xref: /linux/drivers/net/ethernet/intel/iavf/iavf_ethtool.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 /* ethtool support for iavf */
5 #include "iavf.h"
6 
7 #include <linux/uaccess.h>
8 
9 /* ethtool statistics helpers */
10 
11 /**
12  * struct iavf_stats - definition for an ethtool statistic
13  * @stat_string: statistic name to display in ethtool -S output
14  * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
15  * @stat_offset: offsetof() the stat from a base pointer
16  *
17  * This structure defines a statistic to be added to the ethtool stats buffer.
18  * It defines a statistic as offset from a common base pointer. Stats should
19  * be defined in constant arrays using the IAVF_STAT macro, with every element
20  * of the array using the same _type for calculating the sizeof_stat and
21  * stat_offset.
22  *
23  * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
24  * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
25  * the iavf_add_ethtool_stat() helper function.
26  *
27  * The @stat_string is interpreted as a format string, allowing formatted
28  * values to be inserted while looping over multiple structures for a given
29  * statistics array. Thus, every statistic string in an array should have the
30  * same type and number of format specifiers, to be formatted by variadic
31  * arguments to the iavf_add_stat_string() helper function.
32  **/
33 struct iavf_stats {
34 	char stat_string[ETH_GSTRING_LEN];
35 	int sizeof_stat;
36 	int stat_offset;
37 };
38 
39 /* Helper macro to define an iavf_stat structure with proper size and type.
40  * Use this when defining constant statistics arrays. Note that @_type expects
41  * only a type name and is used multiple times.
42  */
43 #define IAVF_STAT(_type, _name, _stat) { \
44 	.stat_string = _name, \
45 	.sizeof_stat = sizeof_field(_type, _stat), \
46 	.stat_offset = offsetof(_type, _stat) \
47 }
48 
49 /* Helper macro for defining some statistics related to queues */
50 #define IAVF_QUEUE_STAT(_name, _stat) \
51 	IAVF_STAT(struct iavf_ring, _name, _stat)
52 
53 /* Stats associated with a Tx or Rx ring */
54 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
55 	IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
56 	IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
57 };
58 
59 /**
60  * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
61  * @data: location to store the stat value
62  * @pointer: basis for where to copy from
63  * @stat: the stat definition
64  *
65  * Copies the stat data defined by the pointer and stat structure pair into
66  * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
67  * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
68  */
69 static void
70 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
71 			  const struct iavf_stats *stat)
72 {
73 	char *p;
74 
75 	if (!pointer) {
76 		/* ensure that the ethtool data buffer is zero'd for any stats
77 		 * which don't have a valid pointer.
78 		 */
79 		*data = 0;
80 		return;
81 	}
82 
83 	p = (char *)pointer + stat->stat_offset;
84 	switch (stat->sizeof_stat) {
85 	case sizeof(u64):
86 		*data = *((u64 *)p);
87 		break;
88 	case sizeof(u32):
89 		*data = *((u32 *)p);
90 		break;
91 	case sizeof(u16):
92 		*data = *((u16 *)p);
93 		break;
94 	case sizeof(u8):
95 		*data = *((u8 *)p);
96 		break;
97 	default:
98 		WARN_ONCE(1, "unexpected stat size for %s",
99 			  stat->stat_string);
100 		*data = 0;
101 	}
102 }
103 
104 /**
105  * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
106  * @data: ethtool stats buffer
107  * @pointer: location to copy stats from
108  * @stats: array of stats to copy
109  * @size: the size of the stats definition
110  *
111  * Copy the stats defined by the stats array using the pointer as a base into
112  * the data buffer supplied by ethtool. Updates the data pointer to point to
113  * the next empty location for successive calls to __iavf_add_ethtool_stats.
114  * If pointer is null, set the data values to zero and update the pointer to
115  * skip these stats.
116  **/
117 static void
118 __iavf_add_ethtool_stats(u64 **data, void *pointer,
119 			 const struct iavf_stats stats[],
120 			 const unsigned int size)
121 {
122 	unsigned int i;
123 
124 	for (i = 0; i < size; i++)
125 		iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
126 }
127 
128 /**
129  * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
130  * @data: ethtool stats buffer
131  * @pointer: location where stats are stored
132  * @stats: static const array of stat definitions
133  *
134  * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
135  * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
136  * ensuring that we pass the size associated with the given stats array.
137  *
138  * The parameter @stats is evaluated twice, so parameters with side effects
139  * should be avoided.
140  **/
141 #define iavf_add_ethtool_stats(data, pointer, stats) \
142 	__iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
143 
144 /**
145  * iavf_add_queue_stats - copy queue statistics into supplied buffer
146  * @data: ethtool stats buffer
147  * @ring: the ring to copy
148  *
149  * Queue statistics must be copied while protected by
150  * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
151  * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
152  * ring pointer is null, zero out the queue stat values and update the data
153  * pointer. Otherwise safely copy the stats from the ring into the supplied
154  * buffer and update the data pointer when finished.
155  *
156  * This function expects to be called while under rcu_read_lock().
157  **/
158 static void
159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
160 {
161 	const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
162 	const struct iavf_stats *stats = iavf_gstrings_queue_stats;
163 	unsigned int start;
164 	unsigned int i;
165 
166 	/* To avoid invalid statistics values, ensure that we keep retrying
167 	 * the copy until we get a consistent value according to
168 	 * u64_stats_fetch_retry_irq. But first, make sure our ring is
169 	 * non-null before attempting to access its syncp.
170 	 */
171 	do {
172 		start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
173 		for (i = 0; i < size; i++)
174 			iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
175 	} while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
176 
177 	/* Once we successfully copy the stats in, update the data pointer */
178 	*data += size;
179 }
180 
181 /**
182  * __iavf_add_stat_strings - copy stat strings into ethtool buffer
183  * @p: ethtool supplied buffer
184  * @stats: stat definitions array
185  * @size: size of the stats array
186  *
187  * Format and copy the strings described by stats into the buffer pointed at
188  * by p.
189  **/
190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
191 				    const unsigned int size, ...)
192 {
193 	unsigned int i;
194 
195 	for (i = 0; i < size; i++) {
196 		va_list args;
197 
198 		va_start(args, size);
199 		vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
200 		*p += ETH_GSTRING_LEN;
201 		va_end(args);
202 	}
203 }
204 
205 /**
206  * iavf_add_stat_strings - copy stat strings into ethtool buffer
207  * @p: ethtool supplied buffer
208  * @stats: stat definitions array
209  *
210  * Format and copy the strings described by the const static stats value into
211  * the buffer pointed at by p.
212  *
213  * The parameter @stats is evaluated twice, so parameters with side effects
214  * should be avoided. Additionally, stats must be an array such that
215  * ARRAY_SIZE can be called on it.
216  **/
217 #define iavf_add_stat_strings(p, stats, ...) \
218 	__iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
219 
220 #define VF_STAT(_name, _stat) \
221 	IAVF_STAT(struct iavf_adapter, _name, _stat)
222 
223 static const struct iavf_stats iavf_gstrings_stats[] = {
224 	VF_STAT("rx_bytes", current_stats.rx_bytes),
225 	VF_STAT("rx_unicast", current_stats.rx_unicast),
226 	VF_STAT("rx_multicast", current_stats.rx_multicast),
227 	VF_STAT("rx_broadcast", current_stats.rx_broadcast),
228 	VF_STAT("rx_discards", current_stats.rx_discards),
229 	VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
230 	VF_STAT("tx_bytes", current_stats.tx_bytes),
231 	VF_STAT("tx_unicast", current_stats.tx_unicast),
232 	VF_STAT("tx_multicast", current_stats.tx_multicast),
233 	VF_STAT("tx_broadcast", current_stats.tx_broadcast),
234 	VF_STAT("tx_discards", current_stats.tx_discards),
235 	VF_STAT("tx_errors", current_stats.tx_errors),
236 };
237 
238 #define IAVF_STATS_LEN	ARRAY_SIZE(iavf_gstrings_stats)
239 
240 #define IAVF_QUEUE_STATS_LEN	ARRAY_SIZE(iavf_gstrings_queue_stats)
241 
242 /* For now we have one and only one private flag and it is only defined
243  * when we have support for the SKIP_CPU_SYNC DMA attribute.  Instead
244  * of leaving all this code sitting around empty we will strip it unless
245  * our one private flag is actually available.
