1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 #include "iavf_client.h" 7 /* All iavf tracepoints are defined by the include below, which must 8 * be included exactly once across the whole kernel with 9 * CREATE_TRACE_POINTS defined 10 */ 11 #define CREATE_TRACE_POINTS 12 #include "iavf_trace.h" 13 14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 16 static int iavf_close(struct net_device *netdev); 17 static void iavf_init_get_resources(struct iavf_adapter *adapter); 18 static int iavf_check_reset_complete(struct iavf_hw *hw); 19 20 char iavf_driver_name[] = "iavf"; 21 static const char iavf_driver_string[] = 22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 23 24 static const char iavf_copyright[] = 25 "Copyright (c) 2013 - 2018 Intel Corporation."; 26 27 /* iavf_pci_tbl - PCI Device ID Table 28 * 29 * Wildcard entries (PCI_ANY_ID) should come last 30 * Last entry must be all 0s 31 * 32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 33 * Class, Class Mask, private data (not used) } 34 */ 35 static const struct pci_device_id iavf_pci_tbl[] = { 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 40 /* required last entry */ 41 {0, } 42 }; 43 44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 45 46 MODULE_ALIAS("i40evf"); 47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 49 MODULE_LICENSE("GPL v2"); 50 51 static const struct net_device_ops iavf_netdev_ops; 52 struct workqueue_struct *iavf_wq; 53 54 int iavf_status_to_errno(enum iavf_status status) 55 { 56 switch (status) { 57 case IAVF_SUCCESS: 58 return 0; 59 case IAVF_ERR_PARAM: 60 case IAVF_ERR_MAC_TYPE: 61 case IAVF_ERR_INVALID_MAC_ADDR: 62 case IAVF_ERR_INVALID_LINK_SETTINGS: 63 case IAVF_ERR_INVALID_PD_ID: 64 case IAVF_ERR_INVALID_QP_ID: 65 case IAVF_ERR_INVALID_CQ_ID: 66 case IAVF_ERR_INVALID_CEQ_ID: 67 case IAVF_ERR_INVALID_AEQ_ID: 68 case IAVF_ERR_INVALID_SIZE: 69 case IAVF_ERR_INVALID_ARP_INDEX: 70 case IAVF_ERR_INVALID_FPM_FUNC_ID: 71 case IAVF_ERR_QP_INVALID_MSG_SIZE: 72 case IAVF_ERR_INVALID_FRAG_COUNT: 73 case IAVF_ERR_INVALID_ALIGNMENT: 74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 75 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 76 case IAVF_ERR_INVALID_VF_ID: 77 case IAVF_ERR_INVALID_HMCFN_ID: 78 case IAVF_ERR_INVALID_PBLE_INDEX: 79 case IAVF_ERR_INVALID_SD_INDEX: 80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 81 case IAVF_ERR_INVALID_SD_TYPE: 82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 85 return -EINVAL; 86 case IAVF_ERR_NVM: 87 case IAVF_ERR_NVM_CHECKSUM: 88 case IAVF_ERR_PHY: 89 case IAVF_ERR_CONFIG: 90 case IAVF_ERR_UNKNOWN_PHY: 91 case IAVF_ERR_LINK_SETUP: 92 case IAVF_ERR_ADAPTER_STOPPED: 93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 94 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 95 case IAVF_ERR_RESET_FAILED: 96 case IAVF_ERR_BAD_PTR: 97 case IAVF_ERR_SWFW_SYNC: 98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 99 case IAVF_ERR_QUEUE_EMPTY: 100 case IAVF_ERR_FLUSHED_QUEUE: 101 case IAVF_ERR_OPCODE_MISMATCH: 102 case IAVF_ERR_CQP_COMPL_ERROR: 103 case IAVF_ERR_BACKING_PAGE_ERROR: 104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 105 case IAVF_ERR_MEMCPY_FAILED: 106 case IAVF_ERR_SRQ_ENABLED: 107 case IAVF_ERR_ADMIN_QUEUE_ERROR: 108 case IAVF_ERR_ADMIN_QUEUE_FULL: 109 case IAVF_ERR_BAD_IWARP_CQE: 110 case IAVF_ERR_NVM_BLANK_MODE: 111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 112 case IAVF_ERR_DIAG_TEST_FAILED: 113 case IAVF_ERR_FIRMWARE_API_VERSION: 114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 115 return -EIO; 116 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 117 return -ENODEV; 118 case IAVF_ERR_NO_AVAILABLE_VSI: 119 case IAVF_ERR_RING_FULL: 120 return -ENOSPC; 121 case IAVF_ERR_NO_MEMORY: 122 return -ENOMEM; 123 case IAVF_ERR_TIMEOUT: 124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 125 return -ETIMEDOUT; 126 case IAVF_ERR_NOT_IMPLEMENTED: 127 case IAVF_NOT_SUPPORTED: 128 return -EOPNOTSUPP; 129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 130 return -EALREADY; 131 case IAVF_ERR_NOT_READY: 132 return -EBUSY; 133 case IAVF_ERR_BUF_TOO_SHORT: 134 return -EMSGSIZE; 135 } 136 137 return -EIO; 138 } 139 140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 141 { 142 switch (v_status) { 143 case VIRTCHNL_STATUS_SUCCESS: 144 return 0; 145 case VIRTCHNL_STATUS_ERR_PARAM: 146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 147 return -EINVAL; 148 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 149 return -ENOMEM; 150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 153 return -EIO; 154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 155 return -EOPNOTSUPP; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * iavf_pdev_to_adapter - go from pci_dev to adapter 163 * @pdev: pci_dev pointer 164 */ 165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 166 { 167 return netdev_priv(pci_get_drvdata(pdev)); 168 } 169 170 /** 171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 172 * @hw: pointer to the HW structure 173 * @mem: ptr to mem struct to fill out 174 * @size: size of memory requested 175 * @alignment: what to align the allocation to 176 **/ 177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 178 struct iavf_dma_mem *mem, 179 u64 size, u32 alignment) 180 { 181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 182 183 if (!mem) 184 return IAVF_ERR_PARAM; 185 186 mem->size = ALIGN(size, alignment); 187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 188 (dma_addr_t *)&mem->pa, GFP_KERNEL); 189 if (mem->va) 190 return 0; 191 else 192 return IAVF_ERR_NO_MEMORY; 193 } 194 195 /** 196 * iavf_free_dma_mem_d - OS specific memory free for shared code 197 * @hw: pointer to the HW structure 198 * @mem: ptr to mem struct to free 199 **/ 200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, 201 struct iavf_dma_mem *mem) 202 { 203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 204 205 if (!mem || !mem->va) 206 return IAVF_ERR_PARAM; 207 dma_free_coherent(&adapter->pdev->dev, mem->size, 208 mem->va, (dma_addr_t)mem->pa); 209 return 0; 210 } 211 212 /** 213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 **/ 218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, 219 struct iavf_virt_mem *mem, u32 size) 220 { 221 if (!mem) 222 return IAVF_ERR_PARAM; 223 224 mem->size = size; 225 mem->va = kzalloc(size, GFP_KERNEL); 226 227 if (mem->va) 228 return 0; 229 else 230 return IAVF_ERR_NO_MEMORY; 231 } 232 233 /** 234 * iavf_free_virt_mem_d - OS specific memory free for shared code 235 * @hw: pointer to the HW structure 236 * @mem: ptr to mem struct to free 237 **/ 238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, 239 struct iavf_virt_mem *mem) 240 { 241 if (!mem) 242 return IAVF_ERR_PARAM; 243 244 /* it's ok to kfree a NULL pointer */ 245 kfree(mem->va); 246 247 return 0; 248 } 249 250 /** 251 * iavf_lock_timeout - try to lock mutex but give up after timeout 252 * @lock: mutex that should be locked 253 * @msecs: timeout in msecs 254 * 255 * Returns 0 on success, negative on failure 256 **/ 257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 258 { 259 unsigned int wait, delay = 10; 260 261 for (wait = 0; wait < msecs; wait += delay) { 262 if (mutex_trylock(lock)) 263 return 0; 264 265 msleep(delay); 266 } 267 268 return -1; 269 } 270 271 /** 272 * iavf_schedule_reset - Set the flags and schedule a reset event 273 * @adapter: board private structure 274 **/ 275 void iavf_schedule_reset(struct iavf_adapter *adapter) 276 { 277 if (!(adapter->flags & 278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 279 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 280 queue_work(iavf_wq, &adapter->reset_task); 281 } 282 } 283 284 /** 285 * iavf_schedule_request_stats - Set the flags and schedule statistics request 286 * @adapter: board private structure 287 * 288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly 289 * request and refresh ethtool stats 290 **/ 291 void iavf_schedule_request_stats(struct iavf_adapter *adapter) 292 { 293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; 294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 295 } 296 297 /** 298 * iavf_tx_timeout - Respond to a Tx Hang 299 * @netdev: network interface device structure 300 * @txqueue: queue number that is timing out 301 **/ 302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 303 { 304 struct iavf_adapter *adapter = netdev_priv(netdev); 305 306 adapter->tx_timeout_count++; 307 iavf_schedule_reset(adapter); 308 } 309 310 /** 311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 312 * @adapter: board private structure 313 **/ 314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 315 { 316 struct iavf_hw *hw = &adapter->hw; 317 318 if (!adapter->msix_entries) 319 return; 320 321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 322 323 iavf_flush(hw); 324 325 synchronize_irq(adapter->msix_entries[0].vector); 326 } 327 328 /** 329 * iavf_misc_irq_enable - Enable default interrupt generation settings 330 * @adapter: board private structure 331 **/ 332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 333 { 334 struct iavf_hw *hw = &adapter->hw; 335 336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 339 340 iavf_flush(hw); 341 } 342 343 /** 344 * iavf_irq_disable - Mask off interrupt generation on the NIC 345 * @adapter: board private structure 346 **/ 347 static void iavf_irq_disable(struct iavf_adapter *adapter) 348 { 349 int i; 350 struct iavf_hw *hw = &adapter->hw; 351 352 if (!adapter->msix_entries) 353 return; 354 355 for (i = 1; i < adapter->num_msix_vectors; i++) { 356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 357 synchronize_irq(adapter->msix_entries[i].vector); 358 } 359 iavf_flush(hw); 360 } 361 362 /** 363 * iavf_irq_enable_queues - Enable interrupt for specified queues 364 * @adapter: board private structure 365 * @mask: bitmap of queues to enable 366 **/ 367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) 368 { 369 struct iavf_hw *hw = &adapter->hw; 370 int i; 371 372 for (i = 1; i < adapter->num_msix_vectors; i++) { 373 if (mask & BIT(i - 1)) { 374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 377 } 378 } 379 } 380 381 /** 382 * iavf_irq_enable - Enable default interrupt generation settings 383 * @adapter: board private structure 384 * @flush: boolean value whether to run rd32() 385 **/ 386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 387 { 388 struct iavf_hw *hw = &adapter->hw; 389 390 iavf_misc_irq_enable(adapter); 391 iavf_irq_enable_queues(adapter, ~0); 392 393 if (flush) 394 iavf_flush(hw); 395 } 396 397 /** 398 * iavf_msix_aq - Interrupt handler for vector 0 399 * @irq: interrupt number 400 * @data: pointer to netdev 401 **/ 402 static irqreturn_t iavf_msix_aq(int irq, void *data) 403 { 404 struct net_device *netdev = data; 405 struct iavf_adapter *adapter = netdev_priv(netdev); 406 struct iavf_hw *hw = &adapter->hw; 407 408 /* handle non-queue interrupts, these reads clear the registers */ 409 rd32(hw, IAVF_VFINT_ICR01); 410 rd32(hw, IAVF_VFINT_ICR0_ENA1); 411 412 if (adapter->state != __IAVF_REMOVE) 413 /* schedule work on the private workqueue */ 414 queue_work(iavf_wq, &adapter->adminq_task); 415 416 return IRQ_HANDLED; 417 } 418 419 /** 420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 421 * @irq: interrupt number 422 * @data: pointer to a q_vector 423 **/ 424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 425 { 426 struct iavf_q_vector *q_vector = data; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 napi_schedule_irqoff(&q_vector->napi); 432 433 return IRQ_HANDLED; 434 } 435 436 /** 437 * iavf_map_vector_to_rxq - associate irqs with rx queues 438 * @adapter: board private structure 439 * @v_idx: interrupt number 440 * @r_idx: queue number 441 **/ 442 static void 443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 444 { 445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 447 struct iavf_hw *hw = &adapter->hw; 448 449 rx_ring->q_vector = q_vector; 450 rx_ring->next = q_vector->rx.ring; 451 rx_ring->vsi = &adapter->vsi; 452 q_vector->rx.ring = rx_ring; 453 q_vector->rx.count++; 454 q_vector->rx.next_update = jiffies + 1; 455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 456 q_vector->ring_mask |= BIT(r_idx); 457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 458 q_vector->rx.current_itr >> 1); 459 q_vector->rx.current_itr = q_vector->rx.target_itr; 460 } 461 462 /** 463 * iavf_map_vector_to_txq - associate irqs with tx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @t_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 tx_ring->q_vector = q_vector; 476 tx_ring->next = q_vector->tx.ring; 477 tx_ring->vsi = &adapter->vsi; 478 q_vector->tx.ring = tx_ring; 479 q_vector->tx.count++; 480 q_vector->tx.next_update = jiffies + 1; 481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 482 q_vector->num_ringpairs++; 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 484 q_vector->tx.target_itr >> 1); 485 q_vector->tx.current_itr = q_vector->tx.target_itr; 486 } 487 488 /** 489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 490 * @adapter: board private structure to initialize 491 * 492 * This function maps descriptor rings to the queue-specific vectors 493 * we were allotted through the MSI-X enabling code. Ideally, we'd have 494 * one vector per ring/queue, but on a constrained vector budget, we 495 * group the rings as "efficiently" as possible. You would add new 496 * mapping configurations in here. 497 **/ 498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 499 { 500 int rings_remaining = adapter->num_active_queues; 501 int ridx = 0, vidx = 0; 502 int q_vectors; 503 504 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 505 506 for (; ridx < rings_remaining; ridx++) { 507 iavf_map_vector_to_rxq(adapter, vidx, ridx); 508 iavf_map_vector_to_txq(adapter, vidx, ridx); 509 510 /* In the case where we have more queues than vectors, continue 511 * round-robin on vectors until all queues are mapped. 512 */ 513 if (++vidx >= q_vectors) 514 vidx = 0; 515 } 516 517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 518 } 519 520 /** 521 * iavf_irq_affinity_notify - Callback for affinity changes 522 * @notify: context as to what irq was changed 523 * @mask: the new affinity mask 524 * 525 * This is a callback function used by the irq_set_affinity_notifier function 526 * so that we may register to receive changes to the irq affinity masks. 527 **/ 528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 529 const cpumask_t *mask) 530 { 531 struct iavf_q_vector *q_vector = 532 container_of(notify, struct iavf_q_vector, affinity_notify); 533 534 cpumask_copy(&q_vector->affinity_mask, mask); 535 } 536 537 /** 538 * iavf_irq_affinity_release - Callback for affinity notifier release 539 * @ref: internal core kernel usage 540 * 541 * This is a callback function used by the irq_set_affinity_notifier function 542 * to inform the current notification subscriber that they will no longer 543 * receive notifications. 544 **/ 545 static void iavf_irq_affinity_release(struct kref *ref) {} 546 547 /** 548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 549 * @adapter: board private structure 550 * @basename: device basename 551 * 552 * Allocates MSI-X vectors for tx and rx handling, and requests 553 * interrupts from the kernel. 554 **/ 555 static int 556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 557 { 558 unsigned int vector, q_vectors; 559 unsigned int rx_int_idx = 0, tx_int_idx = 0; 560 int irq_num, err; 561 int cpu; 562 563 iavf_irq_disable(adapter); 564 /* Decrement for Other and TCP Timer vectors */ 565 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 566 567 for (vector = 0; vector < q_vectors; vector++) { 568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 569 570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 571 572 if (q_vector->tx.ring && q_vector->rx.ring) { 573 snprintf(q_vector->name, sizeof(q_vector->name), 574 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 575 tx_int_idx++; 576 } else if (q_vector->rx.ring) { 577 snprintf(q_vector->name, sizeof(q_vector->name), 578 "iavf-%s-rx-%u", basename, rx_int_idx++); 579 } else if (q_vector->tx.ring) { 580 snprintf(q_vector->name, sizeof(q_vector->name), 581 "iavf-%s-tx-%u", basename, tx_int_idx++); 582 } else { 583 /* skip this unused q_vector */ 584 continue; 585 } 586 err = request_irq(irq_num, 587 iavf_msix_clean_rings, 588 0, 589 q_vector->name, 590 q_vector); 591 if (err) { 592 dev_info(&adapter->pdev->dev, 593 "Request_irq failed, error: %d\n", err); 594 goto free_queue_irqs; 595 } 596 /* register for affinity change notifications */ 597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 598 q_vector->affinity_notify.release = 599 iavf_irq_affinity_release; 600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 601 /* Spread the IRQ affinity hints across online CPUs. Note that 602 * get_cpu_mask returns a mask with a permanent lifetime so 603 * it's safe to use as a hint for irq_update_affinity_hint. 604 */ 605 cpu = cpumask_local_spread(q_vector->v_idx, -1); 606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 607 } 608 609 return 0; 610 611 free_queue_irqs: 612 while (vector) { 613 vector--; 614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 615 irq_set_affinity_notifier(irq_num, NULL); 616 irq_update_affinity_hint(irq_num, NULL); 617 free_irq(irq_num, &adapter->q_vectors[vector]); 618 } 619 return err; 620 } 621 622 /** 623 * iavf_request_misc_irq - Initialize MSI-X interrupts 624 * @adapter: board private structure 625 * 626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 627 * vector is only for the admin queue, and stays active even when the netdev 628 * is closed. 629 **/ 630 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 631 { 632 struct net_device *netdev = adapter->netdev; 633 int err; 634 635 snprintf(adapter->misc_vector_name, 636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 637 dev_name(&adapter->pdev->dev)); 638 err = request_irq(adapter->msix_entries[0].vector, 639 &iavf_msix_aq, 0, 640 adapter->misc_vector_name, netdev); 641 if (err) { 642 dev_err(&adapter->pdev->dev, 643 "request_irq for %s failed: %d\n", 644 adapter->misc_vector_name, err); 645 free_irq(adapter->msix_entries[0].vector, netdev); 646 } 647 return err; 648 } 649 650 /** 651 * iavf_free_traffic_irqs - Free MSI-X interrupts 652 * @adapter: board private structure 653 * 654 * Frees all MSI-X vectors other than 0. 655 **/ 656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 657 { 658 int vector, irq_num, q_vectors; 659 660 if (!adapter->msix_entries) 661 return; 662 663 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 664 665 for (vector = 0; vector < q_vectors; vector++) { 666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 667 irq_set_affinity_notifier(irq_num, NULL); 668 irq_update_affinity_hint(irq_num, NULL); 669 free_irq(irq_num, &adapter->q_vectors[vector]); 670 } 671 } 672 673 /** 674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 675 * @adapter: board private structure 676 * 677 * Frees MSI-X vector 0. 678 **/ 679 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 680 { 681 struct net_device *netdev = adapter->netdev; 682 683 if (!adapter->msix_entries) 684 return; 685 686 free_irq(adapter->msix_entries[0].vector, netdev); 687 } 688 689 /** 690 * iavf_configure_tx - Configure Transmit Unit after Reset 691 * @adapter: board private structure 692 * 693 * Configure the Tx unit of the MAC after a reset. 