xref: /linux/drivers/net/ethernet/intel/iavf/iavf_ethtool.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bitfield.h>
5 #include <linux/uaccess.h>
6 
7 /* ethtool support for iavf */
8 #include "iavf.h"
9 
10 /* ethtool statistics helpers */
11 
12 /**
13  * struct iavf_stats - definition for an ethtool statistic
14  * @stat_string: statistic name to display in ethtool -S output
15  * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
16  * @stat_offset: offsetof() the stat from a base pointer
17  *
18  * This structure defines a statistic to be added to the ethtool stats buffer.
19  * It defines a statistic as offset from a common base pointer. Stats should
20  * be defined in constant arrays using the IAVF_STAT macro, with every element
21  * of the array using the same _type for calculating the sizeof_stat and
22  * stat_offset.
23  *
24  * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
25  * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
26  * the iavf_add_ethtool_stat() helper function.
27  *
28  * The @stat_string is interpreted as a format string, allowing formatted
29  * values to be inserted while looping over multiple structures for a given
30  * statistics array. Thus, every statistic string in an array should have the
31  * same type and number of format specifiers, to be formatted by variadic
32  * arguments to the iavf_add_stat_string() helper function.
33  **/
34 struct iavf_stats {
35 	char stat_string[ETH_GSTRING_LEN];
36 	int sizeof_stat;
37 	int stat_offset;
38 };
39 
40 /* Helper macro to define an iavf_stat structure with proper size and type.
41  * Use this when defining constant statistics arrays. Note that @_type expects
42  * only a type name and is used multiple times.
43  */
44 #define IAVF_STAT(_type, _name, _stat) { \
45 	.stat_string = _name, \
46 	.sizeof_stat = sizeof_field(_type, _stat), \
47 	.stat_offset = offsetof(_type, _stat) \
48 }
49 
50 /* Helper macro for defining some statistics related to queues */
51 #define IAVF_QUEUE_STAT(_name, _stat) \
52 	IAVF_STAT(struct iavf_ring, _name, _stat)
53 
54 /* Stats associated with a Tx or Rx ring */
55 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
56 	IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
57 	IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
58 };
59 
60 /**
61  * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
62  * @data: location to store the stat value
63  * @pointer: basis for where to copy from
64  * @stat: the stat definition
65  *
66  * Copies the stat data defined by the pointer and stat structure pair into
67  * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
68  * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
69  */
70 static void
71 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
72 			  const struct iavf_stats *stat)
73 {
74 	char *p;
75 
76 	if (!pointer) {
77 		/* ensure that the ethtool data buffer is zero'd for any stats
78 		 * which don't have a valid pointer.
79 		 */
80 		*data = 0;
81 		return;
82 	}
83 
84 	p = (char *)pointer + stat->stat_offset;
85 	switch (stat->sizeof_stat) {
86 	case sizeof(u64):
87 		*data = *((u64 *)p);
88 		break;
89 	case sizeof(u32):
90 		*data = *((u32 *)p);
91 		break;
92 	case sizeof(u16):
93 		*data = *((u16 *)p);
94 		break;
95 	case sizeof(u8):
96 		*data = *((u8 *)p);
97 		break;
98 	default:
99 		WARN_ONCE(1, "unexpected stat size for %s",
100 			  stat->stat_string);
101 		*data = 0;
102 	}
103 }
104 
105 /**
106  * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
107  * @data: ethtool stats buffer
108  * @pointer: location to copy stats from
109  * @stats: array of stats to copy
110  * @size: the size of the stats definition
111  *
112  * Copy the stats defined by the stats array using the pointer as a base into
113  * the data buffer supplied by ethtool. Updates the data pointer to point to
114  * the next empty location for successive calls to __iavf_add_ethtool_stats.
115  * If pointer is null, set the data values to zero and update the pointer to
116  * skip these stats.
117  **/
118 static void
119 __iavf_add_ethtool_stats(u64 **data, void *pointer,
120 			 const struct iavf_stats stats[],
121 			 const unsigned int size)
122 {
123 	unsigned int i;
124 
125 	for (i = 0; i < size; i++)
126 		iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
127 }
128 
129 /**
130  * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
131  * @data: ethtool stats buffer
132  * @pointer: location where stats are stored
133  * @stats: static const array of stat definitions
134  *
135  * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
136  * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
137  * ensuring that we pass the size associated with the given stats array.
138  *
139  * The parameter @stats is evaluated twice, so parameters with side effects
140  * should be avoided.
141  **/
142 #define iavf_add_ethtool_stats(data, pointer, stats) \
143 	__iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
144 
145 /**
146  * iavf_add_queue_stats - copy queue statistics into supplied buffer
147  * @data: ethtool stats buffer
148  * @ring: the ring to copy
149  *
150  * Queue statistics must be copied while protected by
151  * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats.
152  * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
153  * ring pointer is null, zero out the queue stat values and update the data
154  * pointer. Otherwise safely copy the stats from the ring into the supplied
155  * buffer and update the data pointer when finished.
156  *
157  * This function expects to be called while under rcu_read_lock().
158  **/
159 static void
160 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
161 {
162 	const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
163 	const struct iavf_stats *stats = iavf_gstrings_queue_stats;
164 	unsigned int start;
165 	unsigned int i;
166 
167 	/* To avoid invalid statistics values, ensure that we keep retrying
168 	 * the copy until we get a consistent value according to
169 	 * u64_stats_fetch_retry. But first, make sure our ring is
170 	 * non-null before attempting to access its syncp.
171 	 */
172 	do {
173 		start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp);
174 		for (i = 0; i < size; i++)
175 			iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
176 	} while (ring && u64_stats_fetch_retry(&ring->syncp, start));
177 
178 	/* Once we successfully copy the stats in, update the data pointer */
179 	*data += size;
180 }
181 
182 /**
183  * __iavf_add_stat_strings - copy stat strings into ethtool buffer
184  * @p: ethtool supplied buffer
185  * @stats: stat definitions array
186  * @size: size of the stats array
187  *
188  * Format and copy the strings described by stats into the buffer pointed at
189  * by p.
190  **/
191 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
192 				    const unsigned int size, ...)
193 {
194 	unsigned int i;
195 
196 	for (i = 0; i < size; i++) {
197 		va_list args;
198 
199 		va_start(args, size);
200 		vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
201 		*p += ETH_GSTRING_LEN;
202 		va_end(args);
203 	}
204 }
205 
206 /**
207  * iavf_add_stat_strings - copy stat strings into ethtool buffer
208  * @p: ethtool supplied buffer
209  * @stats: stat definitions array
210  *
211  * Format and copy the strings described by the const static stats value into
212  * the buffer pointed at by p.
213  *
214  * The parameter @stats is evaluated twice, so parameters with side effects
215  * should be avoided. Additionally, stats must be an array such that
216  * ARRAY_SIZE can be called on it.
217  **/
218 #define iavf_add_stat_strings(p, stats, ...) \
219 	__iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
220 
221 #define VF_STAT(_name, _stat) \
222 	IAVF_STAT(struct iavf_adapter, _name, _stat)
223 
224 static const struct iavf_stats iavf_gstrings_stats[] = {
225 	VF_STAT("rx_bytes", current_stats.rx_bytes),
226 	VF_STAT("rx_unicast", current_stats.rx_unicast),
227 	VF_STAT("rx_multicast", current_stats.rx_multicast),
228 	VF_STAT("rx_broadcast", current_stats.rx_broadcast),
229 	VF_STAT("rx_discards", current_stats.rx_discards),
230 	VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
231 	VF_STAT("tx_bytes", current_stats.tx_bytes),
232 	VF_STAT("tx_unicast", current_stats.tx_unicast),
233 	VF_STAT("tx_multicast", current_stats.tx_multicast),
234 	VF_STAT("tx_broadcast", current_stats.tx_broadcast),
235 	VF_STAT("tx_discards", current_stats.tx_discards),
236 	VF_STAT("tx_errors", current_stats.tx_errors),
237 };
238 
239 #define IAVF_STATS_LEN	ARRAY_SIZE(iavf_gstrings_stats)
240 
241 #define IAVF_QUEUE_STATS_LEN	ARRAY_SIZE(iavf_gstrings_queue_stats)
242 
243 /* For now we have one and only one private flag and it is only defined
244  * when we have support for the SKIP_CPU_SYNC DMA attribute.  Instead
245  * of leaving all this code sitting around empty we will strip it unless
246  * our one private flag is actually available.
