1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 6 #include "iavf.h" 7 #include "iavf_prototype.h" 8 /* All iavf tracepoints are defined by the include below, which must 9 * be included exactly once across the whole kernel with 10 * CREATE_TRACE_POINTS defined 11 */ 12 #define CREATE_TRACE_POINTS 13 #include "iavf_trace.h" 14 15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 17 static int iavf_close(struct net_device *netdev); 18 static void iavf_init_get_resources(struct iavf_adapter *adapter); 19 static int iavf_check_reset_complete(struct iavf_hw *hw); 20 21 char iavf_driver_name[] = "iavf"; 22 static const char iavf_driver_string[] = 23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 24 25 static const char iavf_copyright[] = 26 "Copyright (c) 2013 - 2018 Intel Corporation."; 27 28 /* iavf_pci_tbl - PCI Device ID Table 29 * 30 * Wildcard entries (PCI_ANY_ID) should come last 31 * Last entry must be all 0s 32 * 33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 34 * Class, Class Mask, private data (not used) } 35 */ 36 static const struct pci_device_id iavf_pci_tbl[] = { 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 41 /* required last entry */ 42 {0, } 43 }; 44 45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 46 47 MODULE_ALIAS("i40evf"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_IMPORT_NS("LIBETH"); 50 MODULE_IMPORT_NS("LIBIE"); 51 MODULE_LICENSE("GPL v2"); 52 53 static const struct net_device_ops iavf_netdev_ops; 54 55 int iavf_status_to_errno(enum iavf_status status) 56 { 57 switch (status) { 58 case IAVF_SUCCESS: 59 return 0; 60 case IAVF_ERR_PARAM: 61 case IAVF_ERR_MAC_TYPE: 62 case IAVF_ERR_INVALID_MAC_ADDR: 63 case IAVF_ERR_INVALID_LINK_SETTINGS: 64 case IAVF_ERR_INVALID_PD_ID: 65 case IAVF_ERR_INVALID_QP_ID: 66 case IAVF_ERR_INVALID_CQ_ID: 67 case IAVF_ERR_INVALID_CEQ_ID: 68 case IAVF_ERR_INVALID_AEQ_ID: 69 case IAVF_ERR_INVALID_SIZE: 70 case IAVF_ERR_INVALID_ARP_INDEX: 71 case IAVF_ERR_INVALID_FPM_FUNC_ID: 72 case IAVF_ERR_QP_INVALID_MSG_SIZE: 73 case IAVF_ERR_INVALID_FRAG_COUNT: 74 case IAVF_ERR_INVALID_ALIGNMENT: 75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 76 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 77 case IAVF_ERR_INVALID_VF_ID: 78 case IAVF_ERR_INVALID_HMCFN_ID: 79 case IAVF_ERR_INVALID_PBLE_INDEX: 80 case IAVF_ERR_INVALID_SD_INDEX: 81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 82 case IAVF_ERR_INVALID_SD_TYPE: 83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 86 return -EINVAL; 87 case IAVF_ERR_NVM: 88 case IAVF_ERR_NVM_CHECKSUM: 89 case IAVF_ERR_PHY: 90 case IAVF_ERR_CONFIG: 91 case IAVF_ERR_UNKNOWN_PHY: 92 case IAVF_ERR_LINK_SETUP: 93 case IAVF_ERR_ADAPTER_STOPPED: 94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 95 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 96 case IAVF_ERR_RESET_FAILED: 97 case IAVF_ERR_BAD_PTR: 98 case IAVF_ERR_SWFW_SYNC: 99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 100 case IAVF_ERR_QUEUE_EMPTY: 101 case IAVF_ERR_FLUSHED_QUEUE: 102 case IAVF_ERR_OPCODE_MISMATCH: 103 case IAVF_ERR_CQP_COMPL_ERROR: 104 case IAVF_ERR_BACKING_PAGE_ERROR: 105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 106 case IAVF_ERR_MEMCPY_FAILED: 107 case IAVF_ERR_SRQ_ENABLED: 108 case IAVF_ERR_ADMIN_QUEUE_ERROR: 109 case IAVF_ERR_ADMIN_QUEUE_FULL: 110 case IAVF_ERR_BAD_RDMA_CQE: 111 case IAVF_ERR_NVM_BLANK_MODE: 112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 113 case IAVF_ERR_DIAG_TEST_FAILED: 114 case IAVF_ERR_FIRMWARE_API_VERSION: 115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 116 return -EIO; 117 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 118 return -ENODEV; 119 case IAVF_ERR_NO_AVAILABLE_VSI: 120 case IAVF_ERR_RING_FULL: 121 return -ENOSPC; 122 case IAVF_ERR_NO_MEMORY: 123 return -ENOMEM; 124 case IAVF_ERR_TIMEOUT: 125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 126 return -ETIMEDOUT; 127 case IAVF_ERR_NOT_IMPLEMENTED: 128 case IAVF_NOT_SUPPORTED: 129 return -EOPNOTSUPP; 130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 131 return -EALREADY; 132 case IAVF_ERR_NOT_READY: 133 return -EBUSY; 134 case IAVF_ERR_BUF_TOO_SHORT: 135 return -EMSGSIZE; 136 } 137 138 return -EIO; 139 } 140 141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 142 { 143 switch (v_status) { 144 case VIRTCHNL_STATUS_SUCCESS: 145 return 0; 146 case VIRTCHNL_STATUS_ERR_PARAM: 147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 148 return -EINVAL; 149 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 150 return -ENOMEM; 151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 154 return -EIO; 155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 156 return -EOPNOTSUPP; 157 } 158 159 return -EIO; 160 } 161 162 /** 163 * iavf_pdev_to_adapter - go from pci_dev to adapter 164 * @pdev: pci_dev pointer 165 */ 166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 167 { 168 return netdev_priv(pci_get_drvdata(pdev)); 169 } 170 171 /** 172 * iavf_is_reset_in_progress - Check if a reset is in progress 173 * @adapter: board private structure 174 */ 175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 176 { 177 if (adapter->state == __IAVF_RESETTING || 178 adapter->flags & (IAVF_FLAG_RESET_PENDING | 179 IAVF_FLAG_RESET_NEEDED)) 180 return true; 181 182 return false; 183 } 184 185 /** 186 * iavf_wait_for_reset - Wait for reset to finish. 187 * @adapter: board private structure 188 * 189 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 190 */ 191 int iavf_wait_for_reset(struct iavf_adapter *adapter) 192 { 193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 194 !iavf_is_reset_in_progress(adapter), 195 msecs_to_jiffies(5000)); 196 197 /* If ret < 0 then it means wait was interrupted. 198 * If ret == 0 then it means we got a timeout while waiting 199 * for reset to finish. 200 * If ret > 0 it means reset has finished. 201 */ 202 if (ret > 0) 203 return 0; 204 else if (ret < 0) 205 return -EINTR; 206 else 207 return -EBUSY; 208 } 209 210 /** 211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 212 * @hw: pointer to the HW structure 213 * @mem: ptr to mem struct to fill out 214 * @size: size of memory requested 215 * @alignment: what to align the allocation to 216 **/ 217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 218 struct iavf_dma_mem *mem, 219 u64 size, u32 alignment) 220 { 221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 222 223 if (!mem) 224 return IAVF_ERR_PARAM; 225 226 mem->size = ALIGN(size, alignment); 227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 228 (dma_addr_t *)&mem->pa, GFP_KERNEL); 229 if (mem->va) 230 return 0; 231 else 232 return IAVF_ERR_NO_MEMORY; 233 } 234 235 /** 236 * iavf_free_dma_mem - wrapper for DMA memory freeing 237 * @hw: pointer to the HW structure 238 * @mem: ptr to mem struct to free 239 **/ 240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 241 { 242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 243 244 if (!mem || !mem->va) 245 return IAVF_ERR_PARAM; 246 dma_free_coherent(&adapter->pdev->dev, mem->size, 247 mem->va, (dma_addr_t)mem->pa); 248 return 0; 249 } 250 251 /** 252 * iavf_allocate_virt_mem - virt memory alloc wrapper 253 * @hw: pointer to the HW structure 254 * @mem: ptr to mem struct to fill out 255 * @size: size of memory requested 256 **/ 257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 258 struct iavf_virt_mem *mem, u32 size) 259 { 260 if (!mem) 261 return IAVF_ERR_PARAM; 262 263 mem->size = size; 264 mem->va = kzalloc(size, GFP_KERNEL); 265 266 if (mem->va) 267 return 0; 268 else 269 return IAVF_ERR_NO_MEMORY; 270 } 271 272 /** 273 * iavf_free_virt_mem - virt memory free wrapper 274 * @hw: pointer to the HW structure 275 * @mem: ptr to mem struct to free 276 **/ 277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 278 { 279 kfree(mem->va); 280 } 281 282 /** 283 * iavf_schedule_reset - Set the flags and schedule a reset event 284 * @adapter: board private structure 285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 286 **/ 287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 288 { 289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 290 !(adapter->flags & 291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 292 adapter->flags |= flags; 293 queue_work(adapter->wq, &adapter->reset_task); 294 } 295 } 296 297 /** 298 * iavf_schedule_aq_request - Set the flags and schedule aq request 299 * @adapter: board private structure 300 * @flags: requested aq flags 301 **/ 302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 303 { 304 adapter->aq_required |= flags; 305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 306 } 307 308 /** 309 * iavf_tx_timeout - Respond to a Tx Hang 310 * @netdev: network interface device structure 311 * @txqueue: queue number that is timing out 312 **/ 313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 314 { 315 struct iavf_adapter *adapter = netdev_priv(netdev); 316 317 adapter->tx_timeout_count++; 318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 319 } 320 321 /** 322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 323 * @adapter: board private structure 324 **/ 325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 326 { 327 struct iavf_hw *hw = &adapter->hw; 328 329 if (!adapter->msix_entries) 330 return; 331 332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 333 334 iavf_flush(hw); 335 336 synchronize_irq(adapter->msix_entries[0].vector); 337 } 338 339 /** 340 * iavf_misc_irq_enable - Enable default interrupt generation settings 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 350 351 iavf_flush(hw); 352 } 353 354 /** 355 * iavf_irq_disable - Mask off interrupt generation on the NIC 356 * @adapter: board private structure 357 **/ 358 static void iavf_irq_disable(struct iavf_adapter *adapter) 359 { 360 int i; 361 struct iavf_hw *hw = &adapter->hw; 362 363 if (!adapter->msix_entries) 364 return; 365 366 for (i = 1; i < adapter->num_msix_vectors; i++) { 367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 368 synchronize_irq(adapter->msix_entries[i].vector); 369 } 370 iavf_flush(hw); 371 } 372 373 /** 374 * iavf_irq_enable_queues - Enable interrupt for all queues 375 * @adapter: board private structure 376 **/ 377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 378 { 379 struct iavf_hw *hw = &adapter->hw; 380 int i; 381 382 for (i = 1; i < adapter->num_msix_vectors; i++) { 383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 386 } 387 } 388 389 /** 390 * iavf_irq_enable - Enable default interrupt generation settings 391 * @adapter: board private structure 392 * @flush: boolean value whether to run rd32() 393 **/ 394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 395 { 396 struct iavf_hw *hw = &adapter->hw; 397 398 iavf_misc_irq_enable(adapter); 399 iavf_irq_enable_queues(adapter); 400 401 if (flush) 402 iavf_flush(hw); 403 } 404 405 /** 406 * iavf_msix_aq - Interrupt handler for vector 0 407 * @irq: interrupt number 408 * @data: pointer to netdev 409 **/ 410 static irqreturn_t iavf_msix_aq(int irq, void *data) 411 { 412 struct net_device *netdev = data; 413 struct iavf_adapter *adapter = netdev_priv(netdev); 414 struct iavf_hw *hw = &adapter->hw; 415 416 /* handle non-queue interrupts, these reads clear the registers */ 417 rd32(hw, IAVF_VFINT_ICR01); 418 rd32(hw, IAVF_VFINT_ICR0_ENA1); 419 420 if (adapter->state != __IAVF_REMOVE) 421 /* schedule work on the private workqueue */ 422 queue_work(adapter->wq, &adapter->adminq_task); 423 424 return IRQ_HANDLED; 425 } 426 427 /** 428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 429 * @irq: interrupt number 430 * @data: pointer to a q_vector 431 **/ 432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 433 { 434 struct iavf_q_vector *q_vector = data; 435 436 if (!q_vector->tx.ring && !q_vector->rx.ring) 437 return IRQ_HANDLED; 438 439 napi_schedule_irqoff(&q_vector->napi); 440 441 return IRQ_HANDLED; 442 } 443 444 /** 445 * iavf_map_vector_to_rxq - associate irqs with rx queues 446 * @adapter: board private structure 447 * @v_idx: interrupt number 448 * @r_idx: queue number 449 **/ 450 static void 451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 452 { 453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 455 struct iavf_hw *hw = &adapter->hw; 456 457 rx_ring->q_vector = q_vector; 458 rx_ring->next = q_vector->rx.ring; 459 rx_ring->vsi = &adapter->vsi; 460 q_vector->rx.ring = rx_ring; 461 q_vector->rx.count++; 462 q_vector->rx.next_update = jiffies + 1; 463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 464 q_vector->ring_mask |= BIT(r_idx); 465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 466 q_vector->rx.current_itr >> 1); 467 q_vector->rx.current_itr = q_vector->rx.target_itr; 468 } 469 470 /** 471 * iavf_map_vector_to_txq - associate irqs with tx queues 472 * @adapter: board private structure 473 * @v_idx: interrupt number 474 * @t_idx: queue number 475 **/ 476 static void 477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 478 { 479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 481 struct iavf_hw *hw = &adapter->hw; 482 483 tx_ring->q_vector = q_vector; 484 tx_ring->next = q_vector->tx.ring; 485 tx_ring->vsi = &adapter->vsi; 486 q_vector->tx.ring = tx_ring; 487 q_vector->tx.count++; 488 q_vector->tx.next_update = jiffies + 1; 489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 490 q_vector->num_ringpairs++; 491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 492 q_vector->tx.target_itr >> 1); 493 q_vector->tx.current_itr = q_vector->tx.target_itr; 494 } 495 496 /** 497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 498 * @adapter: board private structure to initialize 499 * 500 * This function maps descriptor rings to the queue-specific vectors 501 * we were allotted through the MSI-X enabling code. Ideally, we'd have 502 * one vector per ring/queue, but on a constrained vector budget, we 503 * group the rings as "efficiently" as possible. You would add new 504 * mapping configurations in here. 505 **/ 506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 507 { 508 int rings_remaining = adapter->num_active_queues; 509 int ridx = 0, vidx = 0; 510 int q_vectors; 511 512 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 513 514 for (; ridx < rings_remaining; ridx++) { 515 iavf_map_vector_to_rxq(adapter, vidx, ridx); 516 iavf_map_vector_to_txq(adapter, vidx, ridx); 517 518 /* In the case where we have more queues than vectors, continue 519 * round-robin on vectors until all queues are mapped. 520 */ 521 if (++vidx >= q_vectors) 522 vidx = 0; 523 } 524 525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 526 } 527 528 /** 529 * iavf_irq_affinity_notify - Callback for affinity changes 530 * @notify: context as to what irq was changed 531 * @mask: the new affinity mask 532 * 533 * This is a callback function used by the irq_set_affinity_notifier function 534 * so that we may register to receive changes to the irq affinity masks. 535 **/ 536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 537 const cpumask_t *mask) 538 { 539 struct iavf_q_vector *q_vector = 540 container_of(notify, struct iavf_q_vector, affinity_notify); 541 542 cpumask_copy(&q_vector->affinity_mask, mask); 543 } 544 545 /** 546 * iavf_irq_affinity_release - Callback for affinity notifier release 547 * @ref: internal core kernel usage 548 * 549 * This is a callback function used by the irq_set_affinity_notifier function 550 * to inform the current notification subscriber that they will no longer 551 * receive notifications. 552 **/ 553 static void iavf_irq_affinity_release(struct kref *ref) {} 554 555 /** 556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 557 * @adapter: board private structure 558 * @basename: device basename 559 * 560 * Allocates MSI-X vectors for tx and rx handling, and requests 561 * interrupts from the kernel. 562 **/ 563 static int 564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 565 { 566 unsigned int vector, q_vectors; 567 unsigned int rx_int_idx = 0, tx_int_idx = 0; 568 int irq_num, err; 569 int cpu; 570 571 iavf_irq_disable(adapter); 572 /* Decrement for Other and TCP Timer vectors */ 573 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 574 575 for (vector = 0; vector < q_vectors; vector++) { 576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 577 578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 579 580 if (q_vector->tx.ring && q_vector->rx.ring) { 581 snprintf(q_vector->name, sizeof(q_vector->name), 582 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 583 tx_int_idx++; 584 } else if (q_vector->rx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-rx-%u", basename, rx_int_idx++); 587 } else if (q_vector->tx.ring) { 588 snprintf(q_vector->name, sizeof(q_vector->name), 589 "iavf-%s-tx-%u", basename, tx_int_idx++); 590 } else { 591 /* skip this unused q_vector */ 592 continue; 593 } 594 err = request_irq(irq_num, 595 iavf_msix_clean_rings, 596 0, 597 q_vector->name, 598 q_vector); 599 if (err) { 600 dev_info(&adapter->pdev->dev, 601 "Request_irq failed, error: %d\n", err); 602 goto free_queue_irqs; 603 } 604 /* register for affinity change notifications */ 605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 606 q_vector->affinity_notify.release = 607 iavf_irq_affinity_release; 608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 609 /* Spread the IRQ affinity hints across online CPUs. Note that 610 * get_cpu_mask returns a mask with a permanent lifetime so 611 * it's safe to use as a hint for irq_update_affinity_hint. 612 */ 613 cpu = cpumask_local_spread(q_vector->v_idx, -1); 614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 615 } 616 617 return 0; 618 619 free_queue_irqs: 620 while (vector) { 621 vector--; 622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 623 irq_set_affinity_notifier(irq_num, NULL); 624 irq_update_affinity_hint(irq_num, NULL); 625 free_irq(irq_num, &adapter->q_vectors[vector]); 626 } 627 return err; 628 } 629 630 /** 631 * iavf_request_misc_irq - Initialize MSI-X interrupts 632 * @adapter: board private structure 633 * 634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 635 * vector is only for the admin queue, and stays active even when the netdev 636 * is closed. 637 **/ 638 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 639 { 640 struct net_device *netdev = adapter->netdev; 641 int err; 642 643 snprintf(adapter->misc_vector_name, 644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 645 dev_name(&adapter->pdev->dev)); 646 err = request_irq(adapter->msix_entries[0].vector, 647 &iavf_msix_aq, 0, 648 adapter->misc_vector_name, netdev); 649 if (err) { 650 dev_err(&adapter->pdev->dev, 651 "request_irq for %s failed: %d\n", 652 adapter->misc_vector_name, err); 653 free_irq(adapter->msix_entries[0].vector, netdev); 654 } 655 return err; 656 } 657 658 /** 659 * iavf_free_traffic_irqs - Free MSI-X interrupts 660 * @adapter: board private structure 661 * 662 * Frees all MSI-X vectors other than 0. 663 **/ 664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 665 { 666 int vector, irq_num, q_vectors; 667 668 if (!adapter->msix_entries) 669 return; 670 671 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 672 673 for (vector = 0; vector < q_vectors; vector++) { 674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 675 irq_set_affinity_notifier(irq_num, NULL); 676 irq_update_affinity_hint(irq_num, NULL); 677 free_irq(irq_num, &adapter->q_vectors[vector]); 678 } 679 } 680 681 /** 682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 683 * @adapter: board private structure 684 * 685 * Frees MSI-X vector 0. 686 **/ 687 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 688 { 689 struct net_device *netdev = adapter->netdev; 690 691 if (!adapter->msix_entries) 692 return; 693 694 free_irq(adapter->msix_entries[0].vector, netdev); 695 } 696 697 /** 698 * iavf_configure_tx - Configure Transmit Unit after Reset 699 * @adapter: board private structure 700 * 701 * Configure the Tx unit of the MAC after a reset. 702 **/ 703 static void iavf_configure_tx(struct iavf_adapter *adapter) 704 { 705 struct iavf_hw *hw = &adapter->hw; 706 int i; 707 708 for (i = 0; i < adapter->num_active_queues; i++) 709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 710 } 711 712 /** 713 * iavf_configure_rx - Configure Receive Unit after Reset 714 * @adapter: board private structure 715 * 716 * Configure the Rx unit of the MAC after a reset. 717 **/ 718 static void iavf_configure_rx(struct iavf_adapter *adapter) 719 { 720 struct iavf_hw *hw = &adapter->hw; 721 722 for (u32 i = 0; i < adapter->num_active_queues; i++) 723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 724 } 725 726 /** 727 * iavf_find_vlan - Search filter list for specific vlan filter 728 * @adapter: board private structure 729 * @vlan: vlan tag 730 * 731 * Returns ptr to the filter object or NULL. Must be called while holding the 732 * mac_vlan_list_lock. 733 **/ 734 static struct 735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 736 struct iavf_vlan vlan) 737 { 738 struct iavf_vlan_filter *f; 739 740 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 741 if (f->vlan.vid == vlan.vid && 742 f->vlan.tpid == vlan.tpid) 743 return f; 744 } 745 746 return NULL; 747 } 748 749 /** 750 * iavf_add_vlan - Add a vlan filter to the list 751 * @adapter: board private structure 752 * @vlan: VLAN tag 753 * 754 * Returns ptr to the filter object or NULL when no memory available. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f = NULL; 761 762 spin_lock_bh(&adapter->mac_vlan_list_lock); 763 764 f = iavf_find_vlan(adapter, vlan); 765 if (!f) { 766 f = kzalloc(sizeof(*f), GFP_ATOMIC); 767 if (!f) 768 goto clearout; 769 770 f->vlan = vlan; 771 772 list_add_tail(&f->list, &adapter->vlan_filter_list); 773 f->state = IAVF_VLAN_ADD; 774 adapter->num_vlan_filters++; 775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 776 } 777 778 clearout: 779 spin_unlock_bh(&adapter->mac_vlan_list_lock); 780 return f; 781 } 782 783 /** 784 * iavf_del_vlan - Remove a vlan filter from the list 785 * @adapter: board private structure 786 * @vlan: VLAN tag 787 **/ 788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 789 { 790 struct iavf_vlan_filter *f; 791 792 spin_lock_bh(&adapter->mac_vlan_list_lock); 793 794 f = iavf_find_vlan(adapter, vlan); 795 if (f) { 796 f->state = IAVF_VLAN_REMOVE; 797 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 798 } 799 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 } 802 803 /** 804 * iavf_restore_filters 805 * @adapter: board private structure 806 * 807 * Restore existing non MAC filters when VF netdev comes back up 808 **/ 809 static void iavf_restore_filters(struct iavf_adapter *adapter) 810 { 811 struct iavf_vlan_filter *f; 812 813 /* re-add all VLAN filters */ 814 spin_lock_bh(&adapter->mac_vlan_list_lock); 815 816 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 817 if (f->state == IAVF_VLAN_INACTIVE) 818 f->state = IAVF_VLAN_ADD; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 823 } 824 825 /** 826 * iavf_get_num_vlans_added - get number of VLANs added 827 * @adapter: board private structure 828 */ 829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 830 { 831 return adapter->num_vlan_filters; 832 } 833 834 /** 835 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 836 * @adapter: board private structure 837 * 838 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 839 * do not impose a limit as that maintains current behavior and for 840 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 841 **/ 842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 843 { 844 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 845 * never been a limit on the VF driver side 846 */ 847 if (VLAN_ALLOWED(adapter)) 848 return VLAN_N_VID; 849 else if (VLAN_V2_ALLOWED(adapter)) 850 return adapter->vlan_v2_caps.filtering.max_filters; 851 852 return 0; 853 } 854 855 /** 856 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 857 * @adapter: board private structure 858 **/ 859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 860 { 861 if (iavf_get_num_vlans_added(adapter) < 862 iavf_get_max_vlans_allowed(adapter)) 863 return false; 864 865 return true; 866 } 867 868 /** 869 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 870 * @netdev: network device struct 871 * @proto: unused protocol data 872 * @vid: VLAN tag 873 **/ 874 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 875 __always_unused __be16 proto, u16 vid) 876 { 877 struct iavf_adapter *adapter = netdev_priv(netdev); 878 879 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 880 if (!vid) 881 return 0; 882 883 if (!VLAN_FILTERING_ALLOWED(adapter)) 884 return -EIO; 885 886 if (iavf_max_vlans_added(adapter)) { 887 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 888 iavf_get_max_vlans_allowed(adapter)); 889 return -EIO; 890 } 891 892 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 893 return -ENOMEM; 894 895 return 0; 896 } 897 898 /** 899 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 900 * @netdev: network device struct 901 * @proto: unused protocol data 902 * @vid: VLAN tag 903 **/ 904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 905 __always_unused __be16 proto, u16 vid) 906 { 907 struct iavf_adapter *adapter = netdev_priv(netdev); 908 909 /* We do not track VLAN 0 filter */ 910 if (!vid) 911 return 0; 912 913 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 914 return 0; 915 } 916 917 /** 918 * iavf_find_filter - Search filter list for specific mac filter 919 * @adapter: board private structure 920 * @macaddr: the MAC address 921 * 922 * Returns ptr to the filter object or NULL. Must be called while holding the 923 * mac_vlan_list_lock. 924 **/ 925 static struct 926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 927 const u8 *macaddr) 928 { 929 struct iavf_mac_filter *f; 930 931 if (!macaddr) 932 return NULL; 933 934 list_for_each_entry(f, &adapter->mac_filter_list, list) { 935 if (ether_addr_equal(macaddr, f->macaddr)) 936 return f; 937 } 938 return NULL; 939 } 940 941 /** 942 * iavf_add_filter - Add a mac filter to the filter list 943 * @adapter: board private structure 944 * @macaddr: the MAC address 945 * 946 * Returns ptr to the filter object or NULL when no memory available. 947 **/ 948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 949 const u8 *macaddr) 950 { 951 struct iavf_mac_filter *f; 952 953 if (!macaddr) 954 return NULL; 955 956 f = iavf_find_filter(adapter, macaddr); 957 if (!f) { 958 f = kzalloc(sizeof(*f), GFP_ATOMIC); 959 if (!f) 960 return f; 961 962 ether_addr_copy(f->macaddr, macaddr); 963 964 list_add_tail(&f->list, &adapter->mac_filter_list); 965 f->add = true; 966 f->add_handled = false; 967 f->is_new_mac = true; 968 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 970 } else { 971 f->remove = false; 972 } 973 974 return f; 975 } 976 977 /** 978 * iavf_replace_primary_mac - Replace current primary address 979 * @adapter: board private structure 980 * @new_mac: new MAC address to be applied 981 * 982 * Replace current dev_addr and send request to PF for removal of previous 983 * primary MAC address filter and addition of new primary MAC filter. 984 * Return 0 for success, -ENOMEM for failure. 985 * 986 * Do not call this with mac_vlan_list_lock! 987 **/ 988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 989 const u8 *new_mac) 990 { 991 struct iavf_hw *hw = &adapter->hw; 992 struct iavf_mac_filter *new_f; 993 struct iavf_mac_filter *old_f; 994 995 spin_lock_bh(&adapter->mac_vlan_list_lock); 996 997 new_f = iavf_add_filter(adapter, new_mac); 998 if (!new_f) { 999 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1000 return -ENOMEM; 1001 } 1002 1003 old_f = iavf_find_filter(adapter, hw->mac.addr); 1004 if (old_f) { 1005 old_f->is_primary = false; 1006 old_f->remove = true; 1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1008 } 1009 /* Always send the request to add if changing primary MAC, 1010 * even if filter is already present on the list 1011 */ 1012 new_f->is_primary = true; 1013 new_f->add = true; 1014 ether_addr_copy(hw->mac.addr, new_mac); 1015 1016 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1017 1018 /* schedule the watchdog task to immediately process the request */ 1019 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1020 return 0; 1021 } 1022 1023 /** 1024 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1025 * @netdev: network interface device structure 1026 * @macaddr: MAC address to set 1027 * 1028 * Returns true on success, false on failure 1029 */ 1030 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1031 const u8 *macaddr) 1032 { 1033 struct iavf_adapter *adapter = netdev_priv(netdev); 1034 struct iavf_mac_filter *f; 1035 bool ret = false; 1036 1037 spin_lock_bh(&adapter->mac_vlan_list_lock); 1038 1039 f = iavf_find_filter(adapter, macaddr); 1040 1041 if (!f || (!f->add && f->add_handled)) 1042 ret = true; 1043 1044 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1045 1046 return ret; 1047 } 1048 1049 /** 1050 * iavf_set_mac - NDO callback to set port MAC address 1051 * @netdev: network interface device structure 1052 * @p: pointer to an address structure 1053 * 1054 * Returns 0 on success, negative on failure 1055 */ 1056 static int iavf_set_mac(struct net_device *netdev, void *p) 1057 { 1058 struct iavf_adapter *adapter = netdev_priv(netdev); 1059 struct sockaddr *addr = p; 1060 int ret; 1061 1062 if (!is_valid_ether_addr(addr->sa_data)) 1063 return -EADDRNOTAVAIL; 1064 1065 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1066 1067 if (ret) 1068 return ret; 1069 1070 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1071 iavf_is_mac_set_handled(netdev, addr->sa_data), 1072 msecs_to_jiffies(2500)); 1073 1074 /* If ret < 0 then it means wait was interrupted. 1075 * If ret == 0 then it means we got a timeout. 1076 * else it means we got response for set MAC from PF, 1077 * check if netdev MAC was updated to requested MAC, 1078 * if yes then set MAC succeeded otherwise it failed return -EACCES 1079 */ 1080 if (ret < 0) 1081 return ret; 1082 1083 if (!ret) 1084 return -EAGAIN; 1085 1086 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1087 return -EACCES; 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1094 * @netdev: the netdevice 1095 * @addr: address to add 1096 * 1097 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1098 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1099 */ 1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1101 { 1102 struct iavf_adapter *adapter = netdev_priv(netdev); 1103 1104 if (iavf_add_filter(adapter, addr)) 1105 return 0; 1106 else 1107 return -ENOMEM; 1108 } 1109 1110 /** 1111 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1112 * @netdev: the netdevice 1113 * @addr: address to add 1114 * 1115 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1116 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1117 */ 1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct iavf_mac_filter *f; 1122 1123 /* Under some circumstances, we might receive a request to delete 1124 * our own device address from our uc list. Because we store the 1125 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1126 * such requests and not delete our device address from this list. 1127 */ 1128 if (ether_addr_equal(addr, netdev->dev_addr)) 1129 return 0; 1130 1131 f = iavf_find_filter(adapter, addr); 1132 if (f) { 1133 f->remove = true; 1134 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1141 * @adapter: device specific adapter 1142 */ 1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1144 { 1145 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1146 (IFF_PROMISC | IFF_ALLMULTI); 1147 } 1148 1149 /** 1150 * iavf_set_rx_mode - NDO callback to set the netdev filters 1151 * @netdev: network interface device structure 1152 **/ 1153 static void iavf_set_rx_mode(struct net_device *netdev) 1154 { 1155 struct iavf_adapter *adapter = netdev_priv(netdev); 1156 1157 spin_lock_bh(&adapter->mac_vlan_list_lock); 1158 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1159 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1160 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1161 1162 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1163 if (iavf_promiscuous_mode_changed(adapter)) 1164 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1165 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1166 } 1167 1168 /** 1169 * iavf_napi_enable_all - enable NAPI on all queue vectors 1170 * @adapter: board private structure 1171 **/ 1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1173 { 1174 int q_idx; 1175 struct iavf_q_vector *q_vector; 1176 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1177 1178 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1179 struct napi_struct *napi; 1180 1181 q_vector = &adapter->q_vectors[q_idx]; 1182 napi = &q_vector->napi; 1183 napi_enable_locked(napi); 1184 } 1185 } 1186 1187 /** 1188 * iavf_napi_disable_all - disable NAPI on all queue vectors 1189 * @adapter: board private structure 1190 **/ 1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1192 { 1193 int q_idx; 1194 struct iavf_q_vector *q_vector; 1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1196 1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1198 q_vector = &adapter->q_vectors[q_idx]; 1199 napi_disable_locked(&q_vector->napi); 1200 } 1201 } 1202 1203 /** 1204 * iavf_configure - set up transmit and receive data structures 1205 * @adapter: board private structure 1206 **/ 1207 static void iavf_configure(struct iavf_adapter *adapter) 1208 { 1209 struct net_device *netdev = adapter->netdev; 1210 int i; 1211 1212 iavf_set_rx_mode(netdev); 1213 1214 iavf_configure_tx(adapter); 1215 iavf_configure_rx(adapter); 1216 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1217 1218 for (i = 0; i < adapter->num_active_queues; i++) { 1219 struct iavf_ring *ring = &adapter->rx_rings[i]; 1220 1221 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1222 } 1223 } 1224 1225 /** 1226 * iavf_up_complete - Finish the last steps of bringing up a connection 1227 * @adapter: board private structure 1228 * 1229 * Expects to be called while holding crit_lock. 1230 **/ 1231 static void iavf_up_complete(struct iavf_adapter *adapter) 1232 { 1233 iavf_change_state(adapter, __IAVF_RUNNING); 1234 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1235 1236 iavf_napi_enable_all(adapter); 1237 1238 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1239 } 1240 1241 /** 1242 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1243 * yet and mark other to be removed. 1244 * @adapter: board private structure 1245 **/ 1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1247 { 1248 struct iavf_vlan_filter *vlf, *vlftmp; 1249 struct iavf_mac_filter *f, *ftmp; 1250 1251 spin_lock_bh(&adapter->mac_vlan_list_lock); 1252 /* clear the sync flag on all filters */ 1253 __dev_uc_unsync(adapter->netdev, NULL); 1254 __dev_mc_unsync(adapter->netdev, NULL); 1255 1256 /* remove all MAC filters */ 1257 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1258 list) { 1259 if (f->add) { 1260 list_del(&f->list); 1261 kfree(f); 1262 } else { 1263 f->remove = true; 1264 } 1265 } 1266 1267 /* disable all VLAN filters */ 1268 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1269 list) 1270 vlf->state = IAVF_VLAN_DISABLE; 1271 1272 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1273 } 1274 1275 /** 1276 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1277 * mark other to be removed. 1278 * @adapter: board private structure 1279 **/ 1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1281 { 1282 struct iavf_cloud_filter *cf, *cftmp; 1283 1284 /* remove all cloud filters */ 1285 spin_lock_bh(&adapter->cloud_filter_list_lock); 1286 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1287 list) { 1288 if (cf->add) { 1289 list_del(&cf->list); 1290 kfree(cf); 1291 adapter->num_cloud_filters--; 1292 } else { 1293 cf->del = true; 1294 } 1295 } 1296 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1297 } 1298 1299 /** 1300 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1301 * other to be removed. 1302 * @adapter: board private structure 1303 **/ 1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1305 { 1306 struct iavf_fdir_fltr *fdir; 1307 1308 /* remove all Flow Director filters */ 1309 spin_lock_bh(&adapter->fdir_fltr_lock); 1310 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1311 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1312 /* Cancel a request, keep filter as inactive */ 1313 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1314 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1315 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1316 /* Disable filters which are active or have a pending 1317 * request to PF to be added 1318 */ 1319 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1320 } 1321 } 1322 spin_unlock_bh(&adapter->fdir_fltr_lock); 1323 } 1324 1325 /** 1326 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1327 * other to be removed. 1328 * @adapter: board private structure 1329 **/ 1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1331 { 1332 struct iavf_adv_rss *rss, *rsstmp; 1333 1334 /* remove all advance RSS configuration */ 1335 spin_lock_bh(&adapter->adv_rss_lock); 1336 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1337 list) { 1338 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1339 list_del(&rss->list); 1340 kfree(rss); 1341 } else { 1342 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1343 } 1344 } 1345 spin_unlock_bh(&adapter->adv_rss_lock); 1346 } 1347 1348 /** 1349 * iavf_down - Shutdown the connection processing 1350 * @adapter: board private structure 1351 * 1352 * Expects to be called while holding crit_lock. 1353 **/ 1354 void iavf_down(struct iavf_adapter *adapter) 1355 { 1356 struct net_device *netdev = adapter->netdev; 1357 1358 if (adapter->state <= __IAVF_DOWN_PENDING) 1359 return; 1360 1361 netif_carrier_off(netdev); 1362 netif_tx_disable(netdev); 1363 adapter->link_up = false; 1364 iavf_napi_disable_all(adapter); 1365 iavf_irq_disable(adapter); 1366 1367 iavf_clear_mac_vlan_filters(adapter); 1368 iavf_clear_cloud_filters(adapter); 1369 iavf_clear_fdir_filters(adapter); 1370 iavf_clear_adv_rss_conf(adapter); 1371 1372 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1373 return; 1374 1375 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1376 /* cancel any current operation */ 1377 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1378 /* Schedule operations to close down the HW. Don't wait 1379 * here for this to complete. The watchdog is still running 1380 * and it will take care of this. 1381 */ 1382 if (!list_empty(&adapter->mac_filter_list)) 1383 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1384 if (!list_empty(&adapter->vlan_filter_list)) 1385 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1386 if (!list_empty(&adapter->cloud_filter_list)) 1387 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1388 if (!list_empty(&adapter->fdir_list_head)) 1389 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1390 if (!list_empty(&adapter->adv_rss_list_head)) 1391 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1392 } 1393 1394 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1395 } 1396 1397 /** 1398 * iavf_acquire_msix_vectors - Setup the MSIX capability 1399 * @adapter: board private structure 1400 * @vectors: number of vectors to request 1401 * 1402 * Work with the OS to set up the MSIX vectors needed. 1403 * 1404 * Returns 0 on success, negative on failure 1405 **/ 1406 static int 1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1408 { 1409 int err, vector_threshold; 1410 1411 /* We'll want at least 3 (vector_threshold): 1412 * 0) Other (Admin Queue and link, mostly) 1413 * 1) TxQ[0] Cleanup 1414 * 2) RxQ[0] Cleanup 1415 */ 1416 vector_threshold = MIN_MSIX_COUNT; 1417 1418 /* The more we get, the more we will assign to Tx/Rx Cleanup 1419 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1420 * Right now, we simply care about how many we'll get; we'll 1421 * set them up later while requesting irq's. 1422 */ 1423 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1424 vector_threshold, vectors); 1425 if (err < 0) { 1426 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1427 kfree(adapter->msix_entries); 1428 adapter->msix_entries = NULL; 1429 return err; 1430 } 1431 1432 /* Adjust for only the vectors we'll use, which is minimum 1433 * of max_msix_q_vectors + NONQ_VECS, or the number of 1434 * vectors we were allocated. 1435 */ 1436 adapter->num_msix_vectors = err; 1437 return 0; 1438 } 1439 1440 /** 1441 * iavf_free_queues - Free memory for all rings 1442 * @adapter: board private structure to initialize 1443 * 1444 * Free all of the memory associated with queue pairs. 1445 **/ 1446 static void iavf_free_queues(struct iavf_adapter *adapter) 1447 { 1448 if (!adapter->vsi_res) 1449 return; 1450 adapter->num_active_queues = 0; 1451 kfree(adapter->tx_rings); 1452 adapter->tx_rings = NULL; 1453 kfree(adapter->rx_rings); 1454 adapter->rx_rings = NULL; 1455 } 1456 1457 /** 1458 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1459 * @adapter: board private structure 1460 * 1461 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1462 * stripped in certain descriptor fields. Instead of checking the offload 1463 * capability bits in the hot path, cache the location the ring specific 1464 * flags. 1465 */ 1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1467 { 1468 int i; 1469 1470 for (i = 0; i < adapter->num_active_queues; i++) { 1471 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1472 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1473 1474 /* prevent multiple L2TAG bits being set after VFR */ 1475 tx_ring->flags &= 1476 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1478 rx_ring->flags &= 1479 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1480 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1481 1482 if (VLAN_ALLOWED(adapter)) { 1483 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1484 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1485 } else if (VLAN_V2_ALLOWED(adapter)) { 1486 struct virtchnl_vlan_supported_caps *stripping_support; 1487 struct virtchnl_vlan_supported_caps *insertion_support; 1488 1489 stripping_support = 1490 &adapter->vlan_v2_caps.offloads.stripping_support; 1491 insertion_support = 1492 &adapter->vlan_v2_caps.offloads.insertion_support; 1493 1494 if (stripping_support->outer) { 1495 if (stripping_support->outer & 1496 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1497 rx_ring->flags |= 1498 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1499 else if (stripping_support->outer & 1500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1501 rx_ring->flags |= 1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1503 } else if (stripping_support->inner) { 1504 if (stripping_support->inner & 1505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1506 rx_ring->flags |= 1507 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1508 else if (stripping_support->inner & 1509 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1510 rx_ring->flags |= 1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1512 } 1513 1514 if (insertion_support->outer) { 1515 if (insertion_support->outer & 1516 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1517 tx_ring->flags |= 1518 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1519 else if (insertion_support->outer & 1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1521 tx_ring->flags |= 1522 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1523 } else if (insertion_support->inner) { 1524 if (insertion_support->inner & 1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1526 tx_ring->flags |= 1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1528 else if (insertion_support->inner & 1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1530 tx_ring->flags |= 1531 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1532 } 1533 } 1534 } 1535 } 1536 1537 /** 1538 * iavf_alloc_queues - Allocate memory for all rings 1539 * @adapter: board private structure to initialize 1540 * 1541 * We allocate one ring per queue at run-time since we don't know the 1542 * number of queues at compile-time. The polling_netdev array is 1543 * intended for Multiqueue, but should work fine with a single queue. 