246  */
247 struct iavf_priv_flags {
248 	char flag_string[ETH_GSTRING_LEN];
249 	u32 flag;
250 	bool read_only;
251 };
252 
253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
254 	.flag_string = _name, \
255 	.flag = _flag, \
256 	.read_only = _read_only, \
257 }
258 
259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
260 	IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
261 };
262 
263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
264 
265 /**
266  * iavf_get_link_ksettings - Get Link Speed and Duplex settings
267  * @netdev: network interface device structure
268  * @cmd: ethtool command
269  *
270  * Reports speed/duplex settings. Because this is a VF, we don't know what
271  * kind of link we really have, so we fake it.
272  **/
273 static int iavf_get_link_ksettings(struct net_device *netdev,
274 				   struct ethtool_link_ksettings *cmd)
275 {
276 	struct iavf_adapter *adapter = netdev_priv(netdev);
277 
278 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
279 	cmd->base.autoneg = AUTONEG_DISABLE;
280 	cmd->base.port = PORT_NONE;
281 	cmd->base.duplex = DUPLEX_FULL;
282 
283 	if (ADV_LINK_SUPPORT(adapter)) {
284 		if (adapter->link_speed_mbps &&
285 		    adapter->link_speed_mbps < U32_MAX)
286 			cmd->base.speed = adapter->link_speed_mbps;
287 		else
288 			cmd->base.speed = SPEED_UNKNOWN;
289 
290 		return 0;
291 	}
292 
293 	switch (adapter->link_speed) {
294 	case VIRTCHNL_LINK_SPEED_40GB:
295 		cmd->base.speed = SPEED_40000;
296 		break;
297 	case VIRTCHNL_LINK_SPEED_25GB:
298 		cmd->base.speed = SPEED_25000;
299 		break;
300 	case VIRTCHNL_LINK_SPEED_20GB:
301 		cmd->base.speed = SPEED_20000;
302 		break;
303 	case VIRTCHNL_LINK_SPEED_10GB:
304 		cmd->base.speed = SPEED_10000;
305 		break;
306 	case VIRTCHNL_LINK_SPEED_5GB:
307 		cmd->base.speed = SPEED_5000;
308 		break;
309 	case VIRTCHNL_LINK_SPEED_2_5GB:
310 		cmd->base.speed = SPEED_2500;
311 		break;
312 	case VIRTCHNL_LINK_SPEED_1GB:
313 		cmd->base.speed = SPEED_1000;
314 		break;
315 	case VIRTCHNL_LINK_SPEED_100MB:
316 		cmd->base.speed = SPEED_100;
317 		break;
318 	default:
319 		break;
320 	}
321 
322 	return 0;
323 }
324 
325 /**
326  * iavf_get_sset_count - Get length of string set
327  * @netdev: network interface device structure
328  * @sset: id of string set
329  *
330  * Reports size of various string tables.
331  **/
332 static int iavf_get_sset_count(struct net_device *netdev, int sset)
333 {
334 	/* Report the maximum number queues, even if not every queue is
335 	 * currently configured. Since allocation of queues is in pairs,
336 	 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set
337 	 * at device creation and never changes.
338 	 */
339 
340 	if (sset == ETH_SS_STATS)
341 		return IAVF_STATS_LEN +
342 			(IAVF_QUEUE_STATS_LEN * 2 *
343 			 netdev->real_num_tx_queues);
344 	else if (sset == ETH_SS_PRIV_FLAGS)
345 		return IAVF_PRIV_FLAGS_STR_LEN;
346 	else
347 		return -EINVAL;
348 }
349 
350 /**
351  * iavf_get_ethtool_stats - report device statistics
352  * @netdev: network interface device structure
353  * @stats: ethtool statistics structure
354  * @data: pointer to data buffer
355  *
356  * All statistics are added to the data buffer as an array of u64.
357  **/
358 static void iavf_get_ethtool_stats(struct net_device *netdev,
359 				   struct ethtool_stats *stats, u64 *data)
360 {
361 	struct iavf_adapter *adapter = netdev_priv(netdev);
362 	unsigned int i;
363 
364 	/* Explicitly request stats refresh */
365 	iavf_schedule_request_stats(adapter);
366 
367 	iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
368 
369 	rcu_read_lock();
370 	/* As num_active_queues describe both tx and rx queues, we can use
371 	 * it to iterate over rings' stats.
372 	 */
373 	for (i = 0; i < adapter->num_active_queues; i++) {
374 		struct iavf_ring *ring;
375 
376 		/* Tx rings stats */
377 		ring = &adapter->tx_rings[i];
378 		iavf_add_queue_stats(&data, ring);
379 
380 		/* Rx rings stats */
381 		ring = &adapter->rx_rings[i];
382 		iavf_add_queue_stats(&data, ring);
383 	}
384 	rcu_read_unlock();
385 }
386 
387 /**
388  * iavf_get_priv_flag_strings - Get private flag strings
389  * @netdev: network interface device structure
390  * @data: buffer for string data
391  *
392  * Builds the private flags string table
393  **/
394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
395 {
396 	unsigned int i;
397 
398 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
399 		snprintf(data, ETH_GSTRING_LEN, "%s",
400 			 iavf_gstrings_priv_flags[i].flag_string);
401 		data += ETH_GSTRING_LEN;
402 	}
403 }
404 
405 /**
406  * iavf_get_stat_strings - Get stat strings
407  * @netdev: network interface device structure
408  * @data: buffer for string data
409  *
410  * Builds the statistics string table
411  **/
412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
413 {
414 	unsigned int i;
415 
416 	iavf_add_stat_strings(&data, iavf_gstrings_stats);
417 
418 	/* Queues are always allocated in pairs, so we just use
419 	 * real_num_tx_queues for both Tx and Rx queues.
420 	 */
421 	for (i = 0; i < netdev->real_num_tx_queues; i++) {
422 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
423 				      "tx", i);
424 		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
425 				      "rx", i);
426 	}
427 }
428 
429 /**
430  * iavf_get_strings - Get string set
431  * @netdev: network interface device structure
432  * @sset: id of string set
433  * @data: buffer for string data
434  *
435  * Builds string tables for various string sets
436  **/
437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
438 {
439 	switch (sset) {
440 	case ETH_SS_STATS:
441 		iavf_get_stat_strings(netdev, data);
442 		break;
443 	case ETH_SS_PRIV_FLAGS:
444 		iavf_get_priv_flag_strings(netdev, data);
445 		break;
446 	default:
447 		break;
448 	}
449 }
450 
451 /**
452  * iavf_get_priv_flags - report device private flags
453  * @netdev: network interface device structure
454  *
455  * The get string set count and the string set should be matched for each
456  * flag returned.  Add new strings for each flag to the iavf_gstrings_priv_flags
457  * array.
458  *
459  * Returns a u32 bitmap of flags.
