1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf_type.h" 5 #include "iavf_adminq.h" 6 #include "iavf_prototype.h" 7 #include <linux/avf/virtchnl.h> 8 9 /** 10 * iavf_set_mac_type - Sets MAC type 11 * @hw: pointer to the HW structure 12 * 13 * This function sets the mac type of the adapter based on the 14 * vendor ID and device ID stored in the hw structure. 15 **/ 16 enum iavf_status iavf_set_mac_type(struct iavf_hw *hw) 17 { 18 enum iavf_status status = 0; 19 20 if (hw->vendor_id == PCI_VENDOR_ID_INTEL) { 21 switch (hw->device_id) { 22 case IAVF_DEV_ID_X722_VF: 23 hw->mac.type = IAVF_MAC_X722_VF; 24 break; 25 case IAVF_DEV_ID_VF: 26 case IAVF_DEV_ID_VF_HV: 27 case IAVF_DEV_ID_ADAPTIVE_VF: 28 hw->mac.type = IAVF_MAC_VF; 29 break; 30 default: 31 hw->mac.type = IAVF_MAC_GENERIC; 32 break; 33 } 34 } else { 35 status = IAVF_ERR_DEVICE_NOT_SUPPORTED; 36 } 37 38 return status; 39 } 40 41 /** 42 * iavf_aq_str - convert AQ err code to a string 43 * @hw: pointer to the HW structure 44 * @aq_err: the AQ error code to convert 45 **/ 46 const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err) 47 { 48 switch (aq_err) { 49 case IAVF_AQ_RC_OK: 50 return "OK"; 51 case IAVF_AQ_RC_EPERM: 52 return "IAVF_AQ_RC_EPERM"; 53 case IAVF_AQ_RC_ENOENT: 54 return "IAVF_AQ_RC_ENOENT"; 55 case IAVF_AQ_RC_ESRCH: 56 return "IAVF_AQ_RC_ESRCH"; 57 case IAVF_AQ_RC_EINTR: 58 return "IAVF_AQ_RC_EINTR"; 59 case IAVF_AQ_RC_EIO: 60 return "IAVF_AQ_RC_EIO"; 61 case IAVF_AQ_RC_ENXIO: 62 return "IAVF_AQ_RC_ENXIO"; 63 case IAVF_AQ_RC_E2BIG: 64 return "IAVF_AQ_RC_E2BIG"; 65 case IAVF_AQ_RC_EAGAIN: 66 return "IAVF_AQ_RC_EAGAIN"; 67 case IAVF_AQ_RC_ENOMEM: 68 return "IAVF_AQ_RC_ENOMEM"; 69 case IAVF_AQ_RC_EACCES: 70 return "IAVF_AQ_RC_EACCES"; 71 case IAVF_AQ_RC_EFAULT: 72 return "IAVF_AQ_RC_EFAULT"; 73 case IAVF_AQ_RC_EBUSY: 74 return "IAVF_AQ_RC_EBUSY"; 75 case IAVF_AQ_RC_EEXIST: 76 return "IAVF_AQ_RC_EEXIST"; 77 case IAVF_AQ_RC_EINVAL: 78 return "IAVF_AQ_RC_EINVAL"; 79 case IAVF_AQ_RC_ENOTTY: 80 return "IAVF_AQ_RC_ENOTTY"; 81 case IAVF_AQ_RC_ENOSPC: 82 return "IAVF_AQ_RC_ENOSPC"; 83 case IAVF_AQ_RC_ENOSYS: 84 return "IAVF_AQ_RC_ENOSYS"; 85 case IAVF_AQ_RC_ERANGE: 86 return "IAVF_AQ_RC_ERANGE"; 87 case IAVF_AQ_RC_EFLUSHED: 88 return "IAVF_AQ_RC_EFLUSHED"; 89 case IAVF_AQ_RC_BAD_ADDR: 90 return "IAVF_AQ_RC_BAD_ADDR"; 91 case IAVF_AQ_RC_EMODE: 92 return "IAVF_AQ_RC_EMODE"; 93 case IAVF_AQ_RC_EFBIG: 94 return "IAVF_AQ_RC_EFBIG"; 95 } 96 97 snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err); 98 return hw->err_str; 99 } 100 101 /** 102 * iavf_stat_str - convert status err code to a string 103 * @hw: pointer to the HW structure 104 * @stat_err: the status error code to convert 105 **/ 106 const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err) 107 { 108 switch (stat_err) { 109 case 0: 110 return "OK"; 111 case IAVF_ERR_NVM: 112 return "IAVF_ERR_NVM"; 113 case IAVF_ERR_NVM_CHECKSUM: 114 return "IAVF_ERR_NVM_CHECKSUM"; 115 case IAVF_ERR_PHY: 116 return "IAVF_ERR_PHY"; 117 case IAVF_ERR_CONFIG: 118 return "IAVF_ERR_CONFIG"; 119 case IAVF_ERR_PARAM: 120 return "IAVF_ERR_PARAM"; 121 case IAVF_ERR_MAC_TYPE: 122 return "IAVF_ERR_MAC_TYPE"; 123 case IAVF_ERR_UNKNOWN_PHY: 124 return "IAVF_ERR_UNKNOWN_PHY"; 125 case IAVF_ERR_LINK_SETUP: 126 return "IAVF_ERR_LINK_SETUP"; 127 case IAVF_ERR_ADAPTER_STOPPED: 128 return "IAVF_ERR_ADAPTER_STOPPED"; 129 case IAVF_ERR_INVALID_MAC_ADDR: 130 return "IAVF_ERR_INVALID_MAC_ADDR"; 131 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 132 return "IAVF_ERR_DEVICE_NOT_SUPPORTED"; 133 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 134 return "IAVF_ERR_PRIMARY_REQUESTS_PENDING"; 135 case IAVF_ERR_INVALID_LINK_SETTINGS: 136 return "IAVF_ERR_INVALID_LINK_SETTINGS"; 137 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 138 return "IAVF_ERR_AUTONEG_NOT_COMPLETE"; 139 case IAVF_ERR_RESET_FAILED: 140 return "IAVF_ERR_RESET_FAILED"; 141 case IAVF_ERR_SWFW_SYNC: 142 return "IAVF_ERR_SWFW_SYNC"; 143 case IAVF_ERR_NO_AVAILABLE_VSI: 144 return "IAVF_ERR_NO_AVAILABLE_VSI"; 145 case IAVF_ERR_NO_MEMORY: 146 return "IAVF_ERR_NO_MEMORY"; 147 case IAVF_ERR_BAD_PTR: 148 return "IAVF_ERR_BAD_PTR"; 149 case