1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 /* ethtool support for iavf */ 5 #include "iavf.h" 6 7 #include <linux/uaccess.h> 8 9 /* ethtool statistics helpers */ 10 11 /** 12 * struct iavf_stats - definition for an ethtool statistic 13 * @stat_string: statistic name to display in ethtool -S output 14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) 15 * @stat_offset: offsetof() the stat from a base pointer 16 * 17 * This structure defines a statistic to be added to the ethtool stats buffer. 18 * It defines a statistic as offset from a common base pointer. Stats should 19 * be defined in constant arrays using the IAVF_STAT macro, with every element 20 * of the array using the same _type for calculating the sizeof_stat and 21 * stat_offset. 22 * 23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or 24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from 25 * the iavf_add_ethtool_stat() helper function. 26 * 27 * The @stat_string is interpreted as a format string, allowing formatted 28 * values to be inserted while looping over multiple structures for a given 29 * statistics array. Thus, every statistic string in an array should have the 30 * same type and number of format specifiers, to be formatted by variadic 31 * arguments to the iavf_add_stat_string() helper function. 32 **/ 33 struct iavf_stats { 34 char stat_string[ETH_GSTRING_LEN]; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 /* Helper macro to define an iavf_stat structure with proper size and type. 40 * Use this when defining constant statistics arrays. Note that @_type expects 41 * only a type name and is used multiple times. 42 */ 43 #define IAVF_STAT(_type, _name, _stat) { \ 44 .stat_string = _name, \ 45 .sizeof_stat = sizeof_field(_type, _stat), \ 46 .stat_offset = offsetof(_type, _stat) \ 47 } 48 49 /* Helper macro for defining some statistics related to queues */ 50 #define IAVF_QUEUE_STAT(_name, _stat) \ 51 IAVF_STAT(struct iavf_ring, _name, _stat) 52 53 /* Stats associated with a Tx or Rx ring */ 54 static const struct iavf_stats iavf_gstrings_queue_stats[] = { 55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), 56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), 57 }; 58 59 /** 60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer 61 * @data: location to store the stat value 62 * @pointer: basis for where to copy from 63 * @stat: the stat definition 64 * 65 * Copies the stat data defined by the pointer and stat structure pair into 66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and 67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd. 68 */ 69 static void 70 iavf_add_one_ethtool_stat(u64 *data, void *pointer, 71 const struct iavf_stats *stat) 72 { 73 char *p; 74 75 if (!pointer) { 76 /* ensure that the ethtool data buffer is zero'd for any stats 77 * which don't have a valid pointer. 78 */ 79 *data = 0; 80 return; 81 } 82 83 p = (char *)pointer + stat->stat_offset; 84 switch (stat->sizeof_stat) { 85 case sizeof(u64): 86 *data = *((u64 *)p); 87 break; 88 case sizeof(u32): 89 *data = *((u32 *)p); 90 break; 91 case sizeof(u16): 92 *data = *((u16 *)p); 93 break; 94 case sizeof(u8): 95 *data = *((u8 *)p); 96 break; 97 default: 98 WARN_ONCE(1, "unexpected stat size for %s", 99 stat->stat_string); 100 *data = 0; 101 } 102 } 103 104 /** 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer 106 * @data: ethtool stats buffer 107 * @pointer: location to copy stats from 108 * @stats: array of stats to copy 109 * @size: the size of the stats definition 110 * 111 * Copy the stats defined by the stats array using the pointer as a base into 112 * the data buffer supplied by ethtool. Updates the data pointer to point to 113 * the next empty location for successive calls to __iavf_add_ethtool_stats. 114 * If pointer is null, set the data values to zero and update the pointer to 115 * skip these stats. 116 **/ 117 static void 118 __iavf_add_ethtool_stats(u64 **data, void *pointer, 119 const struct iavf_stats stats[], 120 const unsigned int size) 121 { 122 unsigned int i; 123 124 for (i = 0; i < size; i++) 125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); 126 } 127 128 /** 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer 130 * @data: ethtool stats buffer 131 * @pointer: location where stats are stored 132 * @stats: static const array of stat definitions 133 * 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by 136 * ensuring that we pass the size associated with the given stats array. 137 * 138 * The parameter @stats is evaluated twice, so parameters with side effects 139 * should be avoided. 140 **/ 141 #define iavf_add_ethtool_stats(data, pointer, stats) \ 142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) 143 144 /** 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer 146 * @data: ethtool stats buffer 147 * @ring: the ring to copy 148 * 149 * Queue statistics must be copied while protected by 150 * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats. 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the 152 * ring pointer is null, zero out the queue stat values and update the data 153 * pointer. Otherwise safely copy the stats from the ring into the supplied 154 * buffer and update the data pointer when finished. 155 * 156 * This function expects to be called while under rcu_read_lock(). 157 **/ 158 static void 159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) 160 { 161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); 162 const struct iavf_stats *stats = iavf_gstrings_queue_stats; 163 unsigned int start; 164 unsigned int i; 165 166 /* To avoid invalid statistics values, ensure that we keep retrying 167 * the copy until we get a consistent value according to 168 * u64_stats_fetch_retry. But first, make sure our ring is 169 * non-null before attempting to access its syncp. 170 */ 171 do { 172 start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp); 173 for (i = 0; i < size; i++) 174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); 175 } while (ring && u64_stats_fetch_retry(&ring->syncp, start)); 176 177 /* Once we successfully copy the stats in, update the data pointer */ 178 *data += size; 179 } 180 181 /** 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer 183 * @p: ethtool supplied buffer 184 * @stats: stat definitions array 185 * @size: size of the stats array 186 * 187 * Format and copy the strings described by stats into the buffer pointed at 188 * by p. 189 **/ 190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], 191 const unsigned int size, ...) 192 { 193 unsigned int i; 194 195 for (i = 0; i < size; i++) { 196 va_list args; 197 198 va_start(args, size); 199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); 200 *p += ETH_GSTRING_LEN; 201 va_end(args); 202 } 203 } 204 205 /** 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer 207 * @p: ethtool supplied buffer 208 * @stats: stat definitions array 209 * 210 * Format and copy the strings described by the const static stats value into 211 * the buffer pointed at by p. 212 * 213 * The parameter @stats is evaluated twice, so parameters with side effects 214 * should be avoided. Additionally, stats must be an array such that 215 * ARRAY_SIZE can be called on it. 216 **/ 217 #define iavf_add_stat_strings(p, stats, ...) \ 218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) 219 220 #define VF_STAT(_name, _stat) \ 221 IAVF_STAT(struct iavf_adapter, _name, _stat) 222 223 static const struct iavf_stats iavf_gstrings_stats[] = { 224 VF_STAT("rx_bytes", current_stats.rx_bytes), 225 VF_STAT("rx_unicast", current_stats.rx_unicast), 226 VF_STAT("rx_multicast", current_stats.rx_multicast), 227 VF_STAT("rx_broadcast", current_stats.rx_broadcast), 228 VF_STAT("rx_discards", current_stats.rx_discards), 229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), 230 VF_STAT("tx_bytes", current_stats.tx_bytes), 231 VF_STAT("tx_unicast", current_stats.tx_unicast), 232 VF_STAT("tx_multicast", current_stats.tx_multicast), 233 VF_STAT("tx_broadcast", current_stats.tx_broadcast), 234 VF_STAT("tx_discards", current_stats.tx_discards), 235 VF_STAT("tx_errors", current_stats.tx_errors), 236 }; 237 238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) 239 240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) 241 242 /* For now we have one and only one private flag and it is only defined 243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead 244 * of leaving all this code sitting around empty we will strip it unless 245 * our one private flag is actually available. 