xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 1e73427f66353b7fe21c138787ff2b711ca1c0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 /* All iavf tracepoints are defined by the include below, which must
7  * be included exactly once across the whole kernel with
8  * CREATE_TRACE_POINTS defined
9  */
10 #define CREATE_TRACE_POINTS
11 #include "iavf_trace.h"
12 
13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15 static int iavf_close(struct net_device *netdev);
16 static void iavf_init_get_resources(struct iavf_adapter *adapter);
17 static int iavf_check_reset_complete(struct iavf_hw *hw);
18 
19 char iavf_driver_name[] = "iavf";
20 static const char iavf_driver_string[] =
21 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22 
23 static const char iavf_copyright[] =
24 	"Copyright (c) 2013 - 2018 Intel Corporation.";
25 
26 /* iavf_pci_tbl - PCI Device ID Table
27  *
28  * Wildcard entries (PCI_ANY_ID) should come last
29  * Last entry must be all 0s
30  *
31  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32  *   Class, Class Mask, private data (not used) }
33  */
34 static const struct pci_device_id iavf_pci_tbl[] = {
35 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44 
45 MODULE_ALIAS("i40evf");
46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48 MODULE_LICENSE("GPL v2");
49 
50 static const struct net_device_ops iavf_netdev_ops;
51 
52 int iavf_status_to_errno(enum iavf_status status)
53 {
54 	switch (status) {
55 	case IAVF_SUCCESS:
56 		return 0;
57 	case IAVF_ERR_PARAM:
58 	case IAVF_ERR_MAC_TYPE:
59 	case IAVF_ERR_INVALID_MAC_ADDR:
60 	case IAVF_ERR_INVALID_LINK_SETTINGS:
61 	case IAVF_ERR_INVALID_PD_ID:
62 	case IAVF_ERR_INVALID_QP_ID:
63 	case IAVF_ERR_INVALID_CQ_ID:
64 	case IAVF_ERR_INVALID_CEQ_ID:
65 	case IAVF_ERR_INVALID_AEQ_ID:
66 	case IAVF_ERR_INVALID_SIZE:
67 	case IAVF_ERR_INVALID_ARP_INDEX:
68 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 	case IAVF_ERR_INVALID_FRAG_COUNT:
71 	case IAVF_ERR_INVALID_ALIGNMENT:
72 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 	case IAVF_ERR_INVALID_VF_ID:
75 	case IAVF_ERR_INVALID_HMCFN_ID:
76 	case IAVF_ERR_INVALID_PBLE_INDEX:
77 	case IAVF_ERR_INVALID_SD_INDEX:
78 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 	case IAVF_ERR_INVALID_SD_TYPE:
80 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 		return -EINVAL;
84 	case IAVF_ERR_NVM:
85 	case IAVF_ERR_NVM_CHECKSUM:
86 	case IAVF_ERR_PHY:
87 	case IAVF_ERR_CONFIG:
88 	case IAVF_ERR_UNKNOWN_PHY:
89 	case IAVF_ERR_LINK_SETUP:
90 	case IAVF_ERR_ADAPTER_STOPPED:
91 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 	case IAVF_ERR_RESET_FAILED:
94 	case IAVF_ERR_BAD_PTR:
95 	case IAVF_ERR_SWFW_SYNC:
96 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 	case IAVF_ERR_QUEUE_EMPTY:
98 	case IAVF_ERR_FLUSHED_QUEUE:
99 	case IAVF_ERR_OPCODE_MISMATCH:
100 	case IAVF_ERR_CQP_COMPL_ERROR:
101 	case IAVF_ERR_BACKING_PAGE_ERROR:
102 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 	case IAVF_ERR_MEMCPY_FAILED:
104 	case IAVF_ERR_SRQ_ENABLED:
105 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 	case IAVF_ERR_ADMIN_QUEUE_FULL:
107 	case IAVF_ERR_BAD_RDMA_CQE:
108 	case IAVF_ERR_NVM_BLANK_MODE:
109 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 	case IAVF_ERR_DIAG_TEST_FAILED:
111 	case IAVF_ERR_FIRMWARE_API_VERSION:
112 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 		return -EIO;
114 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 		return -ENODEV;
116 	case IAVF_ERR_NO_AVAILABLE_VSI:
117 	case IAVF_ERR_RING_FULL:
118 		return -ENOSPC;
119 	case IAVF_ERR_NO_MEMORY:
120 		return -ENOMEM;
121 	case IAVF_ERR_TIMEOUT:
122 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 		return -ETIMEDOUT;
124 	case IAVF_ERR_NOT_IMPLEMENTED:
125 	case IAVF_NOT_SUPPORTED:
126 		return -EOPNOTSUPP;
127 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 		return -EALREADY;
129 	case IAVF_ERR_NOT_READY:
130 		return -EBUSY;
131 	case IAVF_ERR_BUF_TOO_SHORT:
132 		return -EMSGSIZE;
133 	}
134 
135 	return -EIO;
136 }
137 
138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139 {
140 	switch (v_status) {
141 	case VIRTCHNL_STATUS_SUCCESS:
142 		return 0;
143 	case VIRTCHNL_STATUS_ERR_PARAM:
144 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 		return -EINVAL;
146 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 		return -ENOMEM;
148 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 		return -EIO;
152 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 		return -EOPNOTSUPP;
154 	}
155 
156 	return -EIO;
157 }
158 
159 /**
160  * iavf_pdev_to_adapter - go from pci_dev to adapter
161  * @pdev: pci_dev pointer
162  */
163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164 {
165 	return netdev_priv(pci_get_drvdata(pdev));
166 }
167 
168 /**
169  * iavf_is_reset_in_progress - Check if a reset is in progress
170  * @adapter: board private structure
171  */
172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173 {
174 	if (adapter->state == __IAVF_RESETTING ||
175 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 			      IAVF_FLAG_RESET_NEEDED))
177 		return true;
178 
179 	return false;
180 }
181 
182 /**
183  * iavf_wait_for_reset - Wait for reset to finish.
184  * @adapter: board private structure
185  *
186  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187  */
188 int iavf_wait_for_reset(struct iavf_adapter *adapter)
189 {
190 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 					!iavf_is_reset_in_progress(adapter),
192 					msecs_to_jiffies(5000));
193 
194 	/* If ret < 0 then it means wait was interrupted.
195 	 * If ret == 0 then it means we got a timeout while waiting
196 	 * for reset to finish.
197 	 * If ret > 0 it means reset has finished.
198 	 */
199 	if (ret > 0)
200 		return 0;
201 	else if (ret < 0)
202 		return -EINTR;
203 	else
204 		return -EBUSY;
205 }
206 
207 /**
208  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209  * @hw:   pointer to the HW structure
210  * @mem:  ptr to mem struct to fill out
211  * @size: size of memory requested
212  * @alignment: what to align the allocation to
213  **/
214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 					 struct iavf_dma_mem *mem,
216 					 u64 size, u32 alignment)
217 {
218 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219 
220 	if (!mem)
221 		return IAVF_ERR_PARAM;
222 
223 	mem->size = ALIGN(size, alignment);
224 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
225 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 	if (mem->va)
227 		return 0;
228 	else
229 		return IAVF_ERR_NO_MEMORY;
230 }
231 
232 /**
233  * iavf_free_dma_mem - wrapper for DMA memory freeing
234  * @hw:   pointer to the HW structure
235  * @mem:  ptr to mem struct to free
236  **/
237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238 {
239 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240 
241 	if (!mem || !mem->va)
242 		return IAVF_ERR_PARAM;
243 	dma_free_coherent(&adapter->pdev->dev, mem->size,
244 			  mem->va, (dma_addr_t)mem->pa);
245 	return 0;
246 }
247 
248 /**
249  * iavf_allocate_virt_mem - virt memory alloc wrapper
250  * @hw:   pointer to the HW structure
251  * @mem:  ptr to mem struct to fill out
252  * @size: size of memory requested
253  **/
254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 					struct iavf_virt_mem *mem, u32 size)
256 {
257 	if (!mem)
258 		return IAVF_ERR_PARAM;
259 
260 	mem->size = size;
261 	mem->va = kzalloc(size, GFP_KERNEL);
262 
263 	if (mem->va)
264 		return 0;
265 	else
266 		return IAVF_ERR_NO_MEMORY;
267 }
268 
269 /**
270  * iavf_free_virt_mem - virt memory free wrapper
271  * @hw:   pointer to the HW structure
272  * @mem:  ptr to mem struct to free
273  **/
274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275 {
276 	kfree(mem->va);
277 }
278 
279 /**
280  * iavf_lock_timeout - try to lock mutex but give up after timeout
281  * @lock: mutex that should be locked
282  * @msecs: timeout in msecs
283  *
284  * Returns 0 on success, negative on failure
285  **/
286 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
287 {
288 	unsigned int wait, delay = 10;
289 
290 	for (wait = 0; wait < msecs; wait += delay) {
291 		if (mutex_trylock(lock))
292 			return 0;
293 
294 		msleep(delay);
295 	}
296 
297 	return -1;
298 }
299 
300 /**
301  * iavf_schedule_reset - Set the flags and schedule a reset event
302  * @adapter: board private structure
303  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
304  **/
305 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
306 {
307 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
308 	    !(adapter->flags &
309 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
310 		adapter->flags |= flags;
311 		queue_work(adapter->wq, &adapter->reset_task);
312 	}
313 }
314 
315 /**
316  * iavf_schedule_aq_request - Set the flags and schedule aq request
317  * @adapter: board private structure
318  * @flags: requested aq flags
319  **/
320 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
321 {
322 	adapter->aq_required |= flags;
323 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
324 }
325 
326 /**
327  * iavf_tx_timeout - Respond to a Tx Hang
328  * @netdev: network interface device structure
329  * @txqueue: queue number that is timing out
330  **/
331 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
332 {
333 	struct iavf_adapter *adapter = netdev_priv(netdev);
334 
335 	adapter->tx_timeout_count++;
336 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
337 }
338 
339 /**
340  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
341  * @adapter: board private structure
342  **/
343 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
344 {
345 	struct iavf_hw *hw = &adapter->hw;
346 
347 	if (!adapter->msix_entries)
348 		return;
349 
350 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
351 
352 	iavf_flush(hw);
353 
354 	synchronize_irq(adapter->msix_entries[0].vector);
355 }
356 
357 /**
358  * iavf_misc_irq_enable - Enable default interrupt generation settings
359  * @adapter: board private structure
360  **/
361 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
362 {
363 	struct iavf_hw *hw = &adapter->hw;
364 
365 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
366 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
367 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
368 
369 	iavf_flush(hw);
370 }
371 
372 /**
373  * iavf_irq_disable - Mask off interrupt generation on the NIC
374  * @adapter: board private structure
375  **/
376 static void iavf_irq_disable(struct iavf_adapter *adapter)
377 {
378 	int i;
379 	struct iavf_hw *hw = &adapter->hw;
380 
381 	if (!adapter->msix_entries)
382 		return;
383 
384 	for (i = 1; i < adapter->num_msix_vectors; i++) {
385 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
386 		synchronize_irq(adapter->msix_entries[i].vector);
387 	}
388 	iavf_flush(hw);
389 }
390 
391 /**
392  * iavf_irq_enable_queues - Enable interrupt for all queues
393  * @adapter: board private structure
394  **/
395 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
396 {
397 	struct iavf_hw *hw = &adapter->hw;
398 	int i;
399 
400 	for (i = 1; i < adapter->num_msix_vectors; i++) {
401 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
402 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
403 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
404 	}
405 }
406 
407 /**
408  * iavf_irq_enable - Enable default interrupt generation settings
409  * @adapter: board private structure
410  * @flush: boolean value whether to run rd32()
411  **/
412 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
413 {
414 	struct iavf_hw *hw = &adapter->hw;
415 
416 	iavf_misc_irq_enable(adapter);
417 	iavf_irq_enable_queues(adapter);
418 
419 	if (flush)
420 		iavf_flush(hw);
421 }
422 
423 /**
424  * iavf_msix_aq - Interrupt handler for vector 0
425  * @irq: interrupt number
426  * @data: pointer to netdev
427  **/
428 static irqreturn_t iavf_msix_aq(int irq, void *data)
429 {
430 	struct net_device *netdev = data;
431 	struct iavf_adapter *adapter = netdev_priv(netdev);
432 	struct iavf_hw *hw = &adapter->hw;
433 
434 	/* handle non-queue interrupts, these reads clear the registers */
435 	rd32(hw, IAVF_VFINT_ICR01);
436 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
437 
438 	if (adapter->state != __IAVF_REMOVE)
439 		/* schedule work on the private workqueue */
440 		queue_work(adapter->wq, &adapter->adminq_task);
441 
442 	return IRQ_HANDLED;
443 }
444 
445 /**
446  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
447  * @irq: interrupt number
448  * @data: pointer to a q_vector
449  **/
450 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
451 {
452 	struct iavf_q_vector *q_vector = data;
453 
454 	if (!q_vector->tx.ring && !q_vector->rx.ring)
455 		return IRQ_HANDLED;
456 
457 	napi_schedule_irqoff(&q_vector->napi);
458 
459 	return IRQ_HANDLED;
460 }
461 
462 /**
463  * iavf_map_vector_to_rxq - associate irqs with rx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @r_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	rx_ring->q_vector = q_vector;
476 	rx_ring->next = q_vector->rx.ring;
477 	rx_ring->vsi = &adapter->vsi;
478 	q_vector->rx.ring = rx_ring;
479 	q_vector->rx.count++;
480 	q_vector->rx.next_update = jiffies + 1;
481 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
482 	q_vector->ring_mask |= BIT(r_idx);
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
484 	     q_vector->rx.current_itr >> 1);
485 	q_vector->rx.current_itr = q_vector->rx.target_itr;
486 }
487 
488 /**
489  * iavf_map_vector_to_txq - associate irqs with tx queues
490  * @adapter: board private structure
491  * @v_idx: interrupt number
492  * @t_idx: queue number
493  **/
494 static void
495 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
496 {
497 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
498 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
499 	struct iavf_hw *hw = &adapter->hw;
500 
501 	tx_ring->q_vector = q_vector;
502 	tx_ring->next = q_vector->tx.ring;
503 	tx_ring->vsi = &adapter->vsi;
504 	q_vector->tx.ring = tx_ring;
505 	q_vector->tx.count++;
506 	q_vector->tx.next_update = jiffies + 1;
507 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
508 	q_vector->num_ringpairs++;
509 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
510 	     q_vector->tx.target_itr >> 1);
511 	q_vector->tx.current_itr = q_vector->tx.target_itr;
512 }
513 
514 /**
515  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
516  * @adapter: board private structure to initialize
517  *
518  * This function maps descriptor rings to the queue-specific vectors
519  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
520  * one vector per ring/queue, but on a constrained vector budget, we
521  * group the rings as "efficiently" as possible.  You would add new
522  * mapping configurations in here.
523  **/
524 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
525 {
526 	int rings_remaining = adapter->num_active_queues;
527 	int ridx = 0, vidx = 0;
528 	int q_vectors;
529 
530 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
531 
532 	for (; ridx < rings_remaining; ridx++) {
533 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
534 		iavf_map_vector_to_txq(adapter, vidx, ridx);
535 
536 		/* In the case where we have more queues than vectors, continue
537 		 * round-robin on vectors until all queues are mapped.
538 		 */
539 		if (++vidx >= q_vectors)
540 			vidx = 0;
541 	}
542 
543 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
544 }
545 
546 /**
547  * iavf_irq_affinity_notify - Callback for affinity changes
548  * @notify: context as to what irq was changed
549  * @mask: the new affinity mask
550  *
551  * This is a callback function used by the irq_set_affinity_notifier function
552  * so that we may register to receive changes to the irq affinity masks.
553  **/
554 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
555 				     const cpumask_t *mask)
556 {
557 	struct iavf_q_vector *q_vector =
558 		container_of(notify, struct iavf_q_vector, affinity_notify);
559 
560 	cpumask_copy(&q_vector->affinity_mask, mask);
561 }
562 
563 /**
564  * iavf_irq_affinity_release - Callback for affinity notifier release
565  * @ref: internal core kernel usage
566  *
567  * This is a callback function used by the irq_set_affinity_notifier function
568  * to inform the current notification subscriber that they will no longer
569  * receive notifications.
570  **/
571 static void iavf_irq_affinity_release(struct kref *ref) {}
572 
573 /**
574  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
575  * @adapter: board private structure
576  * @basename: device basename
577  *
578  * Allocates MSI-X vectors for tx and rx handling, and requests
579  * interrupts from the kernel.
580  **/
581 static int
582 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
583 {
584 	unsigned int vector, q_vectors;
585 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
586 	int irq_num, err;
587 	int cpu;
588 
589 	iavf_irq_disable(adapter);
590 	/* Decrement for Other and TCP Timer vectors */
591 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
592 
593 	for (vector = 0; vector < q_vectors; vector++) {
594 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
595 
596 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
597 
598 		if (q_vector->tx.ring && q_vector->rx.ring) {
599 			snprintf(q_vector->name, sizeof(q_vector->name),
600 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
601 			tx_int_idx++;
602 		} else if (q_vector->rx.ring) {
603 			snprintf(q_vector->name, sizeof(q_vector->name),
604 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
605 		} else if (q_vector->tx.ring) {
606 			snprintf(q_vector->name, sizeof(q_vector->name),
607 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
608 		} else {
609 			/* skip this unused q_vector */
610 			continue;
611 		}
612 		err = request_irq(irq_num,
613 				  iavf_msix_clean_rings,
614 				  0,
615 				  q_vector->name,
616 				  q_vector);
617 		if (err) {
618 			dev_info(&adapter->pdev->dev,
619 				 "Request_irq failed, error: %d\n", err);
620 			goto free_queue_irqs;
621 		}
622 		/* register for affinity change notifications */
623 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
624 		q_vector->affinity_notify.release =
625 						   iavf_irq_affinity_release;
626 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
627 		/* Spread the IRQ affinity hints across online CPUs. Note that
628 		 * get_cpu_mask returns a mask with a permanent lifetime so
629 		 * it's safe to use as a hint for irq_update_affinity_hint.
630 		 */
631 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
632 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
633 	}
634 
635 	return 0;
636 
637 free_queue_irqs:
638 	while (vector) {
639 		vector--;
640 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
641 		irq_set_affinity_notifier(irq_num, NULL);
642 		irq_update_affinity_hint(irq_num, NULL);
643 		free_irq(irq_num, &adapter->q_vectors[vector]);
644 	}
645 	return err;
646 }
647 
648 /**
649  * iavf_request_misc_irq - Initialize MSI-X interrupts
650  * @adapter: board private structure
651  *
652  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
653  * vector is only for the admin queue, and stays active even when the netdev
654  * is closed.