1544 **/ 1545 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1546 { 1547 int i, num_active_queues; 1548 1549 /* If we're in reset reallocating queues we don't actually know yet for 1550 * certain the PF gave us the number of queues we asked for but we'll 1551 * assume it did. Once basic reset is finished we'll confirm once we 1552 * start negotiating config with PF. 1553 */ 1554 if (adapter->num_req_queues) 1555 num_active_queues = adapter->num_req_queues; 1556 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1557 adapter->num_tc) 1558 num_active_queues = adapter->ch_config.total_qps; 1559 else 1560 num_active_queues = min_t(int, 1561 adapter->vsi_res->num_queue_pairs, 1562 (int)(num_online_cpus())); 1563 1564 1565 adapter->tx_rings = kcalloc(num_active_queues, 1566 sizeof(struct iavf_ring), GFP_KERNEL); 1567 if (!adapter->tx_rings) 1568 goto err_out; 1569 adapter->rx_rings = kcalloc(num_active_queues, 1570 sizeof(struct iavf_ring), GFP_KERNEL); 1571 if (!adapter->rx_rings) 1572 goto err_out; 1573 1574 for (i = 0; i < num_active_queues; i++) { 1575 struct iavf_ring *tx_ring; 1576 struct iavf_ring *rx_ring; 1577 1578 tx_ring = &adapter->tx_rings[i]; 1579 1580 tx_ring->queue_index = i; 1581 tx_ring->netdev = adapter->netdev; 1582 tx_ring->dev = &adapter->pdev->dev; 1583 tx_ring->count = adapter->tx_desc_count; 1584 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1585 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1586 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1587 1588 rx_ring = &adapter->rx_rings[i]; 1589 rx_ring->queue_index = i; 1590 rx_ring->netdev = adapter->netdev; 1591 rx_ring->count = adapter->rx_desc_count; 1592 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1593 } 1594 1595 adapter->num_active_queues = num_active_queues; 1596 1597 iavf_set_queue_vlan_tag_loc(adapter); 1598 1599 return 0; 1600 1601 err_out: 1602 iavf_free_queues(adapter); 1603 return -ENOMEM; 1604 } 1605 1606 /** 1607 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1608 * @adapter: board private structure to initialize 1609 * 1610 * Attempt to configure the interrupts using the best available 1611 * capabilities of the hardware and the kernel. 1612 **/ 1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1614 { 1615 int vector, v_budget; 1616 int pairs = 0; 1617 int err = 0; 1618 1619 if (!adapter->vsi_res) { 1620 err = -EIO; 1621 goto out; 1622 } 1623 pairs = adapter->num_active_queues; 1624 1625 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1626 * us much good if we have more vectors than CPUs. However, we already 1627 * limit the total number of queues by the number of CPUs so we do not 1628 * need any further limiting here. 1629 */ 1630 v_budget = min_t(int, pairs + NONQ_VECS, 1631 (int)adapter->vf_res->max_vectors); 1632 1633 adapter->msix_entries = kcalloc(v_budget, 1634 sizeof(struct msix_entry), GFP_KERNEL); 1635 if (!adapter->msix_entries) { 1636 err = -ENOMEM; 1637 goto out; 1638 } 1639 1640 for (vector = 0; vector < v_budget; vector++) 1641 adapter->msix_entries[vector].entry = vector; 1642 1643 err = iavf_acquire_msix_vectors(adapter, v_budget); 1644 if (!err) 1645 iavf_schedule_finish_config(adapter); 1646 1647 out: 1648 return err; 1649 } 1650 1651 /** 1652 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1653 * @adapter: board private structure 1654 * 1655 * Return 0 on success, negative on failure 1656 **/ 1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1658 { 1659 struct iavf_aqc_get_set_rss_key_data *rss_key = 1660 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1661 struct iavf_hw *hw = &adapter->hw; 1662 enum iavf_status status; 1663 1664 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1665 /* bail because we already have a command pending */ 1666 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1667 adapter->current_op); 1668 return -EBUSY; 1669 } 1670 1671 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1672 if (status) { 1673 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1674 iavf_stat_str(hw, status), 1675 iavf_aq_str(hw, hw->aq.asq_last_status)); 1676 return iavf_status_to_errno(status); 1677 1678 } 1679 1680 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1681 adapter->rss_lut, adapter->rss_lut_size); 1682 if (status) { 1683 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1684 iavf_stat_str(hw, status), 1685 iavf_aq_str(hw, hw->aq.asq_last_status)); 1686 return iavf_status_to_errno(status); 1687 } 1688 1689 return 0; 1690 1691 } 1692 1693 /** 1694 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1695 * @adapter: board private structure 1696 * 1697 * Returns 0 on success, negative on failure 1698 **/ 1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1700 { 1701 struct iavf_hw *hw = &adapter->hw; 1702 u32 *dw; 1703 u16 i; 1704 1705 dw = (u32 *)adapter->rss_key; 1706 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1707 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1708 1709 dw = (u32 *)adapter->rss_lut; 1710 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1711 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1712 1713 iavf_flush(hw); 1714 1715 return 0; 1716 } 1717 1718 /** 1719 * iavf_config_rss - Configure RSS keys and lut 1720 * @adapter: board private structure 1721 * 1722 * Returns 0 on success, negative on failure 1723 **/ 1724 int iavf_config_rss(struct iavf_adapter *adapter) 1725 { 1726 1727 if (RSS_PF(adapter)) { 1728 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1729 IAVF_FLAG_AQ_SET_RSS_KEY; 1730 return 0; 1731 } else if (RSS_AQ(adapter)) { 1732 return iavf_config_rss_aq(adapter); 1733 } else { 1734 return iavf_config_rss_reg(adapter); 1735 } 1736 } 1737 1738 /** 1739 * iavf_fill_rss_lut - Fill the lut with default values 1740 * @adapter: board private structure 1741 **/ 1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1743 { 1744 u16 i; 1745 1746 for (i = 0; i < adapter->rss_lut_size; i++) 1747 adapter->rss_lut[i] = i % adapter->num_active_queues; 1748 } 1749 1750 /** 1751 * iavf_init_rss - Prepare for RSS 1752 * @adapter: board private structure 1753 * 1754 * Return 0 on success, negative on failure 1755 **/ 1756 static int iavf_init_rss(struct iavf_adapter *adapter) 1757 { 1758 struct iavf_hw *hw = &adapter->hw; 1759 1760 if (!RSS_PF(adapter)) { 1761 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1762 if (adapter->vf_res->vf_cap_flags & 1763 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1764 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1765 else 1766 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1767 1768 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1769 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1770 } 1771 1772 iavf_fill_rss_lut(adapter); 1773 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1774 1775 return iavf_config_rss(adapter); 1776 } 1777 1778 /** 1779 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1780 * @adapter: board private structure to initialize 1781 * 1782 * We allocate one q_vector per queue interrupt. If allocation fails we 1783 * return -ENOMEM. 1784 **/ 1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1786 { 1787 int q_idx = 0, num_q_vectors; 1788 struct iavf_q_vector *q_vector; 1789 1790 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1791 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1792 GFP_KERNEL); 1793 if (!adapter->q_vectors) 1794 return -ENOMEM; 1795 1796 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1797 q_vector = &adapter->q_vectors[q_idx]; 1798 q_vector->adapter = adapter; 1799 q_vector->vsi = &adapter->vsi; 1800 q_vector->v_idx = q_idx; 1801 q_vector->reg_idx = q_idx; 1802 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1803 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1804 iavf_napi_poll); 1805 } 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1812 * @adapter: board private structure to initialize 1813 * 1814 * This function frees the memory allocated to the q_vectors. In addition if 1815 * NAPI is enabled it will delete any references to the NAPI struct prior 1816 * to freeing the q_vector. 1817 **/ 1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1819 { 1820 int q_idx, num_q_vectors; 1821 1822 if (!adapter->q_vectors) 1823 return; 1824 1825 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1826 1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1828 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1829 1830 netif_napi_del_locked(&q_vector->napi); 1831 } 1832 kfree(adapter->q_vectors); 1833 adapter->q_vectors = NULL; 1834 } 1835 1836 /** 1837 * iavf_reset_interrupt_capability - Reset MSIX setup 1838 * @adapter: board private structure 1839 * 1840 **/ 1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1842 { 1843 if (!adapter->msix_entries) 1844 return; 1845 1846 pci_disable_msix(adapter->pdev); 1847 kfree(adapter->msix_entries); 1848 adapter->msix_entries = NULL; 1849 } 1850 1851 /** 1852 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1853 * @adapter: board private structure to initialize 1854 * 1855 **/ 1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1857 { 1858 int err; 1859 1860 err = iavf_alloc_queues(adapter); 1861 if (err) { 1862 dev_err(&adapter->pdev->dev, 1863 "Unable to allocate memory for queues\n"); 1864 goto err_alloc_queues; 1865 } 1866 1867 err = iavf_set_interrupt_capability(adapter); 1868 if (err) { 1869 dev_err(&adapter->pdev->dev, 1870 "Unable to setup interrupt capabilities\n"); 1871 goto err_set_interrupt; 1872 } 1873 1874 err = iavf_alloc_q_vectors(adapter); 1875 if (err) { 1876 dev_err(&adapter->pdev->dev, 1877 "Unable to allocate memory for queue vectors\n"); 1878 goto err_alloc_q_vectors; 1879 } 1880 1881 /* If we've made it so far while ADq flag being ON, then we haven't 1882 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1883 * resources have been allocated in the reset path. 1884 * Now we can truly claim that ADq is enabled. 1885 */ 1886 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1887 adapter->num_tc) 1888 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1889 adapter->num_tc); 1890 1891 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1892 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1893 adapter->num_active_queues); 1894 1895 return 0; 1896 err_alloc_q_vectors: 1897 iavf_reset_interrupt_capability(adapter); 1898 err_set_interrupt: 1899 iavf_free_queues(adapter); 1900 err_alloc_queues: 1901 return err; 1902 } 1903 1904 /** 1905 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1906 * @adapter: board private structure 1907 **/ 1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1909 { 1910 iavf_free_q_vectors(adapter); 1911 iavf_reset_interrupt_capability(adapter); 1912 iavf_free_queues(adapter); 1913 } 1914 1915 /** 1916 * iavf_free_rss - Free memory used by RSS structs 1917 * @adapter: board private structure 1918 **/ 1919 static void iavf_free_rss(struct iavf_adapter *adapter) 1920 { 1921 kfree(adapter->rss_key); 1922 adapter->rss_key = NULL; 1923 1924 kfree(adapter->rss_lut); 1925 adapter->rss_lut = NULL; 1926 } 1927 1928 /** 1929 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1930 * @adapter: board private structure 1931 * @running: true if adapter->state == __IAVF_RUNNING 1932 * 1933 * Returns 0 on success, negative on failure 1934 **/ 1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1936 { 1937 struct net_device *netdev = adapter->netdev; 1938 int err; 1939 1940 if (running) 1941 iavf_free_traffic_irqs(adapter); 1942 iavf_free_misc_irq(adapter); 1943 iavf_free_interrupt_scheme(adapter); 1944 1945 err = iavf_init_interrupt_scheme(adapter); 1946 if (err) 1947 goto err; 1948 1949 netif_tx_stop_all_queues(netdev); 1950 1951 err = iavf_request_misc_irq(adapter); 1952 if (err) 1953 goto err; 1954 1955 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1956 1957 iavf_map_rings_to_vectors(adapter); 1958 err: 1959 return err; 1960 } 1961 1962 /** 1963 * iavf_finish_config - do all netdev work that needs RTNL 1964 * @work: our work_struct 1965 * 1966 * Do work that needs both RTNL and crit_lock. 1967 **/ 1968 static void iavf_finish_config(struct work_struct *work) 1969 { 1970 struct iavf_adapter *adapter; 1971 bool netdev_released = false; 1972 int pairs, err; 1973 1974 adapter = container_of(work, struct iavf_adapter, finish_config); 1975 1976 /* Always take RTNL first to prevent circular lock dependency; 1977 * The dev->lock is needed to update the queue number 1978 */ 1979 rtnl_lock(); 1980 netdev_lock(adapter->netdev); 1981 mutex_lock(&adapter->crit_lock); 1982 1983 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 1984 adapter->netdev->reg_state == NETREG_REGISTERED && 1985 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1986 netdev_update_features(adapter->netdev); 1987 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 1988 } 1989 1990 switch (adapter->state) { 1991 case __IAVF_DOWN: 1992 /* Set the real number of queues when reset occurs while 1993 * state == __IAVF_DOWN 1994 */ 1995 pairs = adapter->num_active_queues; 1996 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1997 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1998 1999 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2000 netdev_unlock(adapter->netdev); 2001 netdev_released = true; 2002 err = register_netdevice(adapter->netdev); 2003 if (err) { 2004 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2005 err); 2006 2007 /* go back and try again.*/ 2008 iavf_free_rss(adapter); 2009 iavf_free_misc_irq(adapter); 2010 iavf_reset_interrupt_capability(adapter); 2011 iavf_change_state(adapter, 2012 __IAVF_INIT_CONFIG_ADAPTER); 2013 goto out; 2014 } 2015 } 2016 break; 2017 case __IAVF_RUNNING: 2018 pairs = adapter->num_active_queues; 2019 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2020 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2021 break; 2022 2023 default: 2024 break; 2025 } 2026 2027 out: 2028 mutex_unlock(&adapter->crit_lock); 2029 if (!netdev_released) 2030 netdev_unlock(adapter->netdev); 2031 rtnl_unlock(); 2032 } 2033 2034 /** 2035 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2036 * @adapter: board private structure 2037 **/ 2038 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2039 { 2040 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2041 queue_work(adapter->wq, &adapter->finish_config); 2042 } 2043 2044 /** 2045 * iavf_process_aq_command - process aq_required flags 2046 * and sends aq command 2047 * @adapter: pointer to iavf adapter structure 2048 * 2049 * Returns 0 on success 2050 * Returns error code if no command was sent 2051 * or error code if the command failed. 2052 **/ 2053 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2054 { 2055 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2056 return iavf_send_vf_config_msg(adapter); 2057 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2058 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2059 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2060 iavf_disable_queues(adapter); 2061 return 0; 2062 } 2063 2064 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2065 iavf_map_queues(adapter); 2066 return 0; 2067 } 2068 2069 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2070 iavf_add_ether_addrs(adapter); 2071 return 0; 2072 } 2073 2074 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2075 iavf_add_vlans(adapter); 2076 return 0; 2077 } 2078 2079 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2080 iavf_del_ether_addrs(adapter); 2081 return 0; 2082 } 2083 2084 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2085 iavf_del_vlans(adapter); 2086 return 0; 2087 } 2088 2089 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2090 iavf_enable_vlan_stripping(adapter); 2091 return 0; 2092 } 2093 2094 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2095 iavf_disable_vlan_stripping(adapter); 2096 return 0; 2097 } 2098 2099 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2100 iavf_cfg_queues_bw(adapter); 2101 return 0; 2102 } 2103 2104 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2105 iavf_get_qos_caps(adapter); 2106 return 0; 2107 } 2108 2109 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2110 iavf_cfg_queues_quanta_size(adapter); 2111 return 0; 2112 } 2113 2114 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2115 iavf_configure_queues(adapter); 2116 return 0; 2117 } 2118 2119 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2120 iavf_enable_queues(adapter); 2121 return 0; 2122 } 2123 2124 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2125 /* This message goes straight to the firmware, not the 2126 * PF, so we don't have to set current_op as we will 2127 * not get a response through the ARQ. 2128 */ 2129 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2130 return 0; 2131 } 2132 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2133 iavf_get_hena(adapter); 2134 return 0; 2135 } 2136 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2137 iavf_set_hena(adapter); 2138 return 0; 2139 } 2140 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2141 iavf_set_rss_key(adapter); 2142 return 0; 2143 } 2144 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2145 iavf_set_rss_lut(adapter); 2146 return 0; 2147 } 2148 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2149 iavf_set_rss_hfunc(adapter); 2150 return 0; 2151 } 2152 2153 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2154 iavf_set_promiscuous(adapter); 2155 return 0; 2156 } 2157 2158 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2159 iavf_enable_channels(adapter); 2160 return 0; 2161 } 2162 2163 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2164 iavf_disable_channels(adapter); 2165 return 0; 2166 } 2167 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2168 iavf_add_cloud_filter(adapter); 2169 return 0; 2170 } 2171 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2172 iavf_del_cloud_filter(adapter); 2173 return 0; 2174 } 2175 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2176 iavf_add_fdir_filter(adapter); 2177 return IAVF_SUCCESS; 2178 } 2179 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2180 iavf_del_fdir_filter(adapter); 2181 return IAVF_SUCCESS; 2182 } 2183 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2184 iavf_add_adv_rss_cfg(adapter); 2185 return 0; 2186 } 2187 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2188 iavf_del_adv_rss_cfg(adapter); 2189 return 0; 2190 } 2191 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2192 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2193 return 0; 2194 } 2195 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2196 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2197 return 0; 2198 } 2199 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2200 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2201 return 0; 2202 } 2203 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2204 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2205 return 0; 2206 } 2207 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2208 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2209 return 0; 2210 } 2211 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2212 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2213 return 0; 2214 } 2215 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2216 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2217 return 0; 2218 } 2219 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2220 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2221 return 0; 2222 } 2223 2224 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2225 iavf_request_stats(adapter); 2226 return 0; 2227 } 2228 2229 return -EAGAIN; 2230 } 2231 2232 /** 2233 * iavf_set_vlan_offload_features - set VLAN offload configuration 2234 * @adapter: board private structure 2235 * @prev_features: previous features used for comparison 2236 * @features: updated features used for configuration 2237 * 2238 * Set the aq_required bit(s) based on the requested features passed in to 2239 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2240 * the watchdog if any changes are requested to expedite the request via 2241 * virtchnl. 