xref: /linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11 
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21 	struct i40e_pf *pf = vsi->back;
22 	struct device *dev;
23 	unsigned int i, j;
24 	dma_addr_t dma;
25 
26 	dev = &pf->pdev->dev;
27 	for (i = 0; i < umem->npgs; i++) {
28 		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29 					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30 		if (dma_mapping_error(dev, dma))
31 			goto out_unmap;
32 
33 		umem->pages[i].dma = dma;
34 	}
35 
36 	return 0;
37 
38 out_unmap:
39 	for (j = 0; j < i; j++) {
40 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42 		umem->pages[i].dma = 0;
43 	}
44 
45 	return -1;
46 }
47 
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55 	struct i40e_pf *pf = vsi->back;
56 	struct device *dev;
57 	unsigned int i;
58 
59 	dev = &pf->pdev->dev;
60 
61 	for (i = 0; i < umem->npgs; i++) {
62 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63 				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64 
65 		umem->pages[i].dma = 0;
66 	}
67 }
68 
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78 				u16 qid)
79 {
80 	struct net_device *netdev = vsi->netdev;
81 	struct xdp_umem_fq_reuse *reuseq;
82 	bool if_running;
83 	int err;
84 
85 	if (vsi->type != I40E_VSI_MAIN)
86 		return -EINVAL;
87 
88 	if (qid >= vsi->num_queue_pairs)
89 		return -EINVAL;
90 
91 	if (qid >= netdev->real_num_rx_queues ||
92 	    qid >= netdev->real_num_tx_queues)
93 		return -EINVAL;
94 
95 	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96 	if (!reuseq)
97 		return -ENOMEM;
98 
99 	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100 
101 	err = i40e_xsk_umem_dma_map(vsi, umem);
102 	if (err)
103 		return err;
104 
105 	set_bit(qid, vsi->af_xdp_zc_qps);
106 
107 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
108 
109 	if (if_running) {
110 		err = i40e_queue_pair_disable(vsi, qid);
111 		if (err)
112 			return err;
113 
114 		err = i40e_queue_pair_enable(vsi, qid);
115 		if (err)
116 			return err;
117 
118 		/* Kick start the NAPI context so that receiving will start */
119 		err = i40e_xsk_async_xmit(vsi->netdev, qid);
120 		if (err)
121 			return err;
122 	}
123 
124 	return 0;
125 }
126 
127 /**
128  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
129  * @vsi: Current VSI
130  * @qid: Rx ring to associate UMEM to
131  *
132  * Returns 0 on success, <0 on failure
133  **/
134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
135 {
136 	struct net_device *netdev = vsi->netdev;
137 	struct xdp_umem *umem;
138 	bool if_running;
139 	int err;
140 
141 	umem = xdp_get_umem_from_qid(netdev, qid);
142 	if (!umem)
143 		return -EINVAL;
144 
145 	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
146 
147 	if (if_running) {
148 		err = i40e_queue_pair_disable(vsi, qid);
149 		if (err)
150 			return err;
151 	}
152 
153 	clear_bit(qid, vsi->af_xdp_zc_qps);
154 	i40e_xsk_umem_dma_unmap(vsi, umem);
155 
156 	if (if_running) {
157 		err = i40e_queue_pair_enable(vsi, qid);
158 		if (err)
159 			return err;
160 	}
161 
162 	return 0;
163 }
164 
165 /**
166  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
167  * @vsi: Current VSI
168  * @umem: UMEM to enable/associate to a ring, or NULL to disable
169  * @qid: Rx ring to (dis)associate UMEM (from)to
170  *
171  * This function enables or disables a UMEM to a certain ring.
172  *
173  * Returns 0 on success, <0 on failure
174  **/
175 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
176 			u16 qid)
177 {
178 	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
179 		i40e_xsk_umem_disable(vsi, qid);
180 }
181 
182 /**
183  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
184  * @rx_ring: Rx ring
185  * @xdp: xdp_buff used as input to the XDP program
186  *
187  * This function enables or disables a UMEM to a certain ring.
