xref: /linux/drivers/net/ethernet/intel/iavf/iavf_main.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 					 struct iavf_dma_mem *mem,
63 					 u64 size, u32 alignment)
64 {
65 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66 
67 	if (!mem)
68 		return IAVF_ERR_PARAM;
69 
70 	mem->size = ALIGN(size, alignment);
71 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 	if (mem->va)
74 		return 0;
75 	else
76 		return IAVF_ERR_NO_MEMORY;
77 }
78 
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 				     struct iavf_dma_mem *mem)
86 {
87 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88 
89 	if (!mem || !mem->va)
90 		return IAVF_ERR_PARAM;
91 	dma_free_coherent(&adapter->pdev->dev, mem->size,
92 			  mem->va, (dma_addr_t)mem->pa);
93 	return 0;
94 }
95 
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 					  struct iavf_virt_mem *mem, u32 size)
104 {
105 	if (!mem)
106 		return IAVF_ERR_PARAM;
107 
108 	mem->size = size;
109 	mem->va = kzalloc(size, GFP_KERNEL);
110 
111 	if (mem->va)
112 		return 0;
113 	else
114 		return IAVF_ERR_NO_MEMORY;
115 }
116 
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 				      struct iavf_virt_mem *mem)
124 {
125 	if (!mem)
126 		return IAVF_ERR_PARAM;
127 
128 	/* it's ok to kfree a NULL pointer */
129 	kfree(mem->va);
130 
131 	return 0;
132 }
133 
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140 	if (!(adapter->flags &
141 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143 		queue_work(iavf_wq, &adapter->reset_task);
144 	}
145 }
146 
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  * @txqueue: queue number that is timing out
151  **/
152 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
153 {
154 	struct iavf_adapter *adapter = netdev_priv(netdev);
155 
156 	adapter->tx_timeout_count++;
157 	iavf_schedule_reset(adapter);
158 }
159 
160 /**
161  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
162  * @adapter: board private structure
163  **/
164 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
165 {
166 	struct iavf_hw *hw = &adapter->hw;
167 
168 	if (!adapter->msix_entries)
169 		return;
170 
171 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
172 
173 	iavf_flush(hw);
174 
175 	synchronize_irq(adapter->msix_entries[0].vector);
176 }
177 
178 /**
179  * iavf_misc_irq_enable - Enable default interrupt generation settings
180  * @adapter: board private structure
181  **/
182 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
183 {
184 	struct iavf_hw *hw = &adapter->hw;
185 
186 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
187 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
188 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
189 
190 	iavf_flush(hw);
191 }
192 
193 /**
194  * iavf_irq_disable - Mask off interrupt generation on the NIC
195  * @adapter: board private structure
196  **/
197 static void iavf_irq_disable(struct iavf_adapter *adapter)
198 {
199 	int i;
200 	struct iavf_hw *hw = &adapter->hw;
201 
202 	if (!adapter->msix_entries)
203 		return;
204 
205 	for (i = 1; i < adapter->num_msix_vectors; i++) {
206 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
207 		synchronize_irq(adapter->msix_entries[i].vector);
208 	}
209 	iavf_flush(hw);
210 }
211 
212 /**
213  * iavf_irq_enable_queues - Enable interrupt for specified queues
214  * @adapter: board private structure
215  * @mask: bitmap of queues to enable
216  **/
217 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
218 {
219 	struct iavf_hw *hw = &adapter->hw;
220 	int i;
221 
222 	for (i = 1; i < adapter->num_msix_vectors; i++) {
223 		if (mask & BIT(i - 1)) {
224 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
225 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
226 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
227 		}
228 	}
229 }
230 
231 /**
232  * iavf_irq_enable - Enable default interrupt generation settings
233  * @adapter: board private structure
234  * @flush: boolean value whether to run rd32()
235  **/
236 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
237 {
238 	struct iavf_hw *hw = &adapter->hw;
239 
240 	iavf_misc_irq_enable(adapter);
241 	iavf_irq_enable_queues(adapter, ~0);
242 
243 	if (flush)
244 		iavf_flush(hw);
245 }
246 
247 /**
248  * iavf_msix_aq - Interrupt handler for vector 0
249  * @irq: interrupt number
250  * @data: pointer to netdev
251  **/
252 static irqreturn_t iavf_msix_aq(int irq, void *data)
253 {
254 	struct net_device *netdev = data;
255 	struct iavf_adapter *adapter = netdev_priv(netdev);
256 	struct iavf_hw *hw = &adapter->hw;
257 
258 	/* handle non-queue interrupts, these reads clear the registers */
259 	rd32(hw, IAVF_VFINT_ICR01);
260 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
261 
262 	/* schedule work on the private workqueue */
263 	queue_work(iavf_wq, &adapter->adminq_task);
264 
265 	return IRQ_HANDLED;
266 }
267 
268 /**
269  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
270  * @irq: interrupt number
271  * @data: pointer to a q_vector
272  **/
273 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
274 {
275 	struct iavf_q_vector *q_vector = data;
276 
277 	if (!q_vector->tx.ring && !q_vector->rx.ring)
278 		return IRQ_HANDLED;
279 
280 	napi_schedule_irqoff(&q_vector->napi);
281 
282 	return IRQ_HANDLED;
283 }
284 
285 /**
286  * iavf_map_vector_to_rxq - associate irqs with rx queues
287  * @adapter: board private structure
288  * @v_idx: interrupt number
289  * @r_idx: queue number
290  **/
291 static void
292 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
293 {
294 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
295 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
296 	struct iavf_hw *hw = &adapter->hw;
297 
298 	rx_ring->q_vector = q_vector;
299 	rx_ring->next = q_vector->rx.ring;
300 	rx_ring->vsi = &adapter->vsi;
301 	q_vector->rx.ring = rx_ring;
302 	q_vector->rx.count++;
303 	q_vector->rx.next_update = jiffies + 1;
304 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
305 	q_vector->ring_mask |= BIT(r_idx);
306 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
307 	     q_vector->rx.current_itr >> 1);
308 	q_vector->rx.current_itr = q_vector->rx.target_itr;
309 }
310 
311 /**
312  * iavf_map_vector_to_txq - associate irqs with tx queues
313  * @adapter: board private structure
314  * @v_idx: interrupt number
315  * @t_idx: queue number
316  **/
317 static void
318 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
319 {
320 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
321 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
322 	struct iavf_hw *hw = &adapter->hw;
323 
324 	tx_ring->q_vector = q_vector;
325 	tx_ring->next = q_vector->tx.ring;
326 	tx_ring->vsi = &adapter->vsi;
327 	q_vector->tx.ring = tx_ring;
328 	q_vector->tx.count++;
329 	q_vector->tx.next_update = jiffies + 1;
330 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
331 	q_vector->num_ringpairs++;
332 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
333 	     q_vector->tx.target_itr >> 1);
334 	q_vector->tx.current_itr = q_vector->tx.target_itr;
335 }
336 
337 /**
338  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
339  * @adapter: board private structure to initialize
340  *
341  * This function maps descriptor rings to the queue-specific vectors
342  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
343  * one vector per ring/queue, but on a constrained vector budget, we
344  * group the rings as "efficiently" as possible.  You would add new
345  * mapping configurations in here.
346  **/
347 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
348 {
349 	int rings_remaining = adapter->num_active_queues;
350 	int ridx = 0, vidx = 0;
351 	int q_vectors;
352 
353 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
354 
355 	for (; ridx < rings_remaining; ridx++) {
356 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
357 		iavf_map_vector_to_txq(adapter, vidx, ridx);
358 
359 		/* In the case where we have more queues than vectors, continue
360 		 * round-robin on vectors until all queues are mapped.
361 		 */
362 		if (++vidx >= q_vectors)
363 			vidx = 0;
364 	}
365 
366 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
367 }
368 
369 /**
370  * iavf_irq_affinity_notify - Callback for affinity changes
371  * @notify: context as to what irq was changed
372  * @mask: the new affinity mask
373  *
374  * This is a callback function used by the irq_set_affinity_notifier function
375  * so that we may register to receive changes to the irq affinity masks.
376  **/
377 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
378 				     const cpumask_t *mask)
379 {
380 	struct iavf_q_vector *q_vector =
381 		container_of(notify, struct iavf_q_vector, affinity_notify);
382 
383 	cpumask_copy(&q_vector->affinity_mask, mask);
384 }
385 
386 /**
387  * iavf_irq_affinity_release - Callback for affinity notifier release
388  * @ref: internal core kernel usage
389  *
390  * This is a callback function used by the irq_set_affinity_notifier function
391  * to inform the current notification subscriber that they will no longer
392  * receive notifications.
393  **/
394 static void iavf_irq_affinity_release(struct kref *ref) {}
395 
396 /**
397  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
398  * @adapter: board private structure
399  * @basename: device basename
400  *
401  * Allocates MSI-X vectors for tx and rx handling, and requests
402  * interrupts from the kernel.
403  **/
404 static int
405 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
406 {
407 	unsigned int vector, q_vectors;
408 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
409 	int irq_num, err;
410 	int cpu;
411 
412 	iavf_irq_disable(adapter);
413 	/* Decrement for Other and TCP Timer vectors */
414 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
415 
416 	for (vector = 0; vector < q_vectors; vector++) {
417 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
418 
419 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
420 
421 		if (q_vector->tx.ring && q_vector->rx.ring) {
422 			snprintf(q_vector->name, sizeof(q_vector->name),
423 				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
424 			tx_int_idx++;
425 		} else if (q_vector->rx.ring) {
426 			snprintf(q_vector->name, sizeof(q_vector->name),
427 				 "iavf-%s-rx-%d", basename, rx_int_idx++);
428 		} else if (q_vector->tx.ring) {
429 			snprintf(q_vector->name, sizeof(q_vector->name),
430 				 "iavf-%s-tx-%d", basename, tx_int_idx++);
431 		} else {
432 			/* skip this unused q_vector */
433 			continue;
434 		}
435 		err = request_irq(irq_num,
436 				  iavf_msix_clean_rings,
437 				  0,
438 				  q_vector->name,
439 				  q_vector);
440 		if (err) {
441 			dev_info(&adapter->pdev->dev,
442 				 "Request_irq failed, error: %d\n", err);
443 			goto free_queue_irqs;
444 		}
445 		/* register for affinity change notifications */
446 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
447 		q_vector->affinity_notify.release =
448 						   iavf_irq_affinity_release;
449 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
450 		/* Spread the IRQ affinity hints across online CPUs. Note that
451 		 * get_cpu_mask returns a mask with a permanent lifetime so
452 		 * it's safe to use as a hint for irq_set_affinity_hint.
453 		 */
454 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
455 		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
456 	}
457 
458 	return 0;
459 
460 free_queue_irqs:
461 	while (vector) {
462 		vector--;
463 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
464 		irq_set_affinity_notifier(irq_num, NULL);
465 		irq_set_affinity_hint(irq_num, NULL);
466 		free_irq(irq_num, &adapter->q_vectors[vector]);
467 	}
468 	return err;
469 }
470 
471 /**
472  * iavf_request_misc_irq - Initialize MSI-X interrupts
473  * @adapter: board private structure
474  *
475  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
476  * vector is only for the admin queue, and stays active even when the netdev
477  * is closed.
478  **/
479 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
480 {
481 	struct net_device *netdev = adapter->netdev;
482 	int err;
483 
484 	snprintf(adapter->misc_vector_name,
485 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
486 		 dev_name(&adapter->pdev->dev));
487 	err = request_irq(adapter->msix_entries[0].vector,
488 			  &iavf_msix_aq, 0,
489 			  adapter->misc_vector_name, netdev);
490 	if (err) {
491 		dev_err(&adapter->pdev->dev,
492 			"request_irq for %s failed: %d\n",
493 			adapter->misc_vector_name, err);
494 		free_irq(adapter->msix_entries[0].vector, netdev);
495 	}
496 	return err;
497 }
498 
499 /**
500  * iavf_free_traffic_irqs - Free MSI-X interrupts
501  * @adapter: board private structure
502  *
503  * Frees all MSI-X vectors other than 0.
504  **/
505 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
506 {
507 	int vector, irq_num, q_vectors;
508 
509 	if (!adapter->msix_entries)
510 		return;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (vector = 0; vector < q_vectors; vector++) {
515 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
516 		irq_set_affinity_notifier(irq_num, NULL);
517 		irq_set_affinity_hint(irq_num, NULL);
518 		free_irq(irq_num, &adapter->q_vectors[vector]);
519 	}
520 }
521 
522 /**
523  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
524  * @adapter: board private structure
525  *
526  * Frees MSI-X vector 0.
527  **/
528 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
529 {
530 	struct net_device *netdev = adapter->netdev;
531 
532 	if (!adapter->msix_entries)
533 		return;
534 
535 	free_irq(adapter->msix_entries[0].vector, netdev);
536 }
537 
538 /**
539  * iavf_configure_tx - Configure Transmit Unit after Reset
540  * @adapter: board private structure
541  *
542  * Configure the Tx unit of the MAC after a reset.
543  **/
544 static void iavf_configure_tx(struct iavf_adapter *adapter)
545 {
546 	struct iavf_hw *hw = &adapter->hw;
547 	int i;
548 
549 	for (i = 0; i < adapter->num_active_queues; i++)
550 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
551 }
552 
553 /**
554  * iavf_configure_rx - Configure Receive Unit after Reset
555  * @adapter: board private structure
556  *
557  * Configure the Rx unit of the MAC after a reset.
558  **/
559 static void iavf_configure_rx(struct iavf_adapter *adapter)
560 {
561 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
562 	struct iavf_hw *hw = &adapter->hw;
563 	int i;
564 
565 	/* Legacy Rx will always default to a 2048 buffer size. */
566 #if (PAGE_SIZE < 8192)
567 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
568 		struct net_device *netdev = adapter->netdev;
569 
570 		/* For jumbo frames on systems with 4K pages we have to use
571 		 * an order 1 page, so we might as well increase the size
572 		 * of our Rx buffer to make better use of the available space
573 		 */
574 		rx_buf_len = IAVF_RXBUFFER_3072;
575 
576 		/* We use a 1536 buffer size for configurations with
577 		 * standard Ethernet mtu.  On x86 this gives us enough room
578 		 * for shared info and 192 bytes of padding.
579 		 */
580 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
581 		    (netdev->mtu <= ETH_DATA_LEN))
582 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
583 	}
584 #endif
585 
586 	for (i = 0; i < adapter->num_active_queues; i++) {
587 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
588 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
589 
590 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
591 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
592 		else
593 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
594 	}
595 }
596 
597 /**
598  * iavf_find_vlan - Search filter list for specific vlan filter
599  * @adapter: board private structure
600  * @vlan: vlan tag
601  *
602  * Returns ptr to the filter object or NULL. Must be called while holding the
603  * mac_vlan_list_lock.
