 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3708 return -EINVAL; 3709 if (n_proto == ETH_P_IPV6) { 3710 /* specify flow type as TCP IPv6 */ 3711 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3712 } 3713 3714 if (match.key->ip_proto != IPPROTO_TCP) { 3715 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3716 return -EINVAL; 3717 } 3718 } 3719 3720 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3721 struct flow_match_eth_addrs match; 3722 3723 flow_rule_match_eth_addrs(rule, &match); 3724 3725 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3726 if (!is_zero_ether_addr(match.mask->dst)) { 3727 if (is_broadcast_ether_addr(match.mask->dst)) { 3728 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3729 } else { 3730 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3731 match.mask->dst); 3732 return -EINVAL; 3733 } 3734 } 3735 3736 if (!is_zero_ether_addr(match.mask->src)) { 3737 if (is_broadcast_ether_addr(match.mask->src)) { 3738 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3739 } else { 3740 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3741 match.mask->src); 3742 return -EINVAL; 3743 } 3744 } 3745 3746 if (!is_zero_ether_addr(match.key->dst)) 3747 if (is_valid_ether_addr(match.key->dst) || 3748 is_multicast_ether_addr(match.key->dst)) { 3749 /* set the mask if a valid dst_mac address */ 3750 for (i = 0; i < ETH_ALEN; i++) 3751 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3752 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3753 match.key->dst); 3754 } 3755 3756 if (!is_zero_ether_addr(match.key->src)) 3757 if (is_valid_ether_addr(match.key->src) || 3758 is_multicast_ether_addr(match.key->src)) { 3759 /* set the mask if a valid dst_mac address */ 3760 for (i = 0; i < ETH_ALEN; i++) 3761 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3762 ether_addr_copy(vf->data.tcp_spec.src_mac, 3763 match.key->src); 3764 } 3765 } 3766 3767 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3768 struct flow_match_vlan match; 3769 3770 flow_rule_match_vlan(rule, &match); 3771 if (match.mask->vlan_id) { 3772 if (match.mask->vlan_id == VLAN_VID_MASK) { 3773 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3774 } else { 3775 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3776 match.mask->vlan_id); 3777 return -EINVAL; 3778 } 3779 } 3780 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3781 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3782 } 3783 3784 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3785 struct flow_match_control match; 3786 3787 flow_rule_match_control(rule, &match); 3788 addr_type = match.key->addr_type; 3789 } 3790 3791 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3792 struct flow_match_ipv4_addrs match; 3793 3794 flow_rule_match_ipv4_addrs(rule, &match); 3795 if (match.mask->dst) { 3796 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3797 field_flags |= IAVF_CLOUD_FIELD_IIP; 3798 } else { 3799 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3800 be32_to_cpu(match.mask->dst)); 3801 return -EINVAL; 3802 } 3803 } 3804 3805 if (match.mask->src) { 3806 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3807 field_flags |= IAVF_CLOUD_FIELD_IIP; 3808 } else { 3809 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3810 be32_to_cpu(match.mask->src)); 3811 return -EINVAL; 3812 } 3813 } 3814 3815 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3816 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3817 return -EINVAL; 3818 } 3819 if (match.key->dst) { 3820 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3821 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3822 } 3823 if (match.key->src) { 3824 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3825 vf->data.tcp_spec.src_ip[0] = match.key->src; 3826 } 3827 } 3828 3829 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3830 struct flow_match_ipv6_addrs match; 3831 3832 flow_rule_match_ipv6_addrs(rule, &match); 3833 3834 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3835 if (ipv6_addr_any(&match.mask->dst)) { 3836 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3837 IPV6_ADDR_ANY); 3838 return -EINVAL; 3839 } 3840 3841 /* src and dest IPv6 address should not be LOOPBACK 3842 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3843 */ 3844 if (ipv6_addr_loopback(&match.key->dst) || 3845 ipv6_addr_loopback(&match.key->src)) { 3846 dev_err(&adapter->pdev->dev, 3847 "ipv6 addr should not be loopback\n"); 3848 return -EINVAL; 3849 } 3850 if (!ipv6_addr_any(&match.mask->dst) || 3851 !ipv6_addr_any(&match.mask->src)) 3852 field_flags |= IAVF_CLOUD_FIELD_IIP; 3853 3854 for (i = 0; i < 4; i++) 3855 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3856 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3857 sizeof(vf->data.tcp_spec.dst_ip)); 3858 for (i = 0; i < 4; i++) 3859 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3860 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3861 sizeof(vf->data.tcp_spec.src_ip)); 3862 } 3863 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3864 struct flow_match_ports match; 3865 3866 flow_rule_match_ports(rule, &match); 3867 if (match.mask->src) { 3868 if (match.mask->src == cpu_to_be16(0xffff)) { 3869 field_flags |= IAVF_CLOUD_FIELD_IIP; 3870 } else { 3871 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3872 be16_to_cpu(match.mask->src)); 3873 return -EINVAL; 3874 } 3875 } 3876 3877 if (match.mask->dst) { 3878 if (match.mask->dst == cpu_to_be16(0xffff)) { 3879 field_flags |= IAVF_CLOUD_FIELD_IIP; 3880 } else { 3881 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3882 be16_to_cpu(match.mask->dst)); 3883 return -EINVAL; 3884 } 3885 } 3886 if (match.key->dst) { 3887 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3888 vf->data.tcp_spec.dst_port = match.key->dst; 3889 } 3890 3891 if (match.key->src) { 3892 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3893 vf->data.tcp_spec.src_port = match.key->src; 3894 } 3895 } 3896 vf->field_flags = field_flags; 3897 3898 return 0; 3899 } 3900 3901 /** 3902 * iavf_handle_tclass - Forward to a traffic class on the device 3903 * @adapter: board private structure 3904 * @tc: traffic class index on the device 3905 * @filter: pointer to cloud filter structure 3906 */ 3907 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3908 struct iavf_cloud_filter *filter) 3909 { 3910 if (tc == 0) 3911 return 0; 3912 if (tc < adapter->num_tc) { 3913 if (!filter->f.data.tcp_spec.dst_port) { 3914 dev_err(&adapter->pdev->dev, 3915 "Specify destination port to redirect to traffic class other than TC0\n"); 3916 return -EINVAL; 3917 } 3918 } 3919 /* redirect to a traffic class on the same device */ 3920 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3921 filter->f.action_meta = tc; 3922 return 0; 3923 } 3924 3925 /** 3926 * iavf_find_cf - Find the cloud filter in the list 3927 * @adapter: Board private structure 3928 * @cookie: filter specific cookie 3929 * 3930 * Returns ptr to the filter object or NULL. Must be called while holding the 3931 * cloud_filter_list_lock. 3932 */ 3933 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3934 unsigned long *cookie) 3935 { 3936 struct iavf_cloud_filter *filter = NULL; 3937 3938 if (!cookie) 3939 return NULL; 3940 3941 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3942 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3943 return filter; 3944 } 3945 return NULL; 3946 } 3947 3948 /** 3949 * iavf_configure_clsflower - Add tc flower filters 3950 * @adapter: board private structure 3951 * @cls_flower: Pointer to struct flow_cls_offload 3952 */ 3953 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3954 struct flow_cls_offload *cls_flower) 3955 { 3956 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3957 struct iavf_cloud_filter *filter = NULL; 3958 int err = -EINVAL, count = 50; 3959 3960 if (tc < 0) { 3961 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3962 return -EINVAL; 3963 } 3964 3965 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3966 if (!filter) 3967 return -ENOMEM; 3968 3969 while (!mutex_trylock(&adapter->crit_lock)) { 3970 if (--count == 0) { 3971 kfree(filter); 3972 return err; 3973 } 3974 udelay(1); 3975 } 3976 3977 filter->cookie = cls_flower->cookie; 3978 3979 /* bail out here if filter already exists */ 3980 spin_lock_bh(&adapter->cloud_filter_list_lock); 3981 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3982 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3983 err = -EEXIST; 3984 goto spin_unlock; 3985 } 3986 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3987 3988 /* set the mask to all zeroes to begin with */ 3989 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3990 /* start out with flow type and eth type IPv4 to begin with */ 3991 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3992 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3993 if (err) 3994 goto err; 3995 3996 err = iavf_handle_tclass(adapter, tc, filter); 3997 if (err) 3998 goto err; 3999 4000 /* add filter to the list */ 4001 spin_lock_bh(&adapter->cloud_filter_list_lock); 4002 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4003 adapter->num_cloud_filters++; 4004 filter->add = true; 4005 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4006 spin_unlock: 4007 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4008 err: 4009 if (err) 4010 kfree(filter); 4011 4012 mutex_unlock(&adapter->crit_lock); 4013 return err; 4014 } 4015 4016 /** 4017 * iavf_delete_clsflower - Remove tc flower filters 4018 * @adapter: board private structure 4019 * @cls_flower: Pointer to struct flow_cls_offload 4020 */ 4021 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4022 struct flow_cls_offload *cls_flower) 4023 { 4024 struct iavf_cloud_filter *filter = NULL; 4025 int err = 0; 4026 4027 spin_lock_bh(&adapter->cloud_filter_list_lock); 4028 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4029 if (filter) { 4030 filter->del = true; 4031 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4032 } else { 4033 err = -EINVAL; 4034 } 4035 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4036 4037 return err; 4038 } 4039 4040 /** 4041 * iavf_setup_tc_cls_flower - flower classifier offloads 4042 * @adapter: board private structure 4043 * @cls_flower: pointer to flow_cls_offload struct with flow info 4044 */ 4045 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4046 struct flow_cls_offload *cls_flower) 4047 { 4048 switch (cls_flower->command) { 4049 case FLOW_CLS_REPLACE: 4050 return iavf_configure_clsflower(adapter, cls_flower); 4051 case FLOW_CLS_DESTROY: 4052 return iavf_delete_clsflower(adapter, cls_flower); 4053 case FLOW_CLS_STATS: 4054 return -EOPNOTSUPP; 4055 default: 4056 return -EOPNOTSUPP; 4057 } 4058 } 4059 4060 /** 4061 * iavf_setup_tc_block_cb - block callback for tc 4062 * @type: type of offload 4063 * @type_data: offload data 4064 * @cb_priv: 4065 * 4066 * This function is the block callback for traffic classes 4067 **/ 4068 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4069 void *cb_priv) 4070 { 4071 struct iavf_adapter *adapter = cb_priv; 4072 4073 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4074 return -EOPNOTSUPP; 4075 4076 switch (type) { 4077 case TC_SETUP_CLSFLOWER: 4078 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4079 default: 4080 return -EOPNOTSUPP; 4081 } 4082 } 4083 4084 static LIST_HEAD(iavf_block_cb_list); 4085 4086 /** 4087 * iavf_setup_tc - configure multiple traffic classes 4088 * @netdev: network interface device structure 4089 * @type: type of offload 4090 * @type_data: tc offload data 4091 * 4092 * This function is the callback to ndo_setup_tc in the 4093 * netdev_ops. 4094 * 4095 * Returns 0 on success 4096 **/ 4097 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4098 void *type_data) 4099 { 4100 struct iavf_adapter *adapter = netdev_priv(netdev); 4101 4102 switch (type) { 4103 case TC_SETUP_QDISC_MQPRIO: 4104 return __iavf_setup_tc(netdev, type_data); 4105 case TC_SETUP_BLOCK: 4106 return flow_block_cb_setup_simple(type_data, 4107 &iavf_block_cb_list, 4108 iavf_setup_tc_block_cb, 4109 adapter, adapter, true); 4110 default: 4111 return -EOPNOTSUPP; 4112 } 4113 } 4114 4115 /** 4116 * iavf_open - Called when a network interface is made active 4117 * @netdev: network interface device structure 4118 * 4119 * Returns 0 on success, negative value on failure 4120 * 4121 * The open entry point is called when a network interface is made 4122 * active by the system (IFF_UP). At this point all resources needed 4123 * for transmit and receive operations are allocated, the interrupt 4124 * handler is registered with the OS, the watchdog is started, 4125 * and the stack is notified that the interface is ready. 