694 **/ 695 static void iavf_configure_tx(struct iavf_adapter *adapter) 696 { 697 struct iavf_hw *hw = &adapter->hw; 698 int i; 699 700 for (i = 0; i < adapter->num_active_queues; i++) 701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 702 } 703 704 /** 705 * iavf_configure_rx - Configure Receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 **/ 710 static void iavf_configure_rx(struct iavf_adapter *adapter) 711 { 712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 713 struct iavf_hw *hw = &adapter->hw; 714 int i; 715 716 /* Legacy Rx will always default to a 2048 buffer size. */ 717 #if (PAGE_SIZE < 8192) 718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 719 struct net_device *netdev = adapter->netdev; 720 721 /* For jumbo frames on systems with 4K pages we have to use 722 * an order 1 page, so we might as well increase the size 723 * of our Rx buffer to make better use of the available space 724 */ 725 rx_buf_len = IAVF_RXBUFFER_3072; 726 727 /* We use a 1536 buffer size for configurations with 728 * standard Ethernet mtu. On x86 this gives us enough room 729 * for shared info and 192 bytes of padding. 730 */ 731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 732 (netdev->mtu <= ETH_DATA_LEN)) 733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 734 } 735 #endif 736 737 for (i = 0; i < adapter->num_active_queues; i++) { 738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 739 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 740 741 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 743 else 744 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 745 } 746 } 747 748 /** 749 * iavf_find_vlan - Search filter list for specific vlan filter 750 * @adapter: board private structure 751 * @vlan: vlan tag 752 * 753 * Returns ptr to the filter object or NULL. Must be called while holding the 754 * mac_vlan_list_lock. 755 **/ 756 static struct 757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 758 struct iavf_vlan vlan) 759 { 760 struct iavf_vlan_filter *f; 761 762 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 763 if (f->vlan.vid == vlan.vid && 764 f->vlan.tpid == vlan.tpid) 765 return f; 766 } 767 768 return NULL; 769 } 770 771 /** 772 * iavf_add_vlan - Add a vlan filter to the list 773 * @adapter: board private structure 774 * @vlan: VLAN tag 775 * 776 * Returns ptr to the filter object or NULL when no memory available. 777 **/ 778 static struct 779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 780 struct iavf_vlan vlan) 781 { 782 struct iavf_vlan_filter *f = NULL; 783 784 spin_lock_bh(&adapter->mac_vlan_list_lock); 785 786 f = iavf_find_vlan(adapter, vlan); 787 if (!f) { 788 f = kzalloc(sizeof(*f), GFP_ATOMIC); 789 if (!f) 790 goto clearout; 791 792 f->vlan = vlan; 793 794 list_add_tail(&f->list, &adapter->vlan_filter_list); 795 f->add = true; 796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 797 } 798 799 clearout: 800 spin_unlock_bh(&adapter->mac_vlan_list_lock); 801 return f; 802 } 803 804 /** 805 * iavf_del_vlan - Remove a vlan filter from the list 806 * @adapter: board private structure 807 * @vlan: VLAN tag 808 **/ 809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 810 { 811 struct iavf_vlan_filter *f; 812 813 spin_lock_bh(&adapter->mac_vlan_list_lock); 814 815 f = iavf_find_vlan(adapter, vlan); 816 if (f) { 817 f->remove = true; 818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 819 } 820 821 spin_unlock_bh(&adapter->mac_vlan_list_lock); 822 } 823 824 /** 825 * iavf_restore_filters 826 * @adapter: board private structure 827 * 828 * Restore existing non MAC filters when VF netdev comes back up 829 **/ 830 static void iavf_restore_filters(struct iavf_adapter *adapter) 831 { 832 u16 vid; 833 834 /* re-add all VLAN filters */ 835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID) 836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q)); 837 838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID) 839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD)); 840 } 841 842 /** 843 * iavf_get_num_vlans_added - get number of VLANs added 844 * @adapter: board private structure 845 */ 846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 847 { 848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) + 849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID); 850 } 851 852 /** 853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 854 * @adapter: board private structure 855 * 856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 857 * do not impose a limit as that maintains current behavior and for 858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 859 **/ 860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 861 { 862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 863 * never been a limit on the VF driver side 864 */ 865 if (VLAN_ALLOWED(adapter)) 866 return VLAN_N_VID; 867 else if (VLAN_V2_ALLOWED(adapter)) 868 return adapter->vlan_v2_caps.filtering.max_filters; 869 870 return 0; 871 } 872 873 /** 874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 875 * @adapter: board private structure 876 **/ 877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 878 { 879 if (iavf_get_num_vlans_added(adapter) < 880 iavf_get_max_vlans_allowed(adapter)) 881 return false; 882 883 return true; 884 } 885 886 /** 887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 888 * @netdev: network device struct 889 * @proto: unused protocol data 890 * @vid: VLAN tag 891 **/ 892 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 893 __always_unused __be16 proto, u16 vid) 894 { 895 struct iavf_adapter *adapter = netdev_priv(netdev); 896 897 if (!VLAN_FILTERING_ALLOWED(adapter)) 898 return -EIO; 899 900 if (iavf_max_vlans_added(adapter)) { 901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 902 iavf_get_max_vlans_allowed(adapter)); 903 return -EIO; 904 } 905 906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 /** 913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 914 * @netdev: network device struct 915 * @proto: unused protocol data 916 * @vid: VLAN tag 917 **/ 918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 919 __always_unused __be16 proto, u16 vid) 920 { 921 struct iavf_adapter *adapter = netdev_priv(netdev); 922 923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 924 if (proto == cpu_to_be16(ETH_P_8021Q)) 925 clear_bit(vid, adapter->vsi.active_cvlans); 926 else 927 clear_bit(vid, adapter->vsi.active_svlans); 928 929 return 0; 930 } 931 932 /** 933 * iavf_find_filter - Search filter list for specific mac filter 934 * @adapter: board private structure 935 * @macaddr: the MAC address 936 * 937 * Returns ptr to the filter object or NULL. Must be called while holding the 938 * mac_vlan_list_lock. 939 **/ 940 static struct 941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 942 const u8 *macaddr) 943 { 944 struct iavf_mac_filter *f; 945 946 if (!macaddr) 947 return NULL; 948 949 list_for_each_entry(f, &adapter->mac_filter_list, list) { 950 if (ether_addr_equal(macaddr, f->macaddr)) 951 return f; 952 } 953 return NULL; 954 } 955 956 /** 957 * iavf_add_filter - Add a mac filter to the filter list 958 * @adapter: board private structure 959 * @macaddr: the MAC address 960 * 961 * Returns ptr to the filter object or NULL when no memory available. 962 **/ 963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 964 const u8 *macaddr) 965 { 966 struct iavf_mac_filter *f; 967 968 if (!macaddr) 969 return NULL; 970 971 f = iavf_find_filter(adapter, macaddr); 972 if (!f) { 973 f = kzalloc(sizeof(*f), GFP_ATOMIC); 974 if (!f) 975 return f; 976 977 ether_addr_copy(f->macaddr, macaddr); 978 979 list_add_tail(&f->list, &adapter->mac_filter_list); 980 f->add = true; 981 f->add_handled = false; 982 f->is_new_mac = true; 983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 985 } else { 986 f->remove = false; 987 } 988 989 return f; 990 } 991 992 /** 993 * iavf_replace_primary_mac - Replace current primary address 994 * @adapter: board private structure 995 * @new_mac: new MAC address to be applied 996 * 997 * Replace current dev_addr and send request to PF for removal of previous 998 * primary MAC address filter and addition of new primary MAC filter. 999 * Return 0 for success, -ENOMEM for failure. 1000 * 1001 * Do not call this with mac_vlan_list_lock! 1002 **/ 1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1004 const u8 *new_mac) 1005 { 1006 struct iavf_hw *hw = &adapter->hw; 1007 struct iavf_mac_filter *f; 1008 1009 spin_lock_bh(&adapter->mac_vlan_list_lock); 1010 1011 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1012 f->is_primary = false; 1013 } 1014 1015 f = iavf_find_filter(adapter, hw->mac.addr); 1016 if (f) { 1017 f->remove = true; 1018 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1019 } 1020 1021 f = iavf_add_filter(adapter, new_mac); 1022 1023 if (f) { 1024 /* Always send the request to add if changing primary MAC 1025 * even if filter is already present on the list 1026 */ 1027 f->is_primary = true; 1028 f->add = true; 1029 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1030 ether_addr_copy(hw->mac.addr, new_mac); 1031 } 1032 1033 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1034 1035 /* schedule the watchdog task to immediately process the request */ 1036 if (f) { 1037 queue_work(iavf_wq, &adapter->watchdog_task.work); 1038 return 0; 1039 } 1040 return -ENOMEM; 1041 } 1042 1043 /** 1044 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1045 * @netdev: network interface device structure 1046 * @macaddr: MAC address to set 1047 * 1048 * Returns true on success, false on failure 1049 */ 1050 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1051 const u8 *macaddr) 1052 { 1053 struct iavf_adapter *adapter = netdev_priv(netdev); 1054 struct iavf_mac_filter *f; 1055 bool ret = false; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 f = iavf_find_filter(adapter, macaddr); 1060 1061 if (!f || (!f->add && f->add_handled)) 1062 ret = true; 1063 1064 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1065 1066 return ret; 1067 } 1068 1069 /** 1070 * iavf_set_mac - NDO callback to set port MAC address 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 */ 1076 static int iavf_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct iavf_adapter *adapter = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 int ret; 1081 1082 if (!is_valid_ether_addr(addr->sa_data)) 1083 return -EADDRNOTAVAIL; 1084 1085 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1086 1087 if (ret) 1088 return ret; 1089 1090 /* If this is an initial set MAC during VF spawn do not wait */ 1091 if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) { 1092 adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET; 1093 return 0; 1094 } 1095 1096 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1097 iavf_is_mac_set_handled(netdev, addr->sa_data), 1098 msecs_to_jiffies(2500)); 1099 1100 /* If ret < 0 then it means wait was interrupted. 1101 * If ret == 0 then it means we got a timeout. 1102 * else it means we got response for set MAC from PF, 1103 * check if netdev MAC was updated to requested MAC, 1104 * if yes then set MAC succeeded otherwise it failed return -EACCES 1105 */ 1106 if (ret < 0) 1107 return ret; 1108 1109 if (!ret) 1110 return -EAGAIN; 1111 1112 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1113 return -EACCES; 1114 1115 return 0; 1116 } 1117 1118 /** 1119 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1120 * @netdev: the netdevice 1121 * @addr: address to add 1122 * 1123 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1124 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1125 */ 1126 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1127 { 1128 struct iavf_adapter *adapter = netdev_priv(netdev); 1129 1130 if (iavf_add_filter(adapter, addr)) 1131 return 0; 1132 else 1133 return -ENOMEM; 1134 } 1135 1136 /** 1137 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1138 * @netdev: the netdevice 1139 * @addr: address to add 1140 * 1141 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1142 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1143 */ 1144 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1145 { 1146 struct iavf_adapter *adapter = netdev_priv(netdev); 1147 struct iavf_mac_filter *f; 1148 1149 /* Under some circumstances, we might receive a request to delete 1150 * our own device address from our uc list. Because we store the 1151 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1152 * such requests and not delete our device address from this list. 1153 */ 1154 if (ether_addr_equal(addr, netdev->dev_addr)) 1155 return 0; 1156 1157 f = iavf_find_filter(adapter, addr); 1158 if (f) { 1159 f->remove = true; 1160 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1161 } 1162 return 0; 1163 } 1164 1165 /** 1166 * iavf_set_rx_mode - NDO callback to set the netdev filters 1167 * @netdev: network interface device structure 1168 **/ 1169 static void iavf_set_rx_mode(struct net_device *netdev) 1170 { 1171 struct iavf_adapter *adapter = netdev_priv(netdev); 1172 1173 spin_lock_bh(&adapter->mac_vlan_list_lock); 1174 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1175 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1176 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1177 1178 if (netdev->flags & IFF_PROMISC && 1179 !(adapter->flags & IAVF_FLAG_PROMISC_ON)) 1180 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; 1181 else if (!(netdev->flags & IFF_PROMISC) && 1182 adapter->flags & IAVF_FLAG_PROMISC_ON) 1183 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; 1184 1185 if (netdev->flags & IFF_ALLMULTI && 1186 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) 1187 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; 1188 else if (!(netdev->flags & IFF_ALLMULTI) && 1189 adapter->flags & IAVF_FLAG_ALLMULTI_ON) 1190 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; 1191 } 1192 1193 /** 1194 * iavf_napi_enable_all - enable NAPI on all queue vectors 1195 * @adapter: board private structure 1196 **/ 1197 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1198 { 1199 int q_idx; 1200 struct iavf_q_vector *q_vector; 1201 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1202 1203 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1204 struct napi_struct *napi; 1205 1206 q_vector = &adapter->q_vectors[q_idx]; 1207 napi = &q_vector->napi; 1208 napi_enable(napi); 1209 } 1210 } 1211 1212 /** 1213 * iavf_napi_disable_all - disable NAPI on all queue vectors 1214 * @adapter: board private structure 1215 **/ 1216 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1217 { 1218 int q_idx; 1219 struct iavf_q_vector *q_vector; 1220 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1221 1222 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1223 q_vector = &adapter->q_vectors[q_idx]; 1224 napi_disable(&q_vector->napi); 1225 } 1226 } 1227 1228 /** 1229 * iavf_configure - set up transmit and receive data structures 1230 * @adapter: board private structure 1231 **/ 1232 static void iavf_configure(struct iavf_adapter *adapter) 1233 { 1234 struct net_device *netdev = adapter->netdev; 1235 int i; 1236 1237 iavf_set_rx_mode(netdev); 1238 1239 iavf_configure_tx(adapter); 1240 iavf_configure_rx(adapter); 1241 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1242 1243 for (i = 0; i < adapter->num_active_queues; i++) { 1244 struct iavf_ring *ring = &adapter->rx_rings[i]; 1245 1246 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1247 } 1248 } 1249 1250 /** 1251 * iavf_up_complete - Finish the last steps of bringing up a connection 1252 * @adapter: board private structure 1253 * 1254 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1255 **/ 1256 static void iavf_up_complete(struct iavf_adapter *adapter) 1257 { 1258 iavf_change_state(adapter, __IAVF_RUNNING); 1259 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1260 1261 iavf_napi_enable_all(adapter); 1262 1263 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1264 if (CLIENT_ENABLED(adapter)) 1265 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; 1266 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1267 } 1268 1269 /** 1270 * iavf_down - Shutdown the connection processing 1271 * @adapter: board private structure 1272 * 1273 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. 1274 **/ 1275 void iavf_down(struct iavf_adapter *adapter) 1276 { 1277 struct net_device *netdev = adapter->netdev; 1278 struct iavf_vlan_filter *vlf; 1279 struct iavf_cloud_filter *cf; 1280 struct iavf_fdir_fltr *fdir; 1281 struct iavf_mac_filter *f; 1282 struct iavf_adv_rss *rss; 1283 1284 if (adapter->state <= __IAVF_DOWN_PENDING) 1285 return; 1286 1287 netif_carrier_off(netdev); 1288 netif_tx_disable(netdev); 1289 adapter->link_up = false; 1290 iavf_napi_disable_all(adapter); 1291 iavf_irq_disable(adapter); 1292 1293 spin_lock_bh(&adapter->mac_vlan_list_lock); 1294 1295 /* clear the sync flag on all filters */ 1296 __dev_uc_unsync(adapter->netdev, NULL); 1297 __dev_mc_unsync(adapter->netdev, NULL); 1298 1299 /* remove all MAC filters */ 1300 list_for_each_entry(f, &adapter->mac_filter_list, list) { 1301 f->remove = true; 1302 } 1303 1304 /* remove all VLAN filters */ 1305 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { 1306 vlf->remove = true; 1307 } 1308 1309 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1310 1311 /* remove all cloud filters */ 1312 spin_lock_bh(&adapter->cloud_filter_list_lock); 1313 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 1314 cf->del = true; 1315 } 1316 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1317 1318 /* remove all Flow Director filters */ 1319 spin_lock_bh(&adapter->fdir_fltr_lock); 1320 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1321 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1322 } 1323 spin_unlock_bh(&adapter->fdir_fltr_lock); 1324 1325 /* remove all advance RSS configuration */ 1326 spin_lock_bh(&adapter->adv_rss_lock); 1327 list_for_each_entry(rss, &adapter->adv_rss_list_head, list) 1328 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1329 spin_unlock_bh(&adapter->adv_rss_lock); 1330 1331 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { 1332 /* cancel any current operation */ 1333 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1334 /* Schedule operations to close down the HW. Don't wait 1335 * here for this to complete. The watchdog is still running 1336 * and it will take care of this. 1337 */ 1338 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; 1339 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1340 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1341 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1342 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1343 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1344 } 1345 1346 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 1347 } 1348 1349 /** 1350 * iavf_acquire_msix_vectors - Setup the MSIX capability 1351 * @adapter: board private structure 1352 * @vectors: number of vectors to request 1353 * 1354 * Work with the OS to set up the MSIX vectors needed. 1355 * 1356 * Returns 0 on success, negative on failure 1357 **/ 1358 static int 1359 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1360 { 1361 int err, vector_threshold; 1362 1363 /* We'll want at least 3 (vector_threshold): 1364 * 0) Other (Admin Queue and link, mostly) 1365 * 1) TxQ[0] Cleanup 1366 * 2) RxQ[0] Cleanup 1367 */ 1368 vector_threshold = MIN_MSIX_COUNT; 1369 1370 /* The more we get, the more we will assign to Tx/Rx Cleanup 1371 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1372 * Right now, we simply care about how many we'll get; we'll 1373 * set them up later while requesting irq's. 1374 */ 1375 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1376 vector_threshold, vectors); 1377 if (err < 0) { 1378 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1379 kfree(adapter->msix_entries); 1380 adapter->msix_entries = NULL; 1381 return err; 1382 } 1383 1384 /* Adjust for only the vectors we'll use, which is minimum 1385 * of max_msix_q_vectors + NONQ_VECS, or the number of 1386 * vectors we were allocated. 