IAVF_ERR_RING_FULL: 150 return "IAVF_ERR_RING_FULL"; 151 case IAVF_ERR_INVALID_PD_ID: 152 return "IAVF_ERR_INVALID_PD_ID"; 153 case IAVF_ERR_INVALID_QP_ID: 154 return "IAVF_ERR_INVALID_QP_ID"; 155 case IAVF_ERR_INVALID_CQ_ID: 156 return "IAVF_ERR_INVALID_CQ_ID"; 157 case IAVF_ERR_INVALID_CEQ_ID: 158 return "IAVF_ERR_INVALID_CEQ_ID"; 159 case IAVF_ERR_INVALID_AEQ_ID: 160 return "IAVF_ERR_INVALID_AEQ_ID"; 161 case IAVF_ERR_INVALID_SIZE: 162 return "IAVF_ERR_INVALID_SIZE"; 163 case IAVF_ERR_INVALID_ARP_INDEX: 164 return "IAVF_ERR_INVALID_ARP_INDEX"; 165 case IAVF_ERR_INVALID_FPM_FUNC_ID: 166 return "IAVF_ERR_INVALID_FPM_FUNC_ID"; 167 case IAVF_ERR_QP_INVALID_MSG_SIZE: 168 return "IAVF_ERR_QP_INVALID_MSG_SIZE"; 169 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 170 return "IAVF_ERR_QP_TOOMANY_WRS_POSTED"; 171 case IAVF_ERR_INVALID_FRAG_COUNT: 172 return "IAVF_ERR_INVALID_FRAG_COUNT"; 173 case IAVF_ERR_QUEUE_EMPTY: 174 return "IAVF_ERR_QUEUE_EMPTY"; 175 case IAVF_ERR_INVALID_ALIGNMENT: 176 return "IAVF_ERR_INVALID_ALIGNMENT"; 177 case IAVF_ERR_FLUSHED_QUEUE: 178 return "IAVF_ERR_FLUSHED_QUEUE"; 179 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 180 return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX"; 181 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 182 return "IAVF_ERR_INVALID_IMM_DATA_SIZE"; 183 case IAVF_ERR_TIMEOUT: 184 return "IAVF_ERR_TIMEOUT"; 185 case IAVF_ERR_OPCODE_MISMATCH: 186 return "IAVF_ERR_OPCODE_MISMATCH"; 187 case IAVF_ERR_CQP_COMPL_ERROR: 188 return "IAVF_ERR_CQP_COMPL_ERROR"; 189 case IAVF_ERR_INVALID_VF_ID: 190 return "IAVF_ERR_INVALID_VF_ID"; 191 case IAVF_ERR_INVALID_HMCFN_ID: 192 return "IAVF_ERR_INVALID_HMCFN_ID"; 193 case IAVF_ERR_BACKING_PAGE_ERROR: 194 return "IAVF_ERR_BACKING_PAGE_ERROR"; 195 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 196 return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE"; 197 case IAVF_ERR_INVALID_PBLE_INDEX: 198 return "IAVF_ERR_INVALID_PBLE_INDEX"; 199 case IAVF_ERR_INVALID_SD_INDEX: 200 return "IAVF_ERR_INVALID_SD_INDEX"; 201 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 202 return "IAVF_ERR_INVALID_PAGE_DESC_INDEX"; 203 case IAVF_ERR_INVALID_SD_TYPE: 204 return "IAVF_ERR_INVALID_SD_TYPE"; 205 case IAVF_ERR_MEMCPY_FAILED: 206 return "IAVF_ERR_MEMCPY_FAILED"; 207 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 208 return "IAVF_ERR_INVALID_HMC_OBJ_INDEX"; 209 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 210 return "IAVF_ERR_INVALID_HMC_OBJ_COUNT"; 211 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 212 return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT"; 213 case IAVF_ERR_SRQ_ENABLED: 214 return "IAVF_ERR_SRQ_ENABLED"; 215 case IAVF_ERR_ADMIN_QUEUE_ERROR: 216 return "IAVF_ERR_ADMIN_QUEUE_ERROR"; 217 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 218 return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT"; 219 case IAVF_ERR_BUF_TOO_SHORT: 220 return "IAVF_ERR_BUF_TOO_SHORT"; 221 case IAVF_ERR_ADMIN_QUEUE_FULL: 222 return "IAVF_ERR_ADMIN_QUEUE_FULL"; 223 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 224 return "IAVF_ERR_ADMIN_QUEUE_NO_WORK"; 225 case IAVF_ERR_BAD_RDMA_CQE: 226 return "IAVF_ERR_BAD_RDMA_CQE"; 227 case IAVF_ERR_NVM_BLANK_MODE: 228 return "IAVF_ERR_NVM_BLANK_MODE"; 229 case IAVF_ERR_NOT_IMPLEMENTED: 230 return "IAVF_ERR_NOT_IMPLEMENTED"; 231 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 232 return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED"; 233 case IAVF_ERR_DIAG_TEST_FAILED: 234 return "IAVF_ERR_DIAG_TEST_FAILED"; 235 case IAVF_ERR_NOT_READY: 236 return "IAVF_ERR_NOT_READY"; 237 case IAVF_NOT_SUPPORTED: 238 return "IAVF_NOT_SUPPORTED"; 239 case IAVF_ERR_FIRMWARE_API_VERSION: 240 return "IAVF_ERR_FIRMWARE_API_VERSION"; 241 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 242 return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR"; 243 } 244 245 snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err); 246 return hw->err_str; 247 } 248 249 /** 250 * iavf_debug_aq 251 * @hw: debug mask related to admin queue 252 * @mask: debug mask 253 * @desc: pointer to admin queue descriptor 254 * @buffer: pointer to command buffer 255 * @buf_len: max length of buffer 256 * 257 * Dumps debug log about adminq command with descriptor contents. 