188  *
189  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
190  **/
191 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
192 {
193 	int err, result = I40E_XDP_PASS;
194 	struct i40e_ring *xdp_ring;
195 	struct bpf_prog *xdp_prog;
196 	u32 act;
197 
198 	rcu_read_lock();
199 	/* NB! xdp_prog will always be !NULL, due to the fact that
200 	 * this path is enabled by setting an XDP program.
201 	 */
202 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
203 	act = bpf_prog_run_xdp(xdp_prog, xdp);
204 	xdp->handle += xdp->data - xdp->data_hard_start;
205 	switch (act) {
206 	case XDP_PASS:
207 		break;
208 	case XDP_TX:
209 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
210 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
211 		break;
212 	case XDP_REDIRECT:
213 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
214 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
215 		break;
216 	default:
217 		bpf_warn_invalid_xdp_action(act);
218 	case XDP_ABORTED:
219 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
220 		/* fallthrough -- handle aborts by dropping packet */
221 	case XDP_DROP:
222 		result = I40E_XDP_CONSUMED;
223 		break;
224 	}
225 	rcu_read_unlock();
226 	return result;
227 }
228 
229 /**
230  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
231  * @rx_ring: Rx ring
232  * @bi: Rx buffer to populate
233  *
234  * This function allocates an Rx buffer. The buffer can come from fill
235  * queue, or via the recycle queue (next_to_alloc).
236  *
237  * Returns true for a successful allocation, false otherwise
238  **/
239 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
240 				 struct i40e_rx_buffer *bi)
241 {
242 	struct xdp_umem *umem = rx_ring->xsk_umem;
243 	void *addr = bi->addr;
244 	u64 handle, hr;
245 
246 	if (addr) {
247 		rx_ring->rx_stats.page_reuse_count++;
248 		return true;
249 	}
250 
251 	if (!xsk_umem_peek_addr(umem, &handle)) {
252 		rx_ring->rx_stats.alloc_page_failed++;
253 		return false;
254 	}
255 
256 	hr = umem->headroom + XDP_PACKET_HEADROOM;
257 
258 	bi->dma = xdp_umem_get_dma(umem, handle);
259 	bi->dma += hr;
260 
261 	bi->addr = xdp_umem_get_data(umem, handle);
262 	bi->addr += hr;
263 
264 	bi->handle = handle + umem->headroom;
265 
266 	xsk_umem_discard_addr(umem);
267 	return true;
268 }
269 
270 /**
271  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
272  * @rx_ring: Rx ring
273  * @bi: Rx buffer to populate
274  *
275  * This function allocates an Rx buffer. The buffer can come from fill
276  * queue, or via the reuse queue.