604  **/
605 static struct
606 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
607 {
608 	struct iavf_vlan_filter *f;
609 
610 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
611 		if (vlan == f->vlan)
612 			return f;
613 	}
614 	return NULL;
615 }
616 
617 /**
618  * iavf_add_vlan - Add a vlan filter to the list
619  * @adapter: board private structure
620  * @vlan: VLAN tag
621  *
622  * Returns ptr to the filter object or NULL when no memory available.
623  **/
624 static struct
625 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
626 {
627 	struct iavf_vlan_filter *f = NULL;
628 
629 	spin_lock_bh(&adapter->mac_vlan_list_lock);
630 
631 	f = iavf_find_vlan(adapter, vlan);
632 	if (!f) {
633 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
634 		if (!f)
635 			goto clearout;
636 
637 		f->vlan = vlan;
638 
639 		list_add_tail(&f->list, &adapter->vlan_filter_list);
640 		f->add = true;
641 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
642 	}
643 
644 clearout:
645 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
646 	return f;
647 }
648 
649 /**
650  * iavf_del_vlan - Remove a vlan filter from the list
651  * @adapter: board private structure
652  * @vlan: VLAN tag
653  **/
654 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
655 {
656 	struct iavf_vlan_filter *f;
657 
658 	spin_lock_bh(&adapter->mac_vlan_list_lock);
659 
660 	f = iavf_find_vlan(adapter, vlan);
661 	if (f) {
662 		f->remove = true;
663 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
664 	}
665 
666 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 }
668 
669 /**
670  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
671  * @netdev: network device struct
672  * @proto: unused protocol data
673  * @vid: VLAN tag
674  **/
675 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
676 				__always_unused __be16 proto, u16 vid)
677 {
678 	struct iavf_adapter *adapter = netdev_priv(netdev);
679 
680 	if (!VLAN_ALLOWED(adapter))
681 		return -EIO;
682 	if (iavf_add_vlan(adapter, vid) == NULL)
683 		return -ENOMEM;
684 	return 0;
685 }
686 
687 /**
688  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
689  * @netdev: network device struct
690  * @proto: unused protocol data
691  * @vid: VLAN tag
692  **/
693 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
694 				 __always_unused __be16 proto, u16 vid)
695 {
696 	struct iavf_adapter *adapter = netdev_priv(netdev);
697 
698 	if (VLAN_ALLOWED(adapter)) {
699 		iavf_del_vlan(adapter, vid);
700 		return 0;
701 	}
702 	return -EIO;
703 }
704 
705 /**
706  * iavf_find_filter - Search filter list for specific mac filter
707  * @adapter: board private structure
708  * @macaddr: the MAC address
709  *
710  * Returns ptr to the filter object or NULL. Must be called while holding the
711  * mac_vlan_list_lock.
712  **/
713 static struct
714 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
715 				  const u8 *macaddr)
716 {
717 	struct iavf_mac_filter *f;
718 
719 	if (!macaddr)
720 		return NULL;
721 
722 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
723 		if (ether_addr_equal(macaddr, f->macaddr))
724 			return f;
725 	}
726 	return NULL;
727 }
728 
729 /**
730  * iavf_add_filter - Add a mac filter to the filter list
731  * @adapter: board private structure
732  * @macaddr: the MAC address
733  *
734  * Returns ptr to the filter object or NULL when no memory available.
735  **/
736 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
737 					const u8 *macaddr)
738 {
739 	struct iavf_mac_filter *f;
740 
741 	if (!macaddr)
742 		return NULL;
743 
744 	f = iavf_find_filter(adapter, macaddr);
745 	if (!f) {
746 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
747 		if (!f)
748 			return f;
749 
750 		ether_addr_copy(f->macaddr, macaddr);
751 
752 		list_add_tail(&f->list, &adapter->mac_filter_list);
753 		f->add = true;
754 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
755 	} else {
756 		f->remove = false;
757 	}
758 
759 	return f;
760 }
761 
762 /**
763  * iavf_set_mac - NDO callback to set port mac address
764  * @netdev: network interface device structure
765  * @p: pointer to an address structure
766  *
767  * Returns 0 on success, negative on failure
768  **/
769 static int iavf_set_mac(struct net_device *netdev, void *p)
770 {
771 	struct iavf_adapter *adapter = netdev_priv(netdev);
772 	struct iavf_hw *hw = &adapter->hw;
773 	struct iavf_mac_filter *f;
774 	struct sockaddr *addr = p;
775 
776 	if (!is_valid_ether_addr(addr->sa_data))
777 		return -EADDRNOTAVAIL;
778 
779 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
780 		return 0;
781 
782 	spin_lock_bh(&adapter->mac_vlan_list_lock);
783 
784 	f = iavf_find_filter(adapter, hw->mac.addr);
785 	if (f) {
786 		f->remove = true;
787 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
788 	}
789 
790 	f = iavf_add_filter(adapter, addr->sa_data);
791 
792 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
793 
794 	if (f) {
795 		ether_addr_copy(hw->mac.addr, addr->sa_data);
796 	}
797 
798 	return (f == NULL) ? -ENOMEM : 0;
799 }
800 
801 /**
802  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
803  * @netdev: the netdevice
804  * @addr: address to add
805  *
806  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
807  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
808  */
809 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
810 {
811 	struct iavf_adapter *adapter = netdev_priv(netdev);
812 
813 	if (iavf_add_filter(adapter, addr))
814 		return 0;
815 	else
816 		return -ENOMEM;
817 }
818 
819 /**
820  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
821  * @netdev: the netdevice
822  * @addr: address to add
823  *
824  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
825  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
826  */
827 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
828 {
829 	struct iavf_adapter *adapter = netdev_priv(netdev);
830 	struct iavf_mac_filter *f;
831 
832 	/* Under some circumstances, we might receive a request to delete
833 	 * our own device address from our uc list. Because we store the
834 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
835 	 * such requests and not delete our device address from this list.
836 	 */
837 	if (ether_addr_equal(addr, netdev->dev_addr))
838 		return 0;
839 
840 	f = iavf_find_filter(adapter, addr);
841 	if (f) {
842 		f->remove = true;
843 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
844 	}
845 	return 0;
846 }
847 
848 /**
849  * iavf_set_rx_mode - NDO callback to set the netdev filters
850  * @netdev: network interface device structure
851  **/
852 static void iavf_set_rx_mode(struct net_device *netdev)
853 {
854 	struct iavf_adapter *adapter = netdev_priv(netdev);
855 
856 	spin_lock_bh(&adapter->mac_vlan_list_lock);
857 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
859 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
860 
861 	if (netdev->flags & IFF_PROMISC &&
862 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
863 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
864 	else if (!(netdev->flags & IFF_PROMISC) &&
865 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
866 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
867 
868 	if (netdev->flags & IFF_ALLMULTI &&
869 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
870 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
871 	else if (!(netdev->flags & IFF_ALLMULTI) &&
872 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
873 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
874 }
875 
876 /**
877  * iavf_napi_enable_all - enable NAPI on all queue vectors
878  * @adapter: board private structure
879  **/
880 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
881 {
882 	int q_idx;
883 	struct iavf_q_vector *q_vector;
884 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
885 
886 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
887 		struct napi_struct *napi;
888 
889 		q_vector = &adapter->q_vectors[q_idx];
890 		napi = &q_vector->napi;
891 		napi_enable(napi);
892 	}
893 }
894 
895 /**
896  * iavf_napi_disable_all - disable NAPI on all queue vectors
897  * @adapter: board private structure
898  **/
899 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
900 {
901 	int q_idx;
902 	struct iavf_q_vector *q_vector;
903 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
904 
905 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
906 		q_vector = &adapter->q_vectors[q_idx];
907 		napi_disable(&q_vector->napi);
908 	}
909 }
910 
911 /**
912  * iavf_configure - set up transmit and receive data structures
913  * @adapter: board private structure
914  **/
915 static void iavf_configure(struct iavf_adapter *adapter)
916 {
917 	struct net_device *netdev = adapter->netdev;
918 	int i;
919 
920 	iavf_set_rx_mode(netdev);
921 
922 	iavf_configure_tx(adapter);
923 	iavf_configure_rx(adapter);
924 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
925 
926 	for (i = 0; i < adapter->num_active_queues; i++) {
927 		struct iavf_ring *ring = &adapter->rx_rings[i];
928 
929 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
930 	}
931 }
932 
933 /**
934  * iavf_up_complete - Finish the last steps of bringing up a connection
935  * @adapter: board private structure
936  *
937  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
938  **/
939 static void iavf_up_complete(struct iavf_adapter *adapter)
940 {
941 	adapter->state = __IAVF_RUNNING;
942 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
943 
944 	iavf_napi_enable_all(adapter);
945 
946 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
947 	if (CLIENT_ENABLED(adapter))
948 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
949 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
950 }
951 
952 /**
953  * iavf_down - Shutdown the connection processing
954  * @adapter: board private structure
955  *
956  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
957  **/
958 void iavf_down(struct iavf_adapter *adapter)
959 {
960 	struct net_device *netdev = adapter->netdev;
961 	struct iavf_vlan_filter *vlf;
962 	struct iavf_cloud_filter *cf;
963 	struct iavf_fdir_fltr *fdir;
964 	struct iavf_mac_filter *f;
965 	struct iavf_adv_rss *rss;
966 
967 	if (adapter->state <= __IAVF_DOWN_PENDING)
968 		return;
969 
970 	netif_carrier_off(netdev);
971 	netif_tx_disable(netdev);
972 	adapter->link_up = false;
973 	iavf_napi_disable_all(adapter);
974 	iavf_irq_disable(adapter);
975 
976 	spin_lock_bh(&adapter->mac_vlan_list_lock);
977 
978 	/* clear the sync flag on all filters */
979 	__dev_uc_unsync(adapter->netdev, NULL);
980 	__dev_mc_unsync(adapter->netdev, NULL);
981 
982 	/* remove all MAC filters */
983 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
984 		f->remove = true;
985 	}
986 
987 	/* remove all VLAN filters */
988 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
989 		vlf->remove = true;
990 	}
991 
992 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
993 
994 	/* remove all cloud filters */
995 	spin_lock_bh(&adapter->cloud_filter_list_lock);
996 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
997 		cf->del = true;
998 	}
999 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1000 
1001 	/* remove all Flow Director filters */
1002 	spin_lock_bh(&adapter->fdir_fltr_lock);
1003 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1004 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1005 	}
1006 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1007 
1008 	/* remove all advance RSS configuration */
1009 	spin_lock_bh(&adapter->adv_rss_lock);
1010 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1011 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1012 	spin_unlock_bh(&adapter->adv_rss_lock);
1013 
1014 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1015 	    adapter->state != __IAVF_RESETTING) {
1016 		/* cancel any current operation */
1017 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1018 		/* Schedule operations to close down the HW. Don't wait
1019 		 * here for this to complete. The watchdog is still running
1020 		 * and it will take care of this.
1021 		 */
1022 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1024 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1025 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1026 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1027 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1028 	}
1029 
1030 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1031 }
1032 
1033 /**
1034  * iavf_acquire_msix_vectors - Setup the MSIX capability
1035  * @adapter: board private structure
1036  * @vectors: number of vectors to request
1037  *
1038  * Work with the OS to set up the MSIX vectors needed.
1039  *
1040  * Returns 0 on success, negative on failure
1041  **/
1042 static int
1043 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1044 {
1045 	int err, vector_threshold;
1046 
1047 	/* We'll want at least 3 (vector_threshold):
1048 	 * 0) Other (Admin Queue and link, mostly)
1049 	 * 1) TxQ[0] Cleanup
1050 	 * 2) RxQ[0] Cleanup
1051 	 */
1052 	vector_threshold = MIN_MSIX_COUNT;
1053 
1054 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1055 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1056 	 * Right now, we simply care about how many we'll get; we'll
1057 	 * set them up later while requesting irq's.
1058 	 */
1059 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1060 				    vector_threshold, vectors);
1061 	if (err < 0) {
1062 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1063 		kfree(adapter->msix_entries);
1064 		adapter->msix_entries = NULL;
1065 		return err;
1066 	}
1067 
1068 	/* Adjust for only the vectors we'll use, which is minimum
1069 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1070 	 * vectors we were allocated.
1071 	 */
1072 	adapter->num_msix_vectors = err;
1073 	return 0;
1074 }
1075 
1076 /**
1077  * iavf_free_queues - Free memory for all rings
1078  * @adapter: board private structure to initialize
1079  *
1080  * Free all of the memory associated with queue pairs.
1081  **/
1082 static void iavf_free_queues(struct iavf_adapter *adapter)
1083 {
1084 	if (!adapter->vsi_res)
1085 		return;
1086 	adapter->num_active_queues = 0;
1087 	kfree(adapter->tx_rings);
1088 	adapter->tx_rings = NULL;
1089 	kfree(adapter->rx_rings);
1090 	adapter->rx_rings = NULL;
1091 }
1092 
1093 /**
1094  * iavf_alloc_queues - Allocate memory for all rings
1095  * @adapter: board private structure to initialize
1096  *
1097  * We allocate one ring per queue at run-time since we don't know the
1098  * number of queues at compile-time.  The polling_netdev array is
1099  * intended for Multiqueue, but should work fine with a single queue.
1100  **/
1101 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1102 {
1103 	int i, num_active_queues;
1104 
1105 	/* If we're in reset reallocating queues we don't actually know yet for
1106 	 * certain the PF gave us the number of queues we asked for but we'll
1107 	 * assume it did.  Once basic reset is finished we'll confirm once we
1108 	 * start negotiating config with PF.