2242 **/ 2243 static void 2244 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2245 netdev_features_t prev_features, 2246 netdev_features_t features) 2247 { 2248 bool enable_stripping = true, enable_insertion = true; 2249 u16 vlan_ethertype = 0; 2250 u64 aq_required = 0; 2251 2252 /* keep cases separate because one ethertype for offloads can be 2253 * disabled at the same time as another is disabled, so check for an 2254 * enabled ethertype first, then check for disabled. Default to 2255 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2256 * stripping. 2257 */ 2258 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2259 vlan_ethertype = ETH_P_8021AD; 2260 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2261 vlan_ethertype = ETH_P_8021Q; 2262 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2263 vlan_ethertype = ETH_P_8021AD; 2264 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2265 vlan_ethertype = ETH_P_8021Q; 2266 else 2267 vlan_ethertype = ETH_P_8021Q; 2268 2269 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2270 enable_stripping = false; 2271 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2272 enable_insertion = false; 2273 2274 if (VLAN_ALLOWED(adapter)) { 2275 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2276 * stripping via virtchnl. VLAN insertion can be toggled on the 2277 * netdev, but it doesn't require a virtchnl message 2278 */ 2279 if (enable_stripping) 2280 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2281 else 2282 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2283 2284 } else if (VLAN_V2_ALLOWED(adapter)) { 2285 switch (vlan_ethertype) { 2286 case ETH_P_8021Q: 2287 if (enable_stripping) 2288 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2289 else 2290 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2291 2292 if (enable_insertion) 2293 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2294 else 2295 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2296 break; 2297 case ETH_P_8021AD: 2298 if (enable_stripping) 2299 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2300 else 2301 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2302 2303 if (enable_insertion) 2304 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2305 else 2306 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2307 break; 2308 } 2309 } 2310 2311 if (aq_required) 2312 iavf_schedule_aq_request(adapter, aq_required); 2313 } 2314 2315 /** 2316 * iavf_startup - first step of driver startup 2317 * @adapter: board private structure 2318 * 2319 * Function process __IAVF_STARTUP driver state. 2320 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2321 * when fails the state is changed to __IAVF_INIT_FAILED 2322 **/ 2323 static void iavf_startup(struct iavf_adapter *adapter) 2324 { 2325 struct pci_dev *pdev = adapter->pdev; 2326 struct iavf_hw *hw = &adapter->hw; 2327 enum iavf_status status; 2328 int ret; 2329 2330 WARN_ON(adapter->state != __IAVF_STARTUP); 2331 2332 /* driver loaded, probe complete */ 2333 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2334 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2335 2336 ret = iavf_check_reset_complete(hw); 2337 if (ret) { 2338 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2339 ret); 2340 goto err; 2341 } 2342 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2343 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2344 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2345 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2346 2347 status = iavf_init_adminq(hw); 2348 if (status) { 2349 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2350 status); 2351 goto err; 2352 } 2353 ret = iavf_send_api_ver(adapter); 2354 if (ret) { 2355 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2356 iavf_shutdown_adminq(hw); 2357 goto err; 2358 } 2359 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2360 return; 2361 err: 2362 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2363 } 2364 2365 /** 2366 * iavf_init_version_check - second step of driver startup 2367 * @adapter: board private structure 2368 * 2369 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2370 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2371 * when fails the state is changed to __IAVF_INIT_FAILED 2372 **/ 2373 static void iavf_init_version_check(struct iavf_adapter *adapter) 2374 { 2375 struct pci_dev *pdev = adapter->pdev; 2376 struct iavf_hw *hw = &adapter->hw; 2377 int err = -EAGAIN; 2378 2379 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2380 2381 if (!iavf_asq_done(hw)) { 2382 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2383 iavf_shutdown_adminq(hw); 2384 iavf_change_state(adapter, __IAVF_STARTUP); 2385 goto err; 2386 } 2387 2388 /* aq msg sent, awaiting reply */ 2389 err = iavf_verify_api_ver(adapter); 2390 if (err) { 2391 if (err == -EALREADY) 2392 err = iavf_send_api_ver(adapter); 2393 else 2394 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2395 adapter->pf_version.major, 2396 adapter->pf_version.minor, 2397 VIRTCHNL_VERSION_MAJOR, 2398 VIRTCHNL_VERSION_MINOR); 2399 goto err; 2400 } 2401 err = iavf_send_vf_config_msg(adapter); 2402 if (err) { 2403 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2404 err); 2405 goto err; 2406 } 2407 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2408 return; 2409 err: 2410 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2411 } 2412 2413 /** 2414 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2415 * @adapter: board private structure 2416 */ 2417 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2418 { 2419 int i, num_req_queues = adapter->num_req_queues; 2420 struct iavf_vsi *vsi = &adapter->vsi; 2421 2422 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2423 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2424 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2425 } 2426 if (!adapter->vsi_res) { 2427 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2428 return -ENODEV; 2429 } 2430 2431 if (num_req_queues && 2432 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2433 /* Problem. The PF gave us fewer queues than what we had 2434 * negotiated in our request. Need a reset to see if we can't 2435 * get back to a working state. 2436 */ 2437 dev_err(&adapter->pdev->dev, 2438 "Requested %d queues, but PF only gave us %d.\n", 2439 num_req_queues, 2440 adapter->vsi_res->num_queue_pairs); 2441 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2442 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2443 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2444 2445 return -EAGAIN; 2446 } 2447 adapter->num_req_queues = 0; 2448 adapter->vsi.id = adapter->vsi_res->vsi_id; 2449 2450 adapter->vsi.back = adapter; 2451 adapter->vsi.base_vector = 1; 2452 vsi->netdev = adapter->netdev; 2453 vsi->qs_handle = adapter->vsi_res->qset_handle; 2454 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2455 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2456 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2457 } else { 2458 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2459 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2460 } 2461 2462 return 0; 2463 } 2464 2465 /** 2466 * iavf_init_get_resources - third step of driver startup 2467 * @adapter: board private structure 2468 * 2469 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2470 * finishes driver initialization procedure. 2471 * When success the state is changed to __IAVF_DOWN 2472 * when fails the state is changed to __IAVF_INIT_FAILED 2473 **/ 2474 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2475 { 2476 struct pci_dev *pdev = adapter->pdev; 2477 struct iavf_hw *hw = &adapter->hw; 2478 int err; 2479 2480 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2481 /* aq msg sent, awaiting reply */ 2482 if (!adapter->vf_res) { 2483 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2484 GFP_KERNEL); 2485 if (!adapter->vf_res) { 2486 err = -ENOMEM; 2487 goto err; 2488 } 2489 } 2490 err = iavf_get_vf_config(adapter); 2491 if (err == -EALREADY) { 2492 err = iavf_send_vf_config_msg(adapter); 2493 goto err; 2494 } else if (err == -EINVAL) { 2495 /* We only get -EINVAL if the device is in a very bad 2496 * state or if we've been disabled for previous bad 2497 * behavior. Either way, we're done now. 2498 */ 2499 iavf_shutdown_adminq(hw); 2500 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2501 return; 2502 } 2503 if (err) { 2504 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2505 goto err_alloc; 2506 } 2507 2508 err = iavf_parse_vf_resource_msg(adapter); 2509 if (err) { 2510 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2511 err); 2512 goto err_alloc; 2513 } 2514 /* Some features require additional messages to negotiate extended 2515 * capabilities. These are processed in sequence by the 2516 * __IAVF_INIT_EXTENDED_CAPS driver state. 2517 */ 2518 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2519 2520 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2521 return; 2522 2523 err_alloc: 2524 kfree(adapter->vf_res); 2525 adapter->vf_res = NULL; 2526 err: 2527 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2528 } 2529 2530 /** 2531 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2532 * @adapter: board private structure 2533 * 2534 * Function processes send of the extended VLAN V2 capability message to the 2535 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2536 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2537 */ 2538 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2539 { 2540 int ret; 2541 2542 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2543 2544 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2545 if (ret && ret == -EOPNOTSUPP) { 2546 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2547 * we did not send the capability exchange message and do not 2548 * expect a response. 2549 */ 2550 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2551 } 2552 2553 /* We sent the message, so move on to the next step */ 2554 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2555 } 2556 2557 /** 2558 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2559 * @adapter: board private structure 2560 * 2561 * Function processes receipt of the extended VLAN V2 capability message from 2562 * the PF. 2563 **/ 2564 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2565 { 2566 int ret; 2567 2568 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2569 2570 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2571 2572 ret = iavf_get_vf_vlan_v2_caps(adapter); 2573 if (ret) 2574 goto err; 2575 2576 /* We've processed receipt of the VLAN V2 caps message */ 2577 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2578 return; 2579 err: 2580 /* We didn't receive a reply. Make sure we try sending again when 2581 * __IAVF_INIT_FAILED attempts to recover. 2582 */ 2583 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2584 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2585 } 2586 2587 /** 2588 * iavf_init_process_extended_caps - Part of driver startup 2589 * @adapter: board private structure 2590 * 2591 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2592 * handles negotiating capabilities for features which require an additional 2593 * message. 2594 * 2595 * Once all extended capabilities exchanges are finished, the driver will 2596 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2597 */ 2598 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2599 { 2600 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2601 2602 /* Process capability exchange for VLAN V2 */ 2603 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2604 iavf_init_send_offload_vlan_v2_caps(adapter); 2605 return; 2606 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2607 iavf_init_recv_offload_vlan_v2_caps(adapter); 2608 return; 2609 } 2610 2611 /* When we reach here, no further extended capabilities exchanges are 2612 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2613 */ 2614 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2615 } 2616 2617 /** 2618 * iavf_init_config_adapter - last part of driver startup 2619 * @adapter: board private structure 2620 * 2621 * After all the supported capabilities are negotiated, then the 2622 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2623 */ 2624 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2625 { 2626 struct net_device *netdev = adapter->netdev; 2627 struct pci_dev *pdev = adapter->pdev; 2628 int err; 2629 2630 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2631 2632 if (iavf_process_config(adapter)) 2633 goto err; 2634 2635 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2636 2637 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2638 2639 netdev->netdev_ops = &iavf_netdev_ops; 2640 iavf_set_ethtool_ops(netdev); 2641 netdev->watchdog_timeo = 5 * HZ; 2642 2643 netdev->min_mtu = ETH_MIN_MTU; 2644 netdev->max_mtu = LIBIE_MAX_MTU; 2645 2646 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2647 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2648 adapter->hw.mac.addr); 2649 eth_hw_addr_random(netdev); 2650 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2651 } else { 2652 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2653 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2654 } 2655 2656 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2657 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2658 err = iavf_init_interrupt_scheme(adapter); 2659 if (err) 2660 goto err_sw_init; 2661 iavf_map_rings_to_vectors(adapter); 2662 if (adapter->vf_res->vf_cap_flags & 2663 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2664 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2665 2666 err = iavf_request_misc_irq(adapter); 2667 if (err) 2668 goto err_sw_init; 2669 2670 netif_carrier_off(netdev); 2671 adapter->link_up = false; 2672 netif_tx_stop_all_queues(netdev); 2673 2674 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2675 if (netdev->features & NETIF_F_GRO) 2676 dev_info(&pdev->dev, "GRO is enabled\n"); 2677 2678 iavf_change_state(adapter, __IAVF_DOWN); 2679 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2680 2681 iavf_misc_irq_enable(adapter); 2682 wake_up(&adapter->down_waitqueue); 2683 2684 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2685 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2686 if (!adapter->rss_key || !adapter->rss_lut) { 2687 err = -ENOMEM; 2688 goto err_mem; 2689 } 2690 if (RSS_AQ(adapter)) 2691 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2692 else 2693 iavf_init_rss(adapter); 2694 2695 if (VLAN_V2_ALLOWED(adapter)) 2696 /* request initial VLAN offload settings */ 2697 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2698 2699 if (QOS_ALLOWED(adapter)) 2700 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2701 2702 iavf_schedule_finish_config(adapter); 2703 return; 2704 2705 err_mem: 2706 iavf_free_rss(adapter); 2707 iavf_free_misc_irq(adapter); 2708 err_sw_init: 2709 iavf_reset_interrupt_capability(adapter); 2710 err: 2711 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2712 } 2713 2714 /** 2715 * iavf_watchdog_task - Periodic call-back task 2716 * @work: pointer to work_struct 2717 **/ 2718 static void iavf_watchdog_task(struct work_struct *work) 2719 { 2720 struct iavf_adapter *adapter = container_of(work, 2721 struct iavf_adapter, 2722 watchdog_task.work); 2723 struct net_device *netdev = adapter->netdev; 2724 struct iavf_hw *hw = &adapter->hw; 2725 u32 reg_val; 2726 2727 netdev_lock(netdev); 2728 if (!mutex_trylock(&adapter->crit_lock)) { 2729 if (adapter->state == __IAVF_REMOVE) { 2730 netdev_unlock(netdev); 2731 return; 2732 } 2733 2734 goto restart_watchdog; 2735 } 2736 2737 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2738 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2739 2740 switch (adapter->state) { 2741 case __IAVF_STARTUP: 2742 iavf_startup(adapter); 2743 mutex_unlock(&adapter->crit_lock); 2744 netdev_unlock(netdev); 2745 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2746 msecs_to_jiffies(30)); 2747 return; 2748 case __IAVF_INIT_VERSION_CHECK: 2749 iavf_init_version_check(adapter); 2750 mutex_unlock(&adapter->crit_lock); 2751 netdev_unlock(netdev); 2752 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2753 msecs_to_jiffies(30)); 2754 return; 2755 case __IAVF_INIT_GET_RESOURCES: 2756 iavf_init_get_resources(adapter); 2757 mutex_unlock(&adapter->crit_lock); 2758 netdev_unlock(netdev); 2759 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2760 msecs_to_jiffies(1)); 2761 return; 2762 case __IAVF_INIT_EXTENDED_CAPS: 2763 iavf_init_process_extended_caps(adapter); 2764 mutex_unlock(&adapter->crit_lock); 2765 netdev_unlock(netdev); 2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2767 msecs_to_jiffies(1)); 2768 return; 2769 case __IAVF_INIT_CONFIG_ADAPTER: 2770 iavf_init_config_adapter(adapter); 2771 mutex_unlock(&adapter->crit_lock); 2772 netdev_unlock(netdev); 2773 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2774 msecs_to_jiffies(1)); 2775 return; 2776 case __IAVF_INIT_FAILED: 2777 if (test_bit(__IAVF_IN_REMOVE_TASK, 2778 &adapter->crit_section)) { 2779 /* Do not update the state and do not reschedule 2780 * watchdog task, iavf_remove should handle this state 2781 * as it can loop forever 2782 */ 2783 mutex_unlock(&adapter->crit_lock); 2784 netdev_unlock(netdev); 2785 return; 2786 } 2787 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2788 dev_err(&adapter->pdev->dev, 2789 "Failed to communicate with PF; waiting before retry\n"); 2790 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2791 iavf_shutdown_adminq(hw); 2792 mutex_unlock(&adapter->crit_lock); 2793 netdev_unlock(netdev); 2794 queue_delayed_work(adapter->wq, 2795 &adapter->watchdog_task, (5 * HZ)); 2796 return; 2797 } 2798 /* Try again from failed step*/ 2799 iavf_change_state(adapter, adapter->last_state); 2800 mutex_unlock(&adapter->crit_lock); 2801 netdev_unlock(netdev); 2802 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2803 return; 2804 case __IAVF_COMM_FAILED: 2805 if (test_bit(__IAVF_IN_REMOVE_TASK, 2806 &adapter->crit_section)) { 2807 /* Set state to __IAVF_INIT_FAILED and perform remove 2808 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2809 * doesn't bring the state back to __IAVF_COMM_FAILED. 2810 */ 2811 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2812 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2813 mutex_unlock(&adapter->crit_lock); 2814 netdev_unlock(netdev); 2815 return; 2816 } 2817 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2818 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2819 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2820 reg_val == VIRTCHNL_VFR_COMPLETED) { 2821 /* A chance for redemption! */ 2822 dev_err(&adapter->pdev->dev, 2823 "Hardware came out of reset. Attempting reinit.\n"); 2824 /* When init task contacts the PF and 2825 * gets everything set up again, it'll restart the 2826 * watchdog for us. Down, boy. Sit. Stay. Woof. 2827 */ 2828 iavf_change_state(adapter, __IAVF_STARTUP); 2829 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2830 } 2831 adapter->aq_required = 0; 2832 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2833 mutex_unlock(&adapter->crit_lock); 2834 netdev_unlock(netdev); 2835 queue_delayed_work(adapter->wq, 2836 &adapter->watchdog_task, 2837 msecs_to_jiffies(10)); 2838 return; 2839 case __IAVF_RESETTING: 2840 mutex_unlock(&adapter->crit_lock); 2841 netdev_unlock(netdev); 2842 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2843 HZ * 2); 2844 return; 2845 case __IAVF_DOWN: 2846 case __IAVF_DOWN_PENDING: 2847 case __IAVF_TESTING: 2848 case __IAVF_RUNNING: 2849 if (adapter->current_op) { 2850 if (!iavf_asq_done(hw)) { 2851 dev_dbg(&adapter->pdev->dev, 2852 "Admin queue timeout\n"); 2853 iavf_send_api_ver(adapter); 2854 } 2855 } else { 2856 int ret = iavf_process_aq_command(adapter); 2857 2858 /* An error will be returned if no commands were 2859 * processed; use this opportunity to update stats 2860 * if the error isn't -ENOTSUPP 2861 */ 2862 if (ret && ret != -EOPNOTSUPP && 2863 adapter->state == __IAVF_RUNNING) 2864 iavf_request_stats(adapter); 2865 } 2866 if (adapter->state == __IAVF_RUNNING) 2867 iavf_detect_recover_hung(&adapter->vsi); 2868 break; 2869 case __IAVF_REMOVE: 2870 default: 2871 mutex_unlock(&adapter->crit_lock); 2872 netdev_unlock(netdev); 2873 return; 2874 } 2875 2876 /* check for hw reset */ 2877 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2878 if (!reg_val) { 2879 adapter->aq_required = 0; 2880 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2881 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2882 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2883 mutex_unlock(&adapter->crit_lock); 2884 netdev_unlock(netdev); 2885 queue_delayed_work(adapter->wq, 2886 &adapter->watchdog_task, HZ * 2); 2887 return; 2888 } 2889 2890 mutex_unlock(&adapter->crit_lock); 2891 netdev_unlock(netdev); 2892 restart_watchdog: 2893 if (adapter->state >= __IAVF_DOWN) 2894 queue_work(adapter->wq, &adapter->adminq_task); 2895 if (adapter->aq_required) 2896 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2897 msecs_to_jiffies(20)); 2898 else 2899 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2900 HZ * 2); 2901 } 2902 2903 /** 2904 * iavf_disable_vf - disable VF 2905 * @adapter: board private structure 2906 * 2907 * Set communication failed flag and free all resources. 