247  */
248 struct iavf_priv_flags {
249 	char flag_string[ETH_GSTRING_LEN];
250 	u32 flag;
251 	bool read_only;
252 };
253 
254 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
255 	.flag_string = _name, \
256 	.flag = _flag, \
257 	.read_only = _read_only, \
258 }
259 
260 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
261 	IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
262 };
263 
264 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
265 
266 /**
267  * iavf_get_link_ksettings - Get Link Speed and Duplex settings
268  * @netdev: network interface device structure
269  * @cmd: ethtool command
270  *
271  * Reports speed/duplex settings. Because this is a VF, we don't know what
272  * kind of link we really have, so we fake it.
273  **/
274 static int iavf_get_link_ksettings(struct net_device *netdev,
275 				   struct ethtool_link_ksettings *cmd)
276 {
277 	struct iavf_adapter *adapter = netdev_priv(netdev);
278 
279 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
280 	cmd->base.autoneg = AUTONEG_DISABLE;
281 	cmd->base.port = PORT_NONE;
282 	cmd->base.duplex = DUPLEX_FULL;
283 
284 	if (ADV_LINK_SUPPORT(adapter)) {
285 		if (adapter->link_speed_mbps &&
286 		    adapter->link_speed_mbps < U32_MAX)
287 			cmd->base.speed = adapter->link_speed_mbps;
288 		else
289 			cmd->base.speed = SPEED_UNKNOWN;
290 
291 		return 0;
292 	}
293 
294 	switch (adapter->link_speed) {
295 	case VIRTCHNL_LINK_SPEED_40GB:
296 		cmd->base.speed = SPEED_40000;
297 		break;
298 	case VIRTCHNL_LINK_SPEED_25GB:
299 		cmd->base.speed = SPEED_25000;
300 		break;
301 	case VIRTCHNL_LINK_SPEED_20GB:
302 		cmd->base.speed = SPEED_20000;
303 		break;
304 	case VIRTCHNL_LINK_SPEED_10GB:
305 		cmd->base.speed = SPEED_10000;
306 		break;
307 	case VIRTCHNL_LINK_SPEED_5GB:
308 		cmd->base.speed = SPEED_5000;
309 		break;
310 	case VIRTCHNL_LINK_SPEED_2_5GB:
311 		cmd->base.speed = SPEED_2500;
312 		break;
313 	case VIRTCHNL_LINK_SPEED_1GB:
314 		cmd->base.speed = SPEED_1000;
315 		break;
316 	case VIRTCHNL_LINK_SPEED_100MB:
317 		cmd->base.speed = SPEED_100;
318 		break;
319 	default:
320 		break;
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  * iavf_get_sset_count - Get length of string set
328  * @netdev: network interface device structure
329  * @sset: id of string set
330  *
331  * Reports size of various string tables.
332  **/
333 static int iavf_get_sset_count(struct net_device *netdev, int sset)
334 {
335 	/* Report the maximum number queues, even if not every queue is
336 	 * currently configured. Since allocation of queues is in pairs,
337 	 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set
338 	 * at device creation and never changes.
339 	 */
340 
341 	if (sset == ETH_SS_STATS)
342 		return IAVF_STATS_LEN +
343 			(IAVF_QUEUE_STATS_LEN * 2 *
344 			 netdev->real_num_tx_queues);
345 	else if (sset == ETH_SS_PRIV_FLAGS)
346 		return IAVF_PRIV_FLAGS_STR_LEN;
347 	else
348 		return -EINVAL;
349 }
350 
351 /**
352  * iavf_get_ethtool_stats - report device statistics
353  * @netdev: network interface device structure
354  * @stats: ethtool statistics structure
355  * @data: pointer to data buffer
356  *
357  * All statistics are added to the data buffer as an array of u64.
358  **/
359 static void iavf_get_ethtool_stats(struct net_device *netdev,
360 				   struct ethtool_stats *stats, u64 *data)
361 {
362 	struct iavf_adapter *adapter = netdev_priv(netdev);
363 	unsigned int i;
364 
365 	/* Explicitly request stats refresh */
366 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_REQUEST_STATS);
367 
368 	iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
369 
370 	rcu_read_lock();
371 	/* As num_active_queues describe both tx and rx queues, we can use
372 	 * it to iterate over rings' stats.
373 	 */
374 	for (i = 0; i < adapter->num_active_queues; i++) {
375 		struct iavf_ring *ring;
376 
377 		/* Tx rings stats */
378 		ring = &adapter->tx_rings[i];
379 		iavf_add_queue_stats(&data, ring);
380 
381 		/* Rx rings stats */
382 		ring = &adapter->rx_rings[i];
383 		iavf_add_queue_stats(&data, ring);
384 	}
385 	rcu_read_unlock();
386 }
387 
388 /**
389  * iavf_get_priv_flag_strings - Get private flag strings
390  * @netdev: network interface device structure
391  * @data: buffer for string data
392  *
393  * Builds the private flags string table
394  **/
395 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
396 {
397 	unsigned int i;
398 
399 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++)
400 		ethtool_puts(&data, iavf_gstrings_priv_flags[i].flag_string);
401 }
402 
403 /**
404  * iavf_get_stat_strings - Get stat strings
405  * @netdev: network interface device structure
406  * @data: buffer for string data
407  *
408  * Builds the statistics string table
409  **/
410 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
411 {
412 	unsigned int i;
413 
414 	iavf_add_stat_strings(&data, iavf_gstrings_stats);
415 
416 	/* Queues are always allocated in pairs, so we just use
417 	 * real_num_tx_queues for both Tx and Rx queues.
418 	 */
419 	for (i = 0; i < netdev->real_num_tx_queues; i++) {
420 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
421 				      "tx", i);
422 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
423 				      "rx", i);
424 	}
425 }
426 
427 /**
428  * iavf_get_strings - Get string set
429  * @netdev: network interface device structure
430  * @sset: id of string set
431  * @data: buffer for string data
432  *
433  * Builds string tables for various string sets
434  **/
435 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
436 {
437 	switch (sset) {
438 	case ETH_SS_STATS:
439 		iavf_get_stat_strings(netdev, data);
440 		break;
441 	case ETH_SS_PRIV_FLAGS:
442 		iavf_get_priv_flag_strings(netdev, data);
443 		break;
444 	default:
445 		break;
446 	}
447 }
448 
449 /**
450  * iavf_get_priv_flags - report device private flags
451  * @netdev: network interface device structure
452  *
453  * The get string set count and the string set should be matched for each
454  * flag returned.  Add new strings for each flag to the iavf_gstrings_priv_flags
455  * array.
456  *
457  * Returns a u32 bitmap of flags.
458  **/
459 static u32 iavf_get_priv_flags(struct net_device *netdev)
460 {
461 	struct iavf_adapter *adapter = netdev_priv(netdev);
462 	u32 i, ret_flags = 0;
463 
464 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
465 		const struct iavf_priv_flags *priv_flags;
466 
467 		priv_flags = &iavf_gstrings_priv_flags[i];
468 
469 		if (priv_flags->flag & adapter->flags)
470 			ret_flags |= BIT(i);
471 	}
472 
473 	return ret_flags;
474 }
475 
476 /**
477  * iavf_set_priv_flags - set private flags
478  * @netdev: network interface device structure
479  * @flags: bit flags to be set
480  **/
481 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
482 {
483 	struct iavf_adapter *adapter = netdev_priv(netdev);
484 	u32 orig_flags, new_flags, changed_flags;
485 	int ret = 0;
486 	u32 i;
487 
488 	orig_flags = READ_ONCE(adapter->flags);
489 	new_flags = orig_flags;
490 
491 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
492 		const struct iavf_priv_flags *priv_flags;
493 
494 		priv_flags = &iavf_gstrings_priv_flags[i];
495 
496 		if (flags & BIT(i))
497 			new_flags |= priv_flags->flag;
498 		else
499 			new_flags &= ~(priv_flags->flag);
500 
501 		if (priv_flags->read_only &&
502 		    ((orig_flags ^ new_flags) & ~BIT(i)))
503 			return -EOPNOTSUPP;
504 	}
505 
506 	/* Before we finalize any flag changes, any checks which we need to
507 	 * perform to determine if the new flags will be supported should go
508 	 * here...