1109 	 */
1110 	if (adapter->num_req_queues)
1111 		num_active_queues = adapter->num_req_queues;
1112 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1113 		 adapter->num_tc)
1114 		num_active_queues = adapter->ch_config.total_qps;
1115 	else
1116 		num_active_queues = min_t(int,
1117 					  adapter->vsi_res->num_queue_pairs,
1118 					  (int)(num_online_cpus()));
1119 
1120 
1121 	adapter->tx_rings = kcalloc(num_active_queues,
1122 				    sizeof(struct iavf_ring), GFP_KERNEL);
1123 	if (!adapter->tx_rings)
1124 		goto err_out;
1125 	adapter->rx_rings = kcalloc(num_active_queues,
1126 				    sizeof(struct iavf_ring), GFP_KERNEL);
1127 	if (!adapter->rx_rings)
1128 		goto err_out;
1129 
1130 	for (i = 0; i < num_active_queues; i++) {
1131 		struct iavf_ring *tx_ring;
1132 		struct iavf_ring *rx_ring;
1133 
1134 		tx_ring = &adapter->tx_rings[i];
1135 
1136 		tx_ring->queue_index = i;
1137 		tx_ring->netdev = adapter->netdev;
1138 		tx_ring->dev = &adapter->pdev->dev;
1139 		tx_ring->count = adapter->tx_desc_count;
1140 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1141 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1142 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1143 
1144 		rx_ring = &adapter->rx_rings[i];
1145 		rx_ring->queue_index = i;
1146 		rx_ring->netdev = adapter->netdev;
1147 		rx_ring->dev = &adapter->pdev->dev;
1148 		rx_ring->count = adapter->rx_desc_count;
1149 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1150 	}
1151 
1152 	adapter->num_active_queues = num_active_queues;
1153 
1154 	return 0;
1155 
1156 err_out:
1157 	iavf_free_queues(adapter);
1158 	return -ENOMEM;
1159 }
1160 
1161 /**
1162  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1163  * @adapter: board private structure to initialize
1164  *
1165  * Attempt to configure the interrupts using the best available
1166  * capabilities of the hardware and the kernel.
1167  **/
1168 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1169 {
1170 	int vector, v_budget;
1171 	int pairs = 0;
1172 	int err = 0;
1173 
1174 	if (!adapter->vsi_res) {
1175 		err = -EIO;
1176 		goto out;
1177 	}
1178 	pairs = adapter->num_active_queues;
1179 
1180 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1181 	 * us much good if we have more vectors than CPUs. However, we already
1182 	 * limit the total number of queues by the number of CPUs so we do not
1183 	 * need any further limiting here.
1184 	 */
1185 	v_budget = min_t(int, pairs + NONQ_VECS,
1186 			 (int)adapter->vf_res->max_vectors);
1187 
1188 	adapter->msix_entries = kcalloc(v_budget,
1189 					sizeof(struct msix_entry), GFP_KERNEL);
1190 	if (!adapter->msix_entries) {
1191 		err = -ENOMEM;
1192 		goto out;
1193 	}
1194 
1195 	for (vector = 0; vector < v_budget; vector++)
1196 		adapter->msix_entries[vector].entry = vector;
1197 
1198 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1199 
1200 out:
1201 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1202 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1203 	return err;
1204 }
1205 
1206 /**
1207  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1208  * @adapter: board private structure
1209  *
1210  * Return 0 on success, negative on failure
1211  **/
1212 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1213 {
1214 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1215 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1216 	struct iavf_hw *hw = &adapter->hw;
1217 	int ret = 0;
1218 
1219 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1220 		/* bail because we already have a command pending */
1221 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1222 			adapter->current_op);
1223 		return -EBUSY;
1224 	}
1225 
1226 	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1227 	if (ret) {
1228 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1229 			iavf_stat_str(hw, ret),
1230 			iavf_aq_str(hw, hw->aq.asq_last_status));
1231 		return ret;
1232 
1233 	}
1234 
1235 	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1236 				  adapter->rss_lut, adapter->rss_lut_size);
1237 	if (ret) {
1238 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1239 			iavf_stat_str(hw, ret),
1240 			iavf_aq_str(hw, hw->aq.asq_last_status));
1241 	}
1242 
1243 	return ret;
1244 
1245 }
1246 
1247 /**
1248  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1249  * @adapter: board private structure
1250  *
1251  * Returns 0 on success, negative on failure
1252  **/
1253 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1254 {
1255 	struct iavf_hw *hw = &adapter->hw;
1256 	u32 *dw;
1257 	u16 i;
1258 
1259 	dw = (u32 *)adapter->rss_key;
1260 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1261 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1262 
1263 	dw = (u32 *)adapter->rss_lut;
1264 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1265 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1266 
1267 	iavf_flush(hw);
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * iavf_config_rss - Configure RSS keys and lut
1274  * @adapter: board private structure
1275  *
1276  * Returns 0 on success, negative on failure
1277  **/
1278 int iavf_config_rss(struct iavf_adapter *adapter)
1279 {
1280 
1281 	if (RSS_PF(adapter)) {
1282 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1283 					IAVF_FLAG_AQ_SET_RSS_KEY;
1284 		return 0;
1285 	} else if (RSS_AQ(adapter)) {
1286 		return iavf_config_rss_aq(adapter);
1287 	} else {
1288 		return iavf_config_rss_reg(adapter);
1289 	}
1290 }
1291 
1292 /**
1293  * iavf_fill_rss_lut - Fill the lut with default values
1294  * @adapter: board private structure
1295  **/
1296 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1297 {
1298 	u16 i;
1299 
1300 	for (i = 0; i < adapter->rss_lut_size; i++)
1301 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1302 }
1303 
1304 /**
1305  * iavf_init_rss - Prepare for RSS
1306  * @adapter: board private structure
1307  *
1308  * Return 0 on success, negative on failure
1309  **/
1310 static int iavf_init_rss(struct iavf_adapter *adapter)
1311 {
1312 	struct iavf_hw *hw = &adapter->hw;
1313 	int ret;
1314 
1315 	if (!RSS_PF(adapter)) {
1316 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1317 		if (adapter->vf_res->vf_cap_flags &
1318 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1319 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1320 		else
1321 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1322 
1323 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1324 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1325 	}
1326 
1327 	iavf_fill_rss_lut(adapter);
1328 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1329 	ret = iavf_config_rss(adapter);
1330 
1331 	return ret;
1332 }
1333 
1334 /**
1335  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1336  * @adapter: board private structure to initialize
1337  *
1338  * We allocate one q_vector per queue interrupt.  If allocation fails we
1339  * return -ENOMEM.
1340  **/
1341 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1342 {
1343 	int q_idx = 0, num_q_vectors;
1344 	struct iavf_q_vector *q_vector;
1345 
1346 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1347 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1348 				     GFP_KERNEL);
1349 	if (!adapter->q_vectors)
1350 		return -ENOMEM;
1351 
1352 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1353 		q_vector = &adapter->q_vectors[q_idx];
1354 		q_vector->adapter = adapter;
1355 		q_vector->vsi = &adapter->vsi;
1356 		q_vector->v_idx = q_idx;
1357 		q_vector->reg_idx = q_idx;
1358 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1359 		netif_napi_add(adapter->netdev, &q_vector->napi,
1360 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1368  * @adapter: board private structure to initialize
1369  *
1370  * This function frees the memory allocated to the q_vectors.  In addition if
1371  * NAPI is enabled it will delete any references to the NAPI struct prior
1372  * to freeing the q_vector.
1373  **/
1374 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1375 {
1376 	int q_idx, num_q_vectors;
1377 	int napi_vectors;
1378 
1379 	if (!adapter->q_vectors)
1380 		return;
1381 
1382 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1383 	napi_vectors = adapter->num_active_queues;
1384 
1385 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1386 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1387 
1388 		if (q_idx < napi_vectors)
1389 			netif_napi_del(&q_vector->napi);
1390 	}
1391 	kfree(adapter->q_vectors);
1392 	adapter->q_vectors = NULL;
1393 }
1394 
1395 /**
1396  * iavf_reset_interrupt_capability - Reset MSIX setup
1397  * @adapter: board private structure
1398  *
1399  **/
1400 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1401 {
1402 	if (!adapter->msix_entries)
1403 		return;
1404 
1405 	pci_disable_msix(adapter->pdev);
1406 	kfree(adapter->msix_entries);
1407 	adapter->msix_entries = NULL;
1408 }
1409 
1410 /**
1411  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1412  * @adapter: board private structure to initialize
1413  *
1414  **/
1415 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1416 {
1417 	int err;
1418 
1419 	err = iavf_alloc_queues(adapter);
1420 	if (err) {
1421 		dev_err(&adapter->pdev->dev,
1422 			"Unable to allocate memory for queues\n");
1423 		goto err_alloc_queues;
1424 	}
1425 
1426 	rtnl_lock();
1427 	err = iavf_set_interrupt_capability(adapter);
1428 	rtnl_unlock();
1429 	if (err) {
1430 		dev_err(&adapter->pdev->dev,
1431 			"Unable to setup interrupt capabilities\n");
1432 		goto err_set_interrupt;
1433 	}
1434 
1435 	err = iavf_alloc_q_vectors(adapter);
1436 	if (err) {
1437 		dev_err(&adapter->pdev->dev,
1438 			"Unable to allocate memory for queue vectors\n");
1439 		goto err_alloc_q_vectors;
1440 	}
1441 
1442 	/* If we've made it so far while ADq flag being ON, then we haven't
1443 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1444 	 * resources have been allocated in the reset path.
1445 	 * Now we can truly claim that ADq is enabled.
1446 	 */
1447 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1448 	    adapter->num_tc)
1449 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1450 			 adapter->num_tc);
1451 
1452 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1453 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1454 		 adapter->num_active_queues);
1455 
1456 	return 0;
1457 err_alloc_q_vectors:
1458 	iavf_reset_interrupt_capability(adapter);
1459 err_set_interrupt:
1460 	iavf_free_queues(adapter);
1461 err_alloc_queues:
1462 	return err;
1463 }
1464 
1465 /**
1466  * iavf_free_rss - Free memory used by RSS structs
1467  * @adapter: board private structure
1468  **/
1469 static void iavf_free_rss(struct iavf_adapter *adapter)
1470 {
1471 	kfree(adapter->rss_key);
1472 	adapter->rss_key = NULL;
1473 
1474 	kfree(adapter->rss_lut);
1475 	adapter->rss_lut = NULL;
1476 }
1477 
1478 /**
1479  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1480  * @adapter: board private structure
1481  *
1482  * Returns 0 on success, negative on failure
1483  **/
1484 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1485 {
1486 	struct net_device *netdev = adapter->netdev;
1487 	int err;
1488 
1489 	if (netif_running(netdev))
1490 		iavf_free_traffic_irqs(adapter);
1491 	iavf_free_misc_irq(adapter);
1492 	iavf_reset_interrupt_capability(adapter);
1493 	iavf_free_q_vectors(adapter);
1494 	iavf_free_queues(adapter);
1495 
1496 	err =  iavf_init_interrupt_scheme(adapter);
1497 	if (err)
1498 		goto err;
1499 
1500 	netif_tx_stop_all_queues(netdev);
1501 
1502 	err = iavf_request_misc_irq(adapter);
1503 	if (err)
1504 		goto err;
1505 
1506 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1507 
1508 	iavf_map_rings_to_vectors(adapter);
1509 
1510 	if (RSS_AQ(adapter))
1511 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1512 	else
1513 		err = iavf_init_rss(adapter);
1514 err:
1515 	return err;
1516 }
1517 
1518 /**
1519  * iavf_process_aq_command - process aq_required flags
1520  * and sends aq command
1521  * @adapter: pointer to iavf adapter structure
1522  *
1523  * Returns 0 on success
1524  * Returns error code if no command was sent
1525  * or error code if the command failed.
1526  **/
1527 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1528 {
1529 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1530 		return iavf_send_vf_config_msg(adapter);
1531 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1532 		iavf_disable_queues(adapter);
1533 		return 0;
1534 	}
1535 
1536 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1537 		iavf_map_queues(adapter);
1538 		return 0;
1539 	}
1540 
1541 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1542 		iavf_add_ether_addrs(adapter);
1543 		return 0;
1544 	}
1545 
1546 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1547 		iavf_add_vlans(adapter);
1548 		return 0;
1549 	}
1550 
1551 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1552 		iavf_del_ether_addrs(adapter);
1553 		return 0;
1554 	}
1555 
1556 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1557 		iavf_del_vlans(adapter);
1558 		return 0;
1559 	}
1560 
1561 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1562 		iavf_enable_vlan_stripping(adapter);
1563 		return 0;
1564 	}
1565 
1566 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1567 		iavf_disable_vlan_stripping(adapter);
1568 		return 0;
1569 	}
1570 
1571 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1572 		iavf_configure_queues(adapter);
1573 		return 0;
1574 	}
1575 
1576 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1577 		iavf_enable_queues(adapter);
1578 		return 0;
1579 	}
1580 
1581 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1582 		/* This message goes straight to the firmware, not the
1583 		 * PF, so we don't have to set current_op as we will
1584 		 * not get a response through the ARQ.
1585 		 */
1586 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1587 		return 0;
1588 	}
1589 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1590 		iavf_get_hena(adapter);
1591 		return 0;
1592 	}
1593 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1594 		iavf_set_hena(adapter);
1595 		return 0;
1596 	}
1597 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1598 		iavf_set_rss_key(adapter);
1599 		return 0;
1600 	}
1601 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1602 		iavf_set_rss_lut(adapter);
1603 		return 0;
1604 	}
1605 
1606 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1607 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1608 				       FLAG_VF_MULTICAST_PROMISC);
1609 		return 0;
1610 	}
1611 
1612 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1613 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1614 		return 0;
1615 	}
1616 
1617 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1618 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1619 		iavf_set_promiscuous(adapter, 0);
1620 		return 0;
1621 	}
1622 
1623 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1624 		iavf_enable_channels(adapter);
1625 		return 0;
1626 	}
1627 
1628 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1629 		iavf_disable_channels(adapter);
1630 		return 0;
1631 	}
1632 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1633 		iavf_add_cloud_filter(adapter);
1634 		return 0;
1635 	}
1636 
1637 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1638 		iavf_del_cloud_filter(adapter);
1639 		return 0;
1640 	}
1641 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1642 		iavf_del_cloud_filter(adapter);
1643 		return 0;
1644 	}
1645 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1646 		iavf_add_cloud_filter(adapter);
1647 		return 0;
1648 	}
1649 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1650 		iavf_add_fdir_filter(adapter);
1651 		return IAVF_SUCCESS;
1652 	}
1653 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1654 		iavf_del_fdir_filter(adapter);
1655 		return IAVF_SUCCESS;
1656 	}
1657 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1658 		iavf_add_adv_rss_cfg(adapter);
1659 		return 0;
1660 	}
1661 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1662 		iavf_del_adv_rss_cfg(adapter);
1663 		return 0;
1664 	}
1665 	return -EAGAIN;
1666 }
1667 
1668 /**
1669  * iavf_startup - first step of driver startup
1670  * @adapter: board private structure
1671  *
1672  * Function process __IAVF_STARTUP driver state.