1387 */ 1388 adapter->num_msix_vectors = err; 1389 return 0; 1390 } 1391 1392 /** 1393 * iavf_free_queues - Free memory for all rings 1394 * @adapter: board private structure to initialize 1395 * 1396 * Free all of the memory associated with queue pairs. 1397 **/ 1398 static void iavf_free_queues(struct iavf_adapter *adapter) 1399 { 1400 if (!adapter->vsi_res) 1401 return; 1402 adapter->num_active_queues = 0; 1403 kfree(adapter->tx_rings); 1404 adapter->tx_rings = NULL; 1405 kfree(adapter->rx_rings); 1406 adapter->rx_rings = NULL; 1407 } 1408 1409 /** 1410 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1411 * @adapter: board private structure 1412 * 1413 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1414 * stripped in certain descriptor fields. Instead of checking the offload 1415 * capability bits in the hot path, cache the location the ring specific 1416 * flags. 1417 */ 1418 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1419 { 1420 int i; 1421 1422 for (i = 0; i < adapter->num_active_queues; i++) { 1423 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1424 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1425 1426 /* prevent multiple L2TAG bits being set after VFR */ 1427 tx_ring->flags &= 1428 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1429 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1430 rx_ring->flags &= 1431 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1432 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1433 1434 if (VLAN_ALLOWED(adapter)) { 1435 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1436 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1437 } else if (VLAN_V2_ALLOWED(adapter)) { 1438 struct virtchnl_vlan_supported_caps *stripping_support; 1439 struct virtchnl_vlan_supported_caps *insertion_support; 1440 1441 stripping_support = 1442 &adapter->vlan_v2_caps.offloads.stripping_support; 1443 insertion_support = 1444 &adapter->vlan_v2_caps.offloads.insertion_support; 1445 1446 if (stripping_support->outer) { 1447 if (stripping_support->outer & 1448 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1449 rx_ring->flags |= 1450 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1451 else if (stripping_support->outer & 1452 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1453 rx_ring->flags |= 1454 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1455 } else if (stripping_support->inner) { 1456 if (stripping_support->inner & 1457 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1458 rx_ring->flags |= 1459 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1460 else if (stripping_support->inner & 1461 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1462 rx_ring->flags |= 1463 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1464 } 1465 1466 if (insertion_support->outer) { 1467 if (insertion_support->outer & 1468 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1469 tx_ring->flags |= 1470 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1471 else if (insertion_support->outer & 1472 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1473 tx_ring->flags |= 1474 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1475 } else if (insertion_support->inner) { 1476 if (insertion_support->inner & 1477 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1478 tx_ring->flags |= 1479 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1480 else if (insertion_support->inner & 1481 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1482 tx_ring->flags |= 1483 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1484 } 1485 } 1486 } 1487 } 1488 1489 /** 1490 * iavf_alloc_queues - Allocate memory for all rings 1491 * @adapter: board private structure to initialize 1492 * 1493 * We allocate one ring per queue at run-time since we don't know the 1494 * number of queues at compile-time. The polling_netdev array is 1495 * intended for Multiqueue, but should work fine with a single queue. 1496 **/ 1497 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1498 { 1499 int i, num_active_queues; 1500 1501 /* If we're in reset reallocating queues we don't actually know yet for 1502 * certain the PF gave us the number of queues we asked for but we'll 1503 * assume it did. Once basic reset is finished we'll confirm once we 1504 * start negotiating config with PF. 1505 */ 1506 if (adapter->num_req_queues) 1507 num_active_queues = adapter->num_req_queues; 1508 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1509 adapter->num_tc) 1510 num_active_queues = adapter->ch_config.total_qps; 1511 else 1512 num_active_queues = min_t(int, 1513 adapter->vsi_res->num_queue_pairs, 1514 (int)(num_online_cpus())); 1515 1516 1517 adapter->tx_rings = kcalloc(num_active_queues, 1518 sizeof(struct iavf_ring), GFP_KERNEL); 1519 if (!adapter->tx_rings) 1520 goto err_out; 1521 adapter->rx_rings = kcalloc(num_active_queues, 1522 sizeof(struct iavf_ring), GFP_KERNEL); 1523 if (!adapter->rx_rings) 1524 goto err_out; 1525 1526 for (i = 0; i < num_active_queues; i++) { 1527 struct iavf_ring *tx_ring; 1528 struct iavf_ring *rx_ring; 1529 1530 tx_ring = &adapter->tx_rings[i]; 1531 1532 tx_ring->queue_index = i; 1533 tx_ring->netdev = adapter->netdev; 1534 tx_ring->dev = &adapter->pdev->dev; 1535 tx_ring->count = adapter->tx_desc_count; 1536 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1537 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1538 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1539 1540 rx_ring = &adapter->rx_rings[i]; 1541 rx_ring->queue_index = i; 1542 rx_ring->netdev = adapter->netdev; 1543 rx_ring->dev = &adapter->pdev->dev; 1544 rx_ring->count = adapter->rx_desc_count; 1545 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1546 } 1547 1548 adapter->num_active_queues = num_active_queues; 1549 1550 iavf_set_queue_vlan_tag_loc(adapter); 1551 1552 return 0; 1553 1554 err_out: 1555 iavf_free_queues(adapter); 1556 return -ENOMEM; 1557 } 1558 1559 /** 1560 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1561 * @adapter: board private structure to initialize 1562 * 1563 * Attempt to configure the interrupts using the best available 1564 * capabilities of the hardware and the kernel. 1565 **/ 1566 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1567 { 1568 int vector, v_budget; 1569 int pairs = 0; 1570 int err = 0; 1571 1572 if (!adapter->vsi_res) { 1573 err = -EIO; 1574 goto out; 1575 } 1576 pairs = adapter->num_active_queues; 1577 1578 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1579 * us much good if we have more vectors than CPUs. However, we already 1580 * limit the total number of queues by the number of CPUs so we do not 1581 * need any further limiting here. 1582 */ 1583 v_budget = min_t(int, pairs + NONQ_VECS, 1584 (int)adapter->vf_res->max_vectors); 1585 1586 adapter->msix_entries = kcalloc(v_budget, 1587 sizeof(struct msix_entry), GFP_KERNEL); 1588 if (!adapter->msix_entries) { 1589 err = -ENOMEM; 1590 goto out; 1591 } 1592 1593 for (vector = 0; vector < v_budget; vector++) 1594 adapter->msix_entries[vector].entry = vector; 1595 1596 err = iavf_acquire_msix_vectors(adapter, v_budget); 1597 1598 out: 1599 netif_set_real_num_rx_queues(adapter->netdev, pairs); 1600 netif_set_real_num_tx_queues(adapter->netdev, pairs); 1601 return err; 1602 } 1603 1604 /** 1605 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1606 * @adapter: board private structure 1607 * 1608 * Return 0 on success, negative on failure 1609 **/ 1610 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1611 { 1612 struct iavf_aqc_get_set_rss_key_data *rss_key = 1613 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1614 struct iavf_hw *hw = &adapter->hw; 1615 enum iavf_status status; 1616 1617 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1618 /* bail because we already have a command pending */ 1619 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1620 adapter->current_op); 1621 return -EBUSY; 1622 } 1623 1624 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1625 if (status) { 1626 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1627 iavf_stat_str(hw, status), 1628 iavf_aq_str(hw, hw->aq.asq_last_status)); 1629 return iavf_status_to_errno(status); 1630 1631 } 1632 1633 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1634 adapter->rss_lut, adapter->rss_lut_size); 1635 if (status) { 1636 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1637 iavf_stat_str(hw, status), 1638 iavf_aq_str(hw, hw->aq.asq_last_status)); 1639 return iavf_status_to_errno(status); 1640 } 1641 1642 return 0; 1643 1644 } 1645 1646 /** 1647 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1648 * @adapter: board private structure 1649 * 1650 * Returns 0 on success, negative on failure 1651 **/ 1652 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1653 { 1654 struct iavf_hw *hw = &adapter->hw; 1655 u32 *dw; 1656 u16 i; 1657 1658 dw = (u32 *)adapter->rss_key; 1659 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1660 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1661 1662 dw = (u32 *)adapter->rss_lut; 1663 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1664 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1665 1666 iavf_flush(hw); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * iavf_config_rss - Configure RSS keys and lut 1673 * @adapter: board private structure 1674 * 1675 * Returns 0 on success, negative on failure 1676 **/ 1677 int iavf_config_rss(struct iavf_adapter *adapter) 1678 { 1679 1680 if (RSS_PF(adapter)) { 1681 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1682 IAVF_FLAG_AQ_SET_RSS_KEY; 1683 return 0; 1684 } else if (RSS_AQ(adapter)) { 1685 return iavf_config_rss_aq(adapter); 1686 } else { 1687 return iavf_config_rss_reg(adapter); 1688 } 1689 } 1690 1691 /** 1692 * iavf_fill_rss_lut - Fill the lut with default values 1693 * @adapter: board private structure 1694 **/ 1695 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1696 { 1697 u16 i; 1698 1699 for (i = 0; i < adapter->rss_lut_size; i++) 1700 adapter->rss_lut[i] = i % adapter->num_active_queues; 1701 } 1702 1703 /** 1704 * iavf_init_rss - Prepare for RSS 1705 * @adapter: board private structure 1706 * 1707 * Return 0 on success, negative on failure 1708 **/ 1709 static int iavf_init_rss(struct iavf_adapter *adapter) 1710 { 1711 struct iavf_hw *hw = &adapter->hw; 1712 1713 if (!RSS_PF(adapter)) { 1714 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1715 if (adapter->vf_res->vf_cap_flags & 1716 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1717 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1718 else 1719 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1720 1721 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1722 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1723 } 1724 1725 iavf_fill_rss_lut(adapter); 1726 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1727 1728 return iavf_config_rss(adapter); 1729 } 1730 1731 /** 1732 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1733 * @adapter: board private structure to initialize 1734 * 1735 * We allocate one q_vector per queue interrupt. If allocation fails we 1736 * return -ENOMEM. 1737 **/ 1738 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1739 { 1740 int q_idx = 0, num_q_vectors; 1741 struct iavf_q_vector *q_vector; 1742 1743 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1744 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1745 GFP_KERNEL); 1746 if (!adapter->q_vectors) 1747 return -ENOMEM; 1748 1749 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1750 q_vector = &adapter->q_vectors[q_idx]; 1751 q_vector->adapter = adapter; 1752 q_vector->vsi = &adapter->vsi; 1753 q_vector->v_idx = q_idx; 1754 q_vector->reg_idx = q_idx; 1755 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1756 netif_napi_add(adapter->netdev, &q_vector->napi, 1757 iavf_napi_poll, NAPI_POLL_WEIGHT); 1758 } 1759 1760 return 0; 1761 } 1762 1763 /** 1764 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1765 * @adapter: board private structure to initialize 1766 * 1767 * This function frees the memory allocated to the q_vectors. In addition if 1768 * NAPI is enabled it will delete any references to the NAPI struct prior 1769 * to freeing the q_vector. 1770 **/ 1771 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1772 { 1773 int q_idx, num_q_vectors; 1774 int napi_vectors; 1775 1776 if (!adapter->q_vectors) 1777 return; 1778 1779 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1780 napi_vectors = adapter->num_active_queues; 1781 1782 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1783 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1784 1785 if (q_idx < napi_vectors) 1786 netif_napi_del(&q_vector->napi); 1787 } 1788 kfree(adapter->q_vectors); 1789 adapter->q_vectors = NULL; 1790 } 1791 1792 /** 1793 * iavf_reset_interrupt_capability - Reset MSIX setup 1794 * @adapter: board private structure 1795 * 1796 **/ 1797 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1798 { 1799 if (!adapter->msix_entries) 1800 return; 1801 1802 pci_disable_msix(adapter->pdev); 1803 kfree(adapter->msix_entries); 1804 adapter->msix_entries = NULL; 1805 } 1806 1807 /** 1808 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1809 * @adapter: board private structure to initialize 1810 * 1811 **/ 1812 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1813 { 1814 int err; 1815 1816 err = iavf_alloc_queues(adapter); 1817 if (err) { 1818 dev_err(&adapter->pdev->dev, 1819 "Unable to allocate memory for queues\n"); 1820 goto err_alloc_queues; 1821 } 1822 1823 rtnl_lock(); 1824 err = iavf_set_interrupt_capability(adapter); 1825 rtnl_unlock(); 1826 if (err) { 1827 dev_err(&adapter->pdev->dev, 1828 "Unable to setup interrupt capabilities\n"); 1829 goto err_set_interrupt; 1830 } 1831 1832 err = iavf_alloc_q_vectors(adapter); 1833 if (err) { 1834 dev_err(&adapter->pdev->dev, 1835 "Unable to allocate memory for queue vectors\n"); 1836 goto err_alloc_q_vectors; 1837 } 1838 1839 /* If we've made it so far while ADq flag being ON, then we haven't 1840 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1841 * resources have been allocated in the reset path. 1842 * Now we can truly claim that ADq is enabled. 1843 */ 1844 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1845 adapter->num_tc) 1846 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1847 adapter->num_tc); 1848 1849 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1850 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1851 adapter->num_active_queues); 1852 1853 return 0; 1854 err_alloc_q_vectors: 1855 iavf_reset_interrupt_capability(adapter); 1856 err_set_interrupt: 1857 iavf_free_queues(adapter); 1858 err_alloc_queues: 1859 return err; 1860 } 1861 1862 /** 1863 * iavf_free_rss - Free memory used by RSS structs 1864 * @adapter: board private structure 1865 **/ 1866 static void iavf_free_rss(struct iavf_adapter *adapter) 1867 { 1868 kfree(adapter->rss_key); 1869 adapter->rss_key = NULL; 1870 1871 kfree(adapter->rss_lut); 1872 adapter->rss_lut = NULL; 1873 } 1874 1875 /** 1876 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1877 * @adapter: board private structure 1878 * 1879 * Returns 0 on success, negative on failure 1880 **/ 1881 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) 1882 { 1883 struct net_device *netdev = adapter->netdev; 1884 int err; 1885 1886 if (netif_running(netdev)) 1887 iavf_free_traffic_irqs(adapter); 1888 iavf_free_misc_irq(adapter); 1889 iavf_reset_interrupt_capability(adapter); 1890 iavf_free_q_vectors(adapter); 1891 iavf_free_queues(adapter); 1892 1893 err = iavf_init_interrupt_scheme(adapter); 1894 if (err) 1895 goto err; 1896 1897 netif_tx_stop_all_queues(netdev); 1898 1899 err = iavf_request_misc_irq(adapter); 1900 if (err) 1901 goto err; 1902 1903 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1904 1905 iavf_map_rings_to_vectors(adapter); 1906 err: 1907 return err; 1908 } 1909 1910 /** 1911 * iavf_process_aq_command - process aq_required flags 1912 * and sends aq command 1913 * @adapter: pointer to iavf adapter structure 1914 * 1915 * Returns 0 on success 1916 * Returns error code if no command was sent 1917 * or error code if the command failed. 1918 **/ 1919 static int iavf_process_aq_command(struct iavf_adapter *adapter) 1920 { 1921 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 1922 return iavf_send_vf_config_msg(adapter); 1923 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 1924 return iavf_send_vf_offload_vlan_v2_msg(adapter); 1925 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 1926 iavf_disable_queues(adapter); 1927 return 0; 1928 } 1929 1930 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 1931 iavf_map_queues(adapter); 1932 return 0; 1933 } 1934 1935 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 1936 iavf_add_ether_addrs(adapter); 1937 return 0; 1938 } 1939 1940 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 1941 iavf_add_vlans(adapter); 1942 return 0; 1943 } 1944 1945 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 1946 iavf_del_ether_addrs(adapter); 1947 return 0; 1948 } 1949 1950 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 1951 iavf_del_vlans(adapter); 1952 return 0; 1953 } 1954 1955 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 1956 iavf_enable_vlan_stripping(adapter); 1957 return 0; 1958 } 1959 1960 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 1961 iavf_disable_vlan_stripping(adapter); 1962 return 0; 1963 } 1964 1965 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 1966 iavf_configure_queues(adapter); 1967 return 0; 1968 } 1969 1970 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 1971 iavf_enable_queues(adapter); 1972 return 0; 1973 } 1974 1975 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 1976 /* This message goes straight to the firmware, not the 1977 * PF, so we don't have to set current_op as we will 1978 * not get a response through the ARQ. 1979 */ 1980 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 1981 return 0; 1982 } 1983 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 1984 iavf_get_hena(adapter); 1985 return 0; 1986 } 1987 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 1988 iavf_set_hena(adapter); 1989 return 0; 1990 } 1991 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 1992 iavf_set_rss_key(adapter); 1993 return 0; 1994 } 1995 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 1996 iavf_set_rss_lut(adapter); 1997 return 0; 1998 } 1999 2000 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { 2001 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | 2002 FLAG_VF_MULTICAST_PROMISC); 2003 return 0; 2004 } 2005 2006 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { 2007 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); 2008 return 0; 2009 } 2010 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || 2011 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { 2012 iavf_set_promiscuous(adapter, 0); 2013 return 0; 2014 } 2015 2016 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2017 iavf_enable_channels(adapter); 2018 return 0; 2019 } 2020 2021 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2022 iavf_disable_channels(adapter); 2023 return 0; 2024 } 2025 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2026 iavf_add_cloud_filter(adapter); 2027 return 0; 2028 } 2029 2030 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2031 iavf_del_cloud_filter(adapter); 2032 return 0; 2033 } 2034 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2035 iavf_del_cloud_filter(adapter); 2036 return 0; 2037 } 2038 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2039 iavf_add_cloud_filter(adapter); 2040 return 0; 2041 } 2042 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2043 iavf_add_fdir_filter(adapter); 2044 return IAVF_SUCCESS; 2045 } 2046 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2047 iavf_del_fdir_filter(adapter); 2048 return IAVF_SUCCESS; 2049 } 2050 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2051 iavf_add_adv_rss_cfg(adapter); 2052 return 0; 2053 } 2054 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2055 iavf_del_adv_rss_cfg(adapter); 2056 return 0; 2057 } 2058 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2059 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2060 return 0; 2061 } 2062 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2063 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2064 return 0; 2065 } 2066 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2067 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2068 return 0; 2069 } 2070 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2071 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2072 return 0; 2073 } 2074 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2075 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2076 return 0; 2077 } 2078 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2079 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2080 return 0; 2081 } 2082 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2083 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2084 return 0; 2085 } 2086 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2087 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2088 return 0; 2089 } 2090 2091 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2092 iavf_request_stats(adapter); 2093 return 0; 2094 } 2095 2096 return -EAGAIN; 2097 } 2098 2099 /** 2100 * iavf_set_vlan_offload_features - set VLAN offload configuration 2101 * @adapter: board private structure 2102 * @prev_features: previous features used for comparison 2103 * @features: updated features used for configuration 2104 * 2105 * Set the aq_required bit(s) based on the requested features passed in to 2106 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2107 * the watchdog if any changes are requested to expedite the request via 2108 * virtchnl. 