509 	 */
510 
511 	/* Compare and exchange the new flags into place. If we failed, that
512 	 * is if cmpxchg returns anything but the old value, this means
513 	 * something else must have modified the flags variable since we
514 	 * copied it. We'll just punt with an error and log something in the
515 	 * message buffer.
516 	 */
517 	if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
518 		dev_warn(&adapter->pdev->dev,
519 			 "Unable to update adapter->flags as it was modified by another thread...\n");
520 		return -EAGAIN;
521 	}
522 
523 	changed_flags = orig_flags ^ new_flags;
524 
525 	/* Process any additional changes needed as a result of flag changes.
526 	 * The changed_flags value reflects the list of bits that were changed
527 	 * in the code above.
528 	 */
529 
530 	/* issue a reset to force legacy-rx change to take effect */
531 	if (changed_flags & IAVF_FLAG_LEGACY_RX) {
532 		if (netif_running(netdev)) {
533 			iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
534 			ret = iavf_wait_for_reset(adapter);
535 			if (ret)
536 				netdev_warn(netdev, "Changing private flags timeout or interrupted waiting for reset");
537 		}
538 	}
539 
540 	return ret;
541 }
542 
543 /**
544  * iavf_get_msglevel - Get debug message level
545  * @netdev: network interface device structure
546  *
547  * Returns current debug message level.
548  **/
549 static u32 iavf_get_msglevel(struct net_device *netdev)
550 {
551 	struct iavf_adapter *adapter = netdev_priv(netdev);
552 
553 	return adapter->msg_enable;
554 }
555 
556 /**
557  * iavf_set_msglevel - Set debug message level
558  * @netdev: network interface device structure
559  * @data: message level
560  *
561  * Set current debug message level. Higher values cause the driver to
562  * be noisier.
563  **/
564 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
565 {
566 	struct iavf_adapter *adapter = netdev_priv(netdev);
567 
568 	if (IAVF_DEBUG_USER & data)
569 		adapter->hw.debug_mask = data;
570 	adapter->msg_enable = data;
571 }
572 
573 /**
574  * iavf_get_drvinfo - Get driver info
575  * @netdev: network interface device structure
576  * @drvinfo: ethool driver info structure
577  *
578  * Returns information about the driver and device for display to the user.
579  **/
580 static void iavf_get_drvinfo(struct net_device *netdev,
581 			     struct ethtool_drvinfo *drvinfo)
582 {
583 	struct iavf_adapter *adapter = netdev_priv(netdev);
584 
585 	strscpy(drvinfo->driver, iavf_driver_name, 32);
586 	strscpy(drvinfo->fw_version, "N/A", 4);
587 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
588 	drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
589 }
590 
591 /**
592  * iavf_get_ringparam - Get ring parameters
593  * @netdev: network interface device structure
594  * @ring: ethtool ringparam structure
595  * @kernel_ring: ethtool extenal ringparam structure
596  * @extack: netlink extended ACK report struct
597  *
598  * Returns current ring parameters. TX and RX rings are reported separately,
599  * but the number of rings is not reported.
600  **/
601 static void iavf_get_ringparam(struct net_device *netdev,
602 			       struct ethtool_ringparam *ring,
603 			       struct kernel_ethtool_ringparam *kernel_ring,
604 			       struct netlink_ext_ack *extack)
605 {
606 	struct iavf_adapter *adapter = netdev_priv(netdev);
607 
608 	ring->rx_max_pending = IAVF_MAX_RXD;
609 	ring->tx_max_pending = IAVF_MAX_TXD;
610 	ring->rx_pending = adapter->rx_desc_count;
611 	ring->tx_pending = adapter->tx_desc_count;
612 }
613 
614 /**
615  * iavf_set_ringparam - Set ring parameters
616  * @netdev: network interface device structure
617  * @ring: ethtool ringparam structure
618  * @kernel_ring: ethtool external ringparam structure
619  * @extack: netlink extended ACK report struct
620  *
621  * Sets ring parameters. TX and RX rings are controlled separately, but the
622  * number of rings is not specified, so all rings get the same settings.
623  **/
624 static int iavf_set_ringparam(struct net_device *netdev,
625 			      struct ethtool_ringparam *ring,
626 			      struct kernel_ethtool_ringparam *kernel_ring,
627 			      struct netlink_ext_ack *extack)
628 {
629 	struct iavf_adapter *adapter = netdev_priv(netdev);
630 	u32 new_rx_count, new_tx_count;
631 	int ret = 0;
632 
633 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
634 		return -EINVAL;
635 
636 	if (ring->tx_pending > IAVF_MAX_TXD ||
637 	    ring->tx_pending < IAVF_MIN_TXD ||
638 	    ring->rx_pending > IAVF_MAX_RXD ||
639 	    ring->rx_pending < IAVF_MIN_RXD) {
640 		netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
641 			   ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
642 			   IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
643 		return -EINVAL;
644 	}
645 
646 	new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
647 	if (new_tx_count != ring->tx_pending)
648 		netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
649 			    new_tx_count);
650 
651 	new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
652 	if (new_rx_count != ring->rx_pending)
653 		netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
654 			    new_rx_count);
655 
656 	/* if nothing to do return success */
657 	if ((new_tx_count == adapter->tx_desc_count) &&
658 	    (new_rx_count == adapter->rx_desc_count)) {
659 		netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
660 		return 0;
661 	}
662 
663 	if (new_tx_count != adapter->tx_desc_count) {
664 		netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
665 			   adapter->tx_desc_count, new_tx_count);
666 		adapter->tx_desc_count = new_tx_count;
667 	}
668 
669 	if (new_rx_count != adapter->rx_desc_count) {
670 		netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
671 			   adapter->rx_desc_count, new_rx_count);
672 		adapter->rx_desc_count = new_rx_count;
673 	}
674 
675 	if (netif_running(netdev)) {
676 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
677 		ret = iavf_wait_for_reset(adapter);
678 		if (ret)
679 			netdev_warn(netdev, "Changing ring parameters timeout or interrupted waiting for reset");
680 	}
681 
682 	return ret;
683 }
684 
685 /**
686  * __iavf_get_coalesce - get per-queue coalesce settings
687  * @netdev: the netdev to check
688  * @ec: ethtool coalesce data structure
689  * @queue: which queue to pick
690  *
691  * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
692  * are per queue. If queue is <0 then we default to queue 0 as the
693  * representative value.
694  **/
695 static int __iavf_get_coalesce(struct net_device *netdev,
696 			       struct ethtool_coalesce *ec, int queue)
697 {
698 	struct iavf_adapter *adapter = netdev_priv(netdev);
699 	struct iavf_ring *rx_ring, *tx_ring;
700 
701 	/* Rx and Tx usecs per queue value. If user doesn't specify the
702 	 * queue, return queue 0's value to represent.
703 	 */
704 	if (queue < 0)
705 		queue = 0;
706 	else if (queue >= adapter->num_active_queues)
707 		return -EINVAL;
708 
709 	rx_ring = &adapter->rx_rings[queue];
710 	tx_ring = &adapter->tx_rings[queue];
711 
712 	if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
713 		ec->use_adaptive_rx_coalesce = 1;
714 
715 	if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
716 		ec->use_adaptive_tx_coalesce = 1;
717 
718 	ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
719 	ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
720 
721 	return 0;
722 }
723 
724 /**
725  * iavf_get_coalesce - Get interrupt coalescing settings
726  * @netdev: network interface device structure
727  * @ec: ethtool coalesce structure
728  * @kernel_coal: ethtool CQE mode setting structure
729  * @extack: extack for reporting error messages
730  *
731  * Returns current coalescing settings. This is referred to elsewhere in the
732  * driver as Interrupt Throttle Rate, as this is how the hardware describes
733  * this functionality. Note that if per-queue settings have been modified this
734  * only represents the settings of queue 0.