246 */ 247 struct iavf_priv_flags { 248 char flag_string[ETH_GSTRING_LEN]; 249 u32 flag; 250 bool read_only; 251 }; 252 253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ 254 .flag_string = _name, \ 255 .flag = _flag, \ 256 .read_only = _read_only, \ 257 } 258 259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { 260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), 261 }; 262 263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) 264 265 /** 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings 267 * @netdev: network interface device structure 268 * @cmd: ethtool command 269 * 270 * Reports speed/duplex settings. Because this is a VF, we don't know what 271 * kind of link we really have, so we fake it. 272 **/ 273 static int iavf_get_link_ksettings(struct net_device *netdev, 274 struct ethtool_link_ksettings *cmd) 275 { 276 struct iavf_adapter *adapter = netdev_priv(netdev); 277 278 ethtool_link_ksettings_zero_link_mode(cmd, supported); 279 cmd->base.autoneg = AUTONEG_DISABLE; 280 cmd->base.port = PORT_NONE; 281 cmd->base.duplex = DUPLEX_FULL; 282 283 if (ADV_LINK_SUPPORT(adapter)) { 284 if (adapter->link_speed_mbps && 285 adapter->link_speed_mbps < U32_MAX) 286 cmd->base.speed = adapter->link_speed_mbps; 287 else 288 cmd->base.speed = SPEED_UNKNOWN; 289 290 return 0; 291 } 292 293 switch (adapter->link_speed) { 294 case VIRTCHNL_LINK_SPEED_40GB: 295 cmd->base.speed = SPEED_40000; 296 break; 297 case VIRTCHNL_LINK_SPEED_25GB: 298 cmd->base.speed = SPEED_25000; 299 break; 300 case VIRTCHNL_LINK_SPEED_20GB: 301 cmd->base.speed = SPEED_20000; 302 break; 303 case VIRTCHNL_LINK_SPEED_10GB: 304 cmd->base.speed = SPEED_10000; 305 break; 306 case VIRTCHNL_LINK_SPEED_5GB: 307 cmd->base.speed = SPEED_5000; 308 break; 309 case VIRTCHNL_LINK_SPEED_2_5GB: 310 cmd->base.speed = SPEED_2500; 311 break; 312 case VIRTCHNL_LINK_SPEED_1GB: 313 cmd->base.speed = SPEED_1000; 314 break; 315 case VIRTCHNL_LINK_SPEED_100MB: 316 cmd->base.speed = SPEED_100; 317 break; 318 default: 319 break; 320 } 321 322 return 0; 323 } 324 325 /** 326 * iavf_get_sset_count - Get length of string set 327 * @netdev: network interface device structure 328 * @sset: id of string set 329 * 330 * Reports size of various string tables. 331 **/ 332 static int iavf_get_sset_count(struct net_device *netdev, int sset) 333 { 334 /* Report the maximum number queues, even if not every queue is 335 * currently configured. Since allocation of queues is in pairs, 336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set 337 * at device creation and never changes. 338 */ 339 340 if (sset == ETH_SS_STATS) 341 return IAVF_STATS_LEN + 342 (IAVF_QUEUE_STATS_LEN * 2 * 343 netdev->real_num_tx_queues); 344 else if (sset == ETH_SS_PRIV_FLAGS) 345 return IAVF_PRIV_FLAGS_STR_LEN; 346 else 347 return -EINVAL; 348 } 349 350 /** 351 * iavf_get_ethtool_stats - report device statistics 352 * @netdev: network interface device structure 353 * @stats: ethtool statistics structure 354 * @data: pointer to data buffer 355 * 356 * All statistics are added to the data buffer as an array of u64. 357 **/ 358 static void iavf_get_ethtool_stats(struct net_device *netdev, 359 struct ethtool_stats *stats, u64 *data) 360 { 361 struct iavf_adapter *adapter = netdev_priv(netdev); 362 unsigned int i; 363 364 /* Explicitly request stats refresh */ 365 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_REQUEST_STATS); 366 367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); 368 369 rcu_read_lock(); 370 /* As num_active_queues describe both tx and rx queues, we can use 371 * it to iterate over rings' stats. 372 */ 373 for (i = 0; i < adapter->num_active_queues; i++) { 374 struct iavf_ring *ring; 375 376 /* Tx rings stats */ 377 ring = &adapter->tx_rings[i]; 378 iavf_add_queue_stats(&data, ring); 379 380 /* Rx rings stats */ 381 ring = &adapter->rx_rings[i]; 382 iavf_add_queue_stats(&data, ring); 383 } 384 rcu_read_unlock(); 385 } 386 387 /** 388 * iavf_get_priv_flag_strings - Get private flag strings 389 * @netdev: network interface device structure 390 * @data: buffer for string data 391 * 392 * Builds the private flags string table 393 **/ 394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) 395 { 396 unsigned int i; 397 398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) 399 ethtool_sprintf(&data, "%s", 400 iavf_gstrings_priv_flags[i].flag_string); 401 } 402 403 /** 404 * iavf_get_stat_strings - Get stat strings 405 * @netdev: network interface device structure 406 * @data: buffer for string data 407 * 408 * Builds the statistics string table 409 **/ 410 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) 411 { 412 unsigned int i; 413 414 iavf_add_stat_strings(&data, iavf_gstrings_stats); 415 416 /* Queues are always allocated in pairs, so we just use 417 * real_num_tx_queues for both Tx and Rx queues. 418 */ 419 for (i = 0; i < netdev->real_num_tx_queues; i++) { 420 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 421 "tx", i); 422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, 423 "rx", i); 424 } 425 } 426 427 /** 428 * iavf_get_strings - Get string set 429 * @netdev: network interface device structure 430 * @sset: id of string set 431 * @data: buffer for string data 432 * 433 * Builds string tables for various string sets 434 **/ 435 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) 436 { 437 switch (sset) { 438 case ETH_SS_STATS: 439 iavf_get_stat_strings(netdev, data); 440 break; 441 case ETH_SS_PRIV_FLAGS: 442 iavf_get_priv_flag_strings(netdev, data); 443 break; 444 default: 445 break; 446 } 447 } 448 449 /** 450 * iavf_get_priv_flags - report device private flags 451 * @netdev: network interface device structure 452 * 453 * The get string set count and the string set should be matched for each 454 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags 455 * array. 456 * 457 * Returns a u32 bitmap of flags. 458 **/ 459 static u32 iavf_get_priv_flags(struct net_device *netdev) 460 { 461 struct iavf_adapter *adapter = netdev_priv(netdev); 462 u32 i, ret_flags = 0; 463 464 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 465 const struct iavf_priv_flags *priv_flags; 466 467 priv_flags = &iavf_gstrings_priv_flags[i]; 468 469 if (priv_flags->flag & adapter->flags) 470 ret_flags |= BIT(i); 471 } 472 473 return ret_flags; 474 } 475 476 /** 477 * iavf_set_priv_flags - set private flags 478 * @netdev: network interface device structure 479 * @flags: bit flags to be set 480 **/ 481 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) 482 { 483 struct iavf_adapter *adapter = netdev_priv(netdev); 484 u32 orig_flags, new_flags, changed_flags; 485 int ret = 0; 486 u32 i; 487 488 orig_flags = READ_ONCE(adapter->flags); 489 new_flags = orig_flags; 490 491 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { 492 const struct iavf_priv_flags *priv_flags; 493 494 priv_flags = &iavf_gstrings_priv_flags[i]; 495 496 if (flags & BIT(i)) 497 new_flags |= priv_flags->flag; 498 else 499 new_flags &= ~(priv_flags->flag); 500 501 if (priv_flags->read_only && 502 ((orig_flags ^ new_flags) & ~BIT(i))) 503 return -EOPNOTSUPP; 504 } 505 506 /* Before we finalize any flag changes, any checks which we need to 507 * perform to determine if the new flags will be supported should go 508 * here... 509 */ 510 511 /* Compare and exchange the new flags into place. If we failed, that 512 * is if cmpxchg returns anything but the old value, this means 513 * something else must have modified the flags variable since we 514 * copied it. We'll just punt with an error and log something in the 515 * message buffer. 