2109 **/ 2110 void 2111 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2112 netdev_features_t prev_features, 2113 netdev_features_t features) 2114 { 2115 bool enable_stripping = true, enable_insertion = true; 2116 u16 vlan_ethertype = 0; 2117 u64 aq_required = 0; 2118 2119 /* keep cases separate because one ethertype for offloads can be 2120 * disabled at the same time as another is disabled, so check for an 2121 * enabled ethertype first, then check for disabled. Default to 2122 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2123 * stripping. 2124 */ 2125 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2126 vlan_ethertype = ETH_P_8021AD; 2127 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2128 vlan_ethertype = ETH_P_8021Q; 2129 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2130 vlan_ethertype = ETH_P_8021AD; 2131 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2132 vlan_ethertype = ETH_P_8021Q; 2133 else 2134 vlan_ethertype = ETH_P_8021Q; 2135 2136 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2137 enable_stripping = false; 2138 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2139 enable_insertion = false; 2140 2141 if (VLAN_ALLOWED(adapter)) { 2142 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2143 * stripping via virtchnl. VLAN insertion can be toggled on the 2144 * netdev, but it doesn't require a virtchnl message 2145 */ 2146 if (enable_stripping) 2147 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2148 else 2149 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2150 2151 } else if (VLAN_V2_ALLOWED(adapter)) { 2152 switch (vlan_ethertype) { 2153 case ETH_P_8021Q: 2154 if (enable_stripping) 2155 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2156 else 2157 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2158 2159 if (enable_insertion) 2160 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2161 else 2162 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2163 break; 2164 case ETH_P_8021AD: 2165 if (enable_stripping) 2166 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2167 else 2168 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2169 2170 if (enable_insertion) 2171 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2172 else 2173 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2174 break; 2175 } 2176 } 2177 2178 if (aq_required) { 2179 adapter->aq_required |= aq_required; 2180 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0); 2181 } 2182 } 2183 2184 /** 2185 * iavf_startup - first step of driver startup 2186 * @adapter: board private structure 2187 * 2188 * Function process __IAVF_STARTUP driver state. 2189 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2190 * when fails the state is changed to __IAVF_INIT_FAILED 2191 **/ 2192 static void iavf_startup(struct iavf_adapter *adapter) 2193 { 2194 struct pci_dev *pdev = adapter->pdev; 2195 struct iavf_hw *hw = &adapter->hw; 2196 enum iavf_status status; 2197 int ret; 2198 2199 WARN_ON(adapter->state != __IAVF_STARTUP); 2200 2201 /* driver loaded, probe complete */ 2202 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2203 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2204 status = iavf_set_mac_type(hw); 2205 if (status) { 2206 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); 2207 goto err; 2208 } 2209 2210 ret = iavf_check_reset_complete(hw); 2211 if (ret) { 2212 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2213 ret); 2214 goto err; 2215 } 2216 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2217 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2218 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2219 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2220 2221 status = iavf_init_adminq(hw); 2222 if (status) { 2223 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2224 status); 2225 goto err; 2226 } 2227 ret = iavf_send_api_ver(adapter); 2228 if (ret) { 2229 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2230 iavf_shutdown_adminq(hw); 2231 goto err; 2232 } 2233 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2234 return; 2235 err: 2236 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2237 } 2238 2239 /** 2240 * iavf_init_version_check - second step of driver startup 2241 * @adapter: board private structure 2242 * 2243 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2244 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2245 * when fails the state is changed to __IAVF_INIT_FAILED 2246 **/ 2247 static void iavf_init_version_check(struct iavf_adapter *adapter) 2248 { 2249 struct pci_dev *pdev = adapter->pdev; 2250 struct iavf_hw *hw = &adapter->hw; 2251 int err = -EAGAIN; 2252 2253 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2254 2255 if (!iavf_asq_done(hw)) { 2256 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2257 iavf_shutdown_adminq(hw); 2258 iavf_change_state(adapter, __IAVF_STARTUP); 2259 goto err; 2260 } 2261 2262 /* aq msg sent, awaiting reply */ 2263 err = iavf_verify_api_ver(adapter); 2264 if (err) { 2265 if (err == -EALREADY) 2266 err = iavf_send_api_ver(adapter); 2267 else 2268 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2269 adapter->pf_version.major, 2270 adapter->pf_version.minor, 2271 VIRTCHNL_VERSION_MAJOR, 2272 VIRTCHNL_VERSION_MINOR); 2273 goto err; 2274 } 2275 err = iavf_send_vf_config_msg(adapter); 2276 if (err) { 2277 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2278 err); 2279 goto err; 2280 } 2281 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2282 return; 2283 err: 2284 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2285 } 2286 2287 /** 2288 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2289 * @adapter: board private structure 2290 */ 2291 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2292 { 2293 int i, num_req_queues = adapter->num_req_queues; 2294 struct iavf_vsi *vsi = &adapter->vsi; 2295 2296 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2297 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2298 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2299 } 2300 if (!adapter->vsi_res) { 2301 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2302 return -ENODEV; 2303 } 2304 2305 if (num_req_queues && 2306 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2307 /* Problem. The PF gave us fewer queues than what we had 2308 * negotiated in our request. Need a reset to see if we can't 2309 * get back to a working state. 2310 */ 2311 dev_err(&adapter->pdev->dev, 2312 "Requested %d queues, but PF only gave us %d.\n", 2313 num_req_queues, 2314 adapter->vsi_res->num_queue_pairs); 2315 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2316 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2317 iavf_schedule_reset(adapter); 2318 2319 return -EAGAIN; 2320 } 2321 adapter->num_req_queues = 0; 2322 adapter->vsi.id = adapter->vsi_res->vsi_id; 2323 2324 adapter->vsi.back = adapter; 2325 adapter->vsi.base_vector = 1; 2326 vsi->netdev = adapter->netdev; 2327 vsi->qs_handle = adapter->vsi_res->qset_handle; 2328 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2329 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2330 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2331 } else { 2332 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2333 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2334 } 2335 2336 return 0; 2337 } 2338 2339 /** 2340 * iavf_init_get_resources - third step of driver startup 2341 * @adapter: board private structure 2342 * 2343 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2344 * finishes driver initialization procedure. 2345 * When success the state is changed to __IAVF_DOWN 2346 * when fails the state is changed to __IAVF_INIT_FAILED 2347 **/ 2348 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2349 { 2350 struct pci_dev *pdev = adapter->pdev; 2351 struct iavf_hw *hw = &adapter->hw; 2352 int err; 2353 2354 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2355 /* aq msg sent, awaiting reply */ 2356 if (!adapter->vf_res) { 2357 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2358 GFP_KERNEL); 2359 if (!adapter->vf_res) { 2360 err = -ENOMEM; 2361 goto err; 2362 } 2363 } 2364 err = iavf_get_vf_config(adapter); 2365 if (err == -EALREADY) { 2366 err = iavf_send_vf_config_msg(adapter); 2367 goto err; 2368 } else if (err == -EINVAL) { 2369 /* We only get -EINVAL if the device is in a very bad 2370 * state or if we've been disabled for previous bad 2371 * behavior. Either way, we're done now. 2372 */ 2373 iavf_shutdown_adminq(hw); 2374 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2375 return; 2376 } 2377 if (err) { 2378 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2379 goto err_alloc; 2380 } 2381 2382 err = iavf_parse_vf_resource_msg(adapter); 2383 if (err) { 2384 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2385 err); 2386 goto err_alloc; 2387 } 2388 /* Some features require additional messages to negotiate extended 2389 * capabilities. These are processed in sequence by the 2390 * __IAVF_INIT_EXTENDED_CAPS driver state. 2391 */ 2392 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2393 2394 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2395 return; 2396 2397 err_alloc: 2398 kfree(adapter->vf_res); 2399 adapter->vf_res = NULL; 2400 err: 2401 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2402 } 2403 2404 /** 2405 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2406 * @adapter: board private structure 2407 * 2408 * Function processes send of the extended VLAN V2 capability message to the 2409 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2410 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2411 */ 2412 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2413 { 2414 int ret; 2415 2416 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2417 2418 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2419 if (ret && ret == -EOPNOTSUPP) { 2420 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2421 * we did not send the capability exchange message and do not 2422 * expect a response. 2423 */ 2424 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2425 } 2426 2427 /* We sent the message, so move on to the next step */ 2428 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2429 } 2430 2431 /** 2432 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2433 * @adapter: board private structure 2434 * 2435 * Function processes receipt of the extended VLAN V2 capability message from 2436 * the PF. 2437 **/ 2438 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2439 { 2440 int ret; 2441 2442 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2443 2444 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2445 2446 ret = iavf_get_vf_vlan_v2_caps(adapter); 2447 if (ret) 2448 goto err; 2449 2450 /* We've processed receipt of the VLAN V2 caps message */ 2451 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2452 return; 2453 err: 2454 /* We didn't receive a reply. Make sure we try sending again when 2455 * __IAVF_INIT_FAILED attempts to recover. 2456 */ 2457 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2458 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2459 } 2460 2461 /** 2462 * iavf_init_process_extended_caps - Part of driver startup 2463 * @adapter: board private structure 2464 * 2465 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2466 * handles negotiating capabilities for features which require an additional 2467 * message. 2468 * 2469 * Once all extended capabilities exchanges are finished, the driver will 2470 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2471 */ 2472 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2473 { 2474 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2475 2476 /* Process capability exchange for VLAN V2 */ 2477 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2478 iavf_init_send_offload_vlan_v2_caps(adapter); 2479 return; 2480 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2481 iavf_init_recv_offload_vlan_v2_caps(adapter); 2482 return; 2483 } 2484 2485 /* When we reach here, no further extended capabilities exchanges are 2486 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2487 */ 2488 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2489 } 2490 2491 /** 2492 * iavf_init_config_adapter - last part of driver startup 2493 * @adapter: board private structure 2494 * 2495 * After all the supported capabilities are negotiated, then the 2496 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2497 */ 2498 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2499 { 2500 struct net_device *netdev = adapter->netdev; 2501 struct pci_dev *pdev = adapter->pdev; 2502 int err; 2503 2504 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2505 2506 if (iavf_process_config(adapter)) 2507 goto err; 2508 2509 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2510 2511 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2512 2513 netdev->netdev_ops = &iavf_netdev_ops; 2514 iavf_set_ethtool_ops(netdev); 2515 netdev->watchdog_timeo = 5 * HZ; 2516 2517 /* MTU range: 68 - 9710 */ 2518 netdev->min_mtu = ETH_MIN_MTU; 2519 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2520 2521 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2522 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2523 adapter->hw.mac.addr); 2524 eth_hw_addr_random(netdev); 2525 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2526 } else { 2527 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2528 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2529 } 2530 2531 adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET; 2532 2533 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2534 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2535 err = iavf_init_interrupt_scheme(adapter); 2536 if (err) 2537 goto err_sw_init; 2538 iavf_map_rings_to_vectors(adapter); 2539 if (adapter->vf_res->vf_cap_flags & 2540 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2541 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2542 2543 err = iavf_request_misc_irq(adapter); 2544 if (err) 2545 goto err_sw_init; 2546 2547 netif_carrier_off(netdev); 2548 adapter->link_up = false; 2549 2550 /* set the semaphore to prevent any callbacks after device registration 2551 * up to time when state of driver will be set to __IAVF_DOWN 2552 */ 2553 rtnl_lock(); 2554 if (!adapter->netdev_registered) { 2555 err = register_netdevice(netdev); 2556 if (err) { 2557 rtnl_unlock(); 2558 goto err_register; 2559 } 2560 } 2561 2562 adapter->netdev_registered = true; 2563 2564 netif_tx_stop_all_queues(netdev); 2565 if (CLIENT_ALLOWED(adapter)) { 2566 err = iavf_lan_add_device(adapter); 2567 if (err) 2568 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", 2569 err); 2570 } 2571 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2572 if (netdev->features & NETIF_F_GRO) 2573 dev_info(&pdev->dev, "GRO is enabled\n"); 2574 2575 iavf_change_state(adapter, __IAVF_DOWN); 2576 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2577 rtnl_unlock(); 2578 2579 iavf_misc_irq_enable(adapter); 2580 wake_up(&adapter->down_waitqueue); 2581 2582 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2583 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2584 if (!adapter->rss_key || !adapter->rss_lut) { 2585 err = -ENOMEM; 2586 goto err_mem; 2587 } 2588 if (RSS_AQ(adapter)) 2589 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2590 else 2591 iavf_init_rss(adapter); 2592 2593 if (VLAN_V2_ALLOWED(adapter)) 2594 /* request initial VLAN offload settings */ 2595 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2596 2597 return; 2598 err_mem: 2599 iavf_free_rss(adapter); 2600 err_register: 2601 iavf_free_misc_irq(adapter); 2602 err_sw_init: 2603 iavf_reset_interrupt_capability(adapter); 2604 err: 2605 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2606 } 2607 2608 /** 2609 * iavf_watchdog_task - Periodic call-back task 2610 * @work: pointer to work_struct 2611 **/ 2612 static void iavf_watchdog_task(struct work_struct *work) 2613 { 2614 struct iavf_adapter *adapter = container_of(work, 2615 struct iavf_adapter, 2616 watchdog_task.work); 2617 struct iavf_hw *hw = &adapter->hw; 2618 u32 reg_val; 2619 2620 if (!mutex_trylock(&adapter->crit_lock)) { 2621 if (adapter->state == __IAVF_REMOVE) 2622 return; 2623 2624 goto restart_watchdog; 2625 } 2626 2627 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2628 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2629 2630 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2631 adapter->aq_required = 0; 2632 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2633 mutex_unlock(&adapter->crit_lock); 2634 queue_work(iavf_wq, &adapter->reset_task); 2635 return; 2636 } 2637 2638 switch (adapter->state) { 2639 case __IAVF_STARTUP: 2640 iavf_startup(adapter); 2641 mutex_unlock(&adapter->crit_lock); 2642 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2643 msecs_to_jiffies(30)); 2644 return; 2645 case __IAVF_INIT_VERSION_CHECK: 2646 iavf_init_version_check(adapter); 2647 mutex_unlock(&adapter->crit_lock); 2648 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2649 msecs_to_jiffies(30)); 2650 return; 2651 case __IAVF_INIT_GET_RESOURCES: 2652 iavf_init_get_resources(adapter); 2653 mutex_unlock(&adapter->crit_lock); 2654 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2655 msecs_to_jiffies(1)); 2656 return; 2657 case __IAVF_INIT_EXTENDED_CAPS: 2658 iavf_init_process_extended_caps(adapter); 2659 mutex_unlock(&adapter->crit_lock); 2660 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2661 msecs_to_jiffies(1)); 2662 return; 2663 case __IAVF_INIT_CONFIG_ADAPTER: 2664 iavf_init_config_adapter(adapter); 2665 mutex_unlock(&adapter->crit_lock); 2666 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2667 msecs_to_jiffies(1)); 2668 return; 2669 case __IAVF_INIT_FAILED: 2670 if (test_bit(__IAVF_IN_REMOVE_TASK, 2671 &adapter->crit_section)) { 2672 /* Do not update the state and do not reschedule 2673 * watchdog task, iavf_remove should handle this state 2674 * as it can loop forever 2675 */ 2676 mutex_unlock(&adapter->crit_lock); 2677 return; 2678 } 2679 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2680 dev_err(&adapter->pdev->dev, 2681 "Failed to communicate with PF; waiting before retry\n"); 2682 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2683 iavf_shutdown_adminq(hw); 2684 mutex_unlock(&adapter->crit_lock); 2685 queue_delayed_work(iavf_wq, 2686 &adapter->watchdog_task, (5 * HZ)); 2687 return; 2688 } 2689 /* Try again from failed step*/ 2690 iavf_change_state(adapter, adapter->last_state); 2691 mutex_unlock(&adapter->crit_lock); 2692 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ); 2693 return; 2694 case __IAVF_COMM_FAILED: 2695 if (test_bit(__IAVF_IN_REMOVE_TASK, 2696 &adapter->crit_section)) { 2697 /* Set state to __IAVF_INIT_FAILED and perform remove 2698 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2699 * doesn't bring the state back to __IAVF_COMM_FAILED. 