258 **/ 259 void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc, 260 void *buffer, u16 buf_len) 261 { 262 struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc; 263 u8 *buf = (u8 *)buffer; 264 265 if ((!(mask & hw->debug_mask)) || !desc) 266 return; 267 268 iavf_debug(hw, mask, 269 "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", 270 le16_to_cpu(aq_desc->opcode), 271 le16_to_cpu(aq_desc->flags), 272 le16_to_cpu(aq_desc->datalen), 273 le16_to_cpu(aq_desc->retval)); 274 iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n", 275 le32_to_cpu(aq_desc->cookie_high), 276 le32_to_cpu(aq_desc->cookie_low)); 277 iavf_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n", 278 le32_to_cpu(aq_desc->params.internal.param0), 279 le32_to_cpu(aq_desc->params.internal.param1)); 280 iavf_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n", 281 le32_to_cpu(aq_desc->params.external.addr_high), 282 le32_to_cpu(aq_desc->params.external.addr_low)); 283 284 if (buffer && aq_desc->datalen) { 285 u16 len = le16_to_cpu(aq_desc->datalen); 286 287 iavf_debug(hw, mask, "AQ CMD Buffer:\n"); 288 if (buf_len < len) 289 len = buf_len; 290 /* write the full 16-byte chunks */ 291 if (hw->debug_mask & mask) { 292 char prefix[27]; 293 294 snprintf(prefix, sizeof(prefix), 295 "iavf %02x:%02x.%x: \t0x", 296 hw->bus.bus_id, 297 hw->bus.device, 298 hw->bus.func); 299 300 print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 301 16, 1, buf, len, false); 302 } 303 } 304 } 305 306 /** 307 * iavf_check_asq_alive 308 * @hw: pointer to the hw struct 309 * 310 * Returns true if Queue is enabled else false. 311 **/ 312 bool iavf_check_asq_alive(struct iavf_hw *hw) 313 { 314 if (hw->aq.asq.len) 315 return !!(rd32(hw, hw->aq.asq.len) & 316 IAVF_VF_ATQLEN1_ATQENABLE_MASK); 317 else 318 return false; 319 } 320 321 /** 322 * iavf_aq_queue_shutdown 323 * @hw: pointer to the hw struct 324 * @unloading: is the driver unloading itself 325 * 326 * Tell the Firmware that we're shutting down the AdminQ and whether 327 * or not the driver is unloading as well. 328 **/ 329 enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading) 330 { 331 struct iavf_aq_desc desc; 332 struct iavf_aqc_queue_shutdown *cmd = 333 (struct iavf_aqc_queue_shutdown *)&desc.params.raw; 334 enum iavf_status status; 335 336 iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_queue_shutdown); 337 338 if (unloading) 339 cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING); 340 status = iavf_asq_send_command(hw, &desc, NULL, 0, NULL); 341 342 return status; 343 } 344 345 /** 346 * iavf_aq_get_set_rss_lut 347 * @hw: pointer to the hardware structure 348 * @vsi_id: vsi fw index 349 * @pf_lut: for PF table set true, for VSI table set false 350 * @lut: pointer to the lut buffer provided by the caller 351 * @lut_size: size of the lut buffer 352 * @set: set true to set the table, false to get the table 353 * 354 * Internal function to get or set RSS look up table 355 **/ 356 static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw, 357 u16 vsi_id, bool pf_lut, 358 u8 *lut, u16 lut_size, 359 bool set) 360 { 361 enum iavf_status status; 362 struct iavf_aq_desc desc; 363 struct iavf_aqc_get_set_rss_lut *cmd_resp = 364 (struct iavf_aqc_get_set_rss_lut *)&desc.params.raw; 365 366 if (set) 367 iavf_fill_default_direct_cmd_desc(&desc, 368 iavf_aqc_opc_set_rss_lut); 369 else 370 iavf_fill_default_direct_cmd_desc(&desc, 371 iavf_aqc_opc_get_rss_lut); 372 373 /* Indirect command */ 374 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF); 375 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD); 376 377 cmd_resp->vsi_id = 378 cpu_to_le16((u16)((vsi_id << 379 IAVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) & 380 IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK)); 381 cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_LUT_VSI_VALID); 382 383 if (pf_lut) 384 cmd_resp->flags |= cpu_to_le16((u16) 385 ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF << 386 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & 387 