1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock.h> 6 #include <net/xdp.h> 7 8 #include "i40e.h" 9 #include "i40e_txrx_common.h" 10 #include "i40e_xsk.h" 11 12 /** 13 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev 14 * @vsi: Current VSI 15 * @umem: UMEM to DMA map 16 * 17 * Returns 0 on success, <0 on failure 18 **/ 19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem) 20 { 21 struct i40e_pf *pf = vsi->back; 22 struct device *dev; 23 unsigned int i, j; 24 dma_addr_t dma; 25 26 dev = &pf->pdev->dev; 27 for (i = 0; i < umem->npgs; i++) { 28 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE, 29 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 30 if (dma_mapping_error(dev, dma)) 31 goto out_unmap; 32 33 umem->pages[i].dma = dma; 34 } 35 36 return 0; 37 38 out_unmap: 39 for (j = 0; j < i; j++) { 40 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 41 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 42 umem->pages[i].dma = 0; 43 } 44 45 return -1; 46 } 47 48 /** 49 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev 50 * @vsi: Current VSI 51 * @umem: UMEM to DMA map 52 **/ 53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem) 54 { 55 struct i40e_pf *pf = vsi->back; 56 struct device *dev; 57 unsigned int i; 58 59 dev = &pf->pdev->dev; 60 61 for (i = 0; i < umem->npgs; i++) { 62 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 63 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 64 65 umem->pages[i].dma = 0; 66 } 67 } 68 69 /** 70 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid 71 * @vsi: Current VSI 72 * @umem: UMEM 73 * @qid: Rx ring to associate UMEM to 74 * 75 * Returns 0 on success, <0 on failure 76 **/ 77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, 78 u16 qid) 79 { 80 struct net_device *netdev = vsi->netdev; 81 struct xdp_umem_fq_reuse *reuseq; 82 bool if_running; 83 int err; 84 85 if (vsi->type != I40E_VSI_MAIN) 86 return -EINVAL; 87 88 if (qid >= vsi->num_queue_pairs) 89 return -EINVAL; 90 91 if (qid >= netdev->real_num_rx_queues || 92 qid >= netdev->real_num_tx_queues) 93 return -EINVAL; 94 95 reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); 96 if (!reuseq) 97 return -ENOMEM; 98 99 xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); 100 101 err = i40e_xsk_umem_dma_map(vsi, umem); 102 if (err) 103 return err; 104 105 set_bit(qid, vsi->af_xdp_zc_qps); 106 107 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 108 109 if (if_running) { 110 err = i40e_queue_pair_disable(vsi, qid); 111 if (err) 112 return err; 113 114 err = i40e_queue_pair_enable(vsi, qid); 115 if (err) 116 return err; 117 118 /* Kick start the NAPI context so that receiving will start */ 119 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); 120 if (err) 121 return err; 122 } 123 124 return 0; 125 } 126 127 /** 128 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid 129 * @vsi: Current VSI 130 * @qid: Rx ring to associate UMEM to 131 * 132 * Returns 0 on success, <0 on failure 133 **/ 134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) 135 { 136 struct net_device *netdev = vsi->netdev; 137 struct xdp_umem *umem; 138 bool if_running; 139 int err; 140 141 umem = xdp_get_umem_from_qid(netdev, qid); 142 if (!umem) 143 return -EINVAL; 144 145 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 146 147 if (if_running) { 148 err = i40e_queue_pair_disable(vsi, qid); 149 if (err) 150 return err; 151 } 152 153 clear_bit(qid, vsi->af_xdp_zc_qps); 154 i40e_xsk_umem_dma_unmap(vsi, umem); 155 156 if (if_running) { 157 err = i40e_queue_pair_enable(vsi, qid); 158 if (err) 159 return err; 160 } 161 162 return 0; 163 } 164 165 /** 166 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid 167 * @vsi: Current VSI 168 * @umem: UMEM to enable/associate to a ring, or NULL to disable 169 * @qid: Rx ring to (dis)associate UMEM (from)to 170 * 171 * This function enables or disables