460  **/
461 static u32 iavf_get_priv_flags(struct net_device *netdev)
462 {
463 	struct iavf_adapter *adapter = netdev_priv(netdev);
464 	u32 i, ret_flags = 0;
465 
466 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
467 		const struct iavf_priv_flags *priv_flags;
468 
469 		priv_flags = &iavf_gstrings_priv_flags[i];
470 
471 		if (priv_flags->flag & adapter->flags)
472 			ret_flags |= BIT(i);
473 	}
474 
475 	return ret_flags;
476 }
477 
478 /**
479  * iavf_set_priv_flags - set private flags
480  * @netdev: network interface device structure
481  * @flags: bit flags to be set
482  **/
483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
484 {
485 	struct iavf_adapter *adapter = netdev_priv(netdev);
486 	u32 orig_flags, new_flags, changed_flags;
487 	u32 i;
488 
489 	orig_flags = READ_ONCE(adapter->flags);
490 	new_flags = orig_flags;
491 
492 	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
493 		const struct iavf_priv_flags *priv_flags;
494 
495 		priv_flags = &iavf_gstrings_priv_flags[i];
496 
497 		if (flags & BIT(i))
498 			new_flags |= priv_flags->flag;
499 		else
500 			new_flags &= ~(priv_flags->flag);
501 
502 		if (priv_flags->read_only &&
503 		    ((orig_flags ^ new_flags) & ~BIT(i)))
504 			return -EOPNOTSUPP;
505 	}
506 
507 	/* Before we finalize any flag changes, any checks which we need to
508 	 * perform to determine if the new flags will be supported should go
509 	 * here...
510 	 */
511 
512 	/* Compare and exchange the new flags into place. If we failed, that
513 	 * is if cmpxchg returns anything but the old value, this means
514 	 * something else must have modified the flags variable since we
515 	 * copied it. We'll just punt with an error and log something in the
516 	 * message buffer.
517 	 */
518 	if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
519 		dev_warn(&adapter->pdev->dev,
520 			 "Unable to update adapter->flags as it was modified by another thread...\n");
521 		return -EAGAIN;
522 	}
523 
524 	changed_flags = orig_flags ^ new_flags;
525 
526 	/* Process any additional changes needed as a result of flag changes.
527 	 * The changed_flags value reflects the list of bits that were changed
528 	 * in the code above.
529 	 */
530 
531 	/* issue a reset to force legacy-rx change to take effect */
532 	if (changed_flags & IAVF_FLAG_LEGACY_RX) {
533 		if (netif_running(netdev)) {
534 			adapter->flags |= IAVF_FLAG_RESET_NEEDED;
535 			queue_work(iavf_wq, &adapter->reset_task);
536 		}
537 	}
538 
539 	return 0;
540 }
541 
542 /**
543  * iavf_get_msglevel - Get debug message level
544  * @netdev: network interface device structure
545  *
546  * Returns current debug message level.
547  **/
548 static u32 iavf_get_msglevel(struct net_device *netdev)
549 {
550 	struct iavf_adapter *adapter = netdev_priv(netdev);
551 
552 	return adapter->msg_enable;
553 }
554 
555 /**
556  * iavf_set_msglevel - Set debug message level
557  * @netdev: network interface device structure
558  * @data: message level
559  *
560  * Set current debug message level. Higher values cause the driver to
561  * be noisier.
562  **/
563 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
564 {
565 	struct iavf_adapter *adapter = netdev_priv(netdev);
566 
567 	if (IAVF_DEBUG_USER & data)
568 		adapter->hw.debug_mask = data;
569 	adapter->msg_enable = data;
570 }
571 
572 /**
573  * iavf_get_drvinfo - Get driver info
574  * @netdev: network interface device structure
575  * @drvinfo: ethool driver info structure
576  *
577  * Returns information about the driver and device for display to the user.
578  **/
579 static void iavf_get_drvinfo(struct net_device *netdev,
580 			     struct ethtool_drvinfo *drvinfo)
581 {
582 	struct iavf_adapter *adapter = netdev_priv(netdev);
583 
584 	strlcpy(drvinfo->driver, iavf_driver_name, 32);
585 	strlcpy(drvinfo->fw_version, "N/A", 4);
586 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587 	drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
588 }
589 
590 /**
591  * iavf_get_ringparam - Get ring parameters
592  * @netdev: network interface device structure
593  * @ring: ethtool ringparam structure
594  * @kernel_ring: ethtool extenal ringparam structure
595  * @extack: netlink extended ACK report struct
596  *
597  * Returns current ring parameters. TX and RX rings are reported separately,
598  * but the number of rings is not reported.
599  **/
600 static void iavf_get_ringparam(struct net_device *netdev,
601 			       struct ethtool_ringparam *ring,
602 			       struct kernel_ethtool_ringparam *kernel_ring,
603 			       struct netlink_ext_ack *extack)
604 {
605 	struct iavf_adapter *adapter = netdev_priv(netdev);
606 
607 	ring->rx_max_pending = IAVF_MAX_RXD;
608 	ring->tx_max_pending = IAVF_MAX_TXD;
609 	ring->rx_pending = adapter->rx_desc_count;
610 	ring->tx_pending = adapter->tx_desc_count;
611 }
612 
613 /**
614  * iavf_set_ringparam - Set ring parameters
615  * @netdev: network interface device structure
616  * @ring: ethtool ringparam structure
617  * @kernel_ring: ethtool external ringparam structure
618  * @extack: netlink extended ACK report struct
619  *
620  * Sets ring parameters. TX and RX rings are controlled separately, but the
621  * number of rings is not specified, so all rings get the same settings.
622  **/
623 static int iavf_set_ringparam(struct net_device *netdev,
624 			      struct ethtool_ringparam *ring,
625 			      struct kernel_ethtool_ringparam *kernel_ring,
626 			      struct netlink_ext_ack *extack)
627 {
628 	struct iavf_adapter *adapter = netdev_priv(netdev);
629 	u32 new_rx_count, new_tx_count;
630 
631 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
632 		return -EINVAL;
633 
634 	if (ring->tx_pending > IAVF_MAX_TXD ||
635 	    ring->tx_pending < IAVF_MIN_TXD ||
636 	    ring->rx_pending > IAVF_MAX_RXD ||
637 	    ring->rx_pending < IAVF_MIN_RXD) {
638 		netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
639 			   ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
640 			   IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
641 		return -EINVAL;
642 	}
643 
644 	new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
645 	if (new_tx_count != ring->tx_pending)
646 		netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
647 			    new_tx_count);
648 
649 	new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
650 	if (new_rx_count != ring->rx_pending)
651 		netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
652 			    new_rx_count);
653 
654 	/* if nothing to do return success */
655 	if ((new_tx_count == adapter->tx_desc_count) &&
656 	    (new_rx_count == adapter->rx_desc_count)) {
657 		netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
658 		return 0;
659 	}
660 
661 	if (new_tx_count != adapter->tx_desc_count) {
662 		netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
663 			   adapter->tx_desc_count, new_tx_count);
664 		adapter->tx_desc_count = new_tx_count;
665 	}
666 
667 	if (new_rx_count != adapter->rx_desc_count) {
668 		netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
669 			   adapter->rx_desc_count, new_rx_count);
670 		adapter->rx_desc_count = new_rx_count;
671 	}
672 
673 	if (netif_running(netdev)) {
674 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
675 		queue_work(iavf_wq, &adapter->reset_task);
676 	}
677 
678 	return 0;
679 }
680 
681 /**
682  * __iavf_get_coalesce - get per-queue coalesce settings
683  * @netdev: the netdev to check
684  * @ec: ethtool coalesce data structure
685  * @queue: which queue to pick
686  *
687  * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
688  * are per queue. If queue is <0 then we default to queue 0 as the
689  * representative value.
690  **/
691 static int __iavf_get_coalesce(struct net_device *netdev,
692 			       struct ethtool_coalesce *ec, int queue)
693 {
694 	struct iavf_adapter *adapter = netdev_priv(netdev);
695 	struct iavf_vsi *vsi = &adapter->vsi;
696 	struct iavf_ring *rx_ring, *tx_ring;
697 
698 	ec->tx_max_coalesced_frames = vsi->work_limit;
699 	ec->rx_max_coalesced_frames = vsi->work_limit;
700 
701 	/* Rx and Tx usecs per queue value. If user doesn't specify the
702 	 * queue, return queue 0's value to represent.