2700 */ 2701 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2702 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2703 mutex_unlock(&adapter->crit_lock); 2704 return; 2705 } 2706 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2707 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2708 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2709 reg_val == VIRTCHNL_VFR_COMPLETED) { 2710 /* A chance for redemption! */ 2711 dev_err(&adapter->pdev->dev, 2712 "Hardware came out of reset. Attempting reinit.\n"); 2713 /* When init task contacts the PF and 2714 * gets everything set up again, it'll restart the 2715 * watchdog for us. Down, boy. Sit. Stay. Woof. 2716 */ 2717 iavf_change_state(adapter, __IAVF_STARTUP); 2718 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2719 } 2720 adapter->aq_required = 0; 2721 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2722 mutex_unlock(&adapter->crit_lock); 2723 queue_delayed_work(iavf_wq, 2724 &adapter->watchdog_task, 2725 msecs_to_jiffies(10)); 2726 return; 2727 case __IAVF_RESETTING: 2728 mutex_unlock(&adapter->crit_lock); 2729 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2730 return; 2731 case __IAVF_DOWN: 2732 case __IAVF_DOWN_PENDING: 2733 case __IAVF_TESTING: 2734 case __IAVF_RUNNING: 2735 if (adapter->current_op) { 2736 if (!iavf_asq_done(hw)) { 2737 dev_dbg(&adapter->pdev->dev, 2738 "Admin queue timeout\n"); 2739 iavf_send_api_ver(adapter); 2740 } 2741 } else { 2742 int ret = iavf_process_aq_command(adapter); 2743 2744 /* An error will be returned if no commands were 2745 * processed; use this opportunity to update stats 2746 * if the error isn't -ENOTSUPP 2747 */ 2748 if (ret && ret != -EOPNOTSUPP && 2749 adapter->state == __IAVF_RUNNING) 2750 iavf_request_stats(adapter); 2751 } 2752 if (adapter->state == __IAVF_RUNNING) 2753 iavf_detect_recover_hung(&adapter->vsi); 2754 break; 2755 case __IAVF_REMOVE: 2756 default: 2757 mutex_unlock(&adapter->crit_lock); 2758 return; 2759 } 2760 2761 /* check for hw reset */ 2762 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2763 if (!reg_val) { 2764 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2765 adapter->aq_required = 0; 2766 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2767 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2768 queue_work(iavf_wq, &adapter->reset_task); 2769 mutex_unlock(&adapter->crit_lock); 2770 queue_delayed_work(iavf_wq, 2771 &adapter->watchdog_task, HZ * 2); 2772 return; 2773 } 2774 2775 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); 2776 mutex_unlock(&adapter->crit_lock); 2777 restart_watchdog: 2778 if (adapter->state >= __IAVF_DOWN) 2779 queue_work(iavf_wq, &adapter->adminq_task); 2780 if (adapter->aq_required) 2781 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 2782 msecs_to_jiffies(20)); 2783 else 2784 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2); 2785 } 2786 2787 /** 2788 * iavf_disable_vf - disable VF 2789 * @adapter: board private structure 2790 * 2791 * Set communication failed flag and free all resources. 2792 * NOTE: This function is expected to be called with crit_lock being held. 2793 **/ 2794 static void iavf_disable_vf(struct iavf_adapter *adapter) 2795 { 2796 struct iavf_mac_filter *f, *ftmp; 2797 struct iavf_vlan_filter *fv, *fvtmp; 2798 struct iavf_cloud_filter *cf, *cftmp; 2799 2800 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2801 2802 /* We don't use netif_running() because it may be true prior to 2803 * ndo_open() returning, so we can't assume it means all our open 2804 * tasks have finished, since we're not holding the rtnl_lock here. 2805 */ 2806 if (adapter->state == __IAVF_RUNNING) { 2807 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2808 netif_carrier_off(adapter->netdev); 2809 netif_tx_disable(adapter->netdev); 2810 adapter->link_up = false; 2811 iavf_napi_disable_all(adapter); 2812 iavf_irq_disable(adapter); 2813 iavf_free_traffic_irqs(adapter); 2814 iavf_free_all_tx_resources(adapter); 2815 iavf_free_all_rx_resources(adapter); 2816 } 2817 2818 spin_lock_bh(&adapter->mac_vlan_list_lock); 2819 2820 /* Delete all of the filters */ 2821 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2822 list_del(&f->list); 2823 kfree(f); 2824 } 2825 2826 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2827 list_del(&fv->list); 2828 kfree(fv); 2829 } 2830 2831 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2832 2833 spin_lock_bh(&adapter->cloud_filter_list_lock); 2834 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2835 list_del(&cf->list); 2836 kfree(cf); 2837 adapter->num_cloud_filters--; 2838 } 2839 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2840 2841 iavf_free_misc_irq(adapter); 2842 iavf_reset_interrupt_capability(adapter); 2843 iavf_free_q_vectors(adapter); 2844 iavf_free_queues(adapter); 2845 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2846 iavf_shutdown_adminq(&adapter->hw); 2847 adapter->netdev->flags &= ~IFF_UP; 2848 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2849 iavf_change_state(adapter, __IAVF_DOWN); 2850 wake_up(&adapter->down_waitqueue); 2851 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2852 } 2853 2854 /** 2855 * iavf_reset_task - Call-back task to handle hardware reset 2856 * @work: pointer to work_struct 2857 * 2858 * During reset we need to shut down and reinitialize the admin queue 2859 * before we can use it to communicate with the PF again. We also clear 2860 * and reinit the rings because that context is lost as well. 2861 **/ 2862 static void iavf_reset_task(struct work_struct *work) 2863 { 2864 struct iavf_adapter *adapter = container_of(work, 2865 struct iavf_adapter, 2866 reset_task); 2867 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2868 struct net_device *netdev = adapter->netdev; 2869 struct iavf_hw *hw = &adapter->hw; 2870 struct iavf_mac_filter *f, *ftmp; 2871 struct iavf_cloud_filter *cf; 2872 enum iavf_status status; 2873 u32 reg_val; 2874 int i = 0, err; 2875 bool running; 2876 2877 /* Detach interface to avoid subsequent NDO callbacks */ 2878 rtnl_lock(); 2879 netif_device_detach(netdev); 2880 rtnl_unlock(); 2881 2882 /* When device is being removed it doesn't make sense to run the reset 2883 * task, just return in such a case. 2884 */ 2885 if (!mutex_trylock(&adapter->crit_lock)) { 2886 if (adapter->state != __IAVF_REMOVE) 2887 queue_work(iavf_wq, &adapter->reset_task); 2888 2889 goto reset_finish; 2890 } 2891 2892 while (!mutex_trylock(&adapter->client_lock)) 2893 usleep_range(500, 1000); 2894 if (CLIENT_ENABLED(adapter)) { 2895 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | 2896 IAVF_FLAG_CLIENT_NEEDS_CLOSE | 2897 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | 2898 IAVF_FLAG_SERVICE_CLIENT_REQUESTED); 2899 cancel_delayed_work_sync(&adapter->client_task); 2900 iavf_notify_client_close(&adapter->vsi, true); 2901 } 2902 iavf_misc_irq_disable(adapter); 2903 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2904 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2905 /* Restart the AQ here. If we have been reset but didn't 2906 * detect it, or if the PF had to reinit, our AQ will be hosed. 2907 */ 2908 iavf_shutdown_adminq(hw); 2909 iavf_init_adminq(hw); 2910 iavf_request_reset(adapter); 2911 } 2912 adapter->flags |= IAVF_FLAG_RESET_PENDING; 2913 2914 /* poll until we see the reset actually happen */ 2915 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 2916 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 2917 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2918 if (!reg_val) 2919 break; 2920 usleep_range(5000, 10000); 2921 } 2922 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 2923 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 2924 goto continue_reset; /* act like the reset happened */ 2925 } 2926 2927 /* wait until the reset is complete and the PF is responding to us */ 2928 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 2929 /* sleep first to make sure a minimum wait time is met */ 2930 msleep(IAVF_RESET_WAIT_MS); 2931 2932 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2933 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2934 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 2935 break; 2936 } 2937 2938 pci_set_master(adapter->pdev); 2939 pci_restore_msi_state(adapter->pdev); 2940 2941 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 2942 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 2943 reg_val); 2944 iavf_disable_vf(adapter); 2945 mutex_unlock(&adapter->client_lock); 2946 mutex_unlock(&adapter->crit_lock); 2947 return; /* Do not attempt to reinit. It's dead, Jim. */ 2948 } 2949 2950 continue_reset: 2951 /* We don't use netif_running() because it may be true prior to 2952 * ndo_open() returning, so we can't assume it means all our open 2953 * tasks have finished, since we're not holding the rtnl_lock here. 2954 */ 2955 running = adapter->state == __IAVF_RUNNING; 2956 2957 if (running) { 2958 netif_carrier_off(netdev); 2959 adapter->link_up = false; 2960 iavf_napi_disable_all(adapter); 2961 } 2962 iavf_irq_disable(adapter); 2963 2964 iavf_change_state(adapter, __IAVF_RESETTING); 2965 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2966 2967 /* free the Tx/Rx rings and descriptors, might be better to just 2968 * re-use them sometime in the future 2969 */ 2970 iavf_free_all_rx_resources(adapter); 2971 iavf_free_all_tx_resources(adapter); 2972 2973 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 2974 /* kill and reinit the admin queue */ 2975 iavf_shutdown_adminq(hw); 2976 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2977 status = iavf_init_adminq(hw); 2978 if (status) { 2979 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 2980 status); 2981 goto reset_err; 2982 } 2983 adapter->aq_required = 0; 2984 2985 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 2986 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 2987 err = iavf_reinit_interrupt_scheme(adapter); 2988 if (err) 2989 goto reset_err; 2990 } 2991 2992 if (RSS_AQ(adapter)) { 2993 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2994 } else { 2995 err = iavf_init_rss(adapter); 2996 if (err) 2997 goto reset_err; 2998 } 2999 3000 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3001 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3002 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3003 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3004 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3005 * been successfully sent and negotiated 3006 */ 3007 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3008 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3009 3010 spin_lock_bh(&adapter->mac_vlan_list_lock); 3011 3012 /* Delete filter for the current MAC address, it could have 3013 * been changed by the PF via administratively set MAC. 3014 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3015 */ 3016 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3017 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3018 list_del(&f->list); 3019 kfree(f); 3020 } 3021 } 3022 /* re-add all MAC filters */ 3023 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3024 f->add = true; 3025 } 3026 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3027 3028 /* check if TCs are running and re-add all cloud filters */ 3029 spin_lock_bh(&adapter->cloud_filter_list_lock); 3030 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3031 adapter->num_tc) { 3032 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3033 cf->add = true; 3034 } 3035 } 3036 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3037 3038 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3039 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3040 iavf_misc_irq_enable(adapter); 3041 3042 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID); 3043 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID); 3044 3045 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2); 3046 3047 /* We were running when the reset started, so we need to restore some 3048 * state here. 3049 */ 3050 if (running) { 3051 /* allocate transmit descriptors */ 3052 err = iavf_setup_all_tx_resources(adapter); 3053 if (err) 3054 goto reset_err; 3055 3056 /* allocate receive descriptors */ 3057 err = iavf_setup_all_rx_resources(adapter); 3058 if (err) 3059 goto reset_err; 3060 3061 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3062 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3063 err = iavf_request_traffic_irqs(adapter, netdev->name); 3064 if (err) 3065 goto reset_err; 3066 3067 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3068 } 3069 3070 iavf_configure(adapter); 3071 3072 /* iavf_up_complete() will switch device back 3073 * to __IAVF_RUNNING 3074 */ 3075 iavf_up_complete(adapter); 3076 3077 iavf_irq_enable(adapter, true); 3078 } else { 3079 iavf_change_state(adapter, __IAVF_DOWN); 3080 wake_up(&adapter->down_waitqueue); 3081 } 3082 3083 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3084 3085 mutex_unlock(&adapter->client_lock); 3086 mutex_unlock(&adapter->crit_lock); 3087 3088 goto reset_finish; 3089 reset_err: 3090 if (running) { 3091 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3092 iavf_free_traffic_irqs(adapter); 3093 } 3094 iavf_disable_vf(adapter); 3095 3096 mutex_unlock(&adapter->client_lock); 3097 mutex_unlock(&adapter->crit_lock); 3098 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3099 reset_finish: 3100 rtnl_lock(); 3101 netif_device_attach(netdev); 3102 rtnl_unlock(); 3103 } 3104 3105 /** 3106 * iavf_adminq_task - worker thread to clean the admin queue 3107 * @work: pointer to work_struct containing our data 3108 **/ 3109 static void iavf_adminq_task(struct work_struct *work) 3110 { 3111 struct iavf_adapter *adapter = 3112 container_of(work, struct iavf_adapter, adminq_task); 3113 struct iavf_hw *hw = &adapter->hw; 3114 struct iavf_arq_event_info event; 3115 enum virtchnl_ops v_op; 3116 enum iavf_status ret, v_ret; 3117 u32 val, oldval; 3118 u16 pending; 3119 3120 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3121 goto out; 3122 3123 if (!mutex_trylock(&adapter->crit_lock)) { 3124 if (adapter->state == __IAVF_REMOVE) 3125 return; 3126 3127 queue_work(iavf_wq, &adapter->adminq_task); 3128 goto out; 3129 } 3130 3131 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3132 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3133 if (!event.msg_buf) 3134 goto out; 3135 3136 do { 3137 ret = iavf_clean_arq_element(hw, &event, &pending); 3138 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3139 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3140 3141 if (ret || !v_op) 3142 break; /* No event to process or error cleaning ARQ */ 3143 3144 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3145 event.msg_len); 3146 if (pending != 0) 3147 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3148 } while (pending); 3149 mutex_unlock(&adapter->crit_lock); 3150 3151 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) { 3152 if (adapter->netdev_registered || 3153 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 3154 struct net_device *netdev = adapter->netdev; 3155 3156 rtnl_lock(); 3157 netdev_update_features(netdev); 3158 rtnl_unlock(); 3159 /* Request VLAN offload settings */ 3160 if (VLAN_V2_ALLOWED(adapter)) 3161 iavf_set_vlan_offload_features 3162 (adapter, 0, netdev->features); 3163 3164 iavf_set_queue_vlan_tag_loc(adapter); 3165 } 3166 3167 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 3168 } 3169 if ((adapter->flags & 3170 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || 3171 adapter->state == __IAVF_RESETTING) 3172 goto freedom; 3173 3174 /* check for error indications */ 3175 val = rd32(hw, hw->aq.arq.len); 3176 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3177 goto freedom; 3178 oldval = val; 3179 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3180 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3181 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3182 } 3183 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3184 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3185 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3186 } 3187 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3188 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3189 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3190 } 3191 if (oldval != val) 3192 wr32(hw, hw->aq.arq.len, val); 3193 3194 val = rd32(hw, hw->aq.asq.len); 3195 oldval = val; 3196 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3197 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3198 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3199 } 3200 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3201 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3202 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3203 } 3204 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3205 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3206 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3207 } 3208 if (oldval != val) 3209 wr32(hw, hw->aq.asq.len, val); 3210 3211 freedom: 3212 kfree(event.msg_buf); 3213 out: 3214 /* re-enable Admin queue interrupt cause */ 3215 iavf_misc_irq_enable(adapter); 3216 } 3217 3218 /** 3219 * iavf_client_task - worker thread to perform client work 3220 * @work: pointer to work_struct containing our data 3221 * 3222 * This task handles client interactions. Because client calls can be 3223 * reentrant, we can't handle them in the watchdog. 3224 **/ 3225 static void iavf_client_task(struct work_struct *work) 3226 { 3227 struct iavf_adapter *adapter = 3228 container_of(work, struct iavf_adapter, client_task.work); 3229 3230 /* If we can't get the client bit, just give up. We'll be rescheduled 3231 * later. 