735  **/
736 static int iavf_get_coalesce(struct net_device *netdev,
737 			     struct ethtool_coalesce *ec,
738 			     struct kernel_ethtool_coalesce *kernel_coal,
739 			     struct netlink_ext_ack *extack)
740 {
741 	return __iavf_get_coalesce(netdev, ec, -1);
742 }
743 
744 /**
745  * iavf_get_per_queue_coalesce - get coalesce values for specific queue
746  * @netdev: netdev to read
747  * @ec: coalesce settings from ethtool
748  * @queue: the queue to read
749  *
750  * Read specific queue's coalesce settings.
751  **/
752 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
753 				       struct ethtool_coalesce *ec)
754 {
755 	return __iavf_get_coalesce(netdev, ec, queue);
756 }
757 
758 /**
759  * iavf_set_itr_per_queue - set ITR values for specific queue
760  * @adapter: the VF adapter struct to set values for
761  * @ec: coalesce settings from ethtool
762  * @queue: the queue to modify
763  *
764  * Change the ITR settings for a specific queue.
765  **/
766 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
767 				  struct ethtool_coalesce *ec, int queue)
768 {
769 	struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
770 	struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
771 	struct iavf_q_vector *q_vector;
772 	u16 itr_setting;
773 
774 	itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
775 
776 	if (ec->rx_coalesce_usecs != itr_setting &&
777 	    ec->use_adaptive_rx_coalesce) {
778 		netif_info(adapter, drv, adapter->netdev,
779 			   "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
780 		return -EINVAL;
781 	}
782 
783 	itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
784 
785 	if (ec->tx_coalesce_usecs != itr_setting &&
786 	    ec->use_adaptive_tx_coalesce) {
787 		netif_info(adapter, drv, adapter->netdev,
788 			   "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
789 		return -EINVAL;
790 	}
791 
792 	rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
793 	tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
794 
795 	rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
796 	if (!ec->use_adaptive_rx_coalesce)
797 		rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
798 
799 	tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
800 	if (!ec->use_adaptive_tx_coalesce)
801 		tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
802 
803 	q_vector = rx_ring->q_vector;
804 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
805 
806 	q_vector = tx_ring->q_vector;
807 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
808 
809 	/* The interrupt handler itself will take care of programming
810 	 * the Tx and Rx ITR values based on the values we have entered
811 	 * into the q_vector, no need to write the values now.
812 	 */
813 	return 0;
814 }
815 
816 /**
817  * __iavf_set_coalesce - set coalesce settings for particular queue
818  * @netdev: the netdev to change
819  * @ec: ethtool coalesce settings
820  * @queue: the queue to change
821  *
822  * Sets the coalesce settings for a particular queue.
823  **/
824 static int __iavf_set_coalesce(struct net_device *netdev,
825 			       struct ethtool_coalesce *ec, int queue)
826 {
827 	struct iavf_adapter *adapter = netdev_priv(netdev);
828 	int i;
829 
830 	if (ec->rx_coalesce_usecs > IAVF_MAX_ITR) {
831 		netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
832 		return -EINVAL;
833 	} else if (ec->tx_coalesce_usecs > IAVF_MAX_ITR) {
834 		netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
835 		return -EINVAL;
836 	}
837 
838 	/* Rx and Tx usecs has per queue value. If user doesn't specify the
839 	 * queue, apply to all queues.
840 	 */
841 	if (queue < 0) {
842 		for (i = 0; i < adapter->num_active_queues; i++)
843 			if (iavf_set_itr_per_queue(adapter, ec, i))
844 				return -EINVAL;
845 	} else if (queue < adapter->num_active_queues) {
846 		if (iavf_set_itr_per_queue(adapter, ec, queue))
847 			return -EINVAL;
848 	} else {
849 		netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
850 			   adapter->num_active_queues - 1);
851 		return -EINVAL;
852 	}
853 
854 	return 0;
855 }
856 
857 /**
858  * iavf_set_coalesce - Set interrupt coalescing settings
859  * @netdev: network interface device structure
860  * @ec: ethtool coalesce structure
861  * @kernel_coal: ethtool CQE mode setting structure
862  * @extack: extack for reporting error messages
863  *
864  * Change current coalescing settings for every queue.
865  **/
866 static int iavf_set_coalesce(struct net_device *netdev,
867 			     struct ethtool_coalesce *ec,
868 			     struct kernel_ethtool_coalesce *kernel_coal,
869 			     struct netlink_ext_ack *extack)
870 {
871 	return __iavf_set_coalesce(netdev, ec, -1);
872 }
873 
874 /**
875  * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
876  * @netdev: the netdev to change
877  * @ec: ethtool's coalesce settings
878  * @queue: the queue to modify
879  *
880  * Modifies a specific queue's coalesce settings.
881  */
882 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
883 				       struct ethtool_coalesce *ec)
884 {
885 	return __iavf_set_coalesce(netdev, ec, queue);
886 }
887 
888 /**
889  * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
890  * flow type values
891  * @flow: filter type to be converted
892  *
893  * Returns the corresponding ethtool flow type.
894  */
895 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
896 {
897 	switch (flow) {
898 	case IAVF_FDIR_FLOW_IPV4_TCP:
899 		return TCP_V4_FLOW;
900 	case IAVF_FDIR_FLOW_IPV4_UDP:
901 		return UDP_V4_FLOW;
902 	case IAVF_FDIR_FLOW_IPV4_SCTP:
903 		return SCTP_V4_FLOW;
904 	case IAVF_FDIR_FLOW_IPV4_AH:
905 		return AH_V4_FLOW;
906 	case IAVF_FDIR_FLOW_IPV4_ESP:
907 		return ESP_V4_FLOW;
908 	case IAVF_FDIR_FLOW_IPV4_OTHER:
909 		return IPV4_USER_FLOW;
910 	case IAVF_FDIR_FLOW_IPV6_TCP:
911 		return TCP_V6_FLOW;
912 	case IAVF_FDIR_FLOW_IPV6_UDP:
913 		return UDP_V6_FLOW;
914 	case IAVF_FDIR_FLOW_IPV6_SCTP:
915 		return SCTP_V6_FLOW;
916 	case IAVF_FDIR_FLOW_IPV6_AH:
917 		return AH_V6_FLOW;
918 	case IAVF_FDIR_FLOW_IPV6_ESP:
919 		return ESP_V6_FLOW;
920 	case IAVF_FDIR_FLOW_IPV6_OTHER:
921 		return IPV6_USER_FLOW;
922 	case IAVF_FDIR_FLOW_NON_IP_L2:
923 		return ETHER_FLOW;
924 	default:
925 		/* 0 is undefined ethtool flow */
926 		return 0;
927 	}
928 }
929 
930 /**
931  * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
932  * @eth: Ethtool flow type to be converted
933  *
934  * Returns flow enum
935  */
936 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
937 {
938 	switch (eth) {
939 	case TCP_V4_FLOW:
940 		return IAVF_FDIR_FLOW_IPV4_TCP;
941 	case UDP_V4_FLOW:
942 		return IAVF_FDIR_FLOW_IPV4_UDP;
943 	case SCTP_V4_FLOW:
944 		return IAVF_FDIR_FLOW_IPV4_SCTP;
945 	case AH_V4_FLOW:
946 		return IAVF_FDIR_FLOW_IPV4_AH;
947 	case ESP_V4_FLOW:
948 		return IAVF_FDIR_FLOW_IPV4_ESP;
949 	case IPV4_USER_FLOW:
950 		return IAVF_FDIR_FLOW_IPV4_OTHER;
951 	case TCP_V6_FLOW:
952 		return IAVF_FDIR_FLOW_IPV6_TCP;
953 	case UDP_V6_FLOW:
954 		return IAVF_FDIR_FLOW_IPV6_UDP;
955 	case SCTP_V6_FLOW:
956 		return IAVF_FDIR_FLOW_IPV6_SCTP;
957 	case AH_V6_FLOW:
958 		return IAVF_FDIR_FLOW_IPV6_AH;
959 	case ESP_V6_FLOW:
960 		return IAVF_FDIR_FLOW_IPV6_ESP;
961 	case IPV6_USER_FLOW:
962 		return IAVF_FDIR_FLOW_IPV6_OTHER;
963 	case ETHER_FLOW:
964 		return IAVF_FDIR_FLOW_NON_IP_L2;
965 	default:
966 		return IAVF_FDIR_FLOW_NONE;
967 	}
968 }
969 
970 /**
971  * iavf_is_mask_valid - check mask field set
972  * @mask: full mask to check
973  * @field: field for which mask should be valid
974  *
975  * If the mask is fully set return true. If it is not valid for field return
976  * false.