2908 * NOTE: This function is expected to be called with crit_lock being held. 2909 **/ 2910 static void iavf_disable_vf(struct iavf_adapter *adapter) 2911 { 2912 struct iavf_mac_filter *f, *ftmp; 2913 struct iavf_vlan_filter *fv, *fvtmp; 2914 struct iavf_cloud_filter *cf, *cftmp; 2915 2916 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2917 2918 /* We don't use netif_running() because it may be true prior to 2919 * ndo_open() returning, so we can't assume it means all our open 2920 * tasks have finished, since we're not holding the rtnl_lock here. 2921 */ 2922 if (adapter->state == __IAVF_RUNNING) { 2923 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2924 netif_carrier_off(adapter->netdev); 2925 netif_tx_disable(adapter->netdev); 2926 adapter->link_up = false; 2927 iavf_napi_disable_all(adapter); 2928 iavf_irq_disable(adapter); 2929 iavf_free_traffic_irqs(adapter); 2930 iavf_free_all_tx_resources(adapter); 2931 iavf_free_all_rx_resources(adapter); 2932 } 2933 2934 spin_lock_bh(&adapter->mac_vlan_list_lock); 2935 2936 /* Delete all of the filters */ 2937 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2938 list_del(&f->list); 2939 kfree(f); 2940 } 2941 2942 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2943 list_del(&fv->list); 2944 kfree(fv); 2945 } 2946 adapter->num_vlan_filters = 0; 2947 2948 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2949 2950 spin_lock_bh(&adapter->cloud_filter_list_lock); 2951 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2952 list_del(&cf->list); 2953 kfree(cf); 2954 adapter->num_cloud_filters--; 2955 } 2956 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2957 2958 iavf_free_misc_irq(adapter); 2959 iavf_free_interrupt_scheme(adapter); 2960 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2961 iavf_shutdown_adminq(&adapter->hw); 2962 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2963 iavf_change_state(adapter, __IAVF_DOWN); 2964 wake_up(&adapter->down_waitqueue); 2965 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2966 } 2967 2968 /** 2969 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 2970 * @adapter: board private structure 2971 * 2972 * After a reset, the shaper parameters of queues need to be replayed again. 2973 * Since the net_shaper object inside TX rings persists across reset, 2974 * set the update flag for all queues so that the virtchnl message is triggered 2975 * for all queues. 2976 **/ 2977 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 2978 { 2979 int i, num = 0; 2980 2981 for (i = 0; i < adapter->num_active_queues; i++) 2982 if (adapter->tx_rings[i].q_shaper.bw_min || 2983 adapter->tx_rings[i].q_shaper.bw_max) { 2984 adapter->tx_rings[i].q_shaper_update = true; 2985 num++; 2986 } 2987 2988 if (num) 2989 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 2990 } 2991 2992 /** 2993 * iavf_reset_task - Call-back task to handle hardware reset 2994 * @work: pointer to work_struct 2995 * 2996 * During reset we need to shut down and reinitialize the admin queue 2997 * before we can use it to communicate with the PF again. We also clear 2998 * and reinit the rings because that context is lost as well. 2999 **/ 3000 static void iavf_reset_task(struct work_struct *work) 3001 { 3002 struct iavf_adapter *adapter = container_of(work, 3003 struct iavf_adapter, 3004 reset_task); 3005 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3006 struct net_device *netdev = adapter->netdev; 3007 struct iavf_hw *hw = &adapter->hw; 3008 struct iavf_mac_filter *f, *ftmp; 3009 struct iavf_cloud_filter *cf; 3010 enum iavf_status status; 3011 u32 reg_val; 3012 int i = 0, err; 3013 bool running; 3014 3015 /* When device is being removed it doesn't make sense to run the reset 3016 * task, just return in such a case. 3017 */ 3018 netdev_lock(netdev); 3019 if (!mutex_trylock(&adapter->crit_lock)) { 3020 if (adapter->state != __IAVF_REMOVE) 3021 queue_work(adapter->wq, &adapter->reset_task); 3022 3023 netdev_unlock(netdev); 3024 return; 3025 } 3026 3027 iavf_misc_irq_disable(adapter); 3028 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3029 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3030 /* Restart the AQ here. If we have been reset but didn't 3031 * detect it, or if the PF had to reinit, our AQ will be hosed. 3032 */ 3033 iavf_shutdown_adminq(hw); 3034 iavf_init_adminq(hw); 3035 iavf_request_reset(adapter); 3036 } 3037 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3038 3039 /* poll until we see the reset actually happen */ 3040 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3041 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3042 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3043 if (!reg_val) 3044 break; 3045 usleep_range(5000, 10000); 3046 } 3047 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3048 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3049 goto continue_reset; /* act like the reset happened */ 3050 } 3051 3052 /* wait until the reset is complete and the PF is responding to us */ 3053 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3054 /* sleep first to make sure a minimum wait time is met */ 3055 msleep(IAVF_RESET_WAIT_MS); 3056 3057 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3058 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3059 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3060 break; 3061 } 3062 3063 pci_set_master(adapter->pdev); 3064 pci_restore_msi_state(adapter->pdev); 3065 3066 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3067 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3068 reg_val); 3069 iavf_disable_vf(adapter); 3070 mutex_unlock(&adapter->crit_lock); 3071 netdev_unlock(netdev); 3072 return; /* Do not attempt to reinit. It's dead, Jim. */ 3073 } 3074 3075 continue_reset: 3076 /* We don't use netif_running() because it may be true prior to 3077 * ndo_open() returning, so we can't assume it means all our open 3078 * tasks have finished, since we're not holding the rtnl_lock here. 3079 */ 3080 running = adapter->state == __IAVF_RUNNING; 3081 3082 if (running) { 3083 netif_carrier_off(netdev); 3084 netif_tx_stop_all_queues(netdev); 3085 adapter->link_up = false; 3086 iavf_napi_disable_all(adapter); 3087 } 3088 iavf_irq_disable(adapter); 3089 3090 iavf_change_state(adapter, __IAVF_RESETTING); 3091 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3092 3093 /* free the Tx/Rx rings and descriptors, might be better to just 3094 * re-use them sometime in the future 3095 */ 3096 iavf_free_all_rx_resources(adapter); 3097 iavf_free_all_tx_resources(adapter); 3098 3099 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3100 /* kill and reinit the admin queue */ 3101 iavf_shutdown_adminq(hw); 3102 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3103 status = iavf_init_adminq(hw); 3104 if (status) { 3105 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3106 status); 3107 goto reset_err; 3108 } 3109 adapter->aq_required = 0; 3110 3111 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3112 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3113 err = iavf_reinit_interrupt_scheme(adapter, running); 3114 if (err) 3115 goto reset_err; 3116 } 3117 3118 if (RSS_AQ(adapter)) { 3119 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3120 } else { 3121 err = iavf_init_rss(adapter); 3122 if (err) 3123 goto reset_err; 3124 } 3125 3126 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3127 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3128 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3129 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3130 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3131 * been successfully sent and negotiated 3132 */ 3133 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3134 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3135 3136 spin_lock_bh(&adapter->mac_vlan_list_lock); 3137 3138 /* Delete filter for the current MAC address, it could have 3139 * been changed by the PF via administratively set MAC. 3140 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3141 */ 3142 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3143 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3144 list_del(&f->list); 3145 kfree(f); 3146 } 3147 } 3148 /* re-add all MAC filters */ 3149 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3150 f->add = true; 3151 } 3152 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3153 3154 /* check if TCs are running and re-add all cloud filters */ 3155 spin_lock_bh(&adapter->cloud_filter_list_lock); 3156 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3157 adapter->num_tc) { 3158 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3159 cf->add = true; 3160 } 3161 } 3162 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3163 3164 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3165 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3166 iavf_misc_irq_enable(adapter); 3167 3168 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3169 3170 /* We were running when the reset started, so we need to restore some 3171 * state here. 3172 */ 3173 if (running) { 3174 /* allocate transmit descriptors */ 3175 err = iavf_setup_all_tx_resources(adapter); 3176 if (err) 3177 goto reset_err; 3178 3179 /* allocate receive descriptors */ 3180 err = iavf_setup_all_rx_resources(adapter); 3181 if (err) 3182 goto reset_err; 3183 3184 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3185 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3186 err = iavf_request_traffic_irqs(adapter, netdev->name); 3187 if (err) 3188 goto reset_err; 3189 3190 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3191 } 3192 3193 iavf_configure(adapter); 3194 3195 /* iavf_up_complete() will switch device back 3196 * to __IAVF_RUNNING 3197 */ 3198 iavf_up_complete(adapter); 3199 3200 iavf_irq_enable(adapter, true); 3201 3202 iavf_reconfig_qs_bw(adapter); 3203 } else { 3204 iavf_change_state(adapter, __IAVF_DOWN); 3205 wake_up(&adapter->down_waitqueue); 3206 } 3207 3208 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3209 3210 wake_up(&adapter->reset_waitqueue); 3211 mutex_unlock(&adapter->crit_lock); 3212 netdev_unlock(netdev); 3213 3214 return; 3215 reset_err: 3216 if (running) { 3217 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3218 iavf_free_traffic_irqs(adapter); 3219 } 3220 iavf_disable_vf(adapter); 3221 3222 mutex_unlock(&adapter->crit_lock); 3223 netdev_unlock(netdev); 3224 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3225 } 3226 3227 /** 3228 * iavf_adminq_task - worker thread to clean the admin queue 3229 * @work: pointer to work_struct containing our data 3230 **/ 3231 static void iavf_adminq_task(struct work_struct *work) 3232 { 3233 struct iavf_adapter *adapter = 3234 container_of(work, struct iavf_adapter, adminq_task); 3235 struct iavf_hw *hw = &adapter->hw; 3236 struct iavf_arq_event_info event; 3237 enum virtchnl_ops v_op; 3238 enum iavf_status ret, v_ret; 3239 u32 val, oldval; 3240 u16 pending; 3241 3242 if (!mutex_trylock(&adapter->crit_lock)) { 3243 if (adapter->state == __IAVF_REMOVE) 3244 return; 3245 3246 queue_work(adapter->wq, &adapter->adminq_task); 3247 goto out; 3248 } 3249 3250 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3251 goto unlock; 3252 3253 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3254 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3255 if (!event.msg_buf) 3256 goto unlock; 3257 3258 do { 3259 ret = iavf_clean_arq_element(hw, &event, &pending); 3260 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3261 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3262 3263 if (ret || !v_op) 3264 break; /* No event to process or error cleaning ARQ */ 3265 3266 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3267 event.msg_len); 3268 if (pending != 0) 3269 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3270 } while (pending); 3271 3272 if (iavf_is_reset_in_progress(adapter)) 3273 goto freedom; 3274 3275 /* check for error indications */ 3276 val = rd32(hw, IAVF_VF_ARQLEN1); 3277 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3278 goto freedom; 3279 oldval = val; 3280 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3281 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3282 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3283 } 3284 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3285 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3286 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3287 } 3288 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3289 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3290 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3291 } 3292 if (oldval != val) 3293 wr32(hw, IAVF_VF_ARQLEN1, val); 3294 3295 val = rd32(hw, IAVF_VF_ATQLEN1); 3296 oldval = val; 3297 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3298 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3299 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3300 } 3301 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3302 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3303 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3304 } 3305 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3306 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3307 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3308 } 3309 if (oldval != val) 3310 wr32(hw, IAVF_VF_ATQLEN1, val); 3311 3312 freedom: 3313 kfree(event.msg_buf); 3314 unlock: 3315 mutex_unlock(&adapter->crit_lock); 3316 out: 3317 /* re-enable Admin queue interrupt cause */ 3318 iavf_misc_irq_enable(adapter); 3319 } 3320 3321 /** 3322 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3323 * @adapter: board private structure 3324 * 3325 * Free all transmit software resources 3326 **/ 3327 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3328 { 3329 int i; 3330 3331 if (!adapter->tx_rings) 3332 return; 3333 3334 for (i = 0; i < adapter->num_active_queues; i++) 3335 if (adapter->tx_rings[i].desc) 3336 iavf_free_tx_resources(&adapter->tx_rings[i]); 3337 } 3338 3339 /** 3340 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3341 * @adapter: board private structure 3342 * 3343 * If this function returns with an error, then it's possible one or 3344 * more of the rings is populated (while the rest are not). It is the 3345 * callers duty to clean those orphaned rings. 3346 * 3347 * Return 0 on success, negative on failure 3348 **/ 3349 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3350 { 3351 int i, err = 0; 3352 3353 for (i = 0; i < adapter->num_active_queues; i++) { 3354 adapter->tx_rings[i].count = adapter->tx_desc_count; 3355 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3356 if (!err) 3357 continue; 3358 dev_err(&adapter->pdev->dev, 3359 "Allocation for Tx Queue %u failed\n", i); 3360 break; 3361 } 3362 3363 return err; 3364 } 3365 3366 /** 3367 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3368 * @adapter: board private structure 3369 * 3370 * If this function returns with an error, then it's possible one or 3371 * more of the rings is populated (while the rest are not). It is the 3372 * callers duty to clean those orphaned rings. 3373 * 3374 * Return 0 on success, negative on failure 3375 **/ 3376 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3377 { 3378 int i, err = 0; 3379 3380 for (i = 0; i < adapter->num_active_queues; i++) { 3381 adapter->rx_rings[i].count = adapter->rx_desc_count; 3382 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3383 if (!err) 3384 continue; 3385 dev_err(&adapter->pdev->dev, 3386 "Allocation for Rx Queue %u failed\n", i); 3387 break; 3388 } 3389 return err; 3390 } 3391 3392 /** 3393 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3394 * @adapter: board private structure 3395 * 3396 * Free all receive software resources 3397 **/ 3398 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3399 { 3400 int i; 3401 3402 if (!adapter->rx_rings) 3403 return; 3404 3405 for (i = 0; i < adapter->num_active_queues; i++) 3406 if (adapter->rx_rings[i].desc) 3407 iavf_free_rx_resources(&adapter->rx_rings[i]); 3408 } 3409 3410 /** 3411 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3412 * @adapter: board private structure 3413 * @max_tx_rate: max Tx bw for a tc 3414 **/ 3415 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3416 u64 max_tx_rate) 3417 { 3418 int speed = 0, ret = 0; 3419 3420 if (ADV_LINK_SUPPORT(adapter)) { 3421 if (adapter->link_speed_mbps < U32_MAX) { 3422 speed = adapter->link_speed_mbps; 3423 goto validate_bw; 3424 } else { 3425 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3426 return -EINVAL; 3427 } 3428 } 3429 3430 switch (adapter->link_speed) { 3431 case VIRTCHNL_LINK_SPEED_40GB: 3432 speed = SPEED_40000; 3433 break; 3434 case VIRTCHNL_LINK_SPEED_25GB: 3435 speed = SPEED_25000; 3436 break; 3437 case VIRTCHNL_LINK_SPEED_20GB: 3438 speed = SPEED_20000; 3439 break; 3440 case VIRTCHNL_LINK_SPEED_10GB: 3441 speed = SPEED_10000; 3442 break; 3443 case VIRTCHNL_LINK_SPEED_5GB: 3444 speed = SPEED_5000; 3445 break; 3446 case VIRTCHNL_LINK_SPEED_2_5GB: 3447 speed = SPEED_2500; 3448 break; 3449 case VIRTCHNL_LINK_SPEED_1GB: 3450 speed = SPEED_1000; 3451 break; 3452 case VIRTCHNL_LINK_SPEED_100MB: 3453 speed = SPEED_100; 3454 break; 3455 default: 3456 break; 3457 } 3458 3459 validate_bw: 3460 if (max_tx_rate > speed) { 3461 dev_err(&adapter->pdev->dev, 3462 "Invalid tx rate specified\n"); 3463 ret = -EINVAL; 3464 } 3465 3466 return ret; 3467 } 3468 3469 /** 3470 * iavf_validate_ch_config - validate queue mapping info 3471 * @adapter: board private structure 3472 * @mqprio_qopt: queue parameters 3473 * 3474 * This function validates if the config provided by the user to 3475 * configure queue channels is valid or not. Returns 0 on a valid 3476 * config. 3477 **/ 3478 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3479 struct tc_mqprio_qopt_offload *mqprio_qopt) 3480 { 3481 u64 total_max_rate = 0; 3482 u32 tx_rate_rem = 0; 3483 int i, num_qps = 0; 3484 u64 tx_rate = 0; 3485 int ret = 0; 3486 3487 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3488 mqprio_qopt->qopt.num_tc < 1) 3489 return -EINVAL; 3490 3491 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3492 if (!mqprio_qopt->qopt.count[i] || 3493 mqprio_qopt->qopt.offset[i] != num_qps) 3494 return -EINVAL; 3495 if (mqprio_qopt->min_rate[i]) { 3496 dev_err(&adapter->pdev->dev, 3497 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3498 i); 3499 return -EINVAL; 3500 } 3501 3502 /* convert to Mbps */ 3503 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3504 IAVF_MBPS_DIVISOR); 3505 3506 if (mqprio_qopt->max_rate[i] && 3507 tx_rate < IAVF_MBPS_QUANTA) { 3508 dev_err(&adapter->pdev->dev, 3509 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3510 i, IAVF_MBPS_QUANTA); 3511 return -EINVAL; 3512 } 3513 3514 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3515 3516 if (tx_rate_rem != 0) { 3517 dev_err(&adapter->pdev->dev, 3518 "Invalid max tx rate for TC%d, not divisible by %d\n", 3519 i, IAVF_MBPS_QUANTA); 3520 return -EINVAL; 3521 } 3522 3523 total_max_rate += tx_rate; 3524 num_qps += mqprio_qopt->qopt.count[i]; 3525 } 3526 if (num_qps > adapter->num_active_queues) { 3527 dev_err(&adapter->pdev->dev, 3528 "Cannot support requested number of queues\n"); 3529 return -EINVAL; 3530 } 3531 3532 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3533 return ret; 3534 } 3535 3536 /** 3537 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3538 * @adapter: board private structure 3539 **/ 3540 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3541 { 3542 struct iavf_cloud_filter *cf, *cftmp; 3543 3544 spin_lock_bh(&adapter->cloud_filter_list_lock); 3545 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3546 list) { 3547 list_del(&cf->list); 3548 kfree(cf); 3549 adapter->num_cloud_filters--; 3550 } 3551 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3552 } 3553 3554 /** 3555 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3556 * TC config already configured on this adapter. 3557 * @adapter: board private structure 3558 * @mqprio_qopt: TC config received from kernel. 3559 * 3560 * This function compares the TC config received from the kernel 3561 * with the config already configured on the adapter. 3562 * 3563 * Return: True if configuration is same, false otherwise. 3564 **/ 3565 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3566 struct tc_mqprio_qopt *mqprio_qopt) 3567 { 3568 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3569 int i; 3570 3571 if (adapter->num_tc != mqprio_qopt->num_tc) 3572 return false; 3573 3574 for (i = 0; i < adapter->num_tc; i++) { 3575 if (ch[i].count != mqprio_qopt->count[i] || 3576 ch[i].offset != mqprio_qopt->offset[i]) 3577 return false; 3578 } 3579 return true; 3580 } 3581 3582 /** 3583 * __iavf_setup_tc - configure multiple traffic classes 3584 * @netdev: network interface device structure 3585 * @type_data: tc offload data 3586 * 3587 * This function processes the config information provided by the 3588 * user to configure traffic classes/queue channels and packages the 3589 * information to request the PF to setup traffic classes. 3590 * 3591 * Returns 0 on success. 