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); 388 else 389 cmd_resp->flags |= cpu_to_le16((u16) 390 ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI << 391 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & 392 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); 393 394 status = iavf_asq_send_command(hw, &desc, lut, lut_size, NULL); 395 396 return status; 397 } 398 399 /** 400 * iavf_aq_set_rss_lut 401 * @hw: pointer to the hardware structure 402 * @vsi_id: vsi fw index 403 * @pf_lut: for PF table set true, for VSI table set false 404 * @lut: pointer to the lut buffer provided by the caller 405 * @lut_size: size of the lut buffer 406 * 407 * set the RSS lookup table, PF or VSI type 408 **/ 409 enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id, 410 bool pf_lut, u8 *lut, u16 lut_size) 411 { 412 return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true); 413 } 414 415 /** 416 * iavf_aq_get_set_rss_key 417 * @hw: pointer to the hw struct 418 * @vsi_id: vsi fw index 419 * @key: pointer to key info struct 420 * @set: set true to set the key, false to get the key 421 * 422 * get the RSS key per VSI 423 **/ 424 static enum 425 iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id, 426 struct iavf_aqc_get_set_rss_key_data *key, 427 bool set) 428 { 429 enum iavf_status status; 430 struct iavf_aq_desc desc; 431 struct iavf_aqc_get_set_rss_key *cmd_resp = 432 (struct iavf_aqc_get_set_rss_key *)&desc.params.raw; 433 u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data); 434 435 if (set) 436 iavf_fill_default_direct_cmd_desc(&desc, 437 iavf_aqc_opc_set_rss_key); 438 else 439 iavf_fill_default_direct_cmd_desc(&desc, 440 iavf_aqc_opc_get_rss_key); 441 442 /* Indirect command */ 443 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF); 444 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD); 445 446 cmd_resp->vsi_id = 447 cpu_to_le16((u16)((vsi_id << 448 IAVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) & 449 IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK)); 450 cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_KEY_VSI_VALID); 451 452 status = iavf_asq_send_command(hw, &desc, key, key_size, NULL); 453 454 return status; 455 } 456 457 /** 458 * iavf_aq_set_rss_key 459 * @hw: pointer to the hw struct 460 * @vsi_id: vsi fw index 461 * @key: pointer to key info struct 462 * 463 * set the RSS key per VSI 464 **/ 465 enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id, 466 struct iavf_aqc_get_set_rss_key_data *key) 467 { 468 return iavf_aq_get_set_rss_key(hw, vsi_id, key, true); 469 } 470 471 /* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the 472 * hardware to a bit-field that can be used by SW to more easily determine the 473 * packet type. 474 * 475 * Macros are used to shorten the table lines and make this table human 476 * readable. 477 * 478 * We store the PTYPE in the top byte of the bit field - this is just so that 479 * we can check that the table doesn't have a row missing, as the index into 480 * the table should be the PTYPE. 481 * 482 * Typical work flow: 483 * 484 * IF NOT iavf_ptype_lookup[ptype].known 485 * THEN 486 * Packet is unknown 487 * ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP 488 * Use the rest of the fields to look at the tunnels, inner protocols, etc 489 * ELSE 490 * Use the enum iavf_rx_l2_ptype to decode the packet type 491 * ENDIF 492 */ 493 494 /* macro to make the table lines short, use explicit indexing with [PTYPE] */ 495 #define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\ 496 [PTYPE] = { \ 497 1, \ 498 IAVF_RX_PTYPE_OUTER_##OUTER_IP, \ 499 IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \ 500 IAVF_RX_PTYPE_##OUTER_FRAG, \ 501 IAVF_RX_PTYPE_TUNNEL_##T, \ 502 IAVF_RX_PTYPE_TUNNEL_END_##TE, \ 503 IAVF_RX_PTYPE_##TEF, \ 504 IAVF_RX_PTYPE_INNER_PROT_##I, \ 505 IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL } 506 507 #define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } 508 509 /* shorter macros makes the table fit but are terse */ 510 #define IAVF_RX_PTYPE_NOF IAVF_RX_PTYPE_NOT_FRAG 511 #define IAVF_RX_PTYPE_FRG IAVF_RX_PTYPE_FRAG 512 #define IAVF_RX_PTYPE_INNER_PROT_TS