977  */
978 static bool iavf_is_mask_valid(u64 mask, u64 field)
979 {
980 	return (mask & field) == field;
981 }
982 
983 /**
984  * iavf_parse_rx_flow_user_data - deconstruct user-defined data
985  * @fsp: pointer to ethtool Rx flow specification
986  * @fltr: pointer to Flow Director filter for userdef data storage
987  *
988  * Returns 0 on success, negative error value on failure
989  */
990 static int
991 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
992 			     struct iavf_fdir_fltr *fltr)
993 {
994 	struct iavf_flex_word *flex;
995 	int i, cnt = 0;
996 
997 	if (!(fsp->flow_type & FLOW_EXT))
998 		return 0;
999 
1000 	for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
1001 #define IAVF_USERDEF_FLEX_WORD_M	GENMASK(15, 0)
1002 #define IAVF_USERDEF_FLEX_OFFS_S	16
1003 #define IAVF_USERDEF_FLEX_OFFS_M	GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
1004 #define IAVF_USERDEF_FLEX_FLTR_M	GENMASK(31, 0)
1005 		u32 value = be32_to_cpu(fsp->h_ext.data[i]);
1006 		u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
1007 
1008 		if (!value || !mask)
1009 			continue;
1010 
1011 		if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
1012 			return -EINVAL;
1013 
1014 		/* 504 is the maximum value for offsets, and offset is measured
1015 		 * from the start of the MAC address.
1016 		 */
1017 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
1018 		flex = &fltr->flex_words[cnt++];
1019 		flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
1020 		flex->offset = FIELD_GET(IAVF_USERDEF_FLEX_OFFS_M, value);
1021 		if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
1022 			return -EINVAL;
1023 	}
1024 
1025 	fltr->flex_cnt = cnt;
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * iavf_fill_rx_flow_ext_data - fill the additional data
1032  * @fsp: pointer to ethtool Rx flow specification
1033  * @fltr: pointer to Flow Director filter to get additional data
1034  */
1035 static void
1036 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
1037 			   struct iavf_fdir_fltr *fltr)
1038 {
1039 	if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
1040 		return;
1041 
1042 	fsp->flow_type |= FLOW_EXT;
1043 
1044 	memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
1045 	memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
1046 }
1047 
1048 /**
1049  * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1050  * @adapter: the VF adapter structure that contains filter list
1051  * @cmd: ethtool command data structure to receive the filter data
1052  *
1053  * Returns 0 as expected for success by ethtool
1054  */
1055 static int
1056 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1057 			    struct ethtool_rxnfc *cmd)
1058 {
1059 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1060 	struct iavf_fdir_fltr *rule = NULL;
1061 	int ret = 0;
1062 
1063 	if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED))
1064 		return -EOPNOTSUPP;
1065 
1066 	spin_lock_bh(&adapter->fdir_fltr_lock);
1067 
1068 	rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1069 	if (!rule) {
1070 		ret = -EINVAL;
1071 		goto release_lock;
1072 	}
1073 
1074 	fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1075 
1076 	memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1077 	memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1078 
1079 	switch (fsp->flow_type) {
1080 	case TCP_V4_FLOW:
1081 	case UDP_V4_FLOW:
1082 	case SCTP_V4_FLOW:
1083 		fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1084 		fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1085 		fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1086 		fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1087 		fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1088 		fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1089 		fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1090 		fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1091 		fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1092 		fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1093 		break;
1094 	case AH_V4_FLOW:
1095 	case ESP_V4_FLOW:
1096 		fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1097 		fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1098 		fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1099 		fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1100 		fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1101 		fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1102 		fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1103 		fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1104 		break;
1105 	case IPV4_USER_FLOW:
1106 		fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1107 		fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1108 		fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1109 		fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1110 		fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1111 		fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1112 		fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1113 		fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1114 		fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1115 		fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1116 		fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1117 		fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1118 		break;
1119 	case TCP_V6_FLOW:
1120 	case UDP_V6_FLOW:
1121 	case SCTP_V6_FLOW:
1122 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1123 		       sizeof(struct in6_addr));
1124 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1125 		       sizeof(struct in6_addr));
1126 		fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1127 		fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1128 		fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1129 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1130 		       sizeof(struct in6_addr));
1131 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1132 		       sizeof(struct in6_addr));
1133 		fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1134 		fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1135 		fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1136 		break;
1137 	case AH_V6_FLOW:
1138 	case ESP_V6_FLOW:
1139 		memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1140 		       sizeof(struct in6_addr));
1141 		memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1142 		       sizeof(struct in6_addr));
1143 		fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1144 		fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1145 		memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1146 		       sizeof(struct in6_addr));
1147 		memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1148 		       sizeof(struct in6_addr));
1149 		fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1150 		fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1151 		break;
1152 	case IPV6_USER_FLOW:
1153 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1154 		       sizeof(struct in6_addr));
1155 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1156 		       sizeof(struct in6_addr));
1157 		fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1158 		fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1159 		fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1160 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1161 		       sizeof(struct in6_addr));
1162 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1163 		       sizeof(struct in6_addr));
1164 		fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1165 		fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1166 		fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1167 		break;
1168 	case ETHER_FLOW:
1169 		fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1170 		fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1171 		break;
1172 	default:
1173 		ret = -EINVAL;
1174 		break;
1175 	}
1176 
1177 	iavf_fill_rx_flow_ext_data(fsp, rule);
1178 
1179 	if (rule->action == VIRTCHNL_ACTION_DROP)
1180 		fsp->ring_cookie = RX_CLS_FLOW_DISC;
1181 	else
1182 		fsp->ring_cookie = rule->q_index;
1183 
1184 release_lock:
1185 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1186 	return ret;
1187 }
1188 
1189 /**
1190  * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1191  * @adapter: the VF adapter structure containing the filter list
1192  * @cmd: ethtool command data structure
1193  * @rule_locs: ethtool array passed in from OS to receive filter IDs
1194  *
1195  * Returns 0 as expected for success by ethtool
1196  */
1197 static int
1198 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1199 		       u32 *rule_locs)
1200 {
1201 	struct iavf_fdir_fltr *fltr;
1202 	unsigned int cnt = 0;
1203 	int val = 0;
1204 
1205 	if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED))
1206 		return -EOPNOTSUPP;
1207 
1208 	cmd->data = IAVF_MAX_FDIR_FILTERS;
1209 
1210 	spin_lock_bh(&adapter->fdir_fltr_lock);
1211 
1212 	list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1213 		if (cnt == cmd->rule_cnt) {
1214 			val = -EMSGSIZE;
1215 			goto release_lock;
1216 		}
1217 		rule_locs[cnt] = fltr->loc;
1218 		cnt++;
1219 	}
1220 
1221 release_lock:
1222 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1223 	if (!val)
1224 		cmd->rule_cnt = cnt;
1225 
1226 	return val;
1227 }
1228 
1229 /**
1230  * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1231  * @adapter: pointer to the VF adapter structure
1232  * @fsp: pointer to ethtool Rx flow specification
1233  * @fltr: filter structure
1234  */
1235 static int
1236 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1237 			struct iavf_fdir_fltr *fltr)
1238 {
1239 	u32 flow_type, q_index = 0;
1240 	enum virtchnl_action act;
1241 	int err;
1242 
1243 	if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1244 		act = VIRTCHNL_ACTION_DROP;
1245 	} else {
1246 		q_index = fsp->ring_cookie;
1247 		if (q_index >= adapter->num_active_queues)
1248 			return -EINVAL;
1249 
1250 		act = VIRTCHNL_ACTION_QUEUE;
1251 	}
1252 
1253 	fltr->action = act;
1254 	fltr->loc = fsp->location;
1255 	fltr->q_index = q_index;
1256 
1257 	if (fsp->flow_type & FLOW_EXT) {
1258 		memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1259 		       sizeof(fltr->ext_data.usr_def));
1260 		memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1261 		       sizeof(fltr->ext_mask.usr_def));
1262 	}
1263 
1264 	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1265 	fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1266 
1267 	switch (flow_type) {
1268 	case TCP_V4_FLOW:
1269 	case UDP_V4_FLOW:
1270 	case SCTP_V4_FLOW:
1271 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1272 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1273 		fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1274 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1275 		fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1276 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1277 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1278 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1279 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1280 		fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1281 		fltr->ip_ver = 4;
1282 		break;
1283 	case AH_V4_FLOW:
1284 	case ESP_V4_FLOW:
