xref: /linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11 
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21 	struct i40e_pf *pf = vsi->back;
22 	struct device *dev;
23 	unsigned int i, j;
24 	dma_addr_t dma;
25 
26 	dev = &pf->pdev->dev;
27 	for (i = 0; i < umem->npgs; i++) {
28 		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29 					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30 		if (dma_mapping_error(dev, dma))
31 			goto out_unmap;
32 
33 		umem->pages[i].dma = dma;
34 	}
35 
36 	return 0;
37 
38 out_unmap:
39 	for (j = 0; j < i; j++) {
40 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42 		umem->pages[i].dma = 0;
43 	}
44 
45 	return -1;
46 }
47 
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55 	struct i40e_pf *pf = vsi->back;
56 	struct device *dev;
57 	unsigned int i;
58 
59 	dev = &pf->pdev->dev;
60 
61 	for (i = 0; i < umem->npgs; i++) {
62 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64 
65 		umem->pages[i].dma = 0;
66 	}
67 }
68 
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78 				u16 qid)
79 {
80 	struct net_device *netdev = vsi->netdev;
81 	struct xdp_umem_fq_reuse *reuseq;
82 	bool if_running;
83 	int err;
84 
85 	if (vsi->type != I40E_VSI_MAIN)
86 		return -EINVAL;
87 
88 	if (qid >= vsi->num_queue_pairs)
89 		return -EINVAL;
90 
91 	if (qid >= netdev->real_num_rx_queues ||
92 	    qid >= netdev->real_num_tx_queues)
93 		return -EINVAL;
94 
95 	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96 	if (!reuseq)
97 		return -ENOMEM;
98 
99 	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100 
101 	err = i40e_xsk_umem_dma_map(vsi, umem);
102 	if (err)
103 		return err;
104 
105 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
106 
107 	if (if_running) {
108 		err = i40e_queue_pair_disable(vsi, qid);
109 		if (err)
110 			return err;
111 
112 		err = i40e_queue_pair_enable(vsi, qid);
113 		if (err)
114 			return err;
115 	}
116 
117 	return 0;
118 }
119 
120 /**
121  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
122  * @vsi: Current VSI
123  * @qid: Rx ring to associate UMEM to
124  *
125  * Returns 0 on success, <0 on failure
126  **/
127 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
128 {
129 	struct net_device *netdev = vsi->netdev;
130 	struct xdp_umem *umem;
131 	bool if_running;
132 	int err;
133 
134 	umem = xdp_get_umem_from_qid(netdev, qid);
135 	if (!umem)
136 		return -EINVAL;
137 
138 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
139 
140 	if (if_running) {
141 		err = i40e_queue_pair_disable(vsi, qid);
142 		if (err)
143 			return err;
144 	}
145 
146 	i40e_xsk_umem_dma_unmap(vsi, umem);
147 
148 	if (if_running) {
149 		err = i40e_queue_pair_enable(vsi, qid);
150 		if (err)
151 			return err;
152 	}
153 
154 	return 0;
155 }
156 
157 /**
158  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
159  * @vsi: Current VSI
160  * @umem: UMEM to enable/associate to a ring, or NULL to disable
161  * @qid: Rx ring to (dis)associate UMEM (from)to
162  *
163  * This function enables or disables a UMEM to a certain ring.
164  *
165  * Returns 0 on success, <0 on failure
166  **/
167 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
168 			u16 qid)
169 {
170 	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
171 		i40e_xsk_umem_disable(vsi, qid);
172 }
173 
174 /**
175  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
176  * @rx_ring: Rx ring
177  * @xdp: xdp_buff used as input to the XDP program
178  *
179  * This function enables or disables a UMEM to a certain ring.
180  *
181  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
182  **/
183 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
184 {
185 	int err, result = I40E_XDP_PASS;
186 	struct i40e_ring *xdp_ring;
187 	struct bpf_prog *xdp_prog;
188 	u32 act;
189 
190 	rcu_read_lock();
191 	/* NB! xdp_prog will always be !NULL, due to the fact that
192 	 * this path is enabled by setting an XDP program.
193 	 */
194 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
195 	act = bpf_prog_run_xdp(xdp_prog, xdp);
196 	xdp->handle += xdp->data - xdp->data_hard_start;
197 	switch (act) {
198 	case XDP_PASS:
199 		break;
200 	case XDP_TX:
201 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
202 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
203 		break;
204 	case XDP_REDIRECT:
205 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
206 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
207 		break;
208 	default:
209 		bpf_warn_invalid_xdp_action(act);
210 	case XDP_ABORTED:
211 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
212 		/* fallthrough -- handle aborts by dropping packet */
213 	case XDP_DROP:
214 		result = I40E_XDP_CONSUMED;
215 		break;
216 	}
217 	rcu_read_unlock();
218 	return result;
219 }
220 
221 /**
222  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
223  * @rx_ring: Rx ring
224  * @bi: Rx buffer to populate
225  *
226  * This function allocates an Rx buffer. The buffer can come from fill
227  * queue, or via the recycle queue (next_to_alloc).
