1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/bitfield.h> 5 #include <linux/uaccess.h> 6 7 /* ethtool support for iavf */ 8 #include "iavf.h" 9 10 /* ethtool statistics helpers */ 11 12 /** 13 * struct iavf_stats - definition for an ethtool statistic 14 * @stat_string: statistic name to display in ethtool -S output 15 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 16 * @stat_offset: offsetof() the stat from a base pointer 17 * 18 * This structure defines a statistic to be added to the ethtool stats buffer. 19 * It defines a statistic as offset from a common base pointer. Stats should 20 * be defined in constant arrays using the IAVF_STAT macro, with every element 21 * of the array using the same _type for calculating the sizeof_stat and 22 * stat_offset. 23 * 24 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 25 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 26 * the iavf_add_ethtool_stat() helper function. 27 * 28 * The @stat_string is interpreted as a format string, allowing formatted 29 * values to be inserted while looping over multiple structures for a given 30 * statistics array. Thus, every statistic string in an array should have the 31 * same type and number of format specifiers, to be formatted by variadic 32 * arguments to the iavf_add_stat_string() helper function. 33 **/ 34 struct iavf_stats { 35 char stat_string[ETH_GSTRING_LEN]; 36 int sizeof_stat; 37 int stat_offset; 38 }; 39 40 /* Helper macro to define an iavf_stat structure with proper size and type. 41 * Use this when defining constant statistics arrays. Note that @_type expects 42 * only a type name and is used multiple times. 43 */ 44 #define IAVF_STAT(_type, _name, _stat) { \ 45 .stat_string = _name, \ 46 .sizeof_stat = sizeof_field(_type, _stat), \ 47 .stat_offset = offsetof(_type, _stat) \ 48 } 49 50 /* Helper macro for defining some statistics related to queues */ 51 #define IAVF_QUEUE_STAT(_name, _stat) \ 52 IAVF_STAT(struct iavf_ring, _name, _stat) 53 54 /* Stats associated with a Tx or Rx ring */ 55 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 56 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 57 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 58 }; 59 60 /** 61 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 62 * @data: location to store the stat value 63 * @pointer: basis for where to copy from 64 * @stat: the stat definition 65 * 66 * Copies the stat data defined by the pointer and stat structure pair into 67 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 68 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 69 */ 70 static void 71 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 72 const struct iavf_stats *stat) 73 { 74 char *p; 75 76 if (!pointer) { 77 /* ensure that the ethtool data buffer is zero'd for any stats 78 * which don't have a valid pointer. 79 */ 80 *data = 0; 81 return; 82 } 83 84 p = (char *)pointer + stat->stat_offset; 85 switch (stat->sizeof_stat) { 86 case sizeof(u64): 87 *data = *((u64 *)p); 88 break; 89 case sizeof(u32): 90 *data = *((u32 *)p); 91 break; 92 case sizeof(u16): 93 *data = *((u16 *)p); 94 break; 95 case sizeof(u8): 96 *data = *((u8 *)p); 97 break; 98 default: 99 WARN_ONCE(1, "unexpected stat size for %s", 100 stat->stat_string); 101 *data = 0; 102 } 103 } 104 105 /** 106 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 107 * @data: ethtool stats buffer 108 * @pointer: location to copy stats from 109 * @stats: array of stats to copy 110 * @size: the size of the stats definition 111 * 112 * Copy the stats defined by the stats array using the pointer as a base into 113 * the data buffer supplied by ethtool. Updates the data pointer to point to 114 * the next empty location for successive calls to __iavf_add_ethtool_stats. 115 * If pointer is null, set the data values to zero and update the pointer to 116 * skip these stats. 117 **/ 118 static void 119 __iavf_add_ethtool_stats(u64 **data, void *pointer, 120 const struct iavf_stats stats[], 121 const unsigned int size) 122 { 123 unsigned int i; 124 125 for (i = 0; i < size; i++) 126 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 127 } 128 129 /** 130 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 131 * @data: ethtool stats buffer 132 * @pointer: location where stats are stored 133 * @stats: static const array of stat definitions 134 * 135 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 136 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 137 * ensuring that we pass the size associated with the given stats array. 138 * 139 * The parameter @stats is evaluated twice, so parameters with side effects 140 * should be avoided. 141 **/ 142 #define iavf_add_ethtool_stats(data, pointer, stats) \ 143 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 144 145 /** 146 * iavf_add_queue_stats - copy queue statistics into supplied buffer 147 * @data: ethtool stats buffer 148 * @ring: the ring to copy 149 * 150 * Queue statistics must be copied while protected by 151 * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats. 152 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 153 * ring pointer is null, zero out the queue stat values and update the data 154 * pointer. Otherwise safely copy the stats from the ring into the supplied 155 * buffer and update the data pointer when finished. 156 * 157 * This function expects to be called while under rcu_read_lock(). 158 **/ 159 static void 160 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 161 { 162 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 163 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 164 unsigned int start; 165 unsigned int i; 166 167 /* To avoid invalid statistics values, ensure that we keep retrying 168 * the copy until we get a consistent value according to 169 * u64_stats_fetch_retry. But first, make sure our ring is 170 * non-null before attempting to access its syncp. 171 */ 172 do { 173 start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp); 174 for (i = 0; i < size; i++) 175 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 176 } while (ring && u64_stats_fetch_retry(&ring->syncp, start)); 177 178 /* Once we successfully copy the stats in, update the data pointer */ 179 *data += size; 180 } 181 182 /** 183 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 184 * @p: ethtool supplied buffer 185 * @stats: stat definitions array 186 * @size: size of the stats array 187 * 188 * Format and copy the strings described by stats into the buffer pointed at 189 * by p. 190 **/ 191 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 192 const unsigned int size, ...) 