1285 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1286 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1287 		fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1288 		fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1289 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1290 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1291 		fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1292 		fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1293 		fltr->ip_ver = 4;
1294 		break;
1295 	case IPV4_USER_FLOW:
1296 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1297 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1298 		fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1299 		fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1300 		fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1301 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1302 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1303 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1304 		fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1305 		fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1306 		fltr->ip_ver = 4;
1307 		break;
1308 	case TCP_V6_FLOW:
1309 	case UDP_V6_FLOW:
1310 	case SCTP_V6_FLOW:
1311 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1312 		       sizeof(struct in6_addr));
1313 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1314 		       sizeof(struct in6_addr));
1315 		fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1316 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1317 		fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1318 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1319 		       sizeof(struct in6_addr));
1320 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1321 		       sizeof(struct in6_addr));
1322 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1323 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1324 		fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1325 		fltr->ip_ver = 6;
1326 		break;
1327 	case AH_V6_FLOW:
1328 	case ESP_V6_FLOW:
1329 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1330 		       sizeof(struct in6_addr));
1331 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1332 		       sizeof(struct in6_addr));
1333 		fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1334 		fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1335 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1336 		       sizeof(struct in6_addr));
1337 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1338 		       sizeof(struct in6_addr));
1339 		fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1340 		fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1341 		fltr->ip_ver = 6;
1342 		break;
1343 	case IPV6_USER_FLOW:
1344 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1345 		       sizeof(struct in6_addr));
1346 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1347 		       sizeof(struct in6_addr));
1348 		fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1349 		fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1350 		fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1351 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1352 		       sizeof(struct in6_addr));
1353 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1354 		       sizeof(struct in6_addr));
1355 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1356 		fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1357 		fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1358 		fltr->ip_ver = 6;
1359 		break;
1360 	case ETHER_FLOW:
1361 		fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1362 		fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1363 		break;
1364 	default:
1365 		/* not doing un-parsed flow types */
1366 		return -EINVAL;
1367 	}
1368 
1369 	err = iavf_validate_fdir_fltr_masks(adapter, fltr);
1370 	if (err)
1371 		return err;
1372 
1373 	if (iavf_fdir_is_dup_fltr(adapter, fltr))
1374 		return -EEXIST;
1375 
1376 	err = iavf_parse_rx_flow_user_data(fsp, fltr);
1377 	if (err)
1378 		return err;
1379 
1380 	return iavf_fill_fdir_add_msg(adapter, fltr);
1381 }
1382 
1383 /**
1384  * iavf_add_fdir_ethtool - add Flow Director filter
1385  * @adapter: pointer to the VF adapter structure
1386  * @cmd: command to add Flow Director filter
1387  *
1388  * Returns 0 on success and negative values for failure
1389  */
1390 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1391 {
1392 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1393 	struct iavf_fdir_fltr *fltr;
1394 	int count = 50;
1395 	int err;
1396 
1397 	if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED))
1398 		return -EOPNOTSUPP;
1399 
1400 	if (fsp->flow_type & FLOW_MAC_EXT)
1401 		return -EINVAL;
1402 
1403 	spin_lock_bh(&adapter->fdir_fltr_lock);
1404 	if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1405 		spin_unlock_bh(&adapter->fdir_fltr_lock);
1406 		dev_err(&adapter->pdev->dev,
1407 			"Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1408 			IAVF_MAX_FDIR_FILTERS);
1409 		return -ENOSPC;
1410 	}
1411 
1412 	if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1413 		dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1414 		spin_unlock_bh(&adapter->fdir_fltr_lock);
1415 		return -EEXIST;
1416 	}
1417 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1418 
1419 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1420 	if (!fltr)
1421 		return -ENOMEM;
1422 
1423 	while (!mutex_trylock(&adapter->crit_lock)) {
1424 		if (--count == 0) {
1425 			kfree(fltr);
1426 			return -EINVAL;
1427 		}
1428 		udelay(1);
1429 	}
1430 
1431 	err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1432 	if (err)
1433 		goto ret;
1434 
1435 	spin_lock_bh(&adapter->fdir_fltr_lock);
1436 	iavf_fdir_list_add_fltr(adapter, fltr);
1437 	adapter->fdir_active_fltr++;
1438 
1439 	if (adapter->link_up)
1440 		fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1441 	else
1442 		fltr->state = IAVF_FDIR_FLTR_INACTIVE;
1443 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1444 
1445 	if (adapter->link_up)
1446 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_FDIR_FILTER);
1447 ret:
1448 	if (err && fltr)
1449 		kfree(fltr);
1450 
1451 	mutex_unlock(&adapter->crit_lock);
1452 	return err;
1453 }
1454 
1455 /**
1456  * iavf_del_fdir_ethtool - delete Flow Director filter
1457  * @adapter: pointer to the VF adapter structure
1458  * @cmd: command to delete Flow Director filter
1459  *
1460  * Returns 0 on success and negative values for failure
1461  */
1462 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1463 {
1464 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1465 	struct iavf_fdir_fltr *fltr = NULL;
1466 	int err = 0;
1467 
1468 	if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED))
1469 		return -EOPNOTSUPP;
1470 
1471 	spin_lock_bh(&adapter->fdir_fltr_lock);
1472 	fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1473 	if (fltr) {
1474 		if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1475 			fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1476 		} else if (fltr->state == IAVF_FDIR_FLTR_INACTIVE) {
1477 			list_del(&fltr->list);
1478 			kfree(fltr);
1479 			adapter->fdir_active_fltr--;
1480 			fltr = NULL;
1481 		} else {
1482 			err = -EBUSY;
1483 		}
1484 	} else if (adapter->fdir_active_fltr) {
1485 		err = -EINVAL;
1486 	}
1487 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1488 
1489 	if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1490 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_FDIR_FILTER);
1491 
1492 	return err;
1493 }
1494 
1495 /**
1496  * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1497  * @cmd: ethtool rxnfc command
1498  *
1499  * This function parses the rxnfc command and returns intended
1500  * header types for RSS configuration
1501  */
1502 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1503 {
1504 	u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1505 
1506 	switch (cmd->flow_type) {
1507 	case TCP_V4_FLOW:
1508 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1509 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1510 		break;
1511 	case UDP_V4_FLOW:
1512 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1513 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1514 		break;
1515 	case SCTP_V4_FLOW:
1516 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1517 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1518 		break;
1519 	case TCP_V6_FLOW:
1520 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1521 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1522 		break;
1523 	case UDP_V6_FLOW:
1524 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1525 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1526 		break;
1527 	case SCTP_V6_FLOW:
1528 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1529 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1530 		break;
1531 	default:
1532 		break;
1533 	}
1534 
1535 	return hdrs;
1536 }
1537 
1538 /**
1539  * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1540  * @cmd: ethtool rxnfc command
1541  * @symm: true if Symmetric Topelitz is set
1542  *
1543  * This function parses the rxnfc command and returns intended hash fields for
1544  * RSS configuration
1545  */
1546 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd, bool symm)
1547 {
1548 	u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1549 
1550 	if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1551 		switch (cmd->flow_type) {
1552 		case TCP_V4_FLOW:
1553 		case UDP_V4_FLOW:
1554 		case SCTP_V4_FLOW:
1555 			if (cmd->data & RXH_IP_SRC)
1556 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1557 			if (cmd->data & RXH_IP_DST)
1558 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1559 			break;
1560 		case TCP_V6_FLOW:
1561 		case UDP_V6_FLOW:
1562 		case SCTP_V6_FLOW:
1563 			if (cmd->data & RXH_IP_SRC)
1564 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1565 			if (cmd->data & RXH_IP_DST)
1566 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1567 			break;
1568 		default:
1569 			break;
1570 		}
1571 	}
1572 
1573 	if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1574 		switch (cmd->flow_type) {
1575 		case TCP_V4_FLOW:
1576 		case TCP_V6_FLOW:
1577 			if (cmd->data & RXH_L4_B_0_1)
1578 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1579 			if (cmd->data & RXH_L4_B_2_3)
1580 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1581 			break;
1582 		case UDP_V4_FLOW:
1583 		case UDP_V6_FLOW:
1584 			if (cmd->data & RXH_L4_B_0_1)
1585 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1586 			if (cmd->data & RXH_L4_B_2_3)
1587 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1588 			break;
1589 		case SCTP_V4_FLOW:
1590 		case SCTP_V6_FLOW:
1591 			if (cmd->data & RXH_L4_B_0_1)
1592 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1593 			if (cmd->data & RXH_L4_B_2_3)
1594 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1595 			break;
1596 		default:
1597 			break;
1598 		}
1599 	}
1600 
1601 	return hfld;
1602 }
1603 
1604 /**
1605  * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1606  * @adapter: pointer to the VF adapter structure
1607  * @cmd: ethtool rxnfc command
1608  *
1609  * Returns Success if the flow input set is supported.