655  **/
656 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
657 {
658 	struct net_device *netdev = adapter->netdev;
659 	int err;
660 
661 	snprintf(adapter->misc_vector_name,
662 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
663 		 dev_name(&adapter->pdev->dev));
664 	err = request_irq(adapter->msix_entries[0].vector,
665 			  &iavf_msix_aq, 0,
666 			  adapter->misc_vector_name, netdev);
667 	if (err) {
668 		dev_err(&adapter->pdev->dev,
669 			"request_irq for %s failed: %d\n",
670 			adapter->misc_vector_name, err);
671 		free_irq(adapter->msix_entries[0].vector, netdev);
672 	}
673 	return err;
674 }
675 
676 /**
677  * iavf_free_traffic_irqs - Free MSI-X interrupts
678  * @adapter: board private structure
679  *
680  * Frees all MSI-X vectors other than 0.
681  **/
682 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
683 {
684 	int vector, irq_num, q_vectors;
685 
686 	if (!adapter->msix_entries)
687 		return;
688 
689 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
690 
691 	for (vector = 0; vector < q_vectors; vector++) {
692 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
693 		irq_set_affinity_notifier(irq_num, NULL);
694 		irq_update_affinity_hint(irq_num, NULL);
695 		free_irq(irq_num, &adapter->q_vectors[vector]);
696 	}
697 }
698 
699 /**
700  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
701  * @adapter: board private structure
702  *
703  * Frees MSI-X vector 0.
704  **/
705 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
706 {
707 	struct net_device *netdev = adapter->netdev;
708 
709 	if (!adapter->msix_entries)
710 		return;
711 
712 	free_irq(adapter->msix_entries[0].vector, netdev);
713 }
714 
715 /**
716  * iavf_configure_tx - Configure Transmit Unit after Reset
717  * @adapter: board private structure
718  *
719  * Configure the Tx unit of the MAC after a reset.
720  **/
721 static void iavf_configure_tx(struct iavf_adapter *adapter)
722 {
723 	struct iavf_hw *hw = &adapter->hw;
724 	int i;
725 
726 	for (i = 0; i < adapter->num_active_queues; i++)
727 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
728 }
729 
730 /**
731  * iavf_configure_rx - Configure Receive Unit after Reset
732  * @adapter: board private structure
733  *
734  * Configure the Rx unit of the MAC after a reset.
735  **/
736 static void iavf_configure_rx(struct iavf_adapter *adapter)
737 {
738 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
739 	struct iavf_hw *hw = &adapter->hw;
740 	int i;
741 
742 	/* Legacy Rx will always default to a 2048 buffer size. */
743 #if (PAGE_SIZE < 8192)
744 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
745 		struct net_device *netdev = adapter->netdev;
746 
747 		/* For jumbo frames on systems with 4K pages we have to use
748 		 * an order 1 page, so we might as well increase the size
749 		 * of our Rx buffer to make better use of the available space
750 		 */
751 		rx_buf_len = IAVF_RXBUFFER_3072;
752 
753 		/* We use a 1536 buffer size for configurations with
754 		 * standard Ethernet mtu.  On x86 this gives us enough room
755 		 * for shared info and 192 bytes of padding.
756 		 */
757 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
758 		    (netdev->mtu <= ETH_DATA_LEN))
759 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
760 	}
761 #endif
762 
763 	for (i = 0; i < adapter->num_active_queues; i++) {
764 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
765 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
766 
767 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
768 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
769 		else
770 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
771 	}
772 }
773 
774 /**
775  * iavf_find_vlan - Search filter list for specific vlan filter
776  * @adapter: board private structure
777  * @vlan: vlan tag
778  *
779  * Returns ptr to the filter object or NULL. Must be called while holding the
780  * mac_vlan_list_lock.
781  **/
782 static struct
783 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
784 				 struct iavf_vlan vlan)
785 {
786 	struct iavf_vlan_filter *f;
787 
788 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
789 		if (f->vlan.vid == vlan.vid &&
790 		    f->vlan.tpid == vlan.tpid)
791 			return f;
792 	}
793 
794 	return NULL;
795 }
796 
797 /**
798  * iavf_add_vlan - Add a vlan filter to the list
799  * @adapter: board private structure
800  * @vlan: VLAN tag
801  *
802  * Returns ptr to the filter object or NULL when no memory available.
803  **/
804 static struct
805 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
806 				struct iavf_vlan vlan)
807 {
808 	struct iavf_vlan_filter *f = NULL;
809 
810 	spin_lock_bh(&adapter->mac_vlan_list_lock);
811 
812 	f = iavf_find_vlan(adapter, vlan);
813 	if (!f) {
814 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
815 		if (!f)
816 			goto clearout;
817 
818 		f->vlan = vlan;
819 
820 		list_add_tail(&f->list, &adapter->vlan_filter_list);
821 		f->state = IAVF_VLAN_ADD;
822 		adapter->num_vlan_filters++;
823 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
824 	}
825 
826 clearout:
827 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
828 	return f;
829 }
830 
831 /**
832  * iavf_del_vlan - Remove a vlan filter from the list
833  * @adapter: board private structure
834  * @vlan: VLAN tag
835  **/
836 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
837 {
838 	struct iavf_vlan_filter *f;
839 
840 	spin_lock_bh(&adapter->mac_vlan_list_lock);
841 
842 	f = iavf_find_vlan(adapter, vlan);
843 	if (f) {
844 		f->state = IAVF_VLAN_REMOVE;
845 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
846 	}
847 
848 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
849 }
850 
851 /**
852  * iavf_restore_filters
853  * @adapter: board private structure
854  *
855  * Restore existing non MAC filters when VF netdev comes back up
856  **/
857 static void iavf_restore_filters(struct iavf_adapter *adapter)
858 {
859 	struct iavf_vlan_filter *f;
860 
861 	/* re-add all VLAN filters */
862 	spin_lock_bh(&adapter->mac_vlan_list_lock);
863 
864 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
865 		if (f->state == IAVF_VLAN_INACTIVE)
866 			f->state = IAVF_VLAN_ADD;
867 	}
868 
869 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
870 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
871 }
872 
873 /**
874  * iavf_get_num_vlans_added - get number of VLANs added
875  * @adapter: board private structure
876  */
877 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
878 {
879 	return adapter->num_vlan_filters;
880 }
881 
882 /**
883  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
884  * @adapter: board private structure
885  *
886  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
887  * do not impose a limit as that maintains current behavior and for
888  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
889  **/
890 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
891 {
892 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
893 	 * never been a limit on the VF driver side
894 	 */
895 	if (VLAN_ALLOWED(adapter))
896 		return VLAN_N_VID;
897 	else if (VLAN_V2_ALLOWED(adapter))
898 		return adapter->vlan_v2_caps.filtering.max_filters;
899 
900 	return 0;
901 }
902 
903 /**
904  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
905  * @adapter: board private structure
906  **/
907 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
908 {
909 	if (iavf_get_num_vlans_added(adapter) <
910 	    iavf_get_max_vlans_allowed(adapter))
911 		return false;
912 
913 	return true;
914 }
915 
916 /**
917  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
918  * @netdev: network device struct
919  * @proto: unused protocol data
920  * @vid: VLAN tag
921  **/
922 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
923 				__always_unused __be16 proto, u16 vid)
924 {
925 	struct iavf_adapter *adapter = netdev_priv(netdev);
926 
927 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
928 	if (!vid)
929 		return 0;
930 
931 	if (!VLAN_FILTERING_ALLOWED(adapter))
932 		return -EIO;
933 
934 	if (iavf_max_vlans_added(adapter)) {
935 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
936 			   iavf_get_max_vlans_allowed(adapter));
937 		return -EIO;
938 	}
939 
940 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
941 		return -ENOMEM;
942 
943 	return 0;
944 }
945 
946 /**
947  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
948  * @netdev: network device struct
949  * @proto: unused protocol data
950  * @vid: VLAN tag
951  **/
952 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
953 				 __always_unused __be16 proto, u16 vid)
954 {
955 	struct iavf_adapter *adapter = netdev_priv(netdev);
956 
957 	/* We do not track VLAN 0 filter */
958 	if (!vid)
959 		return 0;
960 
961 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
962 	return 0;
963 }
964 
965 /**
966  * iavf_find_filter - Search filter list for specific mac filter
967  * @adapter: board private structure
968  * @macaddr: the MAC address
969  *
970  * Returns ptr to the filter object or NULL. Must be called while holding the
971  * mac_vlan_list_lock.
972  **/
973 static struct
974 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
975 				  const u8 *macaddr)
976 {
977 	struct iavf_mac_filter *f;
978 
979 	if (!macaddr)
980 		return NULL;
981 
982 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
983 		if (ether_addr_equal(macaddr, f->macaddr))
984 			return f;
985 	}
986 	return NULL;
987 }
988 
989 /**
990  * iavf_add_filter - Add a mac filter to the filter list
991  * @adapter: board private structure
992  * @macaddr: the MAC address
993  *
994  * Returns ptr to the filter object or NULL when no memory available.
995  **/
996 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
997 					const u8 *macaddr)
998 {
999 	struct iavf_mac_filter *f;
1000 
1001 	if (!macaddr)
1002 		return NULL;
1003 
1004 	f = iavf_find_filter(adapter, macaddr);
1005 	if (!f) {
1006 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
1007 		if (!f)
1008 			return f;
1009 
1010 		ether_addr_copy(f->macaddr, macaddr);
1011 
1012 		list_add_tail(&f->list, &adapter->mac_filter_list);
1013 		f->add = true;
1014 		f->add_handled = false;
1015 		f->is_new_mac = true;
1016 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
1017 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1018 	} else {
1019 		f->remove = false;
1020 	}
1021 
1022 	return f;
1023 }
1024 
1025 /**
1026  * iavf_replace_primary_mac - Replace current primary address
1027  * @adapter: board private structure
1028  * @new_mac: new MAC address to be applied
1029  *
1030  * Replace current dev_addr and send request to PF for removal of previous
1031  * primary MAC address filter and addition of new primary MAC filter.
1032  * Return 0 for success, -ENOMEM for failure.
1033  *
1034  * Do not call this with mac_vlan_list_lock!
1035  **/
1036 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1037 				    const u8 *new_mac)
1038 {
1039 	struct iavf_hw *hw = &adapter->hw;
1040 	struct iavf_mac_filter *new_f;
1041 	struct iavf_mac_filter *old_f;
1042 
1043 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1044 
1045 	new_f = iavf_add_filter(adapter, new_mac);
1046 	if (!new_f) {
1047 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1048 		return -ENOMEM;
1049 	}
1050 
1051 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1052 	if (old_f) {
1053 		old_f->is_primary = false;
1054 		old_f->remove = true;
1055 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1056 	}
1057 	/* Always send the request to add if changing primary MAC,
1058 	 * even if filter is already present on the list
1059 	 */
1060 	new_f->is_primary = true;
1061 	new_f->add = true;
1062 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1063 	ether_addr_copy(hw->mac.addr, new_mac);
1064 
1065 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1066 
1067 	/* schedule the watchdog task to immediately process the request */
1068 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1074  * @netdev: network interface device structure
1075  * @macaddr: MAC address to set
1076  *
1077  * Returns true on success, false on failure
1078  */
1079 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1080 				    const u8 *macaddr)
1081 {
1082 	struct iavf_adapter *adapter = netdev_priv(netdev);
1083 	struct iavf_mac_filter *f;
1084 	bool ret = false;
1085 
1086 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1087 
1088 	f = iavf_find_filter(adapter, macaddr);
1089 
1090 	if (!f || (!f->add && f->add_handled))
1091 		ret = true;
1092 
1093 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1094 
1095 	return ret;
1096 }
1097 
1098 /**
1099  * iavf_set_mac - NDO callback to set port MAC address
1100  * @netdev: network interface device structure
1101  * @p: pointer to an address structure
1102  *
1103  * Returns 0 on success, negative on failure
1104  */
1105 static int iavf_set_mac(struct net_device *netdev, void *p)
1106 {
1107 	struct iavf_adapter *adapter = netdev_priv(netdev);
1108 	struct sockaddr *addr = p;
1109 	int ret;
1110 
1111 	if (!is_valid_ether_addr(addr->sa_data))
1112 		return -EADDRNOTAVAIL;
1113 
1114 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1115 
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1120 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1121 					       msecs_to_jiffies(2500));
1122 
1123 	/* If ret < 0 then it means wait was interrupted.
1124 	 * If ret == 0 then it means we got a timeout.
1125 	 * else it means we got response for set MAC from PF,
1126 	 * check if netdev MAC was updated to requested MAC,
1127 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1128 	 */
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	if (!ret)
1133 		return -EAGAIN;
1134 
1135 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1136 		return -EACCES;
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1143  * @netdev: the netdevice
1144  * @addr: address to add
1145  *
1146  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1147  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1148  */
1149 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1150 {
1151 	struct iavf_adapter *adapter = netdev_priv(netdev);
1152 
1153 	if (iavf_add_filter(adapter, addr))
1154 		return 0;
1155 	else
1156 		return -ENOMEM;
1157 }
1158 
1159 /**
1160  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1161  * @netdev: the netdevice
1162  * @addr: address to add
1163  *
1164  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1165  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1166  */
1167 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1168 {
1169 	struct iavf_adapter *adapter = netdev_priv(netdev);
1170 	struct iavf_mac_filter *f;
1171 
1172 	/* Under some circumstances, we might receive a request to delete
1173 	 * our own device address from our uc list. Because we store the
1174 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1175 	 * such requests and not delete our device address from this list.
1176 	 */
1177 	if (ether_addr_equal(addr, netdev->dev_addr))
1178 		return 0;
1179 
1180 	f = iavf_find_filter(adapter, addr);
1181 	if (f) {
1182 		f->remove = true;
1183 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1184 	}
1185 	return 0;
1186 }
1187 
1188 /**
1189  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1190  * @adapter: device specific adapter
1191  */
1192 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1193 {
1194 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1195 		(IFF_PROMISC | IFF_ALLMULTI);
1196 }
1197 
1198 /**
1199  * iavf_set_rx_mode - NDO callback to set the netdev filters
1200  * @netdev: network interface device structure
1201  **/
1202 static void iavf_set_rx_mode(struct net_device *netdev)
1203 {
1204 	struct iavf_adapter *adapter = netdev_priv(netdev);
1205 
1206 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1207 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1208 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1209 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1210 
1211 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1212 	if (iavf_promiscuous_mode_changed(adapter))
1213 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1214 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1215 }
1216 
1217 /**
1218  * iavf_napi_enable_all - enable NAPI on all queue vectors
1219  * @adapter: board private structure
1220  **/
1221 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1222 {
1223 	int q_idx;
1224 	struct iavf_q_vector *q_vector;
1225 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1226 
1227 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1228 		struct napi_struct *napi;
1229 
1230 		q_vector = &adapter->q_vectors[q_idx];
1231 		napi = &q_vector->napi;
1232 		napi_enable(napi);
1233 	}
1234 }
1235 
1236 /**
1237  * iavf_napi_disable_all - disable NAPI on all queue vectors
1238  * @adapter: board private structure
1239  **/
1240 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1241 {
1242 	int q_idx;
1243 	struct iavf_q_vector *q_vector;
1244 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1245 
1246 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1247 		q_vector = &adapter->q_vectors[q_idx];
1248 		napi_disable(&q_vector->napi);
1249 	}
1250 }
1251 
1252 /**
1253  * iavf_configure - set up transmit and receive data structures
1254  * @adapter: board private structure
1255  **/
1256 static void iavf_configure(struct iavf_adapter *adapter)
1257 {
1258 	struct net_device *netdev = adapter->netdev;
1259 	int i;
1260 
1261 	iavf_set_rx_mode(netdev);
1262 
1263 	iavf_configure_tx(adapter);
1264 	iavf_configure_rx(adapter);
1265 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1266 
1267 	for (i = 0; i < adapter->num_active_queues; i++) {
1268 		struct iavf_ring *ring = &adapter->rx_rings[i];
1269 
1270 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1271 	}
1272 }
1273 
1274 /**
1275  * iavf_up_complete - Finish the last steps of bringing up a connection
1276  * @adapter: board private structure
1277  *
1278  * Expects to be called while holding crit_lock.
1279  **/
1280 static void iavf_up_complete(struct iavf_adapter *adapter)
1281 {
1282 	iavf_change_state(adapter, __IAVF_RUNNING);
1283 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1284 
1285 	iavf_napi_enable_all(adapter);
1286 
1287 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1288 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1289 }
1290 
1291 /**
1292  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1293  * yet and mark other to be removed.
1294  * @adapter: board private structure
1295  **/
1296 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1297 {
1298 	struct iavf_vlan_filter *vlf, *vlftmp;
1299 	struct iavf_mac_filter *f, *ftmp;
1300 
1301 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1302 	/* clear the sync flag on all filters */
1303 	__dev_uc_unsync(adapter->netdev, NULL);
1304 	__dev_mc_unsync(adapter->netdev, NULL);
1305 
1306 	/* remove all MAC filters */
1307 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1308 				 list) {
1309 		if (f->add) {
1310 			list_del(&f->list);
1311 			kfree(f);
1312 		} else {
1313 			f->remove = true;
1314 		}
1315 	}
1316 
1317 	/* disable all VLAN filters */
1318 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1319 				 list)
1320 		vlf->state = IAVF_VLAN_DISABLE;
1321 
1322 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1323 }
1324 
1325 /**
1326  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1327  * mark other to be removed.
1328  * @adapter: board private structure
1329  **/
1330 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1331 {
1332 	struct iavf_cloud_filter *cf, *cftmp;
1333 
1334 	/* remove all cloud filters */
1335 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1336 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1337 				 list) {
1338 		if (cf->add) {
1339 			list_del(&cf->list);
1340 			kfree(cf);
1341 			adapter->num_cloud_filters--;
1342 		} else {
1343 			cf->del = true;
1344 		}
1345 	}
1346 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1347 }
1348 
1349 /**
1350  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1351  * other to be removed.
1352  * @adapter: board private structure
1353  **/
1354 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1355 {
1356 	struct iavf_fdir_fltr *fdir, *fdirtmp;
1357 
1358 	/* remove all Flow Director filters */
1359 	spin_lock_bh(&adapter->fdir_fltr_lock);
1360 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1361 				 list) {
1362 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1363 			list_del(&fdir->list);
1364 			kfree(fdir);
1365 			adapter->fdir_active_fltr--;
1366 		} else {
1367 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1368 		}
1369 	}
1370 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1371 }
1372 
1373 /**
1374  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1375  * other to be removed.