1673  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1674  * when fails it returns -EAGAIN
1675  **/
1676 static int iavf_startup(struct iavf_adapter *adapter)
1677 {
1678 	struct pci_dev *pdev = adapter->pdev;
1679 	struct iavf_hw *hw = &adapter->hw;
1680 	int err;
1681 
1682 	WARN_ON(adapter->state != __IAVF_STARTUP);
1683 
1684 	/* driver loaded, probe complete */
1685 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1686 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1687 	err = iavf_set_mac_type(hw);
1688 	if (err) {
1689 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1690 		goto err;
1691 	}
1692 
1693 	err = iavf_check_reset_complete(hw);
1694 	if (err) {
1695 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1696 			 err);
1697 		goto err;
1698 	}
1699 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1700 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1701 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1702 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1703 
1704 	err = iavf_init_adminq(hw);
1705 	if (err) {
1706 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1707 		goto err;
1708 	}
1709 	err = iavf_send_api_ver(adapter);
1710 	if (err) {
1711 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1712 		iavf_shutdown_adminq(hw);
1713 		goto err;
1714 	}
1715 	adapter->state = __IAVF_INIT_VERSION_CHECK;
1716 err:
1717 	return err;
1718 }
1719 
1720 /**
1721  * iavf_init_version_check - second step of driver startup
1722  * @adapter: board private structure
1723  *
1724  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1725  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1726  * when fails it returns -EAGAIN
1727  **/
1728 static int iavf_init_version_check(struct iavf_adapter *adapter)
1729 {
1730 	struct pci_dev *pdev = adapter->pdev;
1731 	struct iavf_hw *hw = &adapter->hw;
1732 	int err = -EAGAIN;
1733 
1734 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1735 
1736 	if (!iavf_asq_done(hw)) {
1737 		dev_err(&pdev->dev, "Admin queue command never completed\n");
1738 		iavf_shutdown_adminq(hw);
1739 		adapter->state = __IAVF_STARTUP;
1740 		goto err;
1741 	}
1742 
1743 	/* aq msg sent, awaiting reply */
1744 	err = iavf_verify_api_ver(adapter);
1745 	if (err) {
1746 		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1747 			err = iavf_send_api_ver(adapter);
1748 		else
1749 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1750 				adapter->pf_version.major,
1751 				adapter->pf_version.minor,
1752 				VIRTCHNL_VERSION_MAJOR,
1753 				VIRTCHNL_VERSION_MINOR);
1754 		goto err;
1755 	}
1756 	err = iavf_send_vf_config_msg(adapter);
1757 	if (err) {
1758 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1759 			err);
1760 		goto err;
1761 	}
1762 	adapter->state = __IAVF_INIT_GET_RESOURCES;
1763 
1764 err:
1765 	return err;
1766 }
1767 
1768 /**
1769  * iavf_init_get_resources - third step of driver startup
1770  * @adapter: board private structure
1771  *
1772  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1773  * finishes driver initialization procedure.
1774  * When success the state is changed to __IAVF_DOWN
1775  * when fails it returns -EAGAIN
1776  **/
1777 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1778 {
1779 	struct net_device *netdev = adapter->netdev;
1780 	struct pci_dev *pdev = adapter->pdev;
1781 	struct iavf_hw *hw = &adapter->hw;
1782 	int err;
1783 
1784 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1785 	/* aq msg sent, awaiting reply */
1786 	if (!adapter->vf_res) {
1787 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1788 					  GFP_KERNEL);
1789 		if (!adapter->vf_res) {
1790 			err = -ENOMEM;
1791 			goto err;
1792 		}
1793 	}
1794 	err = iavf_get_vf_config(adapter);
1795 	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1796 		err = iavf_send_vf_config_msg(adapter);
1797 		goto err;
1798 	} else if (err == IAVF_ERR_PARAM) {
1799 		/* We only get ERR_PARAM if the device is in a very bad
1800 		 * state or if we've been disabled for previous bad
1801 		 * behavior. Either way, we're done now.
1802 		 */
1803 		iavf_shutdown_adminq(hw);
1804 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1805 		return 0;
1806 	}
1807 	if (err) {
1808 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1809 		goto err_alloc;
1810 	}
1811 
1812 	err = iavf_process_config(adapter);
1813 	if (err)
1814 		goto err_alloc;
1815 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1816 
1817 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1818 
1819 	netdev->netdev_ops = &iavf_netdev_ops;
1820 	iavf_set_ethtool_ops(netdev);
1821 	netdev->watchdog_timeo = 5 * HZ;
1822 
1823 	/* MTU range: 68 - 9710 */
1824 	netdev->min_mtu = ETH_MIN_MTU;
1825 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1826 
1827 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1828 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1829 			 adapter->hw.mac.addr);
1830 		eth_hw_addr_random(netdev);
1831 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1832 	} else {
1833 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1834 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1835 	}
1836 
1837 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1838 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1839 	err = iavf_init_interrupt_scheme(adapter);
1840 	if (err)
1841 		goto err_sw_init;
1842 	iavf_map_rings_to_vectors(adapter);
1843 	if (adapter->vf_res->vf_cap_flags &
1844 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1845 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1846 
1847 	err = iavf_request_misc_irq(adapter);
1848 	if (err)
1849 		goto err_sw_init;
1850 
1851 	netif_carrier_off(netdev);
1852 	adapter->link_up = false;
1853 
1854 	/* set the semaphore to prevent any callbacks after device registration
1855 	 * up to time when state of driver will be set to __IAVF_DOWN
1856 	 */
1857 	rtnl_lock();
1858 	if (!adapter->netdev_registered) {
1859 		err = register_netdevice(netdev);
1860 		if (err) {
1861 			rtnl_unlock();
1862 			goto err_register;
1863 		}
1864 	}
1865 
1866 	adapter->netdev_registered = true;
1867 
1868 	netif_tx_stop_all_queues(netdev);
1869 	if (CLIENT_ALLOWED(adapter)) {
1870 		err = iavf_lan_add_device(adapter);
1871 		if (err)
1872 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1873 				 err);
1874 	}
1875 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1876 	if (netdev->features & NETIF_F_GRO)
1877 		dev_info(&pdev->dev, "GRO is enabled\n");
1878 
1879 	adapter->state = __IAVF_DOWN;
1880 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1881 	rtnl_unlock();
1882 
1883 	iavf_misc_irq_enable(adapter);
1884 	wake_up(&adapter->down_waitqueue);
1885 
1886 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1887 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1888 	if (!adapter->rss_key || !adapter->rss_lut) {
1889 		err = -ENOMEM;
1890 		goto err_mem;
1891 	}
1892 	if (RSS_AQ(adapter))
1893 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1894 	else
1895 		iavf_init_rss(adapter);
1896 
1897 	return err;
1898 err_mem:
1899 	iavf_free_rss(adapter);
1900 err_register:
1901 	iavf_free_misc_irq(adapter);
1902 err_sw_init:
1903 	iavf_reset_interrupt_capability(adapter);
1904 err_alloc:
1905 	kfree(adapter->vf_res);
1906 	adapter->vf_res = NULL;
1907 err:
1908 	return err;
1909 }
1910 
1911 /**
1912  * iavf_watchdog_task - Periodic call-back task
1913  * @work: pointer to work_struct
1914  **/
1915 static void iavf_watchdog_task(struct work_struct *work)
1916 {
1917 	struct iavf_adapter *adapter = container_of(work,
1918 						    struct iavf_adapter,
1919 						    watchdog_task.work);
1920 	struct iavf_hw *hw = &adapter->hw;
1921 	u32 reg_val;
1922 
1923 	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1924 		goto restart_watchdog;
1925 
1926 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1927 		adapter->state = __IAVF_COMM_FAILED;
1928 
1929 	switch (adapter->state) {
1930 	case __IAVF_COMM_FAILED:
1931 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1932 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1933 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1934 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1935 			/* A chance for redemption! */
1936 			dev_err(&adapter->pdev->dev,
1937 				"Hardware came out of reset. Attempting reinit.\n");
1938 			adapter->state = __IAVF_STARTUP;
1939 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1940 			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1941 			clear_bit(__IAVF_IN_CRITICAL_TASK,
1942 				  &adapter->crit_section);
1943 			/* Don't reschedule the watchdog, since we've restarted
1944 			 * the init task. When init_task contacts the PF and
1945 			 * gets everything set up again, it'll restart the
1946 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1947 			 */
1948 			return;
1949 		}
1950 		adapter->aq_required = 0;
1951 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1952 		clear_bit(__IAVF_IN_CRITICAL_TASK,
1953 			  &adapter->crit_section);
1954 		queue_delayed_work(iavf_wq,
1955 				   &adapter->watchdog_task,
1956 				   msecs_to_jiffies(10));
1957 		goto watchdog_done;
1958 	case __IAVF_RESETTING:
1959 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1960 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1961 		return;
1962 	case __IAVF_DOWN:
1963 	case __IAVF_DOWN_PENDING:
1964 	case __IAVF_TESTING:
1965 	case __IAVF_RUNNING:
1966 		if (adapter->current_op) {
1967 			if (!iavf_asq_done(hw)) {
1968 				dev_dbg(&adapter->pdev->dev,
1969 					"Admin queue timeout\n");
1970 				iavf_send_api_ver(adapter);
1971 			}
1972 		} else {
1973 			/* An error will be returned if no commands were
1974 			 * processed; use this opportunity to update stats
1975 			 */
1976 			if (iavf_process_aq_command(adapter) &&
1977 			    adapter->state == __IAVF_RUNNING)
1978 				iavf_request_stats(adapter);
1979 		}
1980 		break;
1981 	case __IAVF_REMOVE:
1982 		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1983 		return;
1984 	default:
1985 		goto restart_watchdog;
1986 	}
1987 
1988 		/* check for hw reset */
1989 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1990 	if (!reg_val) {
1991 		adapter->state = __IAVF_RESETTING;
1992 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1993 		adapter->aq_required = 0;
1994 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1995 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1996 		queue_work(iavf_wq, &adapter->reset_task);
1997 		goto watchdog_done;
1998 	}
1999 
2000 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2001 watchdog_done:
2002 	if (adapter->state == __IAVF_RUNNING ||
2003 	    adapter->state == __IAVF_COMM_FAILED)
2004 		iavf_detect_recover_hung(&adapter->vsi);
2005 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2006 restart_watchdog:
2007 	if (adapter->aq_required)
2008 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2009 				   msecs_to_jiffies(20));
2010 	else
2011 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2012 	queue_work(iavf_wq, &adapter->adminq_task);
2013 }
2014 
2015 static void iavf_disable_vf(struct iavf_adapter *adapter)
2016 {
2017 	struct iavf_mac_filter *f, *ftmp;
2018 	struct iavf_vlan_filter *fv, *fvtmp;
2019 	struct iavf_cloud_filter *cf, *cftmp;
2020 
2021 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2022 
2023 	/* We don't use netif_running() because it may be true prior to
2024 	 * ndo_open() returning, so we can't assume it means all our open
2025 	 * tasks have finished, since we're not holding the rtnl_lock here.
2026 	 */
2027 	if (adapter->state == __IAVF_RUNNING) {
2028 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2029 		netif_carrier_off(adapter->netdev);
2030 		netif_tx_disable(adapter->netdev);
2031 		adapter->link_up = false;
2032 		iavf_napi_disable_all(adapter);
2033 		iavf_irq_disable(adapter);
2034 		iavf_free_traffic_irqs(adapter);
2035 		iavf_free_all_tx_resources(adapter);
2036 		iavf_free_all_rx_resources(adapter);
2037 	}
2038 
2039 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2040 
2041 	/* Delete all of the filters */
2042 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2043 		list_del(&f->list);
2044 		kfree(f);
2045 	}
2046 
2047 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2048 		list_del(&fv->list);
2049 		kfree(fv);
2050 	}
2051 
2052 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2053 
2054 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2055 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2056 		list_del(&cf->list);
2057 		kfree(cf);
2058 		adapter->num_cloud_filters--;
2059 	}
2060 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2061 
2062 	iavf_free_misc_irq(adapter);
2063 	iavf_reset_interrupt_capability(adapter);
2064 	iavf_free_queues(adapter);
2065 	iavf_free_q_vectors(adapter);
2066 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2067 	iavf_shutdown_adminq(&adapter->hw);
2068 	adapter->netdev->flags &= ~IFF_UP;
2069 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2070 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2071 	adapter->state = __IAVF_DOWN;
2072 	wake_up(&adapter->down_waitqueue);
2073 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2074 }
2075 
2076 /**
2077  * iavf_reset_task - Call-back task to handle hardware reset
2078  * @work: pointer to work_struct
2079  *
2080  * During reset we need to shut down and reinitialize the admin queue
2081  * before we can use it to communicate with the PF again. We also clear
2082  * and reinit the rings because that context is lost as well.
2083  **/
2084 static void iavf_reset_task(struct work_struct *work)
2085 {
2086 	struct iavf_adapter *adapter = container_of(work,
2087 						      struct iavf_adapter,
2088 						      reset_task);
2089 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2090 	struct net_device *netdev = adapter->netdev;
2091 	struct iavf_hw *hw = &adapter->hw;
2092 	struct iavf_mac_filter *f, *ftmp;
2093 	struct iavf_vlan_filter *vlf;
2094 	struct iavf_cloud_filter *cf;
2095 	u32 reg_val;
2096 	int i = 0, err;
2097 	bool running;
2098 
2099 	/* When device is being removed it doesn't make sense to run the reset
2100 	 * task, just return in such a case.
2101 	 */
2102 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2103 		return;
2104 
2105 	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2106 				&adapter->crit_section))
2107 		usleep_range(500, 1000);
2108 	if (CLIENT_ENABLED(adapter)) {
2109 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2110 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2111 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2112 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2113 		cancel_delayed_work_sync(&adapter->client_task);
2114 		iavf_notify_client_close(&adapter->vsi, true);
2115 	}
2116 	iavf_misc_irq_disable(adapter);
2117 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2118 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2119 		/* Restart the AQ here. If we have been reset but didn't
2120 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2121 		 */
2122 		iavf_shutdown_adminq(hw);
2123 		iavf_init_adminq(hw);
2124 		iavf_request_reset(adapter);
2125 	}
2126 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2127 
2128 	/* poll until we see the reset actually happen */
2129 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2130 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2131 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2132 		if (!reg_val)
2133 			break;
2134 		usleep_range(5000, 10000);
2135 	}
2136 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2137 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2138 		goto continue_reset; /* act like the reset happened */
2139 	}
2140 
2141 	/* wait until the reset is complete and the PF is responding to us */
2142 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2143 		/* sleep first to make sure a minimum wait time is met */
2144 		msleep(IAVF_RESET_WAIT_MS);
2145 
2146 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2147 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2148 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2149 			break;
2150 	}
2151 
2152 	pci_set_master(adapter->pdev);
2153 
2154 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2155 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2156 			reg_val);
2157 		iavf_disable_vf(adapter);
2158 		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2159 		return; /* Do not attempt to reinit. It's dead, Jim. */
2160 	}
2161 
2162 continue_reset:
2163 	/* We don't use netif_running() because it may be true prior to
2164 	 * ndo_open() returning, so we can't assume it means all our open
2165 	 * tasks have finished, since we're not holding the rtnl_lock here.