277  *
278  * Returns true for a successful allocation, false otherwise
279  **/
280 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
281 				      struct i40e_rx_buffer *bi)
282 {
283 	struct xdp_umem *umem = rx_ring->xsk_umem;
284 	u64 handle, hr;
285 
286 	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
287 		rx_ring->rx_stats.alloc_page_failed++;
288 		return false;
289 	}
290 
291 	handle &= rx_ring->xsk_umem->chunk_mask;
292 
293 	hr = umem->headroom + XDP_PACKET_HEADROOM;
294 
295 	bi->dma = xdp_umem_get_dma(umem, handle);
296 	bi->dma += hr;
297 
298 	bi->addr = xdp_umem_get_data(umem, handle);
299 	bi->addr += hr;
300 
301 	bi->handle = handle + umem->headroom;
302 
303 	xsk_umem_discard_addr_rq(umem);
304 	return true;
305 }
306 
307 static __always_inline bool
308 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
309 			   bool alloc(struct i40e_ring *rx_ring,
310 				      struct i40e_rx_buffer *bi))
311 {
312 	u16 ntu = rx_ring->next_to_use;
313 	union i40e_rx_desc *rx_desc;
314 	struct i40e_rx_buffer *bi;
315 	bool ok = true;
316 
317 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
318 	bi = &rx_ring->rx_bi[ntu];
319 	do {
320 		if (!alloc(rx_ring, bi)) {
321 			ok = false;
322 			goto no_buffers;
323 		}
324 
325 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
326 						 rx_ring->rx_buf_len,
327 						 DMA_BIDIRECTIONAL);
328 
329 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
330 
331 		rx_desc++;
332 		bi++;
333 		ntu++;
334 
335 		if (unlikely(ntu == rx_ring->count)) {
336 			rx_desc = I40E_RX_DESC(rx_ring, 0);
337 			bi = rx_ring->rx_bi;
338 			ntu = 0;
339 		}
340 
341 		rx_desc->wb.qword1.status_error_len = 0;
342 		count--;
343 	} while (count);
344 
345 no_buffers:
346 	if (rx_ring->next_to_use != ntu)
347 		i40e_release_rx_desc(rx_ring, ntu);
348 
349 	return ok;
350 }
351 
352 /**
353  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
354  * @rx_ring: Rx ring
355  * @count: The number of buffers to allocate
356  *
357  * This function allocates a number of Rx buffers from the reuse queue
358  * or fill ring and places them on the Rx ring.
359  *
360  * Returns true for a successful allocation, false otherwise
361  **/
362 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
363 {
364 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
365 					  i40e_alloc_buffer_slow_zc);
366 }
367 
368 /**
369  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
370  * @rx_ring: Rx ring
371  * @count: The number of buffers to allocate
372  *
373  * This function allocates a number of Rx buffers from the fill ring
374  * or the internal recycle mechanism and places them on the Rx ring.
375  *
376  * Returns true for a successful allocation, false otherwise
377  **/
378 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
379 {
380 	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
381 					  i40e_alloc_buffer_zc);
382 }
383 
384 /**
385  * i40e_get_rx_buffer_zc - Return the current Rx buffer
386  * @rx_ring: Rx ring
387  * @size: The size of the rx buffer (read from descriptor)
388  *
389  * This function returns the current, received Rx buffer, and also
390  * does DMA synchronization.  the Rx ring.
391  *
392  * Returns the received Rx buffer
393  **/
394 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
395 						    const unsigned int size)
396 {
397 	struct i40e_rx_buffer *bi;
398 
399 	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
400 
401 	/* we are reusing so sync this buffer for CPU use */
402 	dma_sync_single_range_for_cpu(rx_ring->dev,
403 				      bi->dma, 0,
404 				      size,
405 				      DMA_BIDIRECTIONAL);
406 
407 	return bi;
408 }
409 
410 /**
411  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
412  * @rx_ring: Rx ring
413  * @old_bi: The Rx buffer to recycle
414  *
415  * This function recycles a finished Rx buffer, and places it on the
416  * recycle queue (next_to_alloc).
417  **/
418 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
419 				    struct i40e_rx_buffer *old_bi)
420 {
421 	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
422 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
423 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
424 	u16 nta = rx_ring->next_to_alloc;
425 
426 	/* update, and store next to alloc */
427 	nta++;
428 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
429 
430 	/* transfer page from old buffer to new buffer */
431 	new_bi->dma = old_bi->dma & mask;
432 	new_bi->dma += hr;
433 
434 	new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
435 	new_bi->addr += hr;
436 
437 	new_bi->handle = old_bi->handle & mask;
438 	new_bi->handle += rx_ring->xsk_umem->headroom;
439 
440 	old_bi->addr = NULL;
441 }
442 
443 /**
444  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
445  * @alloc: Zero-copy allocator
446  * @handle: Buffer handle
447  **/
448 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
449 {
450 	struct i40e_rx_buffer *bi;
451 	struct i40e_ring *rx_ring;
452 	u64 hr, mask;
453 	u16 nta;
454 
455 	rx_ring = container_of(alloc, struct i40e_ring, zca);
456 	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
457 	mask = rx_ring->xsk_umem->chunk_mask;
458 
459 	nta = rx_ring->next_to_alloc;
460 	bi = &rx_ring->rx_bi[nta];
461 
462 	nta++;
463 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
464 
465 	handle &= mask;
466 
467 	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
468 	bi->dma += hr;
469 
470 	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
471 	bi->addr += hr;
472 
473 	bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
474 }
475 
476 /**
477  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
478  * @rx_ring: Rx ring
479  * @bi: Rx buffer
480  * @xdp: xdp_buff
481  *
482  * This functions allocates a new skb from a zero-copy Rx buffer.