1376  * @adapter: board private structure
1377  **/
1378 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1379 {
1380 	struct iavf_adv_rss *rss, *rsstmp;
1381 
1382 	/* remove all advance RSS configuration */
1383 	spin_lock_bh(&adapter->adv_rss_lock);
1384 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1385 				 list) {
1386 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1387 			list_del(&rss->list);
1388 			kfree(rss);
1389 		} else {
1390 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1391 		}
1392 	}
1393 	spin_unlock_bh(&adapter->adv_rss_lock);
1394 }
1395 
1396 /**
1397  * iavf_down - Shutdown the connection processing
1398  * @adapter: board private structure
1399  *
1400  * Expects to be called while holding crit_lock.
1401  **/
1402 void iavf_down(struct iavf_adapter *adapter)
1403 {
1404 	struct net_device *netdev = adapter->netdev;
1405 
1406 	if (adapter->state <= __IAVF_DOWN_PENDING)
1407 		return;
1408 
1409 	netif_carrier_off(netdev);
1410 	netif_tx_disable(netdev);
1411 	adapter->link_up = false;
1412 	iavf_napi_disable_all(adapter);
1413 	iavf_irq_disable(adapter);
1414 
1415 	iavf_clear_mac_vlan_filters(adapter);
1416 	iavf_clear_cloud_filters(adapter);
1417 	iavf_clear_fdir_filters(adapter);
1418 	iavf_clear_adv_rss_conf(adapter);
1419 
1420 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1421 		return;
1422 
1423 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1424 		/* cancel any current operation */
1425 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1426 		/* Schedule operations to close down the HW. Don't wait
1427 		 * here for this to complete. The watchdog is still running
1428 		 * and it will take care of this.
1429 		 */
1430 		if (!list_empty(&adapter->mac_filter_list))
1431 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1432 		if (!list_empty(&adapter->vlan_filter_list))
1433 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1434 		if (!list_empty(&adapter->cloud_filter_list))
1435 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1436 		if (!list_empty(&adapter->fdir_list_head))
1437 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1438 		if (!list_empty(&adapter->adv_rss_list_head))
1439 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1440 	}
1441 
1442 	adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1443 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1444 }
1445 
1446 /**
1447  * iavf_acquire_msix_vectors - Setup the MSIX capability
1448  * @adapter: board private structure
1449  * @vectors: number of vectors to request
1450  *
1451  * Work with the OS to set up the MSIX vectors needed.
1452  *
1453  * Returns 0 on success, negative on failure
1454  **/
1455 static int
1456 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1457 {
1458 	int err, vector_threshold;
1459 
1460 	/* We'll want at least 3 (vector_threshold):
1461 	 * 0) Other (Admin Queue and link, mostly)
1462 	 * 1) TxQ[0] Cleanup
1463 	 * 2) RxQ[0] Cleanup
1464 	 */
1465 	vector_threshold = MIN_MSIX_COUNT;
1466 
1467 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1468 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1469 	 * Right now, we simply care about how many we'll get; we'll
1470 	 * set them up later while requesting irq's.
1471 	 */
1472 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1473 				    vector_threshold, vectors);
1474 	if (err < 0) {
1475 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1476 		kfree(adapter->msix_entries);
1477 		adapter->msix_entries = NULL;
1478 		return err;
1479 	}
1480 
1481 	/* Adjust for only the vectors we'll use, which is minimum
1482 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1483 	 * vectors we were allocated.
1484 	 */
1485 	adapter->num_msix_vectors = err;
1486 	return 0;
1487 }
1488 
1489 /**
1490  * iavf_free_queues - Free memory for all rings
1491  * @adapter: board private structure to initialize
1492  *
1493  * Free all of the memory associated with queue pairs.
1494  **/
1495 static void iavf_free_queues(struct iavf_adapter *adapter)
1496 {
1497 	if (!adapter->vsi_res)
1498 		return;
1499 	adapter->num_active_queues = 0;
1500 	kfree(adapter->tx_rings);
1501 	adapter->tx_rings = NULL;
1502 	kfree(adapter->rx_rings);
1503 	adapter->rx_rings = NULL;
1504 }
1505 
1506 /**
1507  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1508  * @adapter: board private structure
1509  *
1510  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1511  * stripped in certain descriptor fields. Instead of checking the offload
1512  * capability bits in the hot path, cache the location the ring specific
1513  * flags.
1514  */
1515 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1516 {
1517 	int i;
1518 
1519 	for (i = 0; i < adapter->num_active_queues; i++) {
1520 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1521 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1522 
1523 		/* prevent multiple L2TAG bits being set after VFR */
1524 		tx_ring->flags &=
1525 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1526 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1527 		rx_ring->flags &=
1528 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1529 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1530 
1531 		if (VLAN_ALLOWED(adapter)) {
1532 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1533 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 		} else if (VLAN_V2_ALLOWED(adapter)) {
1535 			struct virtchnl_vlan_supported_caps *stripping_support;
1536 			struct virtchnl_vlan_supported_caps *insertion_support;
1537 
1538 			stripping_support =
1539 				&adapter->vlan_v2_caps.offloads.stripping_support;
1540 			insertion_support =
1541 				&adapter->vlan_v2_caps.offloads.insertion_support;
1542 
1543 			if (stripping_support->outer) {
1544 				if (stripping_support->outer &
1545 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1546 					rx_ring->flags |=
1547 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1548 				else if (stripping_support->outer &
1549 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1550 					rx_ring->flags |=
1551 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1552 			} else if (stripping_support->inner) {
1553 				if (stripping_support->inner &
1554 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1555 					rx_ring->flags |=
1556 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1557 				else if (stripping_support->inner &
1558 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1559 					rx_ring->flags |=
1560 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1561 			}
1562 
1563 			if (insertion_support->outer) {
1564 				if (insertion_support->outer &
1565 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1566 					tx_ring->flags |=
1567 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1568 				else if (insertion_support->outer &
1569 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1570 					tx_ring->flags |=
1571 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1572 			} else if (insertion_support->inner) {
1573 				if (insertion_support->inner &
1574 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1575 					tx_ring->flags |=
1576 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1577 				else if (insertion_support->inner &
1578 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1579 					tx_ring->flags |=
1580 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1581 			}
1582 		}
1583 	}
1584 }
1585 
1586 /**
1587  * iavf_alloc_queues - Allocate memory for all rings
1588  * @adapter: board private structure to initialize
1589  *
1590  * We allocate one ring per queue at run-time since we don't know the
1591  * number of queues at compile-time.  The polling_netdev array is
1592  * intended for Multiqueue, but should work fine with a single queue.
1593  **/
1594 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1595 {
1596 	int i, num_active_queues;
1597 
1598 	/* If we're in reset reallocating queues we don't actually know yet for
1599 	 * certain the PF gave us the number of queues we asked for but we'll
1600 	 * assume it did.  Once basic reset is finished we'll confirm once we
1601 	 * start negotiating config with PF.
1602 	 */
1603 	if (adapter->num_req_queues)
1604 		num_active_queues = adapter->num_req_queues;
1605 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1606 		 adapter->num_tc)
1607 		num_active_queues = adapter->ch_config.total_qps;
1608 	else
1609 		num_active_queues = min_t(int,
1610 					  adapter->vsi_res->num_queue_pairs,
1611 					  (int)(num_online_cpus()));
1612 
1613 
1614 	adapter->tx_rings = kcalloc(num_active_queues,
1615 				    sizeof(struct iavf_ring), GFP_KERNEL);
1616 	if (!adapter->tx_rings)
1617 		goto err_out;
1618 	adapter->rx_rings = kcalloc(num_active_queues,
1619 				    sizeof(struct iavf_ring), GFP_KERNEL);
1620 	if (!adapter->rx_rings)
1621 		goto err_out;
1622 
1623 	for (i = 0; i < num_active_queues; i++) {
1624 		struct iavf_ring *tx_ring;
1625 		struct iavf_ring *rx_ring;
1626 
1627 		tx_ring = &adapter->tx_rings[i];
1628 
1629 		tx_ring->queue_index = i;
1630 		tx_ring->netdev = adapter->netdev;
1631 		tx_ring->dev = &adapter->pdev->dev;
1632 		tx_ring->count = adapter->tx_desc_count;
1633 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1634 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1635 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1636 
1637 		rx_ring = &adapter->rx_rings[i];
1638 		rx_ring->queue_index = i;
1639 		rx_ring->netdev = adapter->netdev;
1640 		rx_ring->dev = &adapter->pdev->dev;
1641 		rx_ring->count = adapter->rx_desc_count;
1642 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1643 	}
1644 
1645 	adapter->num_active_queues = num_active_queues;
1646 
1647 	iavf_set_queue_vlan_tag_loc(adapter);
1648 
1649 	return 0;
1650 
1651 err_out:
1652 	iavf_free_queues(adapter);
1653 	return -ENOMEM;
1654 }
1655 
1656 /**
1657  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1658  * @adapter: board private structure to initialize
1659  *
1660  * Attempt to configure the interrupts using the best available
1661  * capabilities of the hardware and the kernel.
1662  **/
1663 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1664 {
1665 	int vector, v_budget;
1666 	int pairs = 0;
1667 	int err = 0;
1668 
1669 	if (!adapter->vsi_res) {
1670 		err = -EIO;
1671 		goto out;
1672 	}
1673 	pairs = adapter->num_active_queues;
1674 
1675 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1676 	 * us much good if we have more vectors than CPUs. However, we already
1677 	 * limit the total number of queues by the number of CPUs so we do not
1678 	 * need any further limiting here.
1679 	 */
1680 	v_budget = min_t(int, pairs + NONQ_VECS,
1681 			 (int)adapter->vf_res->max_vectors);
1682 
1683 	adapter->msix_entries = kcalloc(v_budget,
1684 					sizeof(struct msix_entry), GFP_KERNEL);
1685 	if (!adapter->msix_entries) {
1686 		err = -ENOMEM;
1687 		goto out;
1688 	}
1689 
1690 	for (vector = 0; vector < v_budget; vector++)
1691 		adapter->msix_entries[vector].entry = vector;
1692 
1693 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1694 	if (!err)
1695 		iavf_schedule_finish_config(adapter);
1696 
1697 out:
1698 	return err;
1699 }
1700 
1701 /**
1702  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1703  * @adapter: board private structure
1704  *
1705  * Return 0 on success, negative on failure
1706  **/
1707 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1708 {
1709 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1710 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1711 	struct iavf_hw *hw = &adapter->hw;
1712 	enum iavf_status status;
1713 
1714 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1715 		/* bail because we already have a command pending */
1716 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1717 			adapter->current_op);
1718 		return -EBUSY;
1719 	}
1720 
1721 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1722 	if (status) {
1723 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1724 			iavf_stat_str(hw, status),
1725 			iavf_aq_str(hw, hw->aq.asq_last_status));
1726 		return iavf_status_to_errno(status);
1727 
1728 	}
1729 
1730 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1731 				     adapter->rss_lut, adapter->rss_lut_size);
1732 	if (status) {
1733 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1734 			iavf_stat_str(hw, status),
1735 			iavf_aq_str(hw, hw->aq.asq_last_status));
1736 		return iavf_status_to_errno(status);
1737 	}
1738 
1739 	return 0;
1740 
1741 }
1742 
1743 /**
1744  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1745  * @adapter: board private structure
1746  *
1747  * Returns 0 on success, negative on failure
1748  **/
1749 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1750 {
1751 	struct iavf_hw *hw = &adapter->hw;
1752 	u32 *dw;
1753 	u16 i;
1754 
1755 	dw = (u32 *)adapter->rss_key;
1756 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1757 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1758 
1759 	dw = (u32 *)adapter->rss_lut;
1760 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1761 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1762 
1763 	iavf_flush(hw);
1764 
1765 	return 0;
1766 }
1767 
1768 /**
1769  * iavf_config_rss - Configure RSS keys and lut
1770  * @adapter: board private structure
1771  *
1772  * Returns 0 on success, negative on failure
1773  **/
1774 int iavf_config_rss(struct iavf_adapter *adapter)
1775 {
1776 
1777 	if (RSS_PF(adapter)) {
1778 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1779 					IAVF_FLAG_AQ_SET_RSS_KEY;
1780 		return 0;
1781 	} else if (RSS_AQ(adapter)) {
1782 		return iavf_config_rss_aq(adapter);
1783 	} else {
1784 		return iavf_config_rss_reg(adapter);
1785 	}
1786 }
1787 
1788 /**
1789  * iavf_fill_rss_lut - Fill the lut with default values
1790  * @adapter: board private structure
1791  **/
1792 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1793 {
1794 	u16 i;
1795 
1796 	for (i = 0; i < adapter->rss_lut_size; i++)
1797 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1798 }
1799 
1800 /**
1801  * iavf_init_rss - Prepare for RSS
1802  * @adapter: board private structure
1803  *
1804  * Return 0 on success, negative on failure
1805  **/
1806 static int iavf_init_rss(struct iavf_adapter *adapter)
1807 {
1808 	struct iavf_hw *hw = &adapter->hw;
1809 
1810 	if (!RSS_PF(adapter)) {
1811 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1812 		if (adapter->vf_res->vf_cap_flags &
1813 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1814 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1815 		else
1816 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1817 
1818 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1819 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1820 	}
1821 
1822 	iavf_fill_rss_lut(adapter);
1823 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1824 
1825 	return iavf_config_rss(adapter);
1826 }
1827 
1828 /**
1829  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1830  * @adapter: board private structure to initialize
1831  *
1832  * We allocate one q_vector per queue interrupt.  If allocation fails we
1833  * return -ENOMEM.
1834  **/
1835 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1836 {
1837 	int q_idx = 0, num_q_vectors;
1838 	struct iavf_q_vector *q_vector;
1839 
1840 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1842 				     GFP_KERNEL);
1843 	if (!adapter->q_vectors)
1844 		return -ENOMEM;
1845 
1846 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1847 		q_vector = &adapter->q_vectors[q_idx];
1848 		q_vector->adapter = adapter;
1849 		q_vector->vsi = &adapter->vsi;
1850 		q_vector->v_idx = q_idx;
1851 		q_vector->reg_idx = q_idx;
1852 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1853 		netif_napi_add(adapter->netdev, &q_vector->napi,
1854 			       iavf_napi_poll);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 /**
1861  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1862  * @adapter: board private structure to initialize
1863  *
1864  * This function frees the memory allocated to the q_vectors.  In addition if
1865  * NAPI is enabled it will delete any references to the NAPI struct prior
1866  * to freeing the q_vector.
1867  **/
1868 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1869 {
1870 	int q_idx, num_q_vectors;
1871 
1872 	if (!adapter->q_vectors)
1873 		return;
1874 
1875 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1876 
1877 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1878 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1879 
1880 		netif_napi_del(&q_vector->napi);
1881 	}
1882 	kfree(adapter->q_vectors);
1883 	adapter->q_vectors = NULL;
1884 }
1885 
1886 /**
1887  * iavf_reset_interrupt_capability - Reset MSIX setup
1888  * @adapter: board private structure
1889  *
1890  **/
1891 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1892 {
1893 	if (!adapter->msix_entries)
1894 		return;
1895 
1896 	pci_disable_msix(adapter->pdev);
1897 	kfree(adapter->msix_entries);
1898 	adapter->msix_entries = NULL;
1899 }
1900 
1901 /**
1902  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1903  * @adapter: board private structure to initialize
1904  *
1905  **/
1906 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1907 {
1908 	int err;
1909 
1910 	err = iavf_alloc_queues(adapter);
1911 	if (err) {
1912 		dev_err(&adapter->pdev->dev,
1913 			"Unable to allocate memory for queues\n");
1914 		goto err_alloc_queues;
1915 	}
1916 
1917 	err = iavf_set_interrupt_capability(adapter);
1918 	if (err) {
1919 		dev_err(&adapter->pdev->dev,
1920 			"Unable to setup interrupt capabilities\n");
1921 		goto err_set_interrupt;
1922 	}
1923 
1924 	err = iavf_alloc_q_vectors(adapter);
1925 	if (err) {
1926 		dev_err(&adapter->pdev->dev,
1927 			"Unable to allocate memory for queue vectors\n");
1928 		goto err_alloc_q_vectors;
1929 	}
1930 
1931 	/* If we've made it so far while ADq flag being ON, then we haven't
1932 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1933 	 * resources have been allocated in the reset path.
1934 	 * Now we can truly claim that ADq is enabled.
1935 	 */
1936 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1937 	    adapter->num_tc)
1938 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1939 			 adapter->num_tc);
1940 
1941 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1942 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1943 		 adapter->num_active_queues);
1944 
1945 	return 0;
1946 err_alloc_q_vectors:
1947 	iavf_reset_interrupt_capability(adapter);
1948 err_set_interrupt:
1949 	iavf_free_queues(adapter);
1950 err_alloc_queues:
1951 	return err;
1952 }
1953 
1954 /**
1955  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1956  * @adapter: board private structure
1957  **/
1958 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1959 {
1960 	iavf_free_q_vectors(adapter);
1961 	iavf_reset_interrupt_capability(adapter);
1962 	iavf_free_queues(adapter);
1963 }
1964 
1965 /**
1966  * iavf_free_rss - Free memory used by RSS structs
1967  * @adapter: board private structure
1968  **/
1969 static void iavf_free_rss(struct iavf_adapter *adapter)
1970 {
1971 	kfree(adapter->rss_key);
1972 	adapter->rss_key = NULL;
1973 
1974 	kfree(adapter->rss_lut);
1975 	adapter->rss_lut = NULL;
1976 }
1977 
1978 /**
1979  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1980  * @adapter: board private structure
1981  * @running: true if adapter->state == __IAVF_RUNNING
1982  *
1983  * Returns 0 on success, negative on failure
1984  **/
1985 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1986 {
1987 	struct net_device *netdev = adapter->netdev;
1988 	int err;
1989 
1990 	if (running)
1991 		iavf_free_traffic_irqs(adapter);
1992 	iavf_free_misc_irq(adapter);
1993 	iavf_free_interrupt_scheme(adapter);
1994 
1995 	err = iavf_init_interrupt_scheme(adapter);
1996 	if (err)
1997 		goto err;
1998 
1999 	netif_tx_stop_all_queues(netdev);
2000 
2001 	err = iavf_request_misc_irq(adapter);
2002 	if (err)
2003 		goto err;
2004 
2005 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2006 
2007 	iavf_map_rings_to_vectors(adapter);
2008 err:
2009 	return err;
2010 }
2011 
2012 /**
2013  * iavf_finish_config - do all netdev work that needs RTNL
2014  * @work: our work_struct
2015  *
2016  * Do work that needs both RTNL and crit_lock.