3592 **/ 3593 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3594 { 3595 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3596 struct iavf_adapter *adapter = netdev_priv(netdev); 3597 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3598 u8 num_tc = 0, total_qps = 0; 3599 int ret = 0, netdev_tc = 0; 3600 u64 max_tx_rate; 3601 u16 mode; 3602 int i; 3603 3604 num_tc = mqprio_qopt->qopt.num_tc; 3605 mode = mqprio_qopt->mode; 3606 3607 /* delete queue_channel */ 3608 if (!mqprio_qopt->qopt.hw) { 3609 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3610 /* reset the tc configuration */ 3611 netdev_reset_tc(netdev); 3612 adapter->num_tc = 0; 3613 netif_tx_stop_all_queues(netdev); 3614 netif_tx_disable(netdev); 3615 iavf_del_all_cloud_filters(adapter); 3616 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3617 total_qps = adapter->orig_num_active_queues; 3618 goto exit; 3619 } else { 3620 return -EINVAL; 3621 } 3622 } 3623 3624 /* add queue channel */ 3625 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3626 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3627 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3628 return -EOPNOTSUPP; 3629 } 3630 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3631 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3632 return -EINVAL; 3633 } 3634 3635 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3636 if (ret) 3637 return ret; 3638 /* Return if same TC config is requested */ 3639 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3640 return 0; 3641 adapter->num_tc = num_tc; 3642 3643 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3644 if (i < num_tc) { 3645 adapter->ch_config.ch_info[i].count = 3646 mqprio_qopt->qopt.count[i]; 3647 adapter->ch_config.ch_info[i].offset = 3648 mqprio_qopt->qopt.offset[i]; 3649 total_qps += mqprio_qopt->qopt.count[i]; 3650 max_tx_rate = mqprio_qopt->max_rate[i]; 3651 /* convert to Mbps */ 3652 max_tx_rate = div_u64(max_tx_rate, 3653 IAVF_MBPS_DIVISOR); 3654 adapter->ch_config.ch_info[i].max_tx_rate = 3655 max_tx_rate; 3656 } else { 3657 adapter->ch_config.ch_info[i].count = 1; 3658 adapter->ch_config.ch_info[i].offset = 0; 3659 } 3660 } 3661 3662 /* Take snapshot of original config such as "num_active_queues" 3663 * It is used later when delete ADQ flow is exercised, so that 3664 * once delete ADQ flow completes, VF shall go back to its 3665 * original queue configuration 3666 */ 3667 3668 adapter->orig_num_active_queues = adapter->num_active_queues; 3669 3670 /* Store queue info based on TC so that VF gets configured 3671 * with correct number of queues when VF completes ADQ config 3672 * flow 3673 */ 3674 adapter->ch_config.total_qps = total_qps; 3675 3676 netif_tx_stop_all_queues(netdev); 3677 netif_tx_disable(netdev); 3678 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3679 netdev_reset_tc(netdev); 3680 /* Report the tc mapping up the stack */ 3681 netdev_set_num_tc(adapter->netdev, num_tc); 3682 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3683 u16 qcount = mqprio_qopt->qopt.count[i]; 3684 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3685 3686 if (i < num_tc) 3687 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3688 qoffset); 3689 } 3690 } 3691 exit: 3692 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3693 return 0; 3694 3695 netdev_lock(netdev); 3696 netif_set_real_num_rx_queues(netdev, total_qps); 3697 netif_set_real_num_tx_queues(netdev, total_qps); 3698 netdev_unlock(netdev); 3699 3700 return ret; 3701 } 3702 3703 /** 3704 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3705 * @adapter: board private structure 3706 * @f: pointer to struct flow_cls_offload 3707 * @filter: pointer to cloud filter structure 3708 */ 3709 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3710 struct flow_cls_offload *f, 3711 struct iavf_cloud_filter *filter) 3712 { 3713 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3714 struct flow_dissector *dissector = rule->match.dissector; 3715 u16 n_proto_mask = 0; 3716 u16 n_proto_key = 0; 3717 u8 field_flags = 0; 3718 u16 addr_type = 0; 3719 u16 n_proto = 0; 3720 int i = 0; 3721 struct virtchnl_filter *vf = &filter->f; 3722 3723 if (dissector->used_keys & 3724 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3725 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3726 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3727 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3728 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3729 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3730 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3731 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3732 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3733 dissector->used_keys); 3734 return -EOPNOTSUPP; 3735 } 3736 3737 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3738 struct flow_match_enc_keyid match; 3739 3740 flow_rule_match_enc_keyid(rule, &match); 3741 if (match.mask->keyid != 0) 3742 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3743 } 3744 3745 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3746 struct flow_match_basic match; 3747 3748 flow_rule_match_basic(rule, &match); 3749 n_proto_key = ntohs(match.key->n_proto); 3750 n_proto_mask = ntohs(match.mask->n_proto); 3751 3752 if (n_proto_key == ETH_P_ALL) { 3753 n_proto_key = 0; 3754 n_proto_mask = 0; 3755 } 3756 n_proto = n_proto_key & n_proto_mask; 3757 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3758 return -EINVAL; 3759 if (n_proto == ETH_P_IPV6) { 3760 /* specify flow type as TCP IPv6 */ 3761 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3762 } 3763 3764 if (match.key->ip_proto != IPPROTO_TCP) { 3765 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3766 return -EINVAL; 3767 } 3768 } 3769 3770 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3771 struct flow_match_eth_addrs match; 3772 3773 flow_rule_match_eth_addrs(rule, &match); 3774 3775 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3776 if (!is_zero_ether_addr(match.mask->dst)) { 3777 if (is_broadcast_ether_addr(match.mask->dst)) { 3778 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3779 } else { 3780 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3781 match.mask->dst); 3782 return -EINVAL; 3783 } 3784 } 3785 3786 if (!is_zero_ether_addr(match.mask->src)) { 3787 if (is_broadcast_ether_addr(match.mask->src)) { 3788 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3789 } else { 3790 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3791 match.mask->src); 3792 return -EINVAL; 3793 } 3794 } 3795 3796 if (!is_zero_ether_addr(match.key->dst)) 3797 if (is_valid_ether_addr(match.key->dst) || 3798 is_multicast_ether_addr(match.key->dst)) { 3799 /* set the mask if a valid dst_mac address */ 3800 for (i = 0; i < ETH_ALEN; i++) 3801 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3802 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3803 match.key->dst); 3804 } 3805 3806 if (!is_zero_ether_addr(match.key->src)) 3807 if (is_valid_ether_addr(match.key->src) || 3808 is_multicast_ether_addr(match.key->src)) { 3809 /* set the mask if a valid dst_mac address */ 3810 for (i = 0; i < ETH_ALEN; i++) 3811 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3812 ether_addr_copy(vf->data.tcp_spec.src_mac, 3813 match.key->src); 3814 } 3815 } 3816 3817 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3818 struct flow_match_vlan match; 3819 3820 flow_rule_match_vlan(rule, &match); 3821 if (match.mask->vlan_id) { 3822 if (match.mask->vlan_id == VLAN_VID_MASK) { 3823 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3824 } else { 3825 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3826 match.mask->vlan_id); 3827 return -EINVAL; 3828 } 3829 } 3830 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3831 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3832 } 3833 3834 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3835 struct flow_match_control match; 3836 3837 flow_rule_match_control(rule, &match); 3838 addr_type = match.key->addr_type; 3839 3840 if (flow_rule_has_control_flags(match.mask->flags, 3841 f->common.extack)) 3842 return -EOPNOTSUPP; 3843 } 3844 3845 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3846 struct flow_match_ipv4_addrs match; 3847 3848 flow_rule_match_ipv4_addrs(rule, &match); 3849 if (match.mask->dst) { 3850 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3851 field_flags |= IAVF_CLOUD_FIELD_IIP; 3852 } else { 3853 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3854 be32_to_cpu(match.mask->dst)); 3855 return -EINVAL; 3856 } 3857 } 3858 3859 if (match.mask->src) { 3860 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3861 field_flags |= IAVF_CLOUD_FIELD_IIP; 3862 } else { 3863 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3864 be32_to_cpu(match.mask->src)); 3865 return -EINVAL; 3866 } 3867 } 3868 3869 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3870 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3871 return -EINVAL; 3872 } 3873 if (match.key->dst) { 3874 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3875 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3876 } 3877 if (match.key->src) { 3878 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3879 vf->data.tcp_spec.src_ip[0] = match.key->src; 3880 } 3881 } 3882 3883 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3884 struct flow_match_ipv6_addrs match; 3885 3886 flow_rule_match_ipv6_addrs(rule, &match); 3887 3888 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3889 if (ipv6_addr_any(&match.mask->dst)) { 3890 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3891 IPV6_ADDR_ANY); 3892 return -EINVAL; 3893 } 3894 3895 /* src and dest IPv6 address should not be LOOPBACK 3896 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3897 */ 3898 if (ipv6_addr_loopback(&match.key->dst) || 3899 ipv6_addr_loopback(&match.key->src)) { 3900 dev_err(&adapter->pdev->dev, 3901 "ipv6 addr should not be loopback\n"); 3902 return -EINVAL; 3903 } 3904 if (!ipv6_addr_any(&match.mask->dst) || 3905 !ipv6_addr_any(&match.mask->src)) 3906 field_flags |= IAVF_CLOUD_FIELD_IIP; 3907 3908 for (i = 0; i < 4; i++) 3909 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3910 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3911 sizeof(vf->data.tcp_spec.dst_ip)); 3912 for (i = 0; i < 4; i++) 3913 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3914 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3915 sizeof(vf->data.tcp_spec.src_ip)); 3916 } 3917 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3918 struct flow_match_ports match; 3919 3920 flow_rule_match_ports(rule, &match); 3921 if (match.mask->src) { 3922 if (match.mask->src == cpu_to_be16(0xffff)) { 3923 field_flags |= IAVF_CLOUD_FIELD_IIP; 3924 } else { 3925 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3926 be16_to_cpu(match.mask->src)); 3927 return -EINVAL; 3928 } 3929 } 3930 3931 if (match.mask->dst) { 3932 if (match.mask->dst == cpu_to_be16(0xffff)) { 3933 field_flags |= IAVF_CLOUD_FIELD_IIP; 3934 } else { 3935 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3936 be16_to_cpu(match.mask->dst)); 3937 return -EINVAL; 3938 } 3939 } 3940 if (match.key->dst) { 3941 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3942 vf->data.tcp_spec.dst_port = match.key->dst; 3943 } 3944 3945 if (match.key->src) { 3946 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3947 vf->data.tcp_spec.src_port = match.key->src; 3948 } 3949 } 3950 vf->field_flags = field_flags; 3951 3952 return 0; 3953 } 3954 3955 /** 3956 * iavf_handle_tclass - Forward to a traffic class on the device 3957 * @adapter: board private structure 3958 * @tc: traffic class index on the device 3959 * @filter: pointer to cloud filter structure 3960 */ 3961 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3962 struct iavf_cloud_filter *filter) 3963 { 3964 if (tc == 0) 3965 return 0; 3966 if (tc < adapter->num_tc) { 3967 if (!filter->f.data.tcp_spec.dst_port) { 3968 dev_err(&adapter->pdev->dev, 3969 "Specify destination port to redirect to traffic class other than TC0\n"); 3970 return -EINVAL; 3971 } 3972 } 3973 /* redirect to a traffic class on the same device */ 3974 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3975 filter->f.action_meta = tc; 3976 return 0; 3977 } 3978 3979 /** 3980 * iavf_find_cf - Find the cloud filter in the list 3981 * @adapter: Board private structure 3982 * @cookie: filter specific cookie 3983 * 3984 * Returns ptr to the filter object or NULL. Must be called while holding the 3985 * cloud_filter_list_lock. 3986 */ 3987 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3988 unsigned long *cookie) 3989 { 3990 struct iavf_cloud_filter *filter = NULL; 3991 3992 if (!cookie) 3993 return NULL; 3994 3995 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3996 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3997 return filter; 3998 } 3999 return NULL; 4000 } 4001 4002 /** 4003 * iavf_configure_clsflower - Add tc flower filters 4004 * @adapter: board private structure 4005 * @cls_flower: Pointer to struct flow_cls_offload 4006 */ 4007 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4008 struct flow_cls_offload *cls_flower) 4009 { 4010 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4011 struct iavf_cloud_filter *filter = NULL; 4012 int err = -EINVAL, count = 50; 4013 4014 if (tc < 0) { 4015 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4016 return -EINVAL; 4017 } 4018 4019 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4020 if (!filter) 4021 return -ENOMEM; 4022 4023 while (!mutex_trylock(&adapter->crit_lock)) { 4024 if (--count == 0) { 4025 kfree(filter); 4026 return err; 4027 } 4028 udelay(1); 4029 } 4030 4031 filter->cookie = cls_flower->cookie; 4032 4033 /* bail out here if filter already exists */ 4034 spin_lock_bh(&adapter->cloud_filter_list_lock); 4035 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4036 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4037 err = -EEXIST; 4038 goto spin_unlock; 4039 } 4040 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4041 4042 /* set the mask to all zeroes to begin with */ 4043 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4044 /* start out with flow type and eth type IPv4 to begin with */ 4045 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4046 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4047 if (err) 4048 goto err; 4049 4050 err = iavf_handle_tclass(adapter, tc, filter); 4051 if (err) 4052 goto err; 4053 4054 /* add filter to the list */ 4055 spin_lock_bh(&adapter->cloud_filter_list_lock); 4056 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4057 adapter->num_cloud_filters++; 4058 filter->add = true; 4059 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4060 spin_unlock: 4061 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4062 err: 4063 if (err) 4064 kfree(filter); 4065 4066 mutex_unlock(&adapter->crit_lock); 4067 return err; 4068 } 4069 4070 /** 4071 * iavf_delete_clsflower - Remove tc flower filters 4072 * @adapter: board private structure 4073 * @cls_flower: Pointer to struct flow_cls_offload 4074 */ 4075 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4076 struct flow_cls_offload *cls_flower) 4077 { 4078 struct iavf_cloud_filter *filter = NULL; 4079 int err = 0; 4080 4081 spin_lock_bh(&adapter->cloud_filter_list_lock); 4082 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4083 if (filter) { 4084 filter->del = true; 4085 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4086 } else { 4087 err = -EINVAL; 4088 } 4089 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4090 4091 return err; 4092 } 4093 4094 /** 4095 * iavf_setup_tc_cls_flower - flower classifier offloads 4096 * @adapter: pointer to iavf adapter structure 4097 * @cls_flower: pointer to flow_cls_offload struct with flow info 4098 */ 4099 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4100 struct flow_cls_offload *cls_flower) 4101 { 4102 switch (cls_flower->command) { 4103 case FLOW_CLS_REPLACE: 4104 return iavf_configure_clsflower(adapter, cls_flower); 4105 case FLOW_CLS_DESTROY: 4106 return iavf_delete_clsflower(adapter, cls_flower); 4107 case FLOW_CLS_STATS: 4108 return -EOPNOTSUPP; 4109 default: 4110 return -EOPNOTSUPP; 4111 } 4112 } 4113 4114 /** 4115 * iavf_add_cls_u32 - Add U32 classifier offloads 4116 * @adapter: pointer to iavf adapter structure 4117 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4118 * 4119 * Return: 0 on success or negative errno on failure. 4120 */ 4121 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4122 struct tc_cls_u32_offload *cls_u32) 4123 { 4124 struct netlink_ext_ack *extack = cls_u32->common.extack; 4125 struct virtchnl_fdir_rule *rule_cfg; 4126 struct virtchnl_filter_action *vact; 4127 struct virtchnl_proto_hdrs *hdrs; 4128 struct ethhdr *spec_h, *mask_h; 4129 const struct tc_action *act; 4130 struct iavf_fdir_fltr *fltr; 4131 struct tcf_exts *exts; 4132 unsigned int q_index; 4133 int i, status = 0; 4134 int off_base = 0; 4135 4136 if (cls_u32->knode.link_handle) { 4137 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4138 return -EOPNOTSUPP; 4139 } 4140 4141 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4142 if (!fltr) 4143 return -ENOMEM; 4144 4145 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4146 hdrs = &rule_cfg->proto_hdrs; 4147 hdrs->count = 0; 4148 4149 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4150 switch (ntohs(cls_u32->common.protocol)) { 4151 case ETH_P_802_3: 4152 break; 4153 case ETH_P_IP: 4154 spec_h = (struct ethhdr *)hdrs->raw.spec; 4155 mask_h = (struct ethhdr *)hdrs->raw.mask; 4156 spec_h->h_proto = htons(ETH_P_IP); 4157 mask_h->h_proto = htons(0xFFFF); 4158 off_base += ETH_HLEN; 4159 break; 4160 default: 4161 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4162 status = -EOPNOTSUPP; 4163 goto free_alloc; 4164 } 4165 4166 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4167 __be32 val, mask; 4168 int off; 4169 4170 off = off_base + cls_u32->knode.sel->keys[i].off; 4171 val = cls_u32->knode.sel->keys[i].val; 4172 mask = cls_u32->knode.sel->keys[i].mask; 4173 4174 if (off >= sizeof(hdrs->raw.spec)) { 4175 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4176 status = -EINVAL; 4177 goto free_alloc; 4178 } 4179 4180 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4181 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4182 hdrs->raw.pkt_len = off + sizeof(val); 4183 } 4184 4185 /* Only one action is allowed */ 4186 rule_cfg->action_set.count = 1; 4187 vact = &rule_cfg->action_set.actions[0]; 4188 exts = cls_u32->knode.exts; 4189 4190 tcf_exts_for_each_action(i, act, exts) { 4191 /* FDIR queue */ 4192 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4193 q_index = tcf_skbedit_rx_queue_mapping(act); 4194 if (q_index >= adapter->num_active_queues) { 4195 status = -EINVAL; 4196 goto free_alloc; 4197 } 4198 4199 vact->type = VIRTCHNL_ACTION_QUEUE; 4200 vact->act_conf.queue.index = q_index; 4201 break; 4202 } 4203 4204 /* Drop */ 4205 if (is_tcf_gact_shot(act)) { 4206 vact->type = VIRTCHNL_ACTION_DROP; 4207 break; 4208 } 4209 4210 /* Unsupported action */ 4211 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4212 status = -EOPNOTSUPP; 4213 goto free_alloc; 4214 } 4215 4216 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4217 fltr->cls_u32_handle = cls_u32->knode.handle; 4218 return iavf_fdir_add_fltr(adapter, fltr); 4219 4220 free_alloc: 4221 kfree(fltr); 4222 return status; 4223 } 4224 4225 /** 4226 * iavf_del_cls_u32 - Delete U32 classifier offloads 4227 * @adapter: pointer to iavf adapter structure 4228 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4229 * 4230 * Return: 0 on success or negative errno on failure. 4231 */ 4232 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4233 struct tc_cls_u32_offload *cls_u32) 4234 { 4235 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4236 } 4237 4238 /** 4239 * iavf_setup_tc_cls_u32 - U32 filter offloads 4240 * @adapter: pointer to iavf adapter structure 4241 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4242 * 4243 * Return: 0 on success or negative errno on failure. 