4126 **/ 4127 static int iavf_open(struct net_device *netdev) 4128 { 4129 struct iavf_adapter *adapter = netdev_priv(netdev); 4130 int err; 4131 4132 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4133 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4134 return -EIO; 4135 } 4136 4137 while (!mutex_trylock(&adapter->crit_lock)) { 4138 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4139 * is already taken and iavf_open is called from an upper 4140 * device's notifier reacting on NETDEV_REGISTER event. 4141 * We have to leave here to avoid dead lock. 4142 */ 4143 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4144 return -EBUSY; 4145 4146 usleep_range(500, 1000); 4147 } 4148 4149 if (adapter->state != __IAVF_DOWN) { 4150 err = -EBUSY; 4151 goto err_unlock; 4152 } 4153 4154 if (adapter->state == __IAVF_RUNNING && 4155 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4156 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4157 err = 0; 4158 goto err_unlock; 4159 } 4160 4161 /* allocate transmit descriptors */ 4162 err = iavf_setup_all_tx_resources(adapter); 4163 if (err) 4164 goto err_setup_tx; 4165 4166 /* allocate receive descriptors */ 4167 err = iavf_setup_all_rx_resources(adapter); 4168 if (err) 4169 goto err_setup_rx; 4170 4171 /* clear any pending interrupts, may auto mask */ 4172 err = iavf_request_traffic_irqs(adapter, netdev->name); 4173 if (err) 4174 goto err_req_irq; 4175 4176 spin_lock_bh(&adapter->mac_vlan_list_lock); 4177 4178 iavf_add_filter(adapter, adapter->hw.mac.addr); 4179 4180 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4181 4182 /* Restore VLAN filters that were removed with IFF_DOWN */ 4183 iavf_restore_filters(adapter); 4184 4185 iavf_configure(adapter); 4186 4187 iavf_up_complete(adapter); 4188 4189 iavf_irq_enable(adapter, true); 4190 4191 mutex_unlock(&adapter->crit_lock); 4192 4193 return 0; 4194 4195 err_req_irq: 4196 iavf_down(adapter); 4197 iavf_free_traffic_irqs(adapter); 4198 err_setup_rx: 4199 iavf_free_all_rx_resources(adapter); 4200 err_setup_tx: 4201 iavf_free_all_tx_resources(adapter); 4202 err_unlock: 4203 mutex_unlock(&adapter->crit_lock); 4204 4205 return err; 4206 } 4207 4208 /** 4209 * iavf_close - Disables a network interface 4210 * @netdev: network interface device structure 4211 * 4212 * Returns 0, this is not allowed to fail 4213 * 4214 * The close entry point is called when an interface is de-activated 4215 * by the OS. The hardware is still under the drivers control, but 4216 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4217 * are freed, along with all transmit and receive resources. 4218 **/ 4219 static int iavf_close(struct net_device *netdev) 4220 { 4221 struct iavf_adapter *adapter = netdev_priv(netdev); 4222 u64 aq_to_restore; 4223 int status; 4224 4225 mutex_lock(&adapter->crit_lock); 4226 4227 if (adapter->state <= __IAVF_DOWN_PENDING) { 4228 mutex_unlock(&adapter->crit_lock); 4229 return 0; 4230 } 4231 4232 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4233 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4234 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4235 * deadlock with adminq_task() until iavf_close timeouts. We must send 4236 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4237 * disable queues possible for vf. Give only necessary flags to 4238 * iavf_down and save other to set them right before iavf_close() 4239 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4240 * iavf will be in DOWN state. 4241 */ 4242 aq_to_restore = adapter->aq_required; 4243 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4244 4245 /* Remove flags which we do not want to send after close or we want to 4246 * send before disable queues. 4247 */ 4248 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4249 IAVF_FLAG_AQ_ENABLE_QUEUES | 4250 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4251 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4252 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4253 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4254 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4255 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4256 4257 iavf_down(adapter); 4258 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4259 iavf_free_traffic_irqs(adapter); 4260 4261 mutex_unlock(&adapter->crit_lock); 4262 4263 /* We explicitly don't free resources here because the hardware is 4264 * still active and can DMA into memory. Resources are cleared in 4265 * iavf_virtchnl_completion() after we get confirmation from the PF 4266 * driver that the rings have been stopped. 4267 * 4268 * Also, we wait for state to transition to __IAVF_DOWN before 4269 * returning. State change occurs in iavf_virtchnl_completion() after 4270 * VF resources are released (which occurs after PF driver processes and 4271 * responds to admin queue commands). 