2017  **/
2018 static void iavf_finish_config(struct work_struct *work)
2019 {
2020 	struct iavf_adapter *adapter;
2021 	int pairs, err;
2022 
2023 	adapter = container_of(work, struct iavf_adapter, finish_config);
2024 
2025 	/* Always take RTNL first to prevent circular lock dependency */
2026 	rtnl_lock();
2027 	mutex_lock(&adapter->crit_lock);
2028 
2029 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2030 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2031 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2032 		netdev_update_features(adapter->netdev);
2033 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2034 	}
2035 
2036 	switch (adapter->state) {
2037 	case __IAVF_DOWN:
2038 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2039 			err = register_netdevice(adapter->netdev);
2040 			if (err) {
2041 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2042 					err);
2043 
2044 				/* go back and try again.*/
2045 				iavf_free_rss(adapter);
2046 				iavf_free_misc_irq(adapter);
2047 				iavf_reset_interrupt_capability(adapter);
2048 				iavf_change_state(adapter,
2049 						  __IAVF_INIT_CONFIG_ADAPTER);
2050 				goto out;
2051 			}
2052 		}
2053 
2054 		/* Set the real number of queues when reset occurs while
2055 		 * state == __IAVF_DOWN
2056 		 */
2057 		fallthrough;
2058 	case __IAVF_RUNNING:
2059 		pairs = adapter->num_active_queues;
2060 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2061 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2062 		break;
2063 
2064 	default:
2065 		break;
2066 	}
2067 
2068 out:
2069 	mutex_unlock(&adapter->crit_lock);
2070 	rtnl_unlock();
2071 }
2072 
2073 /**
2074  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2075  * @adapter: board private structure
2076  **/
2077 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2078 {
2079 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2080 		queue_work(adapter->wq, &adapter->finish_config);
2081 }
2082 
2083 /**
2084  * iavf_process_aq_command - process aq_required flags
2085  * and sends aq command
2086  * @adapter: pointer to iavf adapter structure
2087  *
2088  * Returns 0 on success
2089  * Returns error code if no command was sent
2090  * or error code if the command failed.
2091  **/
2092 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2093 {
2094 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2095 		return iavf_send_vf_config_msg(adapter);
2096 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2097 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2098 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2099 		iavf_disable_queues(adapter);
2100 		return 0;
2101 	}
2102 
2103 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2104 		iavf_map_queues(adapter);
2105 		return 0;
2106 	}
2107 
2108 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2109 		iavf_add_ether_addrs(adapter);
2110 		return 0;
2111 	}
2112 
2113 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2114 		iavf_add_vlans(adapter);
2115 		return 0;
2116 	}
2117 
2118 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2119 		iavf_del_ether_addrs(adapter);
2120 		return 0;
2121 	}
2122 
2123 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2124 		iavf_del_vlans(adapter);
2125 		return 0;
2126 	}
2127 
2128 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2129 		iavf_enable_vlan_stripping(adapter);
2130 		return 0;
2131 	}
2132 
2133 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2134 		iavf_disable_vlan_stripping(adapter);
2135 		return 0;
2136 	}
2137 
2138 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2139 		iavf_configure_queues(adapter);
2140 		return 0;
2141 	}
2142 
2143 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2144 		iavf_enable_queues(adapter);
2145 		return 0;
2146 	}
2147 
2148 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2149 		/* This message goes straight to the firmware, not the
2150 		 * PF, so we don't have to set current_op as we will
2151 		 * not get a response through the ARQ.
2152 		 */
2153 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2154 		return 0;
2155 	}
2156 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2157 		iavf_get_hena(adapter);
2158 		return 0;
2159 	}
2160 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2161 		iavf_set_hena(adapter);
2162 		return 0;
2163 	}
2164 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2165 		iavf_set_rss_key(adapter);
2166 		return 0;
2167 	}
2168 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2169 		iavf_set_rss_lut(adapter);
2170 		return 0;
2171 	}
2172 
2173 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2174 		iavf_set_promiscuous(adapter);
2175 		return 0;
2176 	}
2177 
2178 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2179 		iavf_enable_channels(adapter);
2180 		return 0;
2181 	}
2182 
2183 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2184 		iavf_disable_channels(adapter);
2185 		return 0;
2186 	}
2187 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2188 		iavf_add_cloud_filter(adapter);
2189 		return 0;
2190 	}
2191 
2192 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2193 		iavf_del_cloud_filter(adapter);
2194 		return 0;
2195 	}
2196 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2197 		iavf_del_cloud_filter(adapter);
2198 		return 0;
2199 	}
2200 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2201 		iavf_add_cloud_filter(adapter);
2202 		return 0;
2203 	}
2204 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2205 		iavf_add_fdir_filter(adapter);
2206 		return IAVF_SUCCESS;
2207 	}
2208 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2209 		iavf_del_fdir_filter(adapter);
2210 		return IAVF_SUCCESS;
2211 	}
2212 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2213 		iavf_add_adv_rss_cfg(adapter);
2214 		return 0;
2215 	}
2216 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2217 		iavf_del_adv_rss_cfg(adapter);
2218 		return 0;
2219 	}
2220 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2221 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2222 		return 0;
2223 	}
2224 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2225 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2226 		return 0;
2227 	}
2228 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2229 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2230 		return 0;
2231 	}
2232 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2233 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2234 		return 0;
2235 	}
2236 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2237 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2238 		return 0;
2239 	}
2240 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2241 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2242 		return 0;
2243 	}
2244 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2245 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2246 		return 0;
2247 	}
2248 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2249 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2250 		return 0;
2251 	}
2252 
2253 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2254 		iavf_request_stats(adapter);
2255 		return 0;
2256 	}
2257 
2258 	return -EAGAIN;
2259 }
2260 
2261 /**
2262  * iavf_set_vlan_offload_features - set VLAN offload configuration
2263  * @adapter: board private structure
2264  * @prev_features: previous features used for comparison
2265  * @features: updated features used for configuration
2266  *
2267  * Set the aq_required bit(s) based on the requested features passed in to
2268  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2269  * the watchdog if any changes are requested to expedite the request via
2270  * virtchnl.
2271  **/
2272 static void
2273 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2274 			       netdev_features_t prev_features,
2275 			       netdev_features_t features)
2276 {
2277 	bool enable_stripping = true, enable_insertion = true;
2278 	u16 vlan_ethertype = 0;
2279 	u64 aq_required = 0;
2280 
2281 	/* keep cases separate because one ethertype for offloads can be
2282 	 * disabled at the same time as another is disabled, so check for an
2283 	 * enabled ethertype first, then check for disabled. Default to
2284 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2285 	 * stripping.
2286 	 */
2287 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2288 		vlan_ethertype = ETH_P_8021AD;
2289 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2290 		vlan_ethertype = ETH_P_8021Q;
2291 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2292 		vlan_ethertype = ETH_P_8021AD;
2293 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2294 		vlan_ethertype = ETH_P_8021Q;
2295 	else
2296 		vlan_ethertype = ETH_P_8021Q;
2297 
2298 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2299 		enable_stripping = false;
2300 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2301 		enable_insertion = false;
2302 
2303 	if (VLAN_ALLOWED(adapter)) {
2304 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2305 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2306 		 * netdev, but it doesn't require a virtchnl message
2307 		 */
2308 		if (enable_stripping)
2309 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2310 		else
2311 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2312 
2313 	} else if (VLAN_V2_ALLOWED(adapter)) {
2314 		switch (vlan_ethertype) {
2315 		case ETH_P_8021Q:
2316 			if (enable_stripping)
2317 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2318 			else
2319 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2320 
2321 			if (enable_insertion)
2322 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2323 			else
2324 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2325 			break;
2326 		case ETH_P_8021AD:
2327 			if (enable_stripping)
2328 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2329 			else
2330 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2331 
2332 			if (enable_insertion)
2333 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2334 			else
2335 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2336 			break;
2337 		}
2338 	}
2339 
2340 	if (aq_required) {
2341 		adapter->aq_required |= aq_required;
2342 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
2343 	}
2344 }
2345 
2346 /**
2347  * iavf_startup - first step of driver startup
2348  * @adapter: board private structure
2349  *
2350  * Function process __IAVF_STARTUP driver state.
2351  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2352  * when fails the state is changed to __IAVF_INIT_FAILED
2353  **/
2354 static void iavf_startup(struct iavf_adapter *adapter)
2355 {
2356 	struct pci_dev *pdev = adapter->pdev;
2357 	struct iavf_hw *hw = &adapter->hw;
2358 	enum iavf_status status;
2359 	int ret;
2360 
2361 	WARN_ON(adapter->state != __IAVF_STARTUP);
2362 
2363 	/* driver loaded, probe complete */
2364 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2365 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2366 
2367 	ret = iavf_check_reset_complete(hw);
2368 	if (ret) {
2369 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2370 			 ret);
2371 		goto err;
2372 	}
2373 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2374 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2375 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2376 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2377 
2378 	status = iavf_init_adminq(hw);
2379 	if (status) {
2380 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2381 			status);
2382 		goto err;
2383 	}
2384 	ret = iavf_send_api_ver(adapter);
2385 	if (ret) {
2386 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2387 		iavf_shutdown_adminq(hw);
2388 		goto err;
2389 	}
2390 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2391 	return;
2392 err:
2393 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2394 }
2395 
2396 /**
2397  * iavf_init_version_check - second step of driver startup
2398  * @adapter: board private structure
2399  *
2400  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2401  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2402  * when fails the state is changed to __IAVF_INIT_FAILED
2403  **/
2404 static void iavf_init_version_check(struct iavf_adapter *adapter)
2405 {
2406 	struct pci_dev *pdev = adapter->pdev;
2407 	struct iavf_hw *hw = &adapter->hw;
2408 	int err = -EAGAIN;
2409 
2410 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2411 
2412 	if (!iavf_asq_done(hw)) {
2413 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2414 		iavf_shutdown_adminq(hw);
2415 		iavf_change_state(adapter, __IAVF_STARTUP);
2416 		goto err;
2417 	}
2418 
2419 	/* aq msg sent, awaiting reply */
2420 	err = iavf_verify_api_ver(adapter);
2421 	if (err) {
2422 		if (err == -EALREADY)
2423 			err = iavf_send_api_ver(adapter);
2424 		else
2425 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2426 				adapter->pf_version.major,
2427 				adapter->pf_version.minor,
2428 				VIRTCHNL_VERSION_MAJOR,
2429 				VIRTCHNL_VERSION_MINOR);
2430 		goto err;
2431 	}
2432 	err = iavf_send_vf_config_msg(adapter);
2433 	if (err) {
2434 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2435 			err);
2436 		goto err;
2437 	}
2438 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2439 	return;
2440 err:
2441 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2442 }
2443 
2444 /**
2445  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2446  * @adapter: board private structure
2447  */
2448 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2449 {
2450 	int i, num_req_queues = adapter->num_req_queues;
2451 	struct iavf_vsi *vsi = &adapter->vsi;
2452 
2453 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2454 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2455 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2456 	}
2457 	if (!adapter->vsi_res) {
2458 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2459 		return -ENODEV;
2460 	}
2461 
2462 	if (num_req_queues &&
2463 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2464 		/* Problem.  The PF gave us fewer queues than what we had
2465 		 * negotiated in our request.  Need a reset to see if we can't
2466 		 * get back to a working state.
2467 		 */
2468 		dev_err(&adapter->pdev->dev,
2469 			"Requested %d queues, but PF only gave us %d.\n",
2470 			num_req_queues,
2471 			adapter->vsi_res->num_queue_pairs);
2472 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2473 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2474 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2475 
2476 		return -EAGAIN;
2477 	}
2478 	adapter->num_req_queues = 0;
2479 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2480 
2481 	adapter->vsi.back = adapter;
2482 	adapter->vsi.base_vector = 1;
2483 	vsi->netdev = adapter->netdev;
2484 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2485 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2486 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2487 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2488 	} else {
2489 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2490 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 /**
2497  * iavf_init_get_resources - third step of driver startup
2498  * @adapter: board private structure
2499  *
2500  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2501  * finishes driver initialization procedure.
2502  * When success the state is changed to __IAVF_DOWN
2503  * when fails the state is changed to __IAVF_INIT_FAILED
2504  **/
2505 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2506 {
2507 	struct pci_dev *pdev = adapter->pdev;
2508 	struct iavf_hw *hw = &adapter->hw;
2509 	int err;
2510 
2511 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2512 	/* aq msg sent, awaiting reply */
2513 	if (!adapter->vf_res) {
2514 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2515 					  GFP_KERNEL);
2516 		if (!adapter->vf_res) {
2517 			err = -ENOMEM;
2518 			goto err;
2519 		}
2520 	}
2521 	err = iavf_get_vf_config(adapter);
2522 	if (err == -EALREADY) {
2523 		err = iavf_send_vf_config_msg(adapter);
2524 		goto err;
2525 	} else if (err == -EINVAL) {
2526 		/* We only get -EINVAL if the device is in a very bad
2527 		 * state or if we've been disabled for previous bad
2528 		 * behavior. Either way, we're done now.
2529 		 */
2530 		iavf_shutdown_adminq(hw);
2531 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2532 		return;
2533 	}
2534 	if (err) {
2535 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2536 		goto err_alloc;
2537 	}
2538 
2539 	err = iavf_parse_vf_resource_msg(adapter);
2540 	if (err) {
2541 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2542 			err);
2543 		goto err_alloc;
2544 	}
2545 	/* Some features require additional messages to negotiate extended
2546 	 * capabilities. These are processed in sequence by the
2547 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2548 	 */
2549 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2550 
2551 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2552 	return;
2553 
2554 err_alloc:
2555 	kfree(adapter->vf_res);
2556 	adapter->vf_res = NULL;
2557 err:
2558 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2559 }
2560 
2561 /**
2562  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2563  * @adapter: board private structure
2564  *
2565  * Function processes send of the extended VLAN V2 capability message to the
2566  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2567  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2568  */
2569 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2570 {
2571 	int ret;
2572 
2573 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2574 
2575 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2576 	if (ret && ret == -EOPNOTSUPP) {
2577 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2578 		 * we did not send the capability exchange message and do not
2579 		 * expect a response.
2580 		 */
2581 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2582 	}
2583 
2584 	/* We sent the message, so move on to the next step */
2585 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586 }
2587 
2588 /**
2589  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2590  * @adapter: board private structure
2591  *
2592  * Function processes receipt of the extended VLAN V2 capability message from
2593  * the PF.
2594  **/
2595 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2596 {
2597 	int ret;
2598 
2599 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2600 
2601 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2602 
2603 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2604 	if (ret)
2605 		goto err;
2606 
2607 	/* We've processed receipt of the VLAN V2 caps message */
2608 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2609 	return;
2610 err:
2611 	/* We didn't receive a reply. Make sure we try sending again when
2612 	 * __IAVF_INIT_FAILED attempts to recover.
2613 	 */
2614 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2615 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2616 }
2617 
2618 /**
2619  * iavf_init_process_extended_caps - Part of driver startup
2620  * @adapter: board private structure
2621  *
2622  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2623  * handles negotiating capabilities for features which require an additional
2624  * message.