516 */ 517 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { 518 dev_warn(&adapter->pdev->dev, 519 "Unable to update adapter->flags as it was modified by another thread...\n"); 520 return -EAGAIN; 521 } 522 523 changed_flags = orig_flags ^ new_flags; 524 525 /* Process any additional changes needed as a result of flag changes. 526 * The changed_flags value reflects the list of bits that were changed 527 * in the code above. 528 */ 529 530 /* issue a reset to force legacy-rx change to take effect */ 531 if (changed_flags & IAVF_FLAG_LEGACY_RX) { 532 if (netif_running(netdev)) { 533 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 534 ret = iavf_wait_for_reset(adapter); 535 if (ret) 536 netdev_warn(netdev, "Changing private flags timeout or interrupted waiting for reset"); 537 } 538 } 539 540 return ret; 541 } 542 543 /** 544 * iavf_get_msglevel - Get debug message level 545 * @netdev: network interface device structure 546 * 547 * Returns current debug message level. 548 **/ 549 static u32 iavf_get_msglevel(struct net_device *netdev) 550 { 551 struct iavf_adapter *adapter = netdev_priv(netdev); 552 553 return adapter->msg_enable; 554 } 555 556 /** 557 * iavf_set_msglevel - Set debug message level 558 * @netdev: network interface device structure 559 * @data: message level 560 * 561 * Set current debug message level. Higher values cause the driver to 562 * be noisier. 563 **/ 564 static void iavf_set_msglevel(struct net_device *netdev, u32 data) 565 { 566 struct iavf_adapter *adapter = netdev_priv(netdev); 567 568 if (IAVF_DEBUG_USER & data) 569 adapter->hw.debug_mask = data; 570 adapter->msg_enable = data; 571 } 572 573 /** 574 * iavf_get_drvinfo - Get driver info 575 * @netdev: network interface device structure 576 * @drvinfo: ethool driver info structure 577 * 578 * Returns information about the driver and device for display to the user. 579 **/ 580 static void iavf_get_drvinfo(struct net_device *netdev, 581 struct ethtool_drvinfo *drvinfo) 582 { 583 struct iavf_adapter *adapter = netdev_priv(netdev); 584 585 strscpy(drvinfo->driver, iavf_driver_name, 32); 586 strscpy(drvinfo->fw_version, "N/A", 4); 587 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); 588 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; 589 } 590 591 /** 592 * iavf_get_ringparam - Get ring parameters 593 * @netdev: network interface device structure 594 * @ring: ethtool ringparam structure 595 * @kernel_ring: ethtool extenal ringparam structure 596 * @extack: netlink extended ACK report struct 597 * 598 * Returns current ring parameters. TX and RX rings are reported separately, 599 * but the number of rings is not reported. 600 **/ 601 static void iavf_get_ringparam(struct net_device *netdev, 602 struct ethtool_ringparam *ring, 603 struct kernel_ethtool_ringparam *kernel_ring, 604 struct netlink_ext_ack *extack) 605 { 606 struct iavf_adapter *adapter = netdev_priv(netdev); 607 608 ring->rx_max_pending = IAVF_MAX_RXD; 609 ring->tx_max_pending = IAVF_MAX_TXD; 610 ring->rx_pending = adapter->rx_desc_count; 611 ring->tx_pending = adapter->tx_desc_count; 612 } 613 614 /** 615 * iavf_set_ringparam - Set ring parameters 616 * @netdev: network interface device structure 617 * @ring: ethtool ringparam structure 618 * @kernel_ring: ethtool external ringparam structure 619 * @extack: netlink extended ACK report struct 620 * 621 * Sets ring parameters. TX and RX rings are controlled separately, but the 622 * number of rings is not specified, so all rings get the same settings. 623 **/ 624 static int iavf_set_ringparam(struct net_device *netdev, 625 struct ethtool_ringparam *ring, 626 struct kernel_ethtool_ringparam *kernel_ring, 627 struct netlink_ext_ack *extack) 628 { 629 struct iavf_adapter *adapter = netdev_priv(netdev); 630 u32 new_rx_count, new_tx_count; 631 int ret = 0; 632 633 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 634 return -EINVAL; 635 636 if (ring->tx_pending > IAVF_MAX_TXD || 637 ring->tx_pending < IAVF_MIN_TXD || 638 ring->rx_pending > IAVF_MAX_RXD || 639 ring->rx_pending < IAVF_MIN_RXD) { 640 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 641 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, 642 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); 643 return -EINVAL; 644 } 645 646 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 647 if (new_tx_count != ring->tx_pending) 648 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 649 new_tx_count); 650 651 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); 652 if (new_rx_count != ring->rx_pending) 653 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 654 new_rx_count); 655 656 /* if nothing to do return success */ 657 if ((new_tx_count == adapter->tx_desc_count) && 658 (new_rx_count == adapter->rx_desc_count)) { 659 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 660 return 0; 661 } 662 663 if (new_tx_count != adapter->tx_desc_count) { 664 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", 665 adapter->tx_desc_count, new_tx_count); 666 adapter->tx_desc_count = new_tx_count; 667 } 668 669 if (new_rx_count != adapter->rx_desc_count) { 670 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", 671 adapter->rx_desc_count, new_rx_count); 672 adapter->rx_desc_count = new_rx_count; 673 } 674 675 if (netif_running(netdev)) { 676 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 677 ret = iavf_wait_for_reset(adapter); 678 if (ret) 679 netdev_warn(netdev, "Changing ring parameters timeout or interrupted waiting for reset"); 680 } 681 682 return ret; 683 } 684 685 /** 686 * __iavf_get_coalesce - get per-queue coalesce settings 687 * @netdev: the netdev to check 688 * @ec: ethtool coalesce data structure 689 * @queue: which queue to pick 690 * 691 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs 692 * are per queue. If queue is <0 then we default to queue 0 as the 693 * representative value. 694 **/ 695 static int __iavf_get_coalesce(struct net_device *netdev, 696 struct ethtool_coalesce *ec, int queue) 697 { 698 struct iavf_adapter *adapter = netdev_priv(netdev); 699 struct iavf_ring *rx_ring, *tx_ring; 700 701 /* Rx and Tx usecs per queue value. If user doesn't specify the 702 * queue, return queue 0's value to represent. 703 */ 704 if (queue < 0) 705 queue = 0; 706 else if (queue >= adapter->num_active_queues) 707 return -EINVAL; 708 709 rx_ring = &adapter->rx_rings[queue]; 710 tx_ring = &adapter->tx_rings[queue]; 711 712 if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) 713 ec->use_adaptive_rx_coalesce = 1; 714 715 if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) 716 ec->use_adaptive_tx_coalesce = 1; 717 718 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 719 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 720 721 return 0; 722 } 723 724 /** 725 * iavf_get_coalesce - Get interrupt coalescing settings 726 * @netdev: network interface device structure 727 * @ec: ethtool coalesce structure 728 * @kernel_coal: ethtool CQE mode setting structure 729 * @extack: extack for reporting error messages 730 * 731 * Returns current coalescing settings. This is referred to elsewhere in the 732 * driver as Interrupt Throttle Rate, as this is how the hardware describes 733 * this functionality. Note that if per-queue settings have been modified this 734 * only represents the settings of queue 0. 735 **/ 736 static int iavf_get_coalesce(struct net_device *netdev, 737 struct ethtool_coalesce *ec, 738 struct kernel_ethtool_coalesce *kernel_coal, 739 struct netlink_ext_ack *extack) 740 { 741 return __iavf_get_coalesce(netdev, ec, -1); 742 } 743 744 /** 745 * iavf_get_per_queue_coalesce - get coalesce values for specific queue 746 * @netdev: netdev to read 747 * @ec: coalesce settings from ethtool 748 * @queue: the queue to read 749 * 750 * Read specific queue's coalesce settings. 751 **/ 752 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, 753 struct ethtool_coalesce *ec) 754 { 755 return __iavf_get_coalesce(netdev, ec, queue); 756 } 757 758 /** 759 * iavf_set_itr_per_queue - set ITR values for specific queue 760 * @adapter: the VF adapter struct to set values for 761 * @ec: coalesce settings from ethtool 762 * @queue: the queue to modify 763 * 764 * Change the ITR settings for a specific queue. 