483  *
484  * Returns the skb, or NULL on failure.
485  **/
486 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
487 					     struct i40e_rx_buffer *bi,
488 					     struct xdp_buff *xdp)
489 {
490 	unsigned int metasize = xdp->data - xdp->data_meta;
491 	unsigned int datasize = xdp->data_end - xdp->data;
492 	struct sk_buff *skb;
493 
494 	/* allocate a skb to store the frags */
495 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
496 			       xdp->data_end - xdp->data_hard_start,
497 			       GFP_ATOMIC | __GFP_NOWARN);
498 	if (unlikely(!skb))
499 		return NULL;
500 
501 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
502 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
503 	if (metasize)
504 		skb_metadata_set(skb, metasize);
505 
506 	i40e_reuse_rx_buffer_zc(rx_ring, bi);
507 	return skb;
508 }
509 
510 /**
511  * i40e_inc_ntc: Advance the next_to_clean index
512  * @rx_ring: Rx ring
513  **/
514 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
515 {
516 	u32 ntc = rx_ring->next_to_clean + 1;
517 
518 	ntc = (ntc < rx_ring->count) ? ntc : 0;
519 	rx_ring->next_to_clean = ntc;
520 	prefetch(I40E_RX_DESC(rx_ring, ntc));
521 }
522 
523 /**
524  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
525  * @rx_ring: Rx ring
526  * @budget: NAPI budget
527  *
528  * Returns amount of work completed
529  **/
530 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
531 {
532 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
533 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
534 	unsigned int xdp_res, xdp_xmit = 0;
535 	bool failure = false;
536 	struct sk_buff *skb;
537 	struct xdp_buff xdp;
538 
539 	xdp.rxq = &rx_ring->xdp_rxq;
540 
541 	while (likely(total_rx_packets < (unsigned int)budget)) {
542 		struct i40e_rx_buffer *bi;
543 		union i40e_rx_desc *rx_desc;
544 		unsigned int size;
545 		u64 qword;
546 
547 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
548 			failure = failure ||
549 				  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
550 								 cleaned_count);
551 			cleaned_count = 0;
552 		}
553 
554 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
555 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
556 
557 		/* This memory barrier is needed to keep us from reading
558 		 * any other fields out of the rx_desc until we have
559 		 * verified the descriptor has been written back.
560 		 */
561 		dma_rmb();
562 
563 		bi = i40e_clean_programming_status(rx_ring, rx_desc,
564 						   qword);
565 		if (unlikely(bi)) {
566 			i40e_reuse_rx_buffer_zc(rx_ring, bi);
567 			cleaned_count++;
568 			continue;
569 		}
570 
571 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
572 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
573 		if (!size)
574 			break;
575 
576 		bi = i40e_get_rx_buffer_zc(rx_ring, size);
577 		xdp.data = bi->addr;
578 		xdp.data_meta = xdp.data;
579 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
580 		xdp.data_end = xdp.data + size;
581 		xdp.handle = bi->handle;
582 
583 		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
584 		if (xdp_res) {
585 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
586 				xdp_xmit |= xdp_res;
587 				bi->addr = NULL;
588 			} else {
589 				i40e_reuse_rx_buffer_zc(rx_ring, bi);
590 			}
591 
592 			total_rx_bytes += size;
593 			total_rx_packets++;
594 
595 			cleaned_count++;
596 			i40e_inc_ntc(rx_ring);
597 			continue;
598 		}
599 
600 		/* XDP_PASS path */
601 
602 		/* NB! We are not checking for errors using
603 		 * i40e_test_staterr with
604 		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
605 		 * SBP is *not* set in PRT_SBPVSI (default not set).