193 { 194 unsigned int i; 195 196 for (i = 0; i < size; i++) { 197 va_list args; 198 199 va_start(args, size); 200 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 201 *p += ETH_GSTRING_LEN; 202 va_end(args); 203 } 204 } 205 206 /** 207 * iavf_add_stat_strings - copy stat strings into ethtool buffer 208 * @p: ethtool supplied buffer 209 * @stats: stat definitions array 210 * 211 * Format and copy the strings described by the const static stats value into 212 * the buffer pointed at by p. 213 * 214 * The parameter @stats is evaluated twice, so parameters with side effects 215 * should be avoided. Additionally, stats must be an array such that 216 * ARRAY_SIZE can be called on it. 217 **/ 218 #define iavf_add_stat_strings(p, stats, ...) \ 219 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 220 221 #define VF_STAT(_name, _stat) \ 222 IAVF_STAT(struct iavf_adapter, _name, _stat) 223 224 static const struct iavf_stats iavf_gstrings_stats[] = { 225 VF_STAT("rx_bytes", current_stats.rx_bytes), 226 VF_STAT("rx_unicast", current_stats.rx_unicast), 227 VF_STAT("rx_multicast", current_stats.rx_multicast), 228 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 229 VF_STAT("rx_discards", current_stats.rx_discards), 230 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 231 VF_STAT("tx_bytes", current_stats.tx_bytes), 232 VF_STAT("tx_unicast", current_stats.tx_unicast), 233 VF_STAT("tx_multicast", current_stats.tx_multicast), 234 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 235 VF_STAT("tx_discards", current_stats.tx_discards), 236 VF_STAT("tx_errors", current_stats.tx_errors), 237 }; 238 239 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 240 241 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 242 243 /** 244 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 245 * @netdev: network interface device structure 246 * @cmd: ethtool command 247 * 248 * Reports speed/duplex settings. Because this is a VF, we don't know what 249 * kind of link we really have, so we fake it. 250 **/ 251 static int iavf_get_link_ksettings(struct net_device *netdev, 252 struct ethtool_link_ksettings *cmd) 253 { 254 struct iavf_adapter *adapter = netdev_priv(netdev); 255 256 ethtool_link_ksettings_zero_link_mode(cmd, supported); 257 cmd->base.autoneg = AUTONEG_DISABLE; 258 cmd->base.port = PORT_NONE; 259 cmd->base.duplex = DUPLEX_FULL; 260 261 if (ADV_LINK_SUPPORT(adapter)) { 262 if (adapter->link_speed_mbps && 263 adapter->link_speed_mbps < U32_MAX) 264 cmd->base.speed = adapter->link_speed_mbps; 265 else 266 cmd->base.speed = SPEED_UNKNOWN; 267 268 return 0; 269 } 270 271 switch (adapter->link_speed) { 272 case VIRTCHNL_LINK_SPEED_40GB: 273 cmd->base.speed = SPEED_40000; 274 break; 275 case VIRTCHNL_LINK_SPEED_25GB: 276 cmd->base.speed = SPEED_25000; 277 break; 278 case VIRTCHNL_LINK_SPEED_20GB: 279 cmd->base.speed = SPEED_20000; 280 break; 281 case VIRTCHNL_LINK_SPEED_10GB: 282 cmd->base.speed = SPEED_10000; 283 break; 284 case VIRTCHNL_LINK_SPEED_5GB: 285 cmd->base.speed = SPEED_5000; 286 break; 287 case VIRTCHNL_LINK_SPEED_2_5GB: 288 cmd->base.speed = SPEED_2500; 289 break; 290 case VIRTCHNL_LINK_SPEED_1GB: 291 cmd->base.speed = SPEED_1000; 292 break; 293 case VIRTCHNL_LINK_SPEED_100MB: 294 cmd->base.speed = SPEED_100; 295 break; 296 default: 297 break; 298 } 299 300 return 0; 301 } 302 303 /** 304 * iavf_get_sset_count - Get length of string set 305 * @netdev: network interface device structure 306 * @sset: id of string set 307 * 308 * Reports size of various string tables. 309 **/ 310 static int iavf_get_sset_count(struct net_device *netdev, int sset) 311 { 312 /* Report the maximum number queues, even if not every queue is 313 * currently configured. Since allocation of queues is in pairs, 314 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 315 * at device creation and never changes. 316 */ 317 318 if (sset == ETH_SS_STATS) 319 return IAVF_STATS_LEN + 320 (IAVF_QUEUE_STATS_LEN * 2 * 321 netdev->real_num_tx_queues); 322 else 323 return -EINVAL; 324 } 325 326 /** 327 * iavf_get_ethtool_stats - report device statistics 328 * @netdev: network interface device structure 329 * @stats: ethtool statistics structure 330 * @data: pointer to data buffer 331 * 332 * All statistics are added to the data buffer as an array of u64. 333 **/ 334 static void iavf_get_ethtool_stats(struct net_device *netdev, 335 struct ethtool_stats *stats, u64 *data) 336 { 337 struct iavf_adapter *adapter = netdev_priv(netdev); 338 unsigned int i; 339 340 /* Explicitly request stats refresh */ 341 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_REQUEST_STATS); 342 343 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 344 345 rcu_read_lock(); 346 /* As num_active_queues describe both tx and rx queues, we can use 347 * it to iterate over rings' stats. 348 */ 349 for (i = 0; i < adapter->num_active_queues; i++) { 350 struct iavf_ring *ring; 351 352 /* Tx rings stats */ 353 ring = &adapter->tx_rings[i]; 354 iavf_add_queue_stats(&data, ring); 355 356 /* Rx rings stats */ 357 ring = &adapter->rx_rings[i]; 358 iavf_add_queue_stats(&data, ring); 359 } 360 rcu_read_unlock(); 361 } 362 363 /** 364 * iavf_get_stat_strings - Get stat strings 365 * @netdev: network interface device structure 366 * @data: buffer for string data 367 * 368 * Builds the statistics string table 369 **/ 370 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 371 { 372 unsigned int i; 373 374 iavf_add_stat_strings(&data, iavf_gstrings_stats); 375 376 /* Queues are always allocated in pairs, so we just use 377 * real_num_tx_queues for both Tx and Rx queues. 378 */ 379 for (i = 0; i < netdev->real_num_tx_queues; i++) { 380 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 381 "tx", i); 382 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 383 "rx", i); 384 } 385 } 386 387 /** 388 * iavf_get_strings - Get string set 389 * @netdev: network interface device structure 390 * @sset: id of string set 391 * @data: buffer for string data 392 * 393 * Builds string tables for various string sets 394 **/ 395 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 396 { 397 switch (sset) { 398 case ETH_SS_STATS: 399 iavf_get_stat_strings(netdev, data); 400 break; 401 default: 402 break; 403 } 404 } 405 406 /** 407 * iavf_get_msglevel - Get debug message level 408 * @netdev: network interface device structure 409 * 410 * Returns current debug message level. 411 **/ 412 static u32 iavf_get_msglevel(struct net_device *netdev) 413 { 414 struct iavf_adapter *adapter = netdev_priv(netdev); 415 416 return adapter->msg_enable; 417 } 418 419 /** 420 * iavf_set_msglevel - Set debug message level 421 * @netdev: network interface device structure 422 * @data: message level 423 * 424 * Set current debug message level. Higher values cause the driver to 425 * be noisier. 426 **/ 427 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 428 { 429 struct iavf_adapter *adapter = netdev_priv(netdev); 430 431 if (IAVF_DEBUG_USER & data) 432 adapter->hw.debug_mask = data; 433 adapter->msg_enable = data; 434 } 435 436 /** 437 * iavf_get_drvinfo - Get driver info 438 * @netdev: network interface device structure 439 * @drvinfo: ethool driver info structure 440 * 441 * Returns information about the driver and device for display to the user. 442 **/ 443 static void iavf_get_drvinfo(struct net_device *netdev, 444 struct ethtool_drvinfo *drvinfo) 445 { 446 struct iavf_adapter *adapter = netdev_priv(netdev); 447 448 strscpy(drvinfo->driver, iavf_driver_name, 32); 449 strscpy(drvinfo->fw_version, "N/A", 4); 450 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 451 } 452 453 /** 454 * iavf_get_ringparam - Get ring parameters 455 * @netdev: network interface device structure 456 * @ring: ethtool ringparam structure 457 * @kernel_ring: ethtool extenal ringparam structure 458 * @extack: netlink extended ACK report struct 459 * 460 * Returns current ring parameters. TX and RX rings are reported separately, 461 * but the number of rings is not reported. 462 **/ 463 static void iavf_get_ringparam(struct net_device *netdev, 464 struct ethtool_ringparam *ring, 465 struct kernel_ethtool_ringparam *kernel_ring, 466 struct netlink_ext_ack *extack) 467 { 468 struct iavf_adapter *adapter = netdev_priv(netdev); 469 470 ring->rx_max_pending = IAVF_MAX_RXD; 471 ring->tx_max_pending = IAVF_MAX_TXD; 472 ring->rx_pending = adapter->rx_desc_count; 473 ring->tx_pending = adapter->tx_desc_count; 474 } 475 476 /** 477 * iavf_set_ringparam - Set ring parameters 478 * @netdev: network interface device structure 479 * @ring: ethtool ringparam structure 480 * @kernel_ring: ethtool external ringparam structure 481 * @extack: netlink extended ACK report struct 482 * 483 * Sets ring parameters. TX and RX rings are controlled separately, but the 484 * number of rings is not specified, so all rings get the same settings. 