703 	 */
704 	if (queue < 0)
705 		queue = 0;
706 	else if (queue >= adapter->num_active_queues)
707 		return -EINVAL;
708 
709 	rx_ring = &adapter->rx_rings[queue];
710 	tx_ring = &adapter->tx_rings[queue];
711 
712 	if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
713 		ec->use_adaptive_rx_coalesce = 1;
714 
715 	if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
716 		ec->use_adaptive_tx_coalesce = 1;
717 
718 	ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
719 	ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
720 
721 	return 0;
722 }
723 
724 /**
725  * iavf_get_coalesce - Get interrupt coalescing settings
726  * @netdev: network interface device structure
727  * @ec: ethtool coalesce structure
728  * @kernel_coal: ethtool CQE mode setting structure
729  * @extack: extack for reporting error messages
730  *
731  * Returns current coalescing settings. This is referred to elsewhere in the
732  * driver as Interrupt Throttle Rate, as this is how the hardware describes
733  * this functionality. Note that if per-queue settings have been modified this
734  * only represents the settings of queue 0.
735  **/
736 static int iavf_get_coalesce(struct net_device *netdev,
737 			     struct ethtool_coalesce *ec,
738 			     struct kernel_ethtool_coalesce *kernel_coal,
739 			     struct netlink_ext_ack *extack)
740 {
741 	return __iavf_get_coalesce(netdev, ec, -1);
742 }
743 
744 /**
745  * iavf_get_per_queue_coalesce - get coalesce values for specific queue
746  * @netdev: netdev to read
747  * @ec: coalesce settings from ethtool
748  * @queue: the queue to read
749  *
750  * Read specific queue's coalesce settings.
751  **/
752 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
753 				       struct ethtool_coalesce *ec)
754 {
755 	return __iavf_get_coalesce(netdev, ec, queue);
756 }
757 
758 /**
759  * iavf_set_itr_per_queue - set ITR values for specific queue
760  * @adapter: the VF adapter struct to set values for
761  * @ec: coalesce settings from ethtool
762  * @queue: the queue to modify
763  *
764  * Change the ITR settings for a specific queue.
765  **/
766 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
767 				  struct ethtool_coalesce *ec, int queue)
768 {
769 	struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
770 	struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
771 	struct iavf_q_vector *q_vector;
772 	u16 itr_setting;
773 
774 	itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
775 
776 	if (ec->rx_coalesce_usecs != itr_setting &&
777 	    ec->use_adaptive_rx_coalesce) {
778 		netif_info(adapter, drv, adapter->netdev,
779 			   "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
780 		return -EINVAL;
781 	}
782 
783 	itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
784 
785 	if (ec->tx_coalesce_usecs != itr_setting &&
786 	    ec->use_adaptive_tx_coalesce) {
787 		netif_info(adapter, drv, adapter->netdev,
788 			   "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
789 		return -EINVAL;
790 	}
791 
792 	rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
793 	tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
794 
795 	rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
796 	if (!ec->use_adaptive_rx_coalesce)
797 		rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
798 
799 	tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
800 	if (!ec->use_adaptive_tx_coalesce)
801 		tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
802 
803 	q_vector = rx_ring->q_vector;
804 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
805 
806 	q_vector = tx_ring->q_vector;
807 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
808 
809 	/* The interrupt handler itself will take care of programming
810 	 * the Tx and Rx ITR values based on the values we have entered
811 	 * into the q_vector, no need to write the values now.
812 	 */
813 	return 0;
814 }
815 
816 /**
817  * __iavf_set_coalesce - set coalesce settings for particular queue
818  * @netdev: the netdev to change
819  * @ec: ethtool coalesce settings
820  * @queue: the queue to change
821  *
822  * Sets the coalesce settings for a particular queue.
823  **/
824 static int __iavf_set_coalesce(struct net_device *netdev,
825 			       struct ethtool_coalesce *ec, int queue)
826 {
827 	struct iavf_adapter *adapter = netdev_priv(netdev);
828 	struct iavf_vsi *vsi = &adapter->vsi;
829 	int i;
830 
831 	if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq)
832 		vsi->work_limit = ec->tx_max_coalesced_frames_irq;
833 
834 	if (ec->rx_coalesce_usecs == 0) {
835 		if (ec->use_adaptive_rx_coalesce)
836 			netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
837 	} else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
838 		   (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
839 		netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
840 		return -EINVAL;
841 	} else if (ec->tx_coalesce_usecs == 0) {
842 		if (ec->use_adaptive_tx_coalesce)
843 			netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
844 	} else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
845 		   (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
846 		netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
847 		return -EINVAL;
848 	}
849 
850 	/* Rx and Tx usecs has per queue value. If user doesn't specify the
851 	 * queue, apply to all queues.
852 	 */
853 	if (queue < 0) {
854 		for (i = 0; i < adapter->num_active_queues; i++)
855 			if (iavf_set_itr_per_queue(adapter, ec, i))
856 				return -EINVAL;
857 	} else if (queue < adapter->num_active_queues) {
858 		if (iavf_set_itr_per_queue(adapter, ec, queue))
859 			return -EINVAL;
860 	} else {
861 		netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
862 			   adapter->num_active_queues - 1);
863 		return -EINVAL;
864 	}
865 
866 	return 0;
867 }
868 
869 /**
870  * iavf_set_coalesce - Set interrupt coalescing settings
871  * @netdev: network interface device structure
872  * @ec: ethtool coalesce structure
873  * @kernel_coal: ethtool CQE mode setting structure
874  * @extack: extack for reporting error messages
875  *
876  * Change current coalescing settings for every queue.
877  **/
878 static int iavf_set_coalesce(struct net_device *netdev,
879 			     struct ethtool_coalesce *ec,
880 			     struct kernel_ethtool_coalesce *kernel_coal,
881 			     struct netlink_ext_ack *extack)
882 {
883 	return __iavf_set_coalesce(netdev, ec, -1);
884 }
885 
886 /**
887  * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
888  * @netdev: the netdev to change
889  * @ec: ethtool's coalesce settings
890  * @queue: the queue to modify
891  *
892  * Modifies a specific queue's coalesce settings.
893  */
894 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
895 				       struct ethtool_coalesce *ec)
896 {
897 	return __iavf_set_coalesce(netdev, ec, queue);
898 }
899 
900 /**
901  * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
902  * flow type values
903  * @flow: filter type to be converted
904  *
905  * Returns the corresponding ethtool flow type.