2166 	 */
2167 	running = ((adapter->state == __IAVF_RUNNING) ||
2168 		   (adapter->state == __IAVF_RESETTING));
2169 
2170 	if (running) {
2171 		netif_carrier_off(netdev);
2172 		netif_tx_stop_all_queues(netdev);
2173 		adapter->link_up = false;
2174 		iavf_napi_disable_all(adapter);
2175 	}
2176 	iavf_irq_disable(adapter);
2177 
2178 	adapter->state = __IAVF_RESETTING;
2179 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2180 
2181 	/* free the Tx/Rx rings and descriptors, might be better to just
2182 	 * re-use them sometime in the future
2183 	 */
2184 	iavf_free_all_rx_resources(adapter);
2185 	iavf_free_all_tx_resources(adapter);
2186 
2187 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2188 	/* kill and reinit the admin queue */
2189 	iavf_shutdown_adminq(hw);
2190 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2191 	err = iavf_init_adminq(hw);
2192 	if (err)
2193 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2194 			 err);
2195 	adapter->aq_required = 0;
2196 
2197 	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2198 		err = iavf_reinit_interrupt_scheme(adapter);
2199 		if (err)
2200 			goto reset_err;
2201 	}
2202 
2203 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2204 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2205 
2206 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2207 
2208 	/* Delete filter for the current MAC address, it could have
2209 	 * been changed by the PF via administratively set MAC.
2210 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2211 	 */
2212 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2213 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2214 			list_del(&f->list);
2215 			kfree(f);
2216 		}
2217 	}
2218 	/* re-add all MAC filters */
2219 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2220 		f->add = true;
2221 	}
2222 	/* re-add all VLAN filters */
2223 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2224 		vlf->add = true;
2225 	}
2226 
2227 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2228 
2229 	/* check if TCs are running and re-add all cloud filters */
2230 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2231 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2232 	    adapter->num_tc) {
2233 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2234 			cf->add = true;
2235 		}
2236 	}
2237 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2238 
2239 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2240 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2241 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2242 	iavf_misc_irq_enable(adapter);
2243 
2244 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2245 
2246 	/* We were running when the reset started, so we need to restore some
2247 	 * state here.
2248 	 */
2249 	if (running) {
2250 		/* allocate transmit descriptors */
2251 		err = iavf_setup_all_tx_resources(adapter);
2252 		if (err)
2253 			goto reset_err;
2254 
2255 		/* allocate receive descriptors */
2256 		err = iavf_setup_all_rx_resources(adapter);
2257 		if (err)
2258 			goto reset_err;
2259 
2260 		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2261 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2262 			if (err)
2263 				goto reset_err;
2264 
2265 			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2266 		}
2267 
2268 		iavf_configure(adapter);
2269 
2270 		iavf_up_complete(adapter);
2271 
2272 		iavf_irq_enable(adapter, true);
2273 	} else {
2274 		adapter->state = __IAVF_DOWN;
2275 		wake_up(&adapter->down_waitqueue);
2276 	}
2277 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2278 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2279 
2280 	return;
2281 reset_err:
2282 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2283 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2284 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2285 	iavf_close(netdev);
2286 }
2287 
2288 /**
2289  * iavf_adminq_task - worker thread to clean the admin queue
2290  * @work: pointer to work_struct containing our data
2291  **/
2292 static void iavf_adminq_task(struct work_struct *work)
2293 {
2294 	struct iavf_adapter *adapter =
2295 		container_of(work, struct iavf_adapter, adminq_task);
2296 	struct iavf_hw *hw = &adapter->hw;
2297 	struct iavf_arq_event_info event;
2298 	enum virtchnl_ops v_op;
2299 	enum iavf_status ret, v_ret;
2300 	u32 val, oldval;
2301 	u16 pending;
2302 
2303 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2304 		goto out;
2305 
2306 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2307 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2308 	if (!event.msg_buf)
2309 		goto out;
2310 
2311 	do {
2312 		ret = iavf_clean_arq_element(hw, &event, &pending);
2313 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2314 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2315 
2316 		if (ret || !v_op)
2317 			break; /* No event to process or error cleaning ARQ */
2318 
2319 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2320 					 event.msg_len);
2321 		if (pending != 0)
2322 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2323 	} while (pending);
2324 
2325 	if ((adapter->flags &
2326 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2327 	    adapter->state == __IAVF_RESETTING)
2328 		goto freedom;
2329 
2330 	/* check for error indications */
2331 	val = rd32(hw, hw->aq.arq.len);
2332 	if (val == 0xdeadbeef) /* indicates device in reset */
2333 		goto freedom;
2334 	oldval = val;
2335 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2336 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2337 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2338 	}
2339 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2340 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2341 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2342 	}
2343 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2344 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2345 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2346 	}
2347 	if (oldval != val)
2348 		wr32(hw, hw->aq.arq.len, val);
2349 
2350 	val = rd32(hw, hw->aq.asq.len);
2351 	oldval = val;
2352 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2353 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2354 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2355 	}
2356 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2357 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2358 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2359 	}
2360 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2361 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2362 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2363 	}
2364 	if (oldval != val)
2365 		wr32(hw, hw->aq.asq.len, val);
2366 
2367 freedom:
2368 	kfree(event.msg_buf);
2369 out:
2370 	/* re-enable Admin queue interrupt cause */
2371 	iavf_misc_irq_enable(adapter);
2372 }
2373 
2374 /**
2375  * iavf_client_task - worker thread to perform client work
2376  * @work: pointer to work_struct containing our data
2377  *
2378  * This task handles client interactions. Because client calls can be
2379  * reentrant, we can't handle them in the watchdog.
2380  **/
2381 static void iavf_client_task(struct work_struct *work)
2382 {
2383 	struct iavf_adapter *adapter =
2384 		container_of(work, struct iavf_adapter, client_task.work);
2385 
2386 	/* If we can't get the client bit, just give up. We'll be rescheduled
2387 	 * later.
2388 	 */
2389 
2390 	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2391 		return;
2392 
2393 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2394 		iavf_client_subtask(adapter);
2395 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2396 		goto out;
2397 	}
2398 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2399 		iavf_notify_client_l2_params(&adapter->vsi);
2400 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2401 		goto out;
2402 	}
2403 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2404 		iavf_notify_client_close(&adapter->vsi, false);
2405 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2406 		goto out;
2407 	}
2408 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2409 		iavf_notify_client_open(&adapter->vsi);
2410 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2411 	}
2412 out:
2413 	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2414 }
2415 
2416 /**
2417  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2418  * @adapter: board private structure
2419  *
2420  * Free all transmit software resources
2421  **/
2422 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2423 {
2424 	int i;
2425 
2426 	if (!adapter->tx_rings)
2427 		return;
2428 
2429 	for (i = 0; i < adapter->num_active_queues; i++)
2430 		if (adapter->tx_rings[i].desc)
2431 			iavf_free_tx_resources(&adapter->tx_rings[i]);
2432 }
2433 
2434 /**
2435  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2436  * @adapter: board private structure
2437  *
2438  * If this function returns with an error, then it's possible one or
2439  * more of the rings is populated (while the rest are not).  It is the
2440  * callers duty to clean those orphaned rings.
2441  *
2442  * Return 0 on success, negative on failure
2443  **/
2444 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2445 {
2446 	int i, err = 0;
2447 
2448 	for (i = 0; i < adapter->num_active_queues; i++) {
2449 		adapter->tx_rings[i].count = adapter->tx_desc_count;
2450 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2451 		if (!err)
2452 			continue;
2453 		dev_err(&adapter->pdev->dev,
2454 			"Allocation for Tx Queue %u failed\n", i);
2455 		break;
2456 	}
2457 
2458 	return err;
2459 }
2460 
2461 /**
2462  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2463  * @adapter: board private structure
2464  *
2465  * If this function returns with an error, then it's possible one or
2466  * more of the rings is populated (while the rest are not).  It is the
2467  * callers duty to clean those orphaned rings.
2468  *
2469  * Return 0 on success, negative on failure
2470  **/
2471 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2472 {
2473 	int i, err = 0;
2474 
2475 	for (i = 0; i < adapter->num_active_queues; i++) {
2476 		adapter->rx_rings[i].count = adapter->rx_desc_count;
2477 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2478 		if (!err)
2479 			continue;
2480 		dev_err(&adapter->pdev->dev,
2481 			"Allocation for Rx Queue %u failed\n", i);
2482 		break;
2483 	}
2484 	return err;
2485 }
2486 
2487 /**
2488  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2489  * @adapter: board private structure
2490  *
2491  * Free all receive software resources
2492  **/
2493 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2494 {
2495 	int i;
2496 
2497 	if (!adapter->rx_rings)
2498 		return;
2499 
2500 	for (i = 0; i < adapter->num_active_queues; i++)
2501 		if (adapter->rx_rings[i].desc)
2502 			iavf_free_rx_resources(&adapter->rx_rings[i]);
2503 }
2504 
2505 /**
2506  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2507  * @adapter: board private structure
2508  * @max_tx_rate: max Tx bw for a tc
2509  **/
2510 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2511 				      u64 max_tx_rate)
2512 {
2513 	int speed = 0, ret = 0;
2514 
2515 	if (ADV_LINK_SUPPORT(adapter)) {
2516 		if (adapter->link_speed_mbps < U32_MAX) {
2517 			speed = adapter->link_speed_mbps;
2518 			goto validate_bw;
2519 		} else {
2520 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2521 			return -EINVAL;
2522 		}
2523 	}
2524 
2525 	switch (adapter->link_speed) {
2526 	case VIRTCHNL_LINK_SPEED_40GB:
2527 		speed = SPEED_40000;
2528 		break;
2529 	case VIRTCHNL_LINK_SPEED_25GB:
2530 		speed = SPEED_25000;
2531 		break;
2532 	case VIRTCHNL_LINK_SPEED_20GB:
2533 		speed = SPEED_20000;
2534 		break;
2535 	case VIRTCHNL_LINK_SPEED_10GB:
2536 		speed = SPEED_10000;
2537 		break;
2538 	case VIRTCHNL_LINK_SPEED_5GB:
2539 		speed = SPEED_5000;
2540 		break;
2541 	case VIRTCHNL_LINK_SPEED_2_5GB:
2542 		speed = SPEED_2500;
2543 		break;
2544 	case VIRTCHNL_LINK_SPEED_1GB:
2545 		speed = SPEED_1000;
2546 		break;
2547 	case VIRTCHNL_LINK_SPEED_100MB:
2548 		speed = SPEED_100;
2549 		break;
2550 	default:
2551 		break;
2552 	}
2553 
2554 validate_bw:
2555 	if (max_tx_rate > speed) {
2556 		dev_err(&adapter->pdev->dev,
2557 			"Invalid tx rate specified\n");
2558 		ret = -EINVAL;
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 /**
2565  * iavf_validate_ch_config - validate queue mapping info
2566  * @adapter: board private structure
2567  * @mqprio_qopt: queue parameters
2568  *
2569  * This function validates if the config provided by the user to
2570  * configure queue channels is valid or not. Returns 0 on a valid
2571  * config.
2572  **/
2573 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2574 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2575 {
2576 	u64 total_max_rate = 0;
2577 	int i, num_qps = 0;
2578 	u64 tx_rate = 0;
2579 	int ret = 0;
2580 
2581 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2582 	    mqprio_qopt->qopt.num_tc < 1)
2583 		return -EINVAL;
2584 
2585 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2586 		if (!mqprio_qopt->qopt.count[i] ||
2587 		    mqprio_qopt->qopt.offset[i] != num_qps)
2588 			return -EINVAL;
2589 		if (mqprio_qopt->min_rate[i]) {
2590 			dev_err(&adapter->pdev->dev,
2591 				"Invalid min tx rate (greater than 0) specified\n");
2592 			return -EINVAL;
2593 		}
2594 		/*convert to Mbps */
2595 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2596 				  IAVF_MBPS_DIVISOR);
2597 		total_max_rate += tx_rate;
2598 		num_qps += mqprio_qopt->qopt.count[i];
2599 	}
2600 	if (num_qps > IAVF_MAX_REQ_QUEUES)
2601 		return -EINVAL;
2602 
2603 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2604 	return ret;
2605 }
2606 
2607 /**
2608  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2609  * @adapter: board private structure
2610  **/
2611 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2612 {
2613 	struct iavf_cloud_filter *cf, *cftmp;
2614 
2615 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2616 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2617 				 list) {
2618 		list_del(&cf->list);
2619 		kfree(cf);
2620 		adapter->num_cloud_filters--;
2621 	}
2622 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2623 }
2624 
2625 /**
2626  * __iavf_setup_tc - configure multiple traffic classes
2627  * @netdev: network interface device structure
2628  * @type_data: tc offload data
2629  *
2630  * This function processes the config information provided by the
2631  * user to configure traffic classes/queue channels and packages the
2632  * information to request the PF to setup traffic classes.
2633  *
2634  * Returns 0 on success.