2625  *
2626  * Once all extended capabilities exchanges are finished, the driver will
2627  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2628  */
2629 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2630 {
2631 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2632 
2633 	/* Process capability exchange for VLAN V2 */
2634 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2635 		iavf_init_send_offload_vlan_v2_caps(adapter);
2636 		return;
2637 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2638 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2639 		return;
2640 	}
2641 
2642 	/* When we reach here, no further extended capabilities exchanges are
2643 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2644 	 */
2645 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2646 }
2647 
2648 /**
2649  * iavf_init_config_adapter - last part of driver startup
2650  * @adapter: board private structure
2651  *
2652  * After all the supported capabilities are negotiated, then the
2653  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2654  */
2655 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2656 {
2657 	struct net_device *netdev = adapter->netdev;
2658 	struct pci_dev *pdev = adapter->pdev;
2659 	int err;
2660 
2661 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2662 
2663 	if (iavf_process_config(adapter))
2664 		goto err;
2665 
2666 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2667 
2668 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2669 
2670 	netdev->netdev_ops = &iavf_netdev_ops;
2671 	iavf_set_ethtool_ops(netdev);
2672 	netdev->watchdog_timeo = 5 * HZ;
2673 
2674 	/* MTU range: 68 - 9710 */
2675 	netdev->min_mtu = ETH_MIN_MTU;
2676 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2677 
2678 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2679 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2680 			 adapter->hw.mac.addr);
2681 		eth_hw_addr_random(netdev);
2682 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2683 	} else {
2684 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2685 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2686 	}
2687 
2688 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2689 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2690 	err = iavf_init_interrupt_scheme(adapter);
2691 	if (err)
2692 		goto err_sw_init;
2693 	iavf_map_rings_to_vectors(adapter);
2694 	if (adapter->vf_res->vf_cap_flags &
2695 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2696 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2697 
2698 	err = iavf_request_misc_irq(adapter);
2699 	if (err)
2700 		goto err_sw_init;
2701 
2702 	netif_carrier_off(netdev);
2703 	adapter->link_up = false;
2704 	netif_tx_stop_all_queues(netdev);
2705 
2706 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2707 	if (netdev->features & NETIF_F_GRO)
2708 		dev_info(&pdev->dev, "GRO is enabled\n");
2709 
2710 	iavf_change_state(adapter, __IAVF_DOWN);
2711 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2712 
2713 	iavf_misc_irq_enable(adapter);
2714 	wake_up(&adapter->down_waitqueue);
2715 
2716 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2717 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2718 	if (!adapter->rss_key || !adapter->rss_lut) {
2719 		err = -ENOMEM;
2720 		goto err_mem;
2721 	}
2722 	if (RSS_AQ(adapter))
2723 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2724 	else
2725 		iavf_init_rss(adapter);
2726 
2727 	if (VLAN_V2_ALLOWED(adapter))
2728 		/* request initial VLAN offload settings */
2729 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2730 
2731 	iavf_schedule_finish_config(adapter);
2732 	return;
2733 
2734 err_mem:
2735 	iavf_free_rss(adapter);
2736 	iavf_free_misc_irq(adapter);
2737 err_sw_init:
2738 	iavf_reset_interrupt_capability(adapter);
2739 err:
2740 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2741 }
2742 
2743 /**
2744  * iavf_watchdog_task - Periodic call-back task
2745  * @work: pointer to work_struct
2746  **/
2747 static void iavf_watchdog_task(struct work_struct *work)
2748 {
2749 	struct iavf_adapter *adapter = container_of(work,
2750 						    struct iavf_adapter,
2751 						    watchdog_task.work);
2752 	struct iavf_hw *hw = &adapter->hw;
2753 	u32 reg_val;
2754 
2755 	if (!mutex_trylock(&adapter->crit_lock)) {
2756 		if (adapter->state == __IAVF_REMOVE)
2757 			return;
2758 
2759 		goto restart_watchdog;
2760 	}
2761 
2762 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2763 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2764 
2765 	switch (adapter->state) {
2766 	case __IAVF_STARTUP:
2767 		iavf_startup(adapter);
2768 		mutex_unlock(&adapter->crit_lock);
2769 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2770 				   msecs_to_jiffies(30));
2771 		return;
2772 	case __IAVF_INIT_VERSION_CHECK:
2773 		iavf_init_version_check(adapter);
2774 		mutex_unlock(&adapter->crit_lock);
2775 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2776 				   msecs_to_jiffies(30));
2777 		return;
2778 	case __IAVF_INIT_GET_RESOURCES:
2779 		iavf_init_get_resources(adapter);
2780 		mutex_unlock(&adapter->crit_lock);
2781 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2782 				   msecs_to_jiffies(1));
2783 		return;
2784 	case __IAVF_INIT_EXTENDED_CAPS:
2785 		iavf_init_process_extended_caps(adapter);
2786 		mutex_unlock(&adapter->crit_lock);
2787 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2788 				   msecs_to_jiffies(1));
2789 		return;
2790 	case __IAVF_INIT_CONFIG_ADAPTER:
2791 		iavf_init_config_adapter(adapter);
2792 		mutex_unlock(&adapter->crit_lock);
2793 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2794 				   msecs_to_jiffies(1));
2795 		return;
2796 	case __IAVF_INIT_FAILED:
2797 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2798 			     &adapter->crit_section)) {
2799 			/* Do not update the state and do not reschedule
2800 			 * watchdog task, iavf_remove should handle this state
2801 			 * as it can loop forever
2802 			 */
2803 			mutex_unlock(&adapter->crit_lock);
2804 			return;
2805 		}
2806 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2807 			dev_err(&adapter->pdev->dev,
2808 				"Failed to communicate with PF; waiting before retry\n");
2809 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2810 			iavf_shutdown_adminq(hw);
2811 			mutex_unlock(&adapter->crit_lock);
2812 			queue_delayed_work(adapter->wq,
2813 					   &adapter->watchdog_task, (5 * HZ));
2814 			return;
2815 		}
2816 		/* Try again from failed step*/
2817 		iavf_change_state(adapter, adapter->last_state);
2818 		mutex_unlock(&adapter->crit_lock);
2819 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2820 		return;
2821 	case __IAVF_COMM_FAILED:
2822 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2823 			     &adapter->crit_section)) {
2824 			/* Set state to __IAVF_INIT_FAILED and perform remove
2825 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2826 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2827 			 */
2828 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2829 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2830 			mutex_unlock(&adapter->crit_lock);
2831 			return;
2832 		}
2833 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2834 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2835 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2836 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2837 			/* A chance for redemption! */
2838 			dev_err(&adapter->pdev->dev,
2839 				"Hardware came out of reset. Attempting reinit.\n");
2840 			/* When init task contacts the PF and
2841 			 * gets everything set up again, it'll restart the
2842 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2843 			 */
2844 			iavf_change_state(adapter, __IAVF_STARTUP);
2845 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2846 		}
2847 		adapter->aq_required = 0;
2848 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2849 		mutex_unlock(&adapter->crit_lock);
2850 		queue_delayed_work(adapter->wq,
2851 				   &adapter->watchdog_task,
2852 				   msecs_to_jiffies(10));
2853 		return;
2854 	case __IAVF_RESETTING:
2855 		mutex_unlock(&adapter->crit_lock);
2856 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2857 				   HZ * 2);
2858 		return;
2859 	case __IAVF_DOWN:
2860 	case __IAVF_DOWN_PENDING:
2861 	case __IAVF_TESTING:
2862 	case __IAVF_RUNNING:
2863 		if (adapter->current_op) {
2864 			if (!iavf_asq_done(hw)) {
2865 				dev_dbg(&adapter->pdev->dev,
2866 					"Admin queue timeout\n");
2867 				iavf_send_api_ver(adapter);
2868 			}
2869 		} else {
2870 			int ret = iavf_process_aq_command(adapter);
2871 
2872 			/* An error will be returned if no commands were
2873 			 * processed; use this opportunity to update stats
2874 			 * if the error isn't -ENOTSUPP
2875 			 */
2876 			if (ret && ret != -EOPNOTSUPP &&
2877 			    adapter->state == __IAVF_RUNNING)
2878 				iavf_request_stats(adapter);
2879 		}
2880 		if (adapter->state == __IAVF_RUNNING)
2881 			iavf_detect_recover_hung(&adapter->vsi);
2882 		break;
2883 	case __IAVF_REMOVE:
2884 	default:
2885 		mutex_unlock(&adapter->crit_lock);
2886 		return;
2887 	}
2888 
2889 	/* check for hw reset */
2890 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2891 	if (!reg_val) {
2892 		adapter->aq_required = 0;
2893 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2894 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2895 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2896 		mutex_unlock(&adapter->crit_lock);
2897 		queue_delayed_work(adapter->wq,
2898 				   &adapter->watchdog_task, HZ * 2);
2899 		return;
2900 	}
2901 
2902 	mutex_unlock(&adapter->crit_lock);
2903 restart_watchdog:
2904 	if (adapter->state >= __IAVF_DOWN)
2905 		queue_work(adapter->wq, &adapter->adminq_task);
2906 	if (adapter->aq_required)
2907 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2908 				   msecs_to_jiffies(20));
2909 	else
2910 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2911 				   HZ * 2);
2912 }
2913 
2914 /**
2915  * iavf_disable_vf - disable VF
2916  * @adapter: board private structure
2917  *
2918  * Set communication failed flag and free all resources.
2919  * NOTE: This function is expected to be called with crit_lock being held.
2920  **/
2921 static void iavf_disable_vf(struct iavf_adapter *adapter)
2922 {
2923 	struct iavf_mac_filter *f, *ftmp;
2924 	struct iavf_vlan_filter *fv, *fvtmp;
2925 	struct iavf_cloud_filter *cf, *cftmp;
2926 
2927 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2928 
2929 	/* We don't use netif_running() because it may be true prior to
2930 	 * ndo_open() returning, so we can't assume it means all our open
2931 	 * tasks have finished, since we're not holding the rtnl_lock here.
2932 	 */
2933 	if (adapter->state == __IAVF_RUNNING) {
2934 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2935 		netif_carrier_off(adapter->netdev);
2936 		netif_tx_disable(adapter->netdev);
2937 		adapter->link_up = false;
2938 		iavf_napi_disable_all(adapter);
2939 		iavf_irq_disable(adapter);
2940 		iavf_free_traffic_irqs(adapter);
2941 		iavf_free_all_tx_resources(adapter);
2942 		iavf_free_all_rx_resources(adapter);
2943 	}
2944 
2945 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2946 
2947 	/* Delete all of the filters */
2948 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2949 		list_del(&f->list);
2950 		kfree(f);
2951 	}
2952 
2953 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2954 		list_del(&fv->list);
2955 		kfree(fv);
2956 	}
2957 	adapter->num_vlan_filters = 0;
2958 
2959 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2960 
2961 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2962 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2963 		list_del(&cf->list);
2964 		kfree(cf);
2965 		adapter->num_cloud_filters--;
2966 	}
2967 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2968 
2969 	iavf_free_misc_irq(adapter);
2970 	iavf_free_interrupt_scheme(adapter);
2971 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2972 	iavf_shutdown_adminq(&adapter->hw);
2973 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2974 	iavf_change_state(adapter, __IAVF_DOWN);
2975 	wake_up(&adapter->down_waitqueue);
2976 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2977 }
2978 
2979 /**
2980  * iavf_reset_task - Call-back task to handle hardware reset
2981  * @work: pointer to work_struct
2982  *
2983  * During reset we need to shut down and reinitialize the admin queue
2984  * before we can use it to communicate with the PF again. We also clear
2985  * and reinit the rings because that context is lost as well.
2986  **/
2987 static void iavf_reset_task(struct work_struct *work)
2988 {
2989 	struct iavf_adapter *adapter = container_of(work,
2990 						      struct iavf_adapter,
2991 						      reset_task);
2992 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2993 	struct net_device *netdev = adapter->netdev;
2994 	struct iavf_hw *hw = &adapter->hw;
2995 	struct iavf_mac_filter *f, *ftmp;
2996 	struct iavf_cloud_filter *cf;
2997 	enum iavf_status status;
2998 	u32 reg_val;
2999 	int i = 0, err;
3000 	bool running;
3001 
3002 	/* When device is being removed it doesn't make sense to run the reset
3003 	 * task, just return in such a case.
3004 	 */
3005 	if (!mutex_trylock(&adapter->crit_lock)) {
3006 		if (adapter->state != __IAVF_REMOVE)
3007 			queue_work(adapter->wq, &adapter->reset_task);
3008 
3009 		return;
3010 	}
3011 
3012 	iavf_misc_irq_disable(adapter);
3013 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3014 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3015 		/* Restart the AQ here. If we have been reset but didn't
3016 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
3017 		 */
3018 		iavf_shutdown_adminq(hw);
3019 		iavf_init_adminq(hw);
3020 		iavf_request_reset(adapter);
3021 	}
3022 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3023 
3024 	/* poll until we see the reset actually happen */
3025 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3026 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3027 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3028 		if (!reg_val)
3029 			break;
3030 		usleep_range(5000, 10000);
3031 	}
3032 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3033 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3034 		goto continue_reset; /* act like the reset happened */
3035 	}
3036 
3037 	/* wait until the reset is complete and the PF is responding to us */
3038 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3039 		/* sleep first to make sure a minimum wait time is met */
3040 		msleep(IAVF_RESET_WAIT_MS);
3041 
3042 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3043 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3044 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3045 			break;
3046 	}
3047 
3048 	pci_set_master(adapter->pdev);
3049 	pci_restore_msi_state(adapter->pdev);
3050 
3051 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3052 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3053 			reg_val);
3054 		iavf_disable_vf(adapter);
3055 		mutex_unlock(&adapter->crit_lock);
3056 		return; /* Do not attempt to reinit. It's dead, Jim. */
3057 	}
3058 
3059 continue_reset:
3060 	/* We don't use netif_running() because it may be true prior to
3061 	 * ndo_open() returning, so we can't assume it means all our open
3062 	 * tasks have finished, since we're not holding the rtnl_lock here.
3063 	 */
3064 	running = adapter->state == __IAVF_RUNNING;
3065 
3066 	if (running) {
3067 		netif_carrier_off(netdev);
3068 		netif_tx_stop_all_queues(netdev);
3069 		adapter->link_up = false;
3070 		iavf_napi_disable_all(adapter);
3071 	}
3072 	iavf_irq_disable(adapter);
3073 
3074 	iavf_change_state(adapter, __IAVF_RESETTING);
3075 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3076 
3077 	/* free the Tx/Rx rings and descriptors, might be better to just
3078 	 * re-use them sometime in the future
3079 	 */
3080 	iavf_free_all_rx_resources(adapter);
3081 	iavf_free_all_tx_resources(adapter);
3082 
3083 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3084 	/* kill and reinit the admin queue */
3085 	iavf_shutdown_adminq(hw);
3086 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3087 	status = iavf_init_adminq(hw);
3088 	if (status) {
3089 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3090 			 status);
3091 		goto reset_err;
3092 	}
3093 	adapter->aq_required = 0;
3094 
3095 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3096 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3097 		err = iavf_reinit_interrupt_scheme(adapter, running);
3098 		if (err)
3099 			goto reset_err;
3100 	}
3101 
3102 	if (RSS_AQ(adapter)) {
3103 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3104 	} else {
3105 		err = iavf_init_rss(adapter);
3106 		if (err)
3107 			goto reset_err;
3108 	}
3109 
3110 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3111 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3112 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3113 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3114 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3115 	 * been successfully sent and negotiated
3116 	 */
3117 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3118 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3119 
3120 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3121 
3122 	/* Delete filter for the current MAC address, it could have
3123 	 * been changed by the PF via administratively set MAC.
3124 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3125 	 */
3126 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3127 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3128 			list_del(&f->list);
3129 			kfree(f);
3130 		}
3131 	}
3132 	/* re-add all MAC filters */
3133 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3134 		f->add = true;
3135 	}
3136 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3137 
3138 	/* check if TCs are running and re-add all cloud filters */
3139 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3140 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3141 	    adapter->num_tc) {
3142 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3143 			cf->add = true;
3144 		}
3145 	}
3146 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3147 
3148 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3149 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3150 	iavf_misc_irq_enable(adapter);
3151 
3152 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3153 
3154 	/* We were running when the reset started, so we need to restore some
3155 	 * state here.
3156 	 */
3157 	if (running) {
3158 		/* allocate transmit descriptors */
3159 		err = iavf_setup_all_tx_resources(adapter);
3160 		if (err)
3161 			goto reset_err;
3162 
3163 		/* allocate receive descriptors */
3164 		err = iavf_setup_all_rx_resources(adapter);
3165 		if (err)
3166 			goto reset_err;
3167 
3168 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3169 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3170 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3171 			if (err)
3172 				goto reset_err;
3173 
3174 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3175 		}
3176 
3177 		iavf_configure(adapter);
3178 
3179 		/* iavf_up_complete() will switch device back
3180 		 * to __IAVF_RUNNING
3181 		 */
3182 		iavf_up_complete(adapter);
3183 
3184 		iavf_irq_enable(adapter, true);
3185 	} else {
3186 		iavf_change_state(adapter, __IAVF_DOWN);
3187 		wake_up(&adapter->down_waitqueue);
3188 	}
3189 
3190 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3191 
3192 	wake_up(&adapter->reset_waitqueue);
3193 	mutex_unlock(&adapter->crit_lock);
3194 
3195 	return;
3196 reset_err:
3197 	if (running) {
3198 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3199 		iavf_free_traffic_irqs(adapter);
3200 	}
3201 	iavf_disable_vf(adapter);
3202 
3203 	mutex_unlock(&adapter->crit_lock);
3204 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3205 }
3206 
3207 /**
3208  * iavf_adminq_task - worker thread to clean the admin queue
3209  * @work: pointer to work_struct containing our data
3210  **/
3211 static void iavf_adminq_task(struct work_struct *work)
3212 {
3213 	struct iavf_adapter *adapter =
3214 		container_of(work, struct iavf_adapter, adminq_task);
3215 	struct iavf_hw *hw = &adapter->hw;
3216 	struct iavf_arq_event_info event;
3217 	enum virtchnl_ops v_op;
3218 	enum iavf_status ret, v_ret;
3219 	u32 val, oldval;
3220 	u16 pending;
3221 
3222 	if (!mutex_trylock(&adapter->crit_lock)) {
3223 		if (adapter->state == __IAVF_REMOVE)
3224 			return;
3225 
3226 		queue_work(adapter->wq, &adapter->adminq_task);
3227 		goto out;
3228 	}
3229 
3230 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3231 		goto unlock;
3232 
3233 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3234 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3235 	if (!event.msg_buf)
3236 		goto unlock;
3237 
3238 	do {
3239 		ret = iavf_clean_arq_element(hw, &event, &pending);
3240 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3241 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3242 
3243 		if (ret || !v_op)
3244 			break; /* No event to process or error cleaning ARQ */
3245 
3246 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3247 					 event.msg_len);
3248 		if (pending != 0)
3249 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3250 	} while (pending);
3251 
3252 	if (iavf_is_reset_in_progress(adapter))
3253 		goto freedom;
3254 
3255 	/* check for error indications */
3256 	val = rd32(hw, hw->aq.arq.len);
3257 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3258 		goto freedom;
3259 	oldval = val;
3260 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3261 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3262 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3263 	}
3264 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3265 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3266 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3267 	}
3268 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3269 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3270 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3271 	}
3272 	if (oldval != val)
3273 		wr32(hw, hw->aq.arq.len, val);
3274 
3275 	val = rd32(hw, hw->aq.asq.len);
3276 	oldval = val;
3277 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3278 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3279 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3280 	}
3281 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3282 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3283 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3284 	}
3285 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3286 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3287 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3288 	}
3289 	if (oldval != val)
3290 		wr32(hw, hw->aq.asq.len, val);
3291 
3292 freedom:
3293 	kfree(event.msg_buf);
3294 unlock:
3295 	mutex_unlock(&adapter->crit_lock);
3296 out:
3297 	/* re-enable Admin queue interrupt cause */
3298 	iavf_misc_irq_enable(adapter);
3299 }
3300 
3301 /**
3302  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3303  * @adapter: board private structure
3304  *
3305  * Free all transmit software resources
3306  **/
3307 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3308 {
3309 	int i;
3310 
3311 	if (!adapter->tx_rings)
3312 		return;
3313 
3314 	for (i = 0; i < adapter->num_active_queues; i++)
3315 		if (adapter->tx_rings[i].desc)
3316 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3317 }
3318 
3319 /**
3320  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3321  * @adapter: board private structure
3322  *
3323  * If this function returns with an error, then it's possible one or
3324  * more of the rings is populated (while the rest are not).  It is the
3325  * callers duty to clean those orphaned rings.
3326  *
3327  * Return 0 on success, negative on failure
3328  **/
3329 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3330 {
3331 	int i, err = 0;
3332 
3333 	for (i = 0; i < adapter->num_active_queues; i++) {
3334 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3335 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3336 		if (!err)
3337 			continue;
3338 		dev_err(&adapter->pdev->dev,
3339 			"Allocation for Tx Queue %u failed\n", i);
3340 		break;
3341 	}
3342 
3343 	return err;
3344 }
3345 
3346 /**
3347  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3348  * @adapter: board private structure
3349  *
3350  * If this function returns with an error, then it's possible one or
3351  * more of the rings is populated (while the rest are not).  It is the
3352  * callers duty to clean those orphaned rings.