906  */
907 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
908 {
909 	switch (flow) {
910 	case IAVF_FDIR_FLOW_IPV4_TCP:
911 		return TCP_V4_FLOW;
912 	case IAVF_FDIR_FLOW_IPV4_UDP:
913 		return UDP_V4_FLOW;
914 	case IAVF_FDIR_FLOW_IPV4_SCTP:
915 		return SCTP_V4_FLOW;
916 	case IAVF_FDIR_FLOW_IPV4_AH:
917 		return AH_V4_FLOW;
918 	case IAVF_FDIR_FLOW_IPV4_ESP:
919 		return ESP_V4_FLOW;
920 	case IAVF_FDIR_FLOW_IPV4_OTHER:
921 		return IPV4_USER_FLOW;
922 	case IAVF_FDIR_FLOW_IPV6_TCP:
923 		return TCP_V6_FLOW;
924 	case IAVF_FDIR_FLOW_IPV6_UDP:
925 		return UDP_V6_FLOW;
926 	case IAVF_FDIR_FLOW_IPV6_SCTP:
927 		return SCTP_V6_FLOW;
928 	case IAVF_FDIR_FLOW_IPV6_AH:
929 		return AH_V6_FLOW;
930 	case IAVF_FDIR_FLOW_IPV6_ESP:
931 		return ESP_V6_FLOW;
932 	case IAVF_FDIR_FLOW_IPV6_OTHER:
933 		return IPV6_USER_FLOW;
934 	case IAVF_FDIR_FLOW_NON_IP_L2:
935 		return ETHER_FLOW;
936 	default:
937 		/* 0 is undefined ethtool flow */
938 		return 0;
939 	}
940 }
941 
942 /**
943  * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
944  * @eth: Ethtool flow type to be converted
945  *
946  * Returns flow enum
947  */
948 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
949 {
950 	switch (eth) {
951 	case TCP_V4_FLOW:
952 		return IAVF_FDIR_FLOW_IPV4_TCP;
953 	case UDP_V4_FLOW:
954 		return IAVF_FDIR_FLOW_IPV4_UDP;
955 	case SCTP_V4_FLOW:
956 		return IAVF_FDIR_FLOW_IPV4_SCTP;
957 	case AH_V4_FLOW:
958 		return IAVF_FDIR_FLOW_IPV4_AH;
959 	case ESP_V4_FLOW:
960 		return IAVF_FDIR_FLOW_IPV4_ESP;
961 	case IPV4_USER_FLOW:
962 		return IAVF_FDIR_FLOW_IPV4_OTHER;
963 	case TCP_V6_FLOW:
964 		return IAVF_FDIR_FLOW_IPV6_TCP;
965 	case UDP_V6_FLOW:
966 		return IAVF_FDIR_FLOW_IPV6_UDP;
967 	case SCTP_V6_FLOW:
968 		return IAVF_FDIR_FLOW_IPV6_SCTP;
969 	case AH_V6_FLOW:
970 		return IAVF_FDIR_FLOW_IPV6_AH;
971 	case ESP_V6_FLOW:
972 		return IAVF_FDIR_FLOW_IPV6_ESP;
973 	case IPV6_USER_FLOW:
974 		return IAVF_FDIR_FLOW_IPV6_OTHER;
975 	case ETHER_FLOW:
976 		return IAVF_FDIR_FLOW_NON_IP_L2;
977 	default:
978 		return IAVF_FDIR_FLOW_NONE;
979 	}
980 }
981 
982 /**
983  * iavf_is_mask_valid - check mask field set
984  * @mask: full mask to check
985  * @field: field for which mask should be valid
986  *
987  * If the mask is fully set return true. If it is not valid for field return
988  * false.
989  */
990 static bool iavf_is_mask_valid(u64 mask, u64 field)
991 {
992 	return (mask & field) == field;
993 }
994 
995 /**
996  * iavf_parse_rx_flow_user_data - deconstruct user-defined data
997  * @fsp: pointer to ethtool Rx flow specification
998  * @fltr: pointer to Flow Director filter for userdef data storage
999  *
1000  * Returns 0 on success, negative error value on failure
1001  */
1002 static int
1003 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
1004 			     struct iavf_fdir_fltr *fltr)
1005 {
1006 	struct iavf_flex_word *flex;
1007 	int i, cnt = 0;
1008 
1009 	if (!(fsp->flow_type & FLOW_EXT))
1010 		return 0;
1011 
1012 	for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
1013 #define IAVF_USERDEF_FLEX_WORD_M	GENMASK(15, 0)
1014 #define IAVF_USERDEF_FLEX_OFFS_S	16
1015 #define IAVF_USERDEF_FLEX_OFFS_M	GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
1016 #define IAVF_USERDEF_FLEX_FLTR_M	GENMASK(31, 0)
1017 		u32 value = be32_to_cpu(fsp->h_ext.data[i]);
1018 		u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
1019 
1020 		if (!value || !mask)
1021 			continue;
1022 
1023 		if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
1024 			return -EINVAL;
1025 
1026 		/* 504 is the maximum value for offsets, and offset is measured
1027 		 * from the start of the MAC address.
1028 		 */
1029 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
1030 		flex = &fltr->flex_words[cnt++];
1031 		flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
1032 		flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
1033 			     IAVF_USERDEF_FLEX_OFFS_S;
1034 		if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
1035 			return -EINVAL;
1036 	}
1037 
1038 	fltr->flex_cnt = cnt;
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  * iavf_fill_rx_flow_ext_data - fill the additional data
1045  * @fsp: pointer to ethtool Rx flow specification
1046  * @fltr: pointer to Flow Director filter to get additional data
1047  */
1048 static void
1049 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
1050 			   struct iavf_fdir_fltr *fltr)
1051 {
1052 	if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
1053 		return;
1054 
1055 	fsp->flow_type |= FLOW_EXT;
1056 
1057 	memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
1058 	memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
1059 }
1060 
1061 /**
1062  * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1063  * @adapter: the VF adapter structure that contains filter list
1064  * @cmd: ethtool command data structure to receive the filter data
1065  *
1066  * Returns 0 as expected for success by ethtool
1067  */
1068 static int
1069 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1070 			    struct ethtool_rxnfc *cmd)
1071 {
1072 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1073 	struct iavf_fdir_fltr *rule = NULL;
1074 	int ret = 0;
1075 
1076 	if (!FDIR_FLTR_SUPPORT(adapter))
1077 		return -EOPNOTSUPP;
1078 
1079 	spin_lock_bh(&adapter->fdir_fltr_lock);
1080 
1081 	rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1082 	if (!rule) {
1083 		ret = -EINVAL;
1084 		goto release_lock;
1085 	}
1086 
1087 	fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1088 
1089 	memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1090 	memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1091 
1092 	switch (fsp->flow_type) {
1093 	case TCP_V4_FLOW:
1094 	case UDP_V4_FLOW:
1095 	case SCTP_V4_FLOW:
1096 		fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1097 		fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1098 		fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1099 		fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1100 		fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1101 		fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1102 		fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1103 		fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1104 		fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1105 		fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1106 		break;
1107 	case AH_V4_FLOW:
1108 	case ESP_V4_FLOW:
1109 		fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1110 		fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1111 		fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1112 		fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1113 		fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1114 		fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1115 		fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1116 		fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1117 		break;
1118 	case IPV4_USER_FLOW:
1119 		fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1120 		fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1121 		fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1122 		fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1123 		fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1124 		fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1125 		fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1126 		fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1127 		fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1128 		fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1129 		fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1130 		fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1131 		break;
1132 	case TCP_V6_FLOW:
1133 	case UDP_V6_FLOW:
1134 	case SCTP_V6_FLOW:
1135 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1136 		       sizeof(struct in6_addr));
1137 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1138 		       sizeof(struct in6_addr));
1139 		fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1140 		fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1141 		fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1142 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1143 		       sizeof(struct in6_addr));
1144 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1145 		       sizeof(struct in6_addr));
1146 		fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1147 		fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1148 		fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1149 		break;
1150 	case AH_V6_FLOW:
1151 	case ESP_V6_FLOW:
1152 		memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1153 		       sizeof(struct in6_addr));
1154 		memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1155 		       sizeof(struct in6_addr));
1156 		fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1157 		fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1158 		memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1159 		       sizeof(struct in6_addr));
1160 		memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1161 		       sizeof(struct in6_addr));
1162 		fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1163 		fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1164 		break;
1165 	case IPV6_USER_FLOW:
1166 		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1167 		       sizeof(struct in6_addr));
1168 		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1169 		       sizeof(struct in6_addr));
1170 		fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1171 		fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1172 		fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1173 		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1174 		       sizeof(struct in6_addr));