2635  **/
2636 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2637 {
2638 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2639 	struct iavf_adapter *adapter = netdev_priv(netdev);
2640 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2641 	u8 num_tc = 0, total_qps = 0;
2642 	int ret = 0, netdev_tc = 0;
2643 	u64 max_tx_rate;
2644 	u16 mode;
2645 	int i;
2646 
2647 	num_tc = mqprio_qopt->qopt.num_tc;
2648 	mode = mqprio_qopt->mode;
2649 
2650 	/* delete queue_channel */
2651 	if (!mqprio_qopt->qopt.hw) {
2652 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2653 			/* reset the tc configuration */
2654 			netdev_reset_tc(netdev);
2655 			adapter->num_tc = 0;
2656 			netif_tx_stop_all_queues(netdev);
2657 			netif_tx_disable(netdev);
2658 			iavf_del_all_cloud_filters(adapter);
2659 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2660 			goto exit;
2661 		} else {
2662 			return -EINVAL;
2663 		}
2664 	}
2665 
2666 	/* add queue channel */
2667 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2668 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2669 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2670 			return -EOPNOTSUPP;
2671 		}
2672 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2673 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2674 			return -EINVAL;
2675 		}
2676 
2677 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2678 		if (ret)
2679 			return ret;
2680 		/* Return if same TC config is requested */
2681 		if (adapter->num_tc == num_tc)
2682 			return 0;
2683 		adapter->num_tc = num_tc;
2684 
2685 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2686 			if (i < num_tc) {
2687 				adapter->ch_config.ch_info[i].count =
2688 					mqprio_qopt->qopt.count[i];
2689 				adapter->ch_config.ch_info[i].offset =
2690 					mqprio_qopt->qopt.offset[i];
2691 				total_qps += mqprio_qopt->qopt.count[i];
2692 				max_tx_rate = mqprio_qopt->max_rate[i];
2693 				/* convert to Mbps */
2694 				max_tx_rate = div_u64(max_tx_rate,
2695 						      IAVF_MBPS_DIVISOR);
2696 				adapter->ch_config.ch_info[i].max_tx_rate =
2697 					max_tx_rate;
2698 			} else {
2699 				adapter->ch_config.ch_info[i].count = 1;
2700 				adapter->ch_config.ch_info[i].offset = 0;
2701 			}
2702 		}
2703 		adapter->ch_config.total_qps = total_qps;
2704 		netif_tx_stop_all_queues(netdev);
2705 		netif_tx_disable(netdev);
2706 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2707 		netdev_reset_tc(netdev);
2708 		/* Report the tc mapping up the stack */
2709 		netdev_set_num_tc(adapter->netdev, num_tc);
2710 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2711 			u16 qcount = mqprio_qopt->qopt.count[i];
2712 			u16 qoffset = mqprio_qopt->qopt.offset[i];
2713 
2714 			if (i < num_tc)
2715 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2716 						    qoffset);
2717 		}
2718 	}
2719 exit:
2720 	return ret;
2721 }
2722 
2723 /**
2724  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2725  * @adapter: board private structure
2726  * @f: pointer to struct flow_cls_offload
2727  * @filter: pointer to cloud filter structure
2728  */
2729 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2730 				 struct flow_cls_offload *f,
2731 				 struct iavf_cloud_filter *filter)
2732 {
2733 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2734 	struct flow_dissector *dissector = rule->match.dissector;
2735 	u16 n_proto_mask = 0;
2736 	u16 n_proto_key = 0;
2737 	u8 field_flags = 0;
2738 	u16 addr_type = 0;
2739 	u16 n_proto = 0;
2740 	int i = 0;
2741 	struct virtchnl_filter *vf = &filter->f;
2742 
2743 	if (dissector->used_keys &
2744 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2745 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2746 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2747 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2748 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2749 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2750 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2751 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2752 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2753 			dissector->used_keys);
2754 		return -EOPNOTSUPP;
2755 	}
2756 
2757 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2758 		struct flow_match_enc_keyid match;
2759 
2760 		flow_rule_match_enc_keyid(rule, &match);
2761 		if (match.mask->keyid != 0)
2762 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2763 	}
2764 
2765 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2766 		struct flow_match_basic match;
2767 
2768 		flow_rule_match_basic(rule, &match);
2769 		n_proto_key = ntohs(match.key->n_proto);
2770 		n_proto_mask = ntohs(match.mask->n_proto);
2771 
2772 		if (n_proto_key == ETH_P_ALL) {
2773 			n_proto_key = 0;
2774 			n_proto_mask = 0;
2775 		}
2776 		n_proto = n_proto_key & n_proto_mask;
2777 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2778 			return -EINVAL;
2779 		if (n_proto == ETH_P_IPV6) {
2780 			/* specify flow type as TCP IPv6 */
2781 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2782 		}
2783 
2784 		if (match.key->ip_proto != IPPROTO_TCP) {
2785 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2786 			return -EINVAL;
2787 		}
2788 	}
2789 
2790 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2791 		struct flow_match_eth_addrs match;
2792 
2793 		flow_rule_match_eth_addrs(rule, &match);
2794 
2795 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2796 		if (!is_zero_ether_addr(match.mask->dst)) {
2797 			if (is_broadcast_ether_addr(match.mask->dst)) {
2798 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2799 			} else {
2800 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2801 					match.mask->dst);
2802 				return IAVF_ERR_CONFIG;
2803 			}
2804 		}
2805 
2806 		if (!is_zero_ether_addr(match.mask->src)) {
2807 			if (is_broadcast_ether_addr(match.mask->src)) {
2808 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2809 			} else {
2810 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2811 					match.mask->src);
2812 				return IAVF_ERR_CONFIG;
2813 			}
2814 		}
2815 
2816 		if (!is_zero_ether_addr(match.key->dst))
2817 			if (is_valid_ether_addr(match.key->dst) ||
2818 			    is_multicast_ether_addr(match.key->dst)) {
2819 				/* set the mask if a valid dst_mac address */
2820 				for (i = 0; i < ETH_ALEN; i++)
2821 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2822 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2823 						match.key->dst);
2824 			}
2825 
2826 		if (!is_zero_ether_addr(match.key->src))
2827 			if (is_valid_ether_addr(match.key->src) ||
2828 			    is_multicast_ether_addr(match.key->src)) {
2829 				/* set the mask if a valid dst_mac address */
2830 				for (i = 0; i < ETH_ALEN; i++)
2831 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2832 				ether_addr_copy(vf->data.tcp_spec.src_mac,
2833 						match.key->src);
2834 		}
2835 	}
2836 
2837 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2838 		struct flow_match_vlan match;
2839 
2840 		flow_rule_match_vlan(rule, &match);
2841 		if (match.mask->vlan_id) {
2842 			if (match.mask->vlan_id == VLAN_VID_MASK) {
2843 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2844 			} else {
2845 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2846 					match.mask->vlan_id);
2847 				return IAVF_ERR_CONFIG;
2848 			}
2849 		}
2850 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2851 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2852 	}
2853 
2854 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2855 		struct flow_match_control match;
2856 
2857 		flow_rule_match_control(rule, &match);
2858 		addr_type = match.key->addr_type;
2859 	}
2860 
2861 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2862 		struct flow_match_ipv4_addrs match;
2863 
2864 		flow_rule_match_ipv4_addrs(rule, &match);
2865 		if (match.mask->dst) {
2866 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2867 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2868 			} else {
2869 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2870 					be32_to_cpu(match.mask->dst));
2871 				return IAVF_ERR_CONFIG;
2872 			}
2873 		}
2874 
2875 		if (match.mask->src) {
2876 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2877 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2878 			} else {
2879 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2880 					be32_to_cpu(match.mask->dst));
2881 				return IAVF_ERR_CONFIG;
2882 			}
2883 		}
2884 
2885 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2886 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2887 			return IAVF_ERR_CONFIG;
2888 		}
2889 		if (match.key->dst) {
2890 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2891 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2892 		}
2893 		if (match.key->src) {
2894 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2895 			vf->data.tcp_spec.src_ip[0] = match.key->src;
2896 		}
2897 	}
2898 
2899 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2900 		struct flow_match_ipv6_addrs match;
2901 
2902 		flow_rule_match_ipv6_addrs(rule, &match);
2903 
2904 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2905 		if (ipv6_addr_any(&match.mask->dst)) {
2906 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2907 				IPV6_ADDR_ANY);
2908 			return IAVF_ERR_CONFIG;
2909 		}
2910 
2911 		/* src and dest IPv6 address should not be LOOPBACK
2912 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2913 		 */
2914 		if (ipv6_addr_loopback(&match.key->dst) ||
2915 		    ipv6_addr_loopback(&match.key->src)) {
2916 			dev_err(&adapter->pdev->dev,
2917 				"ipv6 addr should not be loopback\n");
2918 			return IAVF_ERR_CONFIG;
2919 		}
2920 		if (!ipv6_addr_any(&match.mask->dst) ||
2921 		    !ipv6_addr_any(&match.mask->src))
2922 			field_flags |= IAVF_CLOUD_FIELD_IIP;
2923 
2924 		for (i = 0; i < 4; i++)
2925 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2926 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2927 		       sizeof(vf->data.tcp_spec.dst_ip));
2928 		for (i = 0; i < 4; i++)
2929 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2930 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2931 		       sizeof(vf->data.tcp_spec.src_ip));
2932 	}
2933 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2934 		struct flow_match_ports match;
2935 
2936 		flow_rule_match_ports(rule, &match);
2937 		if (match.mask->src) {
2938 			if (match.mask->src == cpu_to_be16(0xffff)) {
2939 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2940 			} else {
2941 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2942 					be16_to_cpu(match.mask->src));
2943 				return IAVF_ERR_CONFIG;
2944 			}
2945 		}
2946 
2947 		if (match.mask->dst) {
2948 			if (match.mask->dst == cpu_to_be16(0xffff)) {
2949 				field_flags |= IAVF_CLOUD_FIELD_IIP;
2950 			} else {
2951 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2952 					be16_to_cpu(match.mask->dst));
2953 				return IAVF_ERR_CONFIG;
2954 			}
2955 		}
2956 		if (match.key->dst) {
2957 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2958 			vf->data.tcp_spec.dst_port = match.key->dst;
2959 		}
2960 
2961 		if (match.key->src) {
2962 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2963 			vf->data.tcp_spec.src_port = match.key->src;
2964 		}
2965 	}
2966 	vf->field_flags = field_flags;
2967 
2968 	return 0;
2969 }
2970 
2971 /**
2972  * iavf_handle_tclass - Forward to a traffic class on the device
2973  * @adapter: board private structure
2974  * @tc: traffic class index on the device
2975  * @filter: pointer to cloud filter structure
2976  */
2977 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2978 			      struct iavf_cloud_filter *filter)
2979 {
2980 	if (tc == 0)
2981 		return 0;
2982 	if (tc < adapter->num_tc) {
2983 		if (!filter->f.data.tcp_spec.dst_port) {
2984 			dev_err(&adapter->pdev->dev,
2985 				"Specify destination port to redirect to traffic class other than TC0\n");
2986 			return -EINVAL;
2987 		}
2988 	}
2989 	/* redirect to a traffic class on the same device */
2990 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2991 	filter->f.action_meta = tc;
2992 	return 0;
2993 }
2994 
2995 /**
2996  * iavf_configure_clsflower - Add tc flower filters
2997  * @adapter: board private structure
2998  * @cls_flower: Pointer to struct flow_cls_offload
2999  */
3000 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3001 				    struct flow_cls_offload *cls_flower)
3002 {
3003 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3004 	struct iavf_cloud_filter *filter = NULL;
3005 	int err = -EINVAL, count = 50;
3006 
3007 	if (tc < 0) {
3008 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3009 		return -EINVAL;
3010 	}
3011 
3012 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3013 	if (!filter)
3014 		return -ENOMEM;
3015 
3016 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3017 				&adapter->crit_section)) {
3018 		if (--count == 0)
3019 			goto err;
3020 		udelay(1);
3021 	}
3022 
3023 	filter->cookie = cls_flower->cookie;
3024 
3025 	/* set the mask to all zeroes to begin with */
3026 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3027 	/* start out with flow type and eth type IPv4 to begin with */
3028 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3029 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3030 	if (err < 0)
3031 		goto err;
3032 
3033 	err = iavf_handle_tclass(adapter, tc, filter);
3034 	if (err < 0)
3035 		goto err;
3036 
3037 	/* add filter to the list */
3038 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3039 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3040 	adapter->num_cloud_filters++;
3041 	filter->add = true;
3042 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3043 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3044 err:
3045 	if (err)
3046 		kfree(filter);
3047 
3048 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3049 	return err;
3050 }
3051 
3052 /* iavf_find_cf - Find the cloud filter in the list
3053  * @adapter: Board private structure
3054  * @cookie: filter specific cookie
3055  *
3056  * Returns ptr to the filter object or NULL. Must be called while holding the
3057  * cloud_filter_list_lock.
3058  */
3059 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3060 					      unsigned long *cookie)
3061 {
3062 	struct iavf_cloud_filter *filter = NULL;
3063 
3064 	if (!cookie)
3065 		return NULL;
3066 
3067 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3068 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3069 			return filter;
3070 	}
3071 	return NULL;
3072 }
3073 
3074 /**
3075  * iavf_delete_clsflower - Remove tc flower filters
3076  * @adapter: board private structure
3077  * @cls_flower: Pointer to struct flow_cls_offload
3078  */
3079 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3080 				 struct flow_cls_offload *cls_flower)
3081 {
3082 	struct iavf_cloud_filter *filter = NULL;
3083 	int err = 0;
3084 
3085 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3086 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3087 	if (filter) {
3088 		filter->del = true;
3089 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3090 	} else {
3091 		err = -EINVAL;
3092 	}
3093 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3094 
3095 	return err;
3096 }
3097 
3098 /**
3099  * iavf_setup_tc_cls_flower - flower classifier offloads
3100  * @adapter: board private structure
3101  * @cls_flower: pointer to flow_cls_offload struct with flow info
3102  */
3103 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3104 				    struct flow_cls_offload *cls_flower)
3105 {
3106 	switch (cls_flower->command) {
3107 	case FLOW_CLS_REPLACE:
3108 		return iavf_configure_clsflower(adapter, cls_flower);
3109 	case FLOW_CLS_DESTROY:
3110 		return iavf_delete_clsflower(adapter, cls_flower);
3111 	case FLOW_CLS_STATS:
3112 		return -EOPNOTSUPP;
3113 	default:
3114 		return -EOPNOTSUPP;
3115 	}
3116 }
3117 
3118 /**
3119  * iavf_setup_tc_block_cb - block callback for tc
3120  * @type: type of offload
3121  * @type_data: offload data
3122  * @cb_priv:
3123  *
3124  * This function is the block callback for traffic classes
3125  **/
3126 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3127 				  void *cb_priv)
3128 {
3129 	struct iavf_adapter *adapter = cb_priv;
3130 
3131 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3132 		return -EOPNOTSUPP;
3133 
3134 	switch (type) {
3135 	case TC_SETUP_CLSFLOWER:
3136 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3137 	default:
3138 		return -EOPNOTSUPP;
3139 	}
3140 }
3141 
3142 static LIST_HEAD(iavf_block_cb_list);
3143 
3144 /**
3145  * iavf_setup_tc - configure multiple traffic classes
3146  * @netdev: network interface device structure
3147  * @type: type of offload
3148  * @type_data: tc offload data
3149  *
3150  * This function is the callback to ndo_setup_tc in the
3151  * netdev_ops.