765 **/ 766 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, 767 struct ethtool_coalesce *ec, int queue) 768 { 769 struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; 770 struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; 771 struct iavf_q_vector *q_vector; 772 u16 itr_setting; 773 774 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 775 776 if (ec->rx_coalesce_usecs != itr_setting && 777 ec->use_adaptive_rx_coalesce) { 778 netif_info(adapter, drv, adapter->netdev, 779 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); 780 return -EINVAL; 781 } 782 783 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; 784 785 if (ec->tx_coalesce_usecs != itr_setting && 786 ec->use_adaptive_tx_coalesce) { 787 netif_info(adapter, drv, adapter->netdev, 788 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); 789 return -EINVAL; 790 } 791 792 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); 793 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); 794 795 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 796 if (!ec->use_adaptive_rx_coalesce) 797 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 798 799 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; 800 if (!ec->use_adaptive_tx_coalesce) 801 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; 802 803 q_vector = rx_ring->q_vector; 804 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 805 806 q_vector = tx_ring->q_vector; 807 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 808 809 /* The interrupt handler itself will take care of programming 810 * the Tx and Rx ITR values based on the values we have entered 811 * into the q_vector, no need to write the values now. 812 */ 813 return 0; 814 } 815 816 /** 817 * __iavf_set_coalesce - set coalesce settings for particular queue 818 * @netdev: the netdev to change 819 * @ec: ethtool coalesce settings 820 * @queue: the queue to change 821 * 822 * Sets the coalesce settings for a particular queue. 823 **/ 824 static int __iavf_set_coalesce(struct net_device *netdev, 825 struct ethtool_coalesce *ec, int queue) 826 { 827 struct iavf_adapter *adapter = netdev_priv(netdev); 828 int i; 829 830 if (ec->rx_coalesce_usecs > IAVF_MAX_ITR) { 831 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); 832 return -EINVAL; 833 } else if (ec->tx_coalesce_usecs > IAVF_MAX_ITR) { 834 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); 835 return -EINVAL; 836 } 837 838 /* Rx and Tx usecs has per queue value. If user doesn't specify the 839 * queue, apply to all queues. 840 */ 841 if (queue < 0) { 842 for (i = 0; i < adapter->num_active_queues; i++) 843 if (iavf_set_itr_per_queue(adapter, ec, i)) 844 return -EINVAL; 845 } else if (queue < adapter->num_active_queues) { 846 if (iavf_set_itr_per_queue(adapter, ec, queue)) 847 return -EINVAL; 848 } else { 849 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", 850 adapter->num_active_queues - 1); 851 return -EINVAL; 852 } 853 854 return 0; 855 } 856 857 /** 858 * iavf_set_coalesce - Set interrupt coalescing settings 859 * @netdev: network interface device structure 860 * @ec: ethtool coalesce structure 861 * @kernel_coal: ethtool CQE mode setting structure 862 * @extack: extack for reporting error messages 863 * 864 * Change current coalescing settings for every queue. 865 **/ 866 static int iavf_set_coalesce(struct net_device *netdev, 867 struct ethtool_coalesce *ec, 868 struct kernel_ethtool_coalesce *kernel_coal, 869 struct netlink_ext_ack *extack) 870 { 871 return __iavf_set_coalesce(netdev, ec, -1); 872 } 873 874 /** 875 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings 876 * @netdev: the netdev to change 877 * @ec: ethtool's coalesce settings 878 * @queue: the queue to modify 879 * 880 * Modifies a specific queue's coalesce settings. 881 */ 882 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, 883 struct ethtool_coalesce *ec) 884 { 885 return __iavf_set_coalesce(netdev, ec, queue); 886 } 887 888 /** 889 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool 890 * flow type values 891 * @flow: filter type to be converted 892 * 893 * Returns the corresponding ethtool flow type. 894 */ 895 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) 896 { 897 switch (flow) { 898 case IAVF_FDIR_FLOW_IPV4_TCP: 899 return TCP_V4_FLOW; 900 case IAVF_FDIR_FLOW_IPV4_UDP: 901 return UDP_V4_FLOW; 902 case IAVF_FDIR_FLOW_IPV4_SCTP: 903 return SCTP_V4_FLOW; 904 case IAVF_FDIR_FLOW_IPV4_AH: 905 return AH_V4_FLOW; 906 case IAVF_FDIR_FLOW_IPV4_ESP: 907 return ESP_V4_FLOW; 908 case IAVF_FDIR_FLOW_IPV4_OTHER: 909 return IPV4_USER_FLOW; 910 case IAVF_FDIR_FLOW_IPV6_TCP: 911 return TCP_V6_FLOW; 912 case IAVF_FDIR_FLOW_IPV6_UDP: 913 return UDP_V6_FLOW; 914 case IAVF_FDIR_FLOW_IPV6_SCTP: 915 return SCTP_V6_FLOW; 916 case IAVF_FDIR_FLOW_IPV6_AH: 917 return AH_V6_FLOW; 918 case IAVF_FDIR_FLOW_IPV6_ESP: 919 return ESP_V6_FLOW; 920 case IAVF_FDIR_FLOW_IPV6_OTHER: 921 return IPV6_USER_FLOW; 922 case IAVF_FDIR_FLOW_NON_IP_L2: 923 return ETHER_FLOW; 924 default: 925 /* 0 is undefined ethtool flow */ 926 return 0; 927 } 928 } 929 930 /** 931 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum 932 * @eth: Ethtool flow type to be converted 933 * 934 * Returns flow enum 935 */ 936 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) 937 { 938 switch (eth) { 939 case TCP_V4_FLOW: 940 return IAVF_FDIR_FLOW_IPV4_TCP; 941 case UDP_V4_FLOW: 942 return IAVF_FDIR_FLOW_IPV4_UDP; 943 case SCTP_V4_FLOW: 944 return IAVF_FDIR_FLOW_IPV4_SCTP; 945 case AH_V4_FLOW: 946 return IAVF_FDIR_FLOW_IPV4_AH; 947 case ESP_V4_FLOW: 948 return IAVF_FDIR_FLOW_IPV4_ESP; 949 case IPV4_USER_FLOW: 950 return IAVF_FDIR_FLOW_IPV4_OTHER; 951 case TCP_V6_FLOW: 952 return IAVF_FDIR_FLOW_IPV6_TCP; 953 case UDP_V6_FLOW: 954 return IAVF_FDIR_FLOW_IPV6_UDP; 955 case SCTP_V6_FLOW: 956 return IAVF_FDIR_FLOW_IPV6_SCTP; 957 case AH_V6_FLOW: 958 return IAVF_FDIR_FLOW_IPV6_AH; 959 case ESP_V6_FLOW: 960 return IAVF_FDIR_FLOW_IPV6_ESP; 961 case IPV6_USER_FLOW: 962 return IAVF_FDIR_FLOW_IPV6_OTHER; 963 case ETHER_FLOW: 964 return IAVF_FDIR_FLOW_NON_IP_L2; 965 default: 966 return IAVF_FDIR_FLOW_NONE; 967 } 968 } 969 970 /** 971 * iavf_is_mask_valid - check mask field set 972 * @mask: full mask to check 973 * @field: field for which mask should be valid 974 * 975 * If the mask is fully set return true. If it is not valid for field return 976 * false. 977 */ 978 static bool iavf_is_mask_valid(u64 mask, u64 field) 979 { 980 return (mask & field) == field; 981 } 982 983 /** 984 * iavf_parse_rx_flow_user_data - deconstruct user-defined data 985 * @fsp: pointer to ethtool Rx flow specification 986 * @fltr: pointer to Flow Director filter for userdef data storage 987 * 988 * Returns 0 on success, negative error value on failure 989 */ 990 static int 991 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, 992 struct iavf_fdir_fltr *fltr) 993 { 994 struct iavf_flex_word *flex; 995 int i, cnt = 0; 996 997 if (!(fsp->flow_type & FLOW_EXT)) 998 return 0; 999 1000 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { 1001 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) 1002 #define IAVF_USERDEF_FLEX_OFFS_S 16 1003 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) 1004 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) 1005 u32 value = be32_to_cpu(fsp->h_ext.data[i]); 1006 u32 mask = be32_to_cpu(fsp->m_ext.data[i]); 1007 1008 if (!value || !mask) 1009 continue; 1010 1011 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) 1012 return -EINVAL; 1013 1014 /* 504 is the maximum value for offsets, and offset is measured 1015 * from the start of the MAC address. 