3353  *
3354  * Return 0 on success, negative on failure
3355  **/
3356 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3357 {
3358 	int i, err = 0;
3359 
3360 	for (i = 0; i < adapter->num_active_queues; i++) {
3361 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3362 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3363 		if (!err)
3364 			continue;
3365 		dev_err(&adapter->pdev->dev,
3366 			"Allocation for Rx Queue %u failed\n", i);
3367 		break;
3368 	}
3369 	return err;
3370 }
3371 
3372 /**
3373  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3374  * @adapter: board private structure
3375  *
3376  * Free all receive software resources
3377  **/
3378 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3379 {
3380 	int i;
3381 
3382 	if (!adapter->rx_rings)
3383 		return;
3384 
3385 	for (i = 0; i < adapter->num_active_queues; i++)
3386 		if (adapter->rx_rings[i].desc)
3387 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3388 }
3389 
3390 /**
3391  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3392  * @adapter: board private structure
3393  * @max_tx_rate: max Tx bw for a tc
3394  **/
3395 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3396 				      u64 max_tx_rate)
3397 {
3398 	int speed = 0, ret = 0;
3399 
3400 	if (ADV_LINK_SUPPORT(adapter)) {
3401 		if (adapter->link_speed_mbps < U32_MAX) {
3402 			speed = adapter->link_speed_mbps;
3403 			goto validate_bw;
3404 		} else {
3405 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3406 			return -EINVAL;
3407 		}
3408 	}
3409 
3410 	switch (adapter->link_speed) {
3411 	case VIRTCHNL_LINK_SPEED_40GB:
3412 		speed = SPEED_40000;
3413 		break;
3414 	case VIRTCHNL_LINK_SPEED_25GB:
3415 		speed = SPEED_25000;
3416 		break;
3417 	case VIRTCHNL_LINK_SPEED_20GB:
3418 		speed = SPEED_20000;
3419 		break;
3420 	case VIRTCHNL_LINK_SPEED_10GB:
3421 		speed = SPEED_10000;
3422 		break;
3423 	case VIRTCHNL_LINK_SPEED_5GB:
3424 		speed = SPEED_5000;
3425 		break;
3426 	case VIRTCHNL_LINK_SPEED_2_5GB:
3427 		speed = SPEED_2500;
3428 		break;
3429 	case VIRTCHNL_LINK_SPEED_1GB:
3430 		speed = SPEED_1000;
3431 		break;
3432 	case VIRTCHNL_LINK_SPEED_100MB:
3433 		speed = SPEED_100;
3434 		break;
3435 	default:
3436 		break;
3437 	}
3438 
3439 validate_bw:
3440 	if (max_tx_rate > speed) {
3441 		dev_err(&adapter->pdev->dev,
3442 			"Invalid tx rate specified\n");
3443 		ret = -EINVAL;
3444 	}
3445 
3446 	return ret;
3447 }
3448 
3449 /**
3450  * iavf_validate_ch_config - validate queue mapping info
3451  * @adapter: board private structure
3452  * @mqprio_qopt: queue parameters
3453  *
3454  * This function validates if the config provided by the user to
3455  * configure queue channels is valid or not. Returns 0 on a valid
3456  * config.
3457  **/
3458 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3459 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3460 {
3461 	u64 total_max_rate = 0;
3462 	u32 tx_rate_rem = 0;
3463 	int i, num_qps = 0;
3464 	u64 tx_rate = 0;
3465 	int ret = 0;
3466 
3467 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3468 	    mqprio_qopt->qopt.num_tc < 1)
3469 		return -EINVAL;
3470 
3471 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3472 		if (!mqprio_qopt->qopt.count[i] ||
3473 		    mqprio_qopt->qopt.offset[i] != num_qps)
3474 			return -EINVAL;
3475 		if (mqprio_qopt->min_rate[i]) {
3476 			dev_err(&adapter->pdev->dev,
3477 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3478 				i);
3479 			return -EINVAL;
3480 		}
3481 
3482 		/* convert to Mbps */
3483 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3484 				  IAVF_MBPS_DIVISOR);
3485 
3486 		if (mqprio_qopt->max_rate[i] &&
3487 		    tx_rate < IAVF_MBPS_QUANTA) {
3488 			dev_err(&adapter->pdev->dev,
3489 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3490 				i, IAVF_MBPS_QUANTA);
3491 			return -EINVAL;
3492 		}
3493 
3494 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3495 
3496 		if (tx_rate_rem != 0) {
3497 			dev_err(&adapter->pdev->dev,
3498 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3499 				i, IAVF_MBPS_QUANTA);
3500 			return -EINVAL;
3501 		}
3502 
3503 		total_max_rate += tx_rate;
3504 		num_qps += mqprio_qopt->qopt.count[i];
3505 	}
3506 	if (num_qps > adapter->num_active_queues) {
3507 		dev_err(&adapter->pdev->dev,
3508 			"Cannot support requested number of queues\n");
3509 		return -EINVAL;
3510 	}
3511 
3512 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3513 	return ret;
3514 }
3515 
3516 /**
3517  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3518  * @adapter: board private structure
3519  **/
3520 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3521 {
3522 	struct iavf_cloud_filter *cf, *cftmp;
3523 
3524 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3525 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3526 				 list) {
3527 		list_del(&cf->list);
3528 		kfree(cf);
3529 		adapter->num_cloud_filters--;
3530 	}
3531 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3532 }
3533 
3534 /**
3535  * __iavf_setup_tc - configure multiple traffic classes
3536  * @netdev: network interface device structure
3537  * @type_data: tc offload data
3538  *
3539  * This function processes the config information provided by the
3540  * user to configure traffic classes/queue channels and packages the
3541  * information to request the PF to setup traffic classes.
3542  *
3543  * Returns 0 on success.
3544  **/
3545 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3546 {
3547 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3548 	struct iavf_adapter *adapter = netdev_priv(netdev);
3549 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3550 	u8 num_tc = 0, total_qps = 0;
3551 	int ret = 0, netdev_tc = 0;
3552 	u64 max_tx_rate;
3553 	u16 mode;
3554 	int i;
3555 
3556 	num_tc = mqprio_qopt->qopt.num_tc;
3557 	mode = mqprio_qopt->mode;
3558 
3559 	/* delete queue_channel */
3560 	if (!mqprio_qopt->qopt.hw) {
3561 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3562 			/* reset the tc configuration */
3563 			netdev_reset_tc(netdev);
3564 			adapter->num_tc = 0;
3565 			netif_tx_stop_all_queues(netdev);
3566 			netif_tx_disable(netdev);
3567 			iavf_del_all_cloud_filters(adapter);
3568 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3569 			total_qps = adapter->orig_num_active_queues;
3570 			goto exit;
3571 		} else {
3572 			return -EINVAL;
3573 		}
3574 	}
3575 
3576 	/* add queue channel */
3577 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3578 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3579 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3580 			return -EOPNOTSUPP;
3581 		}
3582 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3583 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3584 			return -EINVAL;
3585 		}
3586 
3587 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3588 		if (ret)
3589 			return ret;
3590 		/* Return if same TC config is requested */
3591 		if (adapter->num_tc == num_tc)
3592 			return 0;
3593 		adapter->num_tc = num_tc;
3594 
3595 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3596 			if (i < num_tc) {
3597 				adapter->ch_config.ch_info[i].count =
3598 					mqprio_qopt->qopt.count[i];
3599 				adapter->ch_config.ch_info[i].offset =
3600 					mqprio_qopt->qopt.offset[i];
3601 				total_qps += mqprio_qopt->qopt.count[i];
3602 				max_tx_rate = mqprio_qopt->max_rate[i];
3603 				/* convert to Mbps */
3604 				max_tx_rate = div_u64(max_tx_rate,
3605 						      IAVF_MBPS_DIVISOR);
3606 				adapter->ch_config.ch_info[i].max_tx_rate =
3607 					max_tx_rate;
3608 			} else {
3609 				adapter->ch_config.ch_info[i].count = 1;
3610 				adapter->ch_config.ch_info[i].offset = 0;
3611 			}
3612 		}
3613 
3614 		/* Take snapshot of original config such as "num_active_queues"
3615 		 * It is used later when delete ADQ flow is exercised, so that
3616 		 * once delete ADQ flow completes, VF shall go back to its
3617 		 * original queue configuration
3618 		 */
3619 
3620 		adapter->orig_num_active_queues = adapter->num_active_queues;
3621 
3622 		/* Store queue info based on TC so that VF gets configured
3623 		 * with correct number of queues when VF completes ADQ config
3624 		 * flow
3625 		 */
3626 		adapter->ch_config.total_qps = total_qps;
3627 
3628 		netif_tx_stop_all_queues(netdev);
3629 		netif_tx_disable(netdev);
3630 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3631 		netdev_reset_tc(netdev);
3632 		/* Report the tc mapping up the stack */
3633 		netdev_set_num_tc(adapter->netdev, num_tc);
3634 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3635 			u16 qcount = mqprio_qopt->qopt.count[i];
3636 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3637 
3638 			if (i < num_tc)
3639 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3640 						    qoffset);
3641 		}
3642 	}
3643 exit:
3644 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3645 		return 0;
3646 
3647 	netif_set_real_num_rx_queues(netdev, total_qps);
3648 	netif_set_real_num_tx_queues(netdev, total_qps);
3649 
3650 	return ret;
3651 }
3652 
3653 /**
3654  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3655  * @adapter: board private structure
3656  * @f: pointer to struct flow_cls_offload
3657  * @filter: pointer to cloud filter structure
3658  */
3659 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3660 				 struct flow_cls_offload *f,
3661 				 struct iavf_cloud_filter *filter)
3662 {
3663 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3664 	struct flow_dissector *dissector = rule->match.dissector;
3665 	u16 n_proto_mask = 0;
3666 	u16 n_proto_key = 0;
3667 	u8 field_flags = 0;
3668 	u16 addr_type = 0;
3669 	u16 n_proto = 0;
3670 	int i = 0;
3671 	struct virtchnl_filter *vf = &filter->f;
3672 
3673 	if (dissector->used_keys &
3674 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3675 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3676 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3677 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3678 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3679 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3680 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3681 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3682 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3683 			dissector->used_keys);
3684 		return -EOPNOTSUPP;
3685 	}
3686 
3687 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3688 		struct flow_match_enc_keyid match;
3689 
3690 		flow_rule_match_enc_keyid(rule, &match);
3691 		if (match.mask->keyid != 0)
3692 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3693 	}
3694 
3695 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3696 		struct flow_match_basic match;
3697 
3698 		flow_rule_match_basic(rule, &match);
3699 		n_proto_key = ntohs(match.key->n_proto);
3700 		n_proto_mask = ntohs(match.mask->n_proto);
3701 
3702 		if (n_proto_key == ETH_P_ALL) {
3703 			n_proto_key = 0;
3704 			n_proto_mask = 0;
3705 		}
3706 		n_proto = n_proto_key & n_proto_mask;
3707 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3708 			return -EINVAL;
3709 		if (n_proto == ETH_P_IPV6) {
3710 			/* specify flow type as TCP IPv6 */
3711 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3712 		}
3713 
3714 		if (match.key->ip_proto != IPPROTO_TCP) {
3715 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3716 			return -EINVAL;
3717 		}
3718 	}
3719 
3720 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3721 		struct flow_match_eth_addrs match;
3722 
3723 		flow_rule_match_eth_addrs(rule, &match);
3724 
3725 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3726 		if (!is_zero_ether_addr(match.mask->dst)) {
3727 			if (is_broadcast_ether_addr(match.mask->dst)) {
3728 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3729 			} else {
3730 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3731 					match.mask->dst);
3732 				return -EINVAL;
3733 			}
3734 		}
3735 
3736 		if (!is_zero_ether_addr(match.mask->src)) {
3737 			if (is_broadcast_ether_addr(match.mask->src)) {
3738 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3739 			} else {
3740 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3741 					match.mask->src);
3742 				return -EINVAL;
3743 			}
3744 		}
3745 
3746 		if (!is_zero_ether_addr(match.key->dst))
3747 			if (is_valid_ether_addr(match.key->dst) ||
3748 			    is_multicast_ether_addr(match.key->dst)) {
3749 				/* set the mask if a valid dst_mac address */
3750 				for (i = 0; i < ETH_ALEN; i++)
3751 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3752 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3753 						match.key->dst);
3754 			}
3755 
3756 		if (!is_zero_ether_addr(match.key->src))
3757 			if (is_valid_ether_addr(match.key->src) ||
3758 			    is_multicast_ether_addr(match.key->src)) {
3759 				/* set the mask if a valid dst_mac address */
3760 				for (i = 0; i < ETH_ALEN; i++)
3761 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3762 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3763 						match.key->src);
3764 		}
3765 	}
3766 
3767 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3768 		struct flow_match_vlan match;
3769 
3770 		flow_rule_match_vlan(rule, &match);
3771 		if (match.mask->vlan_id) {
3772 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3773 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3774 			} else {
3775 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3776 					match.mask->vlan_id);
3777 				return -EINVAL;
3778 			}
3779 		}
3780 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3781 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3782 	}
3783 
3784 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3785 		struct flow_match_control match;
3786 
3787 		flow_rule_match_control(rule, &match);
3788 		addr_type = match.key->addr_type;
3789 	}
3790 
3791 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3792 		struct flow_match_ipv4_addrs match;
3793 
3794 		flow_rule_match_ipv4_addrs(rule, &match);
3795 		if (match.mask->dst) {
3796 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3797 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3798 			} else {
3799 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3800 					be32_to_cpu(match.mask->dst));
3801 				return -EINVAL;
3802 			}
3803 		}
3804 
3805 		if (match.mask->src) {
3806 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3807 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3808 			} else {
3809 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3810 					be32_to_cpu(match.mask->src));
3811 				return -EINVAL;
3812 			}
3813 		}
3814 
3815 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3816 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3817 			return -EINVAL;
3818 		}
3819 		if (match.key->dst) {
3820 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3821 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3822 		}
3823 		if (match.key->src) {
3824 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3825 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3826 		}
3827 	}
3828 
3829 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3830 		struct flow_match_ipv6_addrs match;
3831 
3832 		flow_rule_match_ipv6_addrs(rule, &match);
3833 
3834 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3835 		if (ipv6_addr_any(&match.mask->dst)) {
3836 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3837 				IPV6_ADDR_ANY);
3838 			return -EINVAL;
3839 		}
3840 
3841 		/* src and dest IPv6 address should not be LOOPBACK
3842 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3843 		 */
3844 		if (ipv6_addr_loopback(&match.key->dst) ||
3845 		    ipv6_addr_loopback(&match.key->src)) {
3846 			dev_err(&adapter->pdev->dev,
3847 				"ipv6 addr should not be loopback\n");
3848 			return -EINVAL;
3849 		}
3850 		if (!ipv6_addr_any(&match.mask->dst) ||
3851 		    !ipv6_addr_any(&match.mask->src))
3852 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3853 
3854 		for (i = 0; i < 4; i++)
3855 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3856 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3857 		       sizeof(vf->data.tcp_spec.dst_ip));
3858 		for (i = 0; i < 4; i++)
3859 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3860 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3861 		       sizeof(vf->data.tcp_spec.src_ip));
3862 	}
3863 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3864 		struct flow_match_ports match;
3865 
3866 		flow_rule_match_ports(rule, &match);
3867 		if (match.mask->src) {
3868 			if (match.mask->src == cpu_to_be16(0xffff)) {
3869 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3870 			} else {
3871 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3872 					be16_to_cpu(match.mask->src));
3873 				return -EINVAL;
3874 			}
3875 		}
3876 
3877 		if (match.mask->dst) {
3878 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3879 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3880 			} else {
3881 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3882 					be16_to_cpu(match.mask->dst));
3883 				return -EINVAL;
3884 			}
3885 		}
3886 		if (match.key->dst) {
3887 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3888 			vf->data.tcp_spec.dst_port = match.key->dst;
3889 		}
3890 
3891 		if (match.key->src) {
3892 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3893 			vf->data.tcp_spec.src_port = match.key->src;
3894 		}
3895 	}
3896 	vf->field_flags = field_flags;
3897 
3898 	return 0;
3899 }
3900 
3901 /**
3902  * iavf_handle_tclass - Forward to a traffic class on the device
3903  * @adapter: board private structure
3904  * @tc: traffic class index on the device
3905  * @filter: pointer to cloud filter structure
3906  */
3907 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3908 			      struct iavf_cloud_filter *filter)
3909 {
3910 	if (tc == 0)
3911 		return 0;
3912 	if (tc < adapter->num_tc) {
3913 		if (!filter->f.data.tcp_spec.dst_port) {
3914 			dev_err(&adapter->pdev->dev,
3915 				"Specify destination port to redirect to traffic class other than TC0\n");
3916 			return -EINVAL;
3917 		}
3918 	}
3919 	/* redirect to a traffic class on the same device */
3920 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3921 	filter->f.action_meta = tc;
3922 	return 0;
3923 }
3924 
3925 /**
3926  * iavf_find_cf - Find the cloud filter in the list
3927  * @adapter: Board private structure
3928  * @cookie: filter specific cookie
3929  *
3930  * Returns ptr to the filter object or NULL. Must be called while holding the
3931  * cloud_filter_list_lock.
3932  */
3933 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3934 					      unsigned long *cookie)
3935 {
3936 	struct iavf_cloud_filter *filter = NULL;
3937 
3938 	if (!cookie)
3939 		return NULL;
3940 
3941 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3942 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3943 			return filter;
3944 	}
3945 	return NULL;
3946 }
3947 
3948 /**
3949  * iavf_configure_clsflower - Add tc flower filters
3950  * @adapter: board private structure
3951  * @cls_flower: Pointer to struct flow_cls_offload
3952  */
3953 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3954 				    struct flow_cls_offload *cls_flower)
3955 {
3956 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3957 	struct iavf_cloud_filter *filter = NULL;
3958 	int err = -EINVAL, count = 50;
3959 
3960 	if (tc < 0) {
3961 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3962 		return -EINVAL;
3963 	}
3964 
3965 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3966 	if (!filter)
3967 		return -ENOMEM;
3968 
3969 	while (!mutex_trylock(&adapter->crit_lock)) {
3970 		if (--count == 0) {
3971 			kfree(filter);
3972 			return err;
3973 		}
3974 		udelay(1);
3975 	}
3976 
3977 	filter->cookie = cls_flower->cookie;
3978 
3979 	/* bail out here if filter already exists */
3980 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3981 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3982 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3983 		err = -EEXIST;
3984 		goto spin_unlock;
3985 	}
3986 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3987 
3988 	/* set the mask to all zeroes to begin with */
3989 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3990 	/* start out with flow type and eth type IPv4 to begin with */
3991 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3992 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3993 	if (err)
3994 		goto err;
3995 
3996 	err = iavf_handle_tclass(adapter, tc, filter);
3997 	if (err)
3998 		goto err;
3999 
4000 	/* add filter to the list */
4001 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4002 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4003 	adapter->num_cloud_filters++;
4004 	filter->add = true;
4005 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4006 spin_unlock:
4007 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4008 err:
4009 	if (err)
4010 		kfree(filter);
4011 
4012 	mutex_unlock(&adapter->crit_lock);
4013 	return err;
4014 }
4015 
4016 /**
4017  * iavf_delete_clsflower - Remove tc flower filters
4018  * @adapter: board private structure
4019  * @cls_flower: Pointer to struct flow_cls_offload
4020  */
4021 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4022 				 struct flow_cls_offload *cls_flower)
4023 {
4024 	struct iavf_cloud_filter *filter = NULL;
4025 	int err = 0;
4026 
4027 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4028 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4029 	if (filter) {
4030 		filter->del = true;
4031 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4032 	} else {
4033 		err = -EINVAL;
4034 	}
4035 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4036 
4037 	return err;
4038 }
4039 
4040 /**
4041  * iavf_setup_tc_cls_flower - flower classifier offloads
4042  * @adapter: board private structure
4043  * @cls_flower: pointer to flow_cls_offload struct with flow info
4044  */
4045 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4046 				    struct flow_cls_offload *cls_flower)
4047 {
4048 	switch (cls_flower->command) {
4049 	case FLOW_CLS_REPLACE:
4050 		return iavf_configure_clsflower(adapter, cls_flower);
4051 	case FLOW_CLS_DESTROY:
4052 		return iavf_delete_clsflower(adapter, cls_flower);
4053 	case FLOW_CLS_STATS:
4054 		return -EOPNOTSUPP;
4055 	default:
4056 		return -EOPNOTSUPP;
4057 	}
4058 }
4059 
4060 /**
4061  * iavf_setup_tc_block_cb - block callback for tc
4062  * @type: type of offload
4063  * @type_data: offload data
4064  * @cb_priv:
4065  *
4066  * This function is the block callback for traffic classes
4067  **/
4068 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4069 				  void *cb_priv)
4070 {
4071 	struct iavf_adapter *adapter = cb_priv;
4072 
4073 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4074 		return -EOPNOTSUPP;
4075 
4076 	switch (type) {
4077 	case TC_SETUP_CLSFLOWER:
4078 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4079 	default:
4080 		return -EOPNOTSUPP;
4081 	}
4082 }
4083 
4084 static LIST_HEAD(iavf_block_cb_list);
4085 
4086 /**
4087  * iavf_setup_tc - configure multiple traffic classes
4088  * @netdev: network interface device structure
4089  * @type: type of offload
4090  * @type_data: tc offload data
4091  *
4092  * This function is the callback to ndo_setup_tc in the
4093  * netdev_ops.