3152  *
3153  * Returns 0 on success
3154  **/
3155 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3156 			 void *type_data)
3157 {
3158 	struct iavf_adapter *adapter = netdev_priv(netdev);
3159 
3160 	switch (type) {
3161 	case TC_SETUP_QDISC_MQPRIO:
3162 		return __iavf_setup_tc(netdev, type_data);
3163 	case TC_SETUP_BLOCK:
3164 		return flow_block_cb_setup_simple(type_data,
3165 						  &iavf_block_cb_list,
3166 						  iavf_setup_tc_block_cb,
3167 						  adapter, adapter, true);
3168 	default:
3169 		return -EOPNOTSUPP;
3170 	}
3171 }
3172 
3173 /**
3174  * iavf_open - Called when a network interface is made active
3175  * @netdev: network interface device structure
3176  *
3177  * Returns 0 on success, negative value on failure
3178  *
3179  * The open entry point is called when a network interface is made
3180  * active by the system (IFF_UP).  At this point all resources needed
3181  * for transmit and receive operations are allocated, the interrupt
3182  * handler is registered with the OS, the watchdog is started,
3183  * and the stack is notified that the interface is ready.
3184  **/
3185 static int iavf_open(struct net_device *netdev)
3186 {
3187 	struct iavf_adapter *adapter = netdev_priv(netdev);
3188 	int err;
3189 
3190 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3191 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3192 		return -EIO;
3193 	}
3194 
3195 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3196 				&adapter->crit_section))
3197 		usleep_range(500, 1000);
3198 
3199 	if (adapter->state != __IAVF_DOWN) {
3200 		err = -EBUSY;
3201 		goto err_unlock;
3202 	}
3203 
3204 	/* allocate transmit descriptors */
3205 	err = iavf_setup_all_tx_resources(adapter);
3206 	if (err)
3207 		goto err_setup_tx;
3208 
3209 	/* allocate receive descriptors */
3210 	err = iavf_setup_all_rx_resources(adapter);
3211 	if (err)
3212 		goto err_setup_rx;
3213 
3214 	/* clear any pending interrupts, may auto mask */
3215 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3216 	if (err)
3217 		goto err_req_irq;
3218 
3219 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3220 
3221 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3222 
3223 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3224 
3225 	iavf_configure(adapter);
3226 
3227 	iavf_up_complete(adapter);
3228 
3229 	iavf_irq_enable(adapter, true);
3230 
3231 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3232 
3233 	return 0;
3234 
3235 err_req_irq:
3236 	iavf_down(adapter);
3237 	iavf_free_traffic_irqs(adapter);
3238 err_setup_rx:
3239 	iavf_free_all_rx_resources(adapter);
3240 err_setup_tx:
3241 	iavf_free_all_tx_resources(adapter);
3242 err_unlock:
3243 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3244 
3245 	return err;
3246 }
3247 
3248 /**
3249  * iavf_close - Disables a network interface
3250  * @netdev: network interface device structure
3251  *
3252  * Returns 0, this is not allowed to fail
3253  *
3254  * The close entry point is called when an interface is de-activated
3255  * by the OS.  The hardware is still under the drivers control, but
3256  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3257  * are freed, along with all transmit and receive resources.
3258  **/
3259 static int iavf_close(struct net_device *netdev)
3260 {
3261 	struct iavf_adapter *adapter = netdev_priv(netdev);
3262 	int status;
3263 
3264 	if (adapter->state <= __IAVF_DOWN_PENDING)
3265 		return 0;
3266 
3267 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3268 				&adapter->crit_section))
3269 		usleep_range(500, 1000);
3270 
3271 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3272 	if (CLIENT_ENABLED(adapter))
3273 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3274 
3275 	iavf_down(adapter);
3276 	adapter->state = __IAVF_DOWN_PENDING;
3277 	iavf_free_traffic_irqs(adapter);
3278 
3279 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3280 
3281 	/* We explicitly don't free resources here because the hardware is
3282 	 * still active and can DMA into memory. Resources are cleared in
3283 	 * iavf_virtchnl_completion() after we get confirmation from the PF
3284 	 * driver that the rings have been stopped.
3285 	 *
3286 	 * Also, we wait for state to transition to __IAVF_DOWN before
3287 	 * returning. State change occurs in iavf_virtchnl_completion() after
3288 	 * VF resources are released (which occurs after PF driver processes and
3289 	 * responds to admin queue commands).
3290 	 */
3291 
3292 	status = wait_event_timeout(adapter->down_waitqueue,
3293 				    adapter->state == __IAVF_DOWN,
3294 				    msecs_to_jiffies(500));
3295 	if (!status)
3296 		netdev_warn(netdev, "Device resources not yet released\n");
3297 	return 0;
3298 }
3299 
3300 /**
3301  * iavf_change_mtu - Change the Maximum Transfer Unit
3302  * @netdev: network interface device structure
3303  * @new_mtu: new value for maximum frame size
3304  *
3305  * Returns 0 on success, negative on failure
3306  **/
3307 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3308 {
3309 	struct iavf_adapter *adapter = netdev_priv(netdev);
3310 
3311 	netdev->mtu = new_mtu;
3312 	if (CLIENT_ENABLED(adapter)) {
3313 		iavf_notify_client_l2_params(&adapter->vsi);
3314 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3315 	}
3316 	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3317 	queue_work(iavf_wq, &adapter->reset_task);
3318 
3319 	return 0;
3320 }
3321 
3322 /**
3323  * iavf_set_features - set the netdev feature flags
3324  * @netdev: ptr to the netdev being adjusted
3325  * @features: the feature set that the stack is suggesting
3326  * Note: expects to be called while under rtnl_lock()
3327  **/
3328 static int iavf_set_features(struct net_device *netdev,
3329 			     netdev_features_t features)
3330 {
3331 	struct iavf_adapter *adapter = netdev_priv(netdev);
3332 
3333 	/* Don't allow changing VLAN_RX flag when adapter is not capable
3334 	 * of VLAN offload
3335 	 */
3336 	if (!VLAN_ALLOWED(adapter)) {
3337 		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3338 			return -EINVAL;
3339 	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3340 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3341 			adapter->aq_required |=
3342 				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3343 		else
3344 			adapter->aq_required |=
3345 				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * iavf_features_check - Validate encapsulated packet conforms to limits
3353  * @skb: skb buff
3354  * @dev: This physical port's netdev
3355  * @features: Offload features that the stack believes apply
3356  **/
3357 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3358 					     struct net_device *dev,
3359 					     netdev_features_t features)
3360 {
3361 	size_t len;
3362 
3363 	/* No point in doing any of this if neither checksum nor GSO are
3364 	 * being requested for this frame.  We can rule out both by just
3365 	 * checking for CHECKSUM_PARTIAL
3366 	 */
3367 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3368 		return features;
3369 
3370 	/* We cannot support GSO if the MSS is going to be less than
3371 	 * 64 bytes.  If it is then we need to drop support for GSO.
3372 	 */
3373 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3374 		features &= ~NETIF_F_GSO_MASK;
3375 
3376 	/* MACLEN can support at most 63 words */
3377 	len = skb_network_header(skb) - skb->data;
3378 	if (len & ~(63 * 2))
3379 		goto out_err;
3380 
3381 	/* IPLEN and EIPLEN can support at most 127 dwords */
3382 	len = skb_transport_header(skb) - skb_network_header(skb);
3383 	if (len & ~(127 * 4))
3384 		goto out_err;
3385 
3386 	if (skb->encapsulation) {
3387 		/* L4TUNLEN can support 127 words */
3388 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3389 		if (len & ~(127 * 2))
3390 			goto out_err;
3391 
3392 		/* IPLEN can support at most 127 dwords */
3393 		len = skb_inner_transport_header(skb) -
3394 		      skb_inner_network_header(skb);
3395 		if (len & ~(127 * 4))
3396 			goto out_err;
3397 	}
3398 
3399 	/* No need to validate L4LEN as TCP is the only protocol with a
3400 	 * a flexible value and we support all possible values supported
3401 	 * by TCP, which is at most 15 dwords
3402 	 */
3403 
3404 	return features;
3405 out_err:
3406 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3407 }
3408 
3409 /**
3410  * iavf_fix_features - fix up the netdev feature bits
3411  * @netdev: our net device
3412  * @features: desired feature bits
3413  *
3414  * Returns fixed-up features bits
3415  **/
3416 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3417 					   netdev_features_t features)
3418 {
3419 	struct iavf_adapter *adapter = netdev_priv(netdev);
3420 
3421 	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3422 		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3423 			      NETIF_F_HW_VLAN_CTAG_RX |
3424 			      NETIF_F_HW_VLAN_CTAG_FILTER);
3425 
3426 	return features;
3427 }
3428 
3429 static const struct net_device_ops iavf_netdev_ops = {
3430 	.ndo_open		= iavf_open,
3431 	.ndo_stop		= iavf_close,
3432 	.ndo_start_xmit		= iavf_xmit_frame,
3433 	.ndo_set_rx_mode	= iavf_set_rx_mode,
3434 	.ndo_validate_addr	= eth_validate_addr,
3435 	.ndo_set_mac_address	= iavf_set_mac,
3436 	.ndo_change_mtu		= iavf_change_mtu,
3437 	.ndo_tx_timeout		= iavf_tx_timeout,
3438 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3439 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3440 	.ndo_features_check	= iavf_features_check,
3441 	.ndo_fix_features	= iavf_fix_features,
3442 	.ndo_set_features	= iavf_set_features,
3443 	.ndo_setup_tc		= iavf_setup_tc,
3444 };
3445 
3446 /**
3447  * iavf_check_reset_complete - check that VF reset is complete
3448  * @hw: pointer to hw struct
3449  *
3450  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3451  **/
3452 static int iavf_check_reset_complete(struct iavf_hw *hw)
3453 {
3454 	u32 rstat;
3455 	int i;
3456 
3457 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3458 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3459 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3460 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3461 		    (rstat == VIRTCHNL_VFR_COMPLETED))
3462 			return 0;
3463 		usleep_range(10, 20);
3464 	}
3465 	return -EBUSY;
3466 }
3467 
3468 /**
3469  * iavf_process_config - Process the config information we got from the PF
3470  * @adapter: board private structure
3471  *
3472  * Verify that we have a valid config struct, and set up our netdev features
3473  * and our VSI struct.
3474  **/
3475 int iavf_process_config(struct iavf_adapter *adapter)
3476 {
3477 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3478 	int i, num_req_queues = adapter->num_req_queues;
3479 	struct net_device *netdev = adapter->netdev;
3480 	struct iavf_vsi *vsi = &adapter->vsi;
3481 	netdev_features_t hw_enc_features;
3482 	netdev_features_t hw_features;
3483 
3484 	/* got VF config message back from PF, now we can parse it */
3485 	for (i = 0; i < vfres->num_vsis; i++) {
3486 		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3487 			adapter->vsi_res = &vfres->vsi_res[i];
3488 	}
3489 	if (!adapter->vsi_res) {
3490 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3491 		return -ENODEV;
3492 	}
3493 
3494 	if (num_req_queues &&
3495 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3496 		/* Problem.  The PF gave us fewer queues than what we had
3497 		 * negotiated in our request.  Need a reset to see if we can't
3498 		 * get back to a working state.
3499 		 */
3500 		dev_err(&adapter->pdev->dev,
3501 			"Requested %d queues, but PF only gave us %d.\n",
3502 			num_req_queues,
3503 			adapter->vsi_res->num_queue_pairs);
3504 		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3505 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3506 		iavf_schedule_reset(adapter);
3507 		return -ENODEV;
3508 	}
3509 	adapter->num_req_queues = 0;
3510 
3511 	hw_enc_features = NETIF_F_SG			|
3512 			  NETIF_F_IP_CSUM		|
3513 			  NETIF_F_IPV6_CSUM		|
3514 			  NETIF_F_HIGHDMA		|
3515 			  NETIF_F_SOFT_FEATURES	|
3516 			  NETIF_F_TSO			|
3517 			  NETIF_F_TSO_ECN		|
3518 			  NETIF_F_TSO6			|
3519 			  NETIF_F_SCTP_CRC		|
3520 			  NETIF_F_RXHASH		|
3521 			  NETIF_F_RXCSUM		|
3522 			  0;
3523 
3524 	/* advertise to stack only if offloads for encapsulated packets is
3525 	 * supported
3526 	 */
3527 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3528 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3529 				   NETIF_F_GSO_GRE		|
3530 				   NETIF_F_GSO_GRE_CSUM		|
3531 				   NETIF_F_GSO_IPXIP4		|
3532 				   NETIF_F_GSO_IPXIP6		|
3533 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3534 				   NETIF_F_GSO_PARTIAL		|
3535 				   0;
3536 
3537 		if (!(vfres->vf_cap_flags &
3538 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3539 			netdev->gso_partial_features |=
3540 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3541 
3542 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3543 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3544 		netdev->hw_enc_features |= hw_enc_features;
3545 	}
3546 	/* record features VLANs can make use of */
3547 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3548 
3549 	/* Write features and hw_features separately to avoid polluting
3550 	 * with, or dropping, features that are set when we registered.
3551 	 */
3552 	hw_features = hw_enc_features;
3553 
3554 	/* Enable VLAN features if supported */
3555 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3556 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3557 				NETIF_F_HW_VLAN_CTAG_RX);
3558 	/* Enable cloud filter if ADQ is supported */
3559 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3560 		hw_features |= NETIF_F_HW_TC;
3561 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3562 		hw_features |= NETIF_F_GSO_UDP_L4;
3563 
3564 	netdev->hw_features |= hw_features;
3565 
3566 	netdev->features |= hw_features;
3567 
3568 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3569 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3570 
3571 	netdev->priv_flags |= IFF_UNICAST_FLT;
3572 
3573 	/* Do not turn on offloads when they are requested to be turned off.
3574 	 * TSO needs minimum 576 bytes to work correctly.
3575 	 */
3576 	if (netdev->wanted_features) {
3577 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3578 		    netdev->mtu < 576)
3579 			netdev->features &= ~NETIF_F_TSO;
3580 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3581 		    netdev->mtu < 576)
3582 			netdev->features &= ~NETIF_F_TSO6;
3583 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3584 			netdev->features &= ~NETIF_F_TSO_ECN;
3585 		if (!(netdev->wanted_features & NETIF_F_GRO))
3586 			netdev->features &= ~NETIF_F_GRO;
3587 		if (!(netdev->wanted_features & NETIF_F_GSO))
3588 			netdev->features &= ~NETIF_F_GSO;
3589 	}
3590 
3591 	adapter->vsi.id = adapter->vsi_res->vsi_id;
3592 
3593 	adapter->vsi.back = adapter;
3594 	adapter->vsi.base_vector = 1;
3595 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3596 	vsi->netdev = adapter->netdev;
3597 	vsi->qs_handle = adapter->vsi_res->qset_handle;
3598 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3599 		adapter->rss_key_size = vfres->rss_key_size;
3600 		adapter->rss_lut_size = vfres->rss_lut_size;
3601 	} else {
3602 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3603 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 /**
3610  * iavf_init_task - worker thread to perform delayed initialization
3611  * @work: pointer to work_struct containing our data
3612  *
3613  * This task completes the work that was begun in probe. Due to the nature
3614  * of VF-PF communications, we may need to wait tens of milliseconds to get
3615  * responses back from the PF. Rather than busy-wait in probe and bog down the
3616  * whole system, we'll do it in a task so we can sleep.