1175 		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1176 		       sizeof(struct in6_addr));
1177 		fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1178 		fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1179 		fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1180 		break;
1181 	case ETHER_FLOW:
1182 		fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1183 		fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1184 		break;
1185 	default:
1186 		ret = -EINVAL;
1187 		break;
1188 	}
1189 
1190 	iavf_fill_rx_flow_ext_data(fsp, rule);
1191 
1192 	if (rule->action == VIRTCHNL_ACTION_DROP)
1193 		fsp->ring_cookie = RX_CLS_FLOW_DISC;
1194 	else
1195 		fsp->ring_cookie = rule->q_index;
1196 
1197 release_lock:
1198 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1199 	return ret;
1200 }
1201 
1202 /**
1203  * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1204  * @adapter: the VF adapter structure containing the filter list
1205  * @cmd: ethtool command data structure
1206  * @rule_locs: ethtool array passed in from OS to receive filter IDs
1207  *
1208  * Returns 0 as expected for success by ethtool
1209  */
1210 static int
1211 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1212 		       u32 *rule_locs)
1213 {
1214 	struct iavf_fdir_fltr *fltr;
1215 	unsigned int cnt = 0;
1216 	int val = 0;
1217 
1218 	if (!FDIR_FLTR_SUPPORT(adapter))
1219 		return -EOPNOTSUPP;
1220 
1221 	cmd->data = IAVF_MAX_FDIR_FILTERS;
1222 
1223 	spin_lock_bh(&adapter->fdir_fltr_lock);
1224 
1225 	list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1226 		if (cnt == cmd->rule_cnt) {
1227 			val = -EMSGSIZE;
1228 			goto release_lock;
1229 		}
1230 		rule_locs[cnt] = fltr->loc;
1231 		cnt++;
1232 	}
1233 
1234 release_lock:
1235 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1236 	if (!val)
1237 		cmd->rule_cnt = cnt;
1238 
1239 	return val;
1240 }
1241 
1242 /**
1243  * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1244  * @adapter: pointer to the VF adapter structure
1245  * @fsp: pointer to ethtool Rx flow specification
1246  * @fltr: filter structure
1247  */
1248 static int
1249 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1250 			struct iavf_fdir_fltr *fltr)
1251 {
1252 	u32 flow_type, q_index = 0;
1253 	enum virtchnl_action act;
1254 	int err;
1255 
1256 	if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1257 		act = VIRTCHNL_ACTION_DROP;
1258 	} else {
1259 		q_index = fsp->ring_cookie;
1260 		if (q_index >= adapter->num_active_queues)
1261 			return -EINVAL;
1262 
1263 		act = VIRTCHNL_ACTION_QUEUE;
1264 	}
1265 
1266 	fltr->action = act;
1267 	fltr->loc = fsp->location;
1268 	fltr->q_index = q_index;
1269 
1270 	if (fsp->flow_type & FLOW_EXT) {
1271 		memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1272 		       sizeof(fltr->ext_data.usr_def));
1273 		memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1274 		       sizeof(fltr->ext_mask.usr_def));
1275 	}
1276 
1277 	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1278 	fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1279 
1280 	switch (flow_type) {
1281 	case TCP_V4_FLOW:
1282 	case UDP_V4_FLOW:
1283 	case SCTP_V4_FLOW:
1284 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1285 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1286 		fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1287 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1288 		fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1289 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1290 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1291 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1292 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1293 		fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1294 		break;
1295 	case AH_V4_FLOW:
1296 	case ESP_V4_FLOW:
1297 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1298 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1299 		fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1300 		fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1301 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1302 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1303 		fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1304 		fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1305 		break;
1306 	case IPV4_USER_FLOW:
1307 		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1308 		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1309 		fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1310 		fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1311 		fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1312 		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1313 		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1314 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1315 		fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1316 		fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1317 		break;
1318 	case TCP_V6_FLOW:
1319 	case UDP_V6_FLOW:
1320 	case SCTP_V6_FLOW:
1321 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1322 		       sizeof(struct in6_addr));
1323 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1324 		       sizeof(struct in6_addr));
1325 		fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1326 		fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1327 		fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1328 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1329 		       sizeof(struct in6_addr));
1330 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1331 		       sizeof(struct in6_addr));
1332 		fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1333 		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1334 		fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1335 		break;
1336 	case AH_V6_FLOW:
1337 	case ESP_V6_FLOW:
1338 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1339 		       sizeof(struct in6_addr));
1340 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1341 		       sizeof(struct in6_addr));
1342 		fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1343 		fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1344 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1345 		       sizeof(struct in6_addr));
1346 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1347 		       sizeof(struct in6_addr));
1348 		fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1349 		fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1350 		break;
1351 	case IPV6_USER_FLOW:
1352 		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1353 		       sizeof(struct in6_addr));
1354 		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1355 		       sizeof(struct in6_addr));
1356 		fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1357 		fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1358 		fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1359 		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1360 		       sizeof(struct in6_addr));
1361 		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1362 		       sizeof(struct in6_addr));
1363 		fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1364 		fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1365 		fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1366 		break;
1367 	case ETHER_FLOW:
1368 		fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1369 		fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1370 		break;
1371 	default:
1372 		/* not doing un-parsed flow types */
1373 		return -EINVAL;
1374 	}
1375 
1376 	if (iavf_fdir_is_dup_fltr(adapter, fltr))
1377 		return -EEXIST;
1378 
1379 	err = iavf_parse_rx_flow_user_data(fsp, fltr);
1380 	if (err)
1381 		return err;
1382 
1383 	return iavf_fill_fdir_add_msg(adapter, fltr);
1384 }
1385 
1386 /**
1387  * iavf_add_fdir_ethtool - add Flow Director filter
1388  * @adapter: pointer to the VF adapter structure
1389  * @cmd: command to add Flow Director filter
1390  *
1391  * Returns 0 on success and negative values for failure
1392  */
1393 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1394 {
1395 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1396 	struct iavf_fdir_fltr *fltr;
1397 	int count = 50;
1398 	int err;
1399 
1400 	if (!FDIR_FLTR_SUPPORT(adapter))
1401 		return -EOPNOTSUPP;
1402 
1403 	if (fsp->flow_type & FLOW_MAC_EXT)
1404 		return -EINVAL;
1405 
1406 	if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1407 		dev_err(&adapter->pdev->dev,
1408 			"Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1409 			IAVF_MAX_FDIR_FILTERS);
1410 		return -ENOSPC;
1411 	}
1412 
1413 	spin_lock_bh(&adapter->fdir_fltr_lock);
1414 	if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1415 		dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1416 		spin_unlock_bh(&adapter->fdir_fltr_lock);
1417 		return -EEXIST;
1418 	}
1419 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1420 
1421 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1422 	if (!fltr)
1423 		return -ENOMEM;
1424 
1425 	while (!mutex_trylock(&adapter->crit_lock)) {
1426 		if (--count == 0) {
1427 			kfree(fltr);
1428 			return -EINVAL;
1429 		}
1430 		udelay(1);
1431 	}
1432 
1433 	err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1434 	if (err)
1435 		goto ret;
1436 
1437 	spin_lock_bh(&adapter->fdir_fltr_lock);
1438 	iavf_fdir_list_add_fltr(adapter, fltr);
1439 	adapter->fdir_active_fltr++;
1440 	fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1441 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1442 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1443 
1444 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1445 
1446 ret:
1447 	if (err && fltr)
1448 		kfree(fltr);
1449 
1450 	mutex_unlock(&adapter->crit_lock);
1451 	return err;
1452 }
1453 
1454 /**
1455  * iavf_del_fdir_ethtool - delete Flow Director filter