a UMEM to a certain ring. 172 * 173 * Returns 0 on success, <0 on failure 174 **/ 175 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, 176 u16 qid) 177 { 178 return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : 179 i40e_xsk_umem_disable(vsi, qid); 180 } 181 182 /** 183 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 184 * @rx_ring: Rx ring 185 * @xdp: xdp_buff used as input to the XDP program 186 * 187 * This function enables or disables a UMEM to a certain ring. 188 * 189 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 190 **/ 191 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 192 { 193 struct xdp_umem *umem = rx_ring->xsk_umem; 194 int err, result = I40E_XDP_PASS; 195 struct i40e_ring *xdp_ring; 196 struct bpf_prog *xdp_prog; 197 u64 offset; 198 u32 act; 199 200 rcu_read_lock(); 201 /* NB! xdp_prog will always be !NULL, due to the fact that 202 * this path is enabled by setting an XDP program. 203 */ 204 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 205 act = bpf_prog_run_xdp(xdp_prog, xdp); 206 offset = xdp->data - xdp->data_hard_start; 207 208 xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset); 209 210 switch (act) { 211 case XDP_PASS: 212 break; 213 case XDP_TX: 214 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 215 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 216 break; 217 case XDP_REDIRECT: 218 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 219 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 220 break; 221 default: 222 bpf_warn_invalid_xdp_action(act); 223 /* fall through */ 224 case XDP_ABORTED: 225 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 226 /* fallthrough -- handle aborts by dropping packet */ 227 case XDP_DROP: 228 result = I40E_XDP_CONSUMED; 229 break; 230 } 231 rcu_read_unlock(); 232 return result; 233 } 234 235 /** 236 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer 237 * @rx_ring: Rx ring 238 * @bi: Rx buffer to populate 239 * 240 * This function allocates an Rx buffer. The buffer can come from fill 241 * queue, or via the recycle queue (next_to_alloc). 242 * 243 * Returns true for a successful allocation, false otherwise 244 **/ 245 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring, 246 struct i40e_rx_buffer *bi) 247 { 248 struct xdp_umem *umem = rx_ring->xsk_umem; 249 void *addr = bi->addr; 250 u64 handle, hr; 251 252 if (addr) { 253 rx_ring->rx_stats.page_reuse_count++; 254 return true; 255 } 256 257 if (!xsk_umem_peek_addr(umem, &handle)) { 258 rx_ring->rx_stats.alloc_page_failed++; 259 return false; 260 } 261 262 hr = umem->headroom + XDP_PACKET_HEADROOM; 263 264 bi->dma = xdp_umem_get_dma(umem, handle); 265 bi->dma += hr; 266 267 bi->addr = xdp_umem_get_data(umem, handle); 268 bi->addr += hr; 269 270 bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom); 271 272 xsk_umem_discard_addr(umem); 273 return true; 274 } 275 276 /** 277 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer 278 * @rx_ring: Rx ring 279 * @bi: Rx buffer to populate 280 * 281 * This function allocates an Rx buffer. The buffer can come from fill 282 * queue, or via the reuse queue. 283 * 284 * Returns true for a successful allocation, false otherwise 285 **/ 286 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring, 287 struct i40e_rx_buffer *bi) 288 { 289 struct xdp_umem *umem = rx_ring->xsk_umem; 290 u64 handle, hr; 291 292 if (!xsk_umem_peek_addr_rq(umem, &handle)) { 293 rx_ring->rx_stats.alloc_page_failed++; 294 return false; 295 } 296 297 handle &= rx_ring->xsk_umem->chunk_mask; 298 299 hr = umem->headroom + XDP_PACKET_HEADROOM; 300 301 bi->dma = xdp_umem_get_dma(umem, handle); 302 bi->dma += hr; 303 304 bi->addr = xdp_umem_get_data(umem, handle); 305 bi->addr += hr; 306 307 bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom); 308 309 xsk_umem_discard_addr_rq(umem); 310 return true; 311 } 312 313 static __always_inline