485 **/ 486 static int iavf_set_ringparam(struct net_device *netdev, 487 struct ethtool_ringparam *ring, 488 struct kernel_ethtool_ringparam *kernel_ring, 489 struct netlink_ext_ack *extack) 490 { 491 struct iavf_adapter *adapter = netdev_priv(netdev); 492 u32 new_rx_count, new_tx_count; 493 int ret = 0; 494 495 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 496 return -EINVAL; 497 498 if (ring->tx_pending > IAVF_MAX_TXD || 499 ring->tx_pending < IAVF_MIN_TXD || 500 ring->rx_pending > IAVF_MAX_RXD || 501 ring->rx_pending < IAVF_MIN_RXD) { 502 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 503 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 504 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 505 return -EINVAL; 506 } 507 508 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 509 if (new_tx_count != ring->tx_pending) 510 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 511 new_tx_count); 512 513 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 514 if (new_rx_count != ring->rx_pending) 515 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 516 new_rx_count); 517 518 /* if nothing to do return success */ 519 if ((new_tx_count == adapter->tx_desc_count) && 520 (new_rx_count == adapter->rx_desc_count)) { 521 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 522 return 0; 523 } 524 525 if (new_tx_count != adapter->tx_desc_count) { 526 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 527 adapter->tx_desc_count, new_tx_count); 528 adapter->tx_desc_count = new_tx_count; 529 } 530 531 if (new_rx_count != adapter->rx_desc_count) { 532 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 533 adapter->rx_desc_count, new_rx_count); 534 adapter->rx_desc_count = new_rx_count; 535 } 536 537 if (netif_running(netdev)) { 538 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 539 ret = iavf_wait_for_reset(adapter); 540 if (ret) 541 netdev_warn(netdev, "Changing ring parameters timeout or interrupted waiting for reset"); 542 } 543 544 return ret; 545 } 546 547 /** 548 * __iavf_get_coalesce - get per-queue coalesce settings 549 * @netdev: the netdev to check 550 * @ec: ethtool coalesce data structure 551 * @queue: which queue to pick 552 * 553 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 554 * are per queue. If queue is <0 then we default to queue 0 as the 555 * representative value. 556 **/ 557 static int __iavf_get_coalesce(struct net_device *netdev, 558 struct ethtool_coalesce *ec, int queue) 559 { 560 struct iavf_adapter *adapter = netdev_priv(netdev); 561 struct iavf_ring *rx_ring, *tx_ring; 562 563 /* Rx and Tx usecs per queue value. If user doesn't specify the 564 * queue, return queue 0's value to represent. 565 */ 566 if (queue < 0) 567 queue = 0; 568 else if (queue >= adapter->num_active_queues) 569 return -EINVAL; 570 571 rx_ring = &adapter->rx_rings[queue]; 572 tx_ring = &adapter->tx_rings[queue]; 573 574 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 575 ec->use_adaptive_rx_coalesce = 1; 576 577 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 578 ec->use_adaptive_tx_coalesce = 1; 579 580 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 581 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 582 583 return 0; 584 } 585 586 /** 587 * iavf_get_coalesce - Get interrupt coalescing settings 588 * @netdev: network interface device structure 589 * @ec: ethtool coalesce structure 590 * @kernel_coal: ethtool CQE mode setting structure 591 * @extack: extack for reporting error messages 592 * 593 * Returns current coalescing settings. This is referred to elsewhere in the 594 * driver as Interrupt Throttle Rate, as this is how the hardware describes 595 * this functionality. Note that if per-queue settings have been modified this 596 * only represents the settings of queue 0. 597 **/ 598 static int iavf_get_coalesce(struct net_device *netdev, 599 struct ethtool_coalesce *ec, 600 struct kernel_ethtool_coalesce *kernel_coal, 601 struct netlink_ext_ack *extack) 602 { 603 return __iavf_get_coalesce(netdev, ec, -1); 604 } 605 606 /** 607 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 608 * @netdev: netdev to read 609 * @ec: coalesce settings from ethtool 610 * @queue: the queue to read 611 * 612 * Read specific queue's coalesce settings. 613 **/ 614 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 615 struct ethtool_coalesce *ec) 616 { 617 return __iavf_get_coalesce(netdev, ec, queue); 618 } 619 620 /** 621 * iavf_set_itr_per_queue - set ITR values for specific queue 622 * @adapter: the VF adapter struct to set values for 623 * @ec: coalesce settings from ethtool 624 * @queue: the queue to modify 625 * 626 * Change the ITR settings for a specific queue. 627 **/ 628 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 629 struct ethtool_coalesce *ec, int queue) 630 { 631 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 632 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 633 struct iavf_q_vector *q_vector; 634 u16 itr_setting; 635 636 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 637 638 if (ec->rx_coalesce_usecs != itr_setting && 639 ec->use_adaptive_rx_coalesce) { 640 netif_info(adapter, drv, adapter->netdev, 641 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 642 return -EINVAL; 643 } 644 645 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 646 647 if (ec->tx_coalesce_usecs != itr_setting && 648 ec->use_adaptive_tx_coalesce) { 649 netif_info(adapter, drv, adapter->netdev, 650 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 651 return -EINVAL; 652 } 653 654 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 655 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 656 657 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 658 if (!ec->use_adaptive_rx_coalesce) 659 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 660 661 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 662 if (!ec->use_adaptive_tx_coalesce) 663 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 664 665 q_vector = rx_ring->q_vector; 666 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 667 668 q_vector = tx_ring->q_vector; 669 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 670 671 /* The interrupt handler itself will take care of programming 672 * the Tx and Rx ITR values based on the values we have entered 673 * into the q_vector, no need to write the values now. 674 */ 675 return 0; 676 } 677 678 /** 679 * __iavf_set_coalesce - set coalesce settings for particular queue 680 * @netdev: the netdev to change 681 * @ec: ethtool coalesce settings 682 * @queue: the queue to change 683 * 684 * Sets the coalesce settings for a particular queue. 685 **/ 686 static int __iavf_set_coalesce(struct net_device *netdev, 687 struct ethtool_coalesce *ec, int queue) 688 { 689 struct iavf_adapter *adapter = netdev_priv(netdev); 690 int i; 691 692 if (ec->rx_coalesce_usecs > IAVF_MAX_ITR) { 693 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 694 return -EINVAL; 695 } else if (ec->tx_coalesce_usecs > IAVF_MAX_ITR) { 696 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 697 return -EINVAL; 698 } 699 700 /* Rx and Tx usecs has per queue value. If user doesn't specify the 701 * queue, apply to all queues. 