1456  * @adapter: pointer to the VF adapter structure
1457  * @cmd: command to delete Flow Director filter
1458  *
1459  * Returns 0 on success and negative values for failure
1460  */
1461 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1462 {
1463 	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1464 	struct iavf_fdir_fltr *fltr = NULL;
1465 	int err = 0;
1466 
1467 	if (!FDIR_FLTR_SUPPORT(adapter))
1468 		return -EOPNOTSUPP;
1469 
1470 	spin_lock_bh(&adapter->fdir_fltr_lock);
1471 	fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1472 	if (fltr) {
1473 		if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1474 			fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1475 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1476 		} else {
1477 			err = -EBUSY;
1478 		}
1479 	} else if (adapter->fdir_active_fltr) {
1480 		err = -EINVAL;
1481 	}
1482 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1483 
1484 	if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1485 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1486 
1487 	return err;
1488 }
1489 
1490 /**
1491  * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1492  * @cmd: ethtool rxnfc command
1493  *
1494  * This function parses the rxnfc command and returns intended
1495  * header types for RSS configuration
1496  */
1497 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1498 {
1499 	u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1500 
1501 	switch (cmd->flow_type) {
1502 	case TCP_V4_FLOW:
1503 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1504 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1505 		break;
1506 	case UDP_V4_FLOW:
1507 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1508 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1509 		break;
1510 	case SCTP_V4_FLOW:
1511 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1512 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1513 		break;
1514 	case TCP_V6_FLOW:
1515 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1516 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1517 		break;
1518 	case UDP_V6_FLOW:
1519 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1520 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1521 		break;
1522 	case SCTP_V6_FLOW:
1523 		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1524 			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1525 		break;
1526 	default:
1527 		break;
1528 	}
1529 
1530 	return hdrs;
1531 }
1532 
1533 /**
1534  * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1535  * @cmd: ethtool rxnfc command
1536  *
1537  * This function parses the rxnfc command and returns intended hash fields for
1538  * RSS configuration
1539  */
1540 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1541 {
1542 	u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1543 
1544 	if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1545 		switch (cmd->flow_type) {
1546 		case TCP_V4_FLOW:
1547 		case UDP_V4_FLOW:
1548 		case SCTP_V4_FLOW:
1549 			if (cmd->data & RXH_IP_SRC)
1550 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1551 			if (cmd->data & RXH_IP_DST)
1552 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1553 			break;
1554 		case TCP_V6_FLOW:
1555 		case UDP_V6_FLOW:
1556 		case SCTP_V6_FLOW:
1557 			if (cmd->data & RXH_IP_SRC)
1558 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1559 			if (cmd->data & RXH_IP_DST)
1560 				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1561 			break;
1562 		default:
1563 			break;
1564 		}
1565 	}
1566 
1567 	if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1568 		switch (cmd->flow_type) {
1569 		case TCP_V4_FLOW:
1570 		case TCP_V6_FLOW:
1571 			if (cmd->data & RXH_L4_B_0_1)
1572 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1573 			if (cmd->data & RXH_L4_B_2_3)
1574 				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1575 			break;
1576 		case UDP_V4_FLOW:
1577 		case UDP_V6_FLOW:
1578 			if (cmd->data & RXH_L4_B_0_1)
1579 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1580 			if (cmd->data & RXH_L4_B_2_3)
1581 				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1582 			break;
1583 		case SCTP_V4_FLOW:
1584 		case SCTP_V6_FLOW:
1585 			if (cmd->data & RXH_L4_B_0_1)
1586 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1587 			if (cmd->data & RXH_L4_B_2_3)
1588 				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1589 			break;
1590 		default:
1591 			break;
1592 		}
1593 	}
1594 
1595 	return hfld;
1596 }
1597 
1598 /**
1599  * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1600  * @adapter: pointer to the VF adapter structure
1601  * @cmd: ethtool rxnfc command
1602  *
1603  * Returns Success if the flow input set is supported.
1604  */
1605 static int
1606 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1607 			  struct ethtool_rxnfc *cmd)
1608 {
1609 	struct iavf_adv_rss *rss_old, *rss_new;
1610 	bool rss_new_add = false;
1611 	int count = 50, err = 0;
1612 	u64 hash_flds;
1613 	u32 hdrs;
1614 
1615 	if (!ADV_RSS_SUPPORT(adapter))
1616 		return -EOPNOTSUPP;
1617 
1618 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1619 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1620 		return -EINVAL;
1621 
1622 	hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1623 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1624 		return -EINVAL;
1625 
1626 	rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1627 	if (!rss_new)
1628 		return -ENOMEM;
1629 
1630 	if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1631 		kfree(rss_new);
1632 		return -EINVAL;
1633 	}
1634 
1635 	while (!mutex_trylock(&adapter->crit_lock)) {
1636 		if (--count == 0) {
1637 			kfree(rss_new);
1638 			return -EINVAL;
1639 		}
1640 
1641 		udelay(1);
1642 	}
1643 
1644 	spin_lock_bh(&adapter->adv_rss_lock);
1645 	rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1646 	if (rss_old) {
1647 		if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1648 			err = -EBUSY;
1649 		} else if (rss_old->hash_flds != hash_flds) {
1650 			rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1651 			rss_old->hash_flds = hash_flds;
1652 			memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1653 			       sizeof(rss_new->cfg_msg));
1654 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1655 		} else {
1656 			err = -EEXIST;
1657 		}
1658 	} else {
1659 		rss_new_add = true;
1660 		rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1661 		rss_new->packet_hdrs = hdrs;
1662 		rss_new->hash_flds = hash_flds;
1663 		list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1664 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1665 	}
1666 	spin_unlock_bh(&adapter->adv_rss_lock);
1667 
1668 	if (!err)
1669 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1670 
1671 	mutex_unlock(&adapter->crit_lock);
1672 
1673 	if (!rss_new_add)
1674 		kfree(rss_new);
1675 
1676 	return err;
1677 }
1678 
1679 /**
1680  * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1681  * @adapter: pointer to the VF adapter structure
1682  * @cmd: ethtool rxnfc command
1683  *
1684  * Returns Success if the flow input set is supported.
1685  */
1686 static int
1687 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1688 			  struct ethtool_rxnfc *cmd)
1689 {
1690 	struct iavf_adv_rss *rss;
1691 	u64 hash_flds;
1692 	u32 hdrs;
1693 
1694 	if (!ADV_RSS_SUPPORT(adapter))
1695 		return -EOPNOTSUPP;
1696 
1697 	cmd->data = 0;
1698 
1699 	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1700 	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1701 		return -EINVAL;
1702 
1703 	spin_lock_bh(&adapter->adv_rss_lock);
1704 	rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1705 	if (rss)
1706 		hash_flds = rss->hash_flds;
1707 	else
1708 		hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1709 	spin_unlock_bh(&adapter->adv_rss_lock);
1710 
1711 	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1712 		return -EINVAL;
1713 
1714 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1715 			 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1716 		cmd->data |= (u64)RXH_IP_SRC;
1717 
1718 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1719 			 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1720 		cmd->data |= (u64)RXH_IP_DST;
1721 
1722 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1723 			 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1724 			 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1725 		cmd->data |= (u64)RXH_L4_B_0_1;
1726 
1727 	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1728 			 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1729 			 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1730 		cmd->data |= (u64)RXH_L4_B_2_3;
1731 
1732 	return 0;
1733 }
1734 
1735 /**
1736  * iavf_set_rxnfc - command to set Rx flow rules.
1737  * @netdev: network interface device structure
1738  * @cmd: ethtool rxnfc command
1739  *
1740  * Returns 0 for success and negative values for errors
1741  */
1742 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1743 {
1744 	struct iavf_adapter *adapter = netdev_priv(netdev);
1745 	int ret = -EOPNOTSUPP;
1746 
1747 	switch (cmd->cmd) {
1748 	case ETHTOOL_SRXCLSRLINS:
1749 		ret = iavf_add_fdir_ethtool(adapter, cmd);
1750 		break;
1751 	case ETHTOOL_SRXCLSRLDEL:
1752 		ret = iavf_del_fdir_ethtool(adapter, cmd);
1753 		break;
1754 	case ETHTOOL_SRXFH:
1755 		ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1756 		break;
1757 	default:
1758 		break;
1759 	}
1760 
1761 	return ret;
1762 }
1763 
1764 /**
1765  * iavf_get_rxnfc - command to get RX flow classification rules
1766  * @netdev: network interface device structure
1767  * @cmd: ethtool rxnfc command
1768  * @rule_locs: pointer to store rule locations
1769  *
1770  * Returns Success if the command is supported.