bool 314 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, 315 bool alloc(struct i40e_ring *rx_ring, 316 struct i40e_rx_buffer *bi)) 317 { 318 u16 ntu = rx_ring->next_to_use; 319 union i40e_rx_desc *rx_desc; 320 struct i40e_rx_buffer *bi; 321 bool ok = true; 322 323 rx_desc = I40E_RX_DESC(rx_ring, ntu); 324 bi = &rx_ring->rx_bi[ntu]; 325 do { 326 if (!alloc(rx_ring, bi)) { 327 ok = false; 328 goto no_buffers; 329 } 330 331 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, 332 rx_ring->rx_buf_len, 333 DMA_BIDIRECTIONAL); 334 335 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); 336 337 rx_desc++; 338 bi++; 339 ntu++; 340 341 if (unlikely(ntu == rx_ring->count)) { 342 rx_desc = I40E_RX_DESC(rx_ring, 0); 343 bi = rx_ring->rx_bi; 344 ntu = 0; 345 } 346 347 rx_desc->wb.qword1.status_error_len = 0; 348 count--; 349 } while (count); 350 351 no_buffers: 352 if (rx_ring->next_to_use != ntu) 353 i40e_release_rx_desc(rx_ring, ntu); 354 355 return ok; 356 } 357 358 /** 359 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers 360 * @rx_ring: Rx ring 361 * @count: The number of buffers to allocate 362 * 363 * This function allocates a number of Rx buffers from the reuse queue 364 * or fill ring and places them on the Rx ring. 365 * 366 * Returns true for a successful allocation, false otherwise 367 **/ 368 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 369 { 370 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 371 i40e_alloc_buffer_slow_zc); 372 } 373 374 /** 375 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers 376 * @rx_ring: Rx ring 377 * @count: The number of buffers to allocate 378 * 379 * This function allocates a number of Rx buffers from the fill ring 380 * or the internal recycle mechanism and places them on the Rx ring. 381 * 382 * Returns true for a successful allocation, false otherwise 383 **/ 384 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count) 385 { 386 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 387 i40e_alloc_buffer_zc); 388 } 389 390 /** 391 * i40e_get_rx_buffer_zc - Return the current Rx buffer 392 * @rx_ring: Rx ring 393 * @size: The size of the rx buffer (read from descriptor) 394 * 395 * This function returns the current, received Rx buffer, and also 396 * does DMA synchronization. the Rx ring. 397 * 398 * Returns the received Rx buffer 399 **/ 400 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring, 401 const unsigned int size) 402 { 403 struct i40e_rx_buffer *bi; 404 405 bi = &rx_ring->rx_bi[rx_ring->next_to_clean]; 406 407 /* we are reusing so sync this buffer for CPU use */ 408 dma_sync_single_range_for_cpu(rx_ring->dev, 409 bi->dma, 0, 410 size, 411 DMA_BIDIRECTIONAL); 412 413 return bi; 414 } 415 416 /** 417 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer 418 * @rx_ring: Rx ring 419 * @old_bi: The Rx buffer to recycle 420 * 421 * This function recycles a finished Rx buffer, and places it on the 422 * recycle queue (next_to_alloc). 423 **/ 424 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring, 425 struct i40e_rx_buffer *old_bi) 426 { 427 struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc]; 428 u16 nta = rx_ring->next_to_alloc; 429 430 /* update, and store next to alloc */ 431 nta++; 432 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 433 434 /* transfer page from old buffer to new buffer */ 435 new_bi->dma = old_bi->dma; 436 new_bi->addr = old_bi->addr; 437 new_bi->handle = old_bi->handle; 438 439 old_bi->addr = NULL; 440 } 441 442 /** 443 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations 444 * @alloc: Zero-copy allocator 445 * @handle: Buffer handle 446 **/ 447 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) 448 { 449 struct i40e_rx_buffer *bi; 450 struct i40e_ring *rx_ring; 451 u64 hr, mask; 452 u16 nta; 453 454 rx_ring = container_of(alloc, struct i40e_ring, zca); 455 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; 