4094  *
4095  * Returns 0 on success
4096  **/
4097 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4098 			 void *type_data)
4099 {
4100 	struct iavf_adapter *adapter = netdev_priv(netdev);
4101 
4102 	switch (type) {
4103 	case TC_SETUP_QDISC_MQPRIO:
4104 		return __iavf_setup_tc(netdev, type_data);
4105 	case TC_SETUP_BLOCK:
4106 		return flow_block_cb_setup_simple(type_data,
4107 						  &iavf_block_cb_list,
4108 						  iavf_setup_tc_block_cb,
4109 						  adapter, adapter, true);
4110 	default:
4111 		return -EOPNOTSUPP;
4112 	}
4113 }
4114 
4115 /**
4116  * iavf_open - Called when a network interface is made active
4117  * @netdev: network interface device structure
4118  *
4119  * Returns 0 on success, negative value on failure
4120  *
4121  * The open entry point is called when a network interface is made
4122  * active by the system (IFF_UP).  At this point all resources needed
4123  * for transmit and receive operations are allocated, the interrupt
4124  * handler is registered with the OS, the watchdog is started,
4125  * and the stack is notified that the interface is ready.
4126  **/
4127 static int iavf_open(struct net_device *netdev)
4128 {
4129 	struct iavf_adapter *adapter = netdev_priv(netdev);
4130 	int err;
4131 
4132 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4133 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4134 		return -EIO;
4135 	}
4136 
4137 	while (!mutex_trylock(&adapter->crit_lock)) {
4138 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4139 		 * is already taken and iavf_open is called from an upper
4140 		 * device's notifier reacting on NETDEV_REGISTER event.
4141 		 * We have to leave here to avoid dead lock.
4142 		 */
4143 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4144 			return -EBUSY;
4145 
4146 		usleep_range(500, 1000);
4147 	}
4148 
4149 	if (adapter->state != __IAVF_DOWN) {
4150 		err = -EBUSY;
4151 		goto err_unlock;
4152 	}
4153 
4154 	if (adapter->state == __IAVF_RUNNING &&
4155 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4156 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4157 		err = 0;
4158 		goto err_unlock;
4159 	}
4160 
4161 	/* allocate transmit descriptors */
4162 	err = iavf_setup_all_tx_resources(adapter);
4163 	if (err)
4164 		goto err_setup_tx;
4165 
4166 	/* allocate receive descriptors */
4167 	err = iavf_setup_all_rx_resources(adapter);
4168 	if (err)
4169 		goto err_setup_rx;
4170 
4171 	/* clear any pending interrupts, may auto mask */
4172 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4173 	if (err)
4174 		goto err_req_irq;
4175 
4176 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4177 
4178 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4179 
4180 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4181 
4182 	/* Restore VLAN filters that were removed with IFF_DOWN */
4183 	iavf_restore_filters(adapter);
4184 
4185 	iavf_configure(adapter);
4186 
4187 	iavf_up_complete(adapter);
4188 
4189 	iavf_irq_enable(adapter, true);
4190 
4191 	mutex_unlock(&adapter->crit_lock);
4192 
4193 	return 0;
4194 
4195 err_req_irq:
4196 	iavf_down(adapter);
4197 	iavf_free_traffic_irqs(adapter);
4198 err_setup_rx:
4199 	iavf_free_all_rx_resources(adapter);
4200 err_setup_tx:
4201 	iavf_free_all_tx_resources(adapter);
4202 err_unlock:
4203 	mutex_unlock(&adapter->crit_lock);
4204 
4205 	return err;
4206 }
4207 
4208 /**
4209  * iavf_close - Disables a network interface
4210  * @netdev: network interface device structure
4211  *
4212  * Returns 0, this is not allowed to fail
4213  *
4214  * The close entry point is called when an interface is de-activated
4215  * by the OS.  The hardware is still under the drivers control, but
4216  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4217  * are freed, along with all transmit and receive resources.
4218  **/
4219 static int iavf_close(struct net_device *netdev)
4220 {
4221 	struct iavf_adapter *adapter = netdev_priv(netdev);
4222 	u64 aq_to_restore;
4223 	int status;
4224 
4225 	mutex_lock(&adapter->crit_lock);
4226 
4227 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4228 		mutex_unlock(&adapter->crit_lock);
4229 		return 0;
4230 	}
4231 
4232 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4233 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4234 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4235 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4236 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4237 	 * disable queues possible for vf. Give only necessary flags to
4238 	 * iavf_down and save other to set them right before iavf_close()
4239 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4240 	 * iavf will be in DOWN state.
4241 	 */
4242 	aq_to_restore = adapter->aq_required;
4243 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4244 
4245 	/* Remove flags which we do not want to send after close or we want to
4246 	 * send before disable queues.
4247 	 */
4248 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4249 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4250 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4251 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4252 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4253 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4254 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4255 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4256 
4257 	iavf_down(adapter);
4258 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4259 	iavf_free_traffic_irqs(adapter);
4260 
4261 	mutex_unlock(&adapter->crit_lock);
4262 
4263 	/* We explicitly don't free resources here because the hardware is
4264 	 * still active and can DMA into memory. Resources are cleared in
4265 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4266 	 * driver that the rings have been stopped.
4267 	 *
4268 	 * Also, we wait for state to transition to __IAVF_DOWN before
4269 	 * returning. State change occurs in iavf_virtchnl_completion() after
4270 	 * VF resources are released (which occurs after PF driver processes and
4271 	 * responds to admin queue commands).
4272 	 */
4273 
4274 	status = wait_event_timeout(adapter->down_waitqueue,
4275 				    adapter->state == __IAVF_DOWN,
4276 				    msecs_to_jiffies(500));
4277 	if (!status)
4278 		netdev_warn(netdev, "Device resources not yet released\n");
4279 
4280 	mutex_lock(&adapter->crit_lock);
4281 	adapter->aq_required |= aq_to_restore;
4282 	mutex_unlock(&adapter->crit_lock);
4283 	return 0;
4284 }
4285 
4286 /**
4287  * iavf_change_mtu - Change the Maximum Transfer Unit
4288  * @netdev: network interface device structure
4289  * @new_mtu: new value for maximum frame size
4290  *
4291  * Returns 0 on success, negative on failure
4292  **/
4293 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4294 {
4295 	struct iavf_adapter *adapter = netdev_priv(netdev);
4296 	int ret = 0;
4297 
4298 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4299 		   netdev->mtu, new_mtu);
4300 	netdev->mtu = new_mtu;
4301 
4302 	if (netif_running(netdev)) {
4303 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4304 		ret = iavf_wait_for_reset(adapter);
4305 		if (ret < 0)
4306 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4307 		else if (ret)
4308 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4309 	}
4310 
4311 	return ret;
4312 }
4313 
4314 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4315 					 NETIF_F_HW_VLAN_CTAG_TX | \
4316 					 NETIF_F_HW_VLAN_STAG_RX | \
4317 					 NETIF_F_HW_VLAN_STAG_TX)
4318 
4319 /**
4320  * iavf_set_features - set the netdev feature flags
4321  * @netdev: ptr to the netdev being adjusted
4322  * @features: the feature set that the stack is suggesting
4323  * Note: expects to be called while under rtnl_lock()
4324  **/
4325 static int iavf_set_features(struct net_device *netdev,
4326 			     netdev_features_t features)
4327 {
4328 	struct iavf_adapter *adapter = netdev_priv(netdev);
4329 
4330 	/* trigger update on any VLAN feature change */
4331 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4332 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4333 		iavf_set_vlan_offload_features(adapter, netdev->features,
4334 					       features);
4335 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4336 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4337 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4338 
4339 	return 0;
4340 }
4341 
4342 /**
4343  * iavf_features_check - Validate encapsulated packet conforms to limits
4344  * @skb: skb buff
4345  * @dev: This physical port's netdev
4346  * @features: Offload features that the stack believes apply
4347  **/
4348 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4349 					     struct net_device *dev,
4350 					     netdev_features_t features)
4351 {
4352 	size_t len;
4353 
4354 	/* No point in doing any of this if neither checksum nor GSO are
4355 	 * being requested for this frame.  We can rule out both by just
4356 	 * checking for CHECKSUM_PARTIAL
4357 	 */
4358 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4359 		return features;
4360 
4361 	/* We cannot support GSO if the MSS is going to be less than
4362 	 * 64 bytes.  If it is then we need to drop support for GSO.
4363 	 */
4364 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4365 		features &= ~NETIF_F_GSO_MASK;
4366 
4367 	/* MACLEN can support at most 63 words */
4368 	len = skb_network_header(skb) - skb->data;
4369 	if (len & ~(63 * 2))
4370 		goto out_err;
4371 
4372 	/* IPLEN and EIPLEN can support at most 127 dwords */
4373 	len = skb_transport_header(skb) - skb_network_header(skb);
4374 	if (len & ~(127 * 4))
4375 		goto out_err;
4376 
4377 	if (skb->encapsulation) {
4378 		/* L4TUNLEN can support 127 words */
4379 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4380 		if (len & ~(127 * 2))
4381 			goto out_err;
4382 
4383 		/* IPLEN can support at most 127 dwords */
4384 		len = skb_inner_transport_header(skb) -
4385 		      skb_inner_network_header(skb);
4386 		if (len & ~(127 * 4))
4387 			goto out_err;
4388 	}
4389 
4390 	/* No need to validate L4LEN as TCP is the only protocol with a
4391 	 * flexible value and we support all possible values supported
4392 	 * by TCP, which is at most 15 dwords
4393 	 */
4394 
4395 	return features;
4396 out_err:
4397 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4398 }
4399 
4400 /**
4401  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4402  * @adapter: board private structure
4403  *
4404  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4405  * were negotiated determine the VLAN features that can be toggled on and off.
4406  **/
4407 static netdev_features_t
4408 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4409 {
4410 	netdev_features_t hw_features = 0;
4411 
4412 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4413 		return hw_features;
4414 
4415 	/* Enable VLAN features if supported */
4416 	if (VLAN_ALLOWED(adapter)) {
4417 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4418 				NETIF_F_HW_VLAN_CTAG_RX);
4419 	} else if (VLAN_V2_ALLOWED(adapter)) {
4420 		struct virtchnl_vlan_caps *vlan_v2_caps =
4421 			&adapter->vlan_v2_caps;
4422 		struct virtchnl_vlan_supported_caps *stripping_support =
4423 			&vlan_v2_caps->offloads.stripping_support;
4424 		struct virtchnl_vlan_supported_caps *insertion_support =
4425 			&vlan_v2_caps->offloads.insertion_support;
4426 
4427 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4428 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4429 			if (stripping_support->outer &
4430 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4431 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4432 			if (stripping_support->outer &
4433 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4434 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4435 		} else if (stripping_support->inner !=
4436 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4437 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4438 			if (stripping_support->inner &
4439 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4440 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4441 		}
4442 
4443 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4444 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4445 			if (insertion_support->outer &
4446 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4447 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4448 			if (insertion_support->outer &
4449 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4450 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4451 		} else if (insertion_support->inner &&
4452 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4453 			if (insertion_support->inner &
4454 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4455 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4456 		}
4457 	}
4458 
4459 	if (CRC_OFFLOAD_ALLOWED(adapter))
4460 		hw_features |= NETIF_F_RXFCS;
4461 
4462 	return hw_features;
4463 }
4464 
4465 /**
4466  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4467  * @adapter: board private structure
4468  *
4469  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4470  * were negotiated determine the VLAN features that are enabled by default.
4471  **/
4472 static netdev_features_t
4473 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4474 {
4475 	netdev_features_t features = 0;
4476 
4477 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4478 		return features;
4479 
4480 	if (VLAN_ALLOWED(adapter)) {
4481 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4482 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4483 	} else if (VLAN_V2_ALLOWED(adapter)) {
4484 		struct virtchnl_vlan_caps *vlan_v2_caps =
4485 			&adapter->vlan_v2_caps;
4486 		struct virtchnl_vlan_supported_caps *filtering_support =
4487 			&vlan_v2_caps->filtering.filtering_support;
4488 		struct virtchnl_vlan_supported_caps *stripping_support =
4489 			&vlan_v2_caps->offloads.stripping_support;
4490 		struct virtchnl_vlan_supported_caps *insertion_support =
4491 			&vlan_v2_caps->offloads.insertion_support;
4492 		u32 ethertype_init;
4493 
4494 		/* give priority to outer stripping and don't support both outer
4495 		 * and inner stripping
4496 		 */
4497 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4498 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4499 			if (stripping_support->outer &
4500 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4501 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4502 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4503 			else if (stripping_support->outer &
4504 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4505 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4506 				features |= NETIF_F_HW_VLAN_STAG_RX;
4507 		} else if (stripping_support->inner !=
4508 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4509 			if (stripping_support->inner &
4510 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4511 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4512 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4513 		}
4514 
4515 		/* give priority to outer insertion and don't support both outer
4516 		 * and inner insertion
4517 		 */
4518 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4519 			if (insertion_support->outer &
4520 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4521 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4522 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4523 			else if (insertion_support->outer &
4524 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4525 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4526 				features |= NETIF_F_HW_VLAN_STAG_TX;
4527 		} else if (insertion_support->inner !=
4528 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4529 			if (insertion_support->inner &
4530 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4531 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4532 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4533 		}
4534 
4535 		/* give priority to outer filtering and don't bother if both
4536 		 * outer and inner filtering are enabled
4537 		 */
4538 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4539 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4540 			if (filtering_support->outer &
4541 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4542 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4543 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4544 			if (filtering_support->outer &
4545 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4546 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4547 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4548 		} else if (filtering_support->inner !=
4549 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4550 			if (filtering_support->inner &
4551 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4552 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4553 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4554 			if (filtering_support->inner &
4555 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4556 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4557 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4558 		}
4559 	}
4560 
4561 	return features;
4562 }
4563 
4564 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4565 	(!(((requested) & (feature_bit)) && \
4566 	   !((allowed) & (feature_bit))))
4567 
4568 /**
4569  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4570  * @adapter: board private structure
4571  * @requested_features: stack requested NETDEV features
4572  **/
4573 static netdev_features_t
4574 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4575 			      netdev_features_t requested_features)
4576 {
4577 	netdev_features_t allowed_features;
4578 
4579 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4580 		iavf_get_netdev_vlan_features(adapter);
4581 
4582 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4583 					      allowed_features,
4584 					      NETIF_F_HW_VLAN_CTAG_TX))
4585 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4586 
4587 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4588 					      allowed_features,
4589 					      NETIF_F_HW_VLAN_CTAG_RX))
4590 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4591 
4592 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4593 					      allowed_features,
4594 					      NETIF_F_HW_VLAN_STAG_TX))
4595 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4596 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4597 					      allowed_features,
4598 					      NETIF_F_HW_VLAN_STAG_RX))
4599 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4600 
4601 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4602 					      allowed_features,
4603 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4604 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4605 
4606 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4607 					      allowed_features,
4608 					      NETIF_F_HW_VLAN_STAG_FILTER))
4609 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4610 
4611 	if ((requested_features &
4612 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4613 	    (requested_features &
4614 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4615 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4616 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4617 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4618 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4619 					NETIF_F_HW_VLAN_STAG_TX);
4620 	}
4621 
4622 	return requested_features;
4623 }
4624 
4625 /**
4626  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4627  * @adapter: board private structure
4628  * @requested_features: stack requested NETDEV features
4629  *
4630  * Returns fixed-up features bits
4631  **/
4632 static netdev_features_t
4633 iavf_fix_strip_features(struct iavf_adapter *adapter,
4634 			netdev_features_t requested_features)
4635 {
4636 	struct net_device *netdev = adapter->netdev;
4637 	bool crc_offload_req, is_vlan_strip;
4638 	netdev_features_t vlan_strip;
4639 	int num_non_zero_vlan;
4640 
4641 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4642 			  (requested_features & NETIF_F_RXFCS);
4643 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4644 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4645 	is_vlan_strip = requested_features & vlan_strip;
4646 
4647 	if (!crc_offload_req)
4648 		return requested_features;
4649 
4650 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4651 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4652 		requested_features &= ~vlan_strip;
4653 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4654 		return requested_features;
4655 	}
4656 
4657 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4658 		requested_features &= ~vlan_strip;
4659 		if (!(netdev->features & vlan_strip))
4660 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4661 
4662 		return requested_features;
4663 	}
4664 
4665 	if (num_non_zero_vlan && is_vlan_strip &&
4666 	    !(netdev->features & NETIF_F_RXFCS)) {
4667 		requested_features &= ~NETIF_F_RXFCS;
4668 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4669 	}
4670 
4671 	return requested_features;
4672 }
4673 
4674 /**
4675  * iavf_fix_features - fix up the netdev feature bits
4676  * @netdev: our net device
4677  * @features: desired feature bits
4678  *
4679  * Returns fixed-up features bits
4680  **/
4681 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4682 					   netdev_features_t features)
4683 {
4684 	struct iavf_adapter *adapter = netdev_priv(netdev);
4685 
4686 	features = iavf_fix_netdev_vlan_features(adapter, features);
4687 
4688 	return iavf_fix_strip_features(adapter, features);
4689 }
4690 
4691 static const struct net_device_ops iavf_netdev_ops = {
4692 	.ndo_open		= iavf_open,
4693 	.ndo_stop		= iavf_close,
4694 	.ndo_start_xmit		= iavf_xmit_frame,
4695 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4696 	.ndo_validate_addr	= eth_validate_addr,
4697 	.ndo_set_mac_address	= iavf_set_mac,
4698 	.ndo_change_mtu		= iavf_change_mtu,
4699 	.ndo_tx_timeout		= iavf_tx_timeout,
4700 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4701 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4702 	.ndo_features_check	= iavf_features_check,
4703 	.ndo_fix_features	= iavf_fix_features,
4704 	.ndo_set_features	= iavf_set_features,
4705 	.ndo_setup_tc		= iavf_setup_tc,
4706 };
4707 
4708 /**
4709  * iavf_check_reset_complete - check that VF reset is complete
4710  * @hw: pointer to hw struct
4711  *
4712  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4713  **/
4714 static int iavf_check_reset_complete(struct iavf_hw *hw)
4715 {
4716 	u32 rstat;
4717 	int i;
4718 
4719 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4720 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4721 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4722 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4723 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4724 			return 0;
4725 		msleep(IAVF_RESET_WAIT_MS);
4726 	}
4727 	return -EBUSY;
4728 }
4729 
4730 /**
4731  * iavf_process_config - Process the config information we got from the PF
4732  * @adapter: board private structure
4733  *
4734  * Verify that we have a valid config struct, and set up our netdev features
4735  * and our VSI struct.