228  *
229  * Returns true for a successful allocation, false otherwise
230  **/
231 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
232 				 struct i40e_rx_buffer *bi)
233 {
234 	struct xdp_umem *umem = rx_ring->xsk_umem;
235 	void *addr = bi->addr;
236 	u64 handle, hr;
237 
238 	if (addr) {
239 		rx_ring->rx_stats.page_reuse_count++;
240 		return true;
241 	}
242 
243 	if (!xsk_umem_peek_addr(umem, &handle)) {
244 		rx_ring->rx_stats.alloc_page_failed++;
245 		return false;
246 	}
247 
248 	hr = umem->headroom + XDP_PACKET_HEADROOM;
249 
250 	bi->dma = xdp_umem_get_dma(umem, handle);
251 	bi->dma += hr;
252 
253 	bi->addr = xdp_umem_get_data(umem, handle);
254 	bi->addr += hr;
255 
256 	bi->handle = handle + umem->headroom;
257 
258 	xsk_umem_discard_addr(umem);
259 	return true;
260 }
261 
262 /**
263  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
264  * @rx_ring: Rx ring
265  * @bi: Rx buffer to populate
266  *
267  * This function allocates an Rx buffer. The buffer can come from fill
268  * queue, or via the reuse queue.
269  *
270  * Returns true for a successful allocation, false otherwise
271  **/
272 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
273 				      struct i40e_rx_buffer *bi)
274 {
275 	struct xdp_umem *umem = rx_ring->xsk_umem;
276 	u64 handle, hr;
277 
278 	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
279 		rx_ring->rx_stats.alloc_page_failed++;
280 		return false;
281 	}
282 
283 	handle &= rx_ring->xsk_umem->chunk_mask;
284 
285 	hr = umem->headroom + XDP_PACKET_HEADROOM;
286 
287 	bi->dma = xdp_umem_get_dma(umem, handle);
288 	bi->dma += hr;
289 
290 	bi->addr = xdp_umem_get_data(umem, handle);
291 	bi->addr += hr;
292 
293 	bi->handle = handle + umem->headroom;
294 
295 	xsk_umem_discard_addr_rq(umem);
296 	return true;
297 }
298 
299 static __always_inline bool
300 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
301 			   bool alloc(struct i40e_ring *rx_ring,
302 				      struct i40e_rx_buffer *bi))
303 {
304 	u16 ntu = rx_ring->next_to_use;
305 	union i40e_rx_desc *rx_desc;
306 	struct i40e_rx_buffer *bi;
307 	bool ok = true;
308 
309 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
310 	bi = &rx_ring->rx_bi[ntu];
311 	do {
312 		if (!alloc(rx_ring, bi)) {
313 			ok = false;
314 			goto no_buffers;
315 		}
316 
317 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
318 						 rx_ring->rx_buf_len,
319 						 DMA_BIDIRECTIONAL);
320 
321 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
322 
323 		rx_desc++;
324 		bi++;
325 		ntu++;
326 
327 		if (unlikely(ntu == rx_ring->count)) {
328 			rx_desc = I40E_RX_DESC(rx_ring, 0);
329 			bi = rx_ring->rx_bi;
330 			ntu = 0;
331 		}
332 
333 		rx_desc->wb.qword1.status_error_len = 0;
334 		count--;
335 	} while (count);
336 
337 no_buffers:
338 	if (rx_ring->next_to_use != ntu)
339 		i40e_release_rx_desc(rx_ring, ntu);
340 
341 	return ok;
342 }
343 
344 /**
345  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
346  * @rx_ring: Rx ring
347  * @count: The number of buffers to allocate
348  *
349  * This function allocates a number of Rx buffers from the reuse queue
350  * or fill ring and places them on the Rx ring.
351  *
352  * Returns true for a successful allocation, false otherwise
353  **/
354 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
355 {
356 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
357 					  i40e_alloc_buffer_slow_zc);
358 }
359 
360 /**
361  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
362  * @rx_ring: Rx ring
363  * @count: The number of buffers to allocate
364  *
365  * This function allocates a number of Rx buffers from the fill ring
366  * or the internal recycle mechanism and places them on the Rx ring.