702 */ 703 if (queue < 0) { 704 for (i = 0; i < adapter->num_active_queues; i++) 705 if (iavf_set_itr_per_queue(adapter, ec, i)) 706 return -EINVAL; 707 } else if (queue < adapter->num_active_queues) { 708 if (iavf_set_itr_per_queue(adapter, ec, queue)) 709 return -EINVAL; 710 } else { 711 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 712 adapter->num_active_queues - 1); 713 return -EINVAL; 714 } 715 716 return 0; 717 } 718 719 /** 720 * iavf_set_coalesce - Set interrupt coalescing settings 721 * @netdev: network interface device structure 722 * @ec: ethtool coalesce structure 723 * @kernel_coal: ethtool CQE mode setting structure 724 * @extack: extack for reporting error messages 725 * 726 * Change current coalescing settings for every queue. 727 **/ 728 static int iavf_set_coalesce(struct net_device *netdev, 729 struct ethtool_coalesce *ec, 730 struct kernel_ethtool_coalesce *kernel_coal, 731 struct netlink_ext_ack *extack) 732 { 733 return __iavf_set_coalesce(netdev, ec, -1); 734 } 735 736 /** 737 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 738 * @netdev: the netdev to change 739 * @ec: ethtool's coalesce settings 740 * @queue: the queue to modify 741 * 742 * Modifies a specific queue's coalesce settings. 743 */ 744 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 745 struct ethtool_coalesce *ec) 746 { 747 return __iavf_set_coalesce(netdev, ec, queue); 748 } 749 750 /** 751 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 752 * flow type values 753 * @flow: filter type to be converted 754 * 755 * Returns the corresponding ethtool flow type. 756 */ 757 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 758 { 759 switch (flow) { 760 case IAVF_FDIR_FLOW_IPV4_TCP: 761 return TCP_V4_FLOW; 762 case IAVF_FDIR_FLOW_IPV4_UDP: 763 return UDP_V4_FLOW; 764 case IAVF_FDIR_FLOW_IPV4_SCTP: 765 return SCTP_V4_FLOW; 766 case IAVF_FDIR_FLOW_IPV4_AH: 767 return AH_V4_FLOW; 768 case IAVF_FDIR_FLOW_IPV4_ESP: 769 return ESP_V4_FLOW; 770 case IAVF_FDIR_FLOW_IPV4_OTHER: 771 return IPV4_USER_FLOW; 772 case IAVF_FDIR_FLOW_IPV6_TCP: 773 return TCP_V6_FLOW; 774 case IAVF_FDIR_FLOW_IPV6_UDP: 775 return UDP_V6_FLOW; 776 case IAVF_FDIR_FLOW_IPV6_SCTP: 777 return SCTP_V6_FLOW; 778 case IAVF_FDIR_FLOW_IPV6_AH: 779 return AH_V6_FLOW; 780 case IAVF_FDIR_FLOW_IPV6_ESP: 781 return ESP_V6_FLOW; 782 case IAVF_FDIR_FLOW_IPV6_OTHER: 783 return IPV6_USER_FLOW; 784 case IAVF_FDIR_FLOW_NON_IP_L2: 785 return ETHER_FLOW; 786 default: 787 /* 0 is undefined ethtool flow */ 788 return 0; 789 } 790 } 791 792 /** 793 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 794 * @eth: Ethtool flow type to be converted 795 * 796 * Returns flow enum 797 */ 798 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 799 { 800 switch (eth) { 801 case TCP_V4_FLOW: 802 return IAVF_FDIR_FLOW_IPV4_TCP; 803 case UDP_V4_FLOW: 804 return IAVF_FDIR_FLOW_IPV4_UDP; 805 case SCTP_V4_FLOW: 806 return IAVF_FDIR_FLOW_IPV4_SCTP; 807 case AH_V4_FLOW: 808 return IAVF_FDIR_FLOW_IPV4_AH; 809 case ESP_V4_FLOW: 810 return IAVF_FDIR_FLOW_IPV4_ESP; 811 case IPV4_USER_FLOW: 812 return IAVF_FDIR_FLOW_IPV4_OTHER; 813 case TCP_V6_FLOW: 814 return IAVF_FDIR_FLOW_IPV6_TCP; 815 case UDP_V6_FLOW: 816 return IAVF_FDIR_FLOW_IPV6_UDP; 817 case SCTP_V6_FLOW: 818 return IAVF_FDIR_FLOW_IPV6_SCTP; 819 case AH_V6_FLOW: 820 return IAVF_FDIR_FLOW_IPV6_AH; 821 case ESP_V6_FLOW: 822 return IAVF_FDIR_FLOW_IPV6_ESP; 823 case IPV6_USER_FLOW: 824 return IAVF_FDIR_FLOW_IPV6_OTHER; 825 case ETHER_FLOW: 826 return IAVF_FDIR_FLOW_NON_IP_L2; 827 default: 828 return IAVF_FDIR_FLOW_NONE; 829 } 830 } 831 832 /** 833 * iavf_is_mask_valid - check mask field set 834 * @mask: full mask to check 835 * @field: field for which mask should be valid 836 * 837 * If the mask is fully set return true. If it is not valid for field return 838 * false. 839 */ 840 static bool iavf_is_mask_valid(u64 mask, u64 field) 841 { 842 return (mask & field) == field; 843 } 844 845 /** 846 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 847 * @fsp: pointer to ethtool Rx flow specification 848 * @fltr: pointer to Flow Director filter for userdef data storage 849 * 850 * Returns 0 on success, negative error value on failure 851 */ 852 static int 853 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 854 struct iavf_fdir_fltr *fltr) 855 { 856 struct iavf_flex_word *flex; 857 int i, cnt = 0; 858 859 if (!(fsp->flow_type & FLOW_EXT)) 860 return 0; 861 862 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 863 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 864 #define IAVF_USERDEF_FLEX_OFFS_S 16 865 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 866 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 867 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 868 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 869 870 if (!value || !mask) 871 continue; 872 873 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 874 return -EINVAL; 875 876 /* 504 is the maximum value for offsets, and offset is measured 877 * from the start of the MAC address. 878 */ 879 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 880 flex = &fltr->flex_words[cnt++]; 881 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 882 flex->offset = FIELD_GET(IAVF_USERDEF_FLEX_OFFS_M, value); 883 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 884 return -EINVAL; 885 } 886 887 fltr->flex_cnt = cnt; 888 889 return 0; 890 } 891 892 /** 893 * iavf_fill_rx_flow_ext_data - fill the additional data 894 * @fsp: pointer to ethtool Rx flow specification 895 * @fltr: pointer to Flow Director filter to get additional data 896 */ 897 static void 898 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 899 struct iavf_fdir_fltr *fltr) 900 { 901 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 902 return; 903 904 fsp->flow_type |= FLOW_EXT; 905 906 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 907 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 908 } 909 910 /** 911 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 912 * @adapter: the VF adapter structure that contains filter list 913 * @cmd: ethtool command data structure to receive the filter data 914 * 915 * Returns 0 as expected for success by ethtool 916 */ 917 static int 918 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 919 struct ethtool_rxnfc *cmd) 920 { 921 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 922 struct iavf_fdir_fltr *rule = NULL; 923 int ret = 0; 924 925 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 926 return -EOPNOTSUPP; 927 928 spin_lock_bh(&adapter->fdir_fltr_lock); 929 930 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 931 if (!rule) { 932 ret = -EINVAL; 933 goto release_lock; 934 } 935 936 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 937 938 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 939 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 940 941 switch (fsp->flow_type) { 942 case TCP_V4_FLOW: 943 case UDP_V4_FLOW: 944 case SCTP_V4_FLOW: 945 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 946 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 947 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 948 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 949 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 950 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 951 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 952 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 953 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 954 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 955 break; 956 case AH_V4_FLOW: 957 case ESP_V4_FLOW: 958 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 959 