4272 */ 4273 4274 status = wait_event_timeout(adapter->down_waitqueue, 4275 adapter->state == __IAVF_DOWN, 4276 msecs_to_jiffies(500)); 4277 if (!status) 4278 netdev_warn(netdev, "Device resources not yet released\n"); 4279 4280 mutex_lock(&adapter->crit_lock); 4281 adapter->aq_required |= aq_to_restore; 4282 mutex_unlock(&adapter->crit_lock); 4283 return 0; 4284 } 4285 4286 /** 4287 * iavf_change_mtu - Change the Maximum Transfer Unit 4288 * @netdev: network interface device structure 4289 * @new_mtu: new value for maximum frame size 4290 * 4291 * Returns 0 on success, negative on failure 4292 **/ 4293 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4294 { 4295 struct iavf_adapter *adapter = netdev_priv(netdev); 4296 int ret = 0; 4297 4298 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4299 netdev->mtu, new_mtu); 4300 netdev->mtu = new_mtu; 4301 4302 if (netif_running(netdev)) { 4303 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4304 ret = iavf_wait_for_reset(adapter); 4305 if (ret < 0) 4306 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4307 else if (ret) 4308 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4309 } 4310 4311 return ret; 4312 } 4313 4314 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4315 NETIF_F_HW_VLAN_CTAG_TX | \ 4316 NETIF_F_HW_VLAN_STAG_RX | \ 4317 NETIF_F_HW_VLAN_STAG_TX) 4318 4319 /** 4320 * iavf_set_features - set the netdev feature flags 4321 * @netdev: ptr to the netdev being adjusted 4322 * @features: the feature set that the stack is suggesting 4323 * Note: expects to be called while under rtnl_lock() 4324 **/ 4325 static int iavf_set_features(struct net_device *netdev, 4326 netdev_features_t features) 4327 { 4328 struct iavf_adapter *adapter = netdev_priv(netdev); 4329 4330 /* trigger update on any VLAN feature change */ 4331 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4332 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4333 iavf_set_vlan_offload_features(adapter, netdev->features, 4334 features); 4335 if (CRC_OFFLOAD_ALLOWED(adapter) && 4336 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4337 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4338 4339 return 0; 4340 } 4341 4342 /** 4343 * iavf_features_check - Validate encapsulated packet conforms to limits 4344 * @skb: skb buff 4345 * @dev: This physical port's netdev 4346 * @features: Offload features that the stack believes apply 4347 **/ 4348 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4349 struct net_device *dev, 4350 netdev_features_t features) 4351 { 4352 size_t len; 4353 4354 /* No point in doing any of this if neither checksum nor GSO are 4355 * being requested for this frame. We can rule out both by just 4356 * checking for CHECKSUM_PARTIAL 4357 */ 4358 if (skb->ip_summed != CHECKSUM_PARTIAL) 4359 return features; 4360 4361 /* We cannot support GSO if the MSS is going to be less than 4362 * 64 bytes. If it is then we need to drop support for GSO. 4363 */ 4364 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4365 features &= ~NETIF_F_GSO_MASK; 4366 4367 /* MACLEN can support at most 63 words */ 4368 len = skb_network_header(skb) - skb->data; 4369 if (len & ~(63 * 2)) 4370 goto out_err; 4371 4372 /* IPLEN and EIPLEN can support at most 127 dwords */ 4373 len = skb_transport_header(skb) - skb_network_header(skb); 4374 if (len & ~(127 * 4)) 4375 goto out_err; 4376 4377 if (skb->encapsulation) { 4378 /* L4TUNLEN can support 127 words */ 4379 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4380 if (len & ~(127 * 2)) 4381 goto out_err; 4382 4383 /* IPLEN can support at most 127 dwords */ 4384 len = skb_inner_transport_header(skb) - 4385 skb_inner_network_header(skb); 4386 if (len & ~(127 * 4)) 4387 goto out_err; 4388 } 4389 4390 /* No need to validate L4LEN as TCP is the only protocol with a 4391 * flexible value and we support all possible values supported 4392 * by TCP, which is at most 15 dwords 4393 */ 4394 4395 return features; 4396 out_err: 4397 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4398 } 4399 4400 /** 4401 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4402 * @adapter: board private structure 4403 * 4404 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4405 * were negotiated determine the VLAN features that can be toggled on and off. 4406 **/ 4407 static netdev_features_t 4408 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4409 { 4410 netdev_features_t hw_features = 0; 4411 4412 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4413 return hw_features; 4414 4415 /* Enable VLAN features if supported */ 4416 if (VLAN_ALLOWED(adapter)) { 4417 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4418 NETIF_F_HW_VLAN_CTAG_RX); 4419 } else if (VLAN_V2_ALLOWED(adapter)) { 4420 struct virtchnl_vlan_caps *vlan_v2_caps = 4421 &adapter->vlan_v2_caps; 4422 struct virtchnl_vlan_supported_caps *stripping_support = 4423 &vlan_v2_caps->offloads.stripping_support; 4424 struct virtchnl_vlan_supported_caps *insertion_support = 4425 &vlan_v2_caps->offloads.insertion_support; 4426 4427 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4428 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4429 if (stripping_support->outer & 4430 VIRTCHNL_VLAN_ETHERTYPE_8100) 4431 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4432 if (stripping_support->outer & 4433 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4434 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4435 } else if (stripping_support->inner != 4436 VIRTCHNL_VLAN_UNSUPPORTED && 4437 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4438 if (stripping_support->inner & 4439 VIRTCHNL_VLAN_ETHERTYPE_8100) 4440 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4441 } 4442 4443 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4444 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4445 if (insertion_support->outer & 4446 VIRTCHNL_VLAN_ETHERTYPE_8100) 4447 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4448 if (insertion_support->outer & 4449 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4450 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4451 } else if (insertion_support->inner && 4452 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4453 if (insertion_support->inner & 4454 VIRTCHNL_VLAN_ETHERTYPE_8100) 4455 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4456 } 4457 } 4458 4459 if (CRC_OFFLOAD_ALLOWED(adapter)) 4460 hw_features |= NETIF_F_RXFCS; 4461 4462 return hw_features; 4463 } 4464 4465 /** 4466 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4467 * @adapter: board private structure 4468 * 4469 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4470 * were negotiated determine the VLAN features that are enabled by default. 