IAVF_RX_PTYPE_INNER_PROT_TIMESYNC 513 514 /* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */ 515 struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = { 516 /* L2 Packet types */ 517 IAVF_PTT_UNUSED_ENTRY(0), 518 IAVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 519 IAVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2), 520 IAVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 521 IAVF_PTT_UNUSED_ENTRY(4), 522 IAVF_PTT_UNUSED_ENTRY(5), 523 IAVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 524 IAVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 525 IAVF_PTT_UNUSED_ENTRY(8), 526 IAVF_PTT_UNUSED_ENTRY(9), 527 IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 528 IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE), 529 IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 530 IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 531 IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 532 IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 533 IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 534 IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 535 IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 536 IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 537 IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 538 IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 539 540 /* Non Tunneled IPv4 */ 541 IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3), 542 IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3), 543 IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4), 544 IAVF_PTT_UNUSED_ENTRY(25), 545 IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4), 546 IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4), 547 IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4), 548 549 /* IPv4 --> IPv4 */ 550 IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3), 551 IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3), 552 IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4), 553 IAVF_PTT_UNUSED_ENTRY(32), 554 IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4), 555 IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), 556 IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), 557 558 /* IPv4 --> IPv6 */ 559 IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3), 560 IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3), 561 IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4), 562 IAVF_PTT_UNUSED_ENTRY(39), 563 IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4), 564 IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), 565 IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), 566 567 /* IPv4 --> GRE/NAT */ 568 IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), 569 570 /* IPv4 --> GRE/NAT --> IPv4 */ 571 IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), 572 IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), 573 IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), 574 IAVF_PTT_UNUSED_ENTRY(47), 575 IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), 576 IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), 577 IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), 578 579 /* IPv4 --> GRE/NAT --> IPv6 */ 580 IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), 581 IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), 582 IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), 583 IAVF_PTT_UNUSED_ENTRY(54), 584 IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), 585 IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), 586 IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), 587 588 /* IPv4 --> GRE/NAT --> MAC */ 589 IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), 590 591 /* IPv4 --> GRE/NAT --> MAC --> IPv4 */ 592 IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), 593 IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), 594 IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), 595 IAVF_PTT_UNUSED_ENTRY(62), 596 IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), 597 IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), 598 IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), 599 600 /* IPv4 --> GRE/NAT -> MAC --> IPv6 */ 601 IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), 602 IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), 603 IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), 604 IAVF_PTT_UNUSED_ENTRY(69), 605 IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), 606 IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), 607 IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), 608 609 /* IPv4 --> GRE/NAT --> MAC/VLAN */ 610 IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), 611 612 /* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */ 613 IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), 614 IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), 615 IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), 616 IAVF_PTT_UNUSED_ENTRY(77), 617 IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), 618 IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), 619 IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), 620 621 /* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */ 622 IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), 623 IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), 624 IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), 625 IAVF_PTT_UNUSED_ENTRY(84), 626 IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), 627 IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), 628 IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), 629 630 /* Non Tunneled IPv6 */ 631 IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3), 632 IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3), 633 IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY4), 634 IAVF_PTT_UNUSED_ENTRY(91), 635 IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4), 636 IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4), 637 IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4), 638 639 /* IPv6 --> IPv4 */ 640 IAVF_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3), 641 IAVF_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3), 642 IAVF_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4), 643 IAVF_PTT_UNUSED_ENTRY(98), 644 IAVF_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4), 645 IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), 646 IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), 647 648 /* IPv6 --> IPv6 */ 649 IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3), 650 IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3), 651 IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4), 652 IAVF_PTT_UNUSED_ENTRY(105), 653 IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4), 654 IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), 655 IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), 656 657 /* IPv6 --> GRE/NAT */ 658 IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), 659 660 /* IPv6 --> GRE/NAT -> IPv4 */ 661 IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), 662 IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), 663 IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), 664 IAVF_PTT_UNUSED_ENTRY(113), 665 IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), 666 IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), 667 IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), 668 669 /* IPv6 --> GRE/NAT -> IPv6 */ 670 IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), 671 IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), 672 IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), 673 IAVF_PTT_UNUSED_ENTRY(120), 674 IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), 675 IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), 676 IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), 677 678 /* IPv6 --> GRE/NAT -> MAC */ 679 IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), 680 681 /* IPv6 --> GRE/NAT -> MAC -> IPv4 */ 682 IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), 683 IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), 684 IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), 685 IAVF_PTT_UNUSED_ENTRY(128), 686 IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), 687 IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), 