1016 */ 1017 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 1018 flex = &fltr->flex_words[cnt++]; 1019 flex->word = value & IAVF_USERDEF_FLEX_WORD_M; 1020 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> 1021 IAVF_USERDEF_FLEX_OFFS_S; 1022 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) 1023 return -EINVAL; 1024 } 1025 1026 fltr->flex_cnt = cnt; 1027 1028 return 0; 1029 } 1030 1031 /** 1032 * iavf_fill_rx_flow_ext_data - fill the additional data 1033 * @fsp: pointer to ethtool Rx flow specification 1034 * @fltr: pointer to Flow Director filter to get additional data 1035 */ 1036 static void 1037 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, 1038 struct iavf_fdir_fltr *fltr) 1039 { 1040 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) 1041 return; 1042 1043 fsp->flow_type |= FLOW_EXT; 1044 1045 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); 1046 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); 1047 } 1048 1049 /** 1050 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data 1051 * @adapter: the VF adapter structure that contains filter list 1052 * @cmd: ethtool command data structure to receive the filter data 1053 * 1054 * Returns 0 as expected for success by ethtool 1055 */ 1056 static int 1057 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, 1058 struct ethtool_rxnfc *cmd) 1059 { 1060 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1061 struct iavf_fdir_fltr *rule = NULL; 1062 int ret = 0; 1063 1064 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1065 return -EOPNOTSUPP; 1066 1067 spin_lock_bh(&adapter->fdir_fltr_lock); 1068 1069 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1070 if (!rule) { 1071 ret = -EINVAL; 1072 goto release_lock; 1073 } 1074 1075 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); 1076 1077 memset(&fsp->m_u, 0, sizeof(fsp->m_u)); 1078 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); 1079 1080 switch (fsp->flow_type) { 1081 case TCP_V4_FLOW: 1082 case UDP_V4_FLOW: 1083 case SCTP_V4_FLOW: 1084 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1085 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1086 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; 1087 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; 1088 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; 1089 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1090 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1091 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; 1092 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; 1093 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; 1094 break; 1095 case AH_V4_FLOW: 1096 case ESP_V4_FLOW: 1097 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1098 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1099 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; 1100 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; 1101 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1102 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1103 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; 1104 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; 1105 break; 1106 case IPV4_USER_FLOW: 1107 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; 1108 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; 1109 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; 1110 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; 1111 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; 1112 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; 1113 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; 1114 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; 1115 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; 1116 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; 1117 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; 1118 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; 1119 break; 1120 case TCP_V6_FLOW: 1121 case UDP_V6_FLOW: 1122 case SCTP_V6_FLOW: 1123 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1124 sizeof(struct in6_addr)); 1125 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1126 sizeof(struct in6_addr)); 1127 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; 1128 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; 1129 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; 1130 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1131 sizeof(struct in6_addr)); 1132 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1133 sizeof(struct in6_addr)); 1134 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; 1135 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; 1136 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; 1137 break; 1138 case AH_V6_FLOW: 1139 case ESP_V6_FLOW: 1140 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1141 sizeof(struct in6_addr)); 1142 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1143 sizeof(struct in6_addr)); 1144 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; 1145 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; 1146 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1147 sizeof(struct in6_addr)); 1148 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1149 sizeof(struct in6_addr)); 1150 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; 1151 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; 1152 break; 1153 case IPV6_USER_FLOW: 1154 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, 1155 sizeof(struct in6_addr)); 1156 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, 1157 sizeof(struct in6_addr)); 1158 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; 1159 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; 1160 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; 1161 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, 1162 sizeof(struct in6_addr)); 1163 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, 1164 sizeof(struct in6_addr)); 1165 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; 1166 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; 1167 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; 1168 break; 1169 case ETHER_FLOW: 1170 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; 1171 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; 1172 break; 1173 default: 1174 ret = -EINVAL; 1175 break; 1176 } 1177 1178 iavf_fill_rx_flow_ext_data(fsp, rule); 1179 1180 if (rule->action == VIRTCHNL_ACTION_DROP) 1181 fsp->ring_cookie = RX_CLS_FLOW_DISC; 1182 else 1183 fsp->ring_cookie = rule->q_index; 1184 1185 release_lock: 1186 spin_unlock_bh(&adapter->fdir_fltr_lock); 1187 return ret; 1188 } 1189 1190 /** 1191 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters 1192 * @adapter: the VF adapter structure containing the filter list 1193 * @cmd: ethtool command data structure 1194 * @rule_locs: ethtool array passed in from OS to receive filter IDs 1195 * 1196 * Returns 0 as expected for success by ethtool 1197 */ 1198 static int 1199 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, 1200 u32 *rule_locs) 1201 { 1202 struct iavf_fdir_fltr *fltr; 1203 unsigned int cnt = 0; 1204 int val = 0; 1205 1206 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1207 return -EOPNOTSUPP; 1208 1209 cmd->data = IAVF_MAX_FDIR_FILTERS; 1210 1211 spin_lock_bh(&adapter->fdir_fltr_lock); 1212 1213 list_for_each_entry(fltr, &adapter->fdir_list_head, list) { 1214 if (cnt == cmd->rule_cnt) { 1215 val = -EMSGSIZE; 1216 goto release_lock; 1217 } 1218 rule_locs[cnt] = fltr->loc; 1219 cnt++; 1220 } 1221 1222 release_lock: 1223 spin_unlock_bh(&adapter->fdir_fltr_lock); 1224 if (!val) 1225 cmd->rule_cnt = cnt; 1226 1227 return val; 1228 } 1229 1230 /** 1231 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter 1232 * @adapter: pointer to the VF adapter structure 1233 * @fsp: pointer to ethtool Rx flow specification 1234 * @fltr: filter structure 1235 */ 1236 static int 1237 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, 1238 struct iavf_fdir_fltr *fltr) 1239 { 1240 u32 flow_type, q_index = 0; 1241 enum virtchnl_action act; 1242 int err; 1243 1244 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { 1245 act = VIRTCHNL_ACTION_DROP; 1246 } else { 1247 q_index = fsp->ring_cookie; 1248 if (q_index >= adapter->num_active_queues) 1249 return -EINVAL; 1250 1251 act = VIRTCHNL_ACTION_QUEUE; 1252 } 1253 1254 fltr->action = act; 1255 fltr->loc = fsp->location; 1256 fltr->q_index = q_index; 1257 1258 if (fsp->flow_type & FLOW_EXT) { 1259 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, 1260 sizeof(fltr->ext_data.usr_def)); 1261 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, 1262 sizeof(fltr->ext_mask.usr_def)); 1263 } 1264 1265 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); 1266 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); 1267 1268 switch (flow_type) { 1269 case TCP_V4_FLOW: 1270 case UDP_V4_FLOW: 1271 case SCTP_V4_FLOW: 1272 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; 1273 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; 1274 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; 1275 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; 1276 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; 1277 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; 1278 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; 1279 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; 1280 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; 1281 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; 1282 fltr->ip_ver = 4; 1283 break; 1284 case AH_V4_FLOW: 1285 case ESP_V4_FLOW: 1286 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; 1287 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; 1288 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; 1289 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; 1290 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; 1291 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; 1292 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; 1293 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; 1294 fltr->ip_ver = 4; 1295 break; 1296 case IPV4_USER_FLOW: 1297 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; 1298 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; 1299 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; 1300 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; 1301 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; 1302 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; 1303 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; 1304 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; 1305 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; 1306 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; 1307 fltr->ip_ver = 4; 1308 break; 1309 case TCP_V6_FLOW: 1310 case UDP_V6_FLOW: 1311 case SCTP_V6_FLOW: 1312 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1313 sizeof(struct in6_addr)); 1314 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1315 sizeof(struct in6_addr)); 1316 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; 1317 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; 1318 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; 1319 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1320 sizeof(struct in6_addr)); 1321 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1322 sizeof(struct in6_addr)); 1323 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; 1324 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; 1325 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; 1326 fltr->ip_ver = 6; 1327 break; 1328 case AH_V6_FLOW: 1329 case ESP_V6_FLOW: 1330 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, 1331 sizeof(struct in6_addr)); 1332 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, 1333 sizeof(struct in6_addr)); 1334 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; 1335 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; 1336 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, 1337 sizeof(struct in6_addr)); 1338 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, 1339 sizeof(struct in6_addr)); 1340 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; 1341 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; 1342 fltr->ip_ver = 6; 1343 break; 1344 case IPV6_USER_FLOW: 1345 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, 1346 sizeof(struct in6_addr)); 1347 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, 1348 sizeof(struct in6_addr)); 1349 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; 1350 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; 1351 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; 1352 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, 1353 sizeof(struct in6_addr)); 1354 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, 1355 sizeof(struct in6_addr)); 1356 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; 1357 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; 1358 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; 1359 fltr->ip_ver = 6; 1360 break; 1361 case ETHER_FLOW: 1362 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; 1363 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; 1364 break; 1365 default: 1366 /* not doing un-parsed flow types */ 1367 return -EINVAL; 1368 } 1369 1370 err = iavf_validate_fdir_fltr_masks(adapter, fltr); 1371 if (err) 1372 return err; 1373 1374 if (iavf_fdir_is_dup_fltr(adapter, fltr)) 1375 return -EEXIST; 1376 1377 err = iavf_parse_rx_flow_user_data(fsp, fltr); 1378 if (err) 1379 return err; 1380 1381 return iavf_fill_fdir_add_msg(adapter, fltr); 1382 } 1383 1384 /** 1385 * iavf_add_fdir_ethtool - add Flow Director filter 1386 * @adapter: pointer to the VF adapter structure 1387 * @cmd: command to add Flow Director filter 1388 * 1389 * Returns 0 on success and negative values for failure 1390 */ 1391 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1392 { 1393 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 1394 struct iavf_fdir_fltr *fltr; 1395 int count = 50; 1396 int err; 1397 1398 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1399 return -EOPNOTSUPP; 1400 1401 if (fsp->flow_type & FLOW_MAC_EXT) 1402 return -EINVAL; 1403 1404 spin_lock_bh(&adapter->fdir_fltr_lock); 1405 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { 1406 spin_unlock_bh(&adapter->fdir_fltr_lock); 1407 dev_err(&adapter->pdev->dev, 1408 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", 1409 IAVF_MAX_FDIR_FILTERS); 1410 return -ENOSPC; 1411 } 1412 1413 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { 1414 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); 1415 spin_unlock_bh(&adapter->fdir_fltr_lock); 1416 return -EEXIST; 1417 } 1418 spin_unlock_bh(&adapter->fdir_fltr_lock); 1419 1420 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 1421 if (!fltr) 1422 return -ENOMEM; 1423 1424 while (!mutex_trylock(&adapter->crit_lock)) { 1425 if (--count == 0) { 1426 kfree(fltr); 1427 return -EINVAL; 1428 } 1429 udelay(1); 1430 } 1431 1432 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); 1433 if (err) 1434 goto ret; 1435 1436 spin_lock_bh(&adapter->fdir_fltr_lock); 1437 iavf_fdir_list_add_fltr(adapter, fltr); 1438 adapter->fdir_active_fltr++; 1439 if (adapter->link_up) { 1440 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; 1441 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 1442 } else { 1443 fltr->state = IAVF_FDIR_FLTR_INACTIVE; 1444 } 1445 spin_unlock_bh(&adapter->fdir_fltr_lock); 1446 1447 if (adapter->link_up) 1448 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1449 ret: 1450 if (err && fltr) 1451 kfree(fltr); 1452 1453 mutex_unlock(&adapter->crit_lock); 1454 return err; 1455 } 1456 1457 /** 1458 * iavf_del_fdir_ethtool - delete Flow Director filter 1459 * @adapter: pointer to the VF adapter structure 1460 * @cmd: command to delete Flow Director filter 1461 * 1462 * Returns 0 on success and negative values for failure 1463 */ 1464 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) 1465 { 1466 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; 1467 struct iavf_fdir_fltr *fltr = NULL; 1468 int err = 0; 1469 1470 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1471 return -EOPNOTSUPP; 1472 1473 spin_lock_bh(&adapter->fdir_fltr_lock); 1474 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); 1475 if (fltr) { 1476 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { 1477 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; 