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 960 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 961 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 962 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 963 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 964 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 965 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 966 break; 967 case IPV4_USER_FLOW: 968 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 969 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 970 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 971 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 972 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 973 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 974 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 975 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 976 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 977 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 978 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 979 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 980 break; 981 case TCP_V6_FLOW: 982 case UDP_V6_FLOW: 983 case SCTP_V6_FLOW: 984 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 985 sizeof(struct in6_addr)); 986 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 987 sizeof(struct in6_addr)); 988 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 989 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 990 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 991 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 992 sizeof(struct in6_addr)); 993 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 994 sizeof(struct in6_addr)); 995 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 996 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 997 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 998 break; 999 case AH_V6_FLOW: 1000 case ESP_V6_FLOW: 1001 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1002 sizeof(struct in6_addr)); 1003 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1004 sizeof(struct in6_addr)); 1005 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1006 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1007 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1008 sizeof(struct in6_addr)); 1009 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1010 sizeof(struct in6_addr)); 1011 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1012 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1013 break; 1014 case IPV6_USER_FLOW: 1015 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1016 sizeof(struct in6_addr)); 1017 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1018 sizeof(struct in6_addr)); 1019 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1020 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1021 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1022 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1023 sizeof(struct in6_addr)); 1024 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1025 sizeof(struct in6_addr)); 1026 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1027 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1028 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1029 break; 1030 case ETHER_FLOW: 1031 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1032 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1033 break; 1034 default: 1035 ret = -EINVAL; 1036 break; 1037 } 1038 1039 iavf_fill_rx_flow_ext_data(fsp, rule); 1040 1041 if (rule->action == VIRTCHNL_ACTION_DROP) 1042 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1043 else 1044 fsp->ring_cookie = rule->q_index; 1045 1046 release_lock: 1047 spin_unlock_bh(&adapter->fdir_fltr_lock); 1048 return ret; 1049 } 1050 1051 /** 1052 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1053 * @adapter: the VF adapter structure containing the filter list 1054 * @cmd: ethtool command data structure 1055 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1056 * 1057 * Returns 0 as expected for success by ethtool 1058 */ 1059 static int 1060 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1061 u32 *rule_locs) 1062 { 1063 struct iavf_fdir_fltr *fltr; 1064 unsigned int cnt = 0; 1065 int val = 0; 1066 1067 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1068 return -EOPNOTSUPP; 1069 1070 cmd->data = IAVF_MAX_FDIR_FILTERS; 1071 1072 spin_lock_bh(&adapter->fdir_fltr_lock); 1073 1074 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1075 if (cnt == cmd->rule_cnt) { 1076 val = -EMSGSIZE; 1077 goto release_lock; 1078 } 1079 rule_locs[cnt] = fltr->loc; 1080 cnt++; 1081 } 1082 1083 release_lock: 1084 spin_unlock_bh(&adapter->fdir_fltr_lock); 1085 if (!val) 1086 cmd->rule_cnt = cnt; 1087 1088 return val; 1089 } 1090 1091 /** 1092 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1093 * @adapter: pointer to the VF adapter structure 1094 * @fsp: pointer to ethtool Rx flow specification 1095 * @fltr: filter structure 1096 */ 1097 static int 1098 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1099 struct iavf_fdir_fltr *fltr) 1100 { 1101 u32 flow_type, q_index = 0; 1102 enum virtchnl_action act; 1103 int err; 1104 1105 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1106 act = VIRTCHNL_ACTION_DROP; 1107 } else { 1108 q_index = fsp->ring_cookie; 1109 if (q_index >= adapter->num_active_queues) 1110 return -EINVAL; 1111 1112 act = VIRTCHNL_ACTION_QUEUE; 1113 } 1114 1115 fltr->action = act; 1116 fltr->loc = fsp->location; 1117 fltr->q_index = q_index; 1118 1119 if (fsp->flow_type & FLOW_EXT) { 1120 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1121 sizeof(fltr->ext_data.usr_def)); 1122 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1123 sizeof(fltr->ext_mask.usr_def)); 1124 } 1125 1126 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1127 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1128 1129 switch (flow_type) { 1130 case TCP_V4_FLOW: 1131 case UDP_V4_FLOW: 1132 case SCTP_V4_FLOW: 1133 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1134 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1135 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1136 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1137 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1138 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1139 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1140 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1141 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1142 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1143 fltr->ip_ver = 4; 1144 break; 1145 case AH_V4_FLOW: 1146 case ESP_V4_FLOW: 1147 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1148 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1149 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1150 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1151 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1152 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1153 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1154 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1155 fltr->ip_ver = 4; 1156 break; 1157 case IPV4_USER_FLOW: 1158 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1159 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1160 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1161 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1162 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1163 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1164 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1165 