367  *
368  * Returns true for a successful allocation, false otherwise
369  **/
370 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
371 {
372 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
373 					  i40e_alloc_buffer_zc);
374 }
375 
376 /**
377  * i40e_get_rx_buffer_zc - Return the current Rx buffer
378  * @rx_ring: Rx ring
379  * @size: The size of the rx buffer (read from descriptor)
380  *
381  * This function returns the current, received Rx buffer, and also
382  * does DMA synchronization.  the Rx ring.
383  *
384  * Returns the received Rx buffer
385  **/
386 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
387 						    const unsigned int size)
388 {
389 	struct i40e_rx_buffer *bi;
390 
391 	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
392 
393 	/* we are reusing so sync this buffer for CPU use */
394 	dma_sync_single_range_for_cpu(rx_ring->dev,
395 				      bi->dma, 0,
396 				      size,
397 				      DMA_BIDIRECTIONAL);
398 
399 	return bi;
400 }
401 
402 /**
403  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
404  * @rx_ring: Rx ring
405  * @old_bi: The Rx buffer to recycle
406  *
407  * This function recycles a finished Rx buffer, and places it on the
408  * recycle queue (next_to_alloc).
409  **/
410 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
411 				    struct i40e_rx_buffer *old_bi)
412 {
413 	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
414 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
415 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
416 	u16 nta = rx_ring->next_to_alloc;
417 
418 	/* update, and store next to alloc */
419 	nta++;
420 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
421 
422 	/* transfer page from old buffer to new buffer */
423 	new_bi->dma = old_bi->dma & mask;
424 	new_bi->dma += hr;
425 
426 	new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
427 	new_bi->addr += hr;
428 
429 	new_bi->handle = old_bi->handle & mask;
430 	new_bi->handle += rx_ring->xsk_umem->headroom;
431 
432 	old_bi->addr = NULL;
433 }
434 
435 /**
436  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
437  * @alloc: Zero-copy allocator
438  * @handle: Buffer handle
439  **/
440 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
441 {
442 	struct i40e_rx_buffer *bi;
443 	struct i40e_ring *rx_ring;
444 	u64 hr, mask;
445 	u16 nta;
446 
447 	rx_ring = container_of(alloc, struct i40e_ring, zca);
448 	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
449 	mask = rx_ring->xsk_umem->chunk_mask;
450 
451 	nta = rx_ring->next_to_alloc;
452 	bi = &rx_ring->rx_bi[nta];
453 
454 	nta++;
455 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
456 
457 	handle &= mask;
458 
459 	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
460 	bi->dma += hr;
461 
462 	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
463 	bi->addr += hr;
464 
465 	bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
466 }
467 
468 /**
469  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
470  * @rx_ring: Rx ring
471  * @bi: Rx buffer
472  * @xdp: xdp_buff
473  *
474  * This functions allocates a new skb from a zero-copy Rx buffer.
475  *
476  * Returns the skb, or NULL on failure.
477  **/
478 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
479 					     struct i40e_rx_buffer *bi,
480 					     struct xdp_buff *xdp)
481 {
482 	unsigned int metasize = xdp->data - xdp->data_meta;
483 	unsigned int datasize = xdp->data_end - xdp->data;
484 	struct sk_buff *skb;
485 
486 	/* allocate a skb to store the frags */
487 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
488 			       xdp->data_end - xdp->data_hard_start,
489 			       GFP_ATOMIC | __GFP_NOWARN);
490 	if (unlikely(!skb))
491 		return NULL;
492 
493 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
494 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
495 	if (metasize)
496 		skb_metadata_set(skb, metasize);
497 
498 	i40e_reuse_rx_buffer_zc(rx_ring, bi);
499 	return skb;
500 }
501 
502 /**
503  * i40e_inc_ntc: Advance the next_to_clean index
504  * @rx_ring: Rx ring
505  **/
506 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
507 {
508 	u32 ntc = rx_ring->next_to_clean + 1;
509 
510 	ntc = (ntc < rx_ring->count) ? ntc : 0;
511 	rx_ring->next_to_clean = ntc;
512 	prefetch(I40E_RX_DESC(rx_ring, ntc));
513 }
514 
515 /**
516  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
517  * @rx_ring: Rx ring
518  * @budget: NAPI budget
519  *
520  * Returns amount of work completed
521  **/
522 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
523 {
524 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
525 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
526 	unsigned int xdp_res, xdp_xmit = 0;
527 	bool failure = false;
528 	struct sk_buff *skb;
529 	struct xdp_buff xdp;
530 
531 	xdp.rxq = &rx_ring->xdp_rxq;
532 
533 	while (likely(total_rx_packets < (unsigned int)budget)) {
534 		struct i40e_rx_buffer *bi;
535 		union i40e_rx_desc *rx_desc;
536 		unsigned int size;
537 		u64 qword;
538 
539 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
540 			failure = failure ||
541 				  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
542 								 cleaned_count);
543 			cleaned_count = 0;
544 		}
545 
546 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
547 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
548 
549 		/* This memory barrier is needed to keep us from reading
550 		 * any other fields out of the rx_desc until we have
551 		 * verified the descriptor has been written back.