3617  * This task only runs during driver init. Once we've established
3618  * communications with the PF driver and set up our netdev, the watchdog
3619  * takes over.
3620  **/
3621 static void iavf_init_task(struct work_struct *work)
3622 {
3623 	struct iavf_adapter *adapter = container_of(work,
3624 						    struct iavf_adapter,
3625 						    init_task.work);
3626 	struct iavf_hw *hw = &adapter->hw;
3627 
3628 	switch (adapter->state) {
3629 	case __IAVF_STARTUP:
3630 		if (iavf_startup(adapter) < 0)
3631 			goto init_failed;
3632 		break;
3633 	case __IAVF_INIT_VERSION_CHECK:
3634 		if (iavf_init_version_check(adapter) < 0)
3635 			goto init_failed;
3636 		break;
3637 	case __IAVF_INIT_GET_RESOURCES:
3638 		if (iavf_init_get_resources(adapter) < 0)
3639 			goto init_failed;
3640 		return;
3641 	default:
3642 		goto init_failed;
3643 	}
3644 
3645 	queue_delayed_work(iavf_wq, &adapter->init_task,
3646 			   msecs_to_jiffies(30));
3647 	return;
3648 init_failed:
3649 	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3650 		dev_err(&adapter->pdev->dev,
3651 			"Failed to communicate with PF; waiting before retry\n");
3652 		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3653 		iavf_shutdown_adminq(hw);
3654 		adapter->state = __IAVF_STARTUP;
3655 		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3656 		return;
3657 	}
3658 	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3659 }
3660 
3661 /**
3662  * iavf_shutdown - Shutdown the device in preparation for a reboot
3663  * @pdev: pci device structure
3664  **/
3665 static void iavf_shutdown(struct pci_dev *pdev)
3666 {
3667 	struct net_device *netdev = pci_get_drvdata(pdev);
3668 	struct iavf_adapter *adapter = netdev_priv(netdev);
3669 
3670 	netif_device_detach(netdev);
3671 
3672 	if (netif_running(netdev))
3673 		iavf_close(netdev);
3674 
3675 	/* Prevent the watchdog from running. */
3676 	adapter->state = __IAVF_REMOVE;
3677 	adapter->aq_required = 0;
3678 
3679 #ifdef CONFIG_PM
3680 	pci_save_state(pdev);
3681 
3682 #endif
3683 	pci_disable_device(pdev);
3684 }
3685 
3686 /**
3687  * iavf_probe - Device Initialization Routine
3688  * @pdev: PCI device information struct
3689  * @ent: entry in iavf_pci_tbl
3690  *
3691  * Returns 0 on success, negative on failure
3692  *
3693  * iavf_probe initializes an adapter identified by a pci_dev structure.
3694  * The OS initialization, configuring of the adapter private structure,
3695  * and a hardware reset occur.
3696  **/
3697 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3698 {
3699 	struct net_device *netdev;
3700 	struct iavf_adapter *adapter = NULL;
3701 	struct iavf_hw *hw = NULL;
3702 	int err;
3703 
3704 	err = pci_enable_device(pdev);
3705 	if (err)
3706 		return err;
3707 
3708 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3709 	if (err) {
3710 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3711 		if (err) {
3712 			dev_err(&pdev->dev,
3713 				"DMA configuration failed: 0x%x\n", err);
3714 			goto err_dma;
3715 		}
3716 	}
3717 
3718 	err = pci_request_regions(pdev, iavf_driver_name);
3719 	if (err) {
3720 		dev_err(&pdev->dev,
3721 			"pci_request_regions failed 0x%x\n", err);
3722 		goto err_pci_reg;
3723 	}
3724 
3725 	pci_enable_pcie_error_reporting(pdev);
3726 
3727 	pci_set_master(pdev);
3728 
3729 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3730 				   IAVF_MAX_REQ_QUEUES);
3731 	if (!netdev) {
3732 		err = -ENOMEM;
3733 		goto err_alloc_etherdev;
3734 	}
3735 
3736 	SET_NETDEV_DEV(netdev, &pdev->dev);
3737 
3738 	pci_set_drvdata(pdev, netdev);
3739 	adapter = netdev_priv(netdev);
3740 
3741 	adapter->netdev = netdev;
3742 	adapter->pdev = pdev;
3743 
3744 	hw = &adapter->hw;
3745 	hw->back = adapter;
3746 
3747 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3748 	adapter->state = __IAVF_STARTUP;
3749 
3750 	/* Call save state here because it relies on the adapter struct. */
3751 	pci_save_state(pdev);
3752 
3753 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3754 			      pci_resource_len(pdev, 0));
3755 	if (!hw->hw_addr) {
3756 		err = -EIO;
3757 		goto err_ioremap;
3758 	}
3759 	hw->vendor_id = pdev->vendor;
3760 	hw->device_id = pdev->device;
3761 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3762 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3763 	hw->subsystem_device_id = pdev->subsystem_device;
3764 	hw->bus.device = PCI_SLOT(pdev->devfn);
3765 	hw->bus.func = PCI_FUNC(pdev->devfn);
3766 	hw->bus.bus_id = pdev->bus->number;
3767 
3768 	/* set up the locks for the AQ, do this only once in probe
3769 	 * and destroy them only once in remove
3770 	 */
3771 	mutex_init(&hw->aq.asq_mutex);
3772 	mutex_init(&hw->aq.arq_mutex);
3773 
3774 	spin_lock_init(&adapter->mac_vlan_list_lock);
3775 	spin_lock_init(&adapter->cloud_filter_list_lock);
3776 	spin_lock_init(&adapter->fdir_fltr_lock);
3777 	spin_lock_init(&adapter->adv_rss_lock);
3778 
3779 	INIT_LIST_HEAD(&adapter->mac_filter_list);
3780 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3781 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3782 	INIT_LIST_HEAD(&adapter->fdir_list_head);
3783 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3784 
3785 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3786 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3787 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3788 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3789 	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3790 	queue_delayed_work(iavf_wq, &adapter->init_task,
3791 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3792 
3793 	/* Setup the wait queue for indicating transition to down status */
3794 	init_waitqueue_head(&adapter->down_waitqueue);
3795 
3796 	return 0;
3797 
3798 err_ioremap:
3799 	free_netdev(netdev);
3800 err_alloc_etherdev:
3801 	pci_release_regions(pdev);
3802 err_pci_reg:
3803 err_dma:
3804 	pci_disable_device(pdev);
3805 	return err;
3806 }
3807 
3808 /**
3809  * iavf_suspend - Power management suspend routine
3810  * @dev_d: device info pointer
3811  *
3812  * Called when the system (VM) is entering sleep/suspend.
3813  **/
3814 static int __maybe_unused iavf_suspend(struct device *dev_d)
3815 {
3816 	struct net_device *netdev = dev_get_drvdata(dev_d);
3817 	struct iavf_adapter *adapter = netdev_priv(netdev);
3818 
3819 	netif_device_detach(netdev);
3820 
3821 	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3822 				&adapter->crit_section))
3823 		usleep_range(500, 1000);
3824 
3825 	if (netif_running(netdev)) {
3826 		rtnl_lock();
3827 		iavf_down(adapter);
3828 		rtnl_unlock();
3829 	}
3830 	iavf_free_misc_irq(adapter);
3831 	iavf_reset_interrupt_capability(adapter);
3832 
3833 	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3834 
3835 	return 0;
3836 }
3837 
3838 /**
3839  * iavf_resume - Power management resume routine
3840  * @dev_d: device info pointer
3841  *
3842  * Called when the system (VM) is resumed from sleep/suspend.
3843  **/
3844 static int __maybe_unused iavf_resume(struct device *dev_d)
3845 {
3846 	struct pci_dev *pdev = to_pci_dev(dev_d);
3847 	struct net_device *netdev = pci_get_drvdata(pdev);
3848 	struct iavf_adapter *adapter = netdev_priv(netdev);
3849 	u32 err;
3850 
3851 	pci_set_master(pdev);
3852 
3853 	rtnl_lock();
3854 	err = iavf_set_interrupt_capability(adapter);
3855 	if (err) {
3856 		rtnl_unlock();
3857 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3858 		return err;
3859 	}
3860 	err = iavf_request_misc_irq(adapter);
3861 	rtnl_unlock();
3862 	if (err) {
3863 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3864 		return err;
3865 	}
3866 
3867 	queue_work(iavf_wq, &adapter->reset_task);
3868 
3869 	netif_device_attach(netdev);
3870 
3871 	return err;
3872 }
3873 
3874 /**
3875  * iavf_remove - Device Removal Routine
3876  * @pdev: PCI device information struct
3877  *
3878  * iavf_remove is called by the PCI subsystem to alert the driver
3879  * that it should release a PCI device.  The could be caused by a
3880  * Hot-Plug event, or because the driver is going to be removed from
3881  * memory.
3882  **/
3883 static void iavf_remove(struct pci_dev *pdev)
3884 {
3885 	struct net_device *netdev = pci_get_drvdata(pdev);
3886 	struct iavf_adapter *adapter = netdev_priv(netdev);
3887 	struct iavf_fdir_fltr *fdir, *fdirtmp;
3888 	struct iavf_vlan_filter *vlf, *vlftmp;
3889 	struct iavf_adv_rss *rss, *rsstmp;
3890 	struct iavf_mac_filter *f, *ftmp;
3891 	struct iavf_cloud_filter *cf, *cftmp;
3892 	struct iavf_hw *hw = &adapter->hw;
3893 	int err;
3894 	/* Indicate we are in remove and not to run reset_task */
3895 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3896 	cancel_delayed_work_sync(&adapter->init_task);
3897 	cancel_work_sync(&adapter->reset_task);
3898 	cancel_delayed_work_sync(&adapter->client_task);
3899 	if (adapter->netdev_registered) {
3900 		unregister_netdev(netdev);
3901 		adapter->netdev_registered = false;
3902 	}
3903 	if (CLIENT_ALLOWED(adapter)) {
3904 		err = iavf_lan_del_device(adapter);
3905 		if (err)
3906 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3907 				 err);
3908 	}
3909 
3910 	/* Shut down all the garbage mashers on the detention level */
3911 	adapter->state = __IAVF_REMOVE;
3912 	adapter->aq_required = 0;
3913 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3914 	iavf_request_reset(adapter);
3915 	msleep(50);
3916 	/* If the FW isn't responding, kick it once, but only once. */
3917 	if (!iavf_asq_done(hw)) {
3918 		iavf_request_reset(adapter);
3919 		msleep(50);
3920 	}
3921 	iavf_free_all_tx_resources(adapter);
3922 	iavf_free_all_rx_resources(adapter);
3923 	iavf_misc_irq_disable(adapter);
3924 	iavf_free_misc_irq(adapter);
3925 	iavf_reset_interrupt_capability(adapter);
3926 	iavf_free_q_vectors(adapter);
3927 
3928 	cancel_delayed_work_sync(&adapter->watchdog_task);
3929 
3930 	cancel_work_sync(&adapter->adminq_task);
3931 
3932 	iavf_free_rss(adapter);
3933 
3934 	if (hw->aq.asq.count)
3935 		iavf_shutdown_adminq(hw);
3936 
3937 	/* destroy the locks only once, here */
3938 	mutex_destroy(&hw->aq.arq_mutex);
3939 	mutex_destroy(&hw->aq.asq_mutex);
3940 
3941 	iounmap(hw->hw_addr);
3942 	pci_release_regions(pdev);
3943 	iavf_free_queues(adapter);
3944 	kfree(adapter->vf_res);
3945 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3946 	/* If we got removed before an up/down sequence, we've got a filter
3947 	 * hanging out there that we need to get rid of.
3948 	 */
3949 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3950 		list_del(&f->list);
3951 		kfree(f);
3952 	}
3953 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3954 				 list) {
3955 		list_del(&vlf->list);
3956 		kfree(vlf);
3957 	}
3958 
3959 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3960 
3961 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3962 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3963 		list_del(&cf->list);
3964 		kfree(cf);
3965 	}
3966 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3967 
3968 	spin_lock_bh(&adapter->fdir_fltr_lock);
3969 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
3970 		list_del(&fdir->list);
3971 		kfree(fdir);
3972 	}
3973 	spin_unlock_bh(&adapter->fdir_fltr_lock);
3974 
3975 	spin_lock_bh(&adapter->adv_rss_lock);
3976 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
3977 				 list) {
3978 		list_del(&rss->list);
3979 		kfree(rss);
3980 	}
3981 	spin_unlock_bh(&adapter->adv_rss_lock);
3982 
3983 	free_netdev(netdev);
3984 
3985 	pci_disable_pcie_error_reporting(pdev);
3986 
3987 	pci_disable_device(pdev);
3988 }
3989 
3990 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3991 
3992 static struct pci_driver iavf_driver = {
3993 	.name      = iavf_driver_name,
3994 	.id_table  = iavf_pci_tbl,
3995 	.probe     = iavf_probe,
3996 	.remove    = iavf_remove,
3997 	.driver.pm = &iavf_pm_ops,
3998 	.shutdown  = iavf_shutdown,
3999 };
4000 
4001 /**
4002  * iavf_init_module - Driver Registration Routine
4003  *
4004  * iavf_init_module is the first routine called when the driver is
4005  * loaded. All it does is register with the PCI subsystem.
4006  **/
4007 static int __init iavf_init_module(void)
4008 {
4009 	int ret;
4010 
4011 	pr_info("iavf: %s\n", iavf_driver_string);
4012 
4013 	pr_info("%s\n", iavf_copyright);
4014 
4015 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4016 				  iavf_driver_name);
4017 	if (!iavf_wq) {
4018 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4019 		return -ENOMEM;
4020 	}
4021 	ret = pci_register_driver(&iavf_driver);
4022 	return ret;
4023 }
4024 
4025 module_init(iavf_init_module);
4026 
4027 /**
4028  * iavf_exit_module - Driver Exit Cleanup Routine
4029  *
4030  * iavf_exit_module is called just before the driver is removed
4031  * from memory.
4032  **/
4033 static void __exit iavf_exit_module(void)
4034 {
4035 	pci_unregister_driver(&iavf_driver);
4036 	destroy_workqueue(iavf_wq);
4037 }
4038 
4039 module_exit(iavf_exit_module);
4040 
4041 /* iavf_main.c */
4042