4244 */ 4245 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4246 struct tc_cls_u32_offload *cls_u32) 4247 { 4248 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4249 return -EOPNOTSUPP; 4250 4251 switch (cls_u32->command) { 4252 case TC_CLSU32_NEW_KNODE: 4253 case TC_CLSU32_REPLACE_KNODE: 4254 return iavf_add_cls_u32(adapter, cls_u32); 4255 case TC_CLSU32_DELETE_KNODE: 4256 return iavf_del_cls_u32(adapter, cls_u32); 4257 default: 4258 return -EOPNOTSUPP; 4259 } 4260 } 4261 4262 /** 4263 * iavf_setup_tc_block_cb - block callback for tc 4264 * @type: type of offload 4265 * @type_data: offload data 4266 * @cb_priv: 4267 * 4268 * This function is the block callback for traffic classes 4269 **/ 4270 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4271 void *cb_priv) 4272 { 4273 struct iavf_adapter *adapter = cb_priv; 4274 4275 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4276 return -EOPNOTSUPP; 4277 4278 switch (type) { 4279 case TC_SETUP_CLSFLOWER: 4280 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4281 case TC_SETUP_CLSU32: 4282 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4283 default: 4284 return -EOPNOTSUPP; 4285 } 4286 } 4287 4288 static LIST_HEAD(iavf_block_cb_list); 4289 4290 /** 4291 * iavf_setup_tc - configure multiple traffic classes 4292 * @netdev: network interface device structure 4293 * @type: type of offload 4294 * @type_data: tc offload data 4295 * 4296 * This function is the callback to ndo_setup_tc in the 4297 * netdev_ops. 4298 * 4299 * Returns 0 on success 4300 **/ 4301 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4302 void *type_data) 4303 { 4304 struct iavf_adapter *adapter = netdev_priv(netdev); 4305 4306 switch (type) { 4307 case TC_SETUP_QDISC_MQPRIO: 4308 return __iavf_setup_tc(netdev, type_data); 4309 case TC_SETUP_BLOCK: 4310 return flow_block_cb_setup_simple(type_data, 4311 &iavf_block_cb_list, 4312 iavf_setup_tc_block_cb, 4313 adapter, adapter, true); 4314 default: 4315 return -EOPNOTSUPP; 4316 } 4317 } 4318 4319 /** 4320 * iavf_restore_fdir_filters 4321 * @adapter: board private structure 4322 * 4323 * Restore existing FDIR filters when VF netdev comes back up. 4324 **/ 4325 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4326 { 4327 struct iavf_fdir_fltr *f; 4328 4329 spin_lock_bh(&adapter->fdir_fltr_lock); 4330 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4331 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4332 /* Cancel a request, keep filter as active */ 4333 f->state = IAVF_FDIR_FLTR_ACTIVE; 4334 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4335 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4336 /* Add filters which are inactive or have a pending 4337 * request to PF to be deleted 4338 */ 4339 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4340 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4341 } 4342 } 4343 spin_unlock_bh(&adapter->fdir_fltr_lock); 4344 } 4345 4346 /** 4347 * iavf_open - Called when a network interface is made active 4348 * @netdev: network interface device structure 4349 * 4350 * Returns 0 on success, negative value on failure 4351 * 4352 * The open entry point is called when a network interface is made 4353 * active by the system (IFF_UP). At this point all resources needed 4354 * for transmit and receive operations are allocated, the interrupt 4355 * handler is registered with the OS, the watchdog is started, 4356 * and the stack is notified that the interface is ready. 4357 **/ 4358 static int iavf_open(struct net_device *netdev) 4359 { 4360 struct iavf_adapter *adapter = netdev_priv(netdev); 4361 int err; 4362 4363 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4364 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4365 return -EIO; 4366 } 4367 4368 netdev_lock(netdev); 4369 while (!mutex_trylock(&adapter->crit_lock)) { 4370 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4371 * is already taken and iavf_open is called from an upper 4372 * device's notifier reacting on NETDEV_REGISTER event. 4373 * We have to leave here to avoid dead lock. 4374 */ 4375 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) { 4376 netdev_unlock(netdev); 4377 return -EBUSY; 4378 } 4379 4380 usleep_range(500, 1000); 4381 } 4382 4383 if (adapter->state != __IAVF_DOWN) { 4384 err = -EBUSY; 4385 goto err_unlock; 4386 } 4387 4388 if (adapter->state == __IAVF_RUNNING && 4389 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4390 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4391 err = 0; 4392 goto err_unlock; 4393 } 4394 4395 /* allocate transmit descriptors */ 4396 err = iavf_setup_all_tx_resources(adapter); 4397 if (err) 4398 goto err_setup_tx; 4399 4400 /* allocate receive descriptors */ 4401 err = iavf_setup_all_rx_resources(adapter); 4402 if (err) 4403 goto err_setup_rx; 4404 4405 /* clear any pending interrupts, may auto mask */ 4406 err = iavf_request_traffic_irqs(adapter, netdev->name); 4407 if (err) 4408 goto err_req_irq; 4409 4410 spin_lock_bh(&adapter->mac_vlan_list_lock); 4411 4412 iavf_add_filter(adapter, adapter->hw.mac.addr); 4413 4414 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4415 4416 /* Restore filters that were removed with IFF_DOWN */ 4417 iavf_restore_filters(adapter); 4418 iavf_restore_fdir_filters(adapter); 4419 4420 iavf_configure(adapter); 4421 4422 iavf_up_complete(adapter); 4423 4424 iavf_irq_enable(adapter, true); 4425 4426 mutex_unlock(&adapter->crit_lock); 4427 netdev_unlock(netdev); 4428 4429 return 0; 4430 4431 err_req_irq: 4432 iavf_down(adapter); 4433 iavf_free_traffic_irqs(adapter); 4434 err_setup_rx: 4435 iavf_free_all_rx_resources(adapter); 4436 err_setup_tx: 4437 iavf_free_all_tx_resources(adapter); 4438 err_unlock: 4439 mutex_unlock(&adapter->crit_lock); 4440 netdev_unlock(netdev); 4441 4442 return err; 4443 } 4444 4445 /** 4446 * iavf_close - Disables a network interface 4447 * @netdev: network interface device structure 4448 * 4449 * Returns 0, this is not allowed to fail 4450 * 4451 * The close entry point is called when an interface is de-activated 4452 * by the OS. The hardware is still under the drivers control, but 4453 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4454 * are freed, along with all transmit and receive resources. 4455 **/ 4456 static int iavf_close(struct net_device *netdev) 4457 { 4458 struct iavf_adapter *adapter = netdev_priv(netdev); 4459 u64 aq_to_restore; 4460 int status; 4461 4462 netdev_lock(netdev); 4463 mutex_lock(&adapter->crit_lock); 4464 4465 if (adapter->state <= __IAVF_DOWN_PENDING) { 4466 mutex_unlock(&adapter->crit_lock); 4467 netdev_unlock(netdev); 4468 return 0; 4469 } 4470 4471 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4472 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4473 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4474 * deadlock with adminq_task() until iavf_close timeouts. We must send 4475 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4476 * disable queues possible for vf. Give only necessary flags to 4477 * iavf_down and save other to set them right before iavf_close() 4478 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4479 * iavf will be in DOWN state. 4480 */ 4481 aq_to_restore = adapter->aq_required; 4482 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4483 4484 /* Remove flags which we do not want to send after close or we want to 4485 * send before disable queues. 4486 */ 4487 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4488 IAVF_FLAG_AQ_ENABLE_QUEUES | 4489 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4490 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4491 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4492 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4493 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4494 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4495 4496 iavf_down(adapter); 4497 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4498 iavf_free_traffic_irqs(adapter); 4499 4500 mutex_unlock(&adapter->crit_lock); 4501 netdev_unlock(netdev); 4502 4503 /* We explicitly don't free resources here because the hardware is 4504 * still active and can DMA into memory. Resources are cleared in 4505 * iavf_virtchnl_completion() after we get confirmation from the PF 4506 * driver that the rings have been stopped. 4507 * 4508 * Also, we wait for state to transition to __IAVF_DOWN before 4509 * returning. State change occurs in iavf_virtchnl_completion() after 4510 * VF resources are released (which occurs after PF driver processes and 4511 * responds to admin queue commands). 4512 */ 4513 4514 status = wait_event_timeout(adapter->down_waitqueue, 4515 adapter->state == __IAVF_DOWN, 4516 msecs_to_jiffies(500)); 4517 if (!status) 4518 netdev_warn(netdev, "Device resources not yet released\n"); 4519 4520 mutex_lock(&adapter->crit_lock); 4521 adapter->aq_required |= aq_to_restore; 4522 mutex_unlock(&adapter->crit_lock); 4523 return 0; 4524 } 4525 4526 /** 4527 * iavf_change_mtu - Change the Maximum Transfer Unit 4528 * @netdev: network interface device structure 4529 * @new_mtu: new value for maximum frame size 4530 * 4531 * Returns 0 on success, negative on failure 4532 **/ 4533 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4534 { 4535 struct iavf_adapter *adapter = netdev_priv(netdev); 4536 int ret = 0; 4537 4538 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4539 netdev->mtu, new_mtu); 4540 WRITE_ONCE(netdev->mtu, new_mtu); 4541 4542 if (netif_running(netdev)) { 4543 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4544 ret = iavf_wait_for_reset(adapter); 4545 if (ret < 0) 4546 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4547 else if (ret) 4548 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4549 } 4550 4551 return ret; 4552 } 4553 4554 /** 4555 * iavf_disable_fdir - disable Flow Director and clear existing filters 4556 * @adapter: board private structure 4557 **/ 4558 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4559 { 4560 struct iavf_fdir_fltr *fdir, *fdirtmp; 4561 bool del_filters = false; 4562 4563 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4564 4565 /* remove all Flow Director filters */ 4566 spin_lock_bh(&adapter->fdir_fltr_lock); 4567 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4568 list) { 4569 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4570 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4571 /* Delete filters not registered in PF */ 4572 list_del(&fdir->list); 4573 iavf_dec_fdir_active_fltr(adapter, fdir); 4574 kfree(fdir); 4575 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4576 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4577 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4578 /* Filters registered in PF, schedule their deletion */ 4579 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4580 del_filters = true; 4581 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4582 /* Request to delete filter already sent to PF, change 4583 * state to DEL_PENDING to delete filter after PF's 4584 * response, not set as INACTIVE 4585 */ 4586 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4587 } 4588 } 4589 spin_unlock_bh(&adapter->fdir_fltr_lock); 4590 4591 if (del_filters) { 4592 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4593 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4594 } 4595 } 4596 4597 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4598 NETIF_F_HW_VLAN_CTAG_TX | \ 4599 NETIF_F_HW_VLAN_STAG_RX | \ 4600 NETIF_F_HW_VLAN_STAG_TX) 4601 4602 /** 4603 * iavf_set_features - set the netdev feature flags 4604 * @netdev: ptr to the netdev being adjusted 4605 * @features: the feature set that the stack is suggesting 4606 * Note: expects to be called while under rtnl_lock() 4607 **/ 4608 static int iavf_set_features(struct net_device *netdev, 4609 netdev_features_t features) 4610 { 4611 struct iavf_adapter *adapter = netdev_priv(netdev); 4612 4613 /* trigger update on any VLAN feature change */ 4614 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4615 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4616 iavf_set_vlan_offload_features(adapter, netdev->features, 4617 features); 4618 if (CRC_OFFLOAD_ALLOWED(adapter) && 4619 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4620 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4621 4622 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4623 if (features & NETIF_F_NTUPLE) 4624 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4625 else 4626 iavf_disable_fdir(adapter); 4627 } 4628 4629 return 0; 4630 } 4631 4632 /** 4633 * iavf_features_check - Validate encapsulated packet conforms to limits 4634 * @skb: skb buff 4635 * @dev: This physical port's netdev 4636 * @features: Offload features that the stack believes apply 4637 **/ 4638 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4639 struct net_device *dev, 4640 netdev_features_t features) 4641 { 4642 size_t len; 4643 4644 /* No point in doing any of this if neither checksum nor GSO are 4645 * being requested for this frame. We can rule out both by just 4646 * checking for CHECKSUM_PARTIAL 4647 */ 4648 if (skb->ip_summed != CHECKSUM_PARTIAL) 4649 return features; 4650 4651 /* We cannot support GSO if the MSS is going to be less than 4652 * 64 bytes. If it is then we need to drop support for GSO. 4653 */ 4654 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4655 features &= ~NETIF_F_GSO_MASK; 4656 4657 /* MACLEN can support at most 63 words */ 4658 len = skb_network_offset(skb); 4659 if (len & ~(63 * 2)) 4660 goto out_err; 4661 4662 /* IPLEN and EIPLEN can support at most 127 dwords */ 4663 len = skb_network_header_len(skb); 4664 if (len & ~(127 * 4)) 4665 goto out_err; 4666 4667 if (skb->encapsulation) { 4668 /* L4TUNLEN can support 127 words */ 4669 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4670 if (len & ~(127 * 2)) 4671 goto out_err; 4672 4673 /* IPLEN can support at most 127 dwords */ 4674 len = skb_inner_transport_header(skb) - 4675 skb_inner_network_header(skb); 4676 if (len & ~(127 * 4)) 4677 goto out_err; 4678 } 4679 4680 /* No need to validate L4LEN as TCP is the only protocol with a 4681 * flexible value and we support all possible values supported 4682 * by TCP, which is at most 15 dwords 4683 */ 4684 4685 return features; 4686 out_err: 4687 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4688 } 4689 4690 /** 4691 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4692 * @adapter: board private structure 4693 * 4694 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4695 * were negotiated determine the VLAN features that can be toggled on and off. 4696 **/ 4697 static netdev_features_t 4698 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4699 { 4700 netdev_features_t hw_features = 0; 4701 4702 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4703 return hw_features; 4704 4705 /* Enable VLAN features if supported */ 4706 if (VLAN_ALLOWED(adapter)) { 4707 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4708 NETIF_F_HW_VLAN_CTAG_RX); 4709 } else if (VLAN_V2_ALLOWED(adapter)) { 4710 struct virtchnl_vlan_caps *vlan_v2_caps = 4711 &adapter->vlan_v2_caps; 4712 struct virtchnl_vlan_supported_caps *stripping_support = 4713 &vlan_v2_caps->offloads.stripping_support; 4714 struct virtchnl_vlan_supported_caps *insertion_support = 4715 &vlan_v2_caps->offloads.insertion_support; 4716 4717 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4718 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4719 if (stripping_support->outer & 4720 VIRTCHNL_VLAN_ETHERTYPE_8100) 4721 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4722 if (stripping_support->outer & 4723 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4724 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4725 } else if (stripping_support->inner != 4726 VIRTCHNL_VLAN_UNSUPPORTED && 4727 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4728 if (stripping_support->inner & 4729 VIRTCHNL_VLAN_ETHERTYPE_8100) 4730 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4731 } 4732 4733 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4734 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4735 if (insertion_support->outer & 4736 VIRTCHNL_VLAN_ETHERTYPE_8100) 4737 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4738 if (insertion_support->outer & 4739 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4740 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4741 } else if (insertion_support->inner && 4742 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4743 if (insertion_support->inner & 4744 VIRTCHNL_VLAN_ETHERTYPE_8100) 4745 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4746 } 4747 } 4748 4749 if (CRC_OFFLOAD_ALLOWED(adapter)) 4750 hw_features |= NETIF_F_RXFCS; 4751 4752 return hw_features; 4753 } 4754 4755 /** 4756 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4757 * @adapter: board private structure 4758 * 4759 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4760 * were negotiated determine the VLAN features that are enabled by default. 4761 **/ 4762 static netdev_features_t 4763 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4764 { 4765 netdev_features_t features = 0; 4766 4767 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4768 return features; 4769 4770 if (VLAN_ALLOWED(adapter)) { 4771 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4772 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4773 } else if (VLAN_V2_ALLOWED(adapter)) { 4774 struct virtchnl_vlan_caps *vlan_v2_caps = 4775 &adapter->vlan_v2_caps; 4776 struct virtchnl_vlan_supported_caps *filtering_support = 4777 &vlan_v2_caps->filtering.filtering_support; 4778 struct virtchnl_vlan_supported_caps *stripping_support = 4779 &vlan_v2_caps->offloads.stripping_support; 4780 struct virtchnl_vlan_supported_caps *insertion_support = 4781 &vlan_v2_caps->offloads.insertion_support; 4782 u32 ethertype_init; 4783 4784 /* give priority to outer stripping and don't support both outer 4785 * and inner stripping 4786 */ 4787 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4788 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4789 if (stripping_support->outer & 4790 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4791 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4792 features |= NETIF_F_HW_VLAN_CTAG_RX; 4793 else if (stripping_support->outer & 4794 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4795 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4796 features |= NETIF_F_HW_VLAN_STAG_RX; 4797 } else if (stripping_support->inner != 4798 VIRTCHNL_VLAN_UNSUPPORTED) { 4799 if (stripping_support->inner & 4800 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4801 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4802 features |= NETIF_F_HW_VLAN_CTAG_RX; 4803 } 4804 4805 /* give priority to outer insertion and don't support both outer 4806 * and inner insertion 4807 */ 4808 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4809 if (insertion_support->outer & 4810 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4811 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4812 features |= NETIF_F_HW_VLAN_CTAG_TX; 4813 else if (insertion_support->outer & 4814 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4815 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4816 features |= NETIF_F_HW_VLAN_STAG_TX; 4817 } else if (insertion_support->inner != 4818 VIRTCHNL_VLAN_UNSUPPORTED) { 4819 if (insertion_support->inner & 4820 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4821 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4822 features |= NETIF_F_HW_VLAN_CTAG_TX; 4823 } 4824 4825 /* give priority to outer filtering and don't bother if both 4826 * outer and inner filtering are enabled 4827 */ 4828 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4829 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4830 if (filtering_support->outer & 4831 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4832 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4833 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4834 if (filtering_support->outer & 4835 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4836 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4837 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4838 } else if (filtering_support->inner != 4839 VIRTCHNL_VLAN_UNSUPPORTED) { 4840 if (filtering_support->inner & 4841 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4842 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4843 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4844 if (filtering_support->inner & 4845 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4846 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4847 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4848 } 4849 } 4850 4851 return features; 4852 } 4853 4854 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4855 (!(((requested) & (feature_bit)) && \ 4856 !((allowed) & (feature_bit)))) 4857 4858 /** 4859 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4860 * @adapter: board private structure 4861 * @requested_features: stack requested NETDEV features 4862 **/ 4863 static netdev_features_t 4864 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4865 netdev_features_t requested_features) 4866 { 4867 netdev_features_t allowed_features; 4868 4869 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4870 iavf_get_netdev_vlan_features(adapter); 4871 4872 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4873 allowed_features, 4874 NETIF_F_HW_VLAN_CTAG_TX)) 4875 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4876 4877 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4878 allowed_features, 4879 NETIF_F_HW_VLAN_CTAG_RX)) 4880 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4881 4882 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4883 allowed_features, 4884 NETIF_F_HW_VLAN_STAG_TX)) 4885 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4886 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4887 allowed_features, 4888 NETIF_F_HW_VLAN_STAG_RX)) 4889 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4890 4891 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4892 allowed_features, 4893 NETIF_F_HW_VLAN_CTAG_FILTER)) 4894 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4895 4896 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4897 allowed_features, 4898 NETIF_F_HW_VLAN_STAG_FILTER)) 4899 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4900 4901 if ((requested_features & 4902 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4903 (requested_features & 4904 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4905 adapter->vlan_v2_caps.offloads.ethertype_match == 4906 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4907 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4908 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4909 NETIF_F_HW_VLAN_STAG_TX); 4910 } 4911 4912 return requested_features; 4913 } 4914 4915 /** 4916 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4917 * @adapter: board private structure 4918 * @requested_features: stack requested NETDEV features 4919 * 4920 * Returns fixed-up features bits 4921 **/ 4922 static netdev_features_t 4923 iavf_fix_strip_features(struct iavf_adapter *adapter, 4924 netdev_features_t requested_features) 4925 { 4926 struct net_device *netdev = adapter->netdev; 4927 bool crc_offload_req, is_vlan_strip; 4928 netdev_features_t vlan_strip; 4929 int num_non_zero_vlan; 4930 4931 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4932 (requested_features & NETIF_F_RXFCS); 4933 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4934 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4935 is_vlan_strip = requested_features & vlan_strip; 4936 4937 if (!crc_offload_req) 4938 return requested_features; 4939 4940 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4941 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4942 requested_features &= ~vlan_strip; 4943 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4944 return requested_features; 4945 } 4946 4947 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4948 requested_features &= ~vlan_strip; 4949 if (!