4471 **/ 4472 static netdev_features_t 4473 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4474 { 4475 netdev_features_t features = 0; 4476 4477 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4478 return features; 4479 4480 if (VLAN_ALLOWED(adapter)) { 4481 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4482 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4483 } else if (VLAN_V2_ALLOWED(adapter)) { 4484 struct virtchnl_vlan_caps *vlan_v2_caps = 4485 &adapter->vlan_v2_caps; 4486 struct virtchnl_vlan_supported_caps *filtering_support = 4487 &vlan_v2_caps->filtering.filtering_support; 4488 struct virtchnl_vlan_supported_caps *stripping_support = 4489 &vlan_v2_caps->offloads.stripping_support; 4490 struct virtchnl_vlan_supported_caps *insertion_support = 4491 &vlan_v2_caps->offloads.insertion_support; 4492 u32 ethertype_init; 4493 4494 /* give priority to outer stripping and don't support both outer 4495 * and inner stripping 4496 */ 4497 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4498 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4499 if (stripping_support->outer & 4500 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4501 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4502 features |= NETIF_F_HW_VLAN_CTAG_RX; 4503 else if (stripping_support->outer & 4504 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4505 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4506 features |= NETIF_F_HW_VLAN_STAG_RX; 4507 } else if (stripping_support->inner != 4508 VIRTCHNL_VLAN_UNSUPPORTED) { 4509 if (stripping_support->inner & 4510 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4511 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4512 features |= NETIF_F_HW_VLAN_CTAG_RX; 4513 } 4514 4515 /* give priority to outer insertion and don't support both outer 4516 * and inner insertion 4517 */ 4518 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4519 if (insertion_support->outer & 4520 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4521 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4522 features |= NETIF_F_HW_VLAN_CTAG_TX; 4523 else if (insertion_support->outer & 4524 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4525 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4526 features |= NETIF_F_HW_VLAN_STAG_TX; 4527 } else if (insertion_support->inner != 4528 VIRTCHNL_VLAN_UNSUPPORTED) { 4529 if (insertion_support->inner & 4530 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4531 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4532 features |= NETIF_F_HW_VLAN_CTAG_TX; 4533 } 4534 4535 /* give priority to outer filtering and don't bother if both 4536 * outer and inner filtering are enabled 4537 */ 4538 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4539 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4540 if (filtering_support->outer & 4541 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4542 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4543 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4544 if (filtering_support->outer & 4545 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4546 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4547 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4548 } else if (filtering_support->inner != 4549 VIRTCHNL_VLAN_UNSUPPORTED) { 4550 if (filtering_support->inner & 4551 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4552 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4553 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4554 if (filtering_support->inner & 4555 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4556 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4557 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4558 } 4559 } 4560 4561 return features; 4562 } 4563 4564 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4565 (!(((requested) & (feature_bit)) && \ 4566 !((allowed) & (feature_bit)))) 4567 4568 /** 4569 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4570 * @adapter: board private structure 4571 * @requested_features: stack requested NETDEV features 4572 **/ 4573 static netdev_features_t 4574 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4575 netdev_features_t requested_features) 4576 { 4577 netdev_features_t allowed_features; 4578 4579 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4580 iavf_get_netdev_vlan_features(adapter); 4581 4582 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4583 allowed_features, 4584 NETIF_F_HW_VLAN_CTAG_TX)) 4585 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4586 4587 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4588 allowed_features, 4589 NETIF_F_HW_VLAN_CTAG_RX)) 4590 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4591 4592 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4593 allowed_features, 4594 NETIF_F_HW_VLAN_STAG_TX)) 4595 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4596 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4597 allowed_features, 4598 NETIF_F_HW_VLAN_STAG_RX)) 4599 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4600 4601 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4602 allowed_features, 4603 NETIF_F_HW_VLAN_CTAG_FILTER)) 4604 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4605 4606 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4607 allowed_features, 4608 NETIF_F_HW_VLAN_STAG_FILTER)) 4609 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4610 4611 if ((requested_features & 4612 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4613 (requested_features & 4614 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4615 adapter->vlan_v2_caps.offloads.ethertype_match == 4616 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4617 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4618 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4619 NETIF_F_HW_VLAN_STAG_TX); 4620 } 4621 4622 return requested_features; 4623 } 4624 4625 /** 4626 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4627 * @adapter: board private structure 4628 * @requested_features: stack requested NETDEV features 4629 * 4630 * Returns fixed-up features bits 4631 **/ 4632 static netdev_features_t 4633 iavf_fix_strip_features(struct iavf_adapter *adapter, 4634 netdev_features_t requested_features) 4635 { 4636 struct net_device *netdev = adapter->netdev; 4637 bool crc_offload_req, is_vlan_strip; 4638 netdev_features_t vlan_strip; 4639 int num_non_zero_vlan; 4640 4641 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4642 (requested_features & NETIF_F_RXFCS); 4643 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4644 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4645 is_vlan_strip = requested_features & vlan_strip; 4646 4647 if (!crc_offload_req) 4648 return requested_features; 4649 4650 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4651 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4652 requested_features &= ~vlan_strip; 4653 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4654 return requested_features; 4655 } 4656 4657 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4658 requested_features &= ~vlan_strip; 4659 if (!