1478 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1479 } else if (fltr->state == IAVF_FDIR_FLTR_INACTIVE) { 1480 list_del(&fltr->list); 1481 kfree(fltr); 1482 adapter->fdir_active_fltr--; 1483 fltr = NULL; 1484 } else { 1485 err = -EBUSY; 1486 } 1487 } else if (adapter->fdir_active_fltr) { 1488 err = -EINVAL; 1489 } 1490 spin_unlock_bh(&adapter->fdir_fltr_lock); 1491 1492 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) 1493 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1494 1495 return err; 1496 } 1497 1498 /** 1499 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input 1500 * @cmd: ethtool rxnfc command 1501 * 1502 * This function parses the rxnfc command and returns intended 1503 * header types for RSS configuration 1504 */ 1505 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) 1506 { 1507 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; 1508 1509 switch (cmd->flow_type) { 1510 case TCP_V4_FLOW: 1511 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1512 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1513 break; 1514 case UDP_V4_FLOW: 1515 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1516 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1517 break; 1518 case SCTP_V4_FLOW: 1519 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1520 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; 1521 break; 1522 case TCP_V6_FLOW: 1523 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | 1524 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1525 break; 1526 case UDP_V6_FLOW: 1527 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | 1528 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1529 break; 1530 case SCTP_V6_FLOW: 1531 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | 1532 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; 1533 break; 1534 default: 1535 break; 1536 } 1537 1538 return hdrs; 1539 } 1540 1541 /** 1542 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input 1543 * @cmd: ethtool rxnfc command 1544 * 1545 * This function parses the rxnfc command and returns intended hash fields for 1546 * RSS configuration 1547 */ 1548 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) 1549 { 1550 u64 hfld = IAVF_ADV_RSS_HASH_INVALID; 1551 1552 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { 1553 switch (cmd->flow_type) { 1554 case TCP_V4_FLOW: 1555 case UDP_V4_FLOW: 1556 case SCTP_V4_FLOW: 1557 if (cmd->data & RXH_IP_SRC) 1558 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; 1559 if (cmd->data & RXH_IP_DST) 1560 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; 1561 break; 1562 case TCP_V6_FLOW: 1563 case UDP_V6_FLOW: 1564 case SCTP_V6_FLOW: 1565 if (cmd->data & RXH_IP_SRC) 1566 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; 1567 if (cmd->data & RXH_IP_DST) 1568 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; 1569 break; 1570 default: 1571 break; 1572 } 1573 } 1574 1575 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { 1576 switch (cmd->flow_type) { 1577 case TCP_V4_FLOW: 1578 case TCP_V6_FLOW: 1579 if (cmd->data & RXH_L4_B_0_1) 1580 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; 1581 if (cmd->data & RXH_L4_B_2_3) 1582 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; 1583 break; 1584 case UDP_V4_FLOW: 1585 case UDP_V6_FLOW: 1586 if (cmd->data & RXH_L4_B_0_1) 1587 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; 1588 if (cmd->data & RXH_L4_B_2_3) 1589 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; 1590 break; 1591 case SCTP_V4_FLOW: 1592 case SCTP_V6_FLOW: 1593 if (cmd->data & RXH_L4_B_0_1) 1594 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; 1595 if (cmd->data & RXH_L4_B_2_3) 1596 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; 1597 break; 1598 default: 1599 break; 1600 } 1601 } 1602 1603 return hfld; 1604 } 1605 1606 /** 1607 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash 1608 * @adapter: pointer to the VF adapter structure 1609 * @cmd: ethtool rxnfc command 1610 * 1611 * Returns Success if the flow input set is supported. 1612 */ 1613 static int 1614 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, 1615 struct ethtool_rxnfc *cmd) 1616 { 1617 struct iavf_adv_rss *rss_old, *rss_new; 1618 bool rss_new_add = false; 1619 int count = 50, err = 0; 1620 u64 hash_flds; 1621 u32 hdrs; 1622 1623 if (!ADV_RSS_SUPPORT(adapter)) 1624 return -EOPNOTSUPP; 1625 1626 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1627 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1628 return -EINVAL; 1629 1630 hash_flds = iavf_adv_rss_parse_hash_flds(cmd); 1631 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1632 return -EINVAL; 1633 1634 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); 1635 if (!rss_new) 1636 return -ENOMEM; 1637 1638 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { 1639 kfree(rss_new); 1640 return -EINVAL; 1641 } 1642 1643 while (!mutex_trylock(&adapter->crit_lock)) { 1644 if (--count == 0) { 1645 kfree(rss_new); 1646 return -EINVAL; 1647 } 1648 1649 udelay(1); 1650 } 1651 1652 spin_lock_bh(&adapter->adv_rss_lock); 1653 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1654 if (rss_old) { 1655 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { 1656 err = -EBUSY; 1657 } else if (rss_old->hash_flds != hash_flds) { 1658 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; 1659 rss_old->hash_flds = hash_flds; 1660 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, 1661 sizeof(rss_new->cfg_msg)); 1662 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1663 } else { 1664 err = -EEXIST; 1665 } 1666 } else { 1667 rss_new_add = true; 1668 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; 1669 rss_new->packet_hdrs = hdrs; 1670 rss_new->hash_flds = hash_flds; 1671 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); 1672 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; 1673 } 1674 spin_unlock_bh(&adapter->adv_rss_lock); 1675 1676 if (!err) 1677 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1678 1679 mutex_unlock(&adapter->crit_lock); 1680 1681 if (!rss_new_add) 1682 kfree(rss_new); 1683 1684 return err; 1685 } 1686 1687 /** 1688 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type 1689 * @adapter: pointer to the VF adapter structure 1690 * @cmd: ethtool rxnfc command 1691 * 1692 * Returns Success if the flow input set is supported. 1693 */ 1694 static int 1695 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, 1696 struct ethtool_rxnfc *cmd) 1697 { 1698 struct iavf_adv_rss *rss; 1699 u64 hash_flds; 1700 u32 hdrs; 1701 1702 if (!ADV_RSS_SUPPORT(adapter)) 1703 return -EOPNOTSUPP; 1704 1705 cmd->data = 0; 1706 1707 hdrs = iavf_adv_rss_parse_hdrs(cmd); 1708 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) 1709 return -EINVAL; 1710 1711 spin_lock_bh(&adapter->adv_rss_lock); 1712 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); 1713 if (rss) 1714 hash_flds = rss->hash_flds; 1715 else 1716 hash_flds = IAVF_ADV_RSS_HASH_INVALID; 1717 spin_unlock_bh(&adapter->adv_rss_lock); 1718 1719 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) 1720 return -EINVAL; 1721 1722 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | 1723 IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) 1724 cmd->data |= (u64)RXH_IP_SRC; 1725 1726 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | 1727 IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) 1728 cmd->data |= (u64)RXH_IP_DST; 1729 1730 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | 1731 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | 1732 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) 1733 cmd->data |= (u64)RXH_L4_B_0_1; 1734 1735 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | 1736 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | 1737 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) 1738 cmd->data |= (u64)RXH_L4_B_2_3; 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * iavf_set_rxnfc - command to set Rx flow rules. 