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1166 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1167 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1168 fltr->ip_ver = 4; 1169 break; 1170 case TCP_V6_FLOW: 1171 case UDP_V6_FLOW: 1172 case SCTP_V6_FLOW: 1173 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1174 sizeof(struct in6_addr)); 1175 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1176 sizeof(struct in6_addr)); 1177 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1178 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1179 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1180 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1181 sizeof(struct in6_addr)); 1182 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1183 sizeof(struct in6_addr)); 1184 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1185 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1186 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1187 fltr->ip_ver = 6; 1188 break; 1189 case AH_V6_FLOW: 1190 case ESP_V6_FLOW: 1191 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1192 sizeof(struct in6_addr)); 1193 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1194 sizeof(struct in6_addr)); 1195 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1196 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1197 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1198 sizeof(struct in6_addr)); 1199 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1200 sizeof(struct in6_addr)); 1201 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1202 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1203 fltr->ip_ver = 6; 1204 break; 1205 case IPV6_USER_FLOW: 1206 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1207 sizeof(struct in6_addr)); 1208 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1209 sizeof(struct in6_addr)); 1210 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1211 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1212 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1213 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1214 sizeof(struct in6_addr)); 1215 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1216 sizeof(struct in6_addr)); 1217 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1218 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1219 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1220 fltr->ip_ver = 6; 1221 break; 1222 case ETHER_FLOW: 1223 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1224 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1225 break; 1226 default: 1227 /* not doing un-parsed flow types */ 1228 return -EINVAL; 1229 } 1230 1231 err = iavf_validate_fdir_fltr_masks(adapter, fltr); 1232 if (err) 1233 return err; 1234 1235 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1236 return -EEXIST; 1237 1238 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1239 if (err) 1240 return err; 1241 1242 return iavf_fill_fdir_add_msg(adapter, fltr); 1243 } 1244 1245 /** 1246 * iavf_add_fdir_ethtool - add Flow Director filter 1247 * @adapter: pointer to the VF adapter structure 1248 * @cmd: command to add Flow Director filter 1249 * 1250 * Returns 0 on success and negative values for failure 1251 */ 1252 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1253 { 1254 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1255 struct iavf_fdir_fltr *fltr; 1256 int count = 50; 1257 int err; 1258 1259 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1260 return -EOPNOTSUPP; 1261 1262 if (fsp->flow_type & FLOW_MAC_EXT) 1263 return -EINVAL; 1264 1265 spin_lock_bh(&adapter->fdir_fltr_lock); 1266 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1267 spin_unlock_bh(&adapter->fdir_fltr_lock); 1268 dev_err(&adapter->pdev->dev, 1269 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1270 IAVF_MAX_FDIR_FILTERS); 1271 return -ENOSPC; 1272 } 1273 1274 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1275 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1276 spin_unlock_bh(&adapter->fdir_fltr_lock); 1277 return -EEXIST; 1278 } 1279 spin_unlock_bh(&adapter->fdir_fltr_lock); 1280 1281 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1282 if (!fltr) 1283 return -ENOMEM; 1284 1285 while (!mutex_trylock(&adapter->crit_lock)) { 1286 if (--count == 0) { 1287 kfree(fltr); 1288 return -EINVAL; 1289 } 1290 udelay(1); 1291 } 1292 1293 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1294 if (err) 1295 goto ret; 1296 1297 spin_lock_bh(&adapter->fdir_fltr_lock); 1298 iavf_fdir_list_add_fltr(adapter, fltr); 1299 adapter->fdir_active_fltr++; 1300 1301 if (adapter->link_up) 1302 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1303 else 1304 fltr->state = IAVF_FDIR_FLTR_INACTIVE; 1305 spin_unlock_bh(&adapter->fdir_fltr_lock); 1306 1307 if (adapter->link_up) 1308 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_FDIR_FILTER); 1309 ret: 1310 if (err && fltr) 1311 kfree(fltr); 1312 1313 mutex_unlock(&adapter->crit_lock); 1314 return err; 1315 } 1316 1317 /** 1318 * iavf_del_fdir_ethtool - delete Flow Director filter 1319 * @adapter: pointer to the VF adapter structure 1320 * @cmd: command to delete Flow Director filter 1321 * 1322 * Returns 0 on success and negative values for failure 1323 */ 1324 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1325 { 1326 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1327 struct iavf_fdir_fltr *fltr = NULL; 1328 int err = 0; 1329 1330 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1331 return -EOPNOTSUPP; 1332 1333 spin_lock_bh(&adapter->fdir_fltr_lock); 1334 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1335 if (fltr) { 1336 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1337 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1338 } else if (fltr->state == IAVF_FDIR_FLTR_INACTIVE) { 1339 list_del(&fltr->list); 1340 kfree(fltr); 1341 adapter->fdir_active_fltr--; 1342 fltr = NULL; 1343 } else { 1344 err = -EBUSY; 1345 } 1346 } else if (adapter->fdir_active_fltr) { 1347 err = -EINVAL; 1348 } 1349 spin_unlock_bh(&adapter->fdir_fltr_lock); 1350 1351 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1352 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_FDIR_FILTER); 1353 1354 return err; 1355 } 1356 1357 /** 1358 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1359 * @cmd: ethtool rxnfc command 1360 * 1361 * This function parses the rxnfc command and returns intended 1362 * header types for RSS configuration 1363 */ 1364 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1365 { 1366 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1367 1368 switch (cmd->flow_type) { 1369 case TCP_V4_FLOW: 1370 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1371 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1372 break; 1373 case UDP_V4_FLOW: 1374 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1375 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1376 break; 1377 case SCTP_V4_FLOW: 1378 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1379 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1380 break; 1381 case TCP_V6_FLOW: 1382 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1383 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1384 break; 1385 case UDP_V6_FLOW: 1386 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1387 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1388 break; 1389 case SCTP_V6_FLOW: 1390 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1391 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1392 break; 1393 