552 		 */
553 		dma_rmb();
554 
555 		bi = i40e_clean_programming_status(rx_ring, rx_desc,
556 						   qword);
557 		if (unlikely(bi)) {
558 			i40e_reuse_rx_buffer_zc(rx_ring, bi);
559 			cleaned_count++;
560 			continue;
561 		}
562 
563 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
564 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
565 		if (!size)
566 			break;
567 
568 		bi = i40e_get_rx_buffer_zc(rx_ring, size);
569 		xdp.data = bi->addr;
570 		xdp.data_meta = xdp.data;
571 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
572 		xdp.data_end = xdp.data + size;
573 		xdp.handle = bi->handle;
574 
575 		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
576 		if (xdp_res) {
577 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
578 				xdp_xmit |= xdp_res;
579 				bi->addr = NULL;
580 			} else {
581 				i40e_reuse_rx_buffer_zc(rx_ring, bi);
582 			}
583 
584 			total_rx_bytes += size;
585 			total_rx_packets++;
586 
587 			cleaned_count++;
588 			i40e_inc_ntc(rx_ring);
589 			continue;
590 		}
591 
592 		/* XDP_PASS path */
593 
594 		/* NB! We are not checking for errors using
595 		 * i40e_test_staterr with
596 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
597 		 * SBP is *not* set in PRT_SBPVSI (default not set).
598 		 */
599 		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
600 		if (!skb) {
601 			rx_ring->rx_stats.alloc_buff_failed++;
602 			break;
603 		}
604 
605 		cleaned_count++;
606 		i40e_inc_ntc(rx_ring);
607 
608 		if (eth_skb_pad(skb))
609 			continue;
610 
611 		total_rx_bytes += skb->len;
612 		total_rx_packets++;
613 
614 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
615 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
616 	}
617 
618 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
619 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
620 	return failure ? budget : (int)total_rx_packets;
621 }
622 
623 /**
624  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
625  * @xdp_ring: XDP Tx ring
626  * @budget: NAPI budget
627  *
628  * Returns true if the work is finished.
629  **/
630 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
631 {
632 	struct i40e_tx_desc *tx_desc = NULL;
633 	struct i40e_tx_buffer *tx_bi;
634 	bool work_done = true;
635 	dma_addr_t dma;
636 	u32 len;
637 
638 	while (budget-- > 0) {
639 		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
640 			xdp_ring->tx_stats.tx_busy++;
641 			work_done = false;
642 			break;
643 		}
644 
645 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
646 			break;
647 
648 		dma_sync_single_for_device(xdp_ring->dev, dma, len,
649 					   DMA_BIDIRECTIONAL);
650 
651 		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
652 		tx_bi->bytecount = len;
653 
654 		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
655 		tx_desc->buffer_addr = cpu_to_le64(dma);
656 		tx_desc->cmd_type_offset_bsz =
657 			build_ctob(I40E_TX_DESC_CMD_ICRC
658 				   | I40E_TX_DESC_CMD_EOP,
659 				   0, len, 0);
660 
661 		xdp_ring->next_to_use++;
662 		if (xdp_ring->next_to_use == xdp_ring->count)
663 			xdp_ring->next_to_use = 0;
664 	}
665 
666 	if (tx_desc) {
667 		/* Request an interrupt for the last frame and bump tail ptr. */
668 		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
669 						 I40E_TXD_QW1_CMD_SHIFT);
670 		i40e_xdp_ring_update_tail(xdp_ring);
671 
672 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
673 	}
674 
675 	return !!budget && work_done;
676 }
677 
678 /**
679  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
680  * @tx_ring: XDP Tx ring
681  * @tx_bi: Tx buffer info to clean
682  **/
683 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
684 				     struct i40e_tx_buffer *tx_bi)
685 {
686 	xdp_return_frame(tx_bi->xdpf);
687 	dma_unmap_single(tx_ring->dev,
688 			 dma_unmap_addr(tx_bi, dma),
689 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
690 	dma_unmap_len_set(tx_bi, len, 0);
691 }
692 
693 /**
694  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
695  * @tx_ring: XDP Tx ring
696  * @tx_bi: Tx buffer info to clean
697  *
698  * Returns true if cleanup/tranmission is done.