456 mask = rx_ring->xsk_umem->chunk_mask; 457 458 nta = rx_ring->next_to_alloc; 459 bi = &rx_ring->rx_bi[nta]; 460 461 nta++; 462 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 463 464 handle &= mask; 465 466 bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle); 467 bi->dma += hr; 468 469 bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle); 470 bi->addr += hr; 471 472 bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle, 473 rx_ring->xsk_umem->headroom); 474 } 475 476 /** 477 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer 478 * @rx_ring: Rx ring 479 * @bi: Rx buffer 480 * @xdp: xdp_buff 481 * 482 * This functions allocates a new skb from a zero-copy Rx buffer. 483 * 484 * Returns the skb, or NULL on failure. 485 **/ 486 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 487 struct i40e_rx_buffer *bi, 488 struct xdp_buff *xdp) 489 { 490 unsigned int metasize = xdp->data - xdp->data_meta; 491 unsigned int datasize = xdp->data_end - xdp->data; 492 struct sk_buff *skb; 493 494 /* allocate a skb to store the frags */ 495 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 496 xdp->data_end - xdp->data_hard_start, 497 GFP_ATOMIC | __GFP_NOWARN); 498 if (unlikely(!skb)) 499 return NULL; 500 501 skb_reserve(skb, xdp->data - xdp->data_hard_start); 502 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 503 if (metasize) 504 skb_metadata_set(skb, metasize); 505 506 i40e_reuse_rx_buffer_zc(rx_ring, bi); 507 return skb; 508 } 509 510 /** 511 * i40e_inc_ntc: Advance the next_to_clean index 512 * @rx_ring: Rx ring 513 **/ 514 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 515 { 516 u32 ntc = rx_ring->next_to_clean + 1; 517 518 ntc = (ntc < rx_ring->count) ? ntc : 0; 519 rx_ring->next_to_clean = ntc; 520 prefetch(I40E_RX_DESC(rx_ring, ntc)); 521 } 522 523 /** 524 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 525 * @rx_ring: Rx ring 526 * @budget: NAPI budget 527 * 528 * Returns amount of work completed 529 **/ 530 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 531 { 532 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 533 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 534 unsigned int xdp_res, xdp_xmit = 0; 535 bool failure = false; 536 struct sk_buff *skb; 537 struct xdp_buff xdp; 538 539 xdp.rxq = &rx_ring->xdp_rxq; 540 541 while (likely(total_rx_packets < (unsigned int)budget)) { 542 struct i40e_rx_buffer *bi; 543 union i40e_rx_desc *rx_desc; 544 unsigned int size; 545 u64 qword; 546 547 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 548 failure = failure || 549 !i40e_alloc_rx_buffers_fast_zc(rx_ring, 550 cleaned_count); 551 cleaned_count = 0; 552 } 553 554 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 555 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 556 557 /* This memory barrier is needed to keep us from reading 558 * any other fields out of the rx_desc until we have 559 * verified the descriptor has been written back. 560 */ 561 dma_rmb(); 562 563 bi = i40e_clean_programming_status(rx_ring, rx_desc, 564 qword); 565 if (unlikely(bi)) { 566 i40e_reuse_rx_buffer_zc(rx_ring, bi); 567 cleaned_count++; 568 continue; 569 } 570 571 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 572 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 573 if (!size) 574 break; 575 576 bi = i40e_get_rx_buffer_zc(rx_ring, size); 577 xdp.data = bi->addr; 578 xdp.data_meta = xdp.data; 579 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 580 xdp.data_end = xdp.data + size; 581 xdp.handle = bi->handle; 582 583 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); 584 if (xdp_res) { 585 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 586 xdp_xmit |= xdp_res; 587 bi->addr = NULL; 588 } else { 589 i40e_reuse_rx_buffer_zc(rx_ring, bi); 590 } 591 592 total_rx_bytes += size; 593 total_rx_packets++; 594 595 cleaned_count++; 596 i40e_inc_ntc(rx_ring); 597 continue; 598 } 599 600 /* XDP_PASS path */ 601 602 /* NB! We are not checking for errors using 603 * i40e_test_staterr with 604 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 605 * SBP is *not* set in PRT_SBPVSI (default not set). 