1771  **/
1772 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1773 			  u32 *rule_locs)
1774 {
1775 	struct iavf_adapter *adapter = netdev_priv(netdev);
1776 	int ret = -EOPNOTSUPP;
1777 
1778 	switch (cmd->cmd) {
1779 	case ETHTOOL_GRXRINGS:
1780 		cmd->data = adapter->num_active_queues;
1781 		ret = 0;
1782 		break;
1783 	case ETHTOOL_GRXCLSRLCNT:
1784 		if (!FDIR_FLTR_SUPPORT(adapter))
1785 			break;
1786 		cmd->rule_cnt = adapter->fdir_active_fltr;
1787 		cmd->data = IAVF_MAX_FDIR_FILTERS;
1788 		ret = 0;
1789 		break;
1790 	case ETHTOOL_GRXCLSRULE:
1791 		ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1792 		break;
1793 	case ETHTOOL_GRXCLSRLALL:
1794 		ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1795 		break;
1796 	case ETHTOOL_GRXFH:
1797 		ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1798 		break;
1799 	default:
1800 		break;
1801 	}
1802 
1803 	return ret;
1804 }
1805 /**
1806  * iavf_get_channels: get the number of channels supported by the device
1807  * @netdev: network interface device structure
1808  * @ch: channel information structure
1809  *
1810  * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1811  * queue pair. Report one extra channel to match our "other" MSI-X vector.
1812  **/
1813 static void iavf_get_channels(struct net_device *netdev,
1814 			      struct ethtool_channels *ch)
1815 {
1816 	struct iavf_adapter *adapter = netdev_priv(netdev);
1817 
1818 	/* Report maximum channels */
1819 	ch->max_combined = adapter->vsi_res->num_queue_pairs;
1820 
1821 	ch->max_other = NONQ_VECS;
1822 	ch->other_count = NONQ_VECS;
1823 
1824 	ch->combined_count = adapter->num_active_queues;
1825 }
1826 
1827 /**
1828  * iavf_set_channels: set the new channel count
1829  * @netdev: network interface device structure
1830  * @ch: channel information structure
1831  *
1832  * Negotiate a new number of channels with the PF then do a reset.  During
1833  * reset we'll realloc queues and fix the RSS table.  Returns 0 on success,
1834  * negative on failure.
1835  **/
1836 static int iavf_set_channels(struct net_device *netdev,
1837 			     struct ethtool_channels *ch)
1838 {
1839 	struct iavf_adapter *adapter = netdev_priv(netdev);
1840 	u32 num_req = ch->combined_count;
1841 	int i;
1842 
1843 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1844 	    adapter->num_tc) {
1845 		dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1846 		return -EINVAL;
1847 	}
1848 
1849 	/* All of these should have already been checked by ethtool before this
1850 	 * even gets to us, but just to be sure.
1851 	 */
1852 	if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
1853 		return -EINVAL;
1854 
1855 	if (num_req == adapter->num_active_queues)
1856 		return 0;
1857 
1858 	if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1859 		return -EINVAL;
1860 
1861 	adapter->num_req_queues = num_req;
1862 	adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1863 	iavf_schedule_reset(adapter);
1864 
1865 	/* wait for the reset is done */
1866 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
1867 		msleep(IAVF_RESET_WAIT_MS);
1868 		if (adapter->flags & IAVF_FLAG_RESET_PENDING)
1869 			continue;
1870 		break;
1871 	}
1872 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
1873 		adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1874 		adapter->num_active_queues = num_req;
1875 		return -EOPNOTSUPP;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 /**
1882  * iavf_get_rxfh_key_size - get the RSS hash key size
1883  * @netdev: network interface device structure
1884  *
1885  * Returns the table size.
1886  **/
1887 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1888 {
1889 	struct iavf_adapter *adapter = netdev_priv(netdev);
1890 
1891 	return adapter->rss_key_size;
1892 }
1893 
1894 /**
1895  * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1896  * @netdev: network interface device structure
1897  *
1898  * Returns the table size.
1899  **/
1900 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1901 {
1902 	struct iavf_adapter *adapter = netdev_priv(netdev);
1903 
1904 	return adapter->rss_lut_size;
1905 }
1906 
1907 /**
1908  * iavf_get_rxfh - get the rx flow hash indirection table
1909  * @netdev: network interface device structure
1910  * @indir: indirection table
1911  * @key: hash key
1912  * @hfunc: hash function in use
1913  *
1914  * Reads the indirection table directly from the hardware. Always returns 0.
1915  **/
1916 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1917 			 u8 *hfunc)
1918 {
1919 	struct iavf_adapter *adapter = netdev_priv(netdev);
1920 	u16 i;
1921 
1922 	if (hfunc)
1923 		*hfunc = ETH_RSS_HASH_TOP;
1924 	if (key)
1925 		memcpy(key, adapter->rss_key, adapter->rss_key_size);
1926 
1927 	if (indir)
1928 		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1929 		for (i = 0; i < adapter->rss_lut_size; i++)
1930 			indir[i] = (u32)adapter->rss_lut[i];
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  * iavf_set_rxfh - set the rx flow hash indirection table
1937  * @netdev: network interface device structure
1938  * @indir: indirection table
1939  * @key: hash key
1940  * @hfunc: hash function to use
1941  *
1942  * Returns -EINVAL if the table specifies an invalid queue id, otherwise
1943  * returns 0 after programming the table.
1944  **/
1945 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1946 			 const u8 *key, const u8 hfunc)
1947 {
1948 	struct iavf_adapter *adapter = netdev_priv(netdev);
1949 	u16 i;
1950 
1951 	/* Only support toeplitz hash function */
1952 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1953 		return -EOPNOTSUPP;
1954 
1955 	if (!key && !indir)
1956 		return 0;
1957 
1958 	if (key)
1959 		memcpy(adapter->rss_key, key, adapter->rss_key_size);
1960 
1961 	if (indir) {
1962 		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1963 		for (i = 0; i < adapter->rss_lut_size; i++)
1964 			adapter->rss_lut[i] = (u8)(indir[i]);
1965 	}
1966 
1967 	return iavf_config_rss(adapter);
1968 }
1969 
1970 static const struct ethtool_ops iavf_ethtool_ops = {
1971 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1972 				     ETHTOOL_COALESCE_MAX_FRAMES |
1973 				     ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
1974 				     ETHTOOL_COALESCE_USE_ADAPTIVE,
1975 	.get_drvinfo		= iavf_get_drvinfo,
1976 	.get_link		= ethtool_op_get_link,
1977 	.get_ringparam		= iavf_get_ringparam,
1978 	.set_ringparam		= iavf_set_ringparam,
1979 	.get_strings		= iavf_get_strings,
1980 	.get_ethtool_stats	= iavf_get_ethtool_stats,
1981 	.get_sset_count		= iavf_get_sset_count,
1982 	.get_priv_flags		= iavf_get_priv_flags,
1983 	.set_priv_flags		= iavf_set_priv_flags,
1984 	.get_msglevel		= iavf_get_msglevel,
1985 	.set_msglevel		= iavf_set_msglevel,
1986 	.get_coalesce		= iavf_get_coalesce,
1987 	.set_coalesce		= iavf_set_coalesce,
1988 	.get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1989 	.set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1990 	.set_rxnfc		= iavf_set_rxnfc,
1991 	.get_rxnfc		= iavf_get_rxnfc,
1992 	.get_rxfh_indir_size	= iavf_get_rxfh_indir_size,
1993 	.get_rxfh		= iavf_get_rxfh,
1994 	.set_rxfh		= iavf_set_rxfh,
1995 	.get_channels		= iavf_get_channels,
1996 	.set_channels		= iavf_set_channels,
1997 	.get_rxfh_key_size	= iavf_get_rxfh_key_size,
1998 	.get_link_ksettings	= iavf_get_link_ksettings,
1999 };
2000 
2001 /**
2002  * iavf_set_ethtool_ops - Initialize ethtool ops struct
2003  * @netdev: network interface device structure
2004  *
2005  * Sets ethtool ops struct in our netdev so that ethtool can call
2006  * our functions.
2007  **/
2008 void iavf_set_ethtool_ops(struct net_device *netdev)
2009 {
2010 	netdev->ethtool_ops = &iavf_ethtool_ops;
2011 }
2012