default: 1394 break; 1395 } 1396 1397 return hdrs; 1398 } 1399 1400 /** 1401 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1402 * @cmd: ethtool rxnfc command 1403 * @symm: true if Symmetric Topelitz is set 1404 * 1405 * This function parses the rxnfc command and returns intended hash fields for 1406 * RSS configuration 1407 */ 1408 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd, bool symm) 1409 { 1410 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1411 1412 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1413 switch (cmd->flow_type) { 1414 case TCP_V4_FLOW: 1415 case UDP_V4_FLOW: 1416 case SCTP_V4_FLOW: 1417 if (cmd->data & RXH_IP_SRC) 1418 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1419 if (cmd->data & RXH_IP_DST) 1420 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1421 break; 1422 case TCP_V6_FLOW: 1423 case UDP_V6_FLOW: 1424 case SCTP_V6_FLOW: 1425 if (cmd->data & RXH_IP_SRC) 1426 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1427 if (cmd->data & RXH_IP_DST) 1428 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1429 break; 1430 default: 1431 break; 1432 } 1433 } 1434 1435 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1436 switch (cmd->flow_type) { 1437 case TCP_V4_FLOW: 1438 case TCP_V6_FLOW: 1439 if (cmd->data & RXH_L4_B_0_1) 1440 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1441 if (cmd->data & RXH_L4_B_2_3) 1442 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1443 break; 1444 case UDP_V4_FLOW: 1445 case UDP_V6_FLOW: 1446 if (cmd->data & RXH_L4_B_0_1) 1447 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1448 if (cmd->data & RXH_L4_B_2_3) 1449 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1450 break; 1451 case SCTP_V4_FLOW: 1452 case SCTP_V6_FLOW: 1453 if (cmd->data & RXH_L4_B_0_1) 1454 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1455 if (cmd->data & RXH_L4_B_2_3) 1456 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1457 break; 1458 default: 1459 break; 1460 } 1461 } 1462 1463 return hfld; 1464 } 1465 1466 /** 1467 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1468 * @adapter: pointer to the VF adapter structure 1469 * @cmd: ethtool rxnfc command 1470 * 1471 * Returns Success if the flow input set is supported. 1472 */ 1473 static int 1474 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1475 struct ethtool_rxnfc *cmd) 1476 { 1477 struct iavf_adv_rss *rss_old, *rss_new; 1478 bool rss_new_add = false; 1479 int count = 50, err = 0; 1480 bool symm = false; 1481 u64 hash_flds; 1482 u32 hdrs; 1483 1484 if (!ADV_RSS_SUPPORT(adapter)) 1485 return -EOPNOTSUPP; 1486 1487 symm = !!(adapter->hfunc == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC); 1488 1489 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1490 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1491 return -EINVAL; 1492 1493 hash_flds = iavf_adv_rss_parse_hash_flds(cmd, symm); 1494 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1495 return -EINVAL; 1496 1497 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1498 if (!rss_new) 1499 return -ENOMEM; 1500 1501 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds, 1502 symm)) { 1503 kfree(rss_new); 1504 return -EINVAL; 1505 } 1506 1507 while (!mutex_trylock(&adapter->crit_lock)) { 1508 if (--count == 0) { 1509 kfree(rss_new); 1510 return -EINVAL; 1511 } 1512 1513 udelay(1); 1514 } 1515 1516 spin_lock_bh(&adapter->adv_rss_lock); 1517 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1518 if (rss_old) { 1519 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1520 err = -EBUSY; 1521 } else if (rss_old->hash_flds != hash_flds || 1522 rss_old->symm != symm) { 1523 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1524 rss_old->hash_flds = hash_flds; 1525 rss_old->symm = symm; 1526 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1527 sizeof(rss_new->cfg_msg)); 1528 } else { 1529 err = -EEXIST; 1530 } 1531 } else { 1532 rss_new_add = true; 1533 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1534 rss_new->packet_hdrs = hdrs; 1535 rss_new->hash_flds = hash_flds; 1536 rss_new->symm = symm; 1537 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1538 } 1539 spin_unlock_bh(&adapter->adv_rss_lock); 1540 1541 if (!err) 1542 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 1543 1544 mutex_unlock(&adapter->crit_lock); 1545 1546 if (!rss_new_add) 1547 kfree(rss_new); 1548 1549 return err; 1550 } 1551 1552 /** 1553 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1554 * @adapter: pointer to the VF adapter structure 1555 * @cmd: ethtool rxnfc command 1556 * 1557 * Returns Success if the flow input set is supported. 1558 */ 1559 static int 1560 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1561 struct ethtool_rxnfc *cmd) 1562 { 1563 struct iavf_adv_rss *rss; 1564 u64 hash_flds; 1565 u32 hdrs; 1566 1567 if (!ADV_RSS_SUPPORT(adapter)) 1568 return -EOPNOTSUPP; 1569 1570 cmd->data = 0; 1571 1572 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1573 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1574 return -EINVAL; 1575 1576 spin_lock_bh(&adapter->adv_rss_lock); 1577 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1578 if (rss) 1579 hash_flds = rss->hash_flds; 1580 else 1581 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1582 spin_unlock_bh(&adapter->adv_rss_lock); 1583 1584 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1585 return -EINVAL; 1586 1587 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1588 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1589 cmd->data |= (u64)RXH_IP_SRC; 1590 1591 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1592 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1593 cmd->data |= (u64)RXH_IP_DST; 1594 1595 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1596 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1597 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1598 cmd->data |= (u64)RXH_L4_B_0_1; 1599 1600 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1601 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1602 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1603 cmd->data |= (u64)RXH_L4_B_2_3; 1604 1605 return 0; 1606 } 1607 1608 /** 1609 * iavf_set_rxnfc - command to set Rx flow rules. 1610 * @netdev: network interface device structure 1611 * @cmd: ethtool rxnfc command 1612 * 1613 * Returns 0 for success and negative values for errors 1614 */ 1615 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1616 { 1617 struct iavf_adapter *adapter = netdev_priv(netdev); 1618 int ret = -EOPNOTSUPP; 1619 1620 switch (cmd->cmd) { 1621 case ETHTOOL_SRXCLSRLINS: 1622 ret = iavf_add_fdir_ethtool(adapter, cmd); 1623 break; 1624 case ETHTOOL_SRXCLSRLDEL: 1625 ret = iavf_del_fdir_ethtool(adapter, cmd); 1626 break; 1627 case ETHTOOL_SRXFH: 1628 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1629 break; 1630 default: 1631 break; 1632 } 1633 1634 return ret; 1635 } 1636 1637 /** 1638 * iavf_get_rxnfc - command to get RX flow classification rules 1639 * @netdev: network interface device structure 1640 * @cmd: ethtool rxnfc command 1641 * @rule_locs: pointer to store rule locations 1642 * 1643 * Returns Success if the command is supported. 