606 		 */
607 		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
608 		if (!skb) {
609 			rx_ring->rx_stats.alloc_buff_failed++;
610 			break;
611 		}
612 
613 		cleaned_count++;
614 		i40e_inc_ntc(rx_ring);
615 
616 		if (eth_skb_pad(skb))
617 			continue;
618 
619 		total_rx_bytes += skb->len;
620 		total_rx_packets++;
621 
622 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
623 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
624 	}
625 
626 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
627 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
628 	return failure ? budget : (int)total_rx_packets;
629 }
630 
631 /**
632  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
633  * @xdp_ring: XDP Tx ring
634  * @budget: NAPI budget
635  *
636  * Returns true if the work is finished.
637  **/
638 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
639 {
640 	struct i40e_tx_desc *tx_desc = NULL;
641 	struct i40e_tx_buffer *tx_bi;
642 	bool work_done = true;
643 	dma_addr_t dma;
644 	u32 len;
645 
646 	while (budget-- > 0) {
647 		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
648 			xdp_ring->tx_stats.tx_busy++;
649 			work_done = false;
650 			break;
651 		}
652 
653 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
654 			break;
655 
656 		dma_sync_single_for_device(xdp_ring->dev, dma, len,
657 					   DMA_BIDIRECTIONAL);
658 
659 		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
660 		tx_bi->bytecount = len;
661 
662 		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
663 		tx_desc->buffer_addr = cpu_to_le64(dma);
664 		tx_desc->cmd_type_offset_bsz =
665 			build_ctob(I40E_TX_DESC_CMD_ICRC
666 				   | I40E_TX_DESC_CMD_EOP,
667 				   0, len, 0);
668 
669 		xdp_ring->next_to_use++;
670 		if (xdp_ring->next_to_use == xdp_ring->count)
671 			xdp_ring->next_to_use = 0;
672 	}
673 
674 	if (tx_desc) {
675 		/* Request an interrupt for the last frame and bump tail ptr. */
676 		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
677 						 I40E_TXD_QW1_CMD_SHIFT);
678 		i40e_xdp_ring_update_tail(xdp_ring);
679 
680 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
681 	}
682 
683 	return !!budget && work_done;
684 }
685 
686 /**
687  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
688  * @tx_ring: XDP Tx ring
689  * @tx_bi: Tx buffer info to clean
690  **/
691 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
692 				     struct i40e_tx_buffer *tx_bi)
693 {
694 	xdp_return_frame(tx_bi->xdpf);
695 	dma_unmap_single(tx_ring->dev,
696 			 dma_unmap_addr(tx_bi, dma),
697 			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
698 	dma_unmap_len_set(tx_bi, len, 0);
699 }
700 
701 /**
702  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
703  * @tx_ring: XDP Tx ring
704  * @tx_bi: Tx buffer info to clean
705  *
706  * Returns true if cleanup/tranmission is done.