(netdev->features & vlan_strip)) 4660 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4661 4662 return requested_features; 4663 } 4664 4665 if (num_non_zero_vlan && is_vlan_strip && 4666 !(netdev->features & NETIF_F_RXFCS)) { 4667 requested_features &= ~NETIF_F_RXFCS; 4668 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4669 } 4670 4671 return requested_features; 4672 } 4673 4674 /** 4675 * iavf_fix_features - fix up the netdev feature bits 4676 * @netdev: our net device 4677 * @features: desired feature bits 4678 * 4679 * Returns fixed-up features bits 4680 **/ 4681 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4682 netdev_features_t features) 4683 { 4684 struct iavf_adapter *adapter = netdev_priv(netdev); 4685 4686 features = iavf_fix_netdev_vlan_features(adapter, features); 4687 4688 return iavf_fix_strip_features(adapter, features); 4689 } 4690 4691 static const struct net_device_ops iavf_netdev_ops = { 4692 .ndo_open = iavf_open, 4693 .ndo_stop = iavf_close, 4694 .ndo_start_xmit = iavf_xmit_frame, 4695 .ndo_set_rx_mode = iavf_set_rx_mode, 4696 .ndo_validate_addr = eth_validate_addr, 4697 .ndo_set_mac_address = iavf_set_mac, 4698 .ndo_change_mtu = iavf_change_mtu, 4699 .ndo_tx_timeout = iavf_tx_timeout, 4700 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4701 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4702 .ndo_features_check = iavf_features_check, 4703 .ndo_fix_features = iavf_fix_features, 4704 .ndo_set_features = iavf_set_features, 4705 .ndo_setup_tc = iavf_setup_tc, 4706 }; 4707 4708 /** 4709 * iavf_check_reset_complete - check that VF reset is complete 4710 * @hw: pointer to hw struct 4711 * 4712 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4713 **/ 4714 static int iavf_check_reset_complete(struct iavf_hw *hw) 4715 { 4716 u32 rstat; 4717 int i; 4718 4719 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4720 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4721 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4722 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4723 (rstat == VIRTCHNL_VFR_COMPLETED)) 4724 return 0; 4725 msleep(IAVF_RESET_WAIT_MS); 4726 } 4727 return -EBUSY; 4728 } 4729 4730 /** 4731 * iavf_process_config - Process the config information we got from the PF 4732 * @adapter: board private structure 4733 * 4734 * Verify that we have a valid config struct, and set up our netdev features 4735 * and our VSI struct. 4736 **/ 4737 int iavf_process_config(struct iavf_adapter *adapter) 4738 { 4739 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4740 netdev_features_t hw_vlan_features, vlan_features; 4741 struct net_device *netdev = adapter->netdev; 4742 netdev_features_t hw_enc_features; 4743 netdev_features_t hw_features; 4744 4745 hw_enc_features = NETIF_F_SG | 4746 NETIF_F_IP_CSUM | 4747 NETIF_F_IPV6_CSUM | 4748 NETIF_F_HIGHDMA | 4749 NETIF_F_SOFT_FEATURES | 4750 NETIF_F_TSO | 4751 NETIF_F_TSO_ECN | 4752 NETIF_F_TSO6 | 4753 NETIF_F_SCTP_CRC | 4754 NETIF_F_RXHASH | 4755 NETIF_F_RXCSUM | 4756 0; 4757 4758 /* advertise to stack only if offloads for encapsulated packets is 4759 * supported 4760 */ 4761 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4762 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4763 NETIF_F_GSO_GRE | 4764 NETIF_F_GSO_GRE_CSUM | 4765 NETIF_F_GSO_IPXIP4 | 4766 NETIF_F_GSO_IPXIP6 | 4767 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4768 NETIF_F_GSO_PARTIAL | 4769 0; 4770 4771 if (!(vfres->vf_cap_flags & 4772 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4773 netdev->gso_partial_features |= 4774 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4775 4776 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4777 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4778 netdev->hw_enc_features |= hw_enc_features; 4779 } 4780 /* record features VLANs can make use of */ 4781 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4782 4783 /* Write features and hw_features separately to avoid polluting 4784 * with, or dropping, features that are set when we registered. 4785 */ 4786 hw_features = hw_enc_features; 4787 4788 /* get HW VLAN features that can be toggled */ 4789 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4790 4791 /* Enable cloud filter if ADQ is supported */ 4792 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4793 hw_features |= NETIF_F_HW_TC; 4794 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4795 hw_features |= NETIF_F_GSO_UDP_L4; 4796 4797 netdev->hw_features |= hw_features | hw_vlan_features; 4798 vlan_features = iavf_get_netdev_vlan_features(adapter); 4799 4800 netdev->features |= hw_features | vlan_features; 4801 4802 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4803 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4804 4805 netdev->priv_flags |= IFF_UNICAST_FLT; 4806 4807 /* Do not turn on offloads when they are requested to be turned off. 4808 * TSO needs minimum 576 bytes to work correctly. 4809 */ 4810 if (netdev->wanted_features) { 4811 if (!(netdev->wanted_features & NETIF_F_TSO) || 4812 netdev->mtu < 576) 4813 netdev->features &= ~NETIF_F_TSO; 4814 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4815 netdev->mtu < 576) 4816 netdev->features &= ~NETIF_F_TSO6; 4817 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4818 netdev->features &= ~NETIF_F_TSO_ECN; 4819 if (!