(netdev->features & vlan_strip)) 4950 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4951 4952 return requested_features; 4953 } 4954 4955 if (num_non_zero_vlan && is_vlan_strip && 4956 !(netdev->features & NETIF_F_RXFCS)) { 4957 requested_features &= ~NETIF_F_RXFCS; 4958 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4959 } 4960 4961 return requested_features; 4962 } 4963 4964 /** 4965 * iavf_fix_features - fix up the netdev feature bits 4966 * @netdev: our net device 4967 * @features: desired feature bits 4968 * 4969 * Returns fixed-up features bits 4970 **/ 4971 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4972 netdev_features_t features) 4973 { 4974 struct iavf_adapter *adapter = netdev_priv(netdev); 4975 4976 features = iavf_fix_netdev_vlan_features(adapter, features); 4977 4978 if (!FDIR_FLTR_SUPPORT(adapter)) 4979 features &= ~NETIF_F_NTUPLE; 4980 4981 return iavf_fix_strip_features(adapter, features); 4982 } 4983 4984 static int 4985 iavf_verify_shaper(struct net_shaper_binding *binding, 4986 const struct net_shaper *shaper, 4987 struct netlink_ext_ack *extack) 4988 { 4989 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 4990 u64 vf_max; 4991 4992 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 4993 vf_max = adapter->qos_caps->cap[0].shaper.peak; 4994 if (vf_max && shaper->bw_max > vf_max) { 4995 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 4996 shaper->bw_max, shaper->handle.id, 4997 vf_max); 4998 return -EINVAL; 4999 } 5000 } 5001 return 0; 5002 } 5003 5004 static int 5005 iavf_shaper_set(struct net_shaper_binding *binding, 5006 const struct net_shaper *shaper, 5007 struct netlink_ext_ack *extack) 5008 { 5009 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5010 const struct net_shaper_handle *handle = &shaper->handle; 5011 struct iavf_ring *tx_ring; 5012 int ret = 0; 5013 5014 mutex_lock(&adapter->crit_lock); 5015 if (handle->id >= adapter->num_active_queues) 5016 goto unlock; 5017 5018 ret = iavf_verify_shaper(binding, shaper, extack); 5019 if (ret) 5020 goto unlock; 5021 5022 tx_ring = &adapter->tx_rings[handle->id]; 5023 5024 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5025 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5026 tx_ring->q_shaper_update = true; 5027 5028 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5029 5030 unlock: 5031 mutex_unlock(&adapter->crit_lock); 5032 return ret; 5033 } 5034 5035 static int iavf_shaper_del(struct net_shaper_binding *binding, 5036 const struct net_shaper_handle *handle, 5037 struct netlink_ext_ack *extack) 5038 { 5039 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5040 struct iavf_ring *tx_ring; 5041 5042 mutex_lock(&adapter->crit_lock); 5043 if (handle->id >= adapter->num_active_queues) 5044 goto unlock; 5045 5046 tx_ring = &adapter->tx_rings[handle->id]; 5047 tx_ring->q_shaper.bw_min = 0; 5048 tx_ring->q_shaper.bw_max = 0; 5049 tx_ring->q_shaper_update = true; 5050 5051 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5052 5053 unlock: 5054 mutex_unlock(&adapter->crit_lock); 5055 return 0; 5056 } 5057 5058 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5059 enum net_shaper_scope scope, 5060 unsigned long *flags) 5061 { 5062 if (scope != NET_SHAPER_SCOPE_QUEUE) 5063 return; 5064 5065 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5066 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5067 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5068 } 5069 5070 static const struct net_shaper_ops iavf_shaper_ops = { 5071 .set = iavf_shaper_set, 5072 .delete = iavf_shaper_del, 5073 .capabilities = iavf_shaper_cap, 5074 }; 5075 5076 static const struct net_device_ops iavf_netdev_ops = { 5077 .ndo_open = iavf_open, 5078 .ndo_stop = iavf_close, 5079 .ndo_start_xmit = iavf_xmit_frame, 5080 .ndo_set_rx_mode = iavf_set_rx_mode, 5081 .ndo_validate_addr = eth_validate_addr, 5082 .ndo_set_mac_address = iavf_set_mac, 5083 .ndo_change_mtu = iavf_change_mtu, 5084 .ndo_tx_timeout = iavf_tx_timeout, 5085 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5086 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5087 .ndo_features_check = iavf_features_check, 5088 .ndo_fix_features = iavf_fix_features, 5089 .ndo_set_features = iavf_set_features, 5090 .ndo_setup_tc = iavf_setup_tc, 5091 .net_shaper_ops = &iavf_shaper_ops, 5092 }; 5093 5094 /** 5095 * iavf_check_reset_complete - check that VF reset is complete 5096 * @hw: pointer to hw struct 5097 * 5098 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5099 **/ 5100 static int iavf_check_reset_complete(struct iavf_hw *hw) 5101 { 5102 u32 rstat; 5103 int i; 5104 5105 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5106 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5107 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5108 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5109 (rstat == VIRTCHNL_VFR_COMPLETED)) 5110 return 0; 5111 msleep(IAVF_RESET_WAIT_MS); 5112 } 5113 return -EBUSY; 5114 } 5115 5116 /** 5117 * iavf_process_config - Process the config information we got from the PF 5118 * @adapter: board private structure 5119 * 5120 * Verify that we have a valid config struct, and set up our netdev features 5121 * and our VSI struct. 5122 **/ 5123 int iavf_process_config(struct iavf_adapter *adapter) 5124 { 5125 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5126 netdev_features_t hw_vlan_features, vlan_features; 5127 struct net_device *netdev = adapter->netdev; 5128 netdev_features_t hw_enc_features; 5129 netdev_features_t hw_features; 5130 5131 hw_enc_features = NETIF_F_SG | 5132 NETIF_F_IP_CSUM | 5133 NETIF_F_IPV6_CSUM | 5134 NETIF_F_HIGHDMA | 5135 NETIF_F_SOFT_FEATURES | 5136 NETIF_F_TSO | 5137 NETIF_F_TSO_ECN | 5138 NETIF_F_TSO6 | 5139 NETIF_F_SCTP_CRC | 5140 NETIF_F_RXHASH | 5141 NETIF_F_RXCSUM | 5142 0; 5143 5144 /* advertise to stack only if offloads for encapsulated packets is 5145 * supported 5146 */ 5147 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5148 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5149 NETIF_F_GSO_GRE | 5150 NETIF_F_GSO_GRE_CSUM | 5151 NETIF_F_GSO_IPXIP4 | 5152 NETIF_F_GSO_IPXIP6 | 5153 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5154 NETIF_F_GSO_PARTIAL | 5155 0; 5156 5157 if (!(vfres->vf_cap_flags & 5158 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5159 netdev->gso_partial_features |= 5160 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5161 5162 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5163 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5164 netdev->hw_enc_features |= hw_enc_features; 5165 } 5166 /* record features VLANs can make use of */ 5167 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5168 5169 /* Write features and hw_features separately to avoid polluting 5170 * with, or dropping, features that are set when we registered. 5171 */ 5172 hw_features = hw_enc_features; 5173 5174 /* get HW VLAN features that can be toggled */ 5175 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5176 5177 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5178 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5179 TC_U32_SUPPORT(adapter)) 5180 hw_features |= NETIF_F_HW_TC; 5181 5182 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5183 hw_features |= NETIF_F_GSO_UDP_L4; 5184 5185 netdev->hw_features |= hw_features | hw_vlan_features; 5186 vlan_features = iavf_get_netdev_vlan_features(adapter); 5187 5188 netdev->features |= hw_features | vlan_features; 5189 5190 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5191 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5192 5193 if (FDIR_FLTR_SUPPORT(adapter)) { 5194 netdev->hw_features |= NETIF_F_NTUPLE; 5195 netdev->features |= NETIF_F_NTUPLE; 5196 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5197 } 5198 5199 netdev->priv_flags |= IFF_UNICAST_FLT; 5200 5201 /* Do not turn on offloads when they are requested to be turned off. 5202 * TSO needs minimum 576 bytes to work correctly. 5203 */ 5204 if (netdev->wanted_features) { 5205 if (!(netdev->wanted_features & NETIF_F_TSO) || 5206 netdev->mtu < 576) 5207 netdev->features &= ~NETIF_F_TSO; 5208 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5209 netdev->mtu < 576) 5210 netdev->features &= ~NETIF_F_TSO6; 5211 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5212 netdev->features &= ~NETIF_F_TSO_ECN; 5213 if (!(netdev->wanted_features & NETIF_F_GRO)) 5214 netdev->features &= ~NETIF_F_GRO; 5215 if (!(netdev->wanted_features & NETIF_F_GSO)) 5216 netdev->features &= ~NETIF_F_GSO; 5217 } 5218 5219 return 0; 5220 } 5221 5222 /** 5223 * iavf_probe - Device Initialization Routine 5224 * @pdev: PCI device information struct 5225 * @ent: entry in iavf_pci_tbl 5226 * 5227 * Returns 0 on success, negative on failure 5228 * 5229 * iavf_probe initializes an adapter identified by a pci_dev structure. 5230 * The OS initialization, configuring of the adapter private structure, 5231 * and a hardware reset occur. 5232 **/ 5233 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5234 { 5235 struct net_device *netdev; 5236 struct iavf_adapter *adapter = NULL; 5237 struct iavf_hw *hw = NULL; 5238 int err, len; 5239 5240 err = pci_enable_device(pdev); 5241 if (err) 5242 return err; 5243 5244 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5245 if (err) { 5246 dev_err(&pdev->dev, 5247 "DMA configuration failed: 0x%x\n", err); 5248 goto err_dma; 5249 } 5250 5251 err = pci_request_regions(pdev, iavf_driver_name); 5252 if (err) { 5253 dev_err(&pdev->dev, 5254 "pci_request_regions failed 0x%x\n", err); 5255 goto err_pci_reg; 5256 } 5257 5258 pci_set_master(pdev); 5259 5260 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5261 IAVF_MAX_REQ_QUEUES); 5262 if (!netdev) { 5263 err = -ENOMEM; 5264 goto err_alloc_etherdev; 5265 } 5266 5267 SET_NETDEV_DEV(netdev, &pdev->dev); 5268 5269 pci_set_drvdata(pdev, netdev); 5270 adapter = netdev_priv(netdev); 5271 5272 adapter->netdev = netdev; 5273 adapter->pdev = pdev; 5274 5275 hw = &adapter->hw; 5276 hw->back = adapter; 5277 5278 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5279 iavf_driver_name); 5280 if (!adapter->wq) { 5281 err = -ENOMEM; 5282 goto err_alloc_wq; 5283 } 5284 5285 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5286 iavf_change_state(adapter, __IAVF_STARTUP); 5287 5288 /* Call save state here because it relies on the adapter struct. */ 5289 pci_save_state(pdev); 5290 5291 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5292 pci_resource_len(pdev, 0)); 5293 if (!hw->hw_addr) { 5294 err = -EIO; 5295 goto err_ioremap; 5296 } 5297 hw->vendor_id = pdev->vendor; 5298 hw->device_id = pdev->device; 5299 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5300 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5301 hw->subsystem_device_id = pdev->subsystem_device; 5302 hw->bus.device = PCI_SLOT(pdev->devfn); 5303 hw->bus.func = PCI_FUNC(pdev->devfn); 5304 hw->bus.bus_id = pdev->bus->number; 5305 5306 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5307 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5308 if (!adapter->qos_caps) { 5309 err = -ENOMEM; 5310 goto err_alloc_qos_cap; 5311 } 5312 5313 /* set up the locks for the AQ, do this only once in probe 5314 * and destroy them only once in remove 5315 */ 5316 mutex_init(&adapter->crit_lock); 5317 mutex_init(&hw->aq.asq_mutex); 5318 mutex_init(&hw->aq.arq_mutex); 5319 5320 spin_lock_init(&adapter->mac_vlan_list_lock); 5321 spin_lock_init(&adapter->cloud_filter_list_lock); 5322 spin_lock_init(&adapter->fdir_fltr_lock); 5323 spin_lock_init(&adapter->adv_rss_lock); 5324 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5325 5326 INIT_LIST_HEAD(&adapter->mac_filter_list); 5327 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5328 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5329 INIT_LIST_HEAD(&adapter->fdir_list_head); 5330 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5331 5332 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5333 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5334 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5335 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5336 5337 /* Setup the wait queue for indicating transition to down status */ 5338 init_waitqueue_head(&adapter->down_waitqueue); 5339 5340 /* Setup the wait queue for indicating transition to running state */ 5341 init_waitqueue_head(&adapter->reset_waitqueue); 5342 5343 /* Setup the wait queue for indicating virtchannel events */ 5344 init_waitqueue_head(&adapter->vc_waitqueue); 5345 5346 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5347 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5348 /* Initialization goes on in the work. Do not add more of it below. */ 5349 return 0; 5350 5351 err_alloc_qos_cap: 5352 iounmap(hw->hw_addr); 5353 err_ioremap: 5354 destroy_workqueue(adapter->wq); 5355 err_alloc_wq: 5356 free_netdev(netdev); 5357 err_alloc_etherdev: 5358 pci_release_regions(pdev); 5359 err_pci_reg: 5360 err_dma: 5361 pci_disable_device(pdev); 5362 return err; 5363 } 5364 5365 /** 5366 * iavf_suspend - Power management suspend routine 5367 * @dev_d: device info pointer 5368 * 5369 * Called when the system (VM) is entering sleep/suspend. 5370 **/ 5371 static int iavf_suspend(struct device *dev_d) 5372 { 5373 struct net_device *netdev = dev_get_drvdata(dev_d); 5374 struct iavf_adapter *adapter = netdev_priv(netdev); 5375 5376 netif_device_detach(netdev); 5377 5378 netdev_lock(netdev); 5379 mutex_lock(&adapter->crit_lock); 5380 5381 if (netif_running(netdev)) { 5382 rtnl_lock(); 5383 iavf_down(adapter); 5384 rtnl_unlock(); 5385 } 5386 iavf_free_misc_irq(adapter); 5387 iavf_reset_interrupt_capability(adapter); 5388 5389 mutex_unlock(&adapter->crit_lock); 5390 netdev_unlock(netdev); 5391 5392 return 0; 5393 } 5394 5395 /** 5396 * iavf_resume - Power management resume routine 5397 * @dev_d: device info pointer 5398 * 5399 * Called when the system (VM) is resumed from sleep/suspend. 5400 **/ 5401 static int iavf_resume(struct device *dev_d) 5402 { 5403 struct pci_dev *pdev = to_pci_dev(dev_d); 5404 struct iavf_adapter *adapter; 5405 u32 err; 5406 5407 adapter = iavf_pdev_to_adapter(pdev); 5408 5409 pci_set_master(pdev); 5410 5411 rtnl_lock(); 5412 err = iavf_set_interrupt_capability(adapter); 5413 if (err) { 5414 rtnl_unlock(); 5415 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5416 return err; 5417 } 5418 err = iavf_request_misc_irq(adapter); 5419 rtnl_unlock(); 5420 if (err) { 5421 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5422 return err; 5423 } 5424 5425 queue_work(adapter->wq, &adapter->reset_task); 5426 5427 netif_device_attach(adapter->netdev); 5428 5429 return err; 5430 } 5431 5432 /** 5433 * iavf_remove - Device Removal Routine 5434 * @pdev: PCI device information struct 5435 * 5436 * iavf_remove is called by the PCI subsystem to alert the driver 5437 * that it should release a PCI device. The could be caused by a 5438 * Hot-Plug event, or because the driver is going to be removed from 5439 * memory. 5440 **/ 5441 static void iavf_remove(struct pci_dev *pdev) 5442 { 5443 struct iavf_fdir_fltr *fdir, *fdirtmp; 5444 struct iavf_vlan_filter *vlf, *vlftmp; 5445 struct iavf_cloud_filter *cf, *cftmp; 5446 struct iavf_adv_rss *rss, *rsstmp; 5447 struct iavf_mac_filter *f, *ftmp; 5448 struct iavf_adapter *adapter; 5449 struct net_device *netdev; 5450 struct iavf_hw *hw; 5451 5452 /* Don't proceed with remove if netdev is already freed */ 5453 netdev = pci_get_drvdata(pdev); 5454 if (!netdev) 5455 return; 5456 5457 adapter = iavf_pdev_to_adapter(pdev); 5458 hw = &adapter->hw; 5459 5460 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5461 return; 5462 5463 /* Wait until port initialization is complete. 5464 * There are flows where register/unregister netdev may race. 5465 */ 5466 while (1) { 5467 mutex_lock(&adapter->crit_lock); 5468 if (adapter->state == __IAVF_RUNNING || 5469 adapter->state == __IAVF_DOWN || 5470 adapter->state == __IAVF_INIT_FAILED) { 5471 mutex_unlock(&adapter->crit_lock); 5472 break; 5473 } 5474 /* Simply return if we already went through iavf_shutdown */ 5475 if (adapter->state == __IAVF_REMOVE) { 5476 mutex_unlock(&adapter->crit_lock); 5477 return; 5478 } 5479 5480 mutex_unlock(&adapter->crit_lock); 5481 usleep_range(500, 1000); 5482 } 5483 cancel_delayed_work_sync(&adapter->watchdog_task); 5484 cancel_work_sync(&adapter->finish_config); 5485 5486 if (netdev->reg_state == NETREG_REGISTERED) 5487 unregister_netdev(netdev); 5488 5489 netdev_lock(netdev); 5490 mutex_lock(&adapter->crit_lock); 5491 dev_info(&adapter->pdev->dev, "Removing device\n"); 5492 iavf_change_state(adapter, __IAVF_REMOVE); 5493 5494 iavf_request_reset(adapter); 5495 msleep(50); 5496 /* If the FW isn't responding, kick it once, but only once. */ 5497 if (!iavf_asq_done(hw)) { 5498 iavf_request_reset(adapter); 5499 msleep(50); 5500 } 5501 5502 iavf_misc_irq_disable(adapter); 5503 /* Shut down all the garbage mashers on the detention level */ 5504 cancel_work_sync(&adapter->reset_task); 5505 cancel_delayed_work_sync(&adapter->watchdog_task); 5506 cancel_work_sync(&adapter->adminq_task); 5507 5508 adapter->aq_required = 0; 5509 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5510 5511 iavf_free_all_tx_resources(adapter); 5512 iavf_free_all_rx_resources(adapter); 5513 iavf_free_misc_irq(adapter); 5514 iavf_free_interrupt_scheme(adapter); 5515 5516 iavf_free_rss(adapter); 5517 5518 if (hw->aq.asq.count) 5519 iavf_shutdown_adminq(hw); 5520 5521 /* destroy the locks only once, here */ 5522 mutex_destroy(&hw->aq.arq_mutex); 5523 mutex_destroy(&hw->aq.asq_mutex); 5524 mutex_unlock(&adapter->crit_lock); 5525 mutex_destroy(&adapter->crit_lock); 5526 netdev_unlock(netdev); 5527 5528 iounmap(hw->hw_addr); 5529 pci_release_regions(pdev); 5530 kfree(adapter->vf_res); 5531 spin_lock_bh(&adapter->mac_vlan_list_lock); 5532 /* If we got removed before an up/down sequence, we've got a filter 5533 * hanging out there that we need to get rid of. 5534 */ 5535 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5536 list_del(&f->list); 5537 kfree(f); 5538 } 5539 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5540 list) { 5541 list_del(&vlf->list); 5542 kfree(vlf); 5543 } 5544 5545 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5546 5547 spin_lock_bh(&adapter->cloud_filter_list_lock); 5548 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5549 list_del(&cf->list); 5550 kfree(cf); 5551 } 5552 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5553 5554 spin_lock_bh(&adapter->fdir_fltr_lock); 5555 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5556 list_del(&fdir->list); 5557 kfree(fdir); 5558 } 5559 spin_unlock_bh(&adapter->fdir_fltr_lock); 5560 5561 spin_lock_bh(&adapter->adv_rss_lock); 5562 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5563 list) { 5564 list_del(&rss->list); 5565 kfree(rss); 5566 } 5567 spin_unlock_bh(&adapter->adv_rss_lock); 5568 5569 destroy_workqueue(adapter->wq); 5570 5571 pci_set_drvdata(pdev, NULL); 5572 5573 free_netdev(netdev); 5574 5575 pci_disable_device(pdev); 5576 } 5577 5578 /** 5579 * iavf_shutdown - Shutdown the device in preparation for a reboot 5580 * @pdev: pci device structure 5581 **/ 5582 static void iavf_shutdown(struct pci_dev *pdev) 5583 { 5584 iavf_remove(pdev); 5585 5586 if (system_state == SYSTEM_POWER_OFF) 5587 pci_set_power_state(pdev, PCI_D3hot); 5588 } 5589 5590 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5591 5592 static struct pci_driver iavf_driver = { 5593 .name = iavf_driver_name, 5594 .id_table = iavf_pci_tbl, 5595 .probe = iavf_probe, 5596 .remove = iavf_remove, 5597 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5598 .shutdown = iavf_shutdown, 5599 }; 5600 5601 /** 5602 * iavf_init_module - Driver Registration Routine 5603 * 5604 * iavf_init_module is the first routine called when the driver is 5605 * loaded. All it does is register with the PCI subsystem. 5606 **/ 5607 static int __init iavf_init_module(void) 5608 { 5609 pr_info("iavf: %s\n", iavf_driver_string); 5610 5611 pr_info("%s\n", iavf_copyright); 5612 5613 return pci_register_driver(&iavf_driver); 5614 } 5615 5616 module_init(iavf_init_module); 5617 5618 /** 5619 * iavf_exit_module - Driver Exit Cleanup Routine 5620 * 5621 * iavf_exit_module is called just before the driver is removed 5622 * from memory. 5623 **/ 5624 static void __exit iavf_exit_module(void) 5625 { 5626 pci_unregister_driver(&iavf_driver); 5627 } 5628 5629 module_exit(iavf_exit_module); 5630 5631 /* iavf_main.c */ 5632