1610  */
1611 static int
1612 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1613 			  struct ethtool_rxnfc *cmd)
1614 {
1615 	struct iavf_adv_rss *rss_old, *rss_new;
1616 	bool rss_new_add = false;
1617 	int count = 50, err = 0;
1618 	bool symm = false;
1619 	u64 hash_flds;
1620 	u32 hdrs;
1621 
1622 	if (!ADV_RSS_SUPPORT(adapter))
1623 		return -EOPNOTSUPP;
1624 
1625 	symm = !!(adapter->hfunc == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC);
1626 
1627 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1628 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1629 		return -EINVAL;
1630 
1631 	hash_flds = iavf_adv_rss_parse_hash_flds(cmd, symm);
1632 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1633 		return -EINVAL;
1634 
1635 	rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1636 	if (!rss_new)
1637 		return -ENOMEM;
1638 
1639 	if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds,
1640 				      symm)) {
1641 		kfree(rss_new);
1642 		return -EINVAL;
1643 	}
1644 
1645 	while (!mutex_trylock(&adapter->crit_lock)) {
1646 		if (--count == 0) {
1647 			kfree(rss_new);
1648 			return -EINVAL;
1649 		}
1650 
1651 		udelay(1);
1652 	}
1653 
1654 	spin_lock_bh(&adapter->adv_rss_lock);
1655 	rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1656 	if (rss_old) {
1657 		if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1658 			err = -EBUSY;
1659 		} else if (rss_old->hash_flds != hash_flds ||
1660 			   rss_old->symm != symm) {
1661 			rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1662 			rss_old->hash_flds = hash_flds;
1663 			rss_old->symm = symm;
1664 			memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1665 			       sizeof(rss_new->cfg_msg));
1666 		} else {
1667 			err = -EEXIST;
1668 		}
1669 	} else {
1670 		rss_new_add = true;
1671 		rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1672 		rss_new->packet_hdrs = hdrs;
1673 		rss_new->hash_flds = hash_flds;
1674 		rss_new->symm = symm;
1675 		list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1676 	}
1677 	spin_unlock_bh(&adapter->adv_rss_lock);
1678 
1679 	if (!err)
1680 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
1681 
1682 	mutex_unlock(&adapter->crit_lock);
1683 
1684 	if (!rss_new_add)
1685 		kfree(rss_new);
1686 
1687 	return err;
1688 }
1689 
1690 /**
1691  * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1692  * @adapter: pointer to the VF adapter structure
1693  * @cmd: ethtool rxnfc command
1694  *
1695  * Returns Success if the flow input set is supported.
1696  */
1697 static int
1698 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1699 			  struct ethtool_rxnfc *cmd)
1700 {
1701 	struct iavf_adv_rss *rss;
1702 	u64 hash_flds;
1703 	u32 hdrs;
1704 
1705 	if (!ADV_RSS_SUPPORT(adapter))
1706 		return -EOPNOTSUPP;
1707 
1708 	cmd->data = 0;
1709 
1710 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1711 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1712 		return -EINVAL;
1713 
1714 	spin_lock_bh(&adapter->adv_rss_lock);
1715 	rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1716 	if (rss)
1717 		hash_flds = rss->hash_flds;
1718 	else
1719 		hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1720 	spin_unlock_bh(&adapter->adv_rss_lock);
1721 
1722 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1723 		return -EINVAL;
1724 
1725 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1726 			 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1727 		cmd->data |= (u64)RXH_IP_SRC;
1728 
1729 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1730 			 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1731 		cmd->data |= (u64)RXH_IP_DST;
1732 
1733 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1734 			 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1735 			 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1736 		cmd->data |= (u64)RXH_L4_B_0_1;
1737 
1738 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1739 			 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1740 			 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1741 		cmd->data |= (u64)RXH_L4_B_2_3;
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * iavf_set_rxnfc - command to set Rx flow rules.
1748  * @netdev: network interface device structure
1749  * @cmd: ethtool rxnfc command
1750  *
1751  * Returns 0 for success and negative values for errors
1752  */
1753 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1754 {
1755 	struct iavf_adapter *adapter = netdev_priv(netdev);
1756 	int ret = -EOPNOTSUPP;
1757 
1758 	switch (cmd->cmd) {
1759 	case ETHTOOL_SRXCLSRLINS:
1760 		ret = iavf_add_fdir_ethtool(adapter, cmd);
1761 		break;
1762 	case ETHTOOL_SRXCLSRLDEL:
1763 		ret = iavf_del_fdir_ethtool(adapter, cmd);
1764 		break;
1765 	case ETHTOOL_SRXFH:
1766 		ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1767 		break;
1768 	default:
1769 		break;
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 /**
1776  * iavf_get_rxnfc - command to get RX flow classification rules
1777  * @netdev: network interface device structure
1778  * @cmd: ethtool rxnfc command
1779  * @rule_locs: pointer to store rule locations
1780  *
1781  * Returns Success if the command is supported.
1782  **/
1783 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1784 			  u32 *rule_locs)
1785 {
1786 	struct iavf_adapter *adapter = netdev_priv(netdev);
1787 	int ret = -EOPNOTSUPP;
1788 
1789 	switch (cmd->cmd) {
1790 	case ETHTOOL_GRXRINGS:
1791 		cmd->data = adapter->num_active_queues;
1792 		ret = 0;
1793 		break;
1794 	case ETHTOOL_GRXCLSRLCNT:
1795 		if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED))
1796 			break;
1797 		spin_lock_bh(&adapter->fdir_fltr_lock);
1798 		cmd->rule_cnt = adapter->fdir_active_fltr;
1799 		spin_unlock_bh(&adapter->fdir_fltr_lock);
1800 		cmd->data = IAVF_MAX_FDIR_FILTERS;
1801 		ret = 0;
1802 		break;
1803 	case ETHTOOL_GRXCLSRULE:
1804 		ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1805 		break;
1806 	case ETHTOOL_GRXCLSRLALL:
1807 		ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1808 		break;
1809 	case ETHTOOL_GRXFH:
1810 		ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1811 		break;
1812 	default:
1813 		break;
1814 	}
1815 
1816 	return ret;
1817 }
1818 /**
1819  * iavf_get_channels: get the number of channels supported by the device
1820  * @netdev: network interface device structure
1821  * @ch: channel information structure
1822  *
1823  * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1824  * queue pair. Report one extra channel to match our "other" MSI-X vector.