1644 **/ 1645 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1646 u32 *rule_locs) 1647 { 1648 struct iavf_adapter *adapter = netdev_priv(netdev); 1649 int ret = -EOPNOTSUPP; 1650 1651 switch (cmd->cmd) { 1652 case ETHTOOL_GRXRINGS: 1653 cmd->data = adapter->num_active_queues; 1654 ret = 0; 1655 break; 1656 case ETHTOOL_GRXCLSRLCNT: 1657 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1658 break; 1659 spin_lock_bh(&adapter->fdir_fltr_lock); 1660 cmd->rule_cnt = adapter->fdir_active_fltr; 1661 spin_unlock_bh(&adapter->fdir_fltr_lock); 1662 cmd->data = IAVF_MAX_FDIR_FILTERS; 1663 ret = 0; 1664 break; 1665 case ETHTOOL_GRXCLSRULE: 1666 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1667 break; 1668 case ETHTOOL_GRXCLSRLALL: 1669 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1670 break; 1671 case ETHTOOL_GRXFH: 1672 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1673 break; 1674 default: 1675 break; 1676 } 1677 1678 return ret; 1679 } 1680 /** 1681 * iavf_get_channels: get the number of channels supported by the device 1682 * @netdev: network interface device structure 1683 * @ch: channel information structure 1684 * 1685 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1686 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1687 **/ 1688 static void iavf_get_channels(struct net_device *netdev, 1689 struct ethtool_channels *ch) 1690 { 1691 struct iavf_adapter *adapter = netdev_priv(netdev); 1692 1693 /* Report maximum channels */ 1694 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1695 1696 ch->max_other = NONQ_VECS; 1697 ch->other_count = NONQ_VECS; 1698 1699 ch->combined_count = adapter->num_active_queues; 1700 } 1701 1702 /** 1703 * iavf_set_channels: set the new channel count 1704 * @netdev: network interface device structure 1705 * @ch: channel information structure 1706 * 1707 * Negotiate a new number of channels with the PF then do a reset. During 1708 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1709 * negative on failure. 1710 **/ 1711 static int iavf_set_channels(struct net_device *netdev, 1712 struct ethtool_channels *ch) 1713 { 1714 struct iavf_adapter *adapter = netdev_priv(netdev); 1715 u32 num_req = ch->combined_count; 1716 int ret = 0; 1717 1718 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1719 adapter->num_tc) { 1720 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1721 return -EINVAL; 1722 } 1723 1724 /* All of these should have already been checked by ethtool before this 1725 * even gets to us, but just to be sure. 1726 */ 1727 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1728 return -EINVAL; 1729 1730 if (num_req == adapter->num_active_queues) 1731 return 0; 1732 1733 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1734 return -EINVAL; 1735 1736 adapter->num_req_queues = num_req; 1737 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1738 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 1739 1740 ret = iavf_wait_for_reset(adapter); 1741 if (ret) 1742 netdev_warn(netdev, "Changing channel count timeout or interrupted waiting for reset"); 1743 1744 return ret; 1745 } 1746 1747 /** 1748 * iavf_get_rxfh_key_size - get the RSS hash key size 1749 * @netdev: network interface device structure 1750 * 1751 * Returns the table size. 1752 **/ 1753 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1754 { 1755 struct iavf_adapter *adapter = netdev_priv(netdev); 1756 1757 return adapter->rss_key_size; 1758 } 1759 1760 /** 1761 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1762 * @netdev: network interface device structure 1763 * 1764 * Returns the table size. 1765 **/ 1766 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1767 { 1768 struct iavf_adapter *adapter = netdev_priv(netdev); 1769 1770 return adapter->rss_lut_size; 1771 } 1772 1773 /** 1774 * iavf_get_rxfh - get the rx flow hash indirection table 1775 * @netdev: network interface device structure 1776 * @rxfh: pointer to param struct (indir, key, hfunc) 1777 * 1778 * Reads the indirection table directly from the hardware. Always returns 0. 1779 **/ 1780 static int iavf_get_rxfh(struct net_device *netdev, 1781 struct ethtool_rxfh_param *rxfh) 1782 { 1783 struct iavf_adapter *adapter = netdev_priv(netdev); 1784 u16 i; 1785 1786 rxfh->hfunc = ETH_RSS_HASH_TOP; 1787 if (adapter->hfunc == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1788 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR; 1789 1790 if (rxfh->key) 1791 memcpy(rxfh->key, adapter->rss_key, adapter->rss_key_size); 1792 1793 if (rxfh->indir) 1794 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1795 for (i = 0; i < adapter->rss_lut_size; i++) 1796 rxfh->indir[i] = (u32)adapter->rss_lut[i]; 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * iavf_set_rxfh - set the rx flow hash indirection table 1803 * @netdev: network interface device structure 1804 * @rxfh: pointer to param struct (indir, key, hfunc) 1805 * @extack: extended ACK from the Netlink message 1806 * 1807 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1808 * returns 0 after programming the table. 1809 **/ 1810 static int iavf_set_rxfh(struct net_device *netdev, 1811 struct ethtool_rxfh_param *rxfh, 1812 struct netlink_ext_ack *extack) 1813 { 1814 struct iavf_adapter *adapter = netdev_priv(netdev); 1815 u16 i; 1816 1817 /* Only support toeplitz hash function */ 1818 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 1819 rxfh->hfunc != ETH_RSS_HASH_TOP) 1820 return -EOPNOTSUPP; 1821 1822 if ((rxfh->input_xfrm & RXH_XFRM_SYM_XOR) && 1823 adapter->hfunc != VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) { 1824 if (!ADV_RSS_SUPPORT(adapter)) 1825 return -EOPNOTSUPP; 1826 adapter->hfunc = VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC; 1827 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_HFUNC; 1828 } else if (!(rxfh->input_xfrm & RXH_XFRM_SYM_XOR) && 1829 adapter->hfunc != VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC) { 1830 adapter->hfunc = VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC; 1831 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_HFUNC; 1832 } 1833 1834 if (!rxfh->key && !rxfh->indir) 1835 return 0; 1836 1837 if (rxfh->key) 1838 memcpy(adapter->rss_key, rxfh->key, adapter->rss_key_size); 1839 1840 if (rxfh->indir) { 1841 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1842 for (i = 0; i < adapter->rss_lut_size; i++) 1843 adapter->rss_lut[i] = (u8)(rxfh->indir[i]); 1844 } 1845 1846 return iavf_config_rss(adapter); 1847 } 1848 1849 static const struct ethtool_ops iavf_ethtool_ops = { 1850 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1851 ETHTOOL_COALESCE_USE_ADAPTIVE, 1852 .cap_rss_sym_xor_supported = true, 1853 .get_drvinfo = iavf_get_drvinfo, 1854 .get_link = ethtool_op_get_link, 1855 .get_ringparam = iavf_get_ringparam, 1856 .set_ringparam = iavf_set_ringparam, 1857 .get_strings = iavf_get_strings, 1858 .get_ethtool_stats = iavf_get_ethtool_stats, 1859 .get_sset_count = iavf_get_sset_count, 1860 .get_msglevel = iavf_get_msglevel, 1861 .set_msglevel = iavf_set_msglevel, 1862 .get_coalesce = iavf_get_coalesce, 1863 .set_coalesce = iavf_set_coalesce, 1864 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1865 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1866 .set_rxnfc = iavf_set_rxnfc, 1867 .get_rxnfc = iavf_get_rxnfc, 1868 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1869 .get_rxfh = iavf_get_rxfh, 1870 .set_rxfh = iavf_set_rxfh, 1871 .get_channels = iavf_get_channels, 1872 .set_channels = iavf_set_channels, 1873 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1874 .get_link_ksettings = iavf_get_link_ksettings, 1875 }; 1876 1877 /** 1878 * iavf_set_ethtool_ops - Initialize ethtool ops struct 1879 * @netdev: network interface device structure 1880 * 1881 * Sets ethtool ops struct in our netdev so that ethtool can call 1882 * our functions. 1883 **/ 1884 void iavf_set_ethtool_ops(struct net_device *netdev) 1885 { 1886 netdev->ethtool_ops = &iavf_ethtool_ops; 1887 } 1888