707  **/
708 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
709 			   struct i40e_ring *tx_ring, int napi_budget)
710 {
711 	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
712 	u32 i, completed_frames, frames_ready, xsk_frames = 0;
713 	struct xdp_umem *umem = tx_ring->xsk_umem;
714 	u32 head_idx = i40e_get_head(tx_ring);
715 	bool work_done = true, xmit_done;
716 	struct i40e_tx_buffer *tx_bi;
717 
718 	if (head_idx < tx_ring->next_to_clean)
719 		head_idx += tx_ring->count;
720 	frames_ready = head_idx - tx_ring->next_to_clean;
721 
722 	if (frames_ready == 0) {
723 		goto out_xmit;
724 	} else if (frames_ready > budget) {
725 		completed_frames = budget;
726 		work_done = false;
727 	} else {
728 		completed_frames = frames_ready;
729 	}
730 
731 	ntc = tx_ring->next_to_clean;
732 
733 	for (i = 0; i < completed_frames; i++) {
734 		tx_bi = &tx_ring->tx_bi[ntc];
735 
736 		if (tx_bi->xdpf)
737 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
738 		else
739 			xsk_frames++;
740 
741 		tx_bi->xdpf = NULL;
742 		total_bytes += tx_bi->bytecount;
743 
744 		if (++ntc >= tx_ring->count)
745 			ntc = 0;
746 	}
747 
748 	tx_ring->next_to_clean += completed_frames;
749 	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
750 		tx_ring->next_to_clean -= tx_ring->count;
751 
752 	if (xsk_frames)
753 		xsk_umem_complete_tx(umem, xsk_frames);
754 
755 	i40e_arm_wb(tx_ring, vsi, budget);
756 	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
757 
758 out_xmit:
759 	xmit_done = i40e_xmit_zc(tx_ring, budget);
760 
761 	return work_done && xmit_done;
762 }
763 
764 /**
765  * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
766  * @dev: the netdevice
767  * @queue_id: queue id to wake up
768  *
769  * Returns <0 for errors, 0 otherwise.
770  **/
771 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
772 {
773 	struct i40e_netdev_priv *np = netdev_priv(dev);
774 	struct i40e_vsi *vsi = np->vsi;
775 	struct i40e_ring *ring;
776 
777 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
778 		return -ENETDOWN;
779 
780 	if (!i40e_enabled_xdp_vsi(vsi))
781 		return -ENXIO;
782 
783 	if (queue_id >= vsi->num_queue_pairs)
784 		return -ENXIO;
785 
786 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
787 		return -ENXIO;
788 
789 	ring = vsi->xdp_rings[queue_id];
790 
791 	/* The idea here is that if NAPI is running, mark a miss, so
792 	 * it will run again. If not, trigger an interrupt and
793 	 * schedule the NAPI from interrupt context. If NAPI would be
794 	 * scheduled here, the interrupt affinity would not be
795 	 * honored.
796 	 */
797 	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
798 		i40e_force_wb(vsi, ring->q_vector);
799 
800 	return 0;
801 }
802 
803 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
804 {
805 	u16 i;
806 
807 	for (i = 0; i < rx_ring->count; i++) {
808 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
809 
810 		if (!rx_bi->addr)
811 			continue;
812 
813 		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
814 		rx_bi->addr = NULL;
815 	}
816 }
817 
818 /**
819  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
820  * @xdp_ring: XDP Tx ring
821  **/
822 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
823 {
824 	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
825 	struct xdp_umem *umem = tx_ring->xsk_umem;
826 	struct i40e_tx_buffer *tx_bi;
827 	u32 xsk_frames = 0;
828 
829 	while (ntc != ntu) {
830 		tx_bi = &tx_ring->tx_bi[ntc];
831 
832 		if (tx_bi->xdpf)
833 			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
834 		else
835 			xsk_frames++;
836 
837 		tx_bi->xdpf = NULL;
838 
839 		ntc++;
840 		if (ntc >= tx_ring->count)
841 			ntc = 0;
842 	}
843 
844 	if (xsk_frames)
845 		xsk_umem_complete_tx(umem, xsk_frames);
846 }
847 
848 /**
849  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
850  * @vsi: vsi
851  *
852  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
853  **/
854 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
855 {
856 	struct net_device *netdev = vsi->netdev;
857 	int i;
858 
859 	for (i = 0; i < vsi->num_queue_pairs; i++) {
860 		if (xdp_get_umem_from_qid(netdev, i))
861 			return true;
862 	}
863 
864 	return false;
865 }
866