(netdev->wanted_features & NETIF_F_GRO)) 4820 netdev->features &= ~NETIF_F_GRO; 4821 if (!(netdev->wanted_features & NETIF_F_GSO)) 4822 netdev->features &= ~NETIF_F_GSO; 4823 } 4824 4825 return 0; 4826 } 4827 4828 /** 4829 * iavf_shutdown - Shutdown the device in preparation for a reboot 4830 * @pdev: pci device structure 4831 **/ 4832 static void iavf_shutdown(struct pci_dev *pdev) 4833 { 4834 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4835 struct net_device *netdev = adapter->netdev; 4836 4837 netif_device_detach(netdev); 4838 4839 if (netif_running(netdev)) 4840 iavf_close(netdev); 4841 4842 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4843 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4844 /* Prevent the watchdog from running. */ 4845 iavf_change_state(adapter, __IAVF_REMOVE); 4846 adapter->aq_required = 0; 4847 mutex_unlock(&adapter->crit_lock); 4848 4849 #ifdef CONFIG_PM 4850 pci_save_state(pdev); 4851 4852 #endif 4853 pci_disable_device(pdev); 4854 } 4855 4856 /** 4857 * iavf_probe - Device Initialization Routine 4858 * @pdev: PCI device information struct 4859 * @ent: entry in iavf_pci_tbl 4860 * 4861 * Returns 0 on success, negative on failure 4862 * 4863 * iavf_probe initializes an adapter identified by a pci_dev structure. 4864 * The OS initialization, configuring of the adapter private structure, 4865 * and a hardware reset occur. 4866 **/ 4867 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4868 { 4869 struct net_device *netdev; 4870 struct iavf_adapter *adapter = NULL; 4871 struct iavf_hw *hw = NULL; 4872 int err; 4873 4874 err = pci_enable_device(pdev); 4875 if (err) 4876 return err; 4877 4878 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4879 if (err) { 4880 dev_err(&pdev->dev, 4881 "DMA configuration failed: 0x%x\n", err); 4882 goto err_dma; 4883 } 4884 4885 err = pci_request_regions(pdev, iavf_driver_name); 4886 if (err) { 4887 dev_err(&pdev->dev, 4888 "pci_request_regions failed 0x%x\n", err); 4889 goto err_pci_reg; 4890 } 4891 4892 pci_set_master(pdev); 4893 4894 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4895 IAVF_MAX_REQ_QUEUES); 4896 if (!netdev) { 4897 err = -ENOMEM; 4898 goto err_alloc_etherdev; 4899 } 4900 4901 SET_NETDEV_DEV(netdev, &pdev->dev); 4902 4903 pci_set_drvdata(pdev, netdev); 4904 adapter = netdev_priv(netdev); 4905 4906 adapter->netdev = netdev; 4907 adapter->pdev = pdev; 4908 4909 hw = &adapter->hw; 4910 hw->back = adapter; 4911 4912 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4913 iavf_driver_name); 4914 if (!adapter->wq) { 4915 err = -ENOMEM; 4916 goto err_alloc_wq; 4917 } 4918 4919 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4920 iavf_change_state(adapter, __IAVF_STARTUP); 4921 4922 /* Call save state here because it relies on the adapter struct. */ 4923 pci_save_state(pdev); 4924 4925 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4926 pci_resource_len(pdev, 0)); 4927 if (!hw->hw_addr) { 4928 err = -EIO; 4929 goto err_ioremap; 4930 } 4931 hw->vendor_id = pdev->vendor; 4932 hw->device_id = pdev->device; 4933 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4934 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4935 hw->subsystem_device_id = pdev->subsystem_device; 4936 hw->bus.device = PCI_SLOT(pdev->devfn); 4937 hw->bus.func = PCI_FUNC(pdev->devfn); 4938 hw->bus.bus_id = pdev->bus->number; 4939 4940 /* set up the locks for the AQ, do this only once in probe 4941 * and destroy them only once in remove 4942 */ 4943 mutex_init(&adapter->crit_lock); 4944 mutex_init(&hw->aq.asq_mutex); 4945 mutex_init(&hw->aq.arq_mutex); 4946 4947 spin_lock_init(&adapter->mac_vlan_list_lock); 4948 spin_lock_init(&adapter->cloud_filter_list_lock); 4949 spin_lock_init(&adapter->fdir_fltr_lock); 4950 spin_lock_init(&adapter->adv_rss_lock); 4951 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4952 4953 INIT_LIST_HEAD(&adapter->mac_filter_list); 4954 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4955 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4956 INIT_LIST_HEAD(&adapter->fdir_list_head); 4957 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4958 4959 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4960 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4961 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4962 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4963 4964 /* Setup the wait queue for indicating transition to down status */ 4965 init_waitqueue_head(&adapter->down_waitqueue); 4966 4967 /* Setup the wait queue for indicating transition to running state */ 4968 init_waitqueue_head(&adapter->reset_waitqueue); 4969 4970 /* Setup the wait queue for indicating virtchannel events */ 4971 init_waitqueue_head(&adapter->vc_waitqueue); 4972 4973 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 4974 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4975 /* Initialization goes on in the work. Do not add more of it below. */ 4976 return 0; 4977 4978 err_ioremap: 4979 destroy_workqueue(adapter->wq); 4980 err_alloc_wq: 4981 free_netdev(netdev); 4982 err_alloc_etherdev: 4983 pci_release_regions(pdev); 4984 err_pci_reg: 4985 err_dma: 4986 pci_disable_device(pdev); 4987 return err; 4988 } 4989 4990 /** 4991 * iavf_suspend - Power management suspend routine 4992 * @dev_d: device info pointer 4993 * 4994 * Called when the system (VM) is entering sleep/suspend. 4995 **/ 4996 static int __maybe_unused iavf_suspend(struct device *dev_d) 4997 { 4998 struct net_device *netdev = dev_get_drvdata(dev_d); 4999 struct iavf_adapter *adapter = netdev_priv(netdev); 5000 5001 netif_device_detach(netdev); 5002 5003 mutex_lock(&adapter->crit_lock); 5004 5005 if (netif_running(netdev)) { 5006 rtnl_lock(); 5007 iavf_down(adapter); 5008 rtnl_unlock(); 5009 } 5010 iavf_free_misc_irq(adapter); 5011 iavf_reset_interrupt_capability(adapter); 5012 5013 mutex_unlock(&adapter->crit_lock); 5014 5015 return 0; 5016 } 5017 5018 /** 5019 * iavf_resume - Power management resume routine 5020 * @dev_d: device info pointer 5021 * 5022 * Called when the system (VM) is resumed from sleep/suspend. 