1745 * @netdev: network interface device structure 1746 * @cmd: ethtool rxnfc command 1747 * 1748 * Returns 0 for success and negative values for errors 1749 */ 1750 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 1751 { 1752 struct iavf_adapter *adapter = netdev_priv(netdev); 1753 int ret = -EOPNOTSUPP; 1754 1755 switch (cmd->cmd) { 1756 case ETHTOOL_SRXCLSRLINS: 1757 ret = iavf_add_fdir_ethtool(adapter, cmd); 1758 break; 1759 case ETHTOOL_SRXCLSRLDEL: 1760 ret = iavf_del_fdir_ethtool(adapter, cmd); 1761 break; 1762 case ETHTOOL_SRXFH: 1763 ret = iavf_set_adv_rss_hash_opt(adapter, cmd); 1764 break; 1765 default: 1766 break; 1767 } 1768 1769 return ret; 1770 } 1771 1772 /** 1773 * iavf_get_rxnfc - command to get RX flow classification rules 1774 * @netdev: network interface device structure 1775 * @cmd: ethtool rxnfc command 1776 * @rule_locs: pointer to store rule locations 1777 * 1778 * Returns Success if the command is supported. 1779 **/ 1780 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 1781 u32 *rule_locs) 1782 { 1783 struct iavf_adapter *adapter = netdev_priv(netdev); 1784 int ret = -EOPNOTSUPP; 1785 1786 switch (cmd->cmd) { 1787 case ETHTOOL_GRXRINGS: 1788 cmd->data = adapter->num_active_queues; 1789 ret = 0; 1790 break; 1791 case ETHTOOL_GRXCLSRLCNT: 1792 if (!(adapter->flags & IAVF_FLAG_FDIR_ENABLED)) 1793 break; 1794 spin_lock_bh(&adapter->fdir_fltr_lock); 1795 cmd->rule_cnt = adapter->fdir_active_fltr; 1796 spin_unlock_bh(&adapter->fdir_fltr_lock); 1797 cmd->data = IAVF_MAX_FDIR_FILTERS; 1798 ret = 0; 1799 break; 1800 case ETHTOOL_GRXCLSRULE: 1801 ret = iavf_get_ethtool_fdir_entry(adapter, cmd); 1802 break; 1803 case ETHTOOL_GRXCLSRLALL: 1804 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); 1805 break; 1806 case ETHTOOL_GRXFH: 1807 ret = iavf_get_adv_rss_hash_opt(adapter, cmd); 1808 break; 1809 default: 1810 break; 1811 } 1812 1813 return ret; 1814 } 1815 /** 1816 * iavf_get_channels: get the number of channels supported by the device 1817 * @netdev: network interface device structure 1818 * @ch: channel information structure 1819 * 1820 * For the purposes of our device, we only use combined channels, i.e. a tx/rx 1821 * queue pair. Report one extra channel to match our "other" MSI-X vector. 1822 **/ 1823 static void iavf_get_channels(struct net_device *netdev, 1824 struct ethtool_channels *ch) 1825 { 1826 struct iavf_adapter *adapter = netdev_priv(netdev); 1827 1828 /* Report maximum channels */ 1829 ch->max_combined = adapter->vsi_res->num_queue_pairs; 1830 1831 ch->max_other = NONQ_VECS; 1832 ch->other_count = NONQ_VECS; 1833 1834 ch->combined_count = adapter->num_active_queues; 1835 } 1836 1837 /** 1838 * iavf_set_channels: set the new channel count 1839 * @netdev: network interface device structure 1840 * @ch: channel information structure 1841 * 1842 * Negotiate a new number of channels with the PF then do a reset. During 1843 * reset we'll realloc queues and fix the RSS table. Returns 0 on success, 1844 * negative on failure. 1845 **/ 1846 static int iavf_set_channels(struct net_device *netdev, 1847 struct ethtool_channels *ch) 1848 { 1849 struct iavf_adapter *adapter = netdev_priv(netdev); 1850 u32 num_req = ch->combined_count; 1851 int ret = 0; 1852 1853 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1854 adapter->num_tc) { 1855 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); 1856 return -EINVAL; 1857 } 1858 1859 /* All of these should have already been checked by ethtool before this 1860 * even gets to us, but just to be sure. 1861 */ 1862 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) 1863 return -EINVAL; 1864 1865 if (num_req == adapter->num_active_queues) 1866 return 0; 1867 1868 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) 1869 return -EINVAL; 1870 1871 adapter->num_req_queues = num_req; 1872 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; 1873 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 1874 1875 ret = iavf_wait_for_reset(adapter); 1876 if (ret) 1877 netdev_warn(netdev, "Changing channel count timeout or interrupted waiting for reset"); 1878 1879 return ret; 1880 } 1881 1882 /** 1883 * iavf_get_rxfh_key_size - get the RSS hash key size 1884 * @netdev: network interface device structure 1885 * 1886 * Returns the table size. 1887 **/ 1888 static u32 iavf_get_rxfh_key_size(struct net_device *netdev) 1889 { 1890 struct iavf_adapter *adapter = netdev_priv(netdev); 1891 1892 return adapter->rss_key_size; 1893 } 1894 1895 /** 1896 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size 1897 * @netdev: network interface device structure 1898 * 1899 * Returns the table size. 1900 **/ 1901 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) 1902 { 1903 struct iavf_adapter *adapter = netdev_priv(netdev); 1904 1905 return adapter->rss_lut_size; 1906 } 1907 1908 /** 1909 * iavf_get_rxfh - get the rx flow hash indirection table 1910 * @netdev: network interface device structure 1911 * @indir: indirection table 1912 * @key: hash key 1913 * @hfunc: hash function in use 1914 * 1915 * Reads the indirection table directly from the hardware. Always returns 0. 1916 **/ 1917 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 1918 u8 *hfunc) 1919 { 1920 struct iavf_adapter *adapter = netdev_priv(netdev); 1921 u16 i; 1922 1923 if (hfunc) 1924 *hfunc = ETH_RSS_HASH_TOP; 1925 if (key) 1926 memcpy(key, adapter->rss_key, adapter->rss_key_size); 1927 1928 if (indir) 1929 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1930 for (i = 0; i < adapter->rss_lut_size; i++) 1931 indir[i] = (u32)adapter->rss_lut[i]; 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * iavf_set_rxfh - set the rx flow hash indirection table 1938 * @netdev: network interface device structure 1939 * @indir: indirection table 1940 * @key: hash key 1941 * @hfunc: hash function to use 1942 * 1943 * Returns -EINVAL if the table specifies an invalid queue id, otherwise 1944 * returns 0 after programming the table. 1945 **/ 1946 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, 1947 const u8 *key, const u8 hfunc) 1948 { 1949 struct iavf_adapter *adapter = netdev_priv(netdev); 1950 u16 i; 1951 1952 /* Only support toeplitz hash function */ 1953 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1954 return -EOPNOTSUPP; 1955 1956 if (!key && !indir) 1957 return 0; 1958 1959 if (key) 1960 memcpy(adapter->rss_key, key, adapter->rss_key_size); 1961 1962 if (indir) { 1963 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 1964 for (i = 0; i < adapter->rss_lut_size; i++) 1965 adapter->rss_lut[i] = (u8)(indir[i]); 1966 } 1967 1968 return iavf_config_rss(adapter); 1969 } 1970 1971 static const struct ethtool_ops iavf_ethtool_ops = { 1972 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1973 ETHTOOL_COALESCE_USE_ADAPTIVE, 1974 .get_drvinfo = iavf_get_drvinfo, 1975 .get_link = ethtool_op_get_link, 1976 .get_ringparam = iavf_get_ringparam, 1977 .set_ringparam = iavf_set_ringparam, 1978 .get_strings = iavf_get_strings, 1979 .get_ethtool_stats = iavf_get_ethtool_stats, 1980 .get_sset_count = iavf_get_sset_count, 1981 .get_priv_flags = iavf_get_priv_flags, 1982 .set_priv_flags = iavf_set_priv_flags, 1983 .get_msglevel = iavf_get_msglevel, 1984 .set_msglevel = iavf_set_msglevel, 1985 .get_coalesce = iavf_get_coalesce, 1986 .set_coalesce = iavf_set_coalesce, 1987 .get_per_queue_coalesce = iavf_get_per_queue_coalesce, 1988 .set_per_queue_coalesce = iavf_set_per_queue_coalesce, 1989 .set_rxnfc = iavf_set_rxnfc, 1990 .get_rxnfc = iavf_get_rxnfc, 1991 .get_rxfh_indir_size = iavf_get_rxfh_indir_size, 1992 .get_rxfh = iavf_get_rxfh, 1993 .set_rxfh = iavf_set_rxfh, 1994 .get_channels = iavf_get_channels, 1995 .set_channels = iavf_set_channels, 1996 .get_rxfh_key_size = iavf_get_rxfh_key_size, 1997 .get_link_ksettings = iavf_get_link_ksettings, 1998 }; 1999 2000 /** 2001 * iavf_set_ethtool_ops - Initialize ethtool ops struct 2002 * @netdev: network interface device structure 2003 * 2004 * Sets ethtool ops struct in our netdev so that ethtool can call 2005 * our functions. 2006 **/ 2007 void iavf_set_ethtool_ops(struct net_device *netdev) 2008 { 2009 netdev->ethtool_ops = &iavf_ethtool_ops; 2010 } 2011