1825  **/
1826 static void iavf_get_channels(struct net_device *netdev,
1827 			      struct ethtool_channels *ch)
1828 {
1829 	struct iavf_adapter *adapter = netdev_priv(netdev);
1830 
1831 	/* Report maximum channels */
1832 	ch->max_combined = adapter->vsi_res->num_queue_pairs;
1833 
1834 	ch->max_other = NONQ_VECS;
1835 	ch->other_count = NONQ_VECS;
1836 
1837 	ch->combined_count = adapter->num_active_queues;
1838 }
1839 
1840 /**
1841  * iavf_set_channels: set the new channel count
1842  * @netdev: network interface device structure
1843  * @ch: channel information structure
1844  *
1845  * Negotiate a new number of channels with the PF then do a reset.  During
1846  * reset we'll realloc queues and fix the RSS table.  Returns 0 on success,
1847  * negative on failure.
1848  **/
1849 static int iavf_set_channels(struct net_device *netdev,
1850 			     struct ethtool_channels *ch)
1851 {
1852 	struct iavf_adapter *adapter = netdev_priv(netdev);
1853 	u32 num_req = ch->combined_count;
1854 	int ret = 0;
1855 
1856 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1857 	    adapter->num_tc) {
1858 		dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1859 		return -EINVAL;
1860 	}
1861 
1862 	/* All of these should have already been checked by ethtool before this
1863 	 * even gets to us, but just to be sure.
1864 	 */
1865 	if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
1866 		return -EINVAL;
1867 
1868 	if (num_req == adapter->num_active_queues)
1869 		return 0;
1870 
1871 	if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1872 		return -EINVAL;
1873 
1874 	adapter->num_req_queues = num_req;
1875 	adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1876 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
1877 
1878 	ret = iavf_wait_for_reset(adapter);
1879 	if (ret)
1880 		netdev_warn(netdev, "Changing channel count timeout or interrupted waiting for reset");
1881 
1882 	return ret;
1883 }
1884 
1885 /**
1886  * iavf_get_rxfh_key_size - get the RSS hash key size
1887  * @netdev: network interface device structure
1888  *
1889  * Returns the table size.
1890  **/
1891 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1892 {
1893 	struct iavf_adapter *adapter = netdev_priv(netdev);
1894 
1895 	return adapter->rss_key_size;
1896 }
1897 
1898 /**
1899  * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1900  * @netdev: network interface device structure
1901  *
1902  * Returns the table size.
1903  **/
1904 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1905 {
1906 	struct iavf_adapter *adapter = netdev_priv(netdev);
1907 
1908 	return adapter->rss_lut_size;
1909 }
1910 
1911 /**
1912  * iavf_get_rxfh - get the rx flow hash indirection table
1913  * @netdev: network interface device structure
1914  * @rxfh: pointer to param struct (indir, key, hfunc)
1915  *
1916  * Reads the indirection table directly from the hardware. Always returns 0.
1917  **/
1918 static int iavf_get_rxfh(struct net_device *netdev,
1919 			 struct ethtool_rxfh_param *rxfh)
1920 {
1921 	struct iavf_adapter *adapter = netdev_priv(netdev);
1922 	u16 i;
1923 
1924 	rxfh->hfunc = ETH_RSS_HASH_TOP;
1925 	if (adapter->hfunc == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1926 		rxfh->input_xfrm |= RXH_XFRM_SYM_XOR;
1927 
1928 	if (rxfh->key)
1929 		memcpy(rxfh->key, adapter->rss_key, adapter->rss_key_size);
1930 
1931 	if (rxfh->indir)
1932 		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1933 		for (i = 0; i < adapter->rss_lut_size; i++)
1934 			rxfh->indir[i] = (u32)adapter->rss_lut[i];
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * iavf_set_rxfh - set the rx flow hash indirection table
1941  * @netdev: network interface device structure
1942  * @rxfh: pointer to param struct (indir, key, hfunc)
1943  * @extack: extended ACK from the Netlink message
1944  *
1945  * Returns -EINVAL if the table specifies an invalid queue id, otherwise
1946  * returns 0 after programming the table.
1947  **/
1948 static int iavf_set_rxfh(struct net_device *netdev,
1949 			 struct ethtool_rxfh_param *rxfh,
1950 			 struct netlink_ext_ack *extack)
1951 {
1952 	struct iavf_adapter *adapter = netdev_priv(netdev);
1953 	u16 i;
1954 
1955 	/* Only support toeplitz hash function */
1956 	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1957 	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1958 		return -EOPNOTSUPP;
1959 
1960 	if ((rxfh->input_xfrm & RXH_XFRM_SYM_XOR) &&
1961 	    adapter->hfunc != VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) {
1962 		if (!ADV_RSS_SUPPORT(adapter))
1963 			return -EOPNOTSUPP;
1964 		adapter->hfunc = VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC;
1965 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_HFUNC;
1966 	} else if (!(rxfh->input_xfrm & RXH_XFRM_SYM_XOR) &&
1967 		    adapter->hfunc != VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC) {
1968 		adapter->hfunc = VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC;
1969 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_HFUNC;
1970 	}
1971 
1972 	if (!rxfh->key && !rxfh->indir)
1973 		return 0;
1974 
1975 	if (rxfh->key)
1976 		memcpy(adapter->rss_key, rxfh->key, adapter->rss_key_size);
1977 
1978 	if (rxfh->indir) {
1979 		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1980 		for (i = 0; i < adapter->rss_lut_size; i++)
1981 			adapter->rss_lut[i] = (u8)(rxfh->indir[i]);
1982 	}
1983 
1984 	return iavf_config_rss(adapter);
1985 }
1986 
1987 static const struct ethtool_ops iavf_ethtool_ops = {
1988 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1989 				     ETHTOOL_COALESCE_USE_ADAPTIVE,
1990 	.cap_rss_sym_xor_supported = true,
1991 	.get_drvinfo		= iavf_get_drvinfo,
1992 	.get_link		= ethtool_op_get_link,
1993 	.get_ringparam		= iavf_get_ringparam,
1994 	.set_ringparam		= iavf_set_ringparam,
1995 	.get_strings		= iavf_get_strings,
1996 	.get_ethtool_stats	= iavf_get_ethtool_stats,
1997 	.get_sset_count		= iavf_get_sset_count,
1998 	.get_priv_flags		= iavf_get_priv_flags,
1999 	.set_priv_flags		= iavf_set_priv_flags,
2000 	.get_msglevel		= iavf_get_msglevel,
2001 	.set_msglevel		= iavf_set_msglevel,
2002 	.get_coalesce		= iavf_get_coalesce,
2003 	.set_coalesce		= iavf_set_coalesce,
2004 	.get_per_queue_coalesce = iavf_get_per_queue_coalesce,
2005 	.set_per_queue_coalesce = iavf_set_per_queue_coalesce,
2006 	.set_rxnfc		= iavf_set_rxnfc,
2007 	.get_rxnfc		= iavf_get_rxnfc,
2008 	.get_rxfh_indir_size	= iavf_get_rxfh_indir_size,
2009 	.get_rxfh		= iavf_get_rxfh,
2010 	.set_rxfh		= iavf_set_rxfh,
2011 	.get_channels		= iavf_get_channels,
2012 	.set_channels		= iavf_set_channels,
2013 	.get_rxfh_key_size	= iavf_get_rxfh_key_size,
2014 	.get_link_ksettings	= iavf_get_link_ksettings,
2015 };
2016 
2017 /**
2018  * iavf_set_ethtool_ops - Initialize ethtool ops struct
2019  * @netdev: network interface device structure
2020  *
2021  * Sets ethtool ops struct in our netdev so that ethtool can call
2022  * our functions.
2023  **/
2024 void iavf_set_ethtool_ops(struct net_device *netdev)
2025 {
2026 	netdev->ethtool_ops = &iavf_ethtool_ops;
2027 }
2028