699  **/
700 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
701 			   struct i40e_ring *tx_ring, int napi_budget)
702 {
703 	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
704 	u32 i, completed_frames, frames_ready, xsk_frames = 0;
705 	struct xdp_umem *umem = tx_ring->xsk_umem;
706 	u32 head_idx = i40e_get_head(tx_ring);
707 	bool work_done = true, xmit_done;
708 	struct i40e_tx_buffer *tx_bi;
709 
710 	if (head_idx < tx_ring->next_to_clean)
711 		head_idx += tx_ring->count;
712 	frames_ready = head_idx - tx_ring->next_to_clean;
713 
714 	if (frames_ready == 0) {
715 		goto out_xmit;
716 	} else if (frames_ready > budget) {
717 		completed_frames = budget;
718 		work_done = false;
719 	} else {
720 		completed_frames = frames_ready;
721 	}
722 
723 	ntc = tx_ring->next_to_clean;
724 
725 	for (i = 0; i < completed_frames; i++) {
726 		tx_bi = &tx_ring->tx_bi[ntc];
727 
728 		if (tx_bi->xdpf)
729 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
730 		else
731 			xsk_frames++;
732 
733 		tx_bi->xdpf = NULL;
734 		total_bytes += tx_bi->bytecount;
735 
736 		if (++ntc >= tx_ring->count)
737 			ntc = 0;
738 	}
739 
740 	tx_ring->next_to_clean += completed_frames;
741 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
742 		tx_ring->next_to_clean -= tx_ring->count;
743 
744 	if (xsk_frames)
745 		xsk_umem_complete_tx(umem, xsk_frames);
746 
747 	i40e_arm_wb(tx_ring, vsi, budget);
748 	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
749 
750 out_xmit:
751 	xmit_done = i40e_xmit_zc(tx_ring, budget);
752 
753 	return work_done && xmit_done;
754 }
755 
756 /**
757  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
758  * @dev: the netdevice
759  * @queue_id: queue id to wake up
760  *
761  * Returns <0 for errors, 0 otherwise.
762  **/
763 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
764 {
765 	struct i40e_netdev_priv *np = netdev_priv(dev);
766 	struct i40e_vsi *vsi = np->vsi;
767 	struct i40e_ring *ring;
768 
769 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
770 		return -ENETDOWN;
771 
772 	if (!i40e_enabled_xdp_vsi(vsi))
773 		return -ENXIO;
774 
775 	if (queue_id >= vsi->num_queue_pairs)
776 		return -ENXIO;
777 
778 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
779 		return -ENXIO;
780 
781 	ring = vsi->xdp_rings[queue_id];
782 
783 	/* The idea here is that if NAPI is running, mark a miss, so
784 	 * it will run again. If not, trigger an interrupt and
785 	 * schedule the NAPI from interrupt context. If NAPI would be
786 	 * scheduled here, the interrupt affinity would not be
787 	 * honored.
788 	 */
789 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
790 		i40e_force_wb(vsi, ring->q_vector);
791 
792 	return 0;
793 }
794 
795 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
796 {
797 	u16 i;
798 
799 	for (i = 0; i < rx_ring->count; i++) {
800 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
801 
802 		if (!rx_bi->addr)
803 			continue;
804 
805 		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
806 		rx_bi->addr = NULL;
807 	}
808 }
809 
810 /**
811  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
812  * @xdp_ring: XDP Tx ring
813  **/
814 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
815 {
816 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
817 	struct xdp_umem *umem = tx_ring->xsk_umem;
818 	struct i40e_tx_buffer *tx_bi;
819 	u32 xsk_frames = 0;
820 
821 	while (ntc != ntu) {
822 		tx_bi = &tx_ring->tx_bi[ntc];
823 
824 		if (tx_bi->xdpf)
825 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
826 		else
827 			xsk_frames++;
828 
829 		tx_bi->xdpf = NULL;
830 
831 		ntc++;
832 		if (ntc >= tx_ring->count)
833 			ntc = 0;
834 	}
835 
836 	if (xsk_frames)
837 		xsk_umem_complete_tx(umem, xsk_frames);
838 }
839 
840 /**
841  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
842  * @vsi: vsi
843  *
844  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
845  **/
846 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
847 {
848 	struct net_device *netdev = vsi->netdev;
849 	int i;
850 
851 	for (i = 0; i < vsi->num_queue_pairs; i++) {
852 		if (xdp_get_umem_from_qid(netdev, i))
853 			return true;
854 	}
855 
856 	return false;
857 }
858