5023 **/ 5024 static int __maybe_unused iavf_resume(struct device *dev_d) 5025 { 5026 struct pci_dev *pdev = to_pci_dev(dev_d); 5027 struct iavf_adapter *adapter; 5028 u32 err; 5029 5030 adapter = iavf_pdev_to_adapter(pdev); 5031 5032 pci_set_master(pdev); 5033 5034 rtnl_lock(); 5035 err = iavf_set_interrupt_capability(adapter); 5036 if (err) { 5037 rtnl_unlock(); 5038 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5039 return err; 5040 } 5041 err = iavf_request_misc_irq(adapter); 5042 rtnl_unlock(); 5043 if (err) { 5044 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5045 return err; 5046 } 5047 5048 queue_work(adapter->wq, &adapter->reset_task); 5049 5050 netif_device_attach(adapter->netdev); 5051 5052 return err; 5053 } 5054 5055 /** 5056 * iavf_remove - Device Removal Routine 5057 * @pdev: PCI device information struct 5058 * 5059 * iavf_remove is called by the PCI subsystem to alert the driver 5060 * that it should release a PCI device. The could be caused by a 5061 * Hot-Plug event, or because the driver is going to be removed from 5062 * memory. 5063 **/ 5064 static void iavf_remove(struct pci_dev *pdev) 5065 { 5066 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5067 struct iavf_fdir_fltr *fdir, *fdirtmp; 5068 struct iavf_vlan_filter *vlf, *vlftmp; 5069 struct iavf_cloud_filter *cf, *cftmp; 5070 struct iavf_adv_rss *rss, *rsstmp; 5071 struct iavf_mac_filter *f, *ftmp; 5072 struct net_device *netdev; 5073 struct iavf_hw *hw; 5074 5075 netdev = adapter->netdev; 5076 hw = &adapter->hw; 5077 5078 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5079 return; 5080 5081 /* Wait until port initialization is complete. 5082 * There are flows where register/unregister netdev may race. 5083 */ 5084 while (1) { 5085 mutex_lock(&adapter->crit_lock); 5086 if (adapter->state == __IAVF_RUNNING || 5087 adapter->state == __IAVF_DOWN || 5088 adapter->state == __IAVF_INIT_FAILED) { 5089 mutex_unlock(&adapter->crit_lock); 5090 break; 5091 } 5092 /* Simply return if we already went through iavf_shutdown */ 5093 if (adapter->state == __IAVF_REMOVE) { 5094 mutex_unlock(&adapter->crit_lock); 5095 return; 5096 } 5097 5098 mutex_unlock(&adapter->crit_lock); 5099 usleep_range(500, 1000); 5100 } 5101 cancel_delayed_work_sync(&adapter->watchdog_task); 5102 cancel_work_sync(&adapter->finish_config); 5103 5104 if (netdev->reg_state == NETREG_REGISTERED) 5105 unregister_netdev(netdev); 5106 5107 mutex_lock(&adapter->crit_lock); 5108 dev_info(&adapter->pdev->dev, "Removing device\n"); 5109 iavf_change_state(adapter, __IAVF_REMOVE); 5110 5111 iavf_request_reset(adapter); 5112 msleep(50); 5113 /* If the FW isn't responding, kick it once, but only once. */ 5114 if (!iavf_asq_done(hw)) { 5115 iavf_request_reset(adapter); 5116 msleep(50); 5117 } 5118 5119 iavf_misc_irq_disable(adapter); 5120 /* Shut down all the garbage mashers on the detention level */ 5121 cancel_work_sync(&adapter->reset_task); 5122 cancel_delayed_work_sync(&adapter->watchdog_task); 5123 cancel_work_sync(&adapter->adminq_task); 5124 5125 adapter->aq_required = 0; 5126 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5127 5128 iavf_free_all_tx_resources(adapter); 5129 iavf_free_all_rx_resources(adapter); 5130 iavf_free_misc_irq(adapter); 5131 iavf_free_interrupt_scheme(adapter); 5132 5133 iavf_free_rss(adapter); 5134 5135 if (hw->aq.asq.count) 5136 iavf_shutdown_adminq(hw); 5137 5138 /* destroy the locks only once, here */ 5139 mutex_destroy(&hw->aq.arq_mutex); 5140 mutex_destroy(&hw->aq.asq_mutex); 5141 mutex_unlock(&adapter->crit_lock); 5142 mutex_destroy(&adapter->crit_lock); 5143 5144 iounmap(hw->hw_addr); 5145 pci_release_regions(pdev); 5146 kfree(adapter->vf_res); 5147 spin_lock_bh(&adapter->mac_vlan_list_lock); 5148 /* If we got removed before an up/down sequence, we've got a filter 5149 * hanging out there that we need to get rid of. 5150 */ 5151 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5152 list_del(&f->list); 5153 kfree(f); 5154 } 5155 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5156 list) { 5157 list_del(&vlf->list); 5158 kfree(vlf); 5159 } 5160 5161 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5162 5163 spin_lock_bh(&adapter->cloud_filter_list_lock); 5164 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5165 list_del(&cf->list); 5166 kfree(cf); 5167 } 5168 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5169 5170 spin_lock_bh(&adapter->fdir_fltr_lock); 5171 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5172 list_del(&fdir->list); 5173 kfree(fdir); 5174 } 5175 spin_unlock_bh(&adapter->fdir_fltr_lock); 5176 5177 spin_lock_bh(&adapter->adv_rss_lock); 5178 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5179 list) { 5180 list_del(&rss->list); 5181 kfree(rss); 5182 } 5183 spin_unlock_bh(&adapter->adv_rss_lock); 5184 5185 destroy_workqueue(adapter->wq); 5186 5187 free_netdev(netdev); 5188 5189 pci_disable_device(pdev); 5190 } 5191 5192 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5193 5194 static struct pci_driver iavf_driver = { 5195 .name = iavf_driver_name, 5196 .id_table = iavf_pci_tbl, 5197 .probe = iavf_probe, 5198 .remove = iavf_remove, 5199 .driver.pm = &iavf_pm_ops, 5200 .shutdown = iavf_shutdown, 5201 }; 5202 5203 /** 5204 * iavf_init_module - Driver Registration Routine 5205 * 5206 * iavf_init_module is the first routine called when the driver is 5207 * loaded. All it does is register with the PCI subsystem. 5208 **/ 5209 static int __init iavf_init_module(void) 5210 { 5211 pr_info("iavf: %s\n", iavf_driver_string); 5212 5213 pr_info("%s\n", iavf_copyright); 5214 5215 return pci_register_driver(&iavf_driver); 5216 } 5217 5218 module_init(iavf_init_module); 5219 5220 /** 5221 * iavf_exit_module - Driver Exit Cleanup Routine 5222 * 5223 * iavf_exit_module is called just before the driver is removed 5224 * from memory. 5225 **/ 5226 static void __exit iavf_exit_module(void) 5227 { 5228 pci_unregister_driver(&iavf_driver); 5229 } 5230 5231 module_exit(iavf_exit_module); 5232 5233 /* iavf_main.c */ 5234