688 IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), 689 690 /* IPv6 --> GRE/NAT -> MAC -> IPv6 */ 691 IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), 692 IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), 693 IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), 694 IAVF_PTT_UNUSED_ENTRY(135), 695 IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), 696 IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), 697 IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), 698 699 /* IPv6 --> GRE/NAT -> MAC/VLAN */ 700 IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), 701 702 /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */ 703 IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), 704 IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), 705 IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), 706 IAVF_PTT_UNUSED_ENTRY(143), 707 IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), 708 IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), 709 IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), 710 711 /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */ 712 IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), 713 IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), 714 IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), 715 IAVF_PTT_UNUSED_ENTRY(150), 716 IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), 717 IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), 718 IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), 719 720 /* unused entries */ 721 [154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } 722 }; 723 724 /** 725 * iavf_aq_send_msg_to_pf 726 * @hw: pointer to the hardware structure 727 * @v_opcode: opcodes for VF-PF communication 728 * @v_retval: return error code 729 * @msg: pointer to the msg buffer 730 * @msglen: msg length 731 * @cmd_details: pointer to command details 732 * 733 * Send message to PF driver using admin queue. By default, this message 734 * is sent asynchronously, i.e. iavf_asq_send_command() does not wait for 735 * completion before returning. 736 **/ 737 enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw, 738 enum virtchnl_ops v_opcode, 739 enum iavf_status v_retval, 740 u8 *msg, u16 msglen, 741 struct iavf_asq_cmd_details *cmd_details) 742 { 743 struct iavf_asq_cmd_details details; 744 struct iavf_aq_desc desc; 745 enum iavf_status status; 746 747 iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_send_msg_to_pf); 748 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI); 749 desc.cookie_high = cpu_to_le32(v_opcode); 750 desc.cookie_low = cpu_to_le32(v_retval); 751 if (msglen) { 752 desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF 753 | IAVF_AQ_FLAG_RD)); 754 if (msglen > IAVF_AQ_LARGE_BUF) 755 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB); 756 desc.datalen = cpu_to_le16(msglen); 757 } 758 if (!cmd_details) { 759 memset(&details, 0, sizeof(details)); 760 details.async = true; 761 cmd_details = &details; 762 } 763 status = iavf_asq_send_command(hw, &desc, msg, msglen, cmd_details); 764 return status; 765 } 766 767 /** 768 * iavf_vf_parse_hw_config 769 * @hw: pointer to the hardware structure 770 * @msg: pointer to the virtual channel VF resource structure 771 * 772 * Given a VF resource message from the PF, populate the hw struct 773 * with appropriate information. 774 **/ 775 void iavf_vf_parse_hw_config(struct iavf_hw *hw, 776 struct virtchnl_vf_resource *msg) 777 { 778 struct virtchnl_vsi_resource *vsi_res; 779 int i; 780 781 vsi_res = &msg->vsi_res[0]; 782 783 hw->dev_caps.num_vsis = msg->num_vsis; 784 hw->dev_caps.num_rx_qp = msg->num_queue_pairs; 785 hw->dev_caps.num_tx_qp = msg->num_queue_pairs; 786 hw->dev_caps.num_msix_vectors_vf = msg->max_vectors; 787 hw->dev_caps.dcb = msg->vf_cap_flags & 788 VIRTCHNL_VF_OFFLOAD_L2; 789 hw->dev_caps.fcoe = 0; 790 for (i = 0; i < msg->num_vsis; i++) { 791 if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) { 792 ether_addr_copy(hw->mac.perm_addr, 793 vsi_res->default_mac_addr); 794 ether_addr_copy(hw->mac.addr, 795 vsi_res->default_mac_addr); 796 } 797 vsi_res++; 798 } 799 } 800