4736  **/
4737 int iavf_process_config(struct iavf_adapter *adapter)
4738 {
4739 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4740 	netdev_features_t hw_vlan_features, vlan_features;
4741 	struct net_device *netdev = adapter->netdev;
4742 	netdev_features_t hw_enc_features;
4743 	netdev_features_t hw_features;
4744 
4745 	hw_enc_features = NETIF_F_SG			|
4746 			  NETIF_F_IP_CSUM		|
4747 			  NETIF_F_IPV6_CSUM		|
4748 			  NETIF_F_HIGHDMA		|
4749 			  NETIF_F_SOFT_FEATURES	|
4750 			  NETIF_F_TSO			|
4751 			  NETIF_F_TSO_ECN		|
4752 			  NETIF_F_TSO6			|
4753 			  NETIF_F_SCTP_CRC		|
4754 			  NETIF_F_RXHASH		|
4755 			  NETIF_F_RXCSUM		|
4756 			  0;
4757 
4758 	/* advertise to stack only if offloads for encapsulated packets is
4759 	 * supported
4760 	 */
4761 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4762 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4763 				   NETIF_F_GSO_GRE		|
4764 				   NETIF_F_GSO_GRE_CSUM		|
4765 				   NETIF_F_GSO_IPXIP4		|
4766 				   NETIF_F_GSO_IPXIP6		|
4767 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4768 				   NETIF_F_GSO_PARTIAL		|
4769 				   0;
4770 
4771 		if (!(vfres->vf_cap_flags &
4772 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4773 			netdev->gso_partial_features |=
4774 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4775 
4776 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4777 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4778 		netdev->hw_enc_features |= hw_enc_features;
4779 	}
4780 	/* record features VLANs can make use of */
4781 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4782 
4783 	/* Write features and hw_features separately to avoid polluting
4784 	 * with, or dropping, features that are set when we registered.
4785 	 */
4786 	hw_features = hw_enc_features;
4787 
4788 	/* get HW VLAN features that can be toggled */
4789 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4790 
4791 	/* Enable cloud filter if ADQ is supported */
4792 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4793 		hw_features |= NETIF_F_HW_TC;
4794 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4795 		hw_features |= NETIF_F_GSO_UDP_L4;
4796 
4797 	netdev->hw_features |= hw_features | hw_vlan_features;
4798 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4799 
4800 	netdev->features |= hw_features | vlan_features;
4801 
4802 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4803 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4804 
4805 	netdev->priv_flags |= IFF_UNICAST_FLT;
4806 
4807 	/* Do not turn on offloads when they are requested to be turned off.
4808 	 * TSO needs minimum 576 bytes to work correctly.
4809 	 */
4810 	if (netdev->wanted_features) {
4811 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4812 		    netdev->mtu < 576)
4813 			netdev->features &= ~NETIF_F_TSO;
4814 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4815 		    netdev->mtu < 576)
4816 			netdev->features &= ~NETIF_F_TSO6;
4817 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4818 			netdev->features &= ~NETIF_F_TSO_ECN;
4819 		if (!(netdev->wanted_features & NETIF_F_GRO))
4820 			netdev->features &= ~NETIF_F_GRO;
4821 		if (!(netdev->wanted_features & NETIF_F_GSO))
4822 			netdev->features &= ~NETIF_F_GSO;
4823 	}
4824 
4825 	return 0;
4826 }
4827 
4828 /**
4829  * iavf_shutdown - Shutdown the device in preparation for a reboot
4830  * @pdev: pci device structure
4831  **/
4832 static void iavf_shutdown(struct pci_dev *pdev)
4833 {
4834 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4835 	struct net_device *netdev = adapter->netdev;
4836 
4837 	netif_device_detach(netdev);
4838 
4839 	if (netif_running(netdev))
4840 		iavf_close(netdev);
4841 
4842 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4843 		dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__);
4844 	/* Prevent the watchdog from running. */
4845 	iavf_change_state(adapter, __IAVF_REMOVE);
4846 	adapter->aq_required = 0;
4847 	mutex_unlock(&adapter->crit_lock);
4848 
4849 #ifdef CONFIG_PM
4850 	pci_save_state(pdev);
4851 
4852 #endif
4853 	pci_disable_device(pdev);
4854 }
4855 
4856 /**
4857  * iavf_probe - Device Initialization Routine
4858  * @pdev: PCI device information struct
4859  * @ent: entry in iavf_pci_tbl
4860  *
4861  * Returns 0 on success, negative on failure
4862  *
4863  * iavf_probe initializes an adapter identified by a pci_dev structure.
4864  * The OS initialization, configuring of the adapter private structure,
4865  * and a hardware reset occur.
4866  **/
4867 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4868 {
4869 	struct net_device *netdev;
4870 	struct iavf_adapter *adapter = NULL;
4871 	struct iavf_hw *hw = NULL;
4872 	int err;
4873 
4874 	err = pci_enable_device(pdev);
4875 	if (err)
4876 		return err;
4877 
4878 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4879 	if (err) {
4880 		dev_err(&pdev->dev,
4881 			"DMA configuration failed: 0x%x\n", err);
4882 		goto err_dma;
4883 	}
4884 
4885 	err = pci_request_regions(pdev, iavf_driver_name);
4886 	if (err) {
4887 		dev_err(&pdev->dev,
4888 			"pci_request_regions failed 0x%x\n", err);
4889 		goto err_pci_reg;
4890 	}
4891 
4892 	pci_set_master(pdev);
4893 
4894 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4895 				   IAVF_MAX_REQ_QUEUES);
4896 	if (!netdev) {
4897 		err = -ENOMEM;
4898 		goto err_alloc_etherdev;
4899 	}
4900 
4901 	SET_NETDEV_DEV(netdev, &pdev->dev);
4902 
4903 	pci_set_drvdata(pdev, netdev);
4904 	adapter = netdev_priv(netdev);
4905 
4906 	adapter->netdev = netdev;
4907 	adapter->pdev = pdev;
4908 
4909 	hw = &adapter->hw;
4910 	hw->back = adapter;
4911 
4912 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4913 					      iavf_driver_name);
4914 	if (!adapter->wq) {
4915 		err = -ENOMEM;
4916 		goto err_alloc_wq;
4917 	}
4918 
4919 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4920 	iavf_change_state(adapter, __IAVF_STARTUP);
4921 
4922 	/* Call save state here because it relies on the adapter struct. */
4923 	pci_save_state(pdev);
4924 
4925 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4926 			      pci_resource_len(pdev, 0));
4927 	if (!hw->hw_addr) {
4928 		err = -EIO;
4929 		goto err_ioremap;
4930 	}
4931 	hw->vendor_id = pdev->vendor;
4932 	hw->device_id = pdev->device;
4933 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4934 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4935 	hw->subsystem_device_id = pdev->subsystem_device;
4936 	hw->bus.device = PCI_SLOT(pdev->devfn);
4937 	hw->bus.func = PCI_FUNC(pdev->devfn);
4938 	hw->bus.bus_id = pdev->bus->number;
4939 
4940 	/* set up the locks for the AQ, do this only once in probe
4941 	 * and destroy them only once in remove
4942 	 */
4943 	mutex_init(&adapter->crit_lock);
4944 	mutex_init(&hw->aq.asq_mutex);
4945 	mutex_init(&hw->aq.arq_mutex);
4946 
4947 	spin_lock_init(&adapter->mac_vlan_list_lock);
4948 	spin_lock_init(&adapter->cloud_filter_list_lock);
4949 	spin_lock_init(&adapter->fdir_fltr_lock);
4950 	spin_lock_init(&adapter->adv_rss_lock);
4951 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4952 
4953 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4954 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4955 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4956 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4957 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4958 
4959 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4960 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4961 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
4962 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4963 
4964 	/* Setup the wait queue for indicating transition to down status */
4965 	init_waitqueue_head(&adapter->down_waitqueue);
4966 
4967 	/* Setup the wait queue for indicating transition to running state */
4968 	init_waitqueue_head(&adapter->reset_waitqueue);
4969 
4970 	/* Setup the wait queue for indicating virtchannel events */
4971 	init_waitqueue_head(&adapter->vc_waitqueue);
4972 
4973 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
4974 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4975 	/* Initialization goes on in the work. Do not add more of it below. */
4976 	return 0;
4977 
4978 err_ioremap:
4979 	destroy_workqueue(adapter->wq);
4980 err_alloc_wq:
4981 	free_netdev(netdev);
4982 err_alloc_etherdev:
4983 	pci_release_regions(pdev);
4984 err_pci_reg:
4985 err_dma:
4986 	pci_disable_device(pdev);
4987 	return err;
4988 }
4989 
4990 /**
4991  * iavf_suspend - Power management suspend routine
4992  * @dev_d: device info pointer
4993  *
4994  * Called when the system (VM) is entering sleep/suspend.
4995  **/
4996 static int __maybe_unused iavf_suspend(struct device *dev_d)
4997 {
4998 	struct net_device *netdev = dev_get_drvdata(dev_d);
4999 	struct iavf_adapter *adapter = netdev_priv(netdev);
5000 
5001 	netif_device_detach(netdev);
5002 
5003 	mutex_lock(&adapter->crit_lock);
5004 
5005 	if (netif_running(netdev)) {
5006 		rtnl_lock();
5007 		iavf_down(adapter);
5008 		rtnl_unlock();
5009 	}
5010 	iavf_free_misc_irq(adapter);
5011 	iavf_reset_interrupt_capability(adapter);
5012 
5013 	mutex_unlock(&adapter->crit_lock);
5014 
5015 	return 0;
5016 }
5017 
5018 /**
5019  * iavf_resume - Power management resume routine
5020  * @dev_d: device info pointer
5021  *
5022  * Called when the system (VM) is resumed from sleep/suspend.
5023  **/
5024 static int __maybe_unused iavf_resume(struct device *dev_d)
5025 {
5026 	struct pci_dev *pdev = to_pci_dev(dev_d);
5027 	struct iavf_adapter *adapter;
5028 	u32 err;
5029 
5030 	adapter = iavf_pdev_to_adapter(pdev);
5031 
5032 	pci_set_master(pdev);
5033 
5034 	rtnl_lock();
5035 	err = iavf_set_interrupt_capability(adapter);
5036 	if (err) {
5037 		rtnl_unlock();
5038 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5039 		return err;
5040 	}
5041 	err = iavf_request_misc_irq(adapter);
5042 	rtnl_unlock();
5043 	if (err) {
5044 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5045 		return err;
5046 	}
5047 
5048 	queue_work(adapter->wq, &adapter->reset_task);
5049 
5050 	netif_device_attach(adapter->netdev);
5051 
5052 	return err;
5053 }
5054 
5055 /**
5056  * iavf_remove - Device Removal Routine
5057  * @pdev: PCI device information struct
5058  *
5059  * iavf_remove is called by the PCI subsystem to alert the driver
5060  * that it should release a PCI device.  The could be caused by a
5061  * Hot-Plug event, or because the driver is going to be removed from
5062  * memory.
5063  **/
5064 static void iavf_remove(struct pci_dev *pdev)
5065 {
5066 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5067 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5068 	struct iavf_vlan_filter *vlf, *vlftmp;
5069 	struct iavf_cloud_filter *cf, *cftmp;
5070 	struct iavf_adv_rss *rss, *rsstmp;
5071 	struct iavf_mac_filter *f, *ftmp;
5072 	struct net_device *netdev;
5073 	struct iavf_hw *hw;
5074 
5075 	netdev = adapter->netdev;
5076 	hw = &adapter->hw;
5077 
5078 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5079 		return;
5080 
5081 	/* Wait until port initialization is complete.
5082 	 * There are flows where register/unregister netdev may race.
5083 	 */
5084 	while (1) {
5085 		mutex_lock(&adapter->crit_lock);
5086 		if (adapter->state == __IAVF_RUNNING ||
5087 		    adapter->state == __IAVF_DOWN ||
5088 		    adapter->state == __IAVF_INIT_FAILED) {
5089 			mutex_unlock(&adapter->crit_lock);
5090 			break;
5091 		}
5092 		/* Simply return if we already went through iavf_shutdown */
5093 		if (adapter->state == __IAVF_REMOVE) {
5094 			mutex_unlock(&adapter->crit_lock);
5095 			return;
5096 		}
5097 
5098 		mutex_unlock(&adapter->crit_lock);
5099 		usleep_range(500, 1000);
5100 	}
5101 	cancel_delayed_work_sync(&adapter->watchdog_task);
5102 	cancel_work_sync(&adapter->finish_config);
5103 
5104 	if (netdev->reg_state == NETREG_REGISTERED)
5105 		unregister_netdev(netdev);
5106 
5107 	mutex_lock(&adapter->crit_lock);
5108 	dev_info(&adapter->pdev->dev, "Removing device\n");
5109 	iavf_change_state(adapter, __IAVF_REMOVE);
5110 
5111 	iavf_request_reset(adapter);
5112 	msleep(50);
5113 	/* If the FW isn't responding, kick it once, but only once. */
5114 	if (!iavf_asq_done(hw)) {
5115 		iavf_request_reset(adapter);
5116 		msleep(50);
5117 	}
5118 
5119 	iavf_misc_irq_disable(adapter);
5120 	/* Shut down all the garbage mashers on the detention level */
5121 	cancel_work_sync(&adapter->reset_task);
5122 	cancel_delayed_work_sync(&adapter->watchdog_task);
5123 	cancel_work_sync(&adapter->adminq_task);
5124 
5125 	adapter->aq_required = 0;
5126 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5127 
5128 	iavf_free_all_tx_resources(adapter);
5129 	iavf_free_all_rx_resources(adapter);
5130 	iavf_free_misc_irq(adapter);
5131 	iavf_free_interrupt_scheme(adapter);
5132 
5133 	iavf_free_rss(adapter);
5134 
5135 	if (hw->aq.asq.count)
5136 		iavf_shutdown_adminq(hw);
5137 
5138 	/* destroy the locks only once, here */
5139 	mutex_destroy(&hw->aq.arq_mutex);
5140 	mutex_destroy(&hw->aq.asq_mutex);
5141 	mutex_unlock(&adapter->crit_lock);
5142 	mutex_destroy(&adapter->crit_lock);
5143 
5144 	iounmap(hw->hw_addr);
5145 	pci_release_regions(pdev);
5146 	kfree(adapter->vf_res);
5147 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5148 	/* If we got removed before an up/down sequence, we've got a filter
5149 	 * hanging out there that we need to get rid of.
5150 	 */
5151 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5152 		list_del(&f->list);
5153 		kfree(f);
5154 	}
5155 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5156 				 list) {
5157 		list_del(&vlf->list);
5158 		kfree(vlf);
5159 	}
5160 
5161 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5162 
5163 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5164 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5165 		list_del(&cf->list);
5166 		kfree(cf);
5167 	}
5168 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5169 
5170 	spin_lock_bh(&adapter->fdir_fltr_lock);
5171 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5172 		list_del(&fdir->list);
5173 		kfree(fdir);
5174 	}
5175 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5176 
5177 	spin_lock_bh(&adapter->adv_rss_lock);
5178 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5179 				 list) {
5180 		list_del(&rss->list);
5181 		kfree(rss);
5182 	}
5183 	spin_unlock_bh(&adapter->adv_rss_lock);
5184 
5185 	destroy_workqueue(adapter->wq);
5186 
5187 	free_netdev(netdev);
5188 
5189 	pci_disable_device(pdev);
5190 }
5191 
5192 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5193 
5194 static struct pci_driver iavf_driver = {
5195 	.name      = iavf_driver_name,
5196 	.id_table  = iavf_pci_tbl,
5197 	.probe     = iavf_probe,
5198 	.remove    = iavf_remove,
5199 	.driver.pm = &iavf_pm_ops,
5200 	.shutdown  = iavf_shutdown,
5201 };
5202 
5203 /**
5204  * iavf_init_module - Driver Registration Routine
5205  *
5206  * iavf_init_module is the first routine called when the driver is
5207  * loaded. All it does is register with the PCI subsystem.
5208  **/
5209 static int __init iavf_init_module(void)
5210 {
5211 	pr_info("iavf: %s\n", iavf_driver_string);
5212 
5213 	pr_info("%s\n", iavf_copyright);
5214 
5215 	return pci_register_driver(&iavf_driver);
5216 }
5217 
5218 module_init(iavf_init_module);
5219 
5220 /**
5221  * iavf_exit_module - Driver Exit Cleanup Routine
5222  *
5223  * iavf_exit_module is called just before the driver is removed
5224  * from memory.
5225  **/
5226 static void __exit iavf_exit_module(void)
5227 {
5228 	pci_unregister_driver(&iavf_driver);
5229 }
5230 
5231 module_exit(iavf_exit_module);
5232 
5233 /* iavf_main.c */
5234