606 */ 607 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); 608 if (!skb) { 609 rx_ring->rx_stats.alloc_buff_failed++; 610 break; 611 } 612 613 cleaned_count++; 614 i40e_inc_ntc(rx_ring); 615 616 if (eth_skb_pad(skb)) 617 continue; 618 619 total_rx_bytes += skb->len; 620 total_rx_packets++; 621 622 i40e_process_skb_fields(rx_ring, rx_desc, skb); 623 napi_gro_receive(&rx_ring->q_vector->napi, skb); 624 } 625 626 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 627 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 628 629 if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) { 630 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 631 xsk_set_rx_need_wakeup(rx_ring->xsk_umem); 632 else 633 xsk_clear_rx_need_wakeup(rx_ring->xsk_umem); 634 635 return (int)total_rx_packets; 636 } 637 return failure ? budget : (int)total_rx_packets; 638 } 639 640 /** 641 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 642 * @xdp_ring: XDP Tx ring 643 * @budget: NAPI budget 644 * 645 * Returns true if the work is finished. 646 **/ 647 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 648 { 649 struct i40e_tx_desc *tx_desc = NULL; 650 struct i40e_tx_buffer *tx_bi; 651 bool work_done = true; 652 struct xdp_desc desc; 653 dma_addr_t dma; 654 655 while (budget-- > 0) { 656 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 657 xdp_ring->tx_stats.tx_busy++; 658 work_done = false; 659 break; 660 } 661 662 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) 663 break; 664 665 dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr); 666 667 dma_sync_single_for_device(xdp_ring->dev, dma, desc.len, 668 DMA_BIDIRECTIONAL); 669 670 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; 671 tx_bi->bytecount = desc.len; 672 673 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); 674 tx_desc->buffer_addr = cpu_to_le64(dma); 675 tx_desc->cmd_type_offset_bsz = 676 build_ctob(I40E_TX_DESC_CMD_ICRC 677 | I40E_TX_DESC_CMD_EOP, 678 0, desc.len, 0); 679 680 xdp_ring->next_to_use++; 681 if (xdp_ring->next_to_use == xdp_ring->count) 682 xdp_ring->next_to_use = 0; 683 } 684 685 if (tx_desc) { 686 /* Request an interrupt for the last frame and bump tail ptr. */ 687 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << 688 I40E_TXD_QW1_CMD_SHIFT); 689 i40e_xdp_ring_update_tail(xdp_ring); 690 691 xsk_umem_consume_tx_done(xdp_ring->xsk_umem); 692 if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem)) 693 xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem); 694 } 695 696 return !!budget && work_done; 697 } 698 699 /** 700 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 701 * @tx_ring: XDP Tx ring 702 * @tx_bi: Tx buffer info to clean 703 **/ 704 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 705 struct i40e_tx_buffer *tx_bi) 706 { 707 xdp_return_frame(tx_bi->xdpf); 708 dma_unmap_single(tx_ring->dev, 709 dma_unmap_addr(tx_bi, dma), 710 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 711 dma_unmap_len_set(tx_bi, len, 0); 712 } 713 714 /** 715 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 716 * @tx_ring: XDP Tx ring 717 * @tx_bi: Tx buffer info to clean 718 * 719 * Returns true if cleanup/tranmission is done. 720 **/ 721 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, 722 struct i40e_ring *tx_ring, int napi_budget) 723 { 724 unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; 725 u32 i, completed_frames, frames_ready, xsk_frames = 0; 726 struct xdp_umem *umem = tx_ring->xsk_umem; 727 u32 head_idx = i40e_get_head(tx_ring); 728 bool work_done = true, xmit_done; 729 struct i40e_tx_buffer *tx_bi; 730 731 if (head_idx < tx_ring->next_to_clean) 732 head_idx += tx_ring->count; 733 frames_ready = head_idx - tx_ring->next_to_clean; 734 735 if (frames_ready == 0) { 736 goto out_xmit; 737 } else if (frames_ready > budget) { 738 completed_frames = budget; 739 work_done = false; 740 } else { 741 completed_frames = frames_ready; 742 } 743 744 ntc = tx_ring->next_to_clean; 745 746 for (i = 0; i < completed_frames; i++) { 747 tx_bi = &tx_ring->tx_bi[ntc]; 748 749 if (tx_bi->xdpf) 750 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 751 else 752 xsk_frames++; 753 754 tx_bi->xdpf = NULL; 755 total_bytes += tx_bi->bytecount; 756 757 if (++ntc >= tx_ring->count) 758 ntc = 0; 759 } 760 761 tx_ring->next_to_clean += completed_frames; 762 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 763 tx_ring->next_to_clean -= tx_ring->count; 764 765 if (xsk_frames) 766 xsk_umem_complete_tx(umem, xsk_frames); 767 768 i40e_arm_wb(tx_ring, vsi, budget); 769 i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); 770 771 out_xmit: 772 if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem)) { 773 if (tx_ring->next_to_clean == tx_ring->next_to_use) 774 xsk_set_tx_need_wakeup(tx_ring->xsk_umem); 775 else 776 xsk_clear_tx_need_wakeup(tx_ring->xsk_umem); 777 } 778 779 xmit_done = i40e_xmit_zc(tx_ring, budget); 780 781 return work_done && xmit_done; 782 } 783 784 /** 785 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup 786 * @dev: the netdevice 787 * @queue_id: queue id to wake up 788 * @flags: ignored in our case since we have Rx and Tx in the same NAPI. 789 * 790 * Returns <0 for errors, 0 otherwise. 791 **/ 792 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 793 { 794 struct i40e_netdev_priv *np = netdev_priv(dev); 795 struct i40e_vsi *vsi = np->vsi; 796 struct i40e_ring *ring; 797 798 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 799 return -ENETDOWN; 800 801 if (!i40e_enabled_xdp_vsi(vsi)) 802 return -ENXIO; 803 804 if (queue_id >= vsi->num_queue_pairs) 805 return -ENXIO; 806 807 if (!vsi->xdp_rings[queue_id]->xsk_umem) 808 return -ENXIO; 809 810 ring = vsi->xdp_rings[queue_id]; 811 812 /* The idea here is that if NAPI is running, mark a miss, so 813 * it will run again. If not, trigger an interrupt and 814 * schedule the NAPI from interrupt context. If NAPI would be 815 * scheduled here, the interrupt affinity would not be 816 * honored. 817 */ 818 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 819 i40e_force_wb(vsi, ring->q_vector); 820 821 return 0; 822 } 823 824 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 825 { 826 u16 i; 827 828 for (i = 0; i < rx_ring->count; i++) { 829 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 830 831 if (!rx_bi->addr) 832 continue; 833 834 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); 835 rx_bi->addr = NULL; 836 } 837 } 838 839 /** 840 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown 841 * @xdp_ring: XDP Tx ring 842 **/ 843 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 844 { 845 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 846 struct xdp_umem *umem = tx_ring->xsk_umem; 847 struct i40e_tx_buffer *tx_bi; 848 u32 xsk_frames = 0; 849 850 while (ntc != ntu) { 851 tx_bi = &tx_ring->tx_bi[ntc]; 852 853 if (tx_bi->xdpf) 854 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 855 else 856 xsk_frames++; 857 858 tx_bi->xdpf = NULL; 859 860 ntc++; 861 if (ntc >= tx_ring->count) 862 ntc = 0; 863 } 864 865 if (xsk_frames) 866 xsk_umem_complete_tx(umem, xsk_frames); 867 } 868 869 /** 870 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached 871 * @vsi: vsi 872 * 873 * Returns true if any of the Rx rings has an AF_XDP UMEM attached 874 **/ 875 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 876 { 877 struct net_device *netdev = vsi->netdev; 878 int i; 879 880 for (i = 0; i < vsi->num_queue_pairs; i++) { 881 if (xdp_get_umem_from_qid(netdev, i)) 882 return true; 883 } 884 885 return false; 886 } 887