3232 */ 3233 3234 if (!mutex_trylock(&adapter->client_lock)) 3235 return; 3236 3237 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { 3238 iavf_client_subtask(adapter); 3239 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 3240 goto out; 3241 } 3242 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { 3243 iavf_notify_client_l2_params(&adapter->vsi); 3244 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; 3245 goto out; 3246 } 3247 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { 3248 iavf_notify_client_close(&adapter->vsi, false); 3249 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; 3250 goto out; 3251 } 3252 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { 3253 iavf_notify_client_open(&adapter->vsi); 3254 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; 3255 } 3256 out: 3257 mutex_unlock(&adapter->client_lock); 3258 } 3259 3260 /** 3261 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3262 * @adapter: board private structure 3263 * 3264 * Free all transmit software resources 3265 **/ 3266 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3267 { 3268 int i; 3269 3270 if (!adapter->tx_rings) 3271 return; 3272 3273 for (i = 0; i < adapter->num_active_queues; i++) 3274 if (adapter->tx_rings[i].desc) 3275 iavf_free_tx_resources(&adapter->tx_rings[i]); 3276 } 3277 3278 /** 3279 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3280 * @adapter: board private structure 3281 * 3282 * If this function returns with an error, then it's possible one or 3283 * more of the rings is populated (while the rest are not). It is the 3284 * callers duty to clean those orphaned rings. 3285 * 3286 * Return 0 on success, negative on failure 3287 **/ 3288 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3289 { 3290 int i, err = 0; 3291 3292 for (i = 0; i < adapter->num_active_queues; i++) { 3293 adapter->tx_rings[i].count = adapter->tx_desc_count; 3294 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3295 if (!err) 3296 continue; 3297 dev_err(&adapter->pdev->dev, 3298 "Allocation for Tx Queue %u failed\n", i); 3299 break; 3300 } 3301 3302 return err; 3303 } 3304 3305 /** 3306 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3307 * @adapter: board private structure 3308 * 3309 * If this function returns with an error, then it's possible one or 3310 * more of the rings is populated (while the rest are not). It is the 3311 * callers duty to clean those orphaned rings. 3312 * 3313 * Return 0 on success, negative on failure 3314 **/ 3315 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3316 { 3317 int i, err = 0; 3318 3319 for (i = 0; i < adapter->num_active_queues; i++) { 3320 adapter->rx_rings[i].count = adapter->rx_desc_count; 3321 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3322 if (!err) 3323 continue; 3324 dev_err(&adapter->pdev->dev, 3325 "Allocation for Rx Queue %u failed\n", i); 3326 break; 3327 } 3328 return err; 3329 } 3330 3331 /** 3332 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3333 * @adapter: board private structure 3334 * 3335 * Free all receive software resources 3336 **/ 3337 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3338 { 3339 int i; 3340 3341 if (!adapter->rx_rings) 3342 return; 3343 3344 for (i = 0; i < adapter->num_active_queues; i++) 3345 if (adapter->rx_rings[i].desc) 3346 iavf_free_rx_resources(&adapter->rx_rings[i]); 3347 } 3348 3349 /** 3350 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3351 * @adapter: board private structure 3352 * @max_tx_rate: max Tx bw for a tc 3353 **/ 3354 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3355 u64 max_tx_rate) 3356 { 3357 int speed = 0, ret = 0; 3358 3359 if (ADV_LINK_SUPPORT(adapter)) { 3360 if (adapter->link_speed_mbps < U32_MAX) { 3361 speed = adapter->link_speed_mbps; 3362 goto validate_bw; 3363 } else { 3364 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3365 return -EINVAL; 3366 } 3367 } 3368 3369 switch (adapter->link_speed) { 3370 case VIRTCHNL_LINK_SPEED_40GB: 3371 speed = SPEED_40000; 3372 break; 3373 case VIRTCHNL_LINK_SPEED_25GB: 3374 speed = SPEED_25000; 3375 break; 3376 case VIRTCHNL_LINK_SPEED_20GB: 3377 speed = SPEED_20000; 3378 break; 3379 case VIRTCHNL_LINK_SPEED_10GB: 3380 speed = SPEED_10000; 3381 break; 3382 case VIRTCHNL_LINK_SPEED_5GB: 3383 speed = SPEED_5000; 3384 break; 3385 case VIRTCHNL_LINK_SPEED_2_5GB: 3386 speed = SPEED_2500; 3387 break; 3388 case VIRTCHNL_LINK_SPEED_1GB: 3389 speed = SPEED_1000; 3390 break; 3391 case VIRTCHNL_LINK_SPEED_100MB: 3392 speed = SPEED_100; 3393 break; 3394 default: 3395 break; 3396 } 3397 3398 validate_bw: 3399 if (max_tx_rate > speed) { 3400 dev_err(&adapter->pdev->dev, 3401 "Invalid tx rate specified\n"); 3402 ret = -EINVAL; 3403 } 3404 3405 return ret; 3406 } 3407 3408 /** 3409 * iavf_validate_ch_config - validate queue mapping info 3410 * @adapter: board private structure 3411 * @mqprio_qopt: queue parameters 3412 * 3413 * This function validates if the config provided by the user to 3414 * configure queue channels is valid or not. Returns 0 on a valid 3415 * config. 3416 **/ 3417 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3418 struct tc_mqprio_qopt_offload *mqprio_qopt) 3419 { 3420 u64 total_max_rate = 0; 3421 u32 tx_rate_rem = 0; 3422 int i, num_qps = 0; 3423 u64 tx_rate = 0; 3424 int ret = 0; 3425 3426 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3427 mqprio_qopt->qopt.num_tc < 1) 3428 return -EINVAL; 3429 3430 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3431 if (!mqprio_qopt->qopt.count[i] || 3432 mqprio_qopt->qopt.offset[i] != num_qps) 3433 return -EINVAL; 3434 if (mqprio_qopt->min_rate[i]) { 3435 dev_err(&adapter->pdev->dev, 3436 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3437 i); 3438 return -EINVAL; 3439 } 3440 3441 /* convert to Mbps */ 3442 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3443 IAVF_MBPS_DIVISOR); 3444 3445 if (mqprio_qopt->max_rate[i] && 3446 tx_rate < IAVF_MBPS_QUANTA) { 3447 dev_err(&adapter->pdev->dev, 3448 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3449 i, IAVF_MBPS_QUANTA); 3450 return -EINVAL; 3451 } 3452 3453 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3454 3455 if (tx_rate_rem != 0) { 3456 dev_err(&adapter->pdev->dev, 3457 "Invalid max tx rate for TC%d, not divisible by %d\n", 3458 i, IAVF_MBPS_QUANTA); 3459 return -EINVAL; 3460 } 3461 3462 total_max_rate += tx_rate; 3463 num_qps += mqprio_qopt->qopt.count[i]; 3464 } 3465 if (num_qps > adapter->num_active_queues) { 3466 dev_err(&adapter->pdev->dev, 3467 "Cannot support requested number of queues\n"); 3468 return -EINVAL; 3469 } 3470 3471 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3472 return ret; 3473 } 3474 3475 /** 3476 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3477 * @adapter: board private structure 3478 **/ 3479 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3480 { 3481 struct iavf_cloud_filter *cf, *cftmp; 3482 3483 spin_lock_bh(&adapter->cloud_filter_list_lock); 3484 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3485 list) { 3486 list_del(&cf->list); 3487 kfree(cf); 3488 adapter->num_cloud_filters--; 3489 } 3490 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3491 } 3492 3493 /** 3494 * __iavf_setup_tc - configure multiple traffic classes 3495 * @netdev: network interface device structure 3496 * @type_data: tc offload data 3497 * 3498 * This function processes the config information provided by the 3499 * user to configure traffic classes/queue channels and packages the 3500 * information to request the PF to setup traffic classes. 3501 * 3502 * Returns 0 on success. 3503 **/ 3504 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3505 { 3506 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3507 struct iavf_adapter *adapter = netdev_priv(netdev); 3508 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3509 u8 num_tc = 0, total_qps = 0; 3510 int ret = 0, netdev_tc = 0; 3511 u64 max_tx_rate; 3512 u16 mode; 3513 int i; 3514 3515 num_tc = mqprio_qopt->qopt.num_tc; 3516 mode = mqprio_qopt->mode; 3517 3518 /* delete queue_channel */ 3519 if (!mqprio_qopt->qopt.hw) { 3520 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3521 /* reset the tc configuration */ 3522 netdev_reset_tc(netdev); 3523 adapter->num_tc = 0; 3524 netif_tx_stop_all_queues(netdev); 3525 netif_tx_disable(netdev); 3526 iavf_del_all_cloud_filters(adapter); 3527 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3528 total_qps = adapter->orig_num_active_queues; 3529 goto exit; 3530 } else { 3531 return -EINVAL; 3532 } 3533 } 3534 3535 /* add queue channel */ 3536 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3537 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3538 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3539 return -EOPNOTSUPP; 3540 } 3541 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3542 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3543 return -EINVAL; 3544 } 3545 3546 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3547 if (ret) 3548 return ret; 3549 /* Return if same TC config is requested */ 3550 if (adapter->num_tc == num_tc) 3551 return 0; 3552 adapter->num_tc = num_tc; 3553 3554 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3555 if (i < num_tc) { 3556 adapter->ch_config.ch_info[i].count = 3557 mqprio_qopt->qopt.count[i]; 3558 adapter->ch_config.ch_info[i].offset = 3559 mqprio_qopt->qopt.offset[i]; 3560 total_qps += mqprio_qopt->qopt.count[i]; 3561 max_tx_rate = mqprio_qopt->max_rate[i]; 3562 /* convert to Mbps */ 3563 max_tx_rate = div_u64(max_tx_rate, 3564 IAVF_MBPS_DIVISOR); 3565 adapter->ch_config.ch_info[i].max_tx_rate = 3566 max_tx_rate; 3567 } else { 3568 adapter->ch_config.ch_info[i].count = 1; 3569 adapter->ch_config.ch_info[i].offset = 0; 3570 } 3571 } 3572 3573 /* Take snapshot of original config such as "num_active_queues" 3574 * It is used later when delete ADQ flow is exercised, so that 3575 * once delete ADQ flow completes, VF shall go back to its 3576 * original queue configuration 3577 */ 3578 3579 adapter->orig_num_active_queues = adapter->num_active_queues; 3580 3581 /* Store queue info based on TC so that VF gets configured 3582 * with correct number of queues when VF completes ADQ config 3583 * flow 3584 */ 3585 adapter->ch_config.total_qps = total_qps; 3586 3587 netif_tx_stop_all_queues(netdev); 3588 netif_tx_disable(netdev); 3589 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3590 netdev_reset_tc(netdev); 3591 /* Report the tc mapping up the stack */ 3592 netdev_set_num_tc(adapter->netdev, num_tc); 3593 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3594 u16 qcount = mqprio_qopt->qopt.count[i]; 3595 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3596 3597 if (i < num_tc) 3598 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3599 qoffset); 3600 } 3601 } 3602 exit: 3603 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3604 return 0; 3605 3606 netif_set_real_num_rx_queues(netdev, total_qps); 3607 netif_set_real_num_tx_queues(netdev, total_qps); 3608 3609 return ret; 3610 } 3611 3612 /** 3613 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3614 * @adapter: board private structure 3615 * @f: pointer to struct flow_cls_offload 3616 * @filter: pointer to cloud filter structure 3617 */ 3618 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3619 struct flow_cls_offload *f, 3620 struct iavf_cloud_filter *filter) 3621 { 3622 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3623 struct flow_dissector *dissector = rule->match.dissector; 3624 u16 n_proto_mask = 0; 3625 u16 n_proto_key = 0; 3626 u8 field_flags = 0; 3627 u16 addr_type = 0; 3628 u16 n_proto = 0; 3629 int i = 0; 3630 struct virtchnl_filter *vf = &filter->f; 3631 3632 if (dissector->used_keys & 3633 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 3634 BIT(FLOW_DISSECTOR_KEY_BASIC) | 3635 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3636 BIT(FLOW_DISSECTOR_KEY_VLAN) | 3637 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3638 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3639 BIT(FLOW_DISSECTOR_KEY_PORTS) | 3640 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3641 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", 3642 dissector->used_keys); 3643 return -EOPNOTSUPP; 3644 } 3645 3646 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3647 struct flow_match_enc_keyid match; 3648 3649 flow_rule_match_enc_keyid(rule, &match); 3650 if (match.mask->keyid != 0) 3651 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3652 } 3653 3654 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3655 struct flow_match_basic match; 3656 3657 flow_rule_match_basic(rule, &match); 3658 n_proto_key = ntohs(match.key->n_proto); 3659 n_proto_mask = ntohs(match.mask->n_proto); 3660 3661 if (n_proto_key == ETH_P_ALL) { 3662 n_proto_key = 0; 3663 n_proto_mask = 0; 3664 } 3665 n_proto = n_proto_key & n_proto_mask; 3666 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3667 return -EINVAL; 3668 if (n_proto == ETH_P_IPV6) { 3669 /* specify flow type as TCP IPv6 */ 3670 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3671 } 3672 3673 if (match.key->ip_proto != IPPROTO_TCP) { 3674 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3675 return -EINVAL; 3676 } 3677 } 3678 3679 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3680 struct flow_match_eth_addrs match; 3681 3682 flow_rule_match_eth_addrs(rule, &match); 3683 3684 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3685 if (!is_zero_ether_addr(match.mask->dst)) { 3686 if (is_broadcast_ether_addr(match.mask->dst)) { 3687 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3688 } else { 3689 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3690 match.mask->dst); 3691 return -EINVAL; 3692 } 3693 } 3694 3695 if (!is_zero_ether_addr(match.mask->src)) { 3696 if (is_broadcast_ether_addr(match.mask->src)) { 3697 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3698 } else { 3699 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3700 match.mask->src); 3701 return -EINVAL; 3702 } 3703 } 3704 3705 if (!is_zero_ether_addr(match.key->dst)) 3706 if (is_valid_ether_addr(match.key->dst) || 3707 is_multicast_ether_addr(match.key->dst)) { 3708 /* set the mask if a valid dst_mac address */ 3709 for (i = 0; i < ETH_ALEN; i++) 3710 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3711 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3712 match.key->dst); 3713 } 3714 3715 if (!is_zero_ether_addr(match.key->src)) 3716 if (is_valid_ether_addr(match.key->src) || 3717 is_multicast_ether_addr(match.key->src)) { 3718 /* set the mask if a valid dst_mac address */ 3719 for (i = 0; i < ETH_ALEN; i++) 3720 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3721 ether_addr_copy(vf->data.tcp_spec.src_mac, 3722 match.key->src); 3723 } 3724 } 3725 3726 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3727 struct flow_match_vlan match; 3728 3729 flow_rule_match_vlan(rule, &match); 3730 if (match.mask->vlan_id) { 3731 if (match.mask->vlan_id == VLAN_VID_MASK) { 3732 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3733 } else { 3734 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3735 match.mask->vlan_id); 3736 return -EINVAL; 3737 } 3738 } 3739 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3740 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3741 } 3742 3743 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3744 struct flow_match_control match; 3745 3746 flow_rule_match_control(rule, &match); 3747 addr_type = match.key->addr_type; 3748 } 3749 3750 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3751 struct flow_match_ipv4_addrs match; 3752 3753 flow_rule_match_ipv4_addrs(rule, &match); 3754 if (match.mask->dst) { 3755 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3756 field_flags |= IAVF_CLOUD_FIELD_IIP; 3757 } else { 3758 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3759 be32_to_cpu(match.mask->dst)); 3760 return -EINVAL; 3761 } 3762 } 3763 3764 if (match.mask->src) { 3765 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3766 field_flags |= IAVF_CLOUD_FIELD_IIP; 3767 } else { 3768 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3769 be32_to_cpu(match.mask->dst)); 3770 return -EINVAL; 3771 } 3772 } 3773 3774 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3775 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3776 return -EINVAL; 3777 } 3778 if (match.key->dst) { 3779 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3780 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3781 } 3782 if (match.key->src) { 3783 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3784 vf->data.tcp_spec.src_ip[0] = match.key->src; 3785 } 3786 } 3787 3788 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3789 struct flow_match_ipv6_addrs match; 3790 3791 flow_rule_match_ipv6_addrs(rule, &match); 3792 3793 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3794 if (ipv6_addr_any(&match.mask->dst)) { 3795 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3796 IPV6_ADDR_ANY); 3797 return -EINVAL; 3798 } 3799 3800 /* src and dest IPv6 address should not be LOOPBACK 3801 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3802 */ 3803 if (ipv6_addr_loopback(&match.key->dst) || 3804 ipv6_addr_loopback(&match.key->src)) { 3805 dev_err(&adapter->pdev->dev, 3806 "ipv6 addr should not be loopback\n"); 3807 return -EINVAL; 3808 } 3809 if (!ipv6_addr_any(&match.mask->dst) || 3810 !ipv6_addr_any(&match.mask->src)) 3811 field_flags |= IAVF_CLOUD_FIELD_IIP; 3812 3813 for (i = 0; i < 4; i++) 3814 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3815 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3816 sizeof(vf->data.tcp_spec.dst_ip)); 3817 for (i = 0; i < 4; i++) 3818 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3819 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3820 sizeof(vf->data.tcp_spec.src_ip)); 3821 } 3822 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3823 struct flow_match_ports match; 3824 3825 flow_rule_match_ports(rule, &match); 3826 if (match.mask->src) { 3827 if (match.mask->src == cpu_to_be16(0xffff)) { 3828 field_flags |= IAVF_CLOUD_FIELD_IIP; 3829 } else { 3830 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3831 be16_to_cpu(match.mask->src)); 3832 return -EINVAL; 3833 } 3834 } 3835 3836 if (match.mask->dst) { 3837 if (match.mask->dst == cpu_to_be16(0xffff)) { 3838 field_flags |= IAVF_CLOUD_FIELD_IIP; 3839 } else { 3840 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3841 be16_to_cpu(match.mask->dst)); 3842 return -EINVAL; 3843 } 3844 } 3845 if (match.key->dst) { 3846 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3847 vf->data.tcp_spec.dst_port = match.key->dst; 3848 } 3849 3850 if (match.key->src) { 3851 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3852 vf->data.tcp_spec.src_port = match.key->src; 3853 } 3854 } 3855 vf->field_flags = field_flags; 3856 3857 return 0; 3858 } 3859 3860 /** 3861 * iavf_handle_tclass - Forward to a traffic class on the device 3862 * @adapter: board private structure 3863 * @tc: traffic class index on the device 3864 * @filter: pointer to cloud filter structure 3865 */ 3866 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3867 struct iavf_cloud_filter *filter) 3868 { 3869 if (tc == 0) 3870 return 0; 3871 if (tc < adapter->num_tc) { 3872 if (!filter->f.data.tcp_spec.dst_port) { 3873 dev_err(&adapter->pdev->dev, 3874 "Specify destination port to redirect to traffic class other than TC0\n"); 3875 return -EINVAL; 3876 } 3877 } 3878 /* redirect to a traffic class on the same device */ 3879 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3880 filter->f.action_meta = tc; 3881 return 0; 3882 } 3883 3884 /** 3885 * iavf_find_cf - Find the cloud filter in the list 3886 * @adapter: Board private structure 3887 * @cookie: filter specific cookie 3888 * 3889 * Returns ptr to the filter object or NULL. Must be called while holding the 3890 * cloud_filter_list_lock. 3891 */ 3892 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3893 unsigned long *cookie) 3894 { 3895 struct iavf_cloud_filter *filter = NULL; 3896 3897 if (!cookie) 3898 return NULL; 3899 3900 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3901 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3902 return filter; 3903 } 3904 return NULL; 3905 } 3906 3907 /** 3908 * iavf_configure_clsflower - Add tc flower filters 3909 * @adapter: board private structure 3910 * @cls_flower: Pointer to struct flow_cls_offload 3911 */ 3912 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3913 struct flow_cls_offload *cls_flower) 3914 { 3915 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3916 struct iavf_cloud_filter *filter = NULL; 3917 int err = -EINVAL, count = 50; 3918 3919 if (tc < 0) { 3920 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3921 return -EINVAL; 3922 } 3923 3924 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3925 if (!filter) 3926 return -ENOMEM; 3927 3928 while (!mutex_trylock(&adapter->crit_lock)) { 3929 if (--count == 0) { 3930 kfree(filter); 3931 return err; 3932 } 3933 udelay(1); 3934 } 3935 3936 filter->cookie = cls_flower->cookie; 3937 3938 /* bail out here if filter already exists */ 3939 spin_lock_bh(&adapter->cloud_filter_list_lock); 3940 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3941 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3942 err = -EEXIST; 3943 goto spin_unlock; 3944 } 3945 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3946 3947 /* set the mask to all zeroes to begin with */ 3948 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3949 /* start out with flow type and eth type IPv4 to begin with */ 3950 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3951 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3952 if (err) 3953 goto err; 3954 3955 err = iavf_handle_tclass(adapter, tc, filter); 3956 if (err) 3957 goto err; 3958 3959 /* add filter to the list */ 3960 spin_lock_bh(&adapter->cloud_filter_list_lock); 3961 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3962 adapter->num_cloud_filters++; 3963 filter->add = true; 3964 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3965 spin_unlock: 3966 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3967 err: 3968 if (err) 3969 kfree(filter); 3970 3971 mutex_unlock(&adapter->crit_lock); 3972 return err; 3973 } 3974 3975 /** 3976 * iavf_delete_clsflower - Remove tc flower filters 3977 * @adapter: board private structure 3978 * @cls_flower: Pointer to struct flow_cls_offload 3979 */ 3980 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 3981 struct flow_cls_offload *cls_flower) 3982 { 3983 struct iavf_cloud_filter *filter = NULL; 3984 int err = 0; 3985 3986 spin_lock_bh(&adapter->cloud_filter_list_lock); 3987 filter = iavf_find_cf(adapter, &cls_flower->cookie); 3988 if (filter) { 3989 filter->del = true; 3990 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 3991 } else { 3992 err = -EINVAL; 3993 } 3994 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3995 3996 return err; 3997 } 3998 3999 /** 4000 * iavf_setup_tc_cls_flower - flower classifier offloads 4001 * @adapter: board private structure 4002 * @cls_flower: pointer to flow_cls_offload struct with flow info 4003 */ 4004 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4005 struct flow_cls_offload *cls_flower) 4006 { 4007 switch (cls_flower->command) { 4008 case FLOW_CLS_REPLACE: 4009 return iavf_configure_clsflower(adapter, cls_flower); 4010 case FLOW_CLS_DESTROY: 4011 return iavf_delete_clsflower(adapter, cls_flower); 4012 case FLOW_CLS_STATS: 4013 return -EOPNOTSUPP; 4014 default: 4015 return -EOPNOTSUPP; 4016 } 4017 } 4018 4019 /** 4020 * iavf_setup_tc_block_cb - block callback for tc 4021 * @type: type of offload 4022 * @type_data: offload data 4023 * @cb_priv: 4024 * 4025 * This function is the block callback for traffic classes 4026 **/ 4027 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4028 void *cb_priv) 4029 { 4030 struct iavf_adapter *adapter = cb_priv; 4031 4032 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4033 return -EOPNOTSUPP; 4034 4035 switch (type) { 4036 case TC_SETUP_CLSFLOWER: 4037 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4038 default: 4039 return -EOPNOTSUPP; 4040 } 4041 } 4042 4043 static LIST_HEAD(iavf_block_cb_list); 4044 4045 /** 4046 * iavf_setup_tc - configure multiple traffic classes 4047 * @netdev: network interface device structure 4048 * @type: type of offload 4049 * @type_data: tc offload data 4050 * 4051 * This function is the callback to ndo_setup_tc in the 4052 * netdev_ops. 4053 * 4054 * Returns 0 on success 4055 **/ 4056 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4057 void *type_data) 4058 { 4059 struct iavf_adapter *adapter = netdev_priv(netdev); 4060 4061 switch (type) { 4062 case TC_SETUP_QDISC_MQPRIO: 4063 return __iavf_setup_tc(netdev, type_data); 4064 case TC_SETUP_BLOCK: 4065 return flow_block_cb_setup_simple(type_data, 4066 &iavf_block_cb_list, 4067 iavf_setup_tc_block_cb, 4068 adapter, adapter, true); 4069 default: 4070 return -EOPNOTSUPP; 4071 } 4072 } 4073 4074 /** 4075 * iavf_open - Called when a network interface is made active 4076 * @netdev: network interface device structure 4077 * 4078 * Returns 0 on success, negative value on failure 4079 * 4080 * The open entry point is called when a network interface is made 4081 * active by the system (IFF_UP). At this point all resources needed 4082 * for transmit and receive operations are allocated, the interrupt 4083 * handler is registered with the OS, the watchdog is started, 4084 * and the stack is notified that the interface is ready. 4085 **/ 4086 static int iavf_open(struct net_device *netdev) 4087 { 4088 struct iavf_adapter *adapter = netdev_priv(netdev); 4089 int err; 4090 4091 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4092 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4093 return -EIO; 4094 } 4095 4096 while (!mutex_trylock(&adapter->crit_lock)) { 4097 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4098 * is already taken and iavf_open is called from an upper 4099 * device's notifier reacting on NETDEV_REGISTER event. 4100 * We have to leave here to avoid dead lock. 4101 */ 4102 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4103 return -EBUSY; 4104 4105 usleep_range(500, 1000); 4106 } 4107 4108 if (adapter->state != __IAVF_DOWN) { 4109 err = -EBUSY; 4110 goto err_unlock; 4111 } 4112 4113 if (adapter->state == __IAVF_RUNNING && 4114 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4115 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4116 err = 0; 4117 goto err_unlock; 4118 } 4119 4120 /* allocate transmit descriptors */ 4121 err = iavf_setup_all_tx_resources(adapter); 4122 if (err) 4123 goto err_setup_tx; 4124 4125 /* allocate receive descriptors */ 4126 err = iavf_setup_all_rx_resources(adapter); 4127 if (err) 4128 goto err_setup_rx; 4129 4130 /* clear any pending interrupts, may auto mask */ 4131 err = iavf_request_traffic_irqs(adapter, netdev->name); 4132 if (err) 4133 goto err_req_irq; 4134 4135 spin_lock_bh(&adapter->mac_vlan_list_lock); 4136 4137 iavf_add_filter(adapter, adapter->hw.mac.addr); 4138 4139 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4140 4141 /* Restore VLAN filters that were removed with IFF_DOWN */ 4142 iavf_restore_filters(adapter); 4143 4144 iavf_configure(adapter); 4145 4146 iavf_up_complete(adapter); 4147 4148 iavf_irq_enable(adapter, true); 4149 4150 mutex_unlock(&adapter->crit_lock); 4151 4152 return 0; 4153 4154 err_req_irq: 4155 iavf_down(adapter); 4156 iavf_free_traffic_irqs(adapter); 4157 err_setup_rx: 4158 iavf_free_all_rx_resources(adapter); 4159 err_setup_tx: 4160 iavf_free_all_tx_resources(adapter); 4161 err_unlock: 4162 mutex_unlock(&adapter->crit_lock); 4163 4164 return err; 4165 } 4166 4167 /** 4168 * iavf_close - Disables a network interface 4169 * @netdev: network interface device structure 4170 * 4171 * Returns 0, this is not allowed to fail 4172 * 4173 * The close entry point is called when an interface is de-activated 4174 * by the OS. The hardware is still under the drivers control, but 4175 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4176 * are freed, along with all transmit and receive resources. 4177 **/ 4178 static int iavf_close(struct net_device *netdev) 4179 { 4180 struct iavf_adapter *adapter = netdev_priv(netdev); 4181 int status; 4182 4183 mutex_lock(&adapter->crit_lock); 4184 4185 if (adapter->state <= __IAVF_DOWN_PENDING) { 4186 mutex_unlock(&adapter->crit_lock); 4187 return 0; 4188 } 4189 4190 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4191 if (CLIENT_ENABLED(adapter)) 4192 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; 4193 4194 iavf_down(adapter); 4195 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4196 iavf_free_traffic_irqs(adapter); 4197 4198 mutex_unlock(&adapter->crit_lock); 4199 4200 /* We explicitly don't free resources here because the hardware is 4201 * still active and can DMA into memory. Resources are cleared in 4202 * iavf_virtchnl_completion() after we get confirmation from the PF 4203 * driver that the rings have been stopped. 4204 * 4205 * Also, we wait for state to transition to __IAVF_DOWN before 4206 * returning. State change occurs in iavf_virtchnl_completion() after 4207 * VF resources are released (which occurs after PF driver processes and 4208 * responds to admin queue commands). 4209 */ 4210 4211 status = wait_event_timeout(adapter->down_waitqueue, 4212 adapter->state == __IAVF_DOWN, 4213 msecs_to_jiffies(500)); 4214 if (!status) 4215 netdev_warn(netdev, "Device resources not yet released\n"); 4216 return 0; 4217 } 4218 4219 /** 4220 * iavf_change_mtu - Change the Maximum Transfer Unit 4221 * @netdev: network interface device structure 4222 * @new_mtu: new value for maximum frame size 4223 * 4224 * Returns 0 on success, negative on failure 4225 **/ 4226 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4227 { 4228 struct iavf_adapter *adapter = netdev_priv(netdev); 4229 4230 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4231 netdev->mtu, new_mtu); 4232 netdev->mtu = new_mtu; 4233 if (CLIENT_ENABLED(adapter)) { 4234 iavf_notify_client_l2_params(&adapter->vsi); 4235 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; 4236 } 4237 4238 if (netif_running(netdev)) { 4239 adapter->flags |= IAVF_FLAG_RESET_NEEDED; 4240 queue_work(iavf_wq, &adapter->reset_task); 4241 } 4242 4243 return 0; 4244 } 4245 4246 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4247 NETIF_F_HW_VLAN_CTAG_TX | \ 4248 NETIF_F_HW_VLAN_STAG_RX | \ 4249 NETIF_F_HW_VLAN_STAG_TX) 4250 4251 /** 4252 * iavf_set_features - set the netdev feature flags 4253 * @netdev: ptr to the netdev being adjusted 4254 * @features: the feature set that the stack is suggesting 4255 * Note: expects to be called while under rtnl_lock() 4256 **/ 4257 static int iavf_set_features(struct net_device *netdev, 4258 netdev_features_t features) 4259 { 4260 struct iavf_adapter *adapter = netdev_priv(netdev); 4261 4262 /* trigger update on any VLAN feature change */ 4263 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4264 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4265 iavf_set_vlan_offload_features(adapter, netdev->features, 4266 features); 4267 4268 return 0; 4269 } 4270 4271 /** 4272 * iavf_features_check - Validate encapsulated packet conforms to limits 4273 * @skb: skb buff 4274 * @dev: This physical port's netdev 4275 * @features: Offload features that the stack believes apply 4276 **/ 4277 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4278 struct net_device *dev, 4279 netdev_features_t features) 4280 { 4281 size_t len; 4282 4283 /* No point in doing any of this if neither checksum nor GSO are 4284 * being requested for this frame. We can rule out both by just 4285 * checking for CHECKSUM_PARTIAL 4286 */ 4287 if (skb->ip_summed != CHECKSUM_PARTIAL) 4288 return features; 4289 4290 /* We cannot support GSO if the MSS is going to be less than 4291 * 64 bytes. If it is then we need to drop support for GSO. 4292 */ 4293 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4294 features &= ~NETIF_F_GSO_MASK; 4295 4296 /* MACLEN can support at most 63 words */ 4297 len = skb_network_header(skb) - skb->data; 4298 if (len & ~(63 * 2)) 4299 goto out_err; 4300 4301 /* IPLEN and EIPLEN can support at most 127 dwords */ 4302 len = skb_transport_header(skb) - skb_network_header(skb); 4303 if (len & ~(127 * 4)) 4304 goto out_err; 4305 4306 if (skb->encapsulation) { 4307 /* L4TUNLEN can support 127 words */ 4308 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4309 if (len & ~(127 * 2)) 4310 goto out_err; 4311 4312 /* IPLEN can support at most 127 dwords */ 4313 len = skb_inner_transport_header(skb) - 4314 skb_inner_network_header(skb); 4315 if (len & ~(127 * 4)) 4316 goto out_err; 4317 } 4318 4319 /* No need to validate L4LEN as TCP is the only protocol with a 4320 * flexible value and we support all possible values supported 4321 * by TCP, which is at most 15 dwords 4322 */ 4323 4324 return features; 4325 out_err: 4326 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4327 } 4328 4329 /** 4330 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4331 * @adapter: board private structure 4332 * 4333 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4334 * were negotiated determine the VLAN features that can be toggled on and off. 4335 **/ 4336 static netdev_features_t 4337 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4338 { 4339 netdev_features_t hw_features = 0; 4340 4341 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4342 return hw_features; 4343 4344 /* Enable VLAN features if supported */ 4345 if (VLAN_ALLOWED(adapter)) { 4346 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4347 NETIF_F_HW_VLAN_CTAG_RX); 4348 } else if (VLAN_V2_ALLOWED(adapter)) { 4349 struct virtchnl_vlan_caps *vlan_v2_caps = 4350 &adapter->vlan_v2_caps; 4351 struct virtchnl_vlan_supported_caps *stripping_support = 4352 &vlan_v2_caps->offloads.stripping_support; 4353 struct virtchnl_vlan_supported_caps *insertion_support = 4354 &vlan_v2_caps->offloads.insertion_support; 4355 4356 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4357 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4358 if (stripping_support->outer & 4359 VIRTCHNL_VLAN_ETHERTYPE_8100) 4360 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4361 if (stripping_support->outer & 4362 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4363 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4364 } else if (stripping_support->inner != 4365 VIRTCHNL_VLAN_UNSUPPORTED && 4366 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4367 if (stripping_support->inner & 4368 VIRTCHNL_VLAN_ETHERTYPE_8100) 4369 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4370 } 4371 4372 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4373 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4374 if (insertion_support->outer & 4375 VIRTCHNL_VLAN_ETHERTYPE_8100) 4376 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4377 if (insertion_support->outer & 4378 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4379 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4380 } else if (insertion_support->inner && 4381 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4382 if (insertion_support->inner & 4383 VIRTCHNL_VLAN_ETHERTYPE_8100) 4384 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4385 } 4386 } 4387 4388 return hw_features; 4389 } 4390 4391 /** 4392 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4393 * @adapter: board private structure 4394 * 4395 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4396 * were negotiated determine the VLAN features that are enabled by default. 4397 **/ 4398 static netdev_features_t 4399 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4400 { 4401 netdev_features_t features = 0; 4402 4403 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4404 return features; 4405 4406 if (VLAN_ALLOWED(adapter)) { 4407 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4408 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4409 } else if (VLAN_V2_ALLOWED(adapter)) { 4410 struct virtchnl_vlan_caps *vlan_v2_caps = 4411 &adapter->vlan_v2_caps; 4412 struct virtchnl_vlan_supported_caps *filtering_support = 4413 &vlan_v2_caps->filtering.filtering_support; 4414 struct virtchnl_vlan_supported_caps *stripping_support = 4415 &vlan_v2_caps->offloads.stripping_support; 4416 struct virtchnl_vlan_supported_caps *insertion_support = 4417 &vlan_v2_caps->offloads.insertion_support; 4418 u32 ethertype_init; 4419 4420 /* give priority to outer stripping and don't support both outer 4421 * and inner stripping 4422 */ 4423 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4424 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4425 if (stripping_support->outer & 4426 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4427 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4428 features |= NETIF_F_HW_VLAN_CTAG_RX; 4429 else if (stripping_support->outer & 4430 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4431 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4432 features |= NETIF_F_HW_VLAN_STAG_RX; 4433 } else if (stripping_support->inner != 4434 VIRTCHNL_VLAN_UNSUPPORTED) { 4435 if (stripping_support->inner & 4436 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4437 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4438 features |= NETIF_F_HW_VLAN_CTAG_RX; 4439 } 4440 4441 /* give priority to outer insertion and don't support both outer 4442 * and inner insertion 4443 */ 4444 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4445 if (insertion_support->outer & 4446 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4447 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4448 features |= NETIF_F_HW_VLAN_CTAG_TX; 4449 else if (insertion_support->outer & 4450 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4451 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4452 features |= NETIF_F_HW_VLAN_STAG_TX; 4453 } else if (insertion_support->inner != 4454 VIRTCHNL_VLAN_UNSUPPORTED) { 4455 if (insertion_support->inner & 4456 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4457 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4458 features |= NETIF_F_HW_VLAN_CTAG_TX; 4459 } 4460 4461 /* give priority to outer filtering and don't bother if both 4462 * outer and inner filtering are enabled 4463 */ 4464 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4465 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4466 if (filtering_support->outer & 4467 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4468 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4469 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4470 if (filtering_support->outer & 4471 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4472 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4473 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4474 } else if (filtering_support->inner != 4475 VIRTCHNL_VLAN_UNSUPPORTED) { 4476 if (filtering_support->inner & 4477 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4478 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4479 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4480 if (filtering_support->inner & 4481 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4482 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4483 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4484 } 4485 } 4486 4487 return features; 4488 } 4489 4490 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4491 (!(((requested) & (feature_bit)) && \ 4492 !((allowed) & (feature_bit)))) 4493 4494 /** 4495 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4496 * @adapter: board private structure 4497 * @requested_features: stack requested NETDEV features 4498 **/ 4499 static netdev_features_t 4500 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4501 netdev_features_t requested_features) 4502 { 4503 netdev_features_t allowed_features; 4504 4505 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4506 iavf_get_netdev_vlan_features(adapter); 4507 4508 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4509 allowed_features, 4510 NETIF_F_HW_VLAN_CTAG_TX)) 4511 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4512 4513 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4514 allowed_features, 4515 NETIF_F_HW_VLAN_CTAG_RX)) 4516 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4517 4518 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4519 allowed_features, 4520 NETIF_F_HW_VLAN_STAG_TX)) 4521 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4522 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4523 allowed_features, 4524 NETIF_F_HW_VLAN_STAG_RX)) 4525 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4526 4527 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4528 allowed_features, 4529 NETIF_F_HW_VLAN_CTAG_FILTER)) 4530 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4531 4532 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4533 allowed_features, 4534 NETIF_F_HW_VLAN_STAG_FILTER)) 4535 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4536 4537 if ((requested_features & 4538 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4539 (requested_features & 4540 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4541 adapter->vlan_v2_caps.offloads.ethertype_match == 4542 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4543 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4544 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4545 NETIF_F_HW_VLAN_STAG_TX); 4546 } 4547 4548 return requested_features; 4549 } 4550 4551 /** 4552 * iavf_fix_features - fix up the netdev feature bits 4553 * @netdev: our net device 4554 * @features: desired feature bits 4555 * 4556 * Returns fixed-up features bits 4557 **/ 4558 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4559 netdev_features_t features) 4560 { 4561 struct iavf_adapter *adapter = netdev_priv(netdev); 4562 4563 return iavf_fix_netdev_vlan_features(adapter, features); 4564 } 4565 4566 static const struct net_device_ops iavf_netdev_ops = { 4567 .ndo_open = iavf_open, 4568 .ndo_stop = iavf_close, 4569 .ndo_start_xmit = iavf_xmit_frame, 4570 .ndo_set_rx_mode = iavf_set_rx_mode, 4571 .ndo_validate_addr = eth_validate_addr, 4572 .ndo_set_mac_address = iavf_set_mac, 4573 .ndo_change_mtu = iavf_change_mtu, 4574 .ndo_tx_timeout = iavf_tx_timeout, 4575 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4576 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4577 .ndo_features_check = iavf_features_check, 4578 .ndo_fix_features = iavf_fix_features, 4579 .ndo_set_features = iavf_set_features, 4580 .ndo_setup_tc = iavf_setup_tc, 4581 }; 4582 4583 /** 4584 * iavf_check_reset_complete - check that VF reset is complete 4585 * @hw: pointer to hw struct 4586 * 4587 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4588 **/ 4589 static int iavf_check_reset_complete(struct iavf_hw *hw) 4590 { 4591 u32 rstat; 4592 int i; 4593 4594 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4595 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4596 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4597 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4598 (rstat == VIRTCHNL_VFR_COMPLETED)) 4599 return 0; 4600 usleep_range(10, 20); 4601 } 4602 return -EBUSY; 4603 } 4604 4605 /** 4606 * iavf_process_config - Process the config information we got from the PF 4607 * @adapter: board private structure 4608 * 4609 * Verify that we have a valid config struct, and set up our netdev features 4610 * and our VSI struct. 4611 **/ 4612 int iavf_process_config(struct iavf_adapter *adapter) 4613 { 4614 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4615 netdev_features_t hw_vlan_features, vlan_features; 4616 struct net_device *netdev = adapter->netdev; 4617 netdev_features_t hw_enc_features; 4618 netdev_features_t hw_features; 4619 4620 hw_enc_features = NETIF_F_SG | 4621 NETIF_F_IP_CSUM | 4622 NETIF_F_IPV6_CSUM | 4623 NETIF_F_HIGHDMA | 4624 NETIF_F_SOFT_FEATURES | 4625 NETIF_F_TSO | 4626 NETIF_F_TSO_ECN | 4627 NETIF_F_TSO6 | 4628 NETIF_F_SCTP_CRC | 4629 NETIF_F_RXHASH | 4630 NETIF_F_RXCSUM | 4631 0; 4632 4633 /* advertise to stack only if offloads for encapsulated packets is 4634 * supported 4635 */ 4636 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4637 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4638 NETIF_F_GSO_GRE | 4639 NETIF_F_GSO_GRE_CSUM | 4640 NETIF_F_GSO_IPXIP4 | 4641 NETIF_F_GSO_IPXIP6 | 4642 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4643 NETIF_F_GSO_PARTIAL | 4644 0; 4645 4646 if (!(vfres->vf_cap_flags & 4647 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4648 netdev->gso_partial_features |= 4649 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4650 4651 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4652 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4653 netdev->hw_enc_features |= hw_enc_features; 4654 } 4655 /* record features VLANs can make use of */ 4656 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4657 4658 /* Write features and hw_features separately to avoid polluting 4659 * with, or dropping, features that are set when we registered. 4660 */ 4661 hw_features = hw_enc_features; 4662 4663 /* get HW VLAN features that can be toggled */ 4664 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4665 4666 /* Enable cloud filter if ADQ is supported */ 4667 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4668 hw_features |= NETIF_F_HW_TC; 4669 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4670 hw_features |= NETIF_F_GSO_UDP_L4; 4671 4672 netdev->hw_features |= hw_features | hw_vlan_features; 4673 vlan_features = iavf_get_netdev_vlan_features(adapter); 4674 4675 netdev->features |= hw_features | vlan_features; 4676 4677 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4678 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4679 4680 netdev->priv_flags |= IFF_UNICAST_FLT; 4681 4682 /* Do not turn on offloads when they are requested to be turned off. 4683 * TSO needs minimum 576 bytes to work correctly. 4684 */ 4685 if (netdev->wanted_features) { 4686 if (!(netdev->wanted_features & NETIF_F_TSO) || 4687 netdev->mtu < 576) 4688 netdev->features &= ~NETIF_F_TSO; 4689 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4690 netdev->mtu < 576) 4691 netdev->features &= ~NETIF_F_TSO6; 4692 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4693 netdev->features &= ~NETIF_F_TSO_ECN; 4694 if (!(netdev->wanted_features & NETIF_F_GRO)) 4695 netdev->features &= ~NETIF_F_GRO; 4696 if (!(netdev->wanted_features & NETIF_F_GSO)) 4697 netdev->features &= ~NETIF_F_GSO; 4698 } 4699 4700 return 0; 4701 } 4702 4703 /** 4704 * iavf_shutdown - Shutdown the device in preparation for a reboot 4705 * @pdev: pci device structure 4706 **/ 4707 static void iavf_shutdown(struct pci_dev *pdev) 4708 { 4709 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4710 struct net_device *netdev = adapter->netdev; 4711 4712 netif_device_detach(netdev); 4713 4714 if (netif_running(netdev)) 4715 iavf_close(netdev); 4716 4717 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4718 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__); 4719 /* Prevent the watchdog from running. */ 4720 iavf_change_state(adapter, __IAVF_REMOVE); 4721 adapter->aq_required = 0; 4722 mutex_unlock(&adapter->crit_lock); 4723 4724 #ifdef CONFIG_PM 4725 pci_save_state(pdev); 4726 4727 #endif 4728 pci_disable_device(pdev); 4729 } 4730 4731 /** 4732 * iavf_probe - Device Initialization Routine 4733 * @pdev: PCI device information struct 4734 * @ent: entry in iavf_pci_tbl 4735 * 4736 * Returns 0 on success, negative on failure 4737 * 4738 * iavf_probe initializes an adapter identified by a pci_dev structure. 4739 * The OS initialization, configuring of the adapter private structure, 4740 * and a hardware reset occur. 4741 **/ 4742 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4743 { 4744 struct net_device *netdev; 4745 struct iavf_adapter *adapter = NULL; 4746 struct iavf_hw *hw = NULL; 4747 int err; 4748 4749 err = pci_enable_device(pdev); 4750 if (err) 4751 return err; 4752 4753 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4754 if (err) { 4755 dev_err(&pdev->dev, 4756 "DMA configuration failed: 0x%x\n", err); 4757 goto err_dma; 4758 } 4759 4760 err = pci_request_regions(pdev, iavf_driver_name); 4761 if (err) { 4762 dev_err(&pdev->dev, 4763 "pci_request_regions failed 0x%x\n", err); 4764 goto err_pci_reg; 4765 } 4766 4767 pci_enable_pcie_error_reporting(pdev); 4768 4769 pci_set_master(pdev); 4770 4771 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4772 IAVF_MAX_REQ_QUEUES); 4773 if (!netdev) { 4774 err = -ENOMEM; 4775 goto err_alloc_etherdev; 4776 } 4777 4778 SET_NETDEV_DEV(netdev, &pdev->dev); 4779 4780 pci_set_drvdata(pdev, netdev); 4781 adapter = netdev_priv(netdev); 4782 4783 adapter->netdev = netdev; 4784 adapter->pdev = pdev; 4785 4786 hw = &adapter->hw; 4787 hw->back = adapter; 4788 4789 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4790 iavf_change_state(adapter, __IAVF_STARTUP); 4791 4792 /* Call save state here because it relies on the adapter struct. */ 4793 pci_save_state(pdev); 4794 4795 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4796 pci_resource_len(pdev, 0)); 4797 if (!hw->hw_addr) { 4798 err = -EIO; 4799 goto err_ioremap; 4800 } 4801 hw->vendor_id = pdev->vendor; 4802 hw->device_id = pdev->device; 4803 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4804 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4805 hw->subsystem_device_id = pdev->subsystem_device; 4806 hw->bus.device = PCI_SLOT(pdev->devfn); 4807 hw->bus.func = PCI_FUNC(pdev->devfn); 4808 hw->bus.bus_id = pdev->bus->number; 4809 4810 /* set up the locks for the AQ, do this only once in probe 4811 * and destroy them only once in remove 4812 */ 4813 mutex_init(&adapter->crit_lock); 4814 mutex_init(&adapter->client_lock); 4815 mutex_init(&hw->aq.asq_mutex); 4816 mutex_init(&hw->aq.arq_mutex); 4817 4818 spin_lock_init(&adapter->mac_vlan_list_lock); 4819 spin_lock_init(&adapter->cloud_filter_list_lock); 4820 spin_lock_init(&adapter->fdir_fltr_lock); 4821 spin_lock_init(&adapter->adv_rss_lock); 4822 4823 INIT_LIST_HEAD(&adapter->mac_filter_list); 4824 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4825 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4826 INIT_LIST_HEAD(&adapter->fdir_list_head); 4827 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4828 4829 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4830 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4831 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4832 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); 4833 queue_delayed_work(iavf_wq, &adapter->watchdog_task, 4834 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 4835 4836 /* Setup the wait queue for indicating transition to down status */ 4837 init_waitqueue_head(&adapter->down_waitqueue); 4838 4839 /* Setup the wait queue for indicating virtchannel events */ 4840 init_waitqueue_head(&adapter->vc_waitqueue); 4841 4842 return 0; 4843 4844 err_ioremap: 4845 free_netdev(netdev); 4846 err_alloc_etherdev: 4847 pci_disable_pcie_error_reporting(pdev); 4848 pci_release_regions(pdev); 4849 err_pci_reg: 4850 err_dma: 4851 pci_disable_device(pdev); 4852 return err; 4853 } 4854 4855 /** 4856 * iavf_suspend - Power management suspend routine 4857 * @dev_d: device info pointer 4858 * 4859 * Called when the system (VM) is entering sleep/suspend. 4860 **/ 4861 static int __maybe_unused iavf_suspend(struct device *dev_d) 4862 { 4863 struct net_device *netdev = dev_get_drvdata(dev_d); 4864 struct iavf_adapter *adapter = netdev_priv(netdev); 4865 4866 netif_device_detach(netdev); 4867 4868 while (!mutex_trylock(&adapter->crit_lock)) 4869 usleep_range(500, 1000); 4870 4871 if (netif_running(netdev)) { 4872 rtnl_lock(); 4873 iavf_down(adapter); 4874 rtnl_unlock(); 4875 } 4876 iavf_free_misc_irq(adapter); 4877 iavf_reset_interrupt_capability(adapter); 4878 4879 mutex_unlock(&adapter->crit_lock); 4880 4881 return 0; 4882 } 4883 4884 /** 4885 * iavf_resume - Power management resume routine 4886 * @dev_d: device info pointer 4887 * 4888 * Called when the system (VM) is resumed from sleep/suspend. 4889 **/ 4890 static int __maybe_unused iavf_resume(struct device *dev_d) 4891 { 4892 struct pci_dev *pdev = to_pci_dev(dev_d); 4893 struct iavf_adapter *adapter; 4894 u32 err; 4895 4896 adapter = iavf_pdev_to_adapter(pdev); 4897 4898 pci_set_master(pdev); 4899 4900 rtnl_lock(); 4901 err = iavf_set_interrupt_capability(adapter); 4902 if (err) { 4903 rtnl_unlock(); 4904 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 4905 return err; 4906 } 4907 err = iavf_request_misc_irq(adapter); 4908 rtnl_unlock(); 4909 if (err) { 4910 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 4911 return err; 4912 } 4913 4914 queue_work(iavf_wq, &adapter->reset_task); 4915 4916 netif_device_attach(adapter->netdev); 4917 4918 return err; 4919 } 4920 4921 /** 4922 * iavf_remove - Device Removal Routine 4923 * @pdev: PCI device information struct 4924 * 4925 * iavf_remove is called by the PCI subsystem to alert the driver 4926 * that it should release a PCI device. The could be caused by a 4927 * Hot-Plug event, or because the driver is going to be removed from 4928 * memory. 4929 **/ 4930 static void iavf_remove(struct pci_dev *pdev) 4931 { 4932 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4933 struct net_device *netdev = adapter->netdev; 4934 struct iavf_fdir_fltr *fdir, *fdirtmp; 4935 struct iavf_vlan_filter *vlf, *vlftmp; 4936 struct iavf_adv_rss *rss, *rsstmp; 4937 struct iavf_mac_filter *f, *ftmp; 4938 struct iavf_cloud_filter *cf, *cftmp; 4939 struct iavf_hw *hw = &adapter->hw; 4940 int err; 4941 4942 /* When reboot/shutdown is in progress no need to do anything 4943 * as the adapter is already REMOVE state that was set during 4944 * iavf_shutdown() callback. 4945 */ 4946 if (adapter->state == __IAVF_REMOVE) 4947 return; 4948 4949 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); 4950 /* Wait until port initialization is complete. 4951 * There are flows where register/unregister netdev may race. 4952 */ 4953 while (1) { 4954 mutex_lock(&adapter->crit_lock); 4955 if (adapter->state == __IAVF_RUNNING || 4956 adapter->state == __IAVF_DOWN || 4957 adapter->state == __IAVF_INIT_FAILED) { 4958 mutex_unlock(&adapter->crit_lock); 4959 break; 4960 } 4961 4962 mutex_unlock(&adapter->crit_lock); 4963 usleep_range(500, 1000); 4964 } 4965 cancel_delayed_work_sync(&adapter->watchdog_task); 4966 4967 if (adapter->netdev_registered) { 4968 rtnl_lock(); 4969 unregister_netdevice(netdev); 4970 adapter->netdev_registered = false; 4971 rtnl_unlock(); 4972 } 4973 if (CLIENT_ALLOWED(adapter)) { 4974 err = iavf_lan_del_device(adapter); 4975 if (err) 4976 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 4977 err); 4978 } 4979 4980 mutex_lock(&adapter->crit_lock); 4981 dev_info(&adapter->pdev->dev, "Remove device\n"); 4982 iavf_change_state(adapter, __IAVF_REMOVE); 4983 4984 iavf_request_reset(adapter); 4985 msleep(50); 4986 /* If the FW isn't responding, kick it once, but only once. */ 4987 if (!iavf_asq_done(hw)) { 4988 iavf_request_reset(adapter); 4989 msleep(50); 4990 } 4991 4992 iavf_misc_irq_disable(adapter); 4993 /* Shut down all the garbage mashers on the detention level */ 4994 cancel_work_sync(&adapter->reset_task); 4995 cancel_delayed_work_sync(&adapter->watchdog_task); 4996 cancel_work_sync(&adapter->adminq_task); 4997 cancel_delayed_work_sync(&adapter->client_task); 4998 4999 adapter->aq_required = 0; 5000 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5001 5002 iavf_free_all_tx_resources(adapter); 5003 iavf_free_all_rx_resources(adapter); 5004 iavf_free_misc_irq(adapter); 5005 5006 iavf_reset_interrupt_capability(adapter); 5007 iavf_free_q_vectors(adapter); 5008 5009 iavf_free_rss(adapter); 5010 5011 if (hw->aq.asq.count) 5012 iavf_shutdown_adminq(hw); 5013 5014 /* destroy the locks only once, here */ 5015 mutex_destroy(&hw->aq.arq_mutex); 5016 mutex_destroy(&hw->aq.asq_mutex); 5017 mutex_destroy(&adapter->client_lock); 5018 mutex_unlock(&adapter->crit_lock); 5019 mutex_destroy(&adapter->crit_lock); 5020 5021 iounmap(hw->hw_addr); 5022 pci_release_regions(pdev); 5023 iavf_free_queues(adapter); 5024 kfree(adapter->vf_res); 5025 spin_lock_bh(&adapter->mac_vlan_list_lock); 5026 /* If we got removed before an up/down sequence, we've got a filter 5027 * hanging out there that we need to get rid of. 5028 */ 5029 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5030 list_del(&f->list); 5031 kfree(f); 5032 } 5033 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5034 list) { 5035 list_del(&vlf->list); 5036 kfree(vlf); 5037 } 5038 5039 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5040 5041 spin_lock_bh(&adapter->cloud_filter_list_lock); 5042 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5043 list_del(&cf->list); 5044 kfree(cf); 5045 } 5046 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5047 5048 spin_lock_bh(&adapter->fdir_fltr_lock); 5049 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5050 list_del(&fdir->list); 5051 kfree(fdir); 5052 } 5053 spin_unlock_bh(&adapter->fdir_fltr_lock); 5054 5055 spin_lock_bh(&adapter->adv_rss_lock); 5056 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5057 list) { 5058 list_del(&rss->list); 5059 kfree(rss); 5060 } 5061 spin_unlock_bh(&adapter->adv_rss_lock); 5062 5063 free_netdev(netdev); 5064 5065 pci_disable_pcie_error_reporting(pdev); 5066 5067 pci_disable_device(pdev); 5068 } 5069 5070 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5071 5072 static struct pci_driver iavf_driver = { 5073 .name = iavf_driver_name, 5074 .id_table = iavf_pci_tbl, 5075 .probe = iavf_probe, 5076 .remove = iavf_remove, 5077 .driver.pm = &iavf_pm_ops, 5078 .shutdown = iavf_shutdown, 5079 }; 5080 5081 /** 5082 * iavf_init_module - Driver Registration Routine 5083 * 5084 * iavf_init_module is the first routine called when the driver is 5085 * loaded. All it does is register with the PCI subsystem. 5086 **/ 5087 static int __init iavf_init_module(void) 5088 { 5089 pr_info("iavf: %s\n", iavf_driver_string); 5090 5091 pr_info("%s\n", iavf_copyright); 5092 5093 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, 5094 iavf_driver_name); 5095 if (!iavf_wq) { 5096 pr_err("%s: Failed to create workqueue\n", iavf_driver_name); 5097 return -ENOMEM; 5098 } 5099 return pci_register_driver(&iavf_driver); 5100 } 5101 5102 module_init(iavf_init_module); 5103 5104 /** 5105 * iavf_exit_module - Driver Exit Cleanup Routine 5106 * 5107 * iavf_exit_module is called just before the driver is removed 5108 * from memory. 5109 **/ 5110 static void __exit iavf_exit_module(void) 5111 { 5112 pci_unregister_driver(&iavf_driver); 5113 destroy_workqueue(iavf_wq); 